
Locally Testable Codes and PCPs of Almost-Linear Length�Oded GoldreichyDepartment of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded.goldreich@weizmann.ac.il Madhu SudanzLaboratory for Computer ScienceMassachusetts Institute of TechnologyCambridge, MA 02139.madhu@mit.eduFebruary 2, 2006AbstractWe initiate a systematic study of locally testable codes; that is, error-correcting codes thatadmit very e�cient membership tests. Speci�cally, these are codes accompanied with tests thatmake a constant number of (random) queries into any given word and reject non-codewordswith probability proportional to their distance from the code.Locally testable codes are believed to be the combinatorial core of PCPs. However, therelation is less immediate than commonly believed. Nevertheless, we show that certain PCPsystems can be modi�ed to yield locally testable codes. On the other hand, we adapt techniquesthat we develop for the construction of the latter to yield new PCPs. Our main results arelocally testable codes and PCPs of almost-linear length. Speci�cally, we prove the existence ofthe following constructs:� Locally testable binary (linear) codes in which k information bits are encoded by a code-word of length k � exp(~O(plog k)). This improves over previous results that either yieldcodewords of exponential length or obtained almost quadratic length codewords for su�-ciently large non-binary alphabet.� PCP systems of almost-linear length for SAT. The length of the proof is n �exp(~O(plogn))and veri�cation in performed by a constant number (i.e., 19) of queries, as opposed toprevious results that used proof length n1+O(1=q) for veri�cation by q queries.The novel techniques in use include a random projection of certain codewords and PCP-oraclesthat preserves local-testability, an adaptation of PCP constructions to obtain \linear PCP-oracles" for proving conjunctions of linear conditions, and design of PCPs with some newsoundness properties.
Keywords: Error-Correcting Codes, PCP, randomized reductions, low-degree tests, codewordtests, the Probabilistic Method�An extended abstract of this work has appeared in the 43rd FOCS, 2002. A preliminary full version [24] hasappeared on ECCC.ySupported by the MINERVA Foundation, Germany.zSupported in part by NSF Awards CCR 9875511, CCR 9912342, and MIT-NTT Award MIT 2001-04.

Contents1 Introduction 21.1 Relation to PCP . 31.2 Relation to Property Testing . 31.3 Relation to Locally Decodable Codes . 41.4 Organization and previous versions . 42 Formal Setting 52.1 Codes . 52.1.1 Codeword tests: weak and strong versions . 62.1.2 Our main results . 72.2 PCP: Standard de�nitions and new results . 82.3 Our techniques . 93 Direct Constructions of Short Locally Testable Codes 103.1 The Basic Code (FS/RS-Code) . 103.2 Random projection of the FS/RS-Code . 113.3 Decreasing the alphabet size . 223.4 Obtaining a binary locally-testable code . 284 PCPs of Nearly-Linear Length 324.1 Two-prover veri�ers and random sampling . 334.2 Improved 3-prover proof system for NP . 344.2.1 Abstracting the veri�er of Theorem A.5 . 364.2.2 The 3-prover MIP: Stage I . 374.2.3 The 3-prover MIP: Stage II . 384.2.4 The 3-prover MIP: Stage III . 414.3 Reducing the answer size and obtaining PCPs . 425 Shorter Locally Testable Codes from PCPs 435.1 Easy derivation of a weak testability result . 435.2 Problems with an easy derivation of the strong testability result 485.3 Inner veri�ers for linear systems: De�nition and composition 495.3.1 A wider perspective . 495.3.2 The actual de�nition . 515.3.3 Obtaining locally testable codes . 535.3.4 Composing inner veri�ers . 625.4 Linear inner veri�ers: Two constructions . 685.4.1 LIPS based on the Hadamard encoding function . 685.4.2 LIPS based on the Reed-Muller encoding function . 715.5 Combining all the constructions . 795.6 Additional remarks . 806 Subsequent Work and Open Problems 83Bibliography 86Appendix A: The 3-prover system of [25], revisited 88A.1 The Gap Polynomial-Constraint-Satisfaction Problem . 88A.2 The complexity of rGapPCS . 90A.3 The proof system of Theorem A.5 . 91
1

1 IntroductionLocally testable codes are (good) error-correcting codes that admit very e�cient codeword tests.Speci�cally, the testing procedure makes only a constant number of (random) queries, and shouldreject non-codewords with probability proportional to their distance from the code.Locally testable codes are related to Probabilistically Checkable Proofs (PCPs, cf. [2, 3, 5, 19])and to Property Testing (cf. [22, 32]). Speci�cally, locally testable codes can be thought of as acombinatorial counterparts of the complexity theoretic notion of PCPs, and in fact the use of codeswith related features is implicit in known PCP constructions. Local testability of codes is also aspecial case of property testing, and indeed the �rst collection of properties that were shown to betestable also yield constructions of locally testable codes [14].Locally testable codes were introduced in passing, by Friedl and Sudan [21] and Rubinfeld andSudan [32]. However, despite the central role of locally testable codes in complexity theoretic andalgorithmic research, they have received little explicit attention so far. The primary goal of thiswork is to initiate a systematic study of locally testable codes. In particular, we focus on theconstruction of locally testable codes over a binary alphabet and on the development of techniquesto reduce the alphabet size of locally testable codes. Studying the length of locally testable codes,we obtain for the �rst time (even for non-binary alphabets), codes of almost-linear length.Some well-known examples: To motivate some of the parameters of concern, we start byconsidering some \trivial codes" that are easily testable. For example, the \code" that containsall strings of a given length is trivially testable (by accepting each string without even looking atit). It is also easy to test the \code" that consists of a single codeword (e.g., given an arbitrarystring w, pick a random index i and verify that w and the single codeword agree at the the i-thcoordinate). Thus, the concept of locally testable codes is interesting mainly in the case of \good"codes; that is, codes that have \many" codewords that are pairwise at \large" distance from eachother.One non-trivial code allowing e�cient testing is the Hadamard code: the codewords are linearfunctions represented by their values on all possible evaluation points. The number of codewords inHadamard codes grows with the length of the code, and the pairwise distance between codewordsis half of the length of the code. So this code does not admit trivial tests as above. It turns outthat in this case codeword testing amounts to linearity testing [14], and this can be performede�ciently, though the analysis is quite non-trivial.The drawback of the Hadamard code is that k bits of information are encoded using a codewordof length 2k. (The k information bits represent the k coe�cients of a linear function f0; 1gk ! f0; 1g,and bits in the codeword correspond to all possible evaluation points.)A basic question: The question addressed in this work is whether one can hope for a betterrelation between the number of information bits, denoted k, and the length of the codeword,denoted n. Speci�cally, can n be polynomial or even linear in k? For a su�ciently large non-binaryalphabet, Friedl and Sudan [21] showed that n can be made nearly quadratic in k. The maincontribution of this paper is the demonstration of the existence of locally testable codes in whichn is almost-linear in k (i.e., n = k1+o(1)), even for the binary alphabet.In Section 2.1 we provide precise de�nition of locally testable codes and state our main resultsregarding them. But before doing so, we discuss the relation between locally testable codes andthree other notions (i.e., PCP, property testing and locally decodable codes).2

1.1 Relation to PCPAs mentioned earlier, locally testable codes are closely related to Probabilistically Checkable Proofs(PCPs). Recall that a PCP system is de�ned by a (probabilistic) veri�er that is given a pair ofstrings { a purported theorem (assertion) and a claimed proof (evidence) { such that if the theoremis true, then there exists a proof such that the veri�er accepts; and if the assertion is not truethen no evidence causes the veri�er to accept (with high probability). Furthermore, PCP veri�ersachieve their goals by making only a small number of queries to the proof, which is given as anoracle. The PCP Theorem [2, 3] shows how to construct PCP veri�ers that make only a constantnumber of queries to the proof-oracle.PCPs achieve their strong features by implicitly relying on objects related to locally testablecodes. Indeed the construction of codes over large alphabets that are testable via a small (yet notnecessarily constant) number of queries lies at the heart of many PCPs. It is a common belief,among PCP enthusiasts, that the PCP Theorem [2, 3] already provides (binary) locally testablecodes. This belief relates to a stronger property of the proof of the PCP theorem which actuallyprovides a transformation from standard witnesses for, say SAT, to PCP-proof-oracles, such thattransformed strings are accepted with probability one by the PCP veri�er. When applied to aninstance of SAT that is a tautology, the map typically induces a good error-correcting code mappingk information bits to codewords of length poly(k) (or almost linear in k, when using [30]), whichare pairwise quite far from each other. The common belief is that the PCP-veri�er also yields acodeword test. However, this is not quite true: typically, the analysis only guarantee that eachpassing oracle can be \decoded" to a corresponding NP-witness, but encoding the decoded NP-witness does not necessarily yield a string that is close to the oracle. In particular, this allows fororacles that are accepted with high probability to be far from any valid codeword. Furthermore, itis not necessarily the case that only codewords pass the test with probability one. For example, partof the proof-oracle (in typical PCPs) is supposed to encode an m-variate polynomial of individualdegree d, yet the (standard) PCP-veri�er will also accept the encoding of any m-variate polynomialof total degree m � d (and the \decoding" procedure will work in this case too).We conclude that the known constructions of PCPs as such do not yield locally testable codes.However, we show that many known PCP constructions can be modi�ed to yield good codes withe�cient codeword tests. We stress that these modi�cations are non-trivial and furthermore areunnatural in the context of PCP. Yet, they do yield coding results of the type we seek (e.g., seeTheorem 2.3).On the other hand, a technique that emerges naturally in the context of our study of e�cientcodeword tests yields improved results on the length of e�cient PCPs. Speci�cally, we obtain(constant-query) PCP systems that utilize oracles that are shorter than known before (see Theo-rem 2.5).1.2 Relation to Property TestingProperty testing is the study of highly e�cient approximation algorithms (tests) for determiningwhether an input is close to satisfying a �xed property. Speci�cally, for a property (Booleanfunction) �, a test may query an oracle x at few positions and accept if �(x) is true, and rejectwith high probability if �(~x) is not true for every ~x that is \close" to x. Property testing wasde�ned in [32] (where the focus was on algebraic properties) and studied systematically in [22](where the focus was on combinatorial properties).Viewed from the perspective of property testing, the tester of a local testable code is a tester forthe property of being a member of the code, where the notion of \closeness" is based on Hamming3

distance. Furthermore, in the coding setting, it is especially natural that one is not interested inexactly deciding whether or not the input is a codeword, but rather in the \approximate" distanceof the input from the code (i.e., whether it is a codeword or far from any codeword). Thus,locally testable codes are especially well-connected to the theme of property testing. Indeed the�rst property tests in the literature (e.g., linearity tests [14], low-degree tests [6, 5, 32, 21]) canbe interpreted as yielding some forms of locally testable codes. More recent works on algebraictesting [7, 1] highlight the connections to codes more explicitly. Our work also uses the resultsand techniques developed in the context of low-degree testing. However, by focusing on the codesexplicitly, we highlight some missing connections. In particular, most of the prior work focussedon codes over large alphabets and did not show how to go from testable codes over large alphabetsto codes over small alphabets. In this work we address such issues explicitly and resolve them toderive our main results. Furthermore, we focus on codes that can be tested by making a constantnumber of queries.1.3 Relation to Locally Decodable CodesA task that is somewhat complementary to the task investigated in this paper, is the task oflocal decoding. That is, we refer to the project of constructing codes that have very e�cient(sub-linear time) implicit decoding algorithms. Speci�cally, given oracle access to a string that isclose to some unknown codeword, the decoding procedure should recover any desired bit of thecorresponding message while making, say, a constant number of queries to the input oracle. Codesthat have such decoding algorithms are called locally decodable codes. While local testability andlocal decodability appear related, no general theorems linking the two tasks are known. In fact,gaps in the performance of known constructions for the two tasks suggest that local decodabilityis \harder" to achieve than local testability. Our results con�rm this intuition:� We show the existence of almost-linear (i.e., n = k1+o(1)) length (binary) codes having code-word tests that make a constant number of queries. In contrast, it was shown that locallydecodable codes cannot have almost-linear length [27]: that is, if q queries are used for recov-ery then n =
(k1+(1=(q�1))).� For a (large) alphabet that can be viewed as vector space over some �eld F , we show almost-linear length F -linear codes having codeword tests that make only two queries. In contrast,it was shown that F -linear codes that allow for local decodability by two queries requireexponential length [23].Speci�cally, an F -linear code over the alphabet � = F ` is a linear space over F (but not nec-essarily over F `). In our codes (which support two-query tests) it holds that ` = exp(plog k)and jF j = O(`), while n < k1+(log k)�0:4999 = k1+o(1). In contrast, the lower-bound on n(for two-query decoding) established in [23] assert that n > exp(
(k � (` � `0)2)) in caseF = GF(2`0), which yields n > exp(
(k)) for the relevant values of ` = exp(plog k) = ko(1)and `0 = logO(`).1.4 Organization and previous versionsSection 2 provides a formal treatment of locally testable codes and PCPs. It also contains a (formal)statement of our main results as well as a high-level discussion of our main techniques (Section 2.3).In Section 3 we present direct and self-contained constructions of locally testable codes (albeit notachieving the best results). We stress that these constructions make no reference to PCP, althoughthey do use low-degree tests. Sections 1-3 occupy less than a third of the length of the paper.4

Our best constructions of locally testable codes are presented in Section 5, where we adaptstandard PCP constructions and combine them with the construction presented in Section 3.2.This section takes about half of the length of the paper. In Section 4, we adapt some of the ideaspresented in Section 3.2 in order to derive improved PCPs. We stress that Sections 4 and 5 can beread independently of one another, whereas they both depend on Section 3.2.Subsequent works and open problems are discussed in Section 6. In particular, we mention thatthe subsequent works of Ben-Sasson et al. [10], Ben-Sasson and Sudan [12], and Dinur [16] do notprovide strong codeword tests (but rather only weak ones).The current version di�ers from our preliminary report [24] in several aspects, the most impor-tant ones are discussed next.� In Section 2.1, we present two de�nitions of locally-testable codes, whereas only the weakerone has appeared in [24]. Furthermore, in order to obtain locally-testable codes under thestronger de�nition, we use a di�erent analysis of the constructions presented in Section 3.2.� Section 5 has been extensively revised, while narrowing the scope of some of the secondary re-sults (e.g., the two composition theorems (i.e., Theorems 5.13 and 5.16)). These modi�cationsdo not e�ect our main results.In addition, the presentation has been expanded and high-level overviews (most notably Sections 2.3and 5.3.1) were added.2 Formal SettingThroughout this work, all oracle machines (i.e., codeword testers and PCP veri�ers) are non-adaptive; that is, they determine their queries based solely on their input and random choices.This is in contrast to adaptive oracle machines that may determine their queries based on answersobtained to prior queries. Since our focus is on positive results, this only makes our results stronger.Throughout this work, all logarithms are to base 2, and for a natural number n we denote[n] def= f1; :::; ng. We often use an arbitrary �nite set, other than [n], as an index set to somesequence. For any �nite set S, we denote by hei : i 2 Si the sequence of ei's, where the order in thesequence is induced by an (often unspeci�ed) total order of the set S.2.1 CodesWe consider codes mapping a sequence of k input symbols into a sequence of n � k symbols overthe same alphabet, denoted �, which may (but need not) be the binary alphabet. Such a genericcode is denoted by C : �k ! �n, and the elements of fC(a) : a2�kg � �n are called codewords (ofC). Sometimes, it will be convenient to view such codes as maps C : �k � [n]! �.Throughout this paper, the integers k and n are to be thought of as parameters, and � maydepend on them. Thus, we actually discuss in�nite families of codes (which are associated within�nite sets of possible k's), and whenever we say that some quantity of the code is a constant wemean that this quantity is constant for the entire family (of codes). In particular, the rate of acode is the functional dependence of n on k, which we wish to be almost-linear. Typically, we seekto have � as small as possible, desire that j�j be a constant (i.e., does not depend on k), and aremost content when � = f0; 1g (i.e., a binary code).The distance between n-long sequences over � is de�ned in the natural manner; that is, foru; v 2 �n, the distance �(u; v) is de�ned as the number of locations on which u and v di�er (i.e.,5

�(u; v) def= jfi : ui 6= vigj, where u = u1 � � � un 2 �n and v = v1 � � � vn 2 �n). The relative distancebetween u and v, denoted �(u; v), is the ratio �(u; v)=n. To avoid technical di�culties, we de�nethe distance between sequences of di�erent length to equal the length of the longer sequence.The distance of a code C : �k ! �n is the minimum distance between its codewords; that is,mina6=bf�(C(a); C(b))g. Throughout this work, we focus on codes of \large distance"; speci�cally,codes C : �k ! �n of distance
(n).The distance of w 2 �n from a code C : �k ! �n, denoted �C(w), is the minimum distancebetween w and the codewords; that is, �C(w) def= minaf�(w; C(a))g. An interesting case is ofnon-codewords that are \relatively far from the code", which may mean that their distance fromthe code is greater than (say) a third of the distance of the code.We will sometimes say that w 2 �n is �-far from v (resp., from the code C), meaning that�(w; v) � � � n (resp., �C(w) � � � n). Similarly, we say that w is �-close from v (resp., from C) if�(w; v) � � � n (resp., �C(w) � � � n). Note that we have allowed w to be both �-far and �-close tov (resp., C) in case its relative distance to v (resp., C) is exactly �.2.1.1 Codeword tests: weak and strong versionsLoosely speaking, by a codeword test (for the code C : �k ! �n) we mean a randomized (non-adaptive) oracle machine, called a tester, that is given oracle access to w 2 �n (viewed as a functionw : [n]! �). The tester is required to (always) accept every codeword and reject with (relatively)high probability every oracle that is \far" from the code. Indeed, since our focus is on positiveresults, we use a strict formulation in which the tester is required to accept each codeword withprobability 1. (This corresponds to \perfect completeness" in the PCP setting.)The following two de�nitions di�er by what is required from the tester in case the oracle isnot a codeword. The weaker de�nition (which is the one that appears in our preliminary re-port [24]) requires that for every w 2 �n, given oracle access to w, the tester rejects with probabil-ity
(�C(w)=n)� o(1). An alternative formulation (of the same notion) is that, for some functionf(n) = o(n), every w 2 �n that is at distance greater than f(n) from C is rejected with prob-ability
(�C(w)=n). Either way, this de�nition (i.e., De�nition 2.1) e�ectively requires nothingwith respect to non-codewords that are relatively close to the code (i.e., are (f(n)=n)-close to C).A stronger and smoother de�nition (i.e., De�nition 2.2) requires that every non-codeword w isrejected with probability
(�C(w)=n).De�nition 2.1 (codeword tests, weak de�nition): A randomized (non-adaptive) oracle machineM is called a weak codeword test for C : �k ! �n if it satis�es the following two conditions:1. Accepting codewords: For any a 2 �k, given oracle access to w = C(a), machine M acceptswith probability 1. That is, Pr[MC(a)(k; n;�)=1] = 1, for any a 2 �k.2. Rejection of non-codeword: For some constant c > 0 and function f(n) = o(n), for every w 2�n, given oracle access to w, machine M rejects with probability at least (c ��C(w)�f(n))=n.That is, Pr[Mw(k; n;�) 6=1] � (c ��C(w) � f(n))=n, for any w 2 �n.We say that the code C : �k ! �n is weakly locally testable if it has a weak codeword test that makesa constant number of queries.De�nition 2.2 (codeword tests, strong de�nition): A randomized (non-adaptive) oracle machineM is called a strong codeword test for C : �k ! �n (or just a codeword test for C : �k ! �n) if itsatis�es the following two conditions: 6

1. Accepting codewords: As in De�nition 2.1, for any a 2 �k, given oracle access to w = C(a),machine M accepts with probability 1.2. Rejection of non-codeword: For some constant c > 0 and for every w 2 �n, given oracleaccess to w 2 �n, machine M rejects with probability at least c ��C(w)=n.That is, Pr[Mw(k; n;�) 6=1] � c ��C(w)=n, for any w 2 �n.We say that the code C : �k ! �n is locally testable if it has a strong codeword test that makes aconstant number of queries.Our constructions satisfy the stronger de�nition (i.e., De�nition 2.2), but we consider the weakerde�nition (i.e., De�nition 2.1) to be of su�cient interest to warrant presentation here. Furthermore,in two cases (i.e., in the proof of Claim 3.5.2 and in Section 5.1), we �nd it instructive to establishthe weak de�nition before turning to the strong one.We comment that one may consider various natural variants on the two de�nitions. For example,in both cases, we have required that the rejection probability grows linearly with the distance ofthe oracle from the code. More generally, one may consider requiring a slower (e.g., polynomial)growth rate. Another example is relaxing our requirement that every codeword is accepted withprobability 1. More generally, one may allow codewords to be rejected with some small probability.(Note that this relaxation (w.r.t codewords) may be odd if coupled with the stronger de�nitionregarding non-codewords (i.e., the one in De�nition 2.2).)Relation to property testing: Codeword tests are indeed a special type of property testers (asde�ned in [32, 22]). However, in the \property testing" literature one typically prefers providing thetester with a distance parameter and requiring that the tester rejects all objects that are that farfrom the property with probability at least 2=3 (rather than with probability proportional to theirdistance). In such a case, the query complexity is measured as a function of the distance parameterand is constant only when the latter parameter is a constant fraction of the maximum possibledistance. Strong codeword testers yield property testers with complexity that is inversely propor-tional to the distance parameter, whereas the complexity of testers derived from weak codewordtests is \well behaved" only for large values of the distance parameter.2.1.2 Our main resultsOur main result regarding codes is the followingTheorem 2.3 (locally testable binary codes of k1+o(1) length): For in�nitely many k's, there existlocally testable codes with binary alphabet such that n = exp(~O(plog k)) �k = k1+o(1). Furthermore,these codes are linear and have distance
(n).Theorem 2.3 (as well as Part 2 of Theorem 2.4) vastly improves over the Hadamard code (in whichn = 2k), which is the only locally testable binary code previously known. Theorem 2.3 is provenby combining Part 1 of the following Theorem 2.4 with non-standard modi�cations of standardPCP constructions. We emphasize the fact that Theorem 2.4, which is weaker than Theorem 2.3,is proven without relying on any PCP construction.Theorem 2.4 (weaker results proved by direct/self-contained constructions):7

1. For in�nitely many k's, there exist locally testable codes with non-binary alphabet � such thatn = exp(~O(plog k)) � k = k1+o(1) and log j�j = exp(~O(plog k)) = ko(1). Furthermore, thetester makes two queries and the code is F -linear1, where � = F `.2. For every c > 1 and in�nitely many k's, there exist locally testable codes over binary alphabetsuch that n < kc. Furthermore, the code is linear.In both cases, the codes have distance
(n).Part 1 improves over the work of Friedl and Sudan [21], which only yields n = k2+o(1).The set of k's for which Theorems 2.3 and 2.4 hold is reasonable dense; in all cases, if k is inthe set then the next integer in the set is smaller than k1+o(1). Speci�cally, in Part 1 (resp., Part 2)of Theorem 2.4, if k is in the set then the next integer in the set is smaller than exp((log k)0:51) � k(resp., O(poly(log k) � k)).Caveat: Both Theorems 2.3 and 2.4 are proven via the probabilistic method, and thus do notyield an explicit construction. Such a construction has been found subsequently by Ben-Sasson,Sudan, Vadhan and Wigderson [13]. (See further discussion in Section 6.)Comment: The result of Theorem 2.3 holds also when using testers that make three queries. Onthe other hand, (good) binary codes cannot be tested using two queries (cf. [11]).2.2 PCP: Standard de�nitions and new resultsFollowing [8], we consider PCP systems for promise problems (cf. [18]). (Recall that a promiseproblem is a pair of non-intersecting subsets of f0; 1g�, which do not necessarily cover f0; 1g�.) Aprobabilistic checkable proof (PCP) system for a promise problem � = (�yes;�no) is a probabilisticpolynomial-time (non-adaptive) oracle machine (called veri�er), denoted V , satisfying� Completeness: For every x 2 �yes there exists an oracle �x such that V , on input x andaccess to oracle �x, always accepts x.� Soundness: For every x 2 �no and every oracle �, machine V , on input x and access tooracle �, rejects x with probability at least 12 .Actually, we will allow the soundness error to be a constant that is arbitrary close to 12 .As usual, we focus on PCP systems with logarithmic randomness complexity and constant querycomplexity. This means that, without loss of generality, the length of the oracle is polynomial in thelength of the input. However, we aim at PCP systems that utilize oracles that are of almost-linearlength. Our main result regarding such PCP systems is the followingTheorem 2.5 There exists an almost-linear time randomized reduction of SAT to a promise prob-lem that has a 19-query PCP system that utilizes oracles of length exp(~O(plog n)) � n = n1+o(1),where n is the length of the input. Furthermore, the reduction maps k-bit inputs to n-bit inputssuch that n = exp(~O(plog k)) � k = k1+o(1).This should be compared to the PCP system for SAT of Polishchuk and Spielman [30] that whenutilizing oracles of length n1+� makes O(1=�) queries. In contrast, our PCP system utilizing oraclesof length n1+o(1) while making 19 queries.1A code over the alphabet � = F ` is called F -linear code if its codewords form a linear space over F (but notnecessarily over F `). 8

Caveat: Theorem 2.5 does not yield a PCP for SAT, but rather a PCP for a promise problemto which SAT can be reduced (via a randomized reduction that runs in almost-linear time). (Thereduction merely augments the input by a random string of an adequate length; thus allowingthe application of a probabilistic argument analogous to the one underlying the proof of Part 1 ofTheorem 2.4.) A PCP for SAT itself has been found subsequently by Ben-Sasson, Sudan, Vadhanand Wigderson [13].2.3 Our techniquesIn this section we highlight some of the techniques used in the paper.Random projection of codes and PCPs. We derive locally-testable codes (resp., PCPs) ofshorter length by showing that a random projection of the original codewords (resp., proofs) on asmaller number of coordinates maintains the testability of the original construct. In Section 3.2this process is applied to a speci�c code, in Section 4.1 it is applied to any two-prover one-roundproof system, and in Section 4.2 it is applied to certain three-prover proof systems. In retrospect,one may say that in all cases we show that in certain multi-prover proof systems one may randomly\trim" all the provers to the \size" of the smallest one, where the size of a prover is de�ned as thelength of (the explicit description of) its strategy (which, in turn, is exponential in the length ofthe queries that the prover answers).Extending the paradigm of code-concatenation to codeword testing. The notion of con-catenated codes was introduced by Forney [20] (in the 1960's) as a technique for reducing thealphabet size of codes. Our constructions of locally-testable codes extend this technique by show-ing that in certain cases codeword testers for the \outer" and \inner" codes yield a codeword testerfor the concatenated code. Speci�cally, we refer to cases where the inner code allows direct accessto the values checked by the tester of the outer code, and furthermore that this direct access sup-ports self-correction (cf. [14]). Two examples appear in Sections 3.3 and 3.4, respectively. We alsoexplore the related composition of locally-testable codes with (inner-veri�er) PCPs; see Section 5.3.Developing a theory of PCPs for linear assertions. When composing a locally-testablecode with an inner-veri�er, we may obtain a locally-testable code over a smaller alphabet, but willthis code preserve the linearity of the original code? This seems to require that the inner-veri�eruses proof-oracles that are linear in the main input, which seems plausible when the assertion itselfis linear (i.e., asserts that the input resides in some linear subspace). The suitable de�nitions andcomposition results are developed in Section 5.3, while in Section 5.4 we show that known PCPconstructions can be modi�ed to maintain the linearity of the assertions.Two notions of strong soundness for PCP. When composing a locally-testable code with aninner-veri�er, we may preserve the strong testability of the original codeword test if the inner-veri�ersatis�es two (adequate) \strong" soundness conditions. The �rst condition requires the rejectionof \non-canonical" proofs, whereas the second condition requires the rejection of non-proofs withprobability proportional to their distance from a valid proof. We believe that these notions maybe of independent interest, and refer the reader to Section 5.3.1 for a general presentation of thesenotions.We comment that unexpected technical problems arise when composing such PCPs with them-selves (resp., with locally-testable codes): the issue is the preservation of strong soundness (rather9

than standard soundness) by the composition. This issue is addressed in Section 5.3.4 (resp.,Section 5.3.3).3 Direct Constructions of Short Locally Testable CodesIn this section, we prove Theorem 2.4. In particular, for every c > 1, we present locally testablecodes that map k bits of information to codewords of length kc. These codes are presented in adirect and self-contained manner (without using any general PCPs). Although we do not use anyvariant of the PCP Theorem, our constructions are somewhat related to known PCP constructionsin the sense that we use constructs and analyses that appear, at least implicitly, in the \PCPliterature" (e.g., in [2, 3]). Speci�cally, we will use results regarding \low-degree tests" that wereproven for deriving the PCP Theorem [2, 3]. We stress that we do not use the more complexingredients of the proof of the PCP Theorem; that is, we neither use the (complex) parallelizationprocedure nor the \proof-composition" paradigm of [3, 2]. We note that the proof-compositionparadigm is more complex than the classical notion of concatenated codes [20] used below.We start by describing (in Section 3.1) a code over a large alphabet, which we refer to as theFS/RS code. This code, which is a direct interpretation of low-degree tests, was proposed by Friedland Sudan [21] and Rubinfeld and Sudan [32]. The length of codewords (in this code) turns outto be nearly quadratic in the length of the encoded information (even when using the best possibleanalysis of low-degree tests). To reduce the length of the code to being nearly linear, we introduce (inSection 3.2) a \random projection" technique. This establishes Part 1 of Theorem 2.4 (which refersto codes over large alphabets, and will be used to establish Theorem 2.3). In Sections 3.3 and 3.4 weapply the \code concatenation" technique to reduce the alphabet size of the codes, while preservinglocal testability. Speci�cally, in Section 3.3 we obtain locally testable codes over a much smaller(albeit non-binary) alphabet, whereas in Section 3.4 we obtain a binary code, thus establishingPart 2 of Theorem 2.4.3.1 The Basic Code (FS/RS-Code)The FS/RS code is based on low-degree multi-variate polynomials over �nite �elds. We thus startwith the relevant preliminaries. Let F be a �nite �eld, and m; d be integer parameters such thatm � d < jF j. Denote by Pm;d the set of m-variate polynomials of total degree d over F . Werepresent each p 2 Pm;d by the list of its �m+dm � coe�cients; thus,jPm;dj = jF j(m+dm) < jF jO(d=m)m (1)where the inequality holds because m � d and �2dm� < (2d)m=(m!) = O(d=m)m.Denote by Lm the set of lines over Fm, where each line is de�ned by two points a; b 2 Fm;that is, for a = (a1; :::; am) and b = (b1; :::; bm), the line `a;b consists of the set of jF j pointsf`a;b(t) def= ((a1 + tb1); :::; (am + tbm)) : t 2 Fg.The code. We consider a code C : Pm;d ! �jLmj, where � = F d+1; that is, C assigns eachp 2 Pm;d a (jLmj-long) sequence of �-values. For every p 2 Pm;d, the codeword C(p) is a sequenceof jLmj univariate polynomials, each of degree d, such that the element in the sequence associatedwith ` 2 Lm is the univariate polynomial that represents the values of the polynomial p : Fm ! Fon the line `. We view Lm as the set of indices (or coordinates) in any w 2 �jLmj; that is, we vieww as a function from Lm to �. Thus, for any ` 2 Lm, we denote by w(`) the symbol in w having10

index `. Viewing the code C as a mapping C : Pm;d � Lm ! � such that C(p; �) is the encoding (orcodeword) of p 2 Pm;d, we have that for every `a;b 2 Lm the univariate polynomial qa;b = C(p; `a;b)satis�es qa;b(z) = p(`a;b(z)), where p(`a1;:::;am;b1;:::;bm(z)) = p((a1 + b1z); :::; (am + bmz)). Note that,indeed, if p has total degree d then, for every `a;b 2 Lm, the univariate polynomial qa;b = C(p; `a;b)has degree at most d.Parameters. To evaluate the basic parameters of the code C, let us consider it as mapping�k ! �n, where indeed n = jLmj = jF j2m and k = log jPm;dj=log j�j. Note thatk = log jPm;djlog j�j = �m+dd � log jF j(d+ 1) log jF j = �m+dm �d+ 1 (2)which, for m � d, is approximated by (d=m)m=d � (d=m)m. Using jF j = poly(d), we haven = jF j2m = poly(dm), and so k � (d=m)m is polynomially related to n = jF j2m (provided, say,that m < pd). Note that the code has large distance, because the di�erent C(p)'s tend to disagreeon most lines.The Codeword Test: The test consists of selecting two random lines that share a random point,and checking that the univariate polynomials associated with these lines yield the same value forthe shared point. That is, to check whether w : Lm ! � is a codeword, we select a random pointr 2 Fm, and two random lines `0; `00 going through r (i.e., `0(t0) = r and `00(t00) = r for somet0; t00 2 F), obtain the answer polynomials q0 and q00 (i.e., q0 = w(`0) and q00 = w(`00)) and checkwhether they agree on the shared point (i.e., whether q0(t0) = q00(t00)). This test is essentially theone analyzed in [2], where it is shown that (for jF j = poly(d)) if the oracle is �-far from the codethen this fact is detected with probability
(�).We comment that in [2] the test is described in terms of two oracles: a point oracle f :Fm!F(viewed as the primary or \real" input) and a line oracle g :Lm!F d+1 (viewed as an auxiliary oradditional oracle). Indeed, we will also revert to this view in our analysis. Unfortunately, usingoracles having di�erent range will complicate the code-concatenation (presented in Section 3.3),and this is the reason that we maintain explicitly only the line-oracle (and refer to the point-oracleonly in the analysis). Note that a line-oracle can be used to de�ne a corresponding point-oracle inseveral natural ways. For example, we may consider the (random) value given to each point by arandom line passing through this point, or consider the value given to each point by a canonicalline passing through this point.3.2 Random projection of the FS/RS-CodeOur aim in this section is to tighten the relationship between k and n in locally testable codes.Starting with the FS/RS-Code, in order to get the best possible relation between n and k, oneneeds to use an analysis (of the low-degree test) that allows for jF j to be as small as possible whencompared to d. Based on the analysis of [30], it was shown in [21] that it su�ces to use jF j = �(d).However, even with this (best possible) analysis, we are still left with n that is quadratic in jF jm,whereas k = o(dm) = o(jF jm). This quadratic blowup comes from the fact that the number oflines (over Fm) is quadratic in the number of points, which in turn upper-bounds the number ofcoe�cients of a (generic) m-variate polynomial (over F). Thus, to obtain n almost-linear in k, wemust use a di�erent code. 11

Overview of our construction: Our main idea here is to project the FS/RS code to a randomlychosen subset of the coordinates. Thus, our code is essentially just a projection of the FS/RS codeto a random subset of lines over Fm. This subset will have size that is almost-linear in jF jm,and consequently the code will have almost-linear length. We note that, with overwhelminglyhigh probability (over the choices of this random subset), approximately the same number ofselected lines pass through each point of Fm. It is also easy to see that, with overwhelmingly highprobability, the resulting code maintains the distance properties of the basic FS/RS-Code. Most ofthis subsection will be devoted to proving that the resulting code also maintains the local testabilityproperties of the FS/RS-Code.The projected code: In what follows, we will �x positive integers m; d and a �eld F . Wewill assume log log d � m � d and jF j = �(d). Our code will be over the alphabet � = F d+1corresponding to the vector space of univariate polynomials of degree at most d over F . For thesake of concreteness, we will assume that the univariate polynomial p(x) =Pdi=0 cixi is representedby the vector hc0; : : : ; cdi. Let L = Lm denote the collection of all lines in Fm. For a (multi-)setR � L, we de�ne the code CR : Pm;d ! �R such that, for every p 2 Pm;d and ` 2 R0, the `-thsymbol in the encoding CR(p) is the polynomial obtained by restricting p to the line `. In thefollowing de�nition, we view the code as a mapping from Pm;d �R to �.Construction 3.1 Let F be a �nite �eld, m � d be integers, and � = F d+1. We de�ne CR :Pm;d �R! � such that, for every p 2 Pm;d and ` 2 R � Lm, it holds that C(p; `) is the univariatepolynomial that represents the values of the m-variant polynomial p on the line `. That is, for everye 2F, the polynomial C(p; `) evaluated at e yields the value p(`(e)).Thus, our encoding is simply a projection of the FS/RS code to the coordinates in R, where R isan arbitrary subset of L.In what follows, we will show that if R is chosen uniformly at random (with replication fromL) and jRj = �(mjF jm log jF j), then the code CR is locally testable. (To shorten our sentences wewill simply say \R is chosen randomly" and mean that the elements of the multi-set R are chosenuniformly at random from L.) We next describe the parameters of the code, and then describe thecodeword test.The basic parameters: We consider the information length k, the block length n and relativedistance of the code. To compare k with n, let us consider the code CR as a mapping �k ! �n, wheren = jRj = O(mjF jm log jF j) and k = log jPm;dj=log j�j (as in Eq. (2)). Then, k = �(d=m)m=d =�(d)m�1=mm and, for jF j = O(d), we have n = O(mjF jm log jF j) = ~O(O(d)m). In this caselog j�j = log jF jd+1 = ~O(d). We highlight two possible settings of the parameters:1. Using d = mm, we get k =
(d)m�2 = mm2�2m�o(m) and n = ~O(O(d)m) = mm2+o(m), whichyields n = exp(~O(plog k)) � k and log j�j = exp(~O(plog k)). (3)2. For any constant e > 1, letting d = me, we get k =
(me)m�1=mm = m(e�1�o(1))m andn = ~O(O(d)m) = m(e+o(1))m, which yieldsn = k(e+o(1))=(e�1) and log j�j < (log k)e. (4)12

We next show that when jF j =
(d) and R is a randomly chosen set of size
(mjF jm log jF j),the code has constant relative distance, with overwhelmingly high probability. This can be provenby upper-bounding the probability that the distance between any two codewords is too small.However, it is somewhat less cumbersome to �rst prove that the code is \linear" in an adequatesense (as de�ned below), and next to upper-bound the probability that any (non-zero) codewordhas too small weight. (Furthermore, for sake of later use, we need to establish this linearity propertyanyhow.)F -linearity. We say that a subset C � �n, where � = F d+1, is F -linear if C is a linear subspaceof (F d+1)n when viewed as a vector space over F . In other words, for every x; y 2 C and �; � 2 F ,it is the case that �x+�y 2 C, where �x = (�x1; : : : ; �xn) for x = (x1; : : : ; xn) 2 (F d+1)n and �xidenotes the usual scalar-vector product.Proposition 3.2 For every R, the code CR is F -linear. That is, for every p0; p00 2 Pm;d and�; � 2 F , it holds that �CR(p0; �) + �CR(p00; �) equals CR(q; �), for some q 2 Pm;d.Proof: Letting p(`) denote the univariate polynomial representing the values of the polynomialp when restricted to the line `, we have CR(p0; `) = p0(`) and CR(p00; `) = p00(`). Thus, for every` 2 R, it holds thatCR(�p0 + �p00; `) = (�p0 + �p00)(`) = �p0(`) + �p00(`) = �CR(p0; `) + �CR(p00; `)where the second equality follows from the fact that (�p0 + �p00)(x) = �p0(x) + �p00(x) for everyx 2 Fm. Hence, CR(�p0 + �p00; �) = �CR(p0; �) + �CR(p00; �), and the proposition follows (indeed,with q = �p0 + �p00).The relative distance of CR. We now turn back to analyze the relative distance of CR.Proposition 3.3 With probability 1 � o(1), for a randomly chosen R, the code CR has relativedistance at least � =
(1� d=jF j) > 0.We mention that the error probability in this proposition is exponentially vanishing (as a functionof jF jm).Proof: Intuitively, the code CL has relative distance at least 1 � d=jF j, and so projection on arandom subset of coordinates should leave it with relative distance at least � =
(1�d=jF j). Below,we formally prove this assertion for � = 12 � (1 � d=jF j), but the same argument can be used toestablish � = c � (1� d=jF j), for any constant c < 1.Since the code CR is F -linear (see Proposition 3.2), the distance between any two di�erentcodewords is captured by the weight of some non-zero codeword. Thus, it su�ces to lower-boundthe weight of all non-zero codewords in CR. We �x a non-zero polynomial p 2 Pm;d, and considerthe corresponding codeword CR(p). Our aim is to prove that the probability that CR(p) has relativeweight less than � is at most o(jPm;dj�1).We �rst consider CL(p). By the well-known property of multivariate polynomials, we have thatp evaluates to non-zero values on at least 1 � d=jF j fraction of the points in Fm. Extending thisfact to lines, we can infer immediately that the restriction of p to a 1� d=jF j = 2� fraction of thelines is non-zero. (This is true since one can sample a random line by picking a random point xand picking a random line through x, and if the p is non-zero at x, it must be non-zero on theline.) So in order for CR(p) to have fewer than a � fraction of non-zero coordinates, it must be13

that p is non-zero on fewer than a � fraction of the lines in R. But we also have that the expectedfraction of lines in R where p is non-zero, when R is chosen at random, is at least 2�. Applying (themultiplicative) Cherno� Bound2, we get that the probability that this fraction turns out to be lessthan � when R is chosen at random, is at most exp(�
(�jRj)) = o(jF j�jF jm) = o(jPm;dj�1). Thus,the probability that CR(p) has relative weight less than � is at most o(jPm;dj�1). Taking the unionbound over all possible polynomials p, we conclude that the probability that CR has a codeword ofweight less than � is at most o(1).We now move to describing the codeword test.The Codeword Test: The test for the code CR is a variant of the points-vs-lines test (cf. [2])that accesses two oracles, one giving the value of a function f : Fm ! F and the other supposedlygiving the restriction of f to lines in Fm. The original test picks a random point x 2 Fm and arandom line ` 2 L passing through x and veri�es that f(x) agrees with the supposed value of therestriction of f to the line `. In implementing this test, we modify it in two ways: Firstly, we do nothave the value of the restriction of f to each line, but rather only to lines in R. So we modify theabove test by picking a random ` 2 R that passes through x. Secondly, we do not (actually) haveoracle access to the value of f on individual points, but rather the value of the restriction of f tovarious lines (i.e., those in R). So we use the values assigned to these lines in order to de�ne sucha point oracle. This can be done in various ways, and we used one of them.3 Speci�cally, given aset of lines R, we associate to each point x 2 Fm some �xed line (in R), denoted `x, that passesthrough x. Note that we do not assume that these lines are distinct (i.e., that `x 6= `y for x 6= y).Also, we do not assume that such lines exist for each point (i.e., that for every point there are linespassing thought it). Still, with overwhelmingly high probability, over the choice of R, the set Rcovers all points (i.e., each point resides on some line in R). This discussion leads to the followingcodeword test.Construction 3.4 Given oracle access to w : R ! �, which is supposedly a codeword of CR, thetest proceeds as follows:1. Pick x 2 Fm uniformly at random, and let `x 2 R be an arbitrary line that passes through x.If no such line exists, halt with output 1 (representing accept).2. Pick ` 2 R uniformly among the lines that pass through x.That is, select ` 2 R with probability mx(`)=tx, where mx(`0) denotes the number of occur-rences of x on the line `0, and tx =P`02Rmx(`0).3. Query w at `x and `, and denote the answers by hx = w(`x) and h = w(`).(Recall that hx and h are univariate polynomials of degree d.)2 The (the multiplicative) Cherno� Bound (see, e.g., [29]) is extensively used in this work. It refers to independentrandom variables, denoted �1; :::�n, where each �i 2 [0; 1]. Letting � def= 1n �Pni=1 �i denote the average of theserandom variables, and p def= E[�] = 1nPni E[�i] denote its expectation, the bound asserts that, for every 2 [0; 1], theprobability that � is not (1�)�p is exponentially vanishing in
(2pn). That is, Pr [j� � pj > p] < 2 exp ��2pn=3�.3 An alternative to the �xed canonical lines used below, is to use a random line passing through the point. Thisde�nes a randomized function, but the analysis can be applied to it just as well. Indeed, this would coincide with the\two-line test" analyzed (di�erently) in our preliminary report [24].14

4. Point-vs-Line Test: Let �; � 2 F be such that `x(�) = `(�) = x. If hx(�) = h(�) then haltwith output 1. Otherwise halt with output 0.(Note that `x is e�ectively a query to a point oracle, whereas ` is indeed a query to a lineoracle.)The line `x will be called the canonical line of x.Note that the codeword test makes two queries to w (i.e., for w(`x) and w(`)). We analyze thecodeword test next.Analysis. It is obvious that the test accepts a valid codeword with probability 1. Below we give alower bound on the rejection probability of non-codewords. As in Proposition 3.3, the lower boundholds for almost all choices of R of size n =
(mjF jm log jF j).Lemma 3.5 The following holds, for some n = O(mjF jm log jF j): For at least a 1� o(1) fractionof the possible choices of R of size n, every w 2 �n is rejected by the codeword test (of Construc-tion 3.4) with probability
(�CR(w)), where �CR(w) is the relative distance of w from the code CR(i.e., �CR(w) = �CR(w)=n).The above lemma improves over the probability bound
(�CR(w)) � o(1) that was established inour preliminary report [24] (for a related test). We mention that the fraction of exceptional sets inLemma 3.5 can be bounded by jF j�tm, where t = n=�(mjF jm log jF j).Proof: We start with an overview of the proof. We consider two cases regarding a point function,denoted fw : Fm ! F , determined by (some of) the entries of w (which are univariate polynomialssupposedly representing the values of some polynomial when restricted to the corresponding lines).Speci�cally, we refer to the function fw : Fm ! F de�ned by setting fw(x) according to the valueassigned by w to the canonical line (`x 2 R) that passes through x. We consider two cases regardingthe distance of fw from Pm;d:1. The �rst case is that this relative distance is large (e.g., larger than one third of �CR(w)). Thiscase is handled by proving that, for all but a o(1) of the choices of R, the Point-vs-Line Testrejects with probability that is linearly related to the the distance of fw from Pm;d. (Notethat the claim refers only to the portion of w that is used to de�ne fw, and holds regardlessof the rest of w.)The proof of this claim (Claim 3.5.2) is the most interesting part of the current analysis. Itamounts to showing that, for most choices of R, the modi�ed (Point-vs-Line) low-degree testthat selects lines in R performs as well as the original low-degree test (which selects lines inL). The proof relies on the following observations:(a) Each possible function f : Fm ! F determines an optimal answer (i.e., a univariatepolynomial) for each possible line-query, which in turn assigns each possible line-query a\rejection value" that is merely the fraction of points on the line for which the (optimal)answer disagrees with the value of f .(b) The rejection probability of the original low-degree test is linearly related to the averageof these rejection values, where the average is taken over all lines.(c) The modi�ed test refers to a (random) set of line-queries, and so its rejection probabilityis linearly related to the average of the aforementioned rejection values, where the averageis taken over the said set. 15

The punch-line is that, for a random set (of adequate size), with overwhelmingly high prob-ability, the average of values assigned to elements in the set approximates the average ofall values. The error probability is su�ciently small to allow for the application of a (non-straightforward) union bound on all possible w's; see Step 2 in the proof of Claim 3.5.2.2. The second case is that fw is relatively close to Pm;d (e.g., fw is �CR(w)=3-close to Pm;d).Suppose that the function fw is actually a low-degree polynomial (i.e., fw 2 Pm;d). Still,the sequence of univariate polynomial representing the values of fw on the lines in R may bedi�erent from the sequence w. This distance is \accounted for" by the fact that, for all buta o(1) of the choices of R, the Point-vs-Line Test will cause rejection with probability that islinearly related to the distance of CR(fw) from w. The claim can be extended to the generalcase in which fw is only close to Pm;d; for details see Claim 3.5.3.We comment that, in (the �rst case of) our analysis, the function fw is viewed as the primaryobject, and w is viewed as a potential proof of the claim fw 2 Pm;d. This perspective is not naturalin the context of testing whether w is a codeword, because in the latter context w is the primaryobject and fw is an auxiliary object. Still, this is a legitimate mental experiment. As for theanalysis itself, we note that in the �rst case the testing features of the low-degree test are used ina natural way (because fw is \far" from being a low-degree polynomial). Indeed, in this case werefer to the standard analysis of low-degree tests. In contrast, in the second case, the low-degreetest is invoked in a non-standard situation (i.e., fw is \close" to being a low-degree polynomial),and a straightforward analysis shows that the test will reject when the proof oracle (i.e., the lineoracle) is \far" from being correct (i.e., being the restriction of fw to R).Turning to the actual proof, we present some notation �rst. As above, we view w as a functionfrom R to �. We denote by fw : Fm ! F the function de�ned by the values assigned to points bytheir canonical lines; that is, fw(x) = v if the polynomial hx = w(`x) assigns the value v to x, where`x is the canonical line passing through x (i.e., if `x(�) = x then v = hx(�)). Let pw 2 Pm;d denotethe m-variate degree d polynomial closest to fw (breaking ties arbitrarily). Let �(w) = �CR(w) bethe (relative) distance of w from the code CR. In accordance with the motivational discussion, weconsider the following auxiliary distances:1. �ldp(w) denotes the relative distance of fw from pw (or equivalently from Pm;d).2. �agr(w) denotes the relative distance between the values assigned by pw to lines in R and witself; that is, �agr(w) = Pr`2R[pw(`) 6= w`], where (as above) pw(`a;b) denotes the univariatepolynomial in z 2 F that represents pw(a+ zb).Using this notation, we have�ldp(w) = �(fw; pw)jFmj and �agr(w) = �(w; CR(pw))jRj (5)Clearly, �CR(w) � �(w; CR(pw)), and so �agr(w) � �(w). In Claim 3.5.3, we will show thatthe tester (of Construction 3.4) rejects w with probability at least (�agr(w)=2) � �ldp(w), whichestablishes the lemma in case �ldp(w) � �(w)=3. On the other hand, in Claim 3.5.2, we will showthat the tester (of Construction 3.4) rejects w with probability at least
(�ldp(w)), which will takecare of the case �ldp(w) � �(w)=3. Thus, either way, the lemma follows.Before proving the aforementioned claims, we establish a useful fact regarding typical sets R.Speci�cally, we show that they cover all points almost-uniformly (see Claim 3.5.1). In particular,such sets will contain canonical lines for all points.16

A tedious comment: Throughout this work, when we talk about the number of lines (resp., selectinga random line) in R that pass through a speci�c point x, we actually mean the number of pairs(resp., selecting a random pair) of the form (`; e) 2 R � F such that `(e) = x. Thus, lines thatcontain multiple occurrences of a point are counted multiple times and are selected with greaterprobability. Indeed, the only lines containing multiple occurrences of a point are the constant lines,and the reader can safely ignore them (because R is unlikely to contain more than few such lines).Still, the rest of the analysis (like Step 2 of Construction 3.4), does refer to the general case (whereconstant lines occur and are dealt with using the above convention).Claim 3.5.1 For all but at most an o(1) fraction of the possible choices of R, it holds that, foreach point x 2 Fm, there are (1� 0:1) � jRj=jF jm�1 lines in R that pass through x.We mention that the constant 0.1 is quite arbitrary, and can be replaced by any other constant� > 0 (while e�ecting the hidden constant in jRj = O(mjF jm log jF j)).Proof: For every �xed x 2 Fm and e 2 F , we consider the number of lines ` 2 R satisfying`(e) = x. The expected number of such lines, for a random R, is exactly jRj=jF jm. Using Cherno�Bound (see Footnote 2), we infer that the probability that the number of such lines deviates from(1 � 0:1) � jRj=jF jm is exponentially vanishing in jRj=jF jm = �(m log jF j). Thus, by a suitablechoice of the latter constant, the aforementioned probability is o(jF j�(m+1)), and using a unionbound on all possible x 2 Fm and e 2 F , the claim follows.For the next claim, we rephrase the Point-vs-Line test in terms of the associated functionsf : Fm ! F and g : R ! �, where in our application f = fw and g(`) = w(`) (for every ` 2 R).The test picks x 2 Fm uniformly at random and ` 2 R uniformly among the lines passing throughx. For � such that `(�) = x, it veri�es that h(�) = f(x), where h is the univariate polynomial g(`).Let �ld(f) = �Pm;d(f) denote the relative distance of f from Pm;d. Indeed, �ld(fw) = �ldp(w).Claim 3.5.2 For all but at most an o(1) fraction of the possible choices of R, the following holds:For every f : Fm ! F and g : R! �, the probability that the Point-vs-Line Test rejects the oraclepair (f; g) is at least
(�ld(f)).In particular, we may conclude that our codeword test rejects any w with probability at least
(�ldp(w)). Note that Claim 3.5.2 does not refer to the distance of g from being a \consistent"line-oracle (let alone one that corresponds to f). Thus, Claim 3.5.2 e�ectively refers to all possibleg's (or rather to the best possible g) that may be paired with f .Proof: We prove the claim in two steps. First, we �x f : Fm ! F and prove that for all butexp(�
(�ld(f) � jRj)) fraction of R's, the rejection probability of the test on input f and anyg : R! � is
(�ld(f)). Next, we use a union bound over an appropriate collection of functions, toprove that no function f is rejected with probability less than
(�ld(f)). An interesting aspect ofthe second step is that we analyze the performance of the test on all functions by using a unionbound only on a small fraction of the possible functions.Step 1 { overview: Following [32, 2, 3, 30, 21], we observe that for each possible function f : Fm ! Fthere exists an optimal strategy for answering all possible line-queries such that the acceptanceprobability of the point-vs-line test for oracle pairs (f; �) is maximized. Speci�cally, for a �xedfunction f , and each line `, the optimal way to answer the line-query ` is given by the degree dunivariate polynomial that agrees with the value of f on the maximum number of points of `. Thus,the optimal strategy for fooling the point-vs-line test, when the point-oracle equals f , depends only17

on f and not on the set of lines that may serve as possible queries. Furthermore, the rejectionprobability of the point-vs-line test is the average of quantities (i.e., the agreements of f with thebest univariate polynomials) that f associates with each of the possible lines. The latter fact holdsnot only when the test operates with the set of all lines, but also when it operates with any set oflines R (as in the claim).4 The key observation is that for a random set R, with overwhelmingly highprobability, the average over R of quantities associated with lines in R approximates the averageover L of the same quantities.Step 1 { details: Fix f : Fm ! F an let � = �ld(f) denote its distance to the nearest low-degreepolynomial. Let us denote by D`(f) the fractional disagreement of f , when restricted to line `,with the best univariate polynomial (i.e., the univariate polynomial of degree d that is nearest tof j` (i.e., f restricted to `)). That is,D`(f) def= minp2P1;dfPre2F [f(`(e)) 6= p(e)]g: (6)Indeed, a polynomial p achieving the minimum in Eq. (6) is an optimal answer to the line-query`. Note that, on input oracles f and g, the rejection probability of the standard point-vs-line test(which refers to all possible lines), denoted pL(f; g), is lower-bounded by the average of the D`(f)'sover all ` 2 L (with equality holding if, for every line ` 2 L, it holds that g(`) is a polynomial withmaximal agreement with f j`). A similar observation holds for the Point-vs-Line Test that refers tothe set of lines R, except that now the average is taken over the lines in R. Actually, the averageis weighted according to the probability that the test inspects the di�erent lines (because a line isselected by uniformly selecting a point and then selecting a random line that passes through thispoint). Thus, the rejection probability of the Point-vs-Line Test that refers to the set R, denotedpR(f; g), is lower-bounded by the weighted average of the corresponding D`(f)'s. Denoting thePoint-vs-Line Test that selects lines in R by TR, we state the above fact for future reference:pR(f; g) � X̀2RPr[` is selected by TR] �D`(f): (7)Indeed, pL(f; g) �P`2L jLj�1 �D`(f) follows as a special case. Using the best-known analysis of thestandard low-degree test (in particular, using [21, Thm. 7] to support the case that jF j = O(d)),we obtain that5 pL(f; g) � �(f) def= jLj�1 � X̀2LD`(f) =
(�) : (8)Actually, we only care about the second inequality (i.e., �(f) =
(�), where � = �ld(f)). Now,when R is chosen at random (as a set of n lines from L), the expected value of�R(f) def= jRj�1 � X̀2RD`(f) (9)4In the latter case, the average is taken according to the distribution on R that is induced by the test. Note thatthis distribution is not necessarily uniform over R.5The inequality jLj�1 �P`2LD`(f) =
(�ld(f)) is only implicit in most prior works, but it can also be inferredfrom the results that are stated explicitly in them. Speci�cally, these works only refer to the rejection probabilityof the standard test (for the best possible g), showing that ming:L!P1;dfpL(f; g)g =
(�ld(f)). (For example, [21,Thm. 7] asserts that pL(f; g) � min(1=9; �ld(f)=2) for every f and g, provided jF j =
(d).) However, by the abovediscussion it is clear that, for the optimal line oracle, the rejection probability of the standard point-vs-line test equalsthe average of the D`(f)'s; that is, for some gopt, which depends on f , it holds that pL(f; gopt) = jLj�1 �P`2LD`(f)).18

equals E`2L[D`(f)] = �(f). By Cherno� Bound (see Footnote 2), we have that the probability thatR is such that �R(f) < �(f)=2 is exponentially small in �jRj. That is, for a random set R of nlines, it holds that (8f) PrR[�R(f) < �(f)=2] < exp (�
(�ld(f) � jRj)) : (10)In the following two paragraphs we assume that R is such that �R(f) � �(f)=2.Let us assume that R covers all points uniformly; that is, each point resides on the same numberof lines in R (where several appearances on the same line are counted several times). This impliesthat our test selects lines uniformly in R. Then, the rejection probability of our test (i.e., thepoint-vs-line test for lines uniformly selected in R), when applied to f and any g, is lower-boundedby the (unweighted) average of the D`(f)'s over the lines in R (rather than over the set of alllines, L). It follows that pR(f; g) � �R(f) � �(f)=2 =
(�ld(f)). (Recall that pR(f; g) denotes therejection probability of the test that selects lines in R.)In the previous paragraph we have assumed that R covers all points uniformly (i.e., each pointresides on the same number of lines in R). In general, this may not be the case. Yet, withvery high probability, a random set R covers all points in an almost uniform manner, and this\almost uniformity" su�ces for extending the above analysis. Speci�cally, we �rst note that,with overwhelmingly high probability, each point in Fm resides on (1 � 0:1) � jRj=jF jm�1 lines(see Claim 3.5.1). Next observe that in the above analysis we assumed that the test selects linesuniformly in R, whereas our test selects lines in R by selecting uniformly a point and then selectinga random line passing through this point. However, as formally shown in the next paragraph,for R as above (i.e., that covers all points \almost uniformly"), the distribution induced on theselected lines assigns each line in R a probability of (1�0:1)�1=jRj. Thus, the rejection probabilitymay be skewed by a factor of (1 � 0:1)�1 = (1 � 0:2) from the value jRj�1 �P`2RD`(f) = �R(f),which is analyzed above. We get pR(f; g) � 0:8 � �R(f) � 0:4 � �(f) =
(�ld(f)). Using only thesecond inequality (which holds whenever R covers all points \almost uniformly") and referring toClaim 3.5.1, we state the following fact for future reference.PrR[(8f; g) pR(f; g) � 0:8 � �R(f)] = 1� o(1) : (11)It is left to analyze the distribution induced on lines selected from a �xed R (by the afore-mentioned process), when R covers all points \almost uniformly". Recall that, for a point x, wedenote by mx(`) the number of occurrences of x on the line `, and by tx =P`2Rmx(`). Then, theprobability that the non-constant line ` = (x1; :::; xjF j) 2 R is selected equalsjF jXi=1Pr[xi is selected] � mxi(`)txi = jF j � 1jF jm � 1(1� 0:1) � jRj=jF jm�1which equals (1� 0:1)�1 � jRj�1 as claimed. Similarly, a constant line ` = (x; :::; x) 2 R is selectedwith probability 1jF jm � jF j(1�0:1)�jRj=jF jm�1 , which also satis�es the claim.Step 2 { overview: Recall that we have bounded (in Eq. (10)) the fraction of R's for which �R(f) ��(f)=2 does not hold for (any) �xed f . Our current goal is to show that, for most R's, it is the casethat �R(f) � �(f)=2 holds for every f . This su�ces to complete the proof of the current claim,because we have shown in Step 1 (see Eq. (8) and Eq. (11), respectively) that �(f) =
(�ld(f))holds for all f and that (for most choices of R) it holds that pR(f; g) =
(�R(f)) for every pair(f; g). The natural approach towards meeting our goal is taking a union bound over all f 's thatare �-far from Pm;d in order to upper bound the fraction of R's such that there exists a function19

f that is �-far from Pm;d for which �R(f) < �(f)=2. The problem is that the number of suchfunctions is certainly greater than jPm;dj > exp(
(d=m)m), whereas (for a random R) we only havePrR[�R(f) < �(f)=2] < exp(�
(�jRj)) (and in fact PrR[�R(f) < �(f)=2] > exp(�O(�jRj))). This isnot a problem in case � is any positive constant (or more generally if �jRj > H2(�)�jF jm+O(d=m)m),which in turn su�ces to establish weak testability (as per De�nition 2.1),6 but we wish to handlethe general case (in order to establish strong testability as per De�nition 2.2). Thus, we clusterthese functions according to the low-degree function that is closest to them, and show that it isenough to analyze one cluster (e.g., the one of the zero polynomial). The validity of the latterobservation relies on properties of the set Pm;d that imply that D`(f) = D`(f + p) holds for everyfunction f , polynomial p 2 Pm;d and line `. The bene�t in the said observation is that we need onlyconsider the functions that are closest to some �xed polynomial and are �-far from it (rather thanall functions �-far from Pm;d). Thus, we get an upper-bound of jF j�jF jm � � jF jm�jF jm� � exp(�
(�jRj),which is negligible (because jRj � jF jm log jF jm).Step 2 { details: For any �xed �0 > 0, we start by considering the functions that are at relativedistance exactly �0 from the zero polynomial. The number of such functions is at most(jF j � 1)�0jF jm � jF jm�0jF jm! < (jF jm+1)�0jF jm = exp(�0 � (m+ 1)jF jm log jF j) : (12)On the other hand, by Eq. (10), for any function f , it holds that PrR[�R(f) < �(f)=2] =exp(�
(�ld(f) � jRj)), and if this function is closest to the zero polynomial (i.e., �(f; 0) = �Pm;d(f))then �ld(f) = �0. Thus, using jRj = c � jF jm log jF jm (for an adequate constant c), the probability(over the choices of R) that there exists a function f that is closest to the zero polynomial and isat relative distance exactly � from it such that �R(f) < �(f)=2 is upper-bounded byexp(� � (m+ 1)jF jm log jF j) � exp(�
(� � jRj)) = exp(�2�jF jm log jF jm) < o(jF j�m) ;where the last inequality uses � � 1=jF jm. Summing over all (the jF jm) possible values of �, wesee that the probability over R, that there exists a function f that is closest to the zero polynomial(among all polynomials in Pm;d) such that �R(f) < �(f)=2 is o(1). Thus, we havePrR[for every f s.t. �(f; 0) = �Pm;d(f) it holds that �R(f) � �(f)=2] = 1� o(1) (13)To conclude the argument, we use properties of the set Pm;d. Speci�cally, suppose that R issuch that for every function f 0 that is closest to the zero polynomial it holds that �R(f 0) � �(f 0)=2.Now, consider an arbitrary function f and let p 2 Pm;d be the polynomial closest to f . Then,the function f 0 = f � p is closest to the zero polynomial, and we claim that �(f 0) = �(f) and�R(f 0) = �R(f). These claims follow from the fact that, for every function f and every polynomialp 2 Pm;d and for every line `, it holds that D`(f) = D`(f + p) (although the polynomials selectedto achieve the maximum agreement with f and f + p, over the line `, may be di�erent). Indeed,if q is used to achieve the maximum agreement with f over the line ` then q + (pj`) achieves themaximum agreement with f + p, where pj` is the univariate polynomial obtained by restricting thepolynomial p to the line `. Thus, for every function f and p 2 Pm;d that is closest to f , it holdsthat �R(f) = �R(f � p) and �(f � p) = �(f). Using Eq. (13), we getPrR[�R(f) � �(f)=2 for every f] = 1� o(1) : (14)6Weak testability is all that was established in our preliminary report [24], and the stronger analysis that followsis new. 20

Combining Eq. (11) and Eq. (14), we getPrR[8(f; g) pR(f; g) � 0:8�R(f) � 0:4�(f)] = 1� o(1):Recalling Eq. (8), which asserts �(f) =
(�ld(f)) for every f , the claim follows.The last claim, which also relates to the Point-vs-Line Test, is also phrased in terms of theassociated functions f : Fm ! F and g : R! �, where in our application f = fw and g(`) = w(`)(for every ` 2 R). (When applied outside the context of this work, one should note that CR(p) isthe sequence of univariate polynomials representing the restriction of the polynomial p to all linesin R.)Claim 3.5.3 Let R be such that, for each point x 2 Fm, there are (1 � 0:1) � jRj=jF jm�1 linesin R that pass through x. Then, for every f : Fm ! F and g : R ! �, the probability that thePoint-vs-Line Test rejects the oracle pair (f; g) is at least12 � �(g; CR(p))jRj � �(f; p)jFmj ;where p is the polynomial in Pm;d that is closest to f .Claim 3.5.3 will be applied to pairs (fw; w), in which case �(w; CR(pw)) = �agr(w) � jRj and�(fw; pw) = �ldp(w) � jFmj (recalling that pw is the polynomial closest to fw). Consequently,we will infer that the codeword test reject any w with probability at least (�agr(w)=2) � �ldp(w).Needless to say, Claim 3.5.3 will be invoked only in case �ldp(w) < �agr(w)=2.Proof: We will �rst consider what happens when the test is invoked with oracle access to thepair (p; g), rather than to the pair (f; g). The claim will follow by observing that the test queriesthe point oracle on a single uniformly distributed point, and so replacing p by f may reduce therejection probability by at most the relative distance between f and p.As in the proof of Claim 3.5.2, we start by assuming that R covers all points uniformly (i.e.,each point resides on the same number of lines in R). In this case, the test selects lines uniformlyin R. Thus, with probability � def= �(g; CR(p))=jRj, the test selects a line ` such that h def= g(`) doesnot agree with p on `. Now, since both h and pj` (i.e., the values of p restricted to the line `) aredegree d univariate polynomials (and since they disagree), they disagree on at least jF j�d > 2jF j=3of the points on `. Thus, the test will reject the oracle pair (p; g) with probability at least (2=3) � �.However, in general, R may not cover all points uniformly. Yet, the claim's hypothesis by whichR covers all points \almost uniformly" su�ces for extending the above analysis. Speci�cally (asshown in the proof of Claim 3.5.2), in this case each line is selected (by the test) with probability(1�0:1)�1=jRj, and so the test rejects the oracle pair (p; g) with probability at least 0:8�(2�=3) > �=2.So far we have analyzed the behavior of the test with respect to the oracle pair (p; g), whereaswe need to analyze the behavior with respect to the oracle pair (f; g). Recalling the test makesa single uniformly distributed query to the point oracle, it follows that test rejects the oracle pair(f; g) with probability at least (�=2) � (�(f; p)=jF jm). The claim follows.Completing the proof of Lemma 3.5: We call the set R good if it satis�es the conclusions ofClaims 3.5.1 and 3.5.2. Thus, these claims assert that 1 � o(1) fraction of the possible choicesof R are good, and we are going to �x such a good R for the rest of the discussion. Consideringany w 2 �n, recall that �agr(w) � �(w) def= �CR(w)=n and �ld(fw) = �ldp(w). If �ld(fw) � �(w)=3then invoking Claim 3.5.2 (with f = fw and g = w) we are done, because (for a good R) the test21

rejects with probability
(�ld(f)), which in this case is
(�(w)). Otherwise (i.e., �ld(fw) < �(w)=3),invoking Claim 3.5.3 (with f = fw and g = w), we conclude that (for a good R) the test rejectswith probability (�agr(w)=2) � �ld(fw) > �(w)=6, because �agr(w) � �(w). The lemma follows.Remark 3.6 In continuation to Footnote 3, we note that the proof of Lemma 3.5 holds for anychoice of a line `x that passes through x, including a probabilistic choice. In particular, Lemma 3.5holds also in the case that Construction 3.4 is modi�ed such that `x is selected uniformly amongall lines that passes through x; that is, `x is selected identically to the way ` is selected in Step 2,which means that we select independently and uniformly two lines that pass through the randompoint x. The important fact about this modi�cation is that both lines (i.e., the queries of thetester) are almost uniformly distributed in R, provided that R covers all points almost uniformly(which we assume and establish anyhow { see Claim 3.5.1). Speci�cally, each line in R is selected(as a query) with probability (1�0:2)=jRj. The constant 0.2 is rather arbitrary, and by using jRj =O(��2mjF jm log jF j), we can ensure that each line in R is selected (as a query) with probability(1� �)=jRj.Corollary: Part 1 of Theorem 2.4. By the above, with probability 1 � o(1) over the choiceof R, the code CR : �k ! �n has relative constant distance and is locally-testable (using twoqueries). Furthermore, by Proposition 3.2, the code is F -linear where � = F d+1. Using the�rst parameter-setting (i.e., d = mm), we establish Part 1 of Theorem 2.4 (see Eq. (3)). Inparticular we establish that for in�nitely many k's, there exist two-query testable codes of constantrelative distance over a non-binary alphabet � such that n = exp(~O(plog k)) � k = k1+o(1) andlog j�j = exp(~O(plog k)) = ko(1).Remark 3.7 The above code CR : �k ! �n, where � = F d+1, can be constructed only for speci�cvalues of k; that is, those given in Eq. (2) as a function of the parameters m and d. Furthermore,using d = mm, we get a construction of any k that satis�es k = k1(m) def= �m+mmm �=(mm + 1) �mm2�1 for some m. In this case k1(m + 1) � exp(plog k1(m)) � k1(m). Using d = me for somee > 1, we get a construction of any k that satis�es k = k2(m) def= �m+mem �=(me + 1) � m(e�1)m forsome m. In this case k2(m+ 1) < (log k1(m))e � k2(m).3.3 Decreasing the alphabet sizeThe code CR presented in Construction 3.1 uses quite a big alphabet (i.e., � = F d+1, wherejF j = �(d)). Our aim, in this subsection, is to maintain the local-testability properties of CR whileusing a smaller alphabet (i.e., F rather than F d+1). This is achieved by concatenating CR (whichencodes information by a sequence of n univariate polynomials over F , each of degree d) with thefollowing inner-code C0 that maps F d+1 to F n0 , where n0 is sub-exponential in k0 def= d+ 1.The inner-code: For a (suitable) constant integer d0, let k0 = hd0 . As a warm-up, considerthe special case of d0 = 2. In this case, the code C0 maps bilinear forms in xi's and yi's(with coe�cients hci;j : i; j 2 [h]i) to the values of these forms under all possible assignments.That is, C0 : F h2 ! F jF j2h maps the sequence of coe�cients hci;j : i; j 2 [h]i to the sequence ofvalues hva1;:::;ah;b1;:::;bh : a1; :::; ah; b1; :::; bh 2 F i where va1;:::;ah;b1;:::;bh = Pi;j2[h] ci;j � aibj. View-ing C0 as a mapping from F h2 � F 2h to F , we have C0((c1;1; :::; ch;h); (a1; :::; ah; b1; :::; bh)) =Pi;j2[h] ci;j � aibj. In general (i.e., for an arbitrary integer d0 � 1), the inner-code C0 :22

F k0 ! F n0 maps d0-multilinear forms in the variables sets fz(1)i : i 2 [h]g; :::; fz(d0)i : i 2 [h]gto the values of these d0-multilinear forms under all possible assignments to these d0h vari-ables. That is, C0 maps the sequence of coe�cients hci1;:::;id0 : i1; :::; id0 2 [h]i to the sequenceof values hva(1)1 ;:::;a(1)h ;:::;a(d0)1 ;:::;a(d0)h : a(1)1 ; :::; a(1)h ; :::; a(d0)1 ; :::; a(d0)h 2 F i where va(1)1 ;:::;a(1)h ;:::;a(d0)1 ;:::;a(d0)h =Pi1;:::;id02[h] ci1;:::;id0 �Qd0j=1 a(j)ij . Viewing C0 as a mapping from F hd0 � F d0h to F , we haveC0((c1;:::;1; :::; ch;:::;h); (a(1)1 ; :::; a(1)h ; :::; a(d0)1 ; :::; a(d0)h)) = Xi1;:::;id02[h] ci1;:::;id0 � d0Yj=1 a(j)ij (15)Thus, (k0 = hd0 and) n0 = jF jd0h = exp(d0 � (k0)1=d0 � log jF j). Using jF j = O(k0) and d0 = O(1),we have n0 = exp(~O(k0)1=d0). Note that the inner-code has relative distance (1 � (d0=jF j)) > 3=4,assuming jF j > 4d0.Testing the inner-code: A valid codeword (viewed as a function from F d0h to F) is a multi-linear function (in the variable sets fz(1)i : i 2 [h]g; :::; fz(d0)i : i 2 [h]g); that is, for each j, avalid codeword is linear in the variables z(j)i 's. Thus, testing whether w : F d0h ! F belongsto the inner-code reduces to d0 linearity checks. Speci�cally, for each j, we randomly select r =(r(1)1 ; :::; r(1)h ; :::; r(d0)1 ; :::; r(d0)h) 2 F d0h, s(j) = (s(j)1 ; :::; s(j)h) 2 F h and e 2 F , and check whether or notw(r0; r(j); r00)+e �w(r0; s(j); r00) = w(r0; r(j)+e �s(j); r00), where r0 = (r(1)1 ; :::; r(1)h ; :::; r(j�1)1 ; :::; r(j�1)h),r(j) = (r(j)1 ; :::; r(j)h), and r00 = (r(j+1)1 ; :::; r(j+1)h ; :::; r(d0)1 ; :::; r(d0)h). In addition, we also let thetest employ a total low-degree test (to verify that the codeword is a multi-variate polynomial oftotal-degree d0).7 The total-low-degree test uses d0 + 2 queries, and so our codeword test uses3d0 + (d0 +2) = O(d0) queries. For sake of clarity, we provide an explicit statement of the resultingtest.Construction 3.8 Given oracle access to w : F d0h ! F , which is supposedly a codeword of C0, thetest proceeds as follows:The linearity tests: For j = 1; :::; d0, we test whether w is linear in the jth block of vari-ables. That is, for uniformly selected r0 = (r(1)1 ; :::; r(1)h ; :::; r(j�1)1 ; :::; r(j�1)h) 2 F (j�1)h andr00 = (r(j+1)1 ; :::; r(j+1)h ; :::; r(d0)1 ; :::; r(d0)h) 2 F (d0�j)h, we test whether the resulting functionwr0;r00(z1; :::; zh) def= w(r0; z1; :::; zh; r00) is linear (in z1; :::; zh).The linearity of wr0;r00 : F h ! F is tested using a BLR-type test [14], speci�cally the ExtendedLinearity Test of Kiwi [28, P. 10]. We select uniformly r01; :::; r0h; s01; :::; s0h; e; f 2 F , and acceptif and only if e �wr0;r00(r01; :::; r0h) + f �wr0;r00(s01; :::; s0h) = wr0;r00(e � r01 + f � s01; :::; e � r0h+ f � s0h).The (auxiliary) low-degree test: Following the low-degree test of [2], we select uniformly a =(a(1)1 ; :::; a(1)h ; :::; a(d0)1 ; :::; a(d0)h) 2 F d0h and b = (b(1)1 ; :::; b(1)h ; :::; b(d0)1 ; :::; b(d0)h) 2 F d0h and testwhether there exists a univariate polynomial p of degree d0 such that w(a+e�b) agrees with p(e)on every e 2 F , where a+ e � b = (a(1)1 + eb(1)1 ; :::; a(1)h + eb(1)h ; :::; a(d0)1 + eb(d0)1 ; :::; a(d0)h + eb(d0)h).Speci�cally, for �xed and distinct �0; :::; �d0 2 F , we check whether the univariate degreed0 polynomial p(�) de�ned such that p(�i) = w(a + �i � b), for i = 0; 1; ::; d0, agrees with7 We believe that the codeword test operates well also without employing the total-degree test, but the augmentedcodeword test is certainly easier to analyze. 23

w(a + � � b) on a random point; that is, we uniformly select � 2 F and accept if and only ifp(�) = w(a+ � � b).We accept if and only if all d0 + 1 tests accept.We note that the interpolation condition used for low-degree testing is linear in the recovered values.Thus, Construction 3.8 checks d0+1 linear conditions, where each of the �rst d0 conditions involvesthree values of w, and the remaining condition involves d0+2 such values. Clearly, Construction 3.8accepts every codeword of C0 with probability 1. The following lemma provides a lower bound onthe rejection probability of non-codewords.Lemma 3.9 Every w0 2 F n0 is rejected by the codeword test of Construction 3.8 with probability
(�C0(w0)), where �C0(w0) is the relative distance of w0 from the code C0 (i.e., �C0(w0) = �C0(w0)=n0).Proof: Let � = �C0(w0), and let �0 denote the relative distance of w0 (viewed as a function w0 :F d0h ! F) from the set of d0h-variate polynomials of total degree d0. (Indeed, �0 � �, because everycodeword (i.e., a d0-multilinear function) is a polynomial of total degree d0.) If �0 � min(�; 0:4)then w is rejected with probability
(�0) by the total-degree test (cf., e.g., [2, Lem. 7.2.1.4]), andthe lemma follows (because �0 � �). Speci�cally, the analysis in [2] shows that the restriction of won a random line is expected to be
(�0)-far from any univarite polynomial polynomial of degreed0, which in particular applies to the polynomial obtained by interpolation based on the points�0; :::; �d0 .Otherwise (i.e., �0 < min(�; 0:4)), let p0 denote the degree d0 polynomial closest to w0. By thecase hypothesis (i.e., �0 < �) this p0 must be non-linear in some block of variables (otherwise � =�C0(w0) � �(w0; p0)=n0 = �0); that is, for some j, the polynomial p0 is non-linear in fz(j)i : i 2 [h]g. Weclaim that, with probability at least 1�(d0=jF j) > 0:9, this non-linearity is preserved when assigningrandom values to the variables of all the other blocks; that is, for a random r = (r(1); :::; r(d0)) 2(F h)d0 , with probability at least 0:9, the polynomial p0r(z(j)) def= p0(r(1); :::; r(j�1); z(j); r(j+1); :::; r(d0))is not linear in z(j) = (z(j)1 ; :::; z(j)h). The claim is proved by writing p0 as the sum of monomialsin z(j) with coe�cients being functions of the other variables. Consider any non-linear monomialin z(j) having a non-zero coe�cient. This non-zero coe�cient is a polynomial of degree at mostd0 � 2 in the other variables (because p0 has total degree d0 and the said monomial is non-linear inz(j)). Then, by the Schwarz{Zippel Lemma, with probability at least 1� ((d0 � 2)=jF j), a randomassignment r to the other variables will yield a non-zero value, and thus this (non-linear) monomialin z(j) will appear in p0r (with a non-zero coe�cient).Furthermore, in this case, the non-linear polynomial p0r (which also has degree at most d0) is atdistance 1 � (d0=jF j) > 0:9 from any linear function (in z(j)). Thus, for a random r, the expectedrelative distance between p0r and the set of linear functions is greater than 0:9 � 0:9 > 0:8. On theother hand, the expected relative distance between the residual w0 and p0 (i.e., between w0r and p0r)under the random assignment r is �0 < 0:4 (where the inequality is due to the case hypothesis).Thus, under such random assignment, the expected fractional distance of the residual w0 (i.e., w0r)from the set of linear functions (in fz(j)i : i 2 [h]g) is greater than 0:8�0:4 = 0:4. It follows that w0is rejected with constant probability by the jth linearity test (because, with probability at least 0:2,the residual w0 is at least 0:2-far from being linear, and so is rejected with constant probability [28,Lemma 4.4]).
24

The concatenated-code: We apply the code-concatenation paradigm (cf. [20]) to the codesC = CR (of Construction 3.1) and C0 (of Eq. (15)). The concatenated-code obtained by composingthe outer-code C : �k ! �n with the inner-code C0 : F k0 ! F n0 , where � = F d+1 = F k0 ,maps (x1; :::; xk) to (C0(y1); ::::; C0(yn)), where (y1; ::::; yn) def= C(x1; :::; xk). In other words, forx 2 �k � F k�k0, we have:concatenated-code(x) = C0(C(x; 1)); ::::; C0(C(x; n)) (16)where here we view C as a mapping from �k�[n] to �. Thus, the concatenated-code maps k �k0-longsequences over F to n � n0-long sequences over F . Furthermore, since both C and C0 are F -linear,the concatenated-code is F -linear; that is, for each i, each F -symbol in the sequence C0(yi) is alinear combination of the F -symbols in yi = C(x; i) 2 F k0 , which in turn are linear combinations ofthe F -symbols in (x1; :::; xk) 2 F k�k0 .Testing the concatenated-code: Loosely speaking, in order to test the concatenated code,we �rst test whether its n blocks are codewords of the inner-code, and next use \self-correction"(cf. [14]) on these blocks to emulate the testing of the outer-code. Speci�cally, the tester for theconcatenated code �rst selects at random (as the tester of the outer-code) two intersecting lines`0 and `00, and applies the inner-code tester (of Construction 3.8) to the inner-encoding of thepolynomials associated with these two lines (by the outer-code). Next, to emulate the actual checkof the outer-code test (of Construction 3.4), the current tester needs to obtain the values of thesetwo polynomials at some elements of F (which are determined by the outer test). Suppose thatwe need the value of q0 (a univariate polynomial of degree d = hd0 � 1 over F) at t 2 F , andthat q0 is encoded by the inner-code. Recall that q0 is represented as a sequence of coe�cients(q00; :::; q0d). For sake of the inner-code, this sequence may be viewed as indexed by d0-tuples over[h] such that the index (i1; :::; id0) 2 [h]d0 corresponds to Pd0j=1(ij � 1) � hj�1 2 f0; 1; :::; dg; thatis, q0i1;:::;id0 is the coe�cient of the Pd0j=1(ij � 1) � hj�1-th power. Thus (under this convention),q0(z) = Pi1;:::;id02[h] q0i1;:::;id0 � zPd0j=1(ij�1)�hj�1 , which in turn (using Eq. (15)) yields the followingkey observation:q0(t) = C0(hq0i1;:::;id0 : i1; :::; id0 2 [h]i; (t0; :::; th�1; t0; :::; t(h�1)h; :::; t0; :::; t(h�1)hd0�1)): (17)That is, q0(t) resides in the entry of C0(hq0i1;:::;id0 : i1; :::; id0 i) that is indexed by t 2 F d0h, wherethe ith entry in t is t(i�1 mod h)�hb(i�1)=hc . But since this speci�c entry of the inner-code may becorrupted (in a noisy codeword), we recover it by self-correction based on few random positionsin the codeword. Speci�cally, self-correction of the desired entry is performed via polynomialinterpolation, and requires only d0 + 1 queries (where each query is uniformly distributed). Thisdiscussion leads to the following test, where we are assuming (for simplicity) that the lines in Rcover all points of Fm.Construction 3.10 Given oracle access to w : R� [hd0] ! F , which is supposedly a codeword ofthe concatenated-code (of CR and C0), the test proceeds as follows:1. As in Construction 3.4, we pick x 2 Fm uniformly at random, and let `x 2 R be an arbitraryline that passes through x. Pick ` 2 R uniformly among the lines that pass through x.2. Testing the inner-code: Apply Construction 3.8 to the residual oracles w(`x; �) and w(`; �).25

3. Emulating the Point-vs-Line Test (i.e., the remaining steps of Construction 3.4): Let �; � 2 Fbe such that `x(�) = `(�) = x. Let qx and q be the polynomials encoded (possibly with noise)in w(`x; �) and w(`; �), respectively. We obtain the values of qx(�) and q(�), via self-correction,and check whether these two values are equal.Self-correction of q(�) is performed as follows. Settinga = (1; :::; �h�1; 1:::; �(h�1)h; 1:::; �(h�1)h2 ; :::; 1; :::; �(h�1)hd0�1)we select uniformly b = (b(1)1 ; :::; b(1)h ; :::; b(d0)1 ; :::; b(d0)h) 2 F d0h, obtain the values w(`; a + � � b)for d0 + 1 distinct non-zero values � 2 F , and compute the desired value by polynomialinterpolation. That is, for �xed and distinct �1; :::; �d0 2 F n f0g, we determine the univariatepolynomial p of degree d0 satisfying p(�i) = w(`; a+ �i � b) for i = 1; ::; d0 +1, and take p(0) asthe value of q(�). Note that, by Eq. (17), q(�) equals C0(hqi1;:::;id0 : i1; :::; id0 2 [h]i; a), and thatwe have accessed a slightly noise version of C0(hqi1;:::;id0 : i1; :::; id0 2 [h]i) at d0 + 1 uniformlydistributed positions. Self-correction of qx(�) is performed analogously.We accept if and only if both invocation of Construction 3.8 as well as the emulated Point-vs-LineTest accept.Note that the tester performs 2 � (4d0 + 2) + 2 � (d0 + 1) = O(d0) queries. Furthermore, its checksamount to checking several linear conditions regarding the retrieved values. (The latter fact followsfrom the linearity of the check performed by Construction 3.8 and the linearity of the interpolationperformed in Step 3.) Clearly, Construction 3.10 accepts each codeword with probability 1, butlower-bounding the rejection probability of non-codewords does require a detailed analysis (which isprovided next). The point is to prove that the \composition of tests" (for the concatenation-code)does work as one would have expected.Lemma 3.11 Let F and C = CR be as in Construction 3.1, and C0 : F k0 ! F n0 be as in Eq. (15),where k0 = hd0 and n0 = jF jd0h. Then, for all but a o(1) fraction of the possible choices of R, everyw 2 F nn0 is rejected by the concatenated-code tester (of Construction 3.10) with probability that islinearly related to the distance of w from the concatenated-code (of Eq. (16)).Proof: We �x any set R satisfying the claims of Lemma 3.5 and Claim 3.5.1. That is, the code CRis locally testable (via Construction 3.4), and R covers all points almost-uniformly. (Recall thatindeed all but a o(1) fraction of the possible choices of R can be used here.) For this �xed R, weanalyze the performance of Construction 3.10 with respect to the corresponding concatenated-code(of Eq. (16)).Fixing any w = (w1; :::; wn) 2 (F n0)n, let us denote by � the relative distance of w from theconcatenated-code, and let �i def= �C0(wi)=n0 denote the relative distance of wi from the inner-codeC0. Throughout this proof (unless stated di�erently), distances refers to sequences over F .Recall that each of the two lines selected by the outer-code tester (i.e., the tester of Construc-tion 3.4) is not uniformly distributed in [n] � R. It is rather the case that the �rst line is thecanonical line associated with a uniformly selected point, whereas the second line is a selecteduniformly among the lines (in R) that passes through this point. Let us denote by pi and qi thecorresponding distribution on lines; that is, pi (resp., qi) denotes the probability that the i-th linein R is selected as a canonical line (resp., a random line) for a uniformly selected point. Note that,by the almost uniformity condition, it holds that qi = 1=(1� 0:1)n for every i 2 [n]. For a constantc > 1 (to be determined), we consider the following two cases:26

Case 1: either Pni=1 pi�i > �=c or Pni=1 qi�i > �=c. In this case, at least one of the two blocks(i.e., either w`x or w`) probed by the outer-code tester is at expected relative distance atleast �=c from the inner-code. Thus, in this case, the inner-code tester (of Construction 3.8,as analyzed in Lemma 3.9) invoked in Step 2 rejects with probability
(�=c), which is
(�)because c is a constant.Case 2: both Pni=1 pi�i � �=c and Pni=1 qi�i � �=c. In particular, using qi = 1=(1 � 0:1)n, itfollows that 1nPni=1 �i < 2�=c. Denoting the closest corresponding C0-codewords by ci's (i.e.,�(wi; ci) = �i � n0), we let di denote the decoding of ci (and of wi). Then, denoting theconcatenated code by CC (and viewing di 2 � = F d+1 as a single symbol but ci = C0(di) andwi as n0-long sequences (over F)), we have�C(d1; :::; dn)n � �CC(C0(d1); :::; C0(dn))nn0� �CC(w1; :::; wn)nn0 � �((w1; :::; wn); (c1; :::; cn)nn0= � � 1n nXi=1 �iwhich is greater than ��(2�=c) > �=2 (usingPni=1 �i=n < 2�=c and assuming c � 4). Thus, forsome constant c0 > 0 (determined in Lemma 3.5), the outer-code test rejects (d1; :::; dn) withprobability at least c0 � �=2. (We will set c = 16(d0+1)=c0 > 4.) The question is what happenswhen the concatenated-code tester (given access to (w1; :::; wn)) emulates the outer-code test.Recall that, in the current case, both the indices probed by the outer-code tester correspondto wi's that are at expected relative distance at most �=c from the inner-code, where eachexpectation is taken over the distribution of the corresponding index. Thus, for each of thetwo indices, with probability at most 2(d0 + 1)�=c, the randomly selected index correspondsto a block wi that is at relative distance greater than p def= 1=2(d0+1) from the inner-code. Itfollows that, with probability at least 1� 2 � (2(d0 +1)�=c), both indices probed by the outer-code tester correspond to wi's that are at relative distance at most p from the inner-code. Inthis case, with probability at least (1�(d0+1) �p)2 = 1=4, all actual (random) probes made inStep 3 to the inner-code are to locations in which the corresponding wi and ci = C0(di) agree,and thus both the self-corrected values (computed by our test) will match the correspondingdi's. Note that if the above two events occur then our tester correctly emulates the outer-codetester. Thus, our tester rejects if the following three events occur:1. The outer-code tester would have rejected the two answers (i.e., the two di's).2. The two probed indices correspond to wi's that are at relative distance at most 1=2(d0+1)from the inner-code (and in particular from the corresponding C0(di)'s, which are theC0-codewords closest to them).3. The self-corrected values match the corresponding di's.By the above, Event 1 occurs with probability at least c0�=2, and Event 2 fails with probabilityat most 4(d0 + 1)�=c = c0�=4 (by setting c = 16(d0 + 1)=c0). Thus, our tester rejects w withprobability at least ((c0�=2)� (c0�=4)) � (1=4) =
(�), where the 1=4 is due to the probabilitythat Event 3 occurs (conditioned on Events 1 and 2 occuring).Thus, in both cases, any word that is at relative distance � from the concatenated-code is rejectedwith probability
(�). The lemma follows. 27

Other properties: Recall that the concatenated code, mapping F kk0 to F nn0 is linear (overF). Furthermore, the codeword test is a conjunction of O(d0) linear tests. Alternatively, wemay perform one of these linear tests, selected at random (with equal probability). The relativedistance of the concatenated code is the product of the relative distances of the outer and innercodes, and thus is a constant. Regarding the parameters of the concatenated code, suppose thatin the outer-code we use the setting d = me (for any constant e > 1), and that in the inner-codewe use d0 = 2e. Then, we obtain a code that maps F kk0 to F nn0 , where n < k(e+o(1))=(e�1) andk0 = d+ 1 < jF j < (log k)e (both by Eq. (4)), and n0 = exp(~O(d1=d0)) (see Eq. (15)) which in turnequals exp(~O((log k)e=d0)) = exp(~O(plog k)) = ko(1). Thus,nn0 = (kk0)(e+o(1))=(e�1) and jF j < (log k)e. (18)For usage in the next subsection, we only care that the alphabet size (i.e., jF j) is ko(1), while therate is good (i.e., nn0 � (kk0)e=(e�1)).Remark 3.12 The code C0 : F k0 ! F n0 can be constructed only for speci�c values of k0; thatis, k0 = hd0 for some integers h and d0. Thus, �xing any constant integer d0, we obtain codes forevery d0-th (integer) power. Recall that when using this code together with C : �k ! �n, where� = F d+1, to derive the concatenated code we must set k0 = d+ 1. Actually, we go the other wayaround: Starting with any h, we set k0 = hd0 and d = k0 � 1, and determine k as a function of d(and the parameter m < d) according to Eq. (2).3.4 Obtaining a binary locally-testable codeOur last step is to derive a binary code. This is done by concatenating the code presented inSection 3.3 with the Hadamard code, while assuming that F = GF(2k00). That is, the Hadamardcode is used to encode elements of F by binary sequences of length n00 def= 2k00 . (Recall that theHadamard encoding of a string s 2 f0; 1g` is given by the sequence all 2` partial sums (mod 2) ofthe bits of s.)To test the newly concatenated code, we combine the obvious testing procedure for theHadamard code with the fact that all that we need to check for the current outer-code are (aconstant number of) linear (in F) conditions involving a constant number of F -entries. (Recallthat Construction 3.10 only checks linear constraints, and that we are going to set d0 to be a con-stant.) Now, instead of checking such a linear condition over F , we check that the correspondingequality holds for a random sum of the bits in the representation of the elements of F (using the hy-pothesis that F = GF(2k00)). Speci�cally, suppose that we need to check whetherPti=1 �iai = 0 (inF), for some known �1; :::; �t 2 F and oracle answers denoted by a1; :::; at 2 F . Then, we uniformlyselect r 2 GF(2k00), and check whether ip2(r;Pti=1 �iai) � 0 mod 2 holds, where ip2(u; v) denotesthe inner-product modulo 2 of (the GF(2k00) elements) u and v (viewed as k00-bit long vectors). Thelatter check is performed by relying on the following two facts:Fact 1: ip2(r;Pti=1 �iai) �Pti=1 ip2(r; �iai) mod 2.This fact holds because ip2(r1 � � � rk00 ; s1 � � � sk00) =Pk00j=1 rjsj.Fact 2: Each ip2(r; �iai) can be obtained by making a single query (which is determined by r and�i) to the Hadamard coding of ai, because ip2(r; �iai) is merely a linear combination of thebits of ai with coe�cients depending on �i and r (i.e., ip2(r; �iai) = ip2(f(r; �i); ai), wheref is determined by the irreducible polynomial representing the �eld GF(2k00)).28

This fact holds because each bit of �iai 2 GF(2k00) is a linear combination of the bits of aiwith coe�cients depending on �i, and ip2(r; v) is a linear combination of the bits of v withcoe�cients depending on r.We now turn to the actual construction of the �nal (binary) code. Recall that we wish to applythe code-concatenation paradigm to the code presented in Section 3.3 and the suitable Hadamardcode. Speci�cally, let Cout : F kk0 ! F nn0 denote the former code, and let C00 : f0; 1gk00 ! f0; 1gn00denote the suitable Hadamard code, where F = GF(2k00) � f0; 1gk00 and [n00] � f0; 1gk00 . (Theparameter d0 that determines the rate of Cout as well as the query complexity of its codeword testerwill be set to a constant.) Then, concatenating these two codes, we obtain a code that maps(x1; :::; xkk0) 2 (f0; 1gk00)kk0 to (C00(y1); :::; C00(ynn0)), where (y1; :::; ynn0) = Cout(x1; :::; xkk0). In otherwords, for x 2 F kk0 � f0; 1gkk0 �k00 , we have:concatenated-code(x) = C00(Cout(x; 1)); ::::; C00(Cout(x; nn0)) (19)where C00(y) = hip2(y; p) : p 2 f0; 1gjyji.Loosely speaking, in order to test the concatenated code, we �rst test (random instances of) theinner-code (i.e., C00), and next use \self-correction" (cf. [14]) on the latter to emulate the testingof the outer-code (i.e., Cout). Setting d0 to a constant, the query complexity of the codewordtester of Cout is a constant, denoted q (because q = O(d0)). Recall that the codeword tester ofCout : F kk0 ! F nn0 (i.e., Construction 3.10) checks a constant number of linear conditions, eachdepending on a constant number of positions (i.e., F -symbols). By uniformly selecting one ofthese conditions, we obtain a tester, denoted T , that randomly selects q positions in the testedword and checks a single linear condition regarding the F -symbols in these positions. (Indeed,the non-codeword detection probability probability of T may be q times smaller than that ofConstruction 3.10.) Thus, the tester of the (new) concatenated code invokes T to determineq random locations i1; :::; iq 2 [nn0] and a linear condition (�1; :::; �q) 2 F q to be checked (onthe corresponding answers). The (new) tester next checks whether the corresponding q blocksin the tested (nn0n00-bit long) string are codewords of C00. Finally, the tester emulates the checkPqj=1 �jdij = 0 of T , where dij is the C00-decoding the ithj block of the tested string. This emulationis performed via self-correction, to be discussed next.Recall that, rather than checking Pqj=1 �jdij = 0, we are going to check ip2(r;Pqj=1 �jdij) =0, for a uniformly selected r 2 f0; 1gk00 . Furthermore, by Fact 1, rather then checkingip2(r;Pqj=1 �jdij) = 0, we may check Pqj=1 ip2(r; �jdij) = 0. To this end, we should obtainip2(r; �jdij), for r and �j that are known to us. As stated in Fact 2, the desired bit can be ex-pressed as a linear combination (with coe�cients depending only on r and �j) of the bits of dij .That is, ip2(r; �jdij) = ip2(rj ; dij), where rj is determined by r and �j (i.e., rj = f(r; �i), wheref depends on the representation of GF(2k00)). Recall that ip2(rj ; dij) = C00(dij ; rj). However, sincewe may not have a valid codeword of dij , we obtain the corresponding entry via self-correction ofthe ijth block of the tested string. That is, we obtain a good guess for C00(dij ; rj), by taking theexclusive-or of positions rj � sj and sj in that block, for a uniformly selected sj 2 f0; 1gk00 � [n00].This discussion leads to the following test, where we add Step 4 to ease the analysis.Construction 3.13 The tester is given oracle access to w = (w1; ::::; wnn0), where each wi =wi;1 � � �wi;n00 2 f0; 1gn00 , and proceeds as follows:1. The tester selects the locations i1; :::; iq 2 [nn0] and the linear condition (�1; :::; �q) 2 F q to bechecked by the codeword tester of Cout. That is, these choices are determined by invoking T .29

2. For j = 1; :::; q, the tester checks that wij is a codeword of C00. For each j, this is done byuniformly selecting r; s 2 f0; 1gk00 , and checking whether wij ;r + wij ;s = wij ;r�s.3. The tester emulates the check Pqj=1 �jdij = 0 of the tester for Cout, where dij is the C00-decoding of wij and the arithmetic is over F = GF(2k00). This is done by uniformly selectingr 2 f0; 1gk00 , and checking that ip2(r;Pqj=1 �jdij) = 0. Actually, we test the equivalentcondition Pqj=1 ip2(r; �jdij) = 0, where the values ip2(r; �jdij), for j = 1; :::; q, are obtainedvia self-correction as follows.For the uniformly selected r 2 f0; 1gk00 , we determine r1; :::; rq based on r and �1; :::; �q (wherethe �j 's are as determined in Step 1). That is, for each j, we determine rj = f(r; �j) suchthat ip2(rj ; x) = ip2(r; �jx) holds for any value of x 2 GF(2k00). Next, we select uniformlys1; :::; sq 2 f0; 1gk00 , and check that Pqj=1(wij ;rj�sj � wij ;sj) = 0.4. The tester selects uniformly i0 2 [nn0], and checks that wi0 is a codeword of C00 (by uniformlyselecting r; s 2 f0; 1gk00 , and checking whether wi0;r + wi0;s = wi0;r�s).We output 1 if and only if all q + 2 checks are satis�ed.Our tester makes 3(q+1)+2q to the code, where q is a constant. It is clear that this tester acceptsany valid codeword (because C00(y; r � s) = C00(y; r) + C00(y; s) for every y; r; s 2 f0; 1gk00). Theanalysis of the rejection probability of non-codewords can be carried out analogously to Lemma 3.11.Lemma 3.14 For F = GF(2k00), let Cout : F kk0 ! F nn0 be as in Eq. (16), and C00 : f0; 1gk00 !f0; 1gn00 be the Hadamard code, where n00 = 2k00. Then, every w 2 f0; 1gnn0n00 is rejected by theconcatenated-code tester (of Construction 3.13) with probability that is linearly related to the distanceof w from the concatenated-code (of Eq. (19)).Proof: Recall that Cout is locally testable (by Lemma 3.11), and furthermore that the test T , whichmakes a constant number of queries, rejects every non-codeword with probability that is linearlyrelated to its distance from Cout.Fixing any w = (w1; :::; wnn0) 2 (f0; 1gn00)nn0 , let us denote by � the relative distance of wfrom the concatenated-code, and let �i def= �C00(wi)=n00 denote the relative distance of wi fromthe inner-code C00. Throughout this proof (unless stated di�erently), distances refers to binarysequences.As in the proof of Lemma 3.11, we distinguish between two cases according to the averagedistance of the wi's from valid codewords of C00. However, rather than relying on the speci�cs ofT , we use a more generic approach here, while relying on the added test performed in Step 4.Speci�cally, let us denote by pi the probability that a random query of T probes the ith location,where i 2 [nn0] (and we refer to a uniformly selected query among the q random queries made byT). For a constant c > 1 (to be determined), we consider the following two cases:Case 1: either Pnn0i=1 pi�i > �=c or Pnn0i=1 �i=nn0 > �=c. In this case, at least one of the blocks (i.e.,either wij for some j 2 [q] or wi0) probed by the outer-code tester (in either Step 2 or Step 4,respectively) is at expected relative distance at least �=c from the inner-code. Thus, in thiscase, the inner-code tester (which is the extensively analyzed BLR-test [14]) rejects withprobability
(�=c) =
(�).Case 2: both Pnn0i=1 pi�i � �=c and Pnn0i=1 �i=nn0 � �=c. Denoting the closest corresponding C00-codewords by ci's (i.e., �(wi; ci) = �i � n00), we let di denote the decoding of ci (and of30

wi). Thus, the relative distance of (d1; :::; dnn0) from the outer-code (when viewing each dias a single symbol) is at least � � (�=c) > �=2, provided that c > 4, where the �=c termaccounts for the average relative distance between the ci's and the wi's. That is, for everyx 2 F kk0 the fraction of i's such that di 6= Cout(x; i) is at least �=2. It follows that, for someconstant c0 > 0 (determined in Lemma 3.11), the outer-code test T rejects (d1; :::; dnn0) withprobability at least c0 � �=2. (We will set c = 12q2=c0 > 4.) The question is what happenswhen the concatenated-code tester (given access to w) emulates T . The answer is that ourtester rejects if the following four events all occur.1. The outer-code tester T would have rejected the q answers (i.e., the relevant di's). Thatis, Pqj=1 �jdij 6= 0 (over GF(2k00)), for the adequate �j 's.Recall that this event occurs with probability at least c0�=2.2. The q probed indices correspond to wi's that are at relative distance at most 1=3q fromthe inner-code (and in particular from the corresponding C00(di)'s).To see that this event occurs with probability at least 1 � 3q2�=c, let bj denotes theprobability for the bad (complementary) (sub-)event in which the jth query is made to ablock wi that is 1=3q-far from the corresponding codeword C00(di). Then, Pnn0i=1 �i=nn0 �1q �Pqj=1 bj � (1=3q), which using the case hypothesis implies that Pqj=1 bj � 3q2 � �=c, asclaimed.3. The self-corrected values match the corresponding di's.Given Event 2, the current event occurs with probability at least (1� 2 � (1=3q))q > 1=3,because self-correction succeeds whenever all actual (random) probes to the inner-codeare to locations in which the corresponding wi and ci = C00(di) agree.4. The string r 2 f0; 1gk00 , selected uniformly in Step 3, is such that Pqj=1 ip2(r; �jdij) 6= 0,Given Event 1, the current event occurs with probability 1=2.Note that the �rst three events are analogous to events considered in the proof of Lemma 3.11,whereas the last event is introduced because we do not emulate the actual check of T (butrather a randomized version of it). Setting c = 12q2=c0, we infer that all four events occurwith probability at least ((c0�=2) � (3q2�=c)) � (1=3) � (1=2) = c0�=24 =
(�).Thus, in both cases, any word that is at relative distance � from the concatenated-code is rejectedwith probability
(�). The lemma follows.Corollary: Part 2 of Theorem 2.4. For any desired constant e > 1, we use the parametersetting d = me and d0 = 2e in the construction of the code Cout. As summarized in Eq. (18), thisyields a code Cout : F kk0 ! F nn0 , where nn0 < (kk0)(e+o(1))=(e�1) and jF j < (log k)e. Recall that wecompose Cout with C00 : f0; 1gk00 ! f0; 1gn00 , where f0; 1gk00 is associated with F = GF(2k00). Thus,our �nal code maps f0; 1gkk0k00 to f0; 1gnn0n00 , where n00 = 2k00 = jF j = poly(log k) = ko(1), and sonn0n00 < (kk0k00)(e+o(1))=(e�1) . Also note that the �nal code is linear and has linear distance. Thus,we have established Part 2 of Theorem 2.4.Remark 3.15 The performance of the �nal codeword tester (of Construction 3.13) depends onthe parameter e > 1, which determines the rate of the �nal code (i.e., the relation between nn0n00and kk0k00). The query complexity of the tester is linear in e, and the rejection probability of non-codewords depends is inversely proportional to poly(e) (i.e., a string that is �-far from the code isrejected with probability
(�=e4)). The rejection probability of non-codewords can be improved,but we doubt that one get get below
(�=e2) without introducing signi�cantly di�erent ideas.31

Remark 3.16 In continuation to Remarks 3.7 and 3.12, we comment that the �nal binary code canbe constructed only for speci�c values of k; k0 and k00. Fixing any integer e > 1, the aforementionedcode can be constructed for any integer h, while setting k0 = he, k00 = logO(k0) and k � (me�1)m,where m = (he � 1)1=e � h. Thus, K def= kk0k00 � h(e�1)h � he � log he � h(e�1)h. The ratio betweenconsecutive admissible values of K is given by (h+1)(e�1)(h+1)h(e�1)h = O(h)e�1 < (logK)e�1, and so theadmissible successor of K is smaller than (logK)e�1 �K.4 PCPs of Nearly-Linear LengthIn this section we give a probabilistic construction of nearly-linear sized PCPs for SAT. Moreformally, we reduce SAT in almost-linear probabilistic time to a promise problem, and show thatthis problem has a PCP of randomness complexity (1 + o(1)) log n (on inputs of length n) andconstant query complexity. Furthermore, this PCP has perfect completeness, soundness arbitrarilyclose to 12 , and its query complexity is a small explicit constant. Speci�cally, with 19 (bit) querieswe obtain randomness complexity log2 n+ ~O(plog n). Recall that actually we care about the prooflength (i.e., the length of the PCP oracle), which is 2r � q, where r and q are the randomness andquery complexities of the PCP. Our PCPs improve over the parameters of the PCPs constructedby Polishchuk and Spielman [30], and are obtained by applying the \random projection" method(introduced in Section 3) to certain constant-prover one-round proof systems, which are crucialingredients in the constructions of PCPs. Speci�cally, we apply this technique to (a variant of) thethree-prover one-round proof system of Harsha and Sudan [25].Random projection of proof systems. Typically, constant-prover one-round proof systemsuse provers of very di�erent sizes. Indeed, this is the case with the proof system of Harsha andSudan [25]. By applying the \random projection" method to the latter proof system, we obtainan equivalent system in which all provers have size roughly equal to the size of the smallest proverin the original scheme. At this point, we reduce the randomness complexity to be logarithmic inthe size of the provers (i.e., and thus logarithmic in the size of the smallest original prover). (Thelatter step is rather straightforward.) Starting with the system of [25], we obtain a constant-proverone-round proof system of randomness complexity (1+o(1)) log n (on inputs of length n). However,the query complexity of the resulting system is not constant, although it is small, but the standardproof composition paradigm (combined with known PCPs) comes to our rescue.Recall that typical PCP constructions are obtained by using the technique of proof compositionintroduced by Arora and Safra [3]. In this technique, an \outer veri�er", typically a veri�er for aconstant-prover one-round proof system, is composed with an \inner veri�er" to get a new PCPveri�er. The new veri�er essentially inherits the randomness complexity of the outer veri�er andthe query complexity of the inner veri�er. Since our goal is to reduce the randomness complexityof the composed veri�er, we achieve this objective by reducing the randomness complexity of theouter veri�er.Organization. As stated above, our key step is to reduce the sizes of the provers (in certainconstant-prover one-round proof system). As a warm-up (in Section 4.1), we �rst show that therandom projection method can be applied to any 2-prover one-round proof system, resulting in anequivalent proof system in which both provers have size roughly equal to the size of the smallestprover in the original scheme. 32

Next, in Section 4.2, we show how to apply the random projection to the veri�er of a speci�c3-prover one-round proof system used by Harsha and Sudan [25]. Their veri�er is a variant of theone constructed by Raz and Safra [31] (see also, Arora and Sudan [4]), which are, in turn, variantsof a veri�er constructed by Arora et al. [2]. All these veri�ers share the common property of workingwith provers of vastly di�erent sizes. We manage to reduce the sizes of all the provers to the size ofthe smallest one, and consequently reduce the randomness of the veri�er to (1 + o(1)) log n (wheren is the input length). We stress that the \random size reduction" step is not generic, but ratherrelies on properties of the proof of soundness in, say, [25], which are abstracted below. Applyingknown composition lemmas (i.e., those developed in [25]) to this gives us the desired short PCPconstructions.4.1 Two-prover veri�ers and random samplingWe start by de�ning a 2-prover 1-round proof system as a combinatorial game between a veri�erand two provers. Below,
 denotes the space of veri�er's coins, qi denotes its strategy of formingqueries to the i-th prover, and Pi denotes a strategy for answering these queries (where we refer tothe residual strategy for a �xed common input, which is omitted from the notation).De�nition 4.1 For �nite sets Q1; Q2;
; and A, a (Q1; Q2;
; A)-2IP veri�er V is given by functionsq1 :
! Q1 and q2 :
! Q2 and Verdict :
� A�A! f0; 1g. The value of V , denote w(V), isthe maximum, over all functions P1 : Q1 ! A and P2 : Q2 ! A of the quantitywP1;P2(V) def= Er2
 [Verdict(r; P1(q1(r)); P2(q2(r)))] : (20)where r is uniformly distributed in
. A 2IP veri�er V is said to be uniform if, for each i 2 f1; 2g,the function qi :
! Qi is j
j=jQij-to-one. The size of prover Pi is de�ned as jQij.Focusing on the case jQ2j � jQ1j, we de�ne a \sampled" 2IP veri�er. In accordance with thepreliminary motivational discussion, we use a two-stage sampling: �rst, we sample the queries tothe bigger prover (i.e., S � Q2), and then we sample the set of (relevant) coin tosses (i.e., T �
).Thus, the �rst step corresponds to a random projection of the second prover's strategy on a subsetof the possible queries. Note that the �rst stage results in a proof system in which the second proverhas size jSj (rather than jQ2j), and that we should restrict the space of the resulting veri�er's coinssuch that their image under q2 equals S.De�nition 4.2 Given a (Q1; Q2;
; A)-2IP veri�er V and set S � Q2, let
S = fr 2
 : q2(r) 2 Sg: (21)For T �
S, the (S; T)-sampled 2IP veri�er, denoted V jS;T , is a (Q1; S; T;A)-2IP veri�er given byfunctions q01 : T ! Q1, q02 : T ! S, and Verdict0 : T �A�A! f0; 1g obtained by restricting q1, q2and Verdict to T .In the following lemma we show that a su�ciently large randomly sampled set S from Q2 isvery likely to approximately preserve the value of a veri�er. Furthermore, the value continues tobe preserved approximately if we pick T to be a su�ciently large random subset of
S.Lemma 4.3 There exist absolute constants c1; c2 such that the following holds for everyQ1; Q2;
; A, � and > 0. Let V be an (Q1; Q2;
; A)-uniform 2IP veri�er.33

Completeness: For any S and T , the (S; T)-sampled veri�er preserves the perfect completeness ofV . That is, if !(V) = 1 then, for every S � Q2 and T �
S, it holds that !(V jS;T) = 1.Soundness: For su�ciently large S and T , a random (S; T)-sampled veri�er preserves the soundnessof V up-to a constant factor. Speci�cally, let N1 = c1� � �jQ1j log jAj+ log 1� and N2 =c2� ��N1 log jAj+ log 1�, and suppose that S is a uniformly selected multi-set of size N1 of Q2,and T is a uniformly selected multi-set of size N2 of
S. Then, for !(V) � �, with probabilityat least 1� , it holds that !(V jS;T) � 2�.Note that the reduction in the randomness complexity (i.e., obtaining N2 = ~O(jQ1j)) relies on theshrinking of the second prover to size N1 = ~O(jQ1j). Without shrinking the second prover, wewould obtain N2 = ~O(jQ2j), which is typically useless (because, typically, j
j = ~O(jQ2j)).Proof: We focus on the soundness condition, and assume that !(V) � �. The proof is partitionedinto two parts. First we show that a random choice of S is unlikely to increase the value of thegame to above 32 � �. Next, assuming that S satis�es the latter condition, we show that a randomchoice of T is unlikely to increase the value of the game above 2�. The second part of the proof isreally a standard argument, which has been observed before in the context of PCPs (e.g., in [8]).We thus focus on the �rst part, which abstracts the idea of the random projection from Section 3.Our aim is to bound the value !(V jS;
S), for a randomly chosen S. Fix any prover strat-egy P1 : Q1 ! A for the �rst prover. Now, note that an optimal strategy, denoted P �2 , forthe second prover answer each question q2 2 Q2 by an answer that maximizes the acceptanceprobability with respect to the �xed P1 (i.e., an optimal answer is a string a2 that maximizesEr2
jq2(r)=q2 [Verdict(r; P1(q1(r)); a2)]). We stress that this assertion holds both for the original2IP veri�er V as well as for any (S;
S)-sampled veri�er.8 For every question q2 2 Q2, let �q2denote the acceptance probability of the veri�er V given that the second question is q2 (i.e.,�q2 = Er2
jq2(r)=q2 [Verdict(r; P1(q1(r)); P �2 (q2))]). By (uniformity and) the de�nition of �q2 , wehave Eq22Q2 [�q2] = Er2
[�q2(r)] � �. The quantity of interest to us is Er2
S [�q2(r)], which by uni-formity equals Eq22S [�q2]. A straightforward application of Cherno� Bound (see Footnote 2) showsthat the probability that this quantity exceeds 32 � � is exponentially vanishing in �N1. Takingthe union bound over all possible P1's, we infer that the probability that there exists a P1; P2such that Er2
S [Verdict(r; P1(q1(r)); P2(q2(r)))] > 32 � � is at most exp(��N1) � jAjjQ1j. Thus, usingN1 = c1� �jQ1j log jAj+ log 1� for some absolute constant c1, it follows that !(V jS;
S) � 32 � � withprobability at least 1� 2 (over the choices of S). The lemma follows.94.2 Improved 3-prover proof system for NPWe now de�ne the more general notion of a constant-prover one-round interactive proof system(MIP). We actually extend the standard de�nition from languages to promise problems (cf. [18]and [8]).8But, the assertion does not hold for most (S; T)-sampled veri�ers.9 Indeed, we have ignored the e�ect of sampling
S ; that is, the relation of !(V jS;
S) and !(V jS;T), for a randomT �
S of size N2. As stated above, this part is standard. Fixing any S such that !(V jS;
S) � 32 � �, we assumewithout loss of generality that !(V jS;
S) � �. First, we �x any choice of P1 : Q1 ! A and P2 : S ! A, andapplying Cherno� Bound (again) we infer that the probability that the restrictions of
S to T lead to acceptancewith probability greater than 43 � !(V jS;
S) is exp(�
(�N2)). Taking the union bound over all choices of P1 andP2, we infer that !(V jS;T) > 43 � !(V jS;
S) with probability at most exp(�
(�N2)) � jAjjQ1j+jSj. Thus, using N2 =c2� (jSj log jAj + log(1=)), we conclude that !(V jS;T) � 43 � !(V jS;
S) � 2� with probability at least 1 � 2 (over thechoices of T). 34

De�nition 4.4 For positive reals c; s, integer p and functions r; a : Z+ ! Z+, we say that apromise problem � = (�yes;�no) is in MIPc;s[p; r; a] (or, � has a p-prover one-round proof systemwith randomness r and answer length a) if there exists a probabilistic polynomial-time veri�er Vinteracting with p provers P1; : : : ; Pp such thatOperation: On input x of length n, the veri�er tosses r(n) coins, generates queries q1; : : : ; qp toprovers P1; :::; Pp, obtain the corresponding answers a1; : : : ; ap 2 f0; 1ga(n), and outputs aBoolean verdict that is a function of x, its randomness and the answers a1; : : : ; ap.Completeness: If x 2 �yes then there exist strategies P1; : : : ; Pp such that V accepts their responsewith probability at least c.If c = 1 then we say that V has perfect completeness.Soundness: If x 2 �no then for every sequence of prover strategies P1; : : : ; Pp, machine V acceptstheir response with probability at most s, which is called the soundness error.If for every choice of veri�er's coins, its queries to Pi reside in a set Qi, then we say that proverPi has size jQij.Recall that a language L is captured by the promise problem (L; f0; 1g� n L).Harsha and Sudan [25] presented a randomness e�cient 3-prover one-round proof system forSAT, with answer length poly(log n). Speci�cally, their proof system has randomness complexity(3 + �) log2 n, where � > 0 is an arbitrary constant and n denotes the length of the input. Here wereduce the randomness required by their veri�er to (1 + o(1)) log n. Actually, we do not reduce therandomness complexity of the proof system for SAT, but rather present a randomized reductionof SAT to a problem for which we obtain a 3-prover one-round proof system with answer lengthpoly(log n) and randomness complexity (1 + o(1)) log n. It is, of course, crucial that our reductiondoes not increase the length of the instance by too much. To capture this condition, we present aquanti�ed notion of length preserving reductions.De�nition 4.5 For a function ` : Z+ ! Z+, a reduction is `-length preserving if it maps instancesof length n to instances of length at most `(n).Our key technical result is summarized as follows.Theorem 4.6 (Random Projection of certain MIPs): Let m; ` : Z+ ! Z+ be functions satisfying`(n) =
(m(n)
(m(n))n1+
(1=m(n))) and m(n) � 2. Then, for any constant � > 0, SAT reducesin probabilistic polynomial time, under `-length preserving reductions, to a promise problem � inMIP1;�[3; r; a], where r(n) = (1+1=m(n)) log n+O(m(n) logm(n)) and a(n) = m(n)O(1)nO(1=m(n)).We comment that the reduction actually runs in time `. Before proving Theorem 4.6, let us see aspecial case of it obtained by setting m(n) = plog n (which is an approximately optimal choice).Corollary 4.7 For every � > 0, SAT reduces in probabilistic polynomial time, under `-lengthpreserving reductions, to a promise problem � in MIP1;�[3; r; a], where `(n) = n1+O((log logn)=plog n),r(n) = (1 +O((log log n)=plog n)) � log2 n and a(n) = 2O(plog n).In Section 4.3, we show how to apply state-of-the-art proof composition to the aforementionedMIPs in order to derive our main result (i.e., a PCP with similar randomness complexity using aconstant number of queries). 35

Overview and organization of the proof of Theorem 4.6. The rest of the Section 4.2 isdevoted to proving Theorem 4.6. We start with an overview of the proof, which modi�es the proofof [25], improving the latter in two points. The proof of [25] �rst reduces SAT to a parameterizedproblem, called GapPCS, under `0(n)-length preserving reductions for `0(n) = n1+ for any > 0.Then they give a 3-prover MIP proof system for the reduced instance of GapPCS, where the veri�ertosses (3 +) log `0(n) random coins.Our �rst improvement shows that the reduction of [25] actually yields a stronger reductionthan stated there, in two ways. First we note that their proof allows for smaller values of `0(n)than stated there, allowing in particular for the parameters we need; that is, we get `0(n) = `(n),where ` is as in Theorem 4.6. Furthermore, we notice that their result gives rise to instances froma restricted class, for which slightly more e�cient proof systems can be designed. In particular,we can reduce the size of the smallest prover in their MIP system to `(n) (as opposed to theirresult which gives a prover of size `0(n)1+ for arbitrarily small). These improvements are statedformally in Appendix A (see Lemmas A.3 and A.4, yielding Theorem A.5).The second improvement is more critical to our purposes. Here we improve the randomnesscomplexity of the MIP veri�er of [25], by applying a random projection to it. In order to allow fora clean presentation of this improvement, we �rst abstract the veri�er of [25] (or rather the oneobtained from Theorem A.5). This is done in Section 4.2.1. We then show how to transform sucha veri�er into one with (1 + o(1)) log n randomness. This transformation comes in three stages,described in Sections 4.2.2-4.2.4. The key stage (undertaken in Section 4.2.3) is a shrinking of thesizes of all provers to roughly `.4.2.1 Abstracting the veri�er of Theorem A.5The veri�er (underlying the proof) of Theorem A.5 interacts with three provers, which we denoteP , P1, and P2. We let Q, Q1, and Q2 denote the question space of the three provers, respectively.Similarly, A, A1, and A2 denote the corresponding spaces of (prover) answers; that is, P : Q! A(resp., P1 : Q1 ! A1 and P2 : Q2 ! A2). We denote by Vx(r; a; a1; a2) the acceptance predicateof the veri�er on input x 2 f0; 1gn, where r denotes the veri�er's coins, and a (resp., a1, a2) theanswer of prover P (resp., P1, P2). (Note: The value of Vx is 1 if the veri�er accepts.) We willusually drop the subscript x unless needed. Let us denote by q(r), (resp. q1(r), q2(r)) the veri�er'squery to P (resp., P1, P2) on random string r 2
, where
 denotes the space of veri�er's coins.We note that the following properties hold for the 3-prover proof system given by Theorem A.5 (cf.Section A.3).1. Sampleability: The veri�er only tosses O(log n) coins (i.e.,
 = f0; 1gO(log n)). Thus, it isfeasible to sample from various speci�ed subsets of the space of all possible coin outcomes.For example, given S1 � Q1, we can uniformly select in poly(n)-time a sequence of coins rsuch that q1(r) 2 S1.2. Uniformity: The veri�er's queries to prover P (resp. P1 and P2) are uniformly distributedover Q (resp. over Q1 and Q2); that is, q is j
j=jQj-to-1 (resp. qi is j
j=jQij-to-1).3. Decomposability: The acceptance-predicate V decomposes in the sense that for some pred-icates V1 and V2 it holds that V (r; a; a1; a2) = V1(r; a; a1) ^ V2(r; a; a2), for all r; a; a1; a2.Furthermore, for any constant � > 0 (as in Theorem A.5), if x is a no-instance then for everypossible P strategy, there exists a subset Q0 = Q0P � Q such that for every P1 and P2 the36

following two conditions holdsPrr2
[q(r) 2 Q0 ^ V1(r; P (q(r)); P1(q1(r)))] < �2 (22)Prr2
[q(r) 62 Q0 ^ V2(r; P (q(r)); P2(q2(r)))] < �2 (23)where V1 and V2 are the decomposition of V = Vx.Indeed, Prr2
[V (r; P (q(r)); P1(q1(r)); P2(q2(r))) = 1] < � follows, but the current propertysays something much stronger.The Decomposition Property plays a central role in the rest of our argument. Intuitively, it allowsus to reduce the three-prover case to the two-prover case (treated in Section 4.1).4.2.2 The 3-prover MIP: Stage IThe current stage is merely a preparation towards the next stage, which is the crucial one in ourconstruction. The preparation consists of modifying the veri�er of Theorem A.5 such that itsqueries to provers P1 and P2 are \independent" (given the query to the prover P). That is, wede�ne a new veri�er, denoted W , that behaves as follows:Construction 4.8 (Veri�er W) On input x, let V = Vx be the (original) veri�er's predicate andlet V1 and V2 be as given in the Decomposability Property.1. Pick q 2 Q uniformly and pick coins r1 and r2 uniformly and independently from the set
q def= fr 2
 : q(r) = qg.2. Make queries q (which indeed equals q(r1) = q(r2)), q1 = q1(r1) and q2 = q2(r2), to P , P1and P2, respectively. Let a = P (q), a1 = P1(q1) and a2 = P2(q2) denote the answers received.3. Accept if and only if V1(r1; a; a1) ^ V2(r2; a; a2).In Step 1, we use the Sampleability Property (with respect to a speci�c set of r's). The analysisof W relies on the Uniformity Property, and more fundamentally on the Decomposition Property.We note that Construction 4.8 merely motivates the construction in Stage II, and thus the analysisof Construction 4.8 (captured by Proposition 4.9) is not used in the rest of the paper (although itprovides a good warm-up).Proposition 4.9 Veri�er W has perfect completeness and soundness at most �.Proof: The completeness is obvious, and so we focus on the soundness. Fix a no-instance xand any choice of provers P , P1 and P2. By the Decomposition Property, the probability that Waccepts is given by Prq2Q; r1;r22
q [EV1(r1) ^EV2(r2)] (24)where EV1(r1) def= V1(r1; P (q); P1(q1(r1))) and EV2(r2) def= V2(r2; P (q); P2(q2(r2))). Note that q =q(r1) = q(r2), where (q and) r1; r2 are selected as above. Thus, EVi only depends on ri, and the
37

shorthand above is legitimate. Letting Q0 = Q0P be the subset of Q as given by the DecompositionProperty of the MIP, we upper-bound Eq. (24) byPrq2Q; r1;r22
q �q 2 Q0 ^EV1(r1) ^EV2(r2)�+ Prq2Q; r1;r22
q �q 62 Q0 ^EV1(r1) ^EV2(r2)�� Prq2Q; r12
q �q 2 Q0 ^EV1(r1)�+ Prq2Q; r22
q �q 62 Q0 ^EV2(r2)� (25)By the Uniformity Property, the process of selecting r1 (resp., r2) in Eq. (25) is equivalent toselecting it uniformly in
 (and setting q = q(ri)). We thus upper bound (25) byPrr12
[q(r1) 2 Q0 ^EV1(r1)] + Prr22
[q(r2) 62 Q0 ^EV2(r2)]:Using the Decomposition Property, each of these two terms is bounded by �=2 and thus their sumis upper-bounded by �.4.2.3 The 3-prover MIP: Stage IIIn the next stage, which is the crucial one in our construction, we reduce the size of the provers P1and P2 by a random projection. Speci�cally, we reduce the size of Pi from jQij to jSij.Construction 4.10 (The projected W) For sets S1 � Q1 and S2 � Q2, we de�ne the (S1; S2)-restricted veri�er, denoted WS1;S2, as follows: Again, on input x, let V = Vx be the veri�er'spredicate and let V1 and V2 be as given in the Decomposability Property.1. Pick q 2 Q uniformly and pick coins r1 and r2 uniformly and independently from the sets
(1)q;S1 def= fr2
 : q(r)=q ^ q1(r)2S1g and
(2)q;S2 def= fr2
 : q(r)=q ^ q2(r)2S2g, respectively.If either of the sets is empty, then the veri�er simply accepts.2. Make queries q = q(r1) = q(r2), q1 = q1(r1) and q2 = q2(r2), to P , P1 and P2, respectively.Let a = P (q), a1 = P1(q1) and a2 = P2(q2) denote the answers received.3. Accept if and only if V1(r1; a; a1) ^ V2(r2; a; a2).Again, in the construction, we use the sampleability of various subsets of the veri�er coins, whereaswe will rely on the Uniformity and Decomposability Properties for the analysis. As in Construc-tion 4.8, it is clear that the veri�er WS1;S2 has perfect completeness (for every S1 and S2). We nowbound the soundness of this veri�er, for most choices of su�ciently large sets S1 and S2:Lemma 4.11 For randomly chosen sets S1 and S2, each of size N def= O(jQj�maxflog jAj; log jQjg),with probability at least 5=6, the soundness error of the veri�er WS1;S2 is at most 4�.Proof: We start with some notation. Recall that
 denotes the space of random strings of theveri�er V (of Section 4.2.1). For i 2 f1; 2g and a �xed set Si, let Wi denote the distribution on
 induced by picking uniformly a query q 2 Q, then picking ri uniformly from the set
(i)q;Si, andoutputting ri. Note that the veri�er WS1;S2 picks r1 (resp., r2) according to distribution W1 (resp.,W2), where r1 and r2 depend on the same random q 2 Q. Similarly, let Ui denote the distributionon
 induced by picking a random string ri uniformly from the set [q2Q
(i)q;Si ; that is, Ui is theuniform distribution on fr2
 : qi(r)2Sig. Note that both Wi and Ui depend on Si, but to avoidcumbersome notation we did not make this dependence explicit. Still, at times, we use Wi(Si)38

(resp., Ui(Si)) to denote the distribution Wi (resp., Ui) that is de�ned as above based on the setSi. We use the notation r D to denote that r is picked according to distribution D. In ouranalysis, we will show that, for a (su�ciently large) random Si, the distributions Ui and Wiare statistically close, where as usual the statistical di�erence between Ui and Wi is de�ned asmaxT�
 fPrri Ui [ri 2 T]� Prri Wi [ri 2 T]g. We will then show that a modi�ed veri�er W 0S1;S2that picks r1 and r2 independently from the distributions U1 and U2, respectively, has low soundnesserror. We stress that in contrast to W 0S1;S2 , the veri�er WS1;S2 selects r1 and r2 (from distributionsW1 and W2) such that the r1 and r2 are not independent (but rather depend on the same q 2 Q).Still, as in the proof of Proposition 4.9, the Decomposition Property (of Section 4.2.1) allows forthe analysis to go through.The above informal description is made rigorous by considering the following bad events, overthe probability space de�ned by the random choices of S1 and S2:BE1: The statistical di�erence between U1(S1) and W1(S1) is more than �.BE2: The statistical di�erence between U2(S2) and W2(S2) is more than �.BE3: There exist P and P1 such that for Q0 = Q0P (as in Decomposition Property) the conditionof Eq. (22) is strongly violated when selecting r1 according to U1(S1) (rather than uniformlyin
); that is, Prr1 U1(S1) �(q(r1) 2 Q0) ^ V1(r1; P (q(r1)); P1(q1(r1)))� > �:BE4: There exist P and P2 such that for Q0 = Q0P the condition of Eq. (23) is strongly violatedwhen selecting r2 according to U2(S2); that is,Prr2 U2(S2) �(q(r2) 2 Q0) ^ V2(r2; P (q(r2)); P2(q2(r1)))� > �:Below we will bound the probability of these bad events, when S1 and S2 are chosen at random.But �rst we show that if none of the bad events occur, then the veri�er WS1;S2 has small soundnesserror.Claim 4.11.1 If for sets S1 and S2 none of the four bad event occurs then the soundness error ofWS1;S2 is at most 4�.Proof: Let (r1; r2) WS1;S2 denote a random choice of the pair (r1; r2) as chosen by the veri�erWS1;S2 . Fix proofs P; P1; P2 and let Q0 = Q0P (and V1; V2) be as in the Decomposition Property.Then,Pr(r1;r2) WS1;S2 [V1(r1; P (q(r1)); P1(q1(r1))) ^ V2(r2; P (q(r2)); P2(q2(r2)))]� Prr1 W1(S1) [(q(r1) 2 Q0) ^ V1(r1; P (q(r1)); P1(q1(r1)))]+Prr2 W2(S2) [(q(r2) 62 Q0) ^ V2(r2; P (q(r2)); P2(q2(r2)))]� Prr1 U1(S1) [(q(r1) 2 Q0) ^ V1(r1; P (q(r1)); P1(q1(r1)))] + � [:BE1 and :BE2]+Prr2 U2(S2) [(q(r2) 62 Q0) ^ V2(r2; P (q(r2)); P2(q2(r2)))] + �� 2�+ 2� [:BE3 and :BE4]where the �rst inequality uses manipulation as in the proof of Proposition 4.9 (cf. Eq. (25)).We now turn to upper-bound the probability of the bad events.39

Claim 4.11.2 The probability of event BE1 (resp., BE2) is at most 1=24.Proof: To estimate the statistical di�erence between Ui = Ui(Si) and Wi = Wi(Si), we take acloser look at the distribution Ui. We note that sampling ri according to Ui is equivalent to selectingr0i Ui (i.e., r0i is selected uniformly in fr : qi(r)2Sig), setting q = q(r0i), and picking ri uniformlyfrom the set fr : (q(r)= q) ^ (qi(r)2Si)g =
(i)q;Si . In contrast, in the distribution Wi, the outputis selected uniformly in
(i)q;Si , where q is selected uniformly in Q. Thus, the statistical di�erencebetween Ui and Wi is due to the statistical di�erence in the distributions induced on q = q(ri),which in turn equals12 �Xq2Q ����� Prri Ui(Si)[q(ri) = q]� Prri Wi(Si)[q(ri) = q]����� = 12 �Xq2Q ����� Prri Ui(Si)[q(ri) = q]� 1jQj ����� :To bound this sum, we bound the contribution of each of its terms (for a random Si of size N).Fixing an arbitrary q 2 Q, we consider the random variable�q = �q(Si) def= Prr Ui(Si)[q(r) = q] = jfr : (q(r)=q) ^ (qi(r)2Si)gjjfr : qi(r)2Sigj(as a function of the random choice of Si of size N). Using the Uniformity Property, we inferthat the denumenator equals N � j
jjQij , and the expected value of the numerator equals jfr : q(r)=qgj � NjQij = j
jjQj � NjQij . Thus, E[�q] = 1=jQj. A simple application of Cherno� Bound (see Footnote 2)shows that, with probability at least exp(�
(�2 � N=jQj)), this random variable is (1 � �)=jQj.Thus, for N = c � jQj log jQj (where c = O(1=�2)), the probability that Prr Ui [q(r) = q] is not in[(1 � �)=jQj] is at most jQj�1=24. By the union bound, the probability that such a q exists is atmost 1=24, and if no such q exists then the statistical di�erence is bounded by at most �.Claim 4.11.3 The probability of event BE3 (resp., BE4) is at most 1=24.Proof: We will bound the probability of the event BE3. The analysis for BE4 is identical. Bothproofs are similar to the proof of Lemma 4.3 (i.e., projection in the two-prover case). Indeed, ourinterest in the Decomposition Property is motivated by the fact that it allows for a reduction ofthe three-prover case to the two-prover case. This reduction culminates in the current proof, whichrefer only to the communication with two provers (i.e., P and Pi).Fix P and let Q0 = Q0P be the set as given by the Decomposition Property (of Section 4.2.1).We will show that for a randomly selected subset S1 � Q1 of size N the following holdsPrS1 "9P1 s.t. Prr1 U1(S1) �(q(r1) 2 Q0) ^ V1(r1; P (q(r1)); P1(q1(r1)))� � 2�# � 124 � jAj�jQj (26)The claim will follow by a union bound over the jAjjQj possible choices of P .Note that, for each �xed P (and thus �xed Q0 = Q0P), there is an optimal prover P1 = P �1 thatmaximizes the quantity �0q1 def= Prr2
jq1(r)=q1 [(q(r) 2 Q0)^V1(r; P (q(r)); P1(q1))], for every q1 2 Q1.Furthermore, by (the Uniformity Property and) the Decomposition Property (see Eq. (22)), it holdsthat Eq12Q1 [�0q1] = Er2
[�0q1(r)] < �=2. For simplicity, assume that the expectation is at least �=3(by possibly augmenting the event that de�nes �0q1). Applying Cherno� Bound (see Footnote 2), weget that the probability that when we pick N elements from Q1, uniformly and independently, their40

average is more than � (or even more than twice the expectation) is at most exp(�
(�N)). Thusif N � c � jQj log jAj for some large enough constant c, then this probability is at most 124 jAj�jQj asclaimed in Eq. (26). The current claim follows.Combining Claims 4.11.2 and 4.11.3, we conclude that for random sets S1 and S2, with proba-bility at most 4=24 a bad event occurs; that is, with probability at least 5=6 none of the four BEi'soccurs. Invoking Claims 4.11.1, the lemma follows.4.2.4 The 3-prover MIP: Stage IIIHaving reduced the sizes of the three prover strategies, it is straightforward to reduce the amountof randomness used by the veri�er. Below we describe a reduced randomness veri�er WS1;S2;T ,where Si � Qi for i = 1; 2, and T �
.Construction 4.12 (The �nal veri�er WS1;S2;T): For sets S1 � Q1 and S2 � Q2, andT � f(r1; r2) : (q(r1) = q(r2)) ^ (qi(ri) 2 Si;8i 2 f1; 2g)g; (27)we de�ne the (S1; S2; T)-restricted veri�er, denoted WS1;S2, as follows: Again, on input x, let V = Vx,V1 and V2 be as given in Construction 4.10.1. Pick (r1; r2) 2 T uniformly at random.2. Make queries q = q(r1) = q(r2), q1 = q1(r1) and q2 = q2(r2), to P , P1 and P2, respectively.Let a = P (q), a1 = P1(q1) and a2 = P2(q2) denote the answers received.3. Accept if and only if V1(r1; a; a1) ^ V2(r2; a; a2).Here, again, we use sampleability of subsets of the veri�er coins, It is obvious that the veri�er useslog2 jT j random bits, and that perfect completeness is preserved (for any S1; S2 and T). It is alsoeasy to see that a su�ciently large random set T yields WS1;S2;T of low soundness error; that is:Lemma 4.13 Let s def= O(jQjmaxflog jAj; log jQjg) and t def= O(jQj(log jAj) + s � ((log jA1j) +(log jA2j)). Suppose that S1 and S2 are uniformly selected s-subsets of Q1 and Q2, and that Tis a uniformly selected t-subset satisfying Eq. (27). Then, with probability at least 23 , the veri�erWS1;S2;T has soundness error at most 5�.Proof: By Lemma 4.11, with probability 5=6, the veri�er WS1;S2 has soundness error at most 4�.Using the Uniformity Property, WS1;S2 can be seen as selecting (r1; r2) uniformly in the set on ther.h.s of Eq. (27), and setting q = q(r1) = q(r2). It is quite straightforward10 to show that for arandom T , with probability at least 5=6, the resulting WS1;S2;T has soundness error at most 5�.The lemma follows.Using Lemma 4.13, we now prove Theorem 4.6.Proof [of Theorem 4.6]: Fix �0 = �=5. Let V be the 3-prover veri�er for SAT as obtainedfrom Theorem A.5. In particular, V has perfect completeness and soundness �0. The size of the10The proof proceeds along the outline provided in Footnote 9 (to the proof of Lemma 4.3). First, �xing anychoice of strategies P : Q ! A, P1 : S1 ! A1 and P2 : S2 ! A2, we consider the event that WS1;S2;T acceptswith probability greater than 5� (when interacting with these strategies). Using Cherno� Bound (again), we see thatfor a random T this event occurs with probability at most exp(�
(�t)). Taking the union bound over all possiblestrategies (i.e., choices of P , P1 and P2), we infer that WS1;S2;T fails with respect to some choice of strategies withprobability at most jAjjQjjA1jjS1jjA2jjS2j � exp(�
(�t)) < 1=6 (by the setting of t).41

smallest prover is `0(n) = m(n)O(m(n)) � n1+O(1=m(n)), the answer length is bounded by a0(n) =m(n)O(1) � nO(1=m(n)), and V satis�es the properties listed in Section 4.2.1.For sets S1; S2; T , let WS1;S2;T be the veri�er obtained by modifying V as described in thecurrent section (see Constructions 4.8, 4.10 and 4.12). Consider the promise problem � whoseinstances are tuples (�; S1; S2; T) where an instance is a yes-instance if WS1;S2;T accepts � withprobability one, and the instance is a no-instance ifWS1;S2;T accepts with probability at most �. Wenote that an instance of � of size N > n has a 3-prover proof system using at most log2N randomcoins, having answer length a0(n) < a0(N), perfect completeness and soundness error 7�0 = � (sinceWS1;S2;T is such a veri�er).Now, consider the reduction that maps an instance � (of length n) of SAT to the instance(�; S1; S2; T), where S1 � Q1 and S2 � Q2 are random subsets of queries of V of size s0(n) =`0(n) � a0(n) and T is a random subset of size t0(n) = s0(n) � a0(n) of the random strings used by theveri�er WS1;S2 (see Constructions 4.10 and 4.12). This reduction always maps satis�able instancesof SAT to yes-instances of � and, by Lemma 4.13, with probability at least 23 , it maps unsatis�ableinstances of SAT to no-instances of �. Finally, note thatj(�; S1; S2; T)j = ~O(t0(n)) = ~O(`0(n) � a0(n)2) = m(n)O(m(n)) � n1+O(1=m(n)) = `(n) :The theorem follows.4.3 Reducing the answer size and obtaining PCPsApplying state-of-the-art composition lemmas to the MIP constructed in Section 4.2 gives our �nalresults quite easily. In particular, we use the following lemmas.Lemma 4.14 (cf. [4] or [9, 31]): For every � > 0 and integer p, there exists � > 0 such that forevery r; a : Z+ ! Z+,MIP1;�[p; r; a] �MIP1;�[p+ 3; r +O(log a);poly(log a)]:Starting with the MIP of Theorem 4.6, we apply Lemma 4.14 repeatedly till the answer lengthsbecome poly(log log log n). Then, to terminate the recursion, we use the following result of [25].Lemma 4.15 [25, Lem. 2.6]: For every � > 0 and integer p, there exists > 0 such that for everyr; a : Z+ ! Z+, MIP1; [p; r; a] � PCP1; 12+�[r +O(2pa); p+ 7];where PCP1;s[r; q] denotes the set of promise problems having a PCP veri�er of perfect completeness,soundness error s, randomness complexity r and query complexity q.Recall that in case of PCP the query complexity is measured in bits. Combining the above lemmaswith the nearly-linear 3-prover systems obtained in Section 4.2, we obtain:Theorem 4.16 (Our main PCP result): For every � > 0, SAT reduces probabilistically, un-der n1+O((log log n)=plog n)-length preserving reductions to a promise problem � 2 PCP1; 12+�[(1 +O((log log n)=plog n)) � log n; 19]. Furthermore, the reduction runs in time `.
42

Proof: We start with Corollary 4.7 and apply Lemma 4.14 thrice, obtaining a 12-prover MIP systemwith answer lengths poly(log log log n). Speci�cally, we start with a 3-prover MIP of randomnesscomplexity r0(n) = log2 n+(log log n)�plog n and answer length a0(n) = exp(O(plog n)), and afteri iterations we get a (3+3i)-prover MIP of randomness complexity ri(n) = ri�1(n)+O(log ai�1(n))and answer length ai(n) = poly(log ai�1(n)). Thus, ai(n) = poly(log(i) n) and ri(n) = r0(n) +O(log a0(n)) = log2 n+O((log log n) � plog n).Next, applying Lemma 4.15 gives the desired 19-query PCP. Speci�cally, this (12 + 7)-queryPCP has randomness complexity r3(n)+poly(2a3(n)) < r3(n)+2(log log n)=2, which is upper-boundedby log2 n + O((log log n) � plog n). The furthermore clause follows by recalling that Corollary 4.7(which is merely an instantiation of Theorem 4.6) is proven using a reduction that appends `(n)random bits to the original instance (see proof of Theorem 4.6).Corollary: Theorem 2.5. Theorem 4.16 implies Theorem 2.5, because the (e�ective) length ofthe oracle used by a PCP[r; q] system is at most 2r � q.5 Shorter Locally Testable Codes from PCPsIn this section we strengthen the results of Section 3 by presenting locally-testable binary codesof nearly-linear length (i.e., n = k1+o(1) rather than n = k1+�, for any constant � > 0, as inSection 3.4). We do so by starting with the random projection of the FS/RS-code from Section 3.2,and applying PCP techniques to reduce the alphabet size (rather than following the paradigm ofconcatenated codes as done in the rest of Section 3). Speci�cally, in addition to encoding individualalphabet symbols via codewords of a binary code, we also augment the new codewords with smallPCPs that allow to emulate the local-tests of the original codeword tester. Using an o�-the-shelvePCP (e.g., the one of [2]) this yields a weak locally testable code (i.e., one satisfying De�nition 2.1);for details see Section 5.1. As we explain in Section 5.2, using an o�-the-shelve PCP fails to providea locally testable code (i.e., one satisfying De�nition 2.2), and some modi�cations are required inorder to redeem this state of a�airs (as well as in order to obtain a linear code). Most of thecurrent section is devoted to implementing these modi�cations. Still, the easy derivation of theweak testability result (in Section 5.1) serves as a good warm-up.Organization: After presenting (in Section 5.1) the weak codeword testing result, and discussing(in Section 5.2) the di�culties encountered when trying to obtain a strong codeword testing result,we turn to establish the latter (i.e., prove Theorem 2.3). We start by developing (in Section 5.3) aframework for PCPs with extra properties that are useful to our goal of using these PCPs in theconstruction of locally testable codes. We call the reader's attention to x5.3.1, which provides awider perspective that may be of independent interest. We then construct such PCPs (by modifyingknown constructions in Section 5.4), and combine all the ingredients to establish Theorem 2.3 (inSection 5.5). Finally, in Section 5.6, we consider the actual randomness and query complexities ofcodeword testers, and show that logarithmic randomness and three queries su�ces (for establishingour main results).5.1 Easy derivation of a weak testability resultWe start with the locally-testable code CR : �k ! �n, where n = jRj, presented in Section 3.2.Recall that codewords in CR assigns to each line ` 2 R a univariate polynomial of low-degree(represented as a �-symbol, where � = F d+1). We refer to the codeword test of Construction 3.4,43

which works by selecting a pair of intersecting lines and checking that the two polynomials assignedto these lines agree on the value of their point of intersection. We wish to convert CR, which is acode over a large alphabet, into to a binary code that is locally-testable and preserves the distanceand rate of CR.The basic idea is to augment CR with small PCPs, each corresponding to a pair of intersectinglines that can be selected by the CR-tester, such that each PCP asserts that the corresponding twopolynomials (i.e., the two polynomials residing at the locations associated with these two lines)agree on the value of the point of intersection. Each such PCP has length polynomial in the lengthof its assertion, which in turn has length 2 � log j�j, and can be veri�ed using a constant numberof queries (see, e.g., [2]). Assuming that R covers all points almost uniformly (see Claim 3.5.1),we note that the number of pair of intersecting lines that can be selected by the CR-tester (ofConstruction 3.4) is approximately jRj � jF j, where jF j = O(log j�j). Thus, the total length of theproofs that we need to add to the code is at most a poly(log j�j) factor larger than n, which is �neunder an adequate choice of parameters (discussed below). Essentially, the tester for the new codewill emulate the old codeword tester by invoking the PCP veri�er, which in turn accesses only aconstant number of bits in the adequate proof.The main problem with the above description is that the PCP veri�er needs to be given (explic-itly) the assertion it veri�es, whereas we are only willing to read a constant number of bits (bothof the assertion and the corresponding proof). Still, all standard PCP constructs (e.g., [19, 2])can be extended to yield similar results in case one is charged for oracle access to both the inputand the proof-oracle, provided that the input is presented in a suitable error-correcting format.Actually, this property is stated explicitly in [5]11, and is always referred to when using the PCPas an \inner-veri�er" (in the setting of PCP composition). Furthermore, these (inner) PCPs canalso handle an input that is presented by a constant number of encoding of substrings that coverthe entire input. Indeed, we are using the PCP here as an inner-veri�er (but compose it with acodeword-tester rather than with an outer-veri�er). Lastly, we should replace each symbol in theCR-codeword by its encoding under a suitable (for the inner-veri�er) code C0 : �! f0; 1gpoly(log j�j)of linear distance. This allows to verify that two substrings provide the encoding of two (low-degree)polynomials that agree on a certain point, by making a constant number of (bit) queries. (Needlessto say, it is only guaranteed that the veri�er rejects with high probability when the two substringsare far from having the desired property, which su�ces for our purposes.)A last issue regarding the code construction is that we should apply a suitable number ofrepetitions to the resulting n-sequence (of C0-codewords) such that its length dominates the lengthof the added PCPs (denoted L). Recall that the number of PCPs equals the size of the (\e�ective")probability space of the codeword tester of CR (given in Construction 3.4)12, which in turn equalsjRj � jF j = jF j � n. The size of each proof is polynomial in the length of the assertion, which inturn consists of two C0-codewords, each of length n0 def= poly(log j�j), where � = F d+1 and d < jF j.Thus, the total length of the added PCPs is approximatelyL def= (jF j � n) � poly(2n0) = poly(jF j) � n = n1+O(1=m); (28)because n = jRj > jF jm and log j�j = (d+ 1) log jF j = ~O(jF j) (using d < jF j). Since the length of11In fact, the presentation of Babai et al. [5] is in these terms, as captured by their notion of a holographic proof.We mention that the recently introduced notion of a PCP of Proximity [10] (a.k.a Assignment Tester [17]) generalizesholographic proofs by omitting the reference to the encoding (of inputs via a good error-correcting code).12Recall that this tester uniformly selects a point in Fm and a line in R going through this point. The e�ectiveprobability (relevant for the following construction) is the number of possible choices of such (point and line) pairs,which equals jRj � jF j. 44

each PCP is greater than n0, it follows that L is bigger than n � n0, and so repetitions are indeedneeded to make the (concatenated) code dominate the length of the �nal code. On the other hand,L is not too large (i.e., L = n1+O(1=m)), and so the repetition will not e�ect the rate of the code bytoo much. This yield the following construction.Construction 5.1 For a suitable number of repetitions t, the resulting code maps x = (x1; :::; xk) 2�k to ((C0(y1); ::::; C0(yn))t; �1; ::::; �r), where (y1; ::::; yn) = CR(x1; :::; xk) and �i is a PCP (to befurther discussed) that refers to the ith possible choice of a pair of lines examined by the CR-tester, and r denotes the number of such possible choices. Speci�cally, we set t = !(L=nn0); e.g.,t = (L=nn0) � log n. As for the �i's they are PCPs that establish that the corresponding C0-codewordsin the �rst block of nn0 bits in the new codeword encode �-symbols that would have been acceptedby the codeword test of CR. In particular, these PCPs establish that the corresponding n0-bit longstrings are C0-codewords. Indeed, for i = (x; `), the proof �i refers to the lines `x and `, where `xis the canonical line of x 2 Fm and ` is a random line (in R) that passes through x (i.e., one ofapproximately jRj=jF jm�1 possibilities). This proof (i.e., �i) asserts that the two n0-bit long stringsin locations corresponding to `x and ` are C0-codewords that encode two polynomials, denoted hx andh, that satisfy hx(�) = h(�), where � and � are determined by i = (x; `) such that `x(�) = `(�) = x.In the sequel, we will identify the index of these PCPs with the corresponding pair of lines (i.e.,i � (`x; `)).By our choice of t, the distance of the new code (of Construction 5.1) is determined by the distanceof CR (and the distance of C0). The block-length of the new code is N def= (1 + log n) � L, where(by Eq. (28)) L = n1+O(1=m). Using d = mm, we have m > (plog k)=(log log k) (by Eq. (2)).Furthermore, by Eq. (3), we have n = exp(~O(plog k)) � k and log j�j = exp(~O(plog k)). Thus, wehave N = ~O(L) = n1+O(1=m). Note thatn1+O(1=m) = (exp(~O(plog k)) � k)1+O((log log k)=(plog k)) = exp(~O(plog k)) � k:Thus, the code of Construction 5.1 maps K = k � log2 j�j > k bits to N -bit long codewords, whereN = exp(~O(plogK)) �K.The tester for the code of Construction 5.1 emulates the testing of CR by inspecting the PCPthat refers to the selected pair of lines. In addition, it also tests (at random) that the �rst t blocks(of length nn0 each) are identical. A speci�c implementation of this scheme follows.Construction 5.2 (weak codeword tester for Construction 5.1): When testing w =(w1; ::::; wtn; wtn+1; :::; wtn+r), where wi : [n0] ! f0; 1g for i = 1; :::; tn and wi : [L=r] ! f0; 1gfor i = tn+ 1; :::; tn + r, proceed as follows.1. Invoke the CR-tester in order to select a random pair of intersecting lines (`1; `2). That is,(`1; `2) is distributed as in Step 1 of Construction 3.4.2. Invoke the PCP-veri�er providing it with oracle access to the input-oracles w`1 and w`2 andthe proof-oracle wtn+i, where i � (`1; `2). If the veri�er reject then halt and reject, otherwisecontinue.3. Check that wjn+` = w`, for uniformly selected j 2 [t�1] and ` 2 [n], by comparing wjn+`(i) =w`(i) for a randomly selected i 2 [n0]. If equality holds then accept.45

Clearly, Construction 5.2 makes a constant number of queries and accepts every codeword ofConstruction 5.1. We thus turn to analyze this test's performance on non-codewords. The keypoint in the following (relatively easy) analysis is that if a sequence is far from the new codethen most of the distance must be due to the tnn0-bit long pre�x of the N -bit sequence, becauseL = N � tnn0 < N= log n. That is, if w = (w1; ::::; wtn; wtn+1; :::; wtn+r) is �-far from the code,then (w1; ::::; wtn) must be �0-far from the code (denoted E0 in Lemma 5.3) that consists of thetnn0-bit long pre�x of the code described in Construction 5.1, where �0 > � � (1= log n). Thus,for any constant � > o(1) or even any � > 2= log n, we may focus on analyzing the case that thetnn0-bit long pre�x of w is �=2-far from the residual code (obtained by ignoring the PCP part ofConstruction 5.1). We undertake this task next.Lemma 5.3 Let E0 be the code obtained by projecting the code described in Construction 5.1 onthe �rst tnn0 coordinates; that is, E0(x) is the tnn0-bit long pre�x of the encoding of x by Construc-tion 5.1. Suppose that w0 = (w1; ::::; wtn) 2 (f0; 1gn0)tn is �0-far from E0. Then, when given oracleaccess to (w1; ::::; wtn; wtn+1; :::; wtn+r), the tester of Construction 5.2 rejects with probability
(�0),regardless of the values of wtn+1; :::; wtn+r 2 f0; 1gL=r.It follows that if w is �-far from the code of Construction 5.1, then w is rejected by Construction 5.2with probability
(� � (1= log n)).Proof: Let us denote by � the average (relative) distance of (w1; :::; wn) from (wjn+1; :::; wjn+1),for a random j 2 [t � 1]. Let E be the code obtained by taking the �rst nn0 bits of the code E0;that is, the bits corresponding to (w1; ::::; wn). We observe (see Proposition 5.5 at the end of thissection) that either � � �0=2 or (w1; ::::; wn) is (�0=2)-far from the code E. Noting that the �rst caseis detected with probability � by the (\repetition") test of Step 3, we focus on the second case andconsider what happens when invoking the PCP veri�er.Bearing in mind that (w1; ::::; wn) is (�0=2)-far from E, let us denote by �i the (relative) distanceof wi from C0. We distinguish two cases, regarding the average of the �i's:Case 1: If Pni=1 �i=n > �0=4 then the PCP veri�er will reject with probability
(�0). The reasonis that the second query of the CR-tester (i.e., the random line passing through a randompoint) is almost uniformly distributed, and so the PCP veri�er will be invoked on a pair ofinput-oracles such that on the average the second input-oracle is (�0=8)-far from the code C0,where the average is taken over this (slightly skewed) choice of the second line (which is thechoice used in Construction 5.2). In such a case, the PCP veri�er will reject with probability
(�0=8).Case 2: If Pni=1 �i=n � �0=4 then we consider the C0-codewords, denoted by ci's, that are closestto these wi's. In the current case, (c1; ::::; cn) is (�0=4)-far from E, because (w1; ::::; wn) is(�0=2)-far from E. Let di be the C0-decoding of ci (i.e., ci = C0(di)). Then, (d1; :::; dn) is(�0=4)-far from the code CR, and would have been rejected by the CR-tester with probabilityp def=
(�0=4).Let us call a pair of lines (`1; `2) good if the CR-tester would have rejected the values d`1 andd`2 . By the above, with probability p, the CR-tester selects a good pair of lines. On the otherhand, for a good pair of lines (`1; `2), when given access to the input-oracles c`1 and c`2 (andany proof-oracle), the PCP veri�er rejects with constant probability. We need, however, toconsider what happens when the PCP veri�er is given access to the input-oracles w`1 andw`2 (and the proof-oracle wtn+(`1;`2)), when (`1; `2) is a good pair. In the rest of this proof46

we show that, for a good (`1; `2), the PCP veri�er rejects the input-oracles w`1 and w`2 withconstant probability. This happens regardless of whether or not (w`1 ; w`2) is close to (c`1 ; c`2).Letting �C0 denote the constant relative distance of C0, we consider two sub-cases:1. If both w`i 's are (�C0=4)-close to the corresponding c`i 's then (w`1 ; w`2) is (�C0=4)-far fromany pair of acceptable strings, and the PCP veri�er rejects the input-oracles w`1 and w`2with constant probability (i.e.,
(�C0=4) =
(1)).The reason that (w`1 ; w`2) is (�C0=4)-far from any acceptable pair of strings is due tothe fact that the latter are pairs of codewords and the code has relative distance �C0 .Speci�cally, if (c01; c02) is a pair of acceptable codewords, then (c01; c02) 6= (c`1 ; c`2) and�((w`1 ; w`2); (c01; c02)) � �((c`1 ; c`2); (c01; c02))��((w`1 ; w`2); (c`1 ; c`2))� �C0 � n0 � 2 � �C04 � n0which equals (�C0=4) � 2n0.2. Otherwise (i.e., some w`i is (�C0=4)-far from the corresponding c`i , which by de�nition isthe codeword closest to w`i), one of the input-oracles is �C0=4-far from being a codeword,and again the PCP veri�er rejects with constant probability.We conclude that, for a good pair (`1; `2), when given access to the input-oracles w`1 and w`2 ,the PCP veri�er rejects with constant probability (regardless of the contents of the proof-oracle). Recalling that a good pair is selected with probability p =
(�0), it follows that inthis case (i.e., Case 2) the PCP veri�er rejects with probability
(�0).The lemma follows.Combining all the above, we obtain:Theorem 5.4 (weak version of Theorem 2.3): For in�nitely many K's, there exist weak locally-testable binary codes of length N = exp(~O(plogK)) �K = K1+o(1) and constant relative distance.In contrast to Theorem 2.3, the codes asserted in Theorem 5.4 only have weak codeword tests (i.e.,tests satisfying De�nition 2.1). Furthermore, these codes are not necessarily linear.Digression on distances in repetition codes. In the proof of Lemma 5.3, we noted abovethat the distance of a string from a code obtained by repeating some basic code can be attributed(in half) either to the distance of the �rst block from the basic code or to the distance of theother blocks from the �rst block. Here we state a more general result that suggests that, for anyprobability distribution (p1; :::; pt), we may test a \repetition of some basic code" by selecting theith block with probability pi and checking whether this block is in the basic code and whether thisblock equals a uniformly selected block.Proposition 5.5 Let
 be a �nite set and � :
 �
 ! R be any non-negative function thatsatis�es the triangle inequality (i.e., �(x; z) � �(x; y) + �(y; z) 8x; y; z 2
). For any S �
,de�ne �S(x) def= miny2Sf�(x; y)g. Fixing any t, de�ne �((x1; :::; xt); (y1; :::; yt)) = Pti=1 �(xi; yi)=tand R(S) = fxt : x 2 Sg. Also, for any T �
t and x 2
t, let �T (x) def= miny2T f�(x; y)g. Then,for any probability distribution (p1; :::; pt) on [t], and for every x = (x1; :::; xt) 2
t, it holds thatXi2[t] pi � �S(xi) + Xi2[t] pi �Xj2[t] �(xj ; xi)t � �R(S)(x):47

Proof: We �rst establish the claim for the special case in which p1 = 1 and p2 = � � � = pt = 0. Wedo so by using the triangle inequality (and the de�nitions of � and R(S)), and observing that�R(S)(x) � �(x; xt1) + �R(S)(xt1)= Xj2[t] �(xj ; x1)t + �S(x1):Clearly, this generalizes to any i (i.e., using xi instead of x1), and taking the weighted average(weighted by the general pi's), the proposition follows.5.2 Problems with an easy derivation of the strong testability resultBefore turning to the actual constructions, we explain why merely plugging-in a standard (inner-veri�er) PCP will not work (for strong codeword testability). We start with the most severeproblem, and then turn to additional ones.Non-canonical encoding: As discussed in Section 1.1, the soundness property of standard PCPsdoes not guarantee that only the \canonical" proof (obtained by the designated construction) isaccepted with high probability. The standard soundness property only guarantees that false as-sertions are rejected with high probability (no matter which proof-oracle is used). Furthermore,typical PCPs tend to accept also non-canonical proofs. This is due to a gap between the canonicaloracles (used in the completeness condition) that encodes information as polynomials of speci�cindividual degree, and the veri�cation procedure that only refers to the total degree of the polyno-mial.13 This problem was avoided in Section 5.1 by discarding non-codewords that are close to thecode and making the PCPs themselves a small part of the codeword. Thus, the non-canonical PCPsby themselves could not make the sequence too far from the code, and so nothing is required whenwe use the weak de�nition of codeword testing. However, when we seek to achieve the strongerde�nition, this problem becomes relevant (and cannot be avoided).An additional potential problem is that, per de�nition, PCPs do not necessarily provide \strongsoundness" (i.e., reject a proof that is �-far from being correct with probability
(�)). Althoughsome known PCPs (e.g., [2]) have this added property, other (e.g., [26]) don't.Linearity: We wish the resulting code to be linear, and it is not clear whether this property holdswhen composing a linear code with a standard inner-veri�er. Since we start with an F -linear code(and an F -linear codeword test), there is hope that the proof-oracle added to the concatenatedcode will also be linear (over GF(2), provided that F is an extension �eld of GF(2)). Indeed, withsmall modi�cations of standard constructions, this is the case.Other technical problems: Other problems arise in translating some of the standard\complexity-theoretic tricks" that are used in all PCP constructions. For example, PCP con-structions are typically described in terms of a dense collection of input lengths (e.g., the inputlength must �t jHjm for some suitable sizes of jHj and m (i.e., m = �(jHj= log jHj)), and are13In basic constructions of codes, this is not a real problem because we can de�ne the code to be the collection of allpolynomials of some total degree as opposed to containing only polynomials satisfying some individual degree bound.However, when using such a code as the inner code in composition, we cannot adopt the latter solution becausewe only know how to construct adequate inner-veri�ers for inputs encoded as polynomials of individually-boundeddegree (rather than bounded total degree). 48

extended to arbitrary lengths by padding (of the input). In our context, such padding, dependingon how it is done, either permits multiple encodings (of the same information), or forces us tocheck for additional conditions on the input (e.g., that certain bits of the input are zeroes). Othercomplications arise when one attempts to deal with \auxiliary variables" that are introduced ina process analogous to the standard reduction of veri�cation of an arbitrary computation to thesatis�ability of a 3CNF expression.This forces us to re-work the entire PCP theory, while focusing on \strongly rejecting" non-canonical proofs and on obtaining \linear PCP oracles" when asked to verify homogeneous linearconditions on the input. By strongly rejecting non-canonical proofs, we mean that any stringshould be rejected with probability proportional to its distance from the canonical proof (which isindeed analogously to the de�nition of strong codeword tester). We comment that for the purposesof constructing short locally testable codes, it su�ces to construct veri�ers verifying systems ofhomogeneous linear equations and this is all we will do (although we could verify a�ne equationsequally easily). In what follows, whenever we refer to a linear system, we mean a conjunction ofhomogeneous linear constraints.5.3 Inner veri�ers for linear systems: De�nition and compositionWe use PCP techniques to transform linear locally testable codes over a large alphabet into locallytestable codes over a smaller alphabet. Speci�cally, we adapt the construction of inner-veri�erssuch that using them to test linear conditions on the input-oracles can be done while utilizing aproof-oracle that is obtained by a linear transformation of the input-oracles. Furthermore, the con-structions are adapted to overcome the other di�culties mentioned in Section 5.2 (most importantlythe issue of non-canonical proofs).The basic ingredient of our transformations is the notion of an inner veri�er for linear codes.Since the de�nition is quite technical, we consider it useful to start with a wider perspective onthe various ingredients of this de�nition. We consider this perspective, provided in x5.3.1, to beof independent interest. The actual de�nition of an inner veri�er for linear codes and its variouscomposition properties are presented in x5.3.2-5.3.4.5.3.1 A wider perspectiveTwo basic extensions of the standard de�nition of soundness (for PCP systems) were mentionedin Section 5.2: The �rst is a requirement to reject \non-canonical" proofs, where a canonical proofis one speci�ed in the completeness condition. The second extension is a requirement for strongsoundness, which means the rejection of non-valid proofs with probability that is proportional totheir distance from a valid proof. In the following de�nition we incorporate both requirements,while considering strings over arbitrary alphabets (rather than binary strings).De�nition 5.6 (Strong PCP): A standard veri�er, denoted V , is a probabilistic polynomial-timeoracle machine. On input x 2 ��, we only consider oracles of length `(jxj), where ` : N ! Nsatis�es `(n) � exp(poly(n)). A prover strategy, denoted P , is a function that maps yes-instancesto adequate proof-oracles. In particular, jP (x)j = `(jxj). We say that V is a strong PCP for thepromise problem � if it satis�es the following two conditions:� Completeness (w.r.t P): For every yes-instance x 2 �� (of �), on input x and access tooracle P (x), the veri�er always accepts x. That is, Pr[V P (x)(x) = 1] = 1.The string P (x) is called the canonical proof for x.49

� Strong soundness (w.r.t canonical proofs): For every x 2 �� and � 2 �`(jxj), the followingholds:1. If x is a no-instance (of �) then P (x) = �, and every � is said to be 1-far from �.2. If � is �-far from P (x) then, on input x and access to oracle �, the veri�er rejects withprobability
(�). That is, Pr[V �(x) 6= 1] =
(�(�; P (x)))=j�j, for every x and �.Standard soundness follows by combining the two parts of the strong soundness condition. Wecomment that strong soundness per se (i.e., with respect to any valid proof) can be de�ned by lettingP (x) be the set of all (\absolutely") valid proofs (i.e., P (x) = f� 2�`(jxj) : Pr[V �(x) = 1] = 1g).That is, strong soundness (w.r.t any valid proof) says that for any yes-instance x and every �2�`(jxj),the rejection probability of V �(x) = 1 is proportional to the distance of � from the set of all proofsthat are accepted with probability 1 (i.e., Pr[V �(x) = 1] =
(�x(�)), where �x(�) is the minimumof �(�; �0)=j�j taken over all �0 satisfying Pr[V �0(x) = 1] = 1, and �x(�) = 1 if no such proofexists (i.e., x is a no-instance)). It seems that, in the context of PCP, strong soundness w.r.t anyvalid proof is a more natural notion than strong soundness w.r.t canonical proofs.14 Things change,when one wishes to use PCP in the construction of locally testable codes. Strong soundness (w.r.tcanonical or arbitrary valid proofs) extends naturally to PCPs of Proximity (PCPP, as de�nedrecently in [10, 17]):De�nition 5.7 (Strong PCPP): A proximity veri�er, denoted V , is a probabilistic polynomial-timeoracle machine that is given access to two oracles, an input-oracle x : [n] ! � and a proof-oracle� : [`(n)] ! �, where n is V 's only explicitly given input, and ` is as in De�nition 5.6. A proverstrategy, denoted P , is de�ned as in De�nition 5.6. We say that V is a strong PCPP for the promiseproblem � if it satis�es the following two conditions:� Completeness (w.r.t P): For every yes-instance x 2 ��, on input 1jxj and access to theoracles x and P (x), the veri�er always accepts x. That is, Pr[V x;P (x)(1jxj) = 1] = 1. Again,P (x) is called the canonical proof for x.� Strong soundness (w.r.t canonical proofs): For every x 2 �� and � 2 �`(jxj), on input 1jxjand access to the oracles x and �, the veri�er rejects with probability
(�(x)), where�(x) def= minx0;�0 �max��(x; x0)jxj ; �(P (x); �0)`(jxj) �� (29)and, as in De�nition 5.6, for any no-instance x we de�ne P (x) = �, and say that any � is1-far from �. Alternatively, �(x) can be de�ned as the minimum of max(�(x;x0)jxj ; �(P (x);�0)`(jxj))taken over all yes-instances x0 and every �0.We mention that the above formulation bene�ts from [10, 17], which has appeared after the pre-liminary publication of the current work. In the current work, we follow the older tradition (rootedin [5]) of considering only the special case in which the yes-instances of � are encodings, under somegood error correcting code E, of yes-instances in some other set S. That is, the yes-instances of� are fE(x) : x 2 Sg, and the no-instances of � are all strings that are far from the yes-instances14Indeed, standard PCP constructions tend to satisfy strong soundness w.r.t any valid proof. Furthermore, someof the valid proofs correspond to the \encoding" of di�erent NP-witnesses, whereas others arise from the gap betweenindividual degree bound and total degree bound (discussed in Section 1.1 and 5.2).50

of �. (We stress that the notion of a PCPP (let alone De�nition 5.7) is not used in the rest of thiswork, except for a few clarifying comments.)The de�nition presented in x5.3.2 incorporates all the above themes, while adding two additionalthemes. Firstly, we refer to a situation (which arises naturally in proof composition a la [3, 2])in which the veri�er is given access to p > 1 input-oracles rather than to one. (These oracles aresupposed to contain the encoding of strings whose concatenation yields a yes-instance of anotherlanguage.) Secondly, we refer to PCPPs that check linear relations, while utilizing veri�ers thatonly conduct linear tests (on the retrieved oracle answers) and having canonical proofs that arelinear transformations of the (actual) input.5.3.2 The actual de�nitionOne basic ingredient of our constructions is the notion of an inner-veri�er for linear codes. Theseinner-veri�ers are actually strong PCPPs (as in De�nition 5.7) for assertions regarding linear con-ditions on the input-oracles. This means that their de�nition is quite complex: it refers to strongsoundness w.r.t canonical proofs as well as to a formalism regarding encoding of inputs. In addition,the following de�nition refers to a formalism for expressing (conjunctions of) linear conditions.The \linear inner PCP systems" de�ned below have quite a few parameters, where the mainones specify the �eld F , the number of input-oracles q and the set F b of possible symbols thatthey encode, and the number of queries p made by the inner veri�er and the set F a of possibleanswers to these queries. That is, each of the q input-oracles is supposed to encode an element ofF b as a sequence over F a, where typically a � b. Thus, an (F; (q; b) ! (p; a)) linear inner-PCPsystem is the main ingredient in a transformation of an F -linear code over an alphabet � = F bthat is testable by q queries, into an F -linear code (of a typically longer length) over an alphabet� = F a that is testable by p queries, where typically a � b but p > q. Informally, the inner-veri�er allows to emulate a local test in the given code over �, by providing an encoding (over�) of each symbol in the original codeword as well as auxiliary proofs (regarding the satis�abilityof homogeneous linear conditions) that can be veri�ed based on a constant number of queries.That is, given a locally testable code C0 : �K0 � [N0] ! �, we consider the mapping of x 2 �K0to (E(C0(x; 1)); :::; E(C0(x;N0))), where E : � ! �n is the aforementioned encoding. Then an(F; (q; b) ! (p; a)) inner-PCP system should allow to transform a q-query codeword tester of C0(which makes F -linear checks) into a p-query codeword tester of the code resulting from appendingadequate (inner-veri�er) proofs to the aforementioned mapping (i.e., the concatenated code of C0and E). In addition, we wish these auxiliary proofs to be obtained by F -linear transformations ofx. We start by presenting the basic syntax of such linear inner PCP systems, which depend ona formalism for expressing (conjunctions of) linear conditions. We observe that verifying that avector satis�es a conjunction of (homogeneous) linear conditions is equivalent to verifying that itlies in some linear subspace (i.e., the space of vectors that satisfy these conditions). For integerd and �eld F , we let LF;d denote the set of all linear subspaces of F d. We will represent such asubspace L 2 LF;d by a matrix M 2 F d�d such that L = fx 2 F d : Mx = ~0g. According toconvenience, we will sometimes say that a vector lies in L and sometimes say that it satis�es theconditions L.De�nition 5.8 (the mechanics of linear inner veri�cation): For a �eld F , positive integers q; b; p; aand � 2 (0; 1), an (F; (q; b)! (p; a); �)-linear inner system consists of a triple (E;P; V) such that1. E : F b ! (F a)n is an F -linear code of minimum distance at least �n over the alphabet F a.We call E the encoding function. 51

2. P : LF;qb � (F b)q ! (F a)` is called the proving function. For every L 2 LF;qb, the mappingx 7! P (L; x) is required to be F -linear.3. V is an oracle machine, called the veri�er, that gets as input L 2 LF;qb and (coins) ! 2f0; 1gr and has oracle access to q + 1 vectors over F a, denoted X1; : : : ;Xq : [n] ! F a andXq+1 : [`]! F a. That is, a query j 2 [n] to oracle i 2 [q] is answered by Xi(j), and a queryj 2 [`] to oracle q+1 is answered by Xq+1(j). It is required that V satis�es the following twoconditions:Query complexity: For every L 2 LF;qb and ! 2 f0; 1gr , machine V makes a total of exactly poracle calls to the oracles X1; : : : ;Xq+1.Linearity of verdict: For every L and !, the acceptance condition of V is a conjunction of F -linear constraints on the responses to the queries. That is, based on L and !, machineV determines some L0 2 LF;pa and accepts if and only if (�1; :::; �p) 2 L0, where �i isthe answer obtained for the jth query.The vectors X1; : : : ;Xq are called the input-oracles and the vector Xq+1 is called the proof-oracle.Such a system is said to use r coins, encodings of length n and proofs of length `.Indeed, the requirement that V makes exactly p queries (rather than at most p queries) is made fortechnical convenience (and can be easily met by making dummy queries if necessary). De�nition 5.8makes no reference to the quality of the decisions made by the veri�er. This is the subject of thenext de�nition.De�nition 5.9 (linear inner veri�cation { perfect completeness and strong soundness): A system(E;P; V) as in De�nition 5.8 is called -good if it satis�es the following two conditions:Completeness: If the �rst q oracles encode a q-tuple of vectors over F b that satis�es L and ifXq+1 = P (L; x1; : : : ; xq) then V always accepts.That is, for every x1; : : : ; xq 2 F b and L 2 LF;qb such that (x1; : : : ; xq) 2 L, and for every! 2 f0; 1gr, it holds that V E(x1);:::;E(xq);P (L;x1;:::;xq)(L;!) = 1.Strong Soundness: If the �rst q oracles are far from encoding any q-tuple of vectors over F b thatsatis�es L then V rejects with signi�cant probability, no matter which Xq+1 is used. Fur-thermore, if the �rst q oracles are close to encoding some q-tuple that satis�es L but Xq+1is far from the corresponding unique proof determined by P then V rejects with signi�cantprobability. Actually, in both cases, we require that the rejection probability be proportional tothe relevant relative distance, where is the constant of proportionality.That is, for every L 2 LF;qb, every X1; : : : ;Xq : [n]! F a and Xq+1 : [`]! F a, it holds thatPr![V X1;:::;Xq ;Xq+1(L;!) 6= 1] � � �L(X1; : : : ;Xq;Xq+1)where for X = (X1; : : : ;Xq;Xq+1),�L(X) = min(x1;:::;xq)2L(max maxi2[q] ��(Xi; E(xi))gn � ; �(Xq+1; P (L; x1; : : : ; xq))` !) (30)The quantity �L(X1; : : : ;Xq;Xq+1) will be called the deviation of (X1; : : : ;Xq;Xq+1).52

In such a case we say that (E;P; V) is an (F; (q; b)! (p; a); �;)-linear inner proof system, abbrevi-ated as (F; (q; b)! (p; a); �;)-LIPS.We comment that there is a redundancy in the linearity requirements made in De�nition 5.8.Speci�cally, we have required E, P and V (or rather its acceptance condition) to be F -linear.However, under the completeness and soundness conditions of De�nition 5.9, the linearity of E andV implies the linearity of P , and the linearity of E and P implies without loss of generality thelinearity of V .15Typically, we aim at having n; ` and 2r be small functions of b (i.e., polynomial or even almost-linear in b), whereas p may grow as a function of q (which is typically a constant). Note thatDe�nition 5.9 is designed to suit our applications. Firstly, the strong notion of soundness, whichrefers also to \non-canonical" proofs of valid statements, �ts our aim of obtaining a code that islocally testable (because it guarantees rejection of sequences that are not obtained by the transfor-mation induced by (the encoding function and) the proving function). Indeed, this augmentationof soundness is non-standard (and arguably even unnatural) in the context of PCP. Secondly, thestrong notion of soundness allows also to reject with adequate probability inputs that are close tothe code (or alleged proofs that are close to the canonical ones), and thus support the strong de�-nition of codeword testing (i.e., De�nition 2.2). Finally, De�nition 5.9 only handles the veri�cationof linear conditions, and does so while using proofs that are linear transformation of the input.Indeed, this �ts our aim of transforming F -linear codes over a large alphabet (i.e., the alphabetF b) to F -linear codes over a smaller alphabet (i.e., F a).5.3.3 Obtaining locally testable codesThe utility of linear inner proof systems (LIPSes) in constructing locally-testable codes is demon-strated by two of the following results (i.e., Proposition 5.10 and Theorem 5.13). In Proposition 5.10we show that any LIPS yields a locally-testable code, where the distance is provided by the encod-ing function of the LIPS. In Theorem 5.13 we compose a locally testable code over a large alphabetwith a LIPS to obtain a locally testable code over a smaller alphabet. Proposition 5.10 merelyserves as a warm-up towards the Theorem 5.13, which is the result actually used in the rest of ourwork.To simplify the exposition, we are going to con�ne ourselves to (�; �; �;)-LIPSes with � 1.Indeed, for any 0 < , any (�; �; �;)-LIPS constitute a (� � � ; 0)-LIPS. Furthermore, this is typicallythe case anyhow (because the deviation parameter may equal 1, or at least be very close to 1).Proposition 5.10 Suppose that a < b divides b, and 2 (0; 1]. Then an (F; (1; b) ! (p; a); �;)-LIPS implies the existence of an F -linear locally-testable code of relative distance at least �=2,over the alphabet � = F a, mapping F b = �b=a to �M for M < 2(n + `), where n and ` arethe corresponding lengths of the encoding and the proof used by the LIPS. Speci�cally, the code istestable with p queries, and the tester rejects a word that is �-far from the code with probability at15To see that the linearity of E and V implies the linearity of P , note that the combination of perfect completenessand strong soundness means that the set S def= f(E(x1); : : : ; E(xq); P (L; x1; : : : ; xq)) : (x1; ::; xq) 2 Lg equals the setof q+1-tuples (X1; :::; Xq; Xq+1) that pass all possible checks of V . Since all the latter checks are F -linear, it followsthat the set S is an F -linear subspace. Using the fact that E is F -linear, it follows that f(x1; ::; xq; P (L; x1; ::; xq)) :(x1; ::; xq) 2 Lg is an F -linear subspace, and hence (x1; ::; xq) 7! P (L; x1; ::; xq) is F -linear. To see that the linearityof E and P implies the linearity of V , we refer to [11, Prop. A.1] which implies that when testing membership ina linear subspace by a one-sided error tester (i.e., perfect completeness), without loss of generality, the tester maymake only linear checks. 53

least (=4) � �. Furthermore, the tester tosses 1 +max(rV ; logM) coins, where rV is the number ofcoins tossed by the inner-veri�er of the above LIPS.The point is that Proposition 5.10 establishes a locally-testable code while only relying on a standarderror-correcting code (i.e., the encoding E : �b=a ! �n that is part of the LIPS).Proof: Let (E;P; V) be the (F; (1; b) ! (p; a); �;)-LIPS, where E : F b ! (F a)n and P : LF;b �F b ! F `. We let t = d`=ne, where n � ` is typically the case. Under this setting, tn � ` andtn+ ` < 2`+ n. We construct a locally testable code C : �b=a ! �tn+`, where �b=a �= F b, such thatthe encoding of x equals the sequence C(x) = (E(x)t; P (L; x)), where L = F b (i.e., L is satis�edby every vector) and E(x) is replicated t times. Thus, at least half of the length of C(x) is takenby replications of E(x), and so the relative distance of C is at least �=2, because E has relativedistance �. Indeed C has block-length M = tn+ ` < 2(`+ n).To test a potential codeword (X1; : : : ;Xt; Y), where Xi : [n] ! � and Y : [`] ! �, we performat random one out of two kinds of tests: With probability 12 we test that the t strings Xi'sare replications of X1. We do so by picking at random i 2 [t] and j 2 [n], and testing thatX1(j) = Xi(j). With the remaining probability we pick a random test as per the veri�er V (F b; �),and emulate V 's execution. In particular, we answer V 's queries to its (single) input-oracle byquerying our oracle X1, and answer V 's queries to its proof-oracle by querying our oracle Y . Notethat although we set no condition on the vector encoded by the input-oracle (i.e., every b-aryvector over F satis�es the conditions L = F b), the veri�er needs to verify that the input-oracle isa codeword of E, which is what we need in order to provide a codeword test for C.The above tester has randomness complexity 1+max(rV ; logM), and always accepts any code-word of C. We need to show that words at distance � from the code C are rejected with probability
(� �). Analogously to the proof of Proposition 5.5 , we have�C((X1; :::;Xt; Y)) � �((X1; :::;Xt; Y); (Xt1; Y)) + �C((Xt1; Y)):Thus, if (X1; :::;Xt; Y) is �-far from C then either (X1; :::;Xt; Y) is (�=2)-far from (Xt1; Y) or (Xt1; Y)is (�=2)-far from C. In the �rst case we have �((X1; :::;Xt; Y); (Xt1; Y)) � (�=2) � (tn + `), and soPti=1�(X1;Xi)=t � (�=2) � (n + (`=t)) > (�=2) � n. Thus the new tester rejects with probabilityat least (1=2) � (�=2) � � �=4, by virtue of the replication test (and � 1). In the second case,we have �C((Xt1; Y)) � (�=2) � (tn + `), and so �((Xt1; Y); (E(x)t; P (F b; x)) � (�=2) � (tn + `) forevery x 2 F b. Thus, for every x, either X1 is (�=2)-far from E(x) or Y is (�=2)-far from P (F b; x),which means that the deviation of (X1; Y) (as de�ned in Eq. (30)) is at least �=2, because herethe deviation is the minimum taken over all x 2 F b of the maximum between �(X1; E(x))=n and�(Y; P (F b; x))=`. It follows that (in this case), the inner-veri�er V rejects with probability at leastp def= � �=2, and thus our codeword test rejects with probability at least p=2 = � �=4.Remark 5.11 We wish to highlight an interesting fact regarding the code constructed in the proofof Proposition 5.10. Unlike in Section 5.1, the replication of the basic codeword (conducted in theconstruction) does not help the analysis of the new codeword test (but rather complicate it by theneed to analyze the replication test). That is, the test presented in the proof of Proposition 5.10is a strong codeword test (for C), regardless of the choice of the parameter t (which governs thenumber of replications). The sole role of replication is to guarantee that the resulting code hasconstant relative distance. This requires setting t =
(`=n) (or alternatively relying on distanceproperties of the proving function). On the other hand, the bigger t the worse rate we get for theresulting code, and thus we pick t = O(`=n). This remark applies also to Theorem 5.13.54

Composing locally testable codes and LIPSes. The following theorem (i.e., Theorem 5.13)will be used to compose locally testable codes over large alphabets with suitable linear inner proofsystems, obtaining locally testable codes over smaller alphabets. Speci�cally, given a q-querytestable F -linear code over the alphabet � = F b, we wish to construct a (F -linear) locally-testablecode over a smaller alphabet � = F a, by using a suitable LIPS. The latter includes an adequateencoding of F a by (F a)n, and its veri�er will be used to emulate the local conditions checked by thecodeword test of the original code. (Recall that, using the F -linearity of C, we may assume withoutloss of generality (cf. [11, Prop. A.1]) that the codeword tester makes only F -linear checks.) Theseconditions are subspaces of F q�b, and so we need a (F; (q; b) ! (�; a); �; �)-LIPS in order to verifythem. Regarding the unspeci�ed parameters of the abovementioned (F; (q; b) ! (p; a); �;)-LIPS,we wish p to be as small as possible and ; � be as large as possible. The construction will besimilar to the one used for deriving the weak testability result in Section 5.1. Thus, in additionto the above, we wish the randomness complexity of the codeword tester and the (encoding and)proof length of the LIPS to be as small as possible.Although the aforementioned composition (captured by Theorem 5.13) is very natural, we wereonly able to establish its validity in case the locally testable code is testable by a procedure thatmakes (almost) uniformly distributed queries. We note that the tester presented in Section 3.2 hasa version that satis�es this property (see Remark 3.6). This motivates the following de�nition.De�nition 5.12 (codeword testers with almost uniform queries): For � 2 (0; 1], a probabilisticoracle machine is said to make �-uniform queries if when given access to an oracle of length N ,a random query in a random execution equals any �xed i 2 [N] with probability at least �=N andat most ��1=N . That is, for every i 2 [N], we denote by p(j)i the probability that, in a randominvocation, the jth query of the q-query tester is to location i, and require that�N � 1q � qXj=1 p(j)i � ��1N (31)Theorem 5.13 (composing an outer code with an inner-veri�er): Consider integers a < b suchthat a divides b, a �nite �eld F , � = F b and �; �; ; � 2 (0; 1]. Suppose that the following twoconstructs exist:1. A locally testable F -linear code C : �K ! �N of relative distance at least �C, having a codewordtest that makes q queries that are �-uniform, and uses r coins. Furthermore, suppose thatthis tester rejects �-far sequences with probability at least � � �.2. A (F; (q; b) ! (p; a); �;)-linear inner proof system, (E;P; V), where E : F b ! (F a)n, P :LF;q�b � (F b)q ! (F a)`, and V tosses rV coins.Then, there exists an F -linear locally-testable code of relative distance at least � � �C=2, over thealphabet � = F a, mapping �K � �b�K=a to �M , for M < 2 � (Nn+2r`). Furthermore, this code canbe tested by making p queries and tossing 1 + max(r + rV ; logM) coins such that �-far sequencesare rejected with probability at least (���2=16q) � �.Typically, rV > 2 + log ` and 2r` > Nn, which implies that logM < r + 2 + log ` < r + rV . Wecomment that the resulting codeword test does not necessarily make almost uniform queries; wewill redeem this state of a�airs at a later point (in Theorem 5.15).Proof: The new code consists of two parts (which are properly balanced). The �rst part isobtained by encoding each �-symbol of the codeword of C by the code E, whereas the second part55

is obtained by providing proofs (testable by the inner-veri�er) for the validity of each of the 2rpossible checks that may be performed by the codeword test. Speci�cally, let us denote by i!;j thejth query that the C-tester makes when using coins !, and let L! be the linear condition veri�edon these coins. (Recall that, using the F -linearity of C, we may assume without loss of generality(cf. [11, Prop. A.1]) that the codeword tester makes only F -linear checks.) Let t = d2r � `=Nne andnote that M def= t � Nn + 2r` satis�es M � 2tNn and M < 2 � (Nn + 2r`). Then, viewing C asC : �K � [N]! � and recalling that � = F b � �b=a, the string x 2 �K is encoded by the sequence(C0(x)t; P 0(x)), whereC0(x) def= (E(C(x; 1)); : : : ; E(C(x;N))) (32)P 0(x) def= hP (L!; C(x; i!;1); : : : ; C(x; i!;q)) : !2f0; 1gri (33)Let us denote this encoding by C00; that is, C00(x) = (C0(x)t; P 0(x)). Note that C00 : �bK=a ! �M , andthat C00 has distance at least t � �Cn � �N , which means a relative distance of at least ��C � tNn=M ���C=2 (because M � 2tNn).Testing the code C00 is essentially done by emulating the codeword test of C. That is, to testa potential codeword (X1; :::;XtN ;Y0r ; :::; Y1r), where Xi : [n] ! � and Y! : [`] ! �, we selectuniformly ! 2 f0; 1gr , determine the corresponding linear condition (i!;1; :::; i!;q ; L!) that wouldhave been checked by the C-tester, and invoke the inner-veri�er V on input L! while providingV with oracle access to Xi!;1 ; :::;Xi!;q and Y!. Note that i!;1; :::; i!;q 2 [N], and that V tossesadditional coins, denoted !0 2 f0; 1grV . As in the proof of Proposition 5.10, this is done withprobability 1=2, and otherwise we check the correctness of the replication (by randomly selectingi 2 [t], j1 2 [N] and j2 2 [n] and comparing Xj1(j2) and X(i�1)t+j1(j2)). Let us denote the resultingprocedure by T 00.The above procedure T 00 has randomness complexity 1+max(r+rV ; logM), makes max(p; 2) = pqueries (because q � 1 implies p � 2), and always accepts any codeword of C00. Although T 00 looksvery appealing, it may not satis�es the requirements (of a codeword tester) in case the C-tester doesnot make almost uniform queries. Nevertheless, we will show that T 00 is indeed a C00-tester, providedthat the C-tester makes almost uniform queries (as guaranteed by the theorem's hypothesis). Beforedoing so, we discuss the reason for this technical condition.On the necessity of almost uniform queries. Consider, for example, the case in which C(x) = (0; C0(x)),where C0 is a locally testable code with tester T0, and suppose that the �rst query of the C-tester is always to the �rst position in the sequence (i.e., the position that is supposed to beidentically 0) but the C-tester usually ignores the answer (and with probability 1=N checks thatthe answer equals 0). (The other queries of the C-tester emulate T0.) Further suppose that theproving function of the LIPS sets the �rst `=2 symbols of the (`-symbol long) proof to 0, andthat the inner-veri�er always compares a random symbol in its �rst (n-symbol long) input-oracle(which is supposed to encode the answer to the C-tester's �rst query and hence is supposed tobe E(0) = 0n) to a random symbol in the �rst half of its proof-oracle. (In addition, the inner-veri�er emulates some \normal" inner-veri�er using the same input-oracles and the second halfof its proof-oracle.) Then, the corresponding code C00 has non-codewords that are very far fromthe code, where the di�erence is concentrated almost only in the \proof-part", but these non-codewords are rejected by T 00 with negligible probability. For example, consider the non-codeword((1; C0(x))t; h1`=2�! : ! 2 f0; 1gri), where 0`=2�! is the canonical proof associated with coins ! andinput x (i.e., P 0(x) = h0`=2�! : ! 2 f0; 1gri). This sequence is 1=4-far from C00 but is rejected by T 00only if it emulates the checking of the �rst bit of C, which happens with probability 1=N = o(1). Theabove discussion establishes the necessity of the upper-bound on Pqj=1 p(j)i provided in Eq. (31).56

The lower-bound provided by Eq. (31) is inessential, because an alternative one follows by thefact that the tester must query each location with su�ciently high probability (in order to rejectnon-codewords that are corrupted only at that location).Overview of the rest of the proof. To evaluate the rejection probability of T 00, we consider any(X;Y) = (X1; :::;XtN ;Y0r ; :::; Y1r) that is �-far from C00, where throughout the proof (unless saiddi�erently), all distances refer to sequences over �. Our aim is to prove that T 00 rejects thissequence with probability that is proportional to �, and thus establishing that T 00 is a C00-tester.The proof combines elements from the proof of Lemma 5.3 and Proposition 5.10. As in the proofof Proposition 5.10, we focus our attention on the case that ((X1; :::;XN)t;Y0r ; :::; Y1r) is �=2-farfrom C00, because the other case is handled by the replication test. We consider three (remaining)cases:1. The sequence (X1; :::;XN) is relatively far from a sequence of E-codewords.2. The sequence of E-codewords closest to (X1; :::;XN) is relatively far from the code C0.3. The sequence (X1; :::;XN) is relatively close to a sequence of E-codewords, which in turn isrelatively close to the code C0. (In this case, the distance of ((X1; :::;XN)t;Y) from C00 is dueto Y .)Each of these cases will be handled by a corresponding claim. The �rst two cases correspond to thetwo cases considered in the proof of Lemma 5.3, whereas the third case was not relevant there.Analogously to the proof of Lemma 5.3, we denote by �i the (relative) distance of Xi from E;that is, �i = �E(Xi)=n.Claim 5.13.1 (Case 1 { using �0 = �=4): If PNi=1 �i=N > �0 then the inner-veri�er rejects withprobability at least � � �0.Proof: Things would have been very easy if at least one of the queries made by C-tester wasuniformly distributed. In such a case, one of the input-oracles accessed by the inner-veri�er wouldbe at expected distance �0 from the code, and the inner-veri�er would reject with probability at least � ��0. Unfortunately, the aforementioned condition does not necessarily hold. Surely, we couldmodify the C-tester to satisfy this condition, by adding a uniformly distributed query, but here wetake an alternative route by recalling that (by the hypothesis that the tester makes \almost uniform"queries) the queries cover each possible location with su�ciently high probability.16 Speci�cally,recall that Pqj=1 p(j)i � �q=N , where p(j)i denotes the probability that the jth query of the C-testeris to location i. Now, consider the oracles Xi!;1 ; :::;Xi!;q accessed by the inner-veri�er, where! 2 f0; 1gr is uniformly selected by our tester. By the above,E! 24 qXj=1 �E(Xi!;j)n 35 = qXj=1 NXi=1 p(j)i � �i � �qN � NXi=1 �i > �q � �016Here we use the lower-bound on Pqj=1 p(j)i provided by Eq. (31). Alternatively, we could prove that a di�erentlower-bound follows by the fact that the tester must reject non-codewords with adequate probability. Speci�cally, letus denote by pi the probability that, on a random invocation, at least one of the C-tester's queries is to location i.Clearly, pi �Pqj=1 p(j)i . On the other hand, we claim that pi � �=N . The reason is that C-tester must accept 0Nwith probability 1, and reject 0i�110N�i with probability at least �=N , but it cannot possibly distinguish the twocases unless it probes the ith location. Thus,Pqj=1 p(j)i � �=N , for every i 2 [N].57

which implies that, for uniformly distributed ! 2 f0; 1gr and j 2 [q], the oracle Xi!;j is ��0-far fromE. Thus, the excepted deviation of (Xi!;1 ; :::;Xi!;q ;Y!) is at least ��0 and the inner-veri�er rejectswith probability at least � ��0.We are going to consider the E-codewords, denoted by ci's, that are closest to these Xi's (i.e.,�(Xi; ci) = �in). Let c = (c1; :::; cN). Let di be the E-decoding of ci (i.e., ci = E(di)), andd = (d1; :::; dN). Assuming that Case 1 does not hold, we have (ct;Y) is (�=4)-far from C00, becausect is (�=4)-close to (X1; :::;XN) and ((X1; :::;XN)t;Y) is (�=2)-far from C00. However, unlike in theproof of Lemma 5.3, the sequence c is not necessarily far from C0, because the distance between(ct; Y) and C00 may be due to Y . Thus, there are two additional cases to consider.Claim 5.13.2 (Case 2 { using �00 = ���=4q): If c is �00-far from C0 then the inner-veri�er rejectswith probability at least (��=2) � �00.The condition PNi=1 �i=N � �0 is omitted from this claim, because the claim holds regardless of thiscondition. The following proof is analogous to the treatment of Case 2 in the proof of Lemma 5.3.Proof: By the claim's hypothesis, for every x 2 �bK=a, it holds that the set Dx def= fi 2 [N] : ci 6=E(C(x; i))g has cardinality at least �00 � N , because �00 � nN � �(c; C0(x)) � jDxj � n. Noting thatDx = fi 2 [N] : di 6= C(x; i)g, it follows that d is �00-far from the code C, when both are viewedas sequences over �. Thus, d would have been rejected by the C-tester with probability at leastp def= � � �00.Let us call a choice of coins ! for the C-tester good if the C-tester would have rejected the values(di!;1 ; :::; di!;q); that is, (di!;1 ; :::; di!;q) 62 L!. By the above, with probability p, the C-tester selectsgood coins. On the other hand, for good coins !, when given input L! and access to the input-oracles ci!;1 ; :::; ci!;q (and any proof-oracle), the inner-veri�er V rejects with constant probability(i.e., probability at least ��). We need, however, to consider what happens when V is given accessto the input-oracles Xi!;1 ; :::;Xi!;q (and the proof-oracle Y!), for a good !.We next show that, for a good !, the inner-veri�er V rejects the input-oracles (Xi!;1 ; :::;Xi!;q)with constant probability (regardless of Y!). This happens regardless of whether or notXi!;1 ; :::;Xi!;q is close to (ci!;1 ; :::; ci!;q). We consider two cases:1. Suppose that, for every j 2 [q], the oracle Xi!;j is (�=2)-close to ci!;j . Then, for everyacceptable q-tuple (a1; :::; aq) (i.e., (a1; :::; aq) 2 f(E(z1); :::; E(zq)) : (z1; :::; zq) 2 L!g), thereexists a j such that the oracle Xi!;j is (�=2)-far from aj . The reason being that for everyacceptable (a1; :::; aq) there exists a j such that aj 6= ci!;j , while on the other hand aj mustalso be an E-codeword. Thus,�(Xi!;j ; aj)n � �(ci!;j ; aj)n � �(Xi!;j ; ci!;j)n � � � �2 :It follows that the deviation of (Xi!;1 ; :::;Xi!;q ;Y!) is at least �=2, and V rejects it withprobability at least � �=2.2. Otherwise (i.e., some Xi!;j is (�=2)-far from the corresponding ci!;j), one of the input-oraclesis �=2-far from being an E-codeword (because the ci!;j 's are the E-codewords closest to theXi!;j 's). Again, the deviation of (Xi!;1 ; :::;Xi!;q ;Y!) is at least �=2, and V rejects it withprobability at least � �=2.We conclude that, for a good !, when given access to (Xi!;1 ; :::;Xi!;q ;Y!), the inner-veri�er Vrejects with probability at least ��=2. Recalling that a good ! is selected with probability at leastp = � � �00, it follows that V rejects with probability at least ��00 � �=2.58

Claim 5.13.3 (Case 3): If PNi=1 �i=N � �=4 and c is (���=4q)-close to C0 then the inner-veri�errejects with probability at least (�=8) � �.Proof: Referring to the second hypothesis, let x 2 �bK=a be such that c is (���=4q)-close to C0(x),when both are viewed as nN -long sequences over �. Since both c and C0(x) are N -sequences ofE-codewords, these sequences may di�er on at most a (���=4q)=� fraction of these codewords; i.e.,jfi : ci 6= E(C(x; i))gj � (��=4q)N .Combining the two hypotheses, it follows that (X1; :::;XN) is ((�=4) + (���=4q))-close to C0(x),and thus Y is (�=2)-far from P 0(x). (Note that for the last implication we only use the fact that(X1; :::;XN) is (�=2)-close to C0(x) whereas ((X1; :::;XN)t; Y) is (�=2)-far from C00(x).) For futureusage, let us restate the fact that Y is (�=2)-far from P 0(x) as followsE! ��(Y!; P (L!; C(x; i!;1); :::; C(x; i!;q)))` � � �2 : (34)We �rst analyze what happens when our procedure T 00 is given oracle access to (ct; Y). Recallingthat jfi : ci 6= E(C(x; i))gj � (��=4q)N and using the hypothesis that an average query of the C-tester hits each location with probability at most ��1=N , it follows that Pr!2f0;1gr ;j2[q][ci!;j 6=E(C(x; i!;j))] � ��1 � (��=4q) = �=4q. Thus, for a uniformly chose !, with probability at least1 � q � �=4q, the sequences (ci!;1 ; :::; ci!;q) and (E(C(x; i!;1)); :::; E(C(x; i!;q))) are identical. Let usdenote the set of these choices by G. Then,G = f! : (8j) di!;j = C(x; i!;j)g, and Pr![! 2 G] � 1� (�=4). (35)We observe that, for any ! 2 G, the deviation of ((ci!;1 ; :::; ci!;q);Y!) is lower-bounded by theminimum between �(Y!; P (L!; di!;1 ; :::; di!;q))=` and �, where the �rst term is due to changing Y!to �t the di!;j 's and the second term is due to changing at least one of the ci!;j 's so to obtainsome other (acceptable) sequence of codewords. The minimum of the two terms is obviously lower-bounded by their product; that is, the deviation of ((ci!;1 ; :::; ci!;q);Y!) is at least�(Y!; P (L!; di!;1 ; :::; di!;q))` � � : (36)Note that this lower-bound is in terms of the distance of Y! from the proof computed for the di!;j 's,whereas Eq. (34) refers to the distance from the proof computed for the C(x; i!;j)'s. Yet, recallingthat the di!;j 's equal the C(x; i!;j)'s with probability at least 1 � (�=4), (and using Eq. (34)) wehave E! "�(Y!; P (L!; di!;1 ; :::; di!;q))` # � �2 � �4 = �4 :: (37)Using Eq. (36), it follows that the expected deviation of ((ci!;1 ; :::; ci!;q);Y!), when the expectationis taken uniformly over ! 2 f0; 1gr , is at least ��=4 (and so V rejects (ct; Y) with probability atleast ��=4).However, we need to estimate the deviation of ((Xi!;1 ; :::;Xi!;q);Y!), which we do next (in away analogous to Case 2). For ! 2 G, we lower-bound the deviation of ((Xi!;1 ; :::;Xi!;q);Y!) byconsidering two cases (as in the proof of Claim 5.13.2):1. Suppose that, for every j 2 [q], the oracle Xi!;j is (�=2)-close to ci!;j . Recall that(ci!;1 ; :::; ci!;q) equals (E(C(x; i!;1)); :::; E(C(x; i!;q))), or equivalently (di!;1 ; :::; di!;q) equals(C(x; i!;1); :::; C(x; i!;q)). Thus, the deviation of ((Xi!;1 ; :::;Xi!;q);Y!) is lower-bounded by59

the minimum between �(Y!; P (L!; C(x; i!;1); :::; C(x; i!;q)))=` and � � (�=2), where the �rstterm is due to changing Y! to �t the C(x; i!;j)'s and the second term is due to changingat least one of the Xi!;j 's so to obtain some other (acceptable) sequence of codewords. Asbefore, we lower-bound the deviation by the product of these terms, yielding half the valueof Eq. (36).2. Otherwise (i.e., some Xi!;j is (�=2)-far from the corresponding ci!;j), one of the input-oraclesis �=2-far from being an E-codeword (because the ci!;j 's are the E-codewords closest to theXi!;j 's). As in the proof of Claim 5.13.2, in this case, the deviation of ((Xi!;1 ; :::;Xi!;q);Y!)is at least �=2.We conclude that, for ! 2 G, the deviation of ((Xi!;1 ; :::;Xi!;q);Y!) is at least half the value ofEq. (36). Using Eq. (37), we lower-bound the expected deviation of ((Xi!;1 ; :::;Xi!;q);Y!), wherethe expectation is taken uniformly over ! 2 f0; 1gr , by (�=2) �(�=4). It follows that the inner-veri�erV rejects with probability at least � ��=8.Combining Claims 5.13.1{5.13.3, while setting �0 = �=4 and �00 = ���=4q, it follows that the inner-veri�er rejects with probability at leastmin���0; ���002 ; ��8 � = min �4 ; ���28q ; �8 ! � � = ���28q � � :Recalling that the inner-veri�er is invoked with probability 1=2 (and otherwise the repetition testis invoked with much better corresponding performance), the theorem follows.Preserving the almost-uniform queries property. Note that the proof of Theorem 5.13yields a codeword tester that does not make almost uniform queries. We wish to redeem this stateof a�airs, both for the sake of elegancy and for future use in Section 5.6. This requires a minormodi�cation of the construction presented in the proof of Theorem 5.13 as well as using a LIPS thatmakes almost uniform queries (as de�ned next). We stress that our main results (e.g., Theorem 2.3)do not use the following Theorem 5.15, but we will need the following de�nition in any case (i.e.,also in case we do not use Theorem 5.15).De�nition 5.14 (LIPS with almost uniform queries): For � 2 (0; 1], a veri�er (of an (F; (q; b)!(p; a); �; �)-LIPS) is said to make �-uniform queries to its oracles if for each of its oracles and eachlocation in that oracle the probability that a random query to that oracle equals that location isproportional to the oracle's length, where the constant of proportion is in [�; ��1]. That is, forevery i 2 [q + 1], we denote by pj(i) the probability that a random query to the jth oracle is tolocation i. We require that, for every j 2 [q] and i 2 [n], it holds that �=n � pj(i) � ��1=n, andthat, for every i 2 [`], it holds that �=` � pp+1(i) � ��1=`, where n and ` are the length of theencoding and proof, respectively.Note that the de�nition only requires almost uniformity of the queries made to each individualoracle, and nothing is required regarding the proportion of queries made to the di�erent oracles.Theorem 5.15 (Theorem 5.13, revisited): Suppose we are given a locally testable code and a LIPSas in the hypothesis of Theorem 5.13. Furthermore, suppose that the LIPS makes �V -uniformqueries to its oracles and that 2r` > 2Nn. Then, there exists an F -linear locally-testable code as inthe conclusion of Theorem 5.13. Furthermore, for t def= d2r`=Nne, this code can be tested by making60

2p queries that are ((1�t�1) ���V)-uniform and tossing 1+(log2 t)+max(r+rV ; logM) coins suchthat �-far sequences are rejected with probability at least (���2=16q) � �, where M = tNn+ 2r` <2r+1`.Theorem 5.15 provides a codeword tester that makes almost uniform queries (whereas the codewordtester provided by Theorem 5.13 does not have the feature). This is done at the expense of doublingthe query complexity (i.e., from p to 2p), and adding a term of log2 t to the randomness complexity.Typically, rV > 1+log ` and so log2 t < r+rV � logN (and log2M < r+1+log ` < r+rV), where r(resp., rv) is the randomness complexity of the original codeword tester (resp., the LIPS veri�er) andN is the length of the original code. In this case, the randomness complexity grows from r+ rV +1to less than 2 � (r+ rV +1)� log2N . We note that in our applications r+ rV = (1 + o(1)) � log2N ,and so the increase in the randomness complexity merely doubles the o(1) term.Proof: We use the same code C00 as constructed in the proof of Theorem 5.13, and slightly modifythe codeword tester presented there. Instead of emulating the C-tester using the �rst N encodings(in the tested word), we use the ith block of such N encodings, for a uniformly chosen i 2 [t].The replication test is modi�ed accordingly (i.e., we compare this block to the i0-th block, for auniformly chosen i0 2 [t]). In addition, we add dummy queries such that the resulting tester makesan equal number of queries to each of the two parts of the tested word (i.e., the tNn-long pre�x andthe su�x). Each of these dummy queries is uniformly distributed in the corresponding part (andthe answer is ignored by the tester). The purpose of these modi�cation is to obtain a codewordtester that makes almost uniform queries.Analogously to Remark 3.6 (see also the proof of Proposition 5.5), the (soundness) analysispresented in the proof of Theorem 5.13 remains valid. Thus, we focus on the syntactic conditions.Clearly, it su�ces to use p dummy queries, and thus the query complexity of the new tester is2p. By choosing a careful implementation (which recycles randomness in order to implement thedummy queries17), the randomness complexity increases only by a log2 t term (for selecting theindex i 2 [t] as mentioned above).It remains to analyze the uniformity of the queries made by the tester. The dummy queriesguarantee that each of the two parts of the tested word be probed the same number of times, andfurthermore that the distribution of the dummy queries does not skew the distribution in eachof the two parts. Since the two parts are of almost the same length (i.e., upto a factor of about1� t�1), it su�ces to analyze the distribution in each part.For the �rst part (i.e., the tNn-long pre�x), we combine the hypothesis that the C-tester makes�-uniform queries with the fact that we use a random copy of C0. This means that the q input-oraclesthat we select (for the inner veri�er) are almost uniformly distributed among the tN encodings (oflength n each). Using the hypothesis that the LIPS makes �V -uniform queries to each of itsoracles (and thus to each of its input-oracle), it follows that the queries made to the �rst part are��V -uniform.For the second part (i.e., the proof part), we combine the fact that the tester selects a uniformlydistributed proof (i.e., ! 2 f0; 1gr is uniformly distributed) with the hypothesis that the LIPS makes�V -uniform queries to each of its oracles (and thus to its proof-oracle). It follows that the queriesmade to the second part are �V -uniform. The theorem follows.17Note that the number of coins exceeds log2M , and thus we may re-use these coins to select a random position forthe dummy queries. It does not matter that all these dummy positions will be identical, nor that they are correlatedwith the other queries. 61

5.3.4 Composing inner veri�ersSubsection 5.3.3 (e.g., Theorem 5.13) refers to the composition of an outer code with an inner-veri�er yielding a new code. In contrast, the following theorem refers to composing two inner-veri�ers yielding a new inner-veri�er. Indeed, we could have worked only with Theorem 5.13 (oractually with Theorem 5.15), but it seems more convenient to (have and) work with both typesof composition theorems.18 As in the case of Theorem 5.13, we need to assume that the outerconstruct (in this case the outer LIPS) makes almost uniform queries; the reader is thus referredto De�nition 5.14. We comment that the resulting LIPS does not necessarily make almost uniformqueries; we will redeem this state of a�airs at a later point (in Theorem 5.17).Theorem 5.16 (composition of linear inner-veri�ers): Consider a �nite �eld F , real numbers�1; 1; 2; �1; �2 2 (0; 1], and integers b > b0 > b00 such that b00 divides b0, which divides b. Supposethat there exist a (F; (p; b)! (p0; b0); �1; 1)-LIPS that makes �1-uniform queries to its oracles anda (F; (p0; b0)! (p00; b00); �2; 2)-LIPS. Then, there exists a (F; (p; b) ! (p00; b00); �1�2;)-LIPS, where = �112�2=8p0. Furthermore, if the ith original LIPS uses ri coins, encoding length ni andproof length `i, then the resulting LIPS uses r1 + r2 coins, encoding length n1 � n2 and proof length`1 � n2 + 2r1 � `2.Proof: We start with the construction, which is analogous to the one used in the proof ofTheorem 5.13 (except that no replication is needed here). The basic idea is to start from the(F; (p; b) ! (p0; b0); �1; 1)-LIPS, which uses p input-oracles that are supposed to be encoded usinga function E1 : F b ! (F b0)n1 and a proving function with range (F b0)`1 , and encode each of theF b0 symbols using a function E2 : F b0 ! (F b00)n2 (i.e., the encoding function of the second LIPS).This yields p new input-oracles and a part of the new proof-oracle. In addition, we use the provingfunction of the second LIPS to produce auxiliary proofs for each of the possible coin tosses of the�rst (i.e., outer) veri�er. The concatenation of these auxiliary proofs yields the second part ofthe new proof-oracle. The new veri�er will check the execution of the �rst (i.e., outer) veri�er byinvoking the second veri�er and giving it access to the suitable oracles, which are blocks in the or-acles to which the new veri�er is given access. Speci�cally, given a (F; (p; b)! (p0; b0); �1; 1)-LIPS,denoted (E1; P1; V1), and a (F; (p0; b0)! (p00; b00); �2; 2)-LIPS, denoted (E2; P2; V2), we de�ne theircomposition, denoted (E;P; V), as follows:� The encoding function E : F b ! (F b00)n1�n2 is the concatenation of the encoding functionsE1 : F b ! (F b0)n1 and E2 : F b0 ! (F b00)n2 . That is, for x 2 (F b00)b=b00 � (F b0)b=b0 � F b, wehave E(x) = (E2(y1); : : : ; E2(yn1)), where (y1; : : : ; yn1) def= E1(x).� The proving function P = (P (1); P (2)) operates as follows: Given L 2 LF;pb and x1; : : : ; xp 2F b, the �rst part of the proof (i.e., P (1)(L; x1; : : : ; xp)) is the symbol-by-symbol encodingunder E2 of P1(L; x1; : : : ; xp) 2 (F b0)`1 . That is, P (1)(L; x1; : : : ; xp) = (E2(y1); : : : ; E2(y`1)),where (y1; : : : ; y`1) def= P1(L; x1; : : : ; xp).The second part of the proof (i.e., P (2)(L; x1; : : : ; xp)) consists of 2r1 blocks corresponding toeach of the 2r1 possible checks of V1. For each !1 2 f0; 1gr1 , the block corresponding to !118An analogous comment applies to the construction of PCP systems. That is, it su�ces to have a compositiontheorem that refers to using a standard PCP as an outer veri�er and composes it with an inner-veri�er (as donein [3, 2] and most subsequent works). However, it is useful to consider also the composition of two inner-veri�ers(i.e., the composition of PCPPs [10] or assignment testers [17]). We note that the following composition resultpredates [10, 17]. 62

in P (2)(L; x1; : : : ; xp) is the `2-long sequence P2(L!1 ; z!1;1; : : : ; z!1;p0), where z!1;1; : : : ; z!1;p0denote the p0 symbols (i.e., F b0-symbols) of E1(x1); : : : ; E1(xp) and P1(L; x1; : : : ; xp) that areinspected by V1(L;!1), and L!1 is the conjunction of F -linear conditions checked by V1. Thatis, if the jth query of V1(L;!1) is to location `j of its ithj input-oracle (resp., of its proof-oracle),then z!1;j equals the `thj symbol in E1(xij) (resp., in P1(L; x1; : : : ; xp)).Note that the proof length is `1 �n2+2r1 � `2, where the �rst (resp., second) term correspondsto P (1) (resp., P (2)).� The veri�er V is given L 2 LF;pb as well as oracle access to p input-oracles, denotedX1; : : : ;Xp,and to a proof-oracle, denoted � = (�(1);�(2)). The input-oracle Xi : [n1n2] ! F b00 isviewed as consisting of n1 blocks, each of length n2, and �(1) : [`1n2] ! F b00 is viewed asconsisting of `1 such blocks. We also view �(2) : [2r1`2]! F b00 as h�(2)!1 : !1 2 f0; 1gr1 i, where�(2)!1 : [`2]! F b00 .Note that X1; : : : ;Xp and �(1) are supposed to be the encodings, under E2, of correspondingoracles X 01; : : : ;X 0p and �0 that are of the format expected by V1. Intuitively, V checks theclaim that V1 would have accepted these X 01; : : : ;X 0p and �0. The veri�er V does so byselecting a check for V1, and using V2 to verify the corresponding check, while utilizing aproof that is part of �(2).Speci�cally, on input L 2 LF;pb and coins (!1; !2) 2 f0; 1gr1+r2 , the veri�er V (L; (!1; !2))operates as follows:1. It determines the queries q!1;1; : : : ; q!1;p0 that V1(L;!1) makes into its p+1 oracles (i.e.,to X 01; : : : ;X 0p and �0) on randomness !1, and the conjunction of linear conditions L0!1that V1(L;!1) needs to verify on the p0 responses.Note that each of these p0 queries is actually a pair indicating an oracle and a positionin it; that is, q!1;j = (i!1;j; q0!1;j), where i!1;j 2 [p+ 1] and q0!1;j 2 [k] such that k = n1if i!1;j 2 [p] and k = `1 otherwise.2. Next, V invokes V2(L0!1 ; !2) providing it with oracle access to the input-oracles as de-termined by q!1;1; : : : ; q!1;p0 and to the proof-oracle that is the block of �(2) that cor-responds to !1. Speci�cally, for every j = 1; :::; p00, the jth input-oracle of V2, denotedX 00j , is de�ned to equal the q0!1;j-th n2-long block of Xi!1;j if i!1;j 2 [p] and the q0!1;j-thn2-long block of �(1) otherwise (i.e., X 00j (i) = Xi!1;j ((i!1 ;j � 1) � n1 + i) if i!1;j 2 [p] andX 00j (i) = �(1)(p � n1 + i) otherwise). The proof-oracle of V2, denoted �00, is de�ned toequal P(2)!1 .3. The veri�er V accepts if and only V2 accepts.Aside from the (strong) soundness requirement, it is clear that the resulting LIPS satis�esall other requirements. To evaluate the rejection probability of the latter, we consider any(X1; :::;Xp; (�(1);�(2))), where Xi : [n1n2] ! F b00 , �(1) : [`1n2] ! F b00 and �(2) : [2r1`2] ! F b00 .The analysis follows the outline of the proof of Theorem 5.13. Speci�cally, we consider three cases(which correspond to the three (main) cases considered in the proof of Theorem 5.13):Case 1: Either some Xi (for i 2 [p]) or �(1) is relatively far from a sequence of E2-codewords. Inthis case, V2 is given access to some oracle (i.e., a block of either Xi or �(1)) that is far (onthe average) from a E2-codeword, and rejects with proportional probability. For details, seeClaim 5.16.1. 63

Otherwise, we let X 01; :::;X 0p and �0 denote the corresponding sequence of E2-decodings. Thatis, encoding the elements of X 0i (resp., �0) under E2 yields the sequence of E2-codewords thatis closest to Xi (resp., �(1)).Case 2: The deviation of (X 01; :::;X 0p;�0) with respect to (E1; P1; V1) is relatively big. In this case,with proportional probability V1 determines p0 positions in (X 01; :::;X 0p;�0) such that theircontents violates the linear condition (checked by V1). In the latter case, V2 is given accessto a corresponding sequence of p0 oracles that has a big deviation, and rejects with constantprobability. Thus, V rejects with probability proportional to the deviation of (X 01; :::;X 0p;�0).For details, see Claim 5.16.2.Case 3: Otherwise, (X1; :::;Xp;�(1)) is close to the sequence of E2-encodings of (X 01; :::;X 0p;�0),which in turn has a relatively small deviation with respect to (E1; P1; V1). It follows that �(2)is far from the corresponding sequence of canonical proofs, and V2 rejects with probabilityproportional to the latter distance. For details, see Claim 5.16.3.The proofs of the aforementioned claims are very similar to the proofs of the corresponding claimsin the proof of Theorem 5.13. The key di�erence is that we refer to the deviation of sequences oforacles (as de�ned in De�nition 5.9) rather than to distances from codewords.Suppose that (X1; :::;Xp; (�(1);�(2))) has deviation � with respect to the linear inner proofsystem (E;P; V). Our aim is to show that these oracles will be rejected by V with probabilityproportional to �. We will use the following notations:� To simplify notations, let use denote Xp+1 def= �(1). Let ki = n1 if i 2 [p] and kp+1 = `1.� For every i 2 [p + 1], let Xi = (wi;1; :::; wi;ki), where wi;j 2 (F b00)n2 , and �i;j = �E2(wi;j)=n2for j 2 [ki].That is, �i;j is the relative distance of the jth block (of length n2) in Xi from an E2-codeword.Claim 5.16.1 (Case 1 { using �0 = �=4): If for some i 2 [p+1] it holds that Pkij=1 �i;j=ki > �0 thenV rejects with probability at least �12 � �0.Proof: Recalling that V1 makes �1-uniform queries to each of its oracles, we note that the queriesof V1 to its ith oracle correspond to n1-long blocks in Xi that are at expected (relative) distance atleast �1 � �0 from E2. Thus, V2 is given access to p0 oracles that have an expected deviation of atleast �1�0, and so V2 rejects with probability at least 2 � �1�0, where the probability is taken overthe random choices of !1 and !2. The claim follows.By Claim 5.16.1, we may focus on the case that Pkij=1 �i;j=ki � �0 (for every i 2 [p + 1]).We are going to consider the E2-codewords, denoted by ci;j 's, that are closest to the wi;j's(i.e., �(wi;j ; ci;j) = �i;jn2). Let di;j be the E2-decoding of ci;j (i.e., ci;j = E2(di;j)), andX 0i = (di;1; :::; di;k1).Claim 5.16.2 (Case 2 { using �00 = �1�=4p0): If the deviation of (X 01; :::;X 0p+1) with respect to(E1; P1; V1) is at least �00 then V rejects with probability at least (12�2=2) � �00.The condition Pkij=1 �i;j=ki � �0 (for every i) is omitted from Claim 5.16.2, because this claim holdsregardless of this condition. 64

Proof: By the claim's hypothesis (and the strong soundness of V1), the veri�er V1 would havebeen rejected (X 01; :::;X 0p+1) with probability at least p def= 1 � �00. Let us call a choice of coins !1for V1 good if V1 would have rejected the values (dq!1;1 ; :::; dq!1;p0); that is, (dq!1;1 ; :::; dq!1 ;p0) 62 L0!1 .(Recall that q!1;j = (i!1;j; q0!1;j), where i!1;j 2 [p + 1] and q0!1;j 2 [ki!1 ;j], and that dq!1;j isthe q0!1;j-th symbol in X 0i!1;j .) By the above, with probability p, a uniformly selected choice of!1 2 f0; 1gr1 is good. On the other hand, for good !1, when given input L0!1 and access to theinput-oracles (cq!1;1 ; :::; cq!1 ;p0) = (E2(dq!1;1); :::; E2(dq!1;p0)) (and any proof-oracle), the veri�er V2rejects with constant probability (i.e., probability at least 2 � �2). We need, however, to considerwhat happens when V2 is given access to the input-oracles Xq!1;1 ; :::;Xq!1 ;p0 (and the proof-oracle�(2)!1), for a good !1. We next show that, for a good !1, the veri�er V2 rejects the input-oraclesX!1 def= (Xq!1;1 ; :::;Xq!1 ;p0) with constant probability (regardless of �(2)!1). This happens regardlessof whether or not X!1 is close to (cq!1;1 ; :::; cq!1 ;p0). We consider two cases:1. Suppose that, for every j 2 [p0], the oracle Xq!1;j is (�2=2)-close to cq!1;j . Then, for everyacceptable p0-tuple (i.e., (a1; :::; ap0) 2 f(E2(z1); :::; E2(zp0)) : (z1; :::; zp0) 2 L0!1g), there existsa j such that the oracle Xq!1;j is (�2=2)-far from the jth element in the acceptable sequence(i.e., from aj). The reason being that for every acceptable (a1; :::; ap0) there exists a j suchthat aj 6= cq!1;j , while on the other hand aj must also be an E2-codeword. It follows thatthe deviation of (X!1 ; �(2)!1) with respect to (E2; P2; V2) is at least �2=2, and V2 rejects it withprobability at least 2 � �2=2.2. Otherwise (i.e., some Xq!1;j is (�2=2)-far from the corresponding cq!1;j), one of the input-oracles is �=2-far from being an E2-codeword (because the cq!1;j 's are the E2-codewordsclosest to the Xq!1;j 's). Again, the deviation of (X!1 ; �(2)!1) is at least �2=2, and V2 rejects itwith probability at least 2 � �2=2.We conclude that, for a good !1, when given access to (X!1 ; �(2)!1) the veri�er V2 rejects withprobability at least 2 ��2=2. Recalling that a good !1 is selected with probability at least p = 1�00,it follows that V rejects with probability at least 1�00 � 2�2=2.Claim 5.16.3 (Case 3): If for every i 2 [p+ 1] it holds that Pkij=1 �i;j=ki � �=4 and the deviationof (X 01; :::;X 0p+1) with respect to (E1; P1; V1) is at most (�1�=4p0) then V rejects with probability atleast (2�2=8) � �.Proof: Referring to the second hypothesis, let (x1; :::; xp) 2 L (where L 2 LF;pb) be such that forevery i 2 [p] the input-oracle X 0i is (��=4p0)-close to (yi;1; :::; yi;n1) def= E1(xi) and X 0p+1 is (��=4p0)-close to (yp+1;1; :::; yp+1;`1) def= P1(L; x1; :::; xp), when all these objects are viewed as sequences overF b0 . It follows that the E2-encodings of these objects (i.e., (ci;1; :::; ci;ki) and (E2(yi;1); :::; E2(yi;ki)))di�er on at most a (��=4p0) fraction of these E2-codewords; that is, for every i, we have jfj : ci;j 6=E2(yi;j)gj � (��=4p0) � ki.Combining the two hypotheses, it follows that each Xi is ((�=4) + (�1�=4p0))-close to(E2(yi;1); :::; E2(yi;ki)), and thus Y def= �(2) is (�=2)-far from P (2)(L; x1; :::; xp). (Note thatfor the last implication we only use the fact that each Xi is (�=2)-close to (yi;1; :::; yi;ki),whereas the deviation of (X1; :::;Xp; (Xp+1; Y)) with respect to (E;R; V) is �.) For future us-age, let us restate the fact that Y = hY!1 : !12f0; 1gr1i is (�=2)-far from P (2)(L; x1; :::; xp) =65

hP2(L0!1 ; yq!1;1 ; :::; yq!1;p0) : !1 2 f0; 1gr1 i as followsE! "�(Y!1 ; P2(L0!1 ; yq!1;1 ; :::; yq!1;p0))`2 # � �2 : (38)We �rst analyze what happens when V is given oracle access to (c1; :::; cp; (cp+1; Y)), whereci def= (ci;1; :::; ci;ki). Recalling that jfj : ci;j 6= E2(yi;j)gj � (��=4p0) � ki and using the hypothesisthat V1 makes �1-uniform queries to each of its oracles, it follows that Pr!12f0;1gr1 ;j2[p0][cq!1;j 6=E2(yq!1;j)] � ��11 � (�1�=4p0) = �=4p0. Thus, for a uniformly chose !1, with probability at least1 � p0 � �=4p0, the sequences (cq!1;1 ; :::; cq!1 ;p0) and (E2(yq!1;1); :::; E2(yq!1;p0)) are identical. Let usdenote the set of these choices by G. Then,G = f!1 : (8j) dq!1;j = yq!1;jg, and Pr!1 [!1 2 G] � 1� (�=4). (39)We observe that, for any !1 2 G, the deviation of ((cq!1;1 ; :::; cq!1 ;p0);Y!1) with respect to (E2; P2; V2)is lower-bounded by the minimum between �(Y!1 ; P2(L0!1 ; dq!1;1 ; :::; dq!1 ;p0))=`2 and �2, where the�rst term is due to changing Y!1 to �t the dq!1;j 's and the second term is due to changing at least oneof the cq!1;j 's so to obtain some other (acceptable) sequence of codewords. The minimum of the twoterms is obviously lower-bounded by their product; that is, the deviation of ((cq!1;1 ; :::; cq!1 ;p0);Y!1)is at least �(Y!1 ; P2(L0!1 ; dq!1;1 ; :::; di!1 ;p0))`2 � �2 : (40)Note that this lower-bound is in terms of the distance of Y!1 from the proof computed for thedq!1;j 's, whereas Eq. (38) refers to the distance from the proof computed for the yq!1;j 's. Yet,recalling that the dq!;j 's equal the yq!1;j 's with probability at least 1� (�=4), (and using Eq. (38))we have E!1 "�(Y!1 ; P2(L0!1 ; dq!1;1 ; :::; di!1 ;p0))`2 # � �4 :: (41)Using Eq. (40), it follows that the expected deviation of ((cq!1;1 ; :::; cq!1 ;p0);Y!1), when the expec-tation is taken uniformly over !1 2 f0; 1gr1 , is at least �2�=4 (and so V rejects (c1; :::; cp; (cp+1; Y))with probability at least 2�2�=4).However, we need to estimate the deviation of (X!1 ;Y!1), where X!1 = (Xq!1;1 ; :::;Xq!1 ;p0),which we do next. For !1 2 G, we lower-bound the deviation of (X!1 ;Y!1) by considering twocases (as in the proof of Claim 5.16.2):1. Suppose that, for every j 2 [p0], the oracle Xq!1;j is (�2=2)-close to cq!1;j . Then,the deviation of ((Xi!1 ;1 ; :::;Xi!1 ;p0);Y!1) is lower-bounded by the minimum between�(Y!1 ; P2(L0!1 ; dq!1;1 ; :::; dq!1 ;p0))=`2 and �2 � (�2=2), where the �rst term is due to chang-ing Y!1 to �t the dq!1;j 's and the second term is due to changing at least one of the Xq!1;j 'sso to obtain some other (acceptable) sequence of codewords. As before, we lower-bound thedeviation by the product of these terms, yielding half the value of Eq. (40).2. Otherwise (i.e., some Xq!1;j is (�2=2)-far from the corresponding cq!1;j), one of the input-oracles is �=2-far from being an E2-codeword. As in the proof of Claim 5.16.2, in this case,the deviation of (X!1 ; Y!1) is at least �2=2.66

We conclude that, for !1 2 G, the deviation of (X!1 ; Y!1) is at least half the value of Eq. (40).Using Eq. (41), we lower-bound the expected deviation of (X!1 ; Y!1) by (�2=2) � (�=4). It followsthat the inner-veri�er V rejects with probability at least 2 � �2�=8.Combining Claims 5.16.1{5.16.3, while setting �0 = �=4 and �00 = �1�=4p0, it follows that the inner-veri�er rejects with probability at leastmin��12�0; 12�2�002 ; 2�2�8 � = min��124 ; �112�28p0 ; 2�28 � � � = �112�28p0 � � ;and the theorem follows.Preserving the almost-uniform queries property. Note that the proof of Theorem 5.16yields an inner veri�er that does not necessarily make almost uniform queries to its oracles. Wewish to redeem this state of a�airs, both for the sake of elegancy and for future use in Section 5.6.This requires a minor modi�cation of the construction presented in the proof of Theorem 5.16 aswell as using an \inner" system (i.e., (E2; P2; V2)) that makes almost uniform queries to its oracles.We also assume that each of the composed veri�er makes the same number of queries to each ofits input-oracles, which is hereafter referred to as regularity. We stress that our main results (e.g.,Theorem 2.3) do not use the following Theorem 5.17.Theorem 5.17 (Theorem 5.16, revisited): Let (E1; P1; V1) and (E2; P2; V2) be two LIPSes as in thehypothesis of Theorem 5.16, and = �112�2=8p0 as there. Furthermore, suppose that V2 makes�2-uniform queries to its oracles and that each of the two veri�ers makes the same number of queriesto each of its input-oracles. Then, for any � 2 (0; 1), there exists a (F; (p; b) ! (p00; b00); �1�2; =2)-LIPS that makes (1� �)�1�2-uniform queries to its oracles and makes the same number of queriesto each of its input-oracles. Furthermore, if the ith given LIPS uses ri coins, encoding length ni andproof length `i then, assuming that ni < `i < 2ri , the resulting inner veri�er V uses 1 + r1 + r2 +log(2r1`2=`1n2)+log(p0p00=�) coins, encoding length n1 �n2 and proof length (p0p00=�)�(`1 �n2+2r1 �`2).We comment that the hypothesis that a veri�er makes the same number of queries to each of itsinput-oracles is quite natural. We note that in comparison to Theorem 5.16, the proof-oracle ofV is only p0p00=� times longer. In our applications, we don't care about constant factors in therandomness complexity of the inner-veri�er, and thus it is worthwhile to note that the randomnesscomplexity of V is at most 2 � (r1 + r2) + log(p0p00=�), whereas in Theorem 5.16 it was r1 + r2.Proof: We use almost the same construction as in the proof of Theorem 5.16. The only modi�cationis that we replicate the two di�erent parts of the resulting proof-oracle an adequate number of times.The purpose of this replication is to guarantee that uniform queries to each of the two parts yielduniform queries to the resulting proof-oracle. Needless to say, we need to check the validity of thereplication by an adequate replication test.For parameters t1 and t2 to be determined later, we let the proof � (constructed by theproving function P) consist of t1 copies of �(1) = P (1)(L; x1; :::; xp) followed by t2 copies of�(2) = P (1)(L; x1; :::; xp). The corresponding veri�er V tests these replications (by comparingtwo random locations) with probability 1=2, and otherwise acts as before when using randomlyselected copies of �(1) and �(2). As in the proof of Theorem 5.15, the rejection probability ofthe resulting veri�er is maintained (upto a factor of 1=2). Thus, the (completeness and) strongsoundness holds for any choice of the parameters t1 and t2. Turning to analyze the distribution ofqueries made by V , we consider three types of queries:67

1. Queries made by V to one of its p input-oracles. Recall that these queries are determinedby the queries that V1 makes to its own p input-oracles, and the queries made by V2 to theinput-oracles determined by the former queries. Using the uniformity conditions of these twoveri�ers (and the regularity of V2's queries), we conclude that V makes �1�2-uniform queriesto its input-oracles. Furthermore, if both V1 and V2 are regular (i.e., make the same numberof queries to each of the input-oracles) then so is V .2. Queries made by V to the �rst part of its proof-oracle. These queries are determined by thequeries that V1 makes to its proof-oracle and the queries made by V2 to the input-oraclesdetermined by the former queries. Similarly to the previous item, we conclude that V makes�1�2-uniform queries to the �rst part of its proof-oracle.3. Queries made by V to the second part of its proof-oracle. These queries are determined bythe uniformly chosen coins !1 2 f0; 1gr1 and the queries made by V2 to its proof-oracle. Thus,V makes �2-uniform queries to the second part of its proof-oracle.The issue at hand is the proportion between the number of queries that V makes to each of thetwo parts of its proof-oracle. Suppose that, on the average, V1 (resp., V2) makes p1 � p0 (resp.,p2 � p00) queries to its proof-oracle. Then, on the average, V makes p1 � (p00 � p2)=p0 queries to the�rst part of its proof-oracle, and p2 queries to the second part. Thus, we should replicate the twoparts of the proof-oracle so to �t these proportions; that is, we should havet1 � `1n2t2 � 2r1`2 � p1 � (p00 � p2)p0 � p2 (42)Recalling that `1n2 < 2r1`2, it su�ces to have t2 2 [p0p00=�] in order to obtain in Eq. (42) anapproximation up to factor (1 � �). Furthermore, t1 � `1n2 + t2 � 2r1`2 need not be greater than(p0p00=�) � (`1n2 + 2r1`2). The added randomness (required for selecting random copies) is thusbounded by log2 t1 + log2 t2 = log2(p0p002r1`2=`1n2�). (Note that the replication test itself canbe implemented using log2((p0p00=�) � (`1n2 + 2r1`2)) coins, which in turn is upper-bounded byr1 + log `2 + log2(p0p00=�) < r1 + r2 + log2(p0p00=�).) The theorem follows.5.4 Linear inner veri�ers: Two constructionsThroughout the rest of this section, F2 def= GF(2). We present two LIPSes, one based on theHadamard encoding function, and the other based on the Reed-Muller encoding function. The �rstLIPS is a straightforward adaptation of the \inner-most" veri�er of Arora et al. [2], whereas thesecond LIPS is obtained by a careful adaptation of the \outer" veri�er of [2].5.4.1 LIPS based on the Hadamard encoding functionWe start by presenting a linear inner veri�er that corresponds to the inner-most veri�er of Aroraet al. [2]. Things are only simpler in our context, since we only need to prove (and verify) linearconditions (and so we do not need the table of quadratic forms used in the original work). Thus,these F2-linear conditions, which refer to p elements of F k2 , may be easily veri�ed by accessing theHadamard encoding of these p elements.We comment that one possible implementation of the aforementioned idea amounts to testingeach of these p encodings (via a 3-query codeword test), and checking a random F2-linear conditionby self-correction (requiring 2 queries to each input-oracle). Indeed, this implementation requiresno proof-oracle, but seems to require at least 2p queries (whereas a straightforward implementation68

uses 5p queries). The alternative implementation presented below makes only p+O(1) queries andis closer in spirit to the inner-most veri�er of Arora et al. [2] (esp., as interpreted in [25, Lem. 2.6]).Proposition 5.18 For every pair of integers p and k, there exists a (F2; (p; k)! (p+ 5; 1); 12 ; 18)-LIPS. Furthermore, the length of the encoding is 2k, the length of the proof is 2pk, and the random-ness in use equals 3pk + p. Moreover, the veri�er makes uniformly distributed queries to each ofits oracles, and makes exactly one query to each of the p input-oracles.Proof: The encoding function E : F k2 ! F 2k2 is just the Hadamard encoding (having relativedistance 12). The proving function P (L; x1; : : : ; xp) 2 F 2pk2 is also the Hadamard encoding, thistime of the vector (x1; : : : ; xp). (Indeed, P (L; x1; : : : ; xp) = E(x1 � � � xp) is oblivious of L.) Theveri�er V is given a linear subspace L, in the form of a matrix M 2 F pk�pk2 , and access to input-oracles X1; : : : ;Xp : F k2 ! F2 and a proof-oracle � : F pk2 ! F2. It operates as follows:1. Selects uniformly r = (r1; :::; rp) 2 F pk2 and s = (s1; :::; sp) 2 F pk2 , and checks thatPpi=1Xi(ri) = �(r) and �(r) + �(s) = �(r � s).2. Selects a random linear combination v of the constraints of L (i.e., picks a random vectorw 2 F pk2 and sets v = w � L), and veri�es that �(r) = �(r + v).3. Selects uniformly �1; :::; �p 2 F2 and checks that Ppi=1 �i �Xi(ri) = �(s � r0) � �(s), wherer0 = (r01; :::; r0p) such that r0i = ri if �i = 1 and r0i = 0k otherwise.We note that self-correction (cf. [14]) is performed only on the proof-oracle, whereas each input-oracle is queried at a single (random) point. Furthermore, a couple of queries to the proof-oracleare being re-used (yielding a saving of two queries). We observe that all complexities are as statedin the proposition, and claim that (strong) soundness follows by the standard analysis. Still, sincestrong soundness was not analyzed explicitly before, we provide a detailed analysis next. Supposethat (X1; :::;Xp; �) has deviation � with respect to (E;P; V). For �0 = min(�=2; 1=8), we considerthe following possible sources of the value of the deviation.Case 1: The proof-oracle � is �0-far from the code E. In this case, the linearity test applied to �in Step 1 guarantees that V rejects with probability at least �0 (cf. [7]).Thus, we may assume for the rest of the analysis that � is �0-close to E(x1 � � � xp), for somex1; :::; xp 2 F k2 . We �x these xi-s for the rest of the analysis. Viewing E : F2̀ ! F 2`2 asE : F2̀ � F2̀ ! F2, we note that E(x1 � � � xp; r1 � � � rp) =Ppi=1E(xi; ri), and soPrr "�(r) = pXi=1E(xi; ri)# � 1� �0 : (43)where r = (r1; :::; rp) is uniformly distributed in F pk2 .Case 2: Prr[�(r) 6=Ppi=1Xi(ri)] � �0. In this case, the other test in Step 1 rejects with probabilityat least �0.Thus, we may assume that Prr[�(r) =Ppi=1Xi(ri)] � 1� �0. Combining this with Eq. (43),we have Prr " pXi=1Xi(ri) = pXi=1E(xi; ri)# � 1� 2�0 : (44)It follows that for every j 2 [p] there exists c = (c1; :::; cj�1; cj+1; :::; cp) 2 F (p�1)k2 such thatPrrj [Xj(rj) = E(xj ; rj) + bj;c] � 1� 2�0, where bj;c def= Pi 6=j(E(xi; ci)�Xi(ci)).69

Case 3: For some j, the input-oracle Xj is not 2�0-close to E(xi). Recalling that Xj is 2�0-close toE(xi) � b2k , where b def= bj;c 2 F2 is as de�ned above, we show that in this case (i.e., whenb = 1) the test in Step 3 rejects with constant probability.We �rst note that, for any ri; si 2 F k2 and �i 2 F2, it holds that �i � E(xi; ri) = E(xi; r0i) =E(xi; si � r0i) � E(xi; si), where r0i is as de�ned in Step 3. Thus, for random r; s 2 F pk2 and� = (�1; :::; �p) 2 F p2 , and for r0 as de�ned in Step 3,Prr;s;� "�(s� r0)��(s) = pXi=1 �i � E(xi; ri)#= Prr;s;� "�(s� r0)��(s) = pXi=1E(xi; si � r0i)� pXi=1E(xi; si)#� 1� 2�0 ;where the inequality is due to Eq. (43). This means that Step 3 essentially checks whetherPpi=1 �i � Xi(ri) equals Ppi=1 �i � E(xi; ri), or equivalently whether �j � (Xj(rj) � E(xj ; rj))equals Pi 6=j �i � (E(xi; ri)�Xi(ri)). On the other hand, for each possible choice of b0 2 F2, itholds thatPrrj ;�j ��j � (Xj(rj)�E(xj ; rj)) 6= b0� � Prrj [Xj(rj)�E(xj ; rj) = 1] � Pr�j ��j 6= b0�� (1� 2�0) � 12 ;where the second inequality is due to the case's hypothesis. Using a random choice ofr1; :::; rj�1; rj+1; :::; rp 2 F k2 and �1; :::; �j�1; �j+1; :::; �p 2 F2, and setting b0 = Pi 6=j �i �(E(xi; ri)�Xi(ri)), it follows that, in the current case, Step 3 rejects with probability at least((1 � 2�0)=2) � 2�0 = (1=2) � 3�0 � 1=8. Speci�cally:Prr;s;�1;:::;�p " pXi=1 �i �Xi(ri) 6= �(s� r0)��(s)#� Prr1;:::;rp;�1����p 24�j � (Xj(rj)�E(xj ; rj)) 6=Xi 6=j �i � (E(xi; ri)�Xi(ri))35� Prr;s;�1;:::;�p "�(s� r0)��(s) 6= pXi=1 �i �E(xi; ri)#� 1� 2�02 � 2�0 = 12 � 3�0 :Case 4: x def= (x1; :::; xp) 62 L. Recall that Step 2 ensures that encodings of vectors not in L arerejected with probability 1=2. It follows that, in this casePrr;w[�(r � wL)��(r) = E(x;wL) 6= 0] � (1� 2�0)=2 ;because Prr[�(r�v)��(r) = E(x; r�v)�E(x; r)] � 1�2�0 for every v, and Prw[E(x;wL) 6=0] = 1=2 for x 62 L.Thus, in each case, V rejects with probability at least min(�0; 1=8) � min(�=2; 1=8) � �=8. On theother hand, one of these cases must occurs, because otherwise (X1; :::;Xp; �) has deviation lessthan � (in contradiction to the hypothesis). 70

5.4.2 LIPS based on the Reed-Muller encoding functionThe main result in this subsection is an adaptation of the intermediate inner-veri�er of Aroraet al. [2, Sec. 7]. Recall that the latter uses signi�cantly shorter encoding and proofs (and lessrandomness) than the simpler Hadamard-based veri�er, but veri�cation is based on (a constantnumber of) non-boolean answers.Theorem 5.19 There exists a > 0 such that for every pair of integers p and k > 2p, thereexists a (F2; (p; k)! (p+4;poly(log pk)); 12 ;)-LIPS. Furthermore, the lengths of the encoding andthe proof are poly(pk), and the randomness in use equals O(log pk). Moreover, the veri�er makes(1� k�1)-uniformly distributed queries to each of its oracles, and makes exactly one query to eachof the p input-oracles.Our construction is a modi�cation of the inner-veri�er presented by Arora et al. [2]; we referspeci�cally to the proof of Theorem 2.1.9 presented in [2, Sec. 7.5], as interpreted in [25]. We thusstart by providing an overview of this proof and discuss the main issues that need to be addressedin adapting it to a proof of Theorem 5.19.Overview of the proof of [2, Thm. 2.1.9]. We use the formalism of [25] to interpret themain steps in the proof of [2]. As a �rst step in their proof, Arora et al. [2] reduce SAT to aGapPCS problem (see De�nition A.1 in Appendix A). Then, using a low-total-degree test, theygive a 3-prover 1-round proof system for the latter problem. Finally they observe that the proofsystem with slight modi�cations also works for proving properties of inputs presented as oraclesthat encode strings that when concatenated yield the input. Let us review the completeness andsoundness condition of the reduction (used in the �rst step). Recall that an instance of GapPCSconsists of a sequence of algebraic constraints on the values of a function g : Fm ! F . Eachconstraint is dependent on the value of g at only poly-logarithmically many inputs. The goal isto �nd a low-degree polynomial g that satis�es all (or many) constraints. Actually, the reductionconsists of a pair of algorithms A and B, where A reduces instances of SAT to instances of GapPCS,and B transforms pairs (�; �) to polynomials g such that if � satis�es the formula � then g satis�esall constraints of A(�). The properties of the reduction are as follows:Completeness: If � is an assignment satisfying � then g = B(�; �) is a polynomial of total degree dthat satis�es all constraints of A(�).Soundness: If � is not satis�able, then no polynomial of total degree d satis�es more than an �fraction of the constraints of A(�).Since the soundness condition only focuses on degree d polynomials (and does not refer to arbitraryfunctions), constructing such a reduction turns out to be easier than constructing a full-edgedPCP. On the other hand, by combining this reduction with a low-degree test it is easy to extendthe soundness to all functions.One would hope to use the above reduction directly to get a LIPS by setting � to be some formulaenforcing the linear conditions L. But as noted earlier, several problems come up: First, B is not alinear map, but this is �xed easily. The more serious issue is that the soundness condition permitsthe existence of low-degree functions that satisfy all constraints but are not even close to B(�; �)for any � . Indeed, in standard reductions the only functions in the range of B are polynomials ofindividual degree d=m in each variable, but this is not something that the low-degree test checks(nor can this be checked directly by a constant number of queries). Thus, to apply the low-degree71

test and protocol of [2], we augment the reduction (from SAT to GapPCS) itself such that it satis�esthe following stronger soundness condition (which corresponds to rejection of non-canonical proofs(cf. Section 5.3.1)).Modi�ed Soundness: If g is a polynomial of total degree d that is not in the range of B(�; �) then gdoes not satisfy more than an � fraction of the constraints of A(�).We note that in our setting � is provided by the input-oracles19 (whereas the linear constraintsare given as an explicit input), and so the modi�ed soundness refers to this � (i.e., we require thatif the degree d polynomial g di�ers from B(�; �) then g does not satisfy more than an � fractionof the constraints of A(�)). We comment that strong soundness (as de�ned in Section 5.3.1) willfollow by combining this modi�ed soundness with a low-degree test.To obtain the modi�ed soundness condition, we need to delve further into the reduction of [2](including the corresponding transformation B). Suppose that their reduction produces a GapPCSinstance on m variate polynomials. Then, the corresponding solution g = B(�; �) satis�es thefollowing additional conditions:1. The m-variate polynomial g = B(�; �) has the form g(i; ~x) = gi(~x), for i 2 [m0], where thegi's are polynomials (of varying degrees) in m� 1 variables. Furthermore, g is a polynomialof degree m0 � 1 < d in the �rst variable.2. There exists a sequence of integers hmiii2[m0] such that the polynomial gi only depends onthe �rst mi � m� 1 variables.3. For every i 2 [m0] there exists a sequence of integers hdi;jij2[m�1] such that gi has a degreebound of di;j � (d�m0 + 1)=(m� 1) in its jth variable.4. The polynomial g must evaluate to zero on some subset of the points (due to padding of theactual input to adequate length).5. Finally, over some subset of the points, g evaluates to either 0 or 1.(Note that this condition is not trivial because we will not be working with F2 but someextension �eld K of F2. In fact over the extension �eld, these constraints are not even linear.However, these conditions turn out to be F2-linear.)In what follows we will, in e�ect, be augmenting the reduction from SAT to GapPCS so as toinclude all constraints of the above form. This will force the GapPCS problem to only havesatisfying assignments of the form g = B(�; �) and thus salvage the reduction.Actuality, we will be considering satisfying assignments that are presented as a concatenation ofseveral pieces that are individually encoded (in corresponding input-oracles), and the constraints ofthe system we build will be verifying that the \concatenation" of the various pieces is a satisfyingassignment. Furthermore, we will only by looking at systems of linear equations and not at generalsatis�ability.The actual construction (i.e., proof of Theorem 5.19): Recall that we need to describethe three ingredients in the LIPS: the encoding function E : F k2 ! (F k02)n, the proving functionP : F pk2 ! (F k02)N , and the veri�er (oracle machine) V . As stated above, we do so by adapting19Indeed, as hinted in previous subsections, the terminology of assignment testers [17] (or PCPPs [10]) is perfectlytailored to express what is going on. 72

known constructions. (In particular, whenever we refer to a step as being \standard", such a step isperformed explicitly in [25].) We start by developing the machinery for the encoding function andthe proving function. We do so by transforming the question of satisfaction of a system of linearequations into a sequence of consistency relationships among polynomials and using this sequenceto describe the encoding and proving function. For the rest of the discussion, we �x a linear spaceL 2 LF2;pk and vectors x1; : : : ; xp such that (x1; : : : ; xp) 2 L.Obtaining a width-3 linear system. Our �rst step corresponds to the reduction of SAT (or NP) to3SAT, which is taken for granted in the standard setting. Here we reduce the linear conditionsto ones that refer to three variables each (i.e., width-3 linear constraints). As in the standardcase, this is done by introducing auxiliary variables.To convert L into a conjunction of width-3 linear constraints, we introduce a vector, denotedxp+1, of at most n = (pk)2 auxiliary variables, and transform L into a linear space L0 ofwidth 3-constraints such that (x1; : : : ; xp) 2 L if and only if there exists xp+1 such that(x1; : : : ; xp+1) 2 L0. (Indeed, each linear condition in t � pk variables is replaced by t � 2width 3-constraints using t�3 new auxiliary variables.) Furthermore, for each (x1; : : : ; xp) 2 Lthere exists a unique xp+1 such that (x1; : : : ; xp+1) 2 L0.For sake of simplicity, we will assume in the sequel that x1; :::; xp+1 are all inputs, althoughxp+1 is actually not an input but rather (only) part of the proof. Thus, it is important tonote here that the bits of xp+1 are (uniquely determined as) linear combinations of the bitsof x1; :::; xp. Indeed, one may think of the current step as a reduction (while noting that thisreduction is a linear transformation).Note that L0 2 LF2;pk+n, because jxij = k if i � p whereas jxp+1j = n� k. We will take careof the latter discrepancy in the next step.Input representation: Low-degree extensions and dealing with padding. The step of taking a low-degree extension is standard, but we need to deal with the padding (of inputs) that it creates(as well as with the padding required to eliminate the discrepancy in the input lengths, cre-ated in the previous step). That is, we have to augment the linear system to verify that thepadded parts of the input are indeed all-zero.For h = dlog ne and m = dlog n= log log ne (so that hm � n), we pick a �eld K = f�0 =0; �1 = 1; : : : ; �jKj�1g of size poly(h) that extends F2 (i.e., K = GF(2O(log h))), and a subsetH = f�0; : : : ; �h�1g of K. Next, we let x0i = xi0hm�jxij (i.e., we pad xi with enough zeroes sothat its length is exactly hm). Now, we let L00 be the F2-linear constraints indicating that thepadded parts of x0i are zero, and (x01; : : : ; x0p+1) correspond to the padding of (x1; : : : ; xp+1) 2L0.Finally, as usual, we view x0i as a function from Hm ! f0; 1g and let f1; : : : ; fp+1 : Km ! Kbe m-variate polynomials of degree h� 1 in each of the m variables that extend the functionsdescribed by x01; : : : ; x0p+1.(We mention that the encoding function E will essentially map xi to the table of all valuesof the function fi.)Concatenating the p pieces (standard): We let f : Km+1 ! K be the function given by f(�i; � � �) =fi(� � �) for i 2 f1; : : : ; p+ 1g such that f is a polynomial of degree p in its �rst variable.Low-degree extension of L00 (standard): Note that L00 imposes a linear constraints on the values off , where each constraint depends on at most three values of f . Thus, each constraint has73

the generic form �1f(z1) + �2f(z2) + �3f(z3), for some �1; �2; �3 2 f0; 1g and z1; z2; z3 2Hp;m def= f�1; : : : ; �p+1g � Hm. We view L00 as a function L00 : f0; 1g3 � H3p;m ! f0; 1g suchthat L00(�1; �2; �3; z1; z2; z3) = 1 if the constraint �1f(z1) + �2f(z2) + �3f(z3) is imposed byL00, and extend it to L̂00 : K3(m+1)+3 ! K that is linear in the �rst three variables, has degreep in other three variables and degree h� 1 in all other 3m variables. Thus, using h > p, thepolynomial L̂00 has individual degree h� 1.We comment that the current step does not rely on L00 being a linear subspace (but ratheron it being a system of width-3 equations). The linearity of L00 (or rather of the genericconditions �1f(z1) + �2f(z2) + �3f(z3)) will be used in the next step (i.e., in rule (R0)).Verifying satis�ability of L00 via sequence of polynomials. This step corresponds to the \sum check"in [2] (which is one of the two procedures in the original inner-veri�er, the other being alow-degree test). The current presentation follows [25].The current step is standard except for rule (R0) below, which capitalizes on the linearity ofthe condition being checked. That is, in the standard presentation g1 is the product of threevalues of g0 (corresponding to an or of three Boolean values), whereas here it is their sum(corresponding to a width-3 linear constraint). In addition, rule (R0) includes an extra checkthat some elements being considered are in f0; 1g.Let m0 = 4m+ 8. We de�ne a sequence of polynomials g0; : : : ; gm0+1 : Km0 ! K, where g0 isessentially f , and each gi is related to gi�1 (i.e., g1 is related to g0 by an F2-linear relationship,and gi is related to gi�1 by a K-linear relationship). The motivation behind these polynomialsis the following: The function g1 is de�ned such that the condition (x1; : : : ; xp+1) 2 L0 isequivalent to the condition g1(~u) = 0 for every ~u 2 Hm0 . The polynomials gi graduallyexpand the set of points on which the function vanishes from Hm0 to Km0 ; speci�cally, gi+1should vanish on Ki �Hm0�i. Indeed, rule (Ri) implies that gi vanishes on Ki�1 �Hm0�i+1if and only if gi+1 vanishes on Ki �Hm0�i. Thus, �nally we have (x1; : : : ; xp+1) 2 L0 if andonly if gm0+1 � 0.For �i's and ui's from K and zi's from Km+1, we require thatg0(z1; : : : ; z4; �1; : : : ; �4) = f(z1) (45)Whereas Eq. (45) seems at this stage as merely a notational convention, it actually imposesa condition that will have to be checked. It is more evident that the following conditionsimpose relations between the various polynomials. As stated above, these relations deviatefrom the standard ones only in the next rule (R0).(R0) : g1(z1; : : : ; z4; �1; : : : ; �4) = L̂00(�1; �2; �3; z1; z2; z3) � 3Xi=1 �i � g0(zi~0)+�4 � (g0(z4~0)2 � g0(z4~0)):We call the reader attention to the fact that the main term in (R0) is linear in the three(typically di�erent) values of g0, whereas in the standard construction this term is the produceof three such values. In contrast, the secondary term in (R0) involves a power of a singlevalue of g0 (i.e., it includes g0(z4~0)2), which is not K-linear but is F2-linear. The latter fact isbased on the fact that the map � 7! �2 is an F2-linear map over �elds of characteristic two.We mention that the secondary term in (R0) is meant to verify that for every z4 2 Hm the74

value of g0(z4~0) is in f0; 1g (bearing in mind that we will require g1 to vanish on Hm0). Thisveri�cation is \optional" in standard PCPs, in the sense that it is not needed for soundness,but is occasionally thrown in because it serve the intuition (and do not involve much extrawork). In contrast, in our case this veri�cation is necessary to enforce the strong soundnesscondition (i.e., to rule out the possibility that the input-oracles are not valid encodings).The standard relations are, for i = 1; : : : ;m0 (and uj's in K):(Ri) : gi+1(u1; : : : ; ui�1; ui; ui+1; : : : ; u4m+8) = h�1Xj=0 uji � gi(u1; : : : ; ui�1; �j ; ui+1; : : : ; u4m+8):Merging the di�erent polynomials into a single polynomial g (standard): Let g : Km0+1 ! K be thefunction given by g(�i; z) = gi(z) for i 2 f0; : : : ;m0+1g such that g is a polynomial of degreem0 + 1 in the �rst variable (i.e., i). Using h > m0 > p, we have that g is a polynomialof individual degree at most 2h, because g0 has individual degree h, the polynomial g1 hasindividual degree 2h, and each gi+1 has individual degree h in its �rst i variables and individualdegree 2h in the other variables. Thus, g has total degree at most d = 2m0h.Lines and curves over g (standard): Let gjlines : K2(m0+1) ! Kd+1 be the function describing thetotal degree d polynomial g : Km0+1 ! K restricted to lines; that is, for a line ` 2 K2(m0+1)the value of gjlines(`) is a univariate degree d polynomial representing the values of g on`. Let w = 2(m0 + 1)h and k00 = wd + 1 and let gjcurves : C ! Kk00 be the restrictionof g to some subset C of degree w curves, where C is the set of all the curves that arisein the computation of the veri�er described below. That is, a curve C 2 C is a functionC = (C1; : : : ; Cm) : K ! Km0+1, where each Ci is a univariate polynomial of degree w, andgjcurves(C) is the univariate degree wd polynomial that represents the value of g on the curveC (i.e., on the set of points fC(e) : e 2 Kg). (Indeed, a line is a curve of degree 1.)The encoding and proving functions: Finally, we get to de�ne the encoding and proving functions.This step is standard, but we highlight a few non-standard aspects of it.The encoding function E(xi) is the table of values of the function f 0i : Km ! Kk00 , wheref 0i(x) = (fi(x); 0k00�1); i.e., elements of K are being written as vectors from Kk00 . Recall thatfi is a low-degree extension of (the padded version of) xi. Thus, each of the values of fi(i.e., the value of fi at each point) is a F2-linear combination of the values of (the bits in) xi.This is due to the fact that polynomial extrapolation is a linear operation (on the function'svalues).The proving function P (L00; x01; : : : ; x0p+1) = P0(L; x1; : : : ; xp) consists of the triple of functions(g0; gj0lines; gjcurves), where g0 : Km0+1 ! Kk00 and gj0lines : K2(m0+1) ! Kk00 are the functions gand gjlines with their range being mapped, by padding, into Kk00 ; that is, g0(x) = (g(x); 0k00�1)and gj0lines(`) = (gjlines(`); 0k00�(d+1)). Note that P (L00; x01; : : : ; x0p+1) refers to the provingfunction of the reduced instance (obtained in the reduction to width-3 constraints), whereasP0(L; x1; : : : ; xp) refers to the proving function of the original instance. Recall that x0p+1 (aswell as the other x0i-s) are F2-linear combinations of the original xi-s. We highlight the factthat the values of g are linear in the values of the gi's, which in turn are linear in g1, whichin turn are F2-linear in g0 (and hence in the fi's). Also, the values of gjlines and gjcurves arelinear in the values of g. 75

We note that the encoding is a sequence of length jKjm = poly(h)m = poly(n) = poly(pk) overthe alphabet Kk00 , and its relative distance is at least 1 � (h2=jKj) > 1=2. The proof length (i.e.,jKjm0+1) is polynomial in the encoding length (because m0 = O(m)).To motivate the description of the veri�er V , we note that the veri�er, which essentially hasaccess to the input-oracles f1; : : : ; fp+1 and to the proof-oracle (g; gjlines; gjcurves), needs to verifythe following conditions:1. The function g is a polynomial of degree at most d, the function gjlines is the restriction of gto lines, and gjcurves is the restriction of g to curves.2. The degree of g in its �rst variable is at most m0 + 1.3. For i 2 f1; : : : ;m0 + 1g, the function gi : Km0 ! K given by gi(z) = g(�i; z) is computedcorrectly from gi�1 by an application of the rule (Ri�1).4. The function gm0+1 is identically zero.5. The function g0 is a polynomial of degree 0 in all but its �rst m+ 1 variables.6. The function f : Km+1 ! K given by f(x) = g0(x; 0m0�(m+1)) is a polynomial of degree atmost p in its �rst variable and degree at most h� 1 in each of the remaining m variables.7. The function f satis�es f(�i; x) = fi(x) for every i 2 f1; : : : ; p+ 1g and x 2 Km.Working one's way upwards, one can see that P0(L; x1; : : : ; xp) is the only function that satis�esall the above conditions. In particular, Conditions (5)-(7) force g0 to uniquely represent the fi's,Conditions (1)-(4) guarantee that the fi's are the encoding of inputs that satisfy L, and Condi-tions (1)-(2) also force the uniqueness of the three parts of the proof-oracle. (We comment thatgjlines and gjcurves are included in the proof-oracle (merely) in order to allow the veri�cation of theaforementioned conditions using very few queries.)Indeed, it is time to describe the veri�er's actions. The aim is to emulate a large number ofchecks (i.e., random veri�cation of all the above conditions) by using only p + 4 oracle calls, andstill incur only a constant error probability. Speci�cally, ignoring Condition (1) for a moment, arandom test of Condition (2) requires m0 + 2 points in the domain of g, Condition (3) involvesm0 + 1 equalities (which refer to m0 + 1 di�erent parts of g and each (but one) of these equalitiesrefers to h values), Condition (5) involves m0 �m equalities (one per each suitable variable in g0)and Condition (7) involves p equalities, each referring to a di�erent function fi. Following [2], allthese di�erent conditions will be checked by retrieving the corresponding (random) g-values froma suitable curve in gjcurves, and obtaining the fi-values from the corresponding oracles. Finally,Condition (1) will be tested by comparing the value of g at a random point to the values of gjlinesand gjcurves on random lines and curves that pass through this point. The comparison to g andgjlines (which is the well known low-degree test) will also establish the claim that g has low-degree.Details follow.The veri�er �rst picks one random test (to be emulated) per each of the equalities correspondingto the Conditions (2){(7) above. Speci�cally, in order to emulate the testing of Conditions (2),(5) and (6), it picks random axis parallel lines (one per each of the relevant variables) and picksO(h) arbitrary points on these Km0+1-lines with the intention of inspecting the value of g0 at thesepoints. (We stress that the veri�er does not query g0 at these points, but rather only determinesthese points at this stage.) Similarly, in order to emulate the testing of Conditions (3), (4) and (7),it picks random points from the domain of the corresponding gi's and f . Having chosen these points,76

it picks one totally random point in Km0 . All in all this amounts to determining w = O(mh) pointsin the domain of g0. The veri�er then determines a degree w curve, denoted C : K! Km0+1, thatpasses through these w points. Finally (in order to check Condition (1)), it picks a random point� on this curve and a random line ` through the point �.Overall, the above random choices can be implemented by picking a constant number of randompoints in Km0+1 and recycling randomness among the various tests (see details in [2] on [25]). Thus,the randomness complexity of the veri�er is O(m0 log jKj) = O(m log h) = O(log n) = O(log pk).At this point, we may also bound the size of of the set of curves used by the veri�er (i.e., C) bypoly(pk). This bounds the size of gjcurves and thus the length of the entire proof (by poly(pk)).We �nally get to the actual queries of the veri�er. It queries the proof-oracle for the values ofg0(�), gj0lines(`) and gjcurves(C). It veri�es that g0(�) is actually in K and that gj0lines(`) is in Kd+1 (asopposed to Kk). It then veri�es that the three responses agree at �, thus checking Condition (1).Finally, it veri�es the values of g0 on the test points for tests (2)-(7), as provided (or \claimed")by gjcurves(C), are consistent with the Conditions (2)-(7). In particular, verifying Condition (7)requires a single probe into each of the input-oracles. (Once again the responses to these probesare elements of Kk and the veri�er checks that the responses are in K padded with 0's.)This concludes the description of the veri�er. We stress that this description is identical to theone in [2] (as interpreted in [25]), except for two aspects. Firstly, the curve sub-oracle provides thevalue of g on some additional points in order to support the additional checks in Conditions (2),(5) and (6). Indeed, these conditions were added here in order to enforce the modi�ed soundnesscondition (which implies strong soundness). Secondly, Conditions (1)-(7) refer to the functionsf1; :::; fp+1, g and gjlines, whereas the veri�er actually has access to padded versions of these functions(i.e., f 01; :::; f 0p+1, g0 and gj0lines) and veri�ers the correctness of the padding. Indeed, the \0-paddingveri�cations" are only intended to guarantee the modi�ed notion of soundness (and are not neededfor the standard notion of soundness). Omitting all these extra tests, would get us back to theinterpretation of [2] as provided in [25].In total, the veri�er makes only (p+1)+3 queries. Furthermore, the single query made to eachof the p+1 input-oracles is uniformly distributed and the three queries made to the proof-oracle areeach uniformly distributed in the corresponding part of the proof-oracle. (We will address the issueof making almost-uniform queries to the proof-oracle, as a single entity, at the end of the proof.)The answers received by V are from Kk00 and thus the answer length equals k00 log2 jKj, which ispoly(log(pk)) as required (using k00 log2 jKj = O(wd � log h) and d < w = O(mh) < (log n)2 =O(log(pk))2). Finally, note that all checks by the veri�er are actually K-linear, except for thesatisfaction of rule (R0), which is only F2-linear.The (strong) soundness of the above veri�er is established, as usual, assuming jKj � poly(h).In particular, if the function g : Km0+1 ! K (obtained by ignoring the last k00 � 1 coordinates ofthe function g0) is not 0:01-close to some polynomial ĝ of total degree d then the (point-versus-line)low-degree test will reject with constant probability. Thus, we may assume that g0 is 0:01-close tosuch a ĝ. Standard soundness follows by the standard argument, but actually the same argumentalso establishes strong soundness. Intuitively, the low-degree test also guarantees that g0 is rejectedwith probability proportional to its distance from ĝ. Furthermore, a disagreement of either gj0linesor gjcurves with ĝ is detected with proportional probability by the test that checks Condition (1).Similarly, disagreement between f 0i and ĝ is detected with proportional probability by the test thatchecks Condition (7). Finally, if any of the Conditions (2)-(6) is violated (when applied to ĝ), thenthe veri�er rejects with constant probability (also when accessing g rather than ĝ). Following is amore detailed analysis. 77

We consider an arbitrary (X1; :::;Xp;Xp+1; �), where Xi : Km ! Kk00 and � =(g0; gj0lines; gjcurves) such that g0 : Km0+1 ! Kk00 , gj0lines : K2(m0+1) ! Kk00 and gjcurves : C ! Kk00 . Wedenote by � the deviation of (X1; :::;Xp;Xp+1; �) with respect to (E;P; V). Our aim is to showthat V rejects (X1; :::;Xp;Xp+1; �) with probability
(�). For �0 = �=5 � 1=5, we consider thefollowing possible sources of the value of the deviation.Case 1: Either Prz[g0(z) 62 K � 0k00�1] � �0 or Pr`[gj0lines(`) 62 Kd � 0k00�(d+1)] � �0. In this case, byvirtue of the 0-padding veri�cation, V rejects with probability at least �0.Thus, we assume in the rest of the analysis that, for some functions g : Km0+1 ! K andgjlines : K2(m0+1) ! Kd+1, it holds that Prz[g0(z) = (g(z); 0k00�1)] > 1� �0 and Pr`[gj0lines(`) =(gjlines(`); 0k00�(d+1))] > 1� �0.Case 2: The function g de�ned above is �0-far from being a degree d polynomial. In this case,by virtue of the point-versus-line test included in Condition (1), the veri�er rejects withprobability
(�0) [2, Lem. 7.2.1.4]. (Here we use jKj = poly(d). The constant in the
 isunspeci�ed in [2], but explicit bounds are known now. E.g., [4, Thm. 16] lower bounds therejection probability by 23�0.)Thus, we assume in the rest of the analysis that the function g is �0-close to a degree dpolynomial, denoted ĝ.Case 3: Pr`[9e 2 K gjlines(`)(e) 6= ĝ(`(e))] � 4�0, where gjlines(`)(e) denotes the value of the uni-variate polynomial gjlines(`) at e. Note that if gjlines(`)(e) 6= ĝ(`(e)) for some e 2 K thenthe two di�erent (degree d) univariate polynomials gjlines(`) and ĝ(`) must disagree on atleast jKj � d > jKj=2 of the points on the line `. Thus, in this case, Pr`;e[gjlines(`)(e) 6=ĝ(`(e))] � 4�0=2. Noting that `(e) is uniformly distributed in Km0+1, it follows thatPr`;e[gjlines(`)(e) 6= g(`(e))] � 2�0 � �0, which means that (again by virtue of the point-versus-line test) V will reject with probability at least �0.Case 4: PrC2C [9e 2 K gjcurves(C)(e) 6= ĝ(C(e))] � 4�0, where gjcurves(C)(e) denotes the value of theunivariate polynomial gjcurves(C) at e. Again, using the degree bound (i.e., wd = O(d2)) ofthese two univariate polynomials (and jKj > wd=2), it follows that PrC2C;e[gjcurves(C)(e) 6=ĝ(C(e))] � 4�0=2, and PrC2C;e[gjcurves(C)(e) 6= g(C(e))] � 2�0 � �0, because C(e) is uniformlydistributed in Km0+1. Thus, in this case (by virtue of the point-versus-curve test), V willreject with probability at least �0.Thus, in the rest of the analysis, we assume thatPrC2C [8e 2 K gjcurves(C)(e) = ĝ(C(e))] � 1� 4�0 : (46)In the rest of the analysis, we will heavily rely on the fact that when the veri�er needs thevalues of ĝ at certain locations (for a random test of some of Conditions (2)-(7)), it obtainsthese values by a single random query to gjcurves. Furthermore, Eq. (46) guarantees that theanswers obtained from gjcurves typically match all relevant values of ĝ.Case 5: For some i it holds that Prz02Km [ĝ(�0; �i; z0; 0m0�(m+1)) 6= Xi(z0)] � 5�0. In this case, thetesting of Conditions (6)-(7), will cause rejection with probability at least 5�0�4�0, where thelatter term is due to (Eq. (46) and) the fact that in testing these conditions we obtain thevalues of ĝ by a single (random) probe to gjcurves.78

Thus, in the rest of the analysis, we assume that each Xi is 5�0-close to ĝ(�0; �i; �; 0m0�(m+1)).In particular, it follows that Xi is 5�0-close to some m-variant polynomial of total degree d,denoted fi.Case 6: Some fi has individual degree greater than h � 1 in one of its variables. In this case, theveri�er rejects with constant probability by virtue of checking Condition (6). (Indeed, herewe rely on the negation of Cases 4 and 5.)Thus, in the rest of the analysis, we assume that each fi is an m-variant polynomial ofindividual degree h� 1, which encodes an hm-long input, denoted x0i.Case 7: Either (x01; :::; x0p+1) 62 L00 or some x0i is not in f0; 1ghm . In this case, the veri�er rejectswith constant probability by virtue of checking Conditions (3)-(4).Case 8: The polynomial ĝ does not equal P (L00; x01; :::; x0p+1). Since both polynomials satisfy thesame relations, this case may be due only to the individual degrees of ĝ, which are checked inConditions (2), (5) and (6). Thus, in this case, the veri�er rejects with constant probability.Thus, in each case, the veri�er rejects with probability at least min(
(�0);
(1)) =
(�0) =
(�). Onthe other hand, one of these cases must occurs, because otherwise (X1; :::;Xp+1; �) has deviationless than 5�0 = � (in contradiction to the hypothesis).This establishes the theorem, except for the extra condition that requires that the veri�er makesalmost-uniform to each of its oracles. Recall that the single query made to each of the input-oraclesis uniformly distributed, and that each of the three queries made to the proof-oracle is uniformlydistributed in the corresponding part of the proof-oracle. The problem is that these three parts donot have the same length. The solution is to modify the construction such that each part of theproof-oracle has approximately the same size. This is done by replications, and as usual a replicationtest will be used (i.e., with probability 1=2 and otherwise we invoke the veri�er V described abovewhile providing it with access to random copies of the corresponding parts). Since we may a�ord afactor k blow-up in the proof length (and randomness complexity that is logarithmic in the prooflength), we can easily make the lengths equal up to a 1 � k�1 factor. Thus, the modi�ed veri�ermakes (1� k�1)-uniform queries to each of its oracles, and the theorem follows.5.5 Combining all the constructionsWe are now ready to prove the main theorem of this section.Theorem 5.20 (Theorem 2.3, restated): For in�nitely many k, there exists a locally-testable bi-nary code of constant relative distance mapping k bits to n def= exp(~O(plog k)) �k bits. Furthermore,the code is linear.Proof: The theorem is proved by composing the locally testable code of (Part 1 of) Theorem 2.4with the two LIPSes constructed in Section 5.4 (i.e., in Proposition 5.18 and Theorem 5.19). Actu-ally, we apply three composition operations, using the LIPS of Theorem 5.19 twice. The sequenceof compositions can be ordered arbitrarily. For example, we may �rst compose the locally-testablecode (LTC) with the LIPS of Theorem 5.19, obtaining a new LTC, which is composed again withthe latter LIPS, and �nally compose the resulting LTC with the LIPS of Proposition 5.18. This,\top-down" order requires to use the augmented composition theorems (which guarantee preserva-tion of the almost-uniformity of the tester's queries). Wishing to use only the \vanilla" composition79

theorems (which do not preserve the said feature), we use instead a \bottom-up" order of compo-sitions. This will only require that, in each of the compositions, the outer construct (which is oneof the abovementioned basic constructs) makes almost-uniform queries. We start by recalling theconstructs being used (going from the bottom upwards):1. The (F2; (pH; kH) ! (pH + 5; 1); 12 ; 18)-LIPS of Proposition 5.18, for any choice of pH and kH.This (Hadamard based) LIPS uses encoding length 2kH , proof length 2pHkH , and randomness3pHkH + pH < 4pHkH.2. The (F2; (pRM; kRM) ! (pRM + 4;poly(log pRMkRM)); 12 ;
(1))-LIPS of Theorem 5.19, for anychoice of pRM and kRM. This (Reed-Muller based) LIPS uses encoding and proof lengthpoly(pRMkRM), and randomness O(log pRMkRM). Moreover, the veri�er makes (1 � kRM�1)-uniformly distributed queries to each of its oracles.3. The locally testable code �k ! �n used in Section 3.2 to establish Part 1 of Theorem 2.4,where n = exp(~O(plog k)) � k and � = F b2 for b = exp(~O(plog k)).Recall that this locally testable code (LTC) is F2-linear and has constant relative distance,and that the underlying parameters in its construction are d = mm such that n = mm2+o(m)and k = mm2�2m�o(m) (see Eq. (3) and the parameter setting before it). Furthermore,referring to Remark 3.6, the tester makes two 0:8-uniform queries, and uses randomnesscomplexity r such that 2r � jF jm � (jF j � jRj=jF jm)2, where jF j = O(d) and jRj = n. Thus,2r < (n=dm�2) � n < m3m � n, which in turn equals exp(~O(plog k)) � k, since n < m3m � k andm < plog k.We start by using Theorem 5.16 to compose the LIPS of Item 2 (as the outer LIPS) with the LIPSof Item 1 (as the inner LIPS), which means setting kH = poly(log pRMkRM) and pH = pRM + 4.Setting pRM = p0 and kRM = k0, the result is a (F; (p0; k0)! (p0+9; 1);
(1);
(1=p0))-LIPS, denotedS0, that uses O(log p0k0) +O(p0 � poly(log p0k0)) = poly(p0 � log k0) random coins, and encoding (andproof) length poly(p0k0) � exp(poly(log p0k0)) = exp(poly(log p0k0)).Next, we compose the LIPS of Item 2 (as the outer LIPS) with the LIPS S0 (as the innerLIPS), which means setting k0 = poly(log pRMkRM) and p0 = pRM + 4. Setting pRM = p00 andkRM = k00, the result is a (F; (p00; k00) ! (p00 + 13; 1);
(1);
(1=p00)2)-LIPS, denoted S00, that usesO(log p00k00) + poly(p00 � log log k00) = O(p00 � log k00) random coins, and encoding (and proof) lengthpoly(p00k00).Finally, using Theorem 5.13, we compose the LTC of Item 3 with the LIPS S00 (as the innerLIPS), which means setting k00 = b = exp(~O(plog k)) and p00 = 2 + 13. The result is a binarylinear LTC of constant relative distance having length (exp(~O(plog k)) � k) � poly(b), which equalsexp(~O(plog k)) � k. The theorem follows.5.6 Additional remarksIn this section we show that certain locally testable linear codes over small alphabets can bemodi�ed such that the codeword tester makes only three queries, while essentially preserving thedistance and rate of the code. Speci�cally, we refer to testers that make almost-uniform queries,and start by providing a version of Theorem 5.20 that satis�es this condition.Proposition 5.21 (Theorem 5.20, revisited): For in�nitely many k, there exists a linear locally-testable binary code of relative constant distance that maps k bits to n def= exp(~O(plog k)) � k bits.Furthermore, for any � 2 (0; 1), the codeword tester makes �-uniform queries, and uses log2 k +~O(plog k)) random coins. 80

Proof: The proposition is proved by following the proof of Theorem 5.20, while using compositiontheorems (i.e., Theorems 5.15 and 5.17) that preserve the almost-uniformity of the queries madeby the veri�er (or tester). We note that Theorem 5.17 requires that the inner LIPS make the samenumber of queries to each of its input-oracles, and we observe that this property holds for each ofthe two basic LIPSes used in the proof of Theorem 5.20. Furthermore, the Hadamard-based LIPSmakes uniformly distributed queries to each of its oracles (cf. Proposition 5.18). We also note thatthe extra overhead created by Theorems 5.15 and 5.17 (as compared to Theorems 5.13 and 5.16)is insigni�cant in our case. Details follow.We �rst note that the almost-uniformity of the resulting LTC is essentially the product of thealmost-uniformity parameters of the basic constructs, which are dominated by the 0.8-uniformityof the LTC of Remark 3.6. However, as stated in Remark 3.6, this bound is arbitrary and we mayobtain (1� �)-uniformity for any constant � > 0.We could have proved the current proposition using any order of composition, but it seemsbest to verify it using the same order used in the proof of Theorem 5.20. We merely verify thatthe extra overhead of the composition theorems used here is indeed insigni�cant. This is obviousfor the randomness complexity of the LIPSes obtained by the �rst two compositions, in whichTheorem 5.15 is to be used (instead of Theorem 5.16). The reason is that the randomness inTheorem 5.17 is at most twice than in Theorem 5.16, whereas in the proof of Theorem 5.20 weanyhow stated the randomness complexity of the resulting LIPSes upto a multiplicative constant.Recalling that we compose constructs that make a constant number of queries, this su�ces forestablishing the current proposition, except for the randomness complexity of the resulting tester.To analyze the randomness complexity of the resulting tester, we take a closer look at the thirdcomposition (i.e., the composition of the LTC with the resulting LIPS, which uses Theorem 5.15).Note that the LTC being composed has randomness complexity r = log2 k + O(log(n=k)), andso the composition may incur an extra term of at most r � log2 k. Furthermore, the randomnesscomplexity of the LIPS veri�er is O(log(n=k)), and so the resulting tester also has randomnesscomplexity log2 k +O(log(n=k)) = log2 k + ~O(plog k).Reducing the randomness complexity of testers. As in the case of PCP (cf. [8, Prop. 11.2]),the randomness complexity of codeword testers can be reduced to be logarithmic in the length ofthe codeword. This complexity reduction is not important in case we start with Proposition 5.21,but we state it for sake of generality.Proposition 5.22 (reducing the randomness complexity of codeword testers): Let C : �k ! �nbe a code.1. Every (weak) codeword tester for C can be modi�ed into one that has randomness complexitylog2 n + O(log(1=�)) + log log j�j, and maintains the same rejection probabilities up-to anadditive term of �, while preserving the number of queries.2. If � = F ` and C is F -linear then every (strong) codeword tester for C can be modi�ed intoone that has randomness complexity log2 n + log log n + log log j�j + O(1), while preservingthe number of queries.The rejection probability may decrease by a constant factor. Furthermore, if the original testermade �-uniform queries then the resulting one makes (�� o(1))-uniform queries.Note that Part 1 may be used to obtain weak codeword testers of essentially optimal randomnesscomplexity, whereas Part 2 is used to obtain strong codeword testers (but requires C to be linear).81

Proof: The proof of Part 1 is straightforward (and is analogous to the easy case in Step 2of the proof of Claim 3.5.2). Speci�cally, using the probabilistic method, there exists a set ofO(��2 log2 j�nj) possible random-tapes for the original tester such that if the tester restricts itschoices to this set then its rejection probability on every potential sequence is preserved up to anadditive term of �. The reason is that, with probability 1� exp(��2t), a random set of t random-tapes approximates the rejection probability for any �xed sequence up to �, while the number ofpossible sequences is j�nj.The proof of Part 2 is analogous to the general case in Step 2 of the proof of Claim 3.5.2. As inthe proof of Claim 3.5.2, it su�ces to consider the non-codewords that have C(0k) as the codewordclosest to them. We �rst observe that, for every �xed w 2 �n that is �-far from C(0k), withprobability exp(�
(� � t)), a random set of t random-tapes approximates the rejection probabilityof w up-to a constant factor. Next, we upper-bound the number of non-codewords that are atdistance �n from C(0k) by (j�j � 1)�n � � n�n� < (j�j � n)�n. Thus, the probability that a random setof t random-tapes approximates the rejection probability of all non-codewords (up-to a constantfactor) is at least 1� exp(�
(� � t) + �n log(j�j � n)). Thus, setting t = O(n log(j�j � n)) and using� � 1=n, the main claim of Part 2 follows.Regarding the almost-uniformity of queries, note that with probability at least 1�n � exp(��2 �t=n) (over the choices of the set of t random-tapes) the resulting tester makes ((1� �) � �)-uniformqueries. The proposition follows.Reducing the query complexity of testers. The relevance of low randomness complexity tothe project of reducing the query complexity becomes clear in the next proposition. (Note that lowrandomness complexity of the tester was also used in establishing Theorem 5.20.)Proposition 5.23 Let � = F and suppose that C : �k ! �n is a locally-testable F -linear codeof constant relative distance. Furthermore, suppose that, for some � 2 (0; 1), the codeword testermakes �-uniform queries and has randomness complexity r = r(k; n). Then, for n0 = n + O(2r),there exists an F -linear code C0 : �k ! �n0 of constant relative distance that is testable with threequeries.Proposition 5.23 can be extended to the case � = F `, for any constant `, obtaining n0 = n+(q`)2 �2r,where q is the query complexity of the original tester. An analogous result can be stated for non-linear codes (and proven by using the Long Code of [8], but in this case the length blows-updouble-exponentially with q log j�j).Proof: The current proposition follows by composing the C-tester, which makes q = O(1) queries,with the (F; (q; 1) ! (3; 1); 1; q�2)-LIPS presented next, where the composition uses Theorem 5.15.We note that the LIPS that we are going to construct is fundamentally di�erent from the onesconsidered so far. It does not reduce the alphabet (but rather keeps it invariant), and it reduces thenumber of queries (from any q to 3) rather than increasing it. We pay however in the parameterrepresenting the soundness feature (i.e., the proportion between the deviation and the rejectionprobability). Following is a description of this LIPS:� The encoding function E : F ! F is the identity function.� Letting L 2 LF;q be represented by a q-by-q matrix over F , the proving function P : LF;q �F q ! F q(q�1) is as follows: For every i1 2 [q] and i2 2 [q � 1], the ((i1 � 1)(q � 1) + i2)thelement of P (L; x1; : : : ; xq) equals Pi2j=1 ci1;jxj, where ci;j is the (i; j)th entry in the matrixrepresenting L. 82

� On input L 2 LF;q and access to input-oracles X1; :::;Xq 2 F (each containing a singlesymbol) and proof-oracle Y : [q]� [q� 1]! F , the veri�er V selects uniformly i1; i2 2 [q] andproceed according to the value of i2.1. For i2 = 1, the veri�er checks whether ci1;1 �X1 equals Y (i1; 1).2. For i2 2 f2; :::; q�1g, the veri�er checks whether Y (i1; i2�1)+ci1;i2 �Xi2 equals Y (i1; i2).3. For i2 = q, the veri�er checks whether Y (i1; q � 1) + ci1;q �Xq = 0.The veri�er accepts if and only if the relevant check passes.Note that if X def= (X1; :::;Xp) 62 L then (X;Y) has deviation 1, for every Y . On the other hand,in such a case, there exists an i1 2 [q] such that Pqj=1 ci1;jXj 6= 0. For this i1 2 [q], there existsan i2 2 [q] such that the above V rejects (because otherwise 0 = Y (i1; q � 1) + ci1;q � Xq = � � � =Pqj=1 ci1;jXj). Similarly, if (X1; :::;Xp) 2 L and Y 6= P (L;X1; :::;Xp), then for some i1; i2 2 [q] theveri�er rejects. The proposition follows.Short 3-query testable binary codes. Using Propositions 5.21 and 5.23, we show that ourmain result regarding locally testable codes (i.e., Theorem 2.3) holds also with a tester that makeonly three queries.Corollary 5.24 For in�nitely many k, there exists a linear binary code of relative constant distancethat maps k bits to n def= exp(~O(plog k)) � k bits and has a three-query codeword test.Perspective. Corollary 5.24 asserts that three queries su�ce for a meaningful de�nition of locally-testable linear codes. This result is analogous to the three-query PCPs available for NP-sets.20 Inboth cases, the constant error probability remains unspeci�ed, and a second level project aimedat minimizing the error of three-query test arises. Another worthy project refers to the trade-o�between the number of queries and the error probability, which in the context of PCP is captured bythe notion of amortized query complexity. The de�nition of an analogous notion for locally-testablecodes is less straightforward because one needs to specify which strings (i.e., at what distance fromthe code) should be rejected with the stated error probability. One natural choice is to considerthe rejection probability of strings that are at distance d=2 from the code, where d is the distanceof the code itself. Alternatively, one may consider the proportion between the relative distance tothe code and the rejection probability.6 Subsequent Work and Open ProblemsWe have presented locally testable codes and PCP schemes of almost-linear length, where ` : N! Nis called almost-linear if `(n) = n1+o(1). For PCP, this improved over a previous result where foreach � > 0 a scheme of length n1+� was presented (with query complexity O(1=�)). Recall thatour schemes have length `(n) = exp(~O(plog n)) � n. In earlier versions of this work (e.g., [24]), wewondered whether length `(n) = poly(log n) � n (or even linear length) can be achieved. Similarly,the number of queries in our proof system is really small, say 19, while simultaneously achievingnearly linear-sized proofs. Further reduction of this query complexity is very much feasible and it isunclear what the �nal limit may be. Is it possible to achieve nearly-linear (or even linear?) proofswith 3 query bits and soundness nearly 1=2?20In both cases, testability by two queries is weak: see [8, Prop. 10.3] for PCPs and [11] for locally-testable codes.83

Turning to more technical issues, we note that our constructions of codes and PCPs are actuallyrandomized. In case of codes, this means that we prove the existence of certain codes (by using theprobabilistic method), but we do not provide fully-explicit codes. In case of PCPs, we obtainedPCPs for a problem to which SAT can be randomly reduced (rather for SAT itself). In bothcases, the probabilistic method is used to determine a sample of random-tapes for a relevant test,and the probabilistic analysis shows that almost all choices of the subspace will do. A natural(de-randomization) goal, stated in our preliminary report [24], has been to provide an explicitconstruction of a good subspace. For example, in case of the low-degree test (which underlies ourcodeword tester), the goal was to provide an explicit set of ~O(jF jm) lines that can be used for thistest (as the set R in the construction of Section 3.2).In our preliminary report [24] we also suggested the following seemingly easier goal of de-randomizing the linearity test of Blum, Luby and Rubinfeld [14]. Recall that in order to testwhether f : G ! H is linear, one uniformly selects (x; y) 2 G � G and accepts if and only iff(x) + f(y) = f(x + y). Now, by the probabilistic method, there exists a set R � G � G of sizeO(jGj log jHj) such that the test works well when (x; y) is uniformly selected in R (rather than inG�G).21 The challenge suggested in [24] was to present an explicit construction of such a set R.The latter challenge as well as the more general goal of de-randomizing all our results wererecently resolved by Ben-Sasson, Sudan, Vadhan and Wigderson [13]. Speci�cally, they showedthat for low-degree testing one may use a small set of lines that consists of all lines going in a smallset of directions. They also showed that this result su�ces for the derandomization of our PCPresult.Another natural question that arises in this work refers to obtaining locally-testable codesfor coding k0 < k information symbols out of codes that apply to k information symbols. Thestraightforward idea of converting k0-symbol messages into k-symbol messages (via padding) andencoding the latter by the original code, preserves many properties of the code but does notnecessarily preserve local-testability.22Finally, we mention a few recent works that address the main question raised by our work andmentioned above (i.e., whether PCPs and codes of length poly(log n) � n are achievable, where n isthe length of the relevant input). The �rst quantitative improvement over our work was obatined byBen-Sasson, Goldreich, Harsha, Sudan, and Vadhan [10] that, for every constant � > 0, presentedPCPs and (weak) locally testable codes of length exp(log� n) � n. Building on the work of Ben-Sasson and Sudan [12], Dinur [16] has resolved the aforementioned problem by presenting PCPsand (weak) locally testable codes of length poly(log n) � n. Speci�cally, Dinur applied her \PCPampli�cation" technique, which is the main contribution of her work, to the PCP presented by [12].We note, however, that these improved codes (resp., PCP constructions) do not achieve strongcodeword testability (resp., strong soundness). Indeed, obtaining such strong constructs of lengththat improves on exp(~O(plog n) � n is an open problem.AcknowledgmentsWe are grateful to Salil Vadhan for suggesting some modi�cations to the construction and analysisin Section 3.2 , yielding stronger results with simpler proofs. We also wish to thank the anonymous21For every f : G! H, with probability 1� exp(�jRj) a random set R will be good for testing whether f is linear,and the claim follows using the union bound for all jHjjGj possible functions f : G! H.22Indeed, this di�culty (as well as other di�culties regarding the gap between PCPs and codes) disappears if oneallows probabilistic coding. That is, de�ne a code C : �k ! �n as a randomized algorithm (rather than a mapping),and state all code properties with respect to randomized codewords C(a)'s.84

referees for their helpful comments.

85

References[1] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing Low-Degree Poly-nomials over GF(2). In Proc. RANDOM 2003, Lecture Notes in Computer Science, vol.2754, pages 188-199, Springer, 2003.[2] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Veri�cation and In-tractability of Approximation Problems. JACM, Vol. 45, pages 501{555, 1998. Preliminaryversion in 33rd FOCS, 1992.[3] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characterization of NP.JACM, Vol. 45, pages 70{122, 1998. Preliminary version in 33rd FOCS, 1992.[4] S. Arora and M. Sudan. Improved low degree testing and its applications. In 29th STOC,pages 485{495, 1997.[5] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in Polylogarith-mic Time. In 23rd STOC, pages 21{31, 1991.[6] L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time has Two-ProverInteractive Protocols. Computational Complexity, 1: 3-40 (1991).[7] M. Bellare, D. Coppersmith, J. H�astad, M. Kiwi, and M. Sudan. Linearity testing overcharacteristic two. IEEE Transactions on Information Theory, 42(6):1781-1795, November1996.[8] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs, and nonapproximability {towards tight results. SIAM Journal of Computing 27, 3 (June 1998), 804{915. PreliminaryVersion in 36th FOCS, 1995.[9] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. E�cient probabilistically checkableproofs and applications to approximation. In 26th STOC, 1994.[10] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs ofproximity, Shorter PCPs and Applications to Coding. In 36th STOC, 2004, pages 1{10.Also available as an ECCC Technical Report, TR04-021, March 2004.[11] E. Ben-Sasson, O. Goldreich and M. Sudan. Bounds on 2-Query Codeword Testing. Inthe proceedings of RANDOM'03, Springer LNCS, Vol. 2764, pages 216{227, 2003.[12] E. Ben-Sasson and M. Sudan. Simple PCPs with Poly-log Rate and Query Complexity.ECCC, TR04-060, 2004.[13] E. Ben-Sasson, M. Sudan, S. Vadhan and A. Wigderson. Randomness-e�cient low degreetests and short PCPs via epsilon-biased sets. In 35th STOC, pages 612{621, 2003.[14] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications to Nu-merical Problems. JCSS, Vol. 47, No. 3, pages 549{595, 1993.[15] N. Creignou, S. Khanna, and M. Sudan. Complexity Classi�cations of Boolean ConstraintSatisfaction Problems. SIAM Press, Philadeplhia, PA, USA, March 2001.[16] I. Dinur. The PCP Theorem by Gap Ampli�cation. ECCC, TR05-046, 2005.86

[17] I. Dinur and O. Reingold. Assignment-testers: Towards a combinatorial proof of thePCP-Theorem. In 45th FOCS, 2004, pages 155{164.[18] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems with Ap-plications to Public-Key Cryptography. Inform. and Control, Vol. 61, pages 159{173,1984.[19] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Approximating Clique isalmost NP-complete. JACM, Vol. 43, pages 268{292, 1996. Preliminary version in 32ndFOCS, 1991.[20] G.D. Forney. Concatenated Codes. MIT Press, Cambridge, MA 1966.[21] K. Friedl and M. Sudan. Some Improvements to Low-Degree Tests. In the 3rd IsraelSymp. on Theory and Computing Systems (ISTCS), 1995.[22] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learningand approximation. JACM, pages 653{750, July 1998.[23] O. Goldreich, H. Karlo�, L.J. Schulman and L. Trevisan. Lower Bounds for Linear Lo-cally Decodable Codes and Private Information Retrieval. In the Proc. of the 17th IEEEConference on Computational Complexity, 2002.[24] O. Goldreich and M. Sudan. Locally Testable Codes and PCPs of Almost-Linear Length.ECCC Report TR02-050, 2002.[25] P. Harsha and M. Sudan. Small PCPs with Low Query Complexity. ComputationalComplexity, 9(3-4):157-201, 2000.[26] J. Hastad. Clique is hard to approximate within n1��. Acta Mathematica, Vol. 182, pages105{142, 1999. Preliminary versions in 28th STOC (1996) and 37th FOCS (1996).[27] J. Katz and L. Trevisan. On The E�ciency Of Local Decoding Procedures For Error-Correcting Codes. In the 32nd STOC, 2000.[28] M. Kiwi. Testing andWeight Distribution of Dual Codes. ECCC Technical Report NumberTR97-010, 1997 .[29] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University Press, 1995.[30] A. Polishchuk and D.A. Spielman. Nearly-linear size holographic proofs. In 26th STOC,pages 194{203, 1994.[31] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constanterror-probability PCP characterization of NP. In 29th STOC, 1997.[32] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications toprogram testing. SIAM Journal on Computing, Vol. 25 (2), pages 252{271, 1996.
87

Appendix A: The 3-prover system of [25], revisitedThe 3-prover system of Harsha and Sudan [25] handles an NP-complete (promise) problem calledGapPCS. This promise problem is revisited in Section A.1, where we also present a restrictedversion of it called rGapPCS. In Section A.2 we adapt the results of [25] to the variant introducedin Section A.1, while in Section A.3 we describe the high level operation of the 3-prover systemof [25]. The latter section is aimed to support the claims made when abstracting this proof systemin Section 4.2.1.A.1 The Gap Polynomial-Constraint-Satisfaction ProblemWe start by recalling the \Gap Polynomial Constraint Satisfaction Problem" and introducing arestricted version of this problem.Standard CSPs. Constraint satisfaction problems (CSPs) are a natural class of optimizationproblems where an instance consists of t Boolean constraints C1; : : : ; Ct placed on n variables, eachtaking on values from some �nite domain, say f0; : : : ;D� 1g. Each constraint is restricted in thatit may only depend on a small number, w, of variables. The goal of the optimization problem is to�nd an assignment to the n variables that maximizes the number of constraints that are satis�ed.The complexity of the optimization task depends on the nature of constraints that may be applied,and thus each class of constraints gives rise to a di�erent optimization problem (cf. [15]). CSPsform a rich subdomain of optimization problems that include Max-3SAT, Max-2SAT, Max-Cut,Max-3-Colorability etc., and lend themselves as targets for reductions from PCPs (i.e., PCPs withcertain parameters were often reduced to CSP problems of certain types and parameters).Algebraic CSPs. Following Harsha and Sudan [25], we consider algebraic variants of CSPs.These problems di�er from the standard CSPs in certain syntactic ways. The domain of the valuesthat a variable can assume is associated with a �nite �eld F ; the index set of the variables isassociated with Fm for some integer m, rather than being the set [n]; and thus an assignment tothe variables may be viewed naturally as a function f : Fm ! F . Thus, the optimization problem(s)ask for functions that satisfy as many constraints as possible. In this setting, constraints are alsonaturally interpreted as algebraic functions, say given by an algebraic circuit.The interesting (non-syntactic) aspect of these problems is when we optimize over a restrictedclass of functions, rather than over the space of all functions. Speci�cally, for a given degree boundd, we consider the maximum number of constraints satis�ed by degree d polynomial f : Fm ! F .Under this restriction on the space of solutions, it is easier to establish NP-hardness of the taskof distinguishing instances where all constraints are satis�able from instances where only a tinyfraction of the constraints are satis�able. This motivates the \Gap Polynomial CSP", �rst de�nedby Harsha and Sudan [25].De�nition A.1 (Gap Polynomial Constraint Satisfaction (GapPCS)): For integers k;m; s and a�nite �eld F , an (m; k)-ary algebraic constraint of complexity s over F is a (k + 1)-tuple C =(A; v1; : : : ; vk), where A : (Fm)k ! F is an algebraic circuit of size s, and v1; : : : ; vk 2 Fm arevariable names. For � : Z+ ! R+ and m; b; q : Z+ ! Z+, the promise problem GapPCS�;m;b;q hasas instances tuples (1n; d;C1; : : : ; Ct), where d; k � b(n) are integers and Cj = (Aj ; vj;1; : : : ; vj;k) isan (m(n); k)-ary algebraic constraint of complexity b(n) over F = GF(q(n)). The promise problemconsists of the following sets of yes and no instances.88

YES-instances: The instance (1n; d;C1; : : : ; Ct) is a yes-instance if there exists a polynomial p :Fm ! F of total degree at most d such that, for every j, the constraint Cj is satis�ed by p;that is, Aj(p(vj;1); : : : ; p(vj;k)) = 0, for every j 2 [t].NO-instances: The instance (1n; d;C1; : : : ; Ct) is a no-instance if, for every polynomial p of totaldegree at most d, at most �(n) � t constraints are satis�ed (i.e., evaluate to 0).Note that all the varying parameters are expressed in terms of (the explicitly given) parameter n,whereas the instance length is essentially n+ log b(n) + t � b(n) � (m(n) + 1) � log q(n).We stress that these gap problems are shown to be NP-hard (in [25]) via a reduction that doesnot start from a PCP; instead the ideas underlying the PCP construction of [5, 19] are (directly)used in the reduction. Furthermore, these (algebraic) CSPs are used as the problem for whichPCPs are designed (rather than as the target of reduction from certain PCPs). We comment that,so far (including our work), this approach was used to design PCPs with certain parameters per se(and not to establish \hardness of approximation" results).Restricting the algebraic CSPs. In order to facilitate the design of PCPs, we consider arestricted version of the algebraic CSPs considered in [25]. Speci�cally, we consider a restrictionon the class of instances, where each constraint, in addition to being restricted to apply only to kvariables, is restricted to apply only to variables that lie on some \2-dimensional variety" (i.e., thenames/indices of the variables that appear in a constraint must lie on such a variety). We de�nethis notion �rst.A d-dimensional variety of degree r is represented by a function Q = (Q1; : : : ; Qm) : F d ! Fmwhere each Qi is a d-variate polynomial of degree r, and consists of the set of points VQ def= fQ(x) :x 2 F dg. (Note that this formulation is more restrictive than the standard de�nitions of varieties.)A set of points is said to lie on the variety VQ if this set is contained in VQ.In the following de�nition, in addition to requiring that the variables of each constraint lie ona 2-dimensional variety (of degree r), we include this variety in the description of the constraint.(This was not required in [25], because they used a canonical higher-dimensional variety, which wasconstructed generically from the aforementioned points and did not rely on the special structure ofthese points.)De�nition A.2 (restricted Gap Polynomial Constraint Satisfaction (rGapPCS)): For integersk;m; s; r and a �nite �eld F , a (2; r)-restricted (m; k)-ary algebraic constraint of complexity s over Fis a (k+2)-tuple C = (A; v1; : : : ; vk;Q), where A : (Fm)k ! F is an algebraic circuit of size s, andv1; : : : ; vk 2 Fm are variable names that lie on the 2-dimensional variety of degree r representedby Q. For � : Z+ ! R+ and r;m; b; q : Z+ ! Z+, the promise problem rGapPCS�;r;m;b;q has asinstances tuples (1n; d;C1; : : : ; Ct), where d; k � b(n) are integers and Cj = (Aj ; vj;1; : : : ; vj;k;Qj)is a (2; r(n))-restricted (m(n); k)-ary algebraic constraint of complexity b(n) over F = GF(q(n)).The partition of these instances to yes and no instances is as in De�nition A.1.Again, all the varying parameters are expressed in terms of (the explicitly given) parameter n,whereas the instance length isN def= j(1n; d;C1; : : : ; Ct)j � n+ log b(n) + t � (b(n) + r(n)2) � (m(n) + 1) � log q(n) (47)(when ignoring the e�ect on length involved in encoding sequences as a single string).89

A.2 The complexity of rGapPCSThe following lemma is a slight variant of Lemma 3.16 in [25]. Speci�cally, while [25] use the genericfact that any k points lie on a d-dimensional variety of degree d � k1=d, we note that the speci�cO(m(n)b(n)) points chosen for each constraint (in the reduction) happen to lie on a 2-dimensionalvariety of degree O(m(n)). This is because each constraint refers to O(m(n)b(n)) points such thateach point lies on one out of O(m(n)) lines. Furthermore, we can construct a representation of thisvariety, given that we have both the points and the lines on which they lie. The following lemmasimply lists conditions on the parameters that allows for restricted GapPCS to be NP-hard.Lemma A.3 (slight variant of [25, Lem. 3.16]): There exists constants c1; c2 and a polynomial p1such that for any collection of functions " : Z+ ! R+ and m; r; b; q; ` : Z+ ! Z+ that satisfy b(n) �log n, (b(n)=m(n))m(n) � n, r(n) � c1m(n), q(n) � (b(n)="(n)) �p1(m(n)), and `(n) � q(n)m(n)+c2 ,it holds that SAT reduces to rGapPCS";r;m;b;q under a `-length preserving reduction.The proof of Lemma A.3 is immediate from the description in [25] and the aforementioned obser-vation about the existence and constructibility of an adequate (2-dimensional) variety (of degreer(n)). On the other hand, when applying the MIP system of [25, Section 3.6] to restricted GapPCSinstances, we get:Lemma A.4 (implicit in [25, Sec. 3.6]): There exists a polynomial p2 such that if " : Z+ ! R+ andr;m; b; q : Z+ ! Z+ satisfy q(n) � p2(r(n)) � (b(n)="(n)) then the promise problem rGapPCS";r;m;b;qhas a 3-prover MIP proof with perfect completeness, soundness O("(n)), answer length poly(b(n)+r(n)) � log q(n), and randomness O(logN) + O(m(n) log q(n)), where N denotes the size of theGapPCS instance and n denotes the �rst parameter in the instance. Furthermore, the size of the�rst prover is q(n)m(n), and its answer length is log q(n).When wishing to derive 3-prover MIPs for SAT by using Lemma A.4, we may use the reductionprovided by Lemma A.3 for an appropriate choice of the parameters ";m; b; q; `. Indeed, combiningLemmas A.3 and A.4, we state the following result regarding 3-prover MIPs for SAT, where werestrict attention to the case of constant � > 0 (and set most of the free parameters appearing inthe two lemmas).Theorem A.5 For every constant � > 0 and m : Z+ ! Z+, let `(n) = m(n)O(m(n)) � n1+O(1=m(n)).Then SAT has a 3-prover proof system with perfect completeness, soundness �, randomness O(log n),and answer length m(n)O(1) �nO(1=m(n)), in which the �rst prover has size O(`(n)), where n denotesthe length of the input.Proof: Assume without loss of generality that m(n) � (log n)=(log log n). (For larger m(�), therequirements on both the function `(n) and the answer length become weaker.) Let p be a polyno-mial such that p(t) � max(p1(t); p2(c1t)) for every t � 1, where c1 is the constant in Lemma A.3and p1 and p2 are the polynomials in Lemmas A.3 and A.4, respectively. We use the followingsetting of the functions b; r and q.b(n) = m(n) � n1=m(n)r(n) = c1 �m(n)"(n) = �=O(1)q(n) = (b(n)="(n)) � p(m(n))90

The reader can easily verify that this setting satis�es all relevant conditions in Lemmas A.3 and A.4.To verify the remaining condition, which refers to `, note thatq(n)m(n)+c2 = ((m(n) � n1=m(n)="(n)) � p(m(n)))m(n)+c2� (m(n)="(n))O(m(n)) � n1+(c2=m(n))Using "(n)�1 � m(n)O(1), we have q(n)m(n)+c2 < m(n)O(m(n)) �n1+O(1=m(n)) and `(n) � q(n)m(n)+c2follows for a suitable constant c in the setting `(n) = m(n)c�m(n) � n1+(c=m(n)). We note thatlog q(n) = O(logm(n)) + (1=m(n)) log n, and recall that m(n) logm(n) < log n. Now, invokingLemmas A.3 and A.4 (with the setting of parameters as above), we obtain a 3-prover proof systemfor SAT with perfect completeness, soundness �, and the following parameters� Answer length poly(b(n) + r(n)) � log q(n) = m(n)O(1) � n1=O(m(n)).� Randomness O(log `(n)) +O(m(n) log q(n)) = O(log n).� The size of the �rst prover oracle is q(n)m(n) < `(n).The theorem follows.A.3 The proof system of Theorem A.5In this section we provide a high level description of the operation of the 3-prover system thatunderlies the proof of Theorem A.5, which in fact is the system underlying the proof of Lemma A.4.(Needless to say, a full description of this system is given in the original work of Harsha andSudan [25].)Recall that the problem (instance) consists of parameters n; d and a sequence of constraintsC1; :::; Ct. (See De�nition A.2.) The �eld F = GF(q(n)) is determined by n (and so are the valuesm = m(n) and r = r(n)). In the 3-prover one-round system underlying the proof of Lemma A.4,the veri�er expects the three provers P; P1; P2 to answer its queries as follows:� P should answer according to an assignment function f that satis�es the conditions of Def-inition A.2. In particular, f is supposed to be a degree d polynomial in m variables overF .� P1 should provide the value of f when restricted to any plane in Fm, where a plane � isde�ned by three points in Fm (i.e., � = �a;b;c = fi � a+ j � b+ c : i; j 2 Fg, for a; b; c 2 Fm).That is, P1 should answer the query � = �a;b;c with the bivariate polynomial f� = f(�) overF , where f�(x; y) = f(x � a+ y � b+ c).� P2 should provide the value of f when restricted to any curve (of appropriate exibility) inFm. Speci�cally, the curves are 3-dimensional varieties of degree r, given by m trivariatepolynomials of degree r (over F).The veri�er operates as follows. It picks a random constraint Cj = (Aj ; vj;1; ::::; vj;k;Qj) and arandom point v0, picks a random plane � that passes through v0, and a random curve C (i.e., a3-dimensional variety of degree r) that extends the variety represented by Qj and passes throughthe point v0. (Speci�cally, this curve may be the one given by C(s; t1; t2) = s�v0+(1�s)�Qj(t1; t2).)It sends v0 to P , � to P1, and C to P2, receiving the answers a def= P (x0), g = P1(�), and h = P2(C).The veri�er accepts if and only if the following two conditions hold:91

1. The function g is consistent with P 's answer at v0; that is, g(t0; t00) = a, where �(t0; t00) = v0.2. The function h is consistent with P 's answer at v0 and the values of f (as provided by h) onvj;1; ::::; vj;k satisfy Aj. That is:(a) h(�0) = a, where C(�0) = v0.(b) Aj(h(�1); :::; h(�k)) = 0, where C(�i) = vj;i for i = 1; :::; k.Note that this veri�er has logarithmic randomness complexity (i.e., it tosses (log t)+O(m log q(n))coins, whereas its input length exceeds t � m log q(n)), and that each of its queries is uniformlydistributed in the corresponding domain. Thus, this veri�er satis�es the Sampleability and Unifor-mity Properties de�ned in Section 4.2.1. Before turning to the Decomposition Property, we notethat the veri�er has perfect completeness (i.e., if a good solution f exists then setting the proverstrategies as suggested above makes the veri�er accept with probability 1).Soundness and Decomposition Property: Suppose that f = P does not satisfy the rGapPCSinstance. Consider the set of all m-variate polynomials of degree d that agree with f on at least �=2of the domain. Denoting these polynomials by p1; :::; pL, we denote by Si the set of points wheref agrees with pi (i.e., Si = fx 2 Fm : f(x) = pi(x)g). Let Q0 = Q0P = Fm n [iSi. We consider thefollowing two cases (concerning whether or not the random point v0 is in Q0):v0 2 Q0: This case is analyzed as Event 1 in the proof of [25, Claim 3.30], where it is shown thatfor every P1 Prv0;�[v0 2 Q0 and (P1(�))(t0; t00) = f(v0)] < �=2where �(t0; t00) = v0.v0 2 [iSi: This case is analyzed as Events 2 and 3 in the proof of [25, Claim 3.30], where it isshown that for every P2Prv0;j;C[v0 62 Q0, (P2(C))(�0) = f(v0) and Aj(P2(C))(�1); :::; (P2(C))(�k)) = 0] < �=2where Cj = (Aj ; vj;1; ::::; vj;k), �(�0) = v0, and �(�`) = vj;` for ` = 1; :::; k.Combining the two cases, soundness is established. Furthermore, the above analysis satis�es theDecomposition Property.

92

