
Finding Cyles and Trees in Sublinear TimeArtur Czumaj Oded Goldreih Dana Ron C. Seshadhri Asaf ShapiraChristian SohlerApril 7, 2010AbstratWe present sublinear-time (randomized) algorithms for �nding simple yles of length atleast k � 3 and tree-minors in bounded-degree graphs. The omplexity of these algorithmsis related to the distane of the graph from being Ck-minor free (resp., free from having theorresponding tree-minor). In partiular, if the graph is far (i.e.,
(1)-far) from being yle-free,i.e. if one has to delete a onstant fration of edges to make it yle-free, then the algorithm�nds a yle of polylogarithmi length in time eO(pN), where N denotes the number of verties.This time omplexity is optimal up to polylogarithmi fators.The foregoing results are the outome of our study of the omplexity of one-sided errorproperty testing algorithms in the bounded-degree graphs model. For example, we show thatyle-freeness of N -vertex graphs an be tested with one-sided error within time omplexityeO(poly(1=�) �pN). This mathes the known
(pN) query lower bound, and ontrasts with thefat that any minor-free property admits a two-sided error tester of query omplexity that onlydepends on the proximity parameter �. For any onstant k � 3, we extend this result to testingwhether the input graph has a simple yle of length at least k. On the other hand, for any�xed tree T , we show that T -minor freeness has a one-sided error tester of query omplexitythat only depends on the proximity parameter �.Our algorithm for �nding yles in bounded-degree graphs extends to general graphs, wheredistanes are measured with respet to the atual number of edges. Suh an extension is notpossible with respet to �nding tree-minors in o(pN) omplexity.

Keywords: Sublinear-Time Algorithms, Property Testing, Bounded-Degree Graphs, One-Sidedvs Two-Sided Error Probability,

Contents1 Introdution 11.1 Our main results . 11.2 The property testing onnetion . 21.3 Tehniques . 31.3.1 Testing yle-freeness . 31.3.2 Testing Ck-minor freeness, for any k > 3 . 41.3.3 Testing H-minor freeness, for any yle-free H 41.4 Another perspetive: Finding arbitrary forbidden minors 51.5 Further reetions regarding one-sided error . 61.6 The general (unbounded-degree) graph model . 71.7 Organization . 82 Preliminaries 83 Testing Cyle-Freeness 94 Testing C4-Minor-Freeness 115 Testing Ck-Minor-Freeness, for any k � 4 145.1 Some basi fats regarding spots . 155.2 The atual redution . 176 Proof of the Lower Bound 207 Testing Tree-Minor Freeness 217.1 A redution of unonneted H to onneted H . 217.2 Testing that the graph ontains no simple k-length path 237.3 Testing that the graph ontains no k-star as a minor 237.4 The general ase: Testing T -minor freeness for any tree T 247.5 Testing T -minor freeness for any depth-two tree T 308 The unbounded-degree graph model 338.1 Testing yle-freeness . 348.2 Testing tree-minor-freeness . 348.3 Testing with adjaeny queries . 35Bibliography 35

I

1 IntrodutionConsider the algorithmi problem of �nding a (simple) yle in a bounded degree graph (assumingone exists), where the aim is to �nd suh a yle in (randomized) sublinear time. In general, �ndinga yle in sublinear time may not be possible, sine the graph may ontain only yles of length
(n). This may also be the ase if one needs to remove a onstant number of the edges of the graphin order to make it yle-free. But suppose one needs to remove a onstant fration of the graph'sedges in order to make it yle free. Can we then devise a sublinear time algorithm? One of ourresults in this paper is an aÆrmative answer to this question. Furthermore, the running time ofthat algorithm is (essentially) optimal.1.1 Our main resultsAs we have mentioned above, we onsider graphs of bounded degree d with N verties. We saythat a graph is �-far from being yle-free if one has to remove at least �dN edges from G in orderto make it yle free. We an now formally state our �rst result.Theorem 1.1 There exists a randomized algorithm that, on input an N -vertex graph G of on-stant degree bound d that is �-far from being yle-free, �nds a simple yle in G in expeted timeeO(poly(1=�) � pN). Furthermore, the yle found has length poly(��1 logN).Using the onnetion to one-sided error property testing (detailed in Setion 1.2), we infer thatthe algorithm of Theorem 1.1 is optimal; that is, no randomized o(pN)-time algorithm an �ndyles in (bounded-degree) graphs that are
(1)-far from being yle-free. Furthermore, one annot expet to �nd simple yles of length o(logN), sine suh may not exist (even if the graph isfar from being yle-free). The result of Theorem 1.1 an be extended to �nding a simple yle oflength at least k, for any �xed k � 3.Theorem 1.2 For every onstant k > 3, there exists a randomized algorithm that, on input anN -vertex graph G of onstant degree bound d that is �-far from having no yles of length at leastk, �nds a simple yle of length at least k in G in expeted time eO(poly(1=�) � pN). Furthermore,the yle found has length poly(��1 logN).Again, the algorithm obtained is optimal. We note that yles of length at least k in G orrespondto Ck-minors of G. Here, Ck denotes the k-vertex yle. An H-minor of G is obtained from G bya sequene of edge removals, vertex removals, and edge ontrations. (A Ck-minor of G is a ylein G of length larger than k.)We next turn from �nding yles to �nding tree-strutures in graphs. Our main result dealswith �nding tree-minors. Consider the following interesting speial ase. For any onstant k, wewant to �nd a tree with at least k leaves. One of our results is a randomized algorithm that �ndssuh trees in expeted time that is polynomially related to k and to the distane of the input graphfrom a graph having no suh trees. This problem orresponds to �nding minors that are k-vertexstars.Theorem 1.3 For any �xed tree T , there exists a randomized algorithm that, on input an N -vertex graph G of onstant degree bound d that is �-far from being T -minor free, �nds a T -minorin expeted time that only depends on �, where vertex manipulation operations are ounted at unitost. 1

We highlight the fat that �nding tree minors an be done within omplexity that only dependson �, whereas �nding yles requires
(pN) time (also for onstant � > 0). In fat, we show thatTheorem 1.3 extends to any yle-free graph H, and on the other hand we prove that for any Hthat ontains a yle �nding H-minors requires
(pN) queries.1 Thus, we obtain the followingharaterization:Corollary 1.4 Finding H-minors in a onstant degree graph that is �-far from being H-minor freean be done in omplexity that only depends on � if and only if H is yle-free.All our results are obtained via the onnetion to one-sided error property testing, and are atuallyeasier to state in terms of property testing.1.2 The property testing onnetionLoosely speaking, property testing refers to sublinear time probabilisti algorithms for deidingwhether a given objet has a predetermined property or is far from any objet having this property(see the surveys [Fis01, Ron08b, Ron08a℄). Suh algorithms, alled testers, obtain loal views ofthe objet by making suitable queries; that is, the objet is seen as a funtion and the tester getsorale aess to this funtion (and thus may be expeted to work in time that is sublinear in thesize of the objet).Randomization is essential to natural testers (i.e., testers of natural properties that have sublin-ear query-omplexity) [GS07℄. The same holds also for error probability, at least on some instanes,but the question is whether a (small) error probability must appear on all instanes. In partiular,should we allow (small) error probability both on instanes that have the property and on instanesthat are far from having it?2Indeed, testers ome in two basi avors referring to the foregoing question: two-sided errortesters allow (small) error probability both on instanes that have the property and on instanesthat are far from having it, whereas one-sided error testers only allow (small) error probability oninstanes that are far from having the property. That is, in one-sided error testers, any instanethat has the property is aepted with probability 1.An important observation regarding one-sided error testers is that whenever suh a tester rejetssome instane, it always has a erti�ate that this instane does not have the property, where thiserti�ate is the partial view of the instane as obtained by the tester. Indeed, in the ase of one-sided error, rejeting an instane based on a spei� partial view means that there exists no instanethat has the property and is onsistent with this partial view. Furthermore, in some ases (as thoseaddressed in the urrent work), this partial view ontains some natural strutures (e.g., a yle ora tree of interest).Consider, for example, the ase of testing yle-freeness (with one-sided error). In this ase,whenever the tester rejets, its partial view must ontain a yle. Thus, any one-sided tester ofyle-freeness may be used for �nding yles in graphs that are far from being yle-free. A similarobservation applies to �nding T -minors, for any �xed tree T .We mention that in most of the property testing literature, one-sided error is viewed as a se-ondary feature that some testers have and others may lak. The foregoing onnetion demonstratesthe fundamental advantage of one-sided error testers over standard (two-sided error) testers. (Otheradvantages are disussed in Setion 1.5.)1This fat was mentioned in [BSS08℄.2In any ase, the basi paradigm of property testing allows arbitrary error in ase the instane neither has theproperty nor is far from having it. 2

Lower bounds on the omplexity of one-sided error testers that signi�antly exeeds the per-formane guarantees of known two-sided error testers have been observed, starting with [GGR98,Se. 10.1.6℄. However, so far, no study has been devoted to providing a one-sided error tester ofoptimal omplexity, in the ase where the omplexity signi�antly exeeds that of the orrespondingtwo-sided error tester.3In ontrast, our work is aimed at providing a one-sided error tester of (almost) optimal om-plexity, in a ase in whih this omplexity signi�antly exeed the omplexity of the orrespondingtwo-sided error tester. For example, reall that Goldreih and Ron provided a two-sided errortester for yle-freeness of poly(1=�) query omplexity [GR02, Thm. 4.2℄, where � denotes the de-sired proximity parameter (i.e., the tester distinguishes yle-free graphs from graphs that are �-farfrom being yle-free). In ontrast, [GR02, Prop. 4.3℄ asserts that yle-freeness has no one-sidederror tester that makes o(pN) queries (even for � = 1=3), where N denotes the number of vertiesin the input graph. In that ontext, Theorem 1.1 is equivalent toTheorem 1.5 Cyle-freeness of onstant degree N -vertex graphs an be tested with one-sided errorwithin time omplexity eO(poly(1=�) � pN). Furthermore, whenever the tester rejets, it outputs asimple yle of length poly(��1 logN).On the other hand, by the foregoing disussion, whenever the tester asserted in Theorem 1.5 rejets,it is the ase that it explored a subgraph that is not yle-free. Moreover, the furthermore lauseof Theorem 1.5 asserts that in this ase the explored subgraph atually ontains a simple yle oflength poly(��1 logN). Thus, Theorem 1.5 implies Theorem 1.1. Similarly, Theorem 1.5 extendsto testing Ck-minor freeness, for any k � 3, whih in turn is equivalent to Theorem 1.1. And,similarly, Theorem 1.3 is equivalent to the existene of a tester for T -minor freeness of queryomplexity that only depends on the proximity parameter, for any tree T .1.3 TehniquesAs stated at the end of Setion 1.1, all our results are obtained via the study of the omplexity ofone-sided error testers for the orresponding properties.An interesting feature of our testers for Ck-minor freeness is that they are all obtained byloal redutions. Spei�ally, our yle-freeness (i.e., C3-minor freeness) tester is obtained by arandomized redution to testing bipartiteness, whereas our Ck-minor freeness tester is obtained bya deterministi redution to testing yle-freeness.1.3.1 Testing yle-freenessWe mention that the two-sided error tester of [GR02℄ does not even try to �nd a simple yle. Itjust estimates the number of edges in the graph and rejets if this estimate exeed the number of3To the best of our knowledge, the ase that seems losest is the disussion in [AS03, Se. 2℄ that refers to theomplexity of testing Kt;t-freeness in the adjaeny matrix model (introdued in [GGR98℄). Spei�ally, [AS03,Clm. 2.2℄ asserts a two-sided tester of Kt;t-freeness having query omplexity O(1=�), whereas [AS03, Clm. 2.3℄(ombined with [GT03, Thm. 2℄) asserts that one-sided error testing of Kt;t-freeness requires
(��t=4) queries, whih(as noted at the end of [AS03, Se. 2℄) is tight up to a polynomial funtion (i.e., there exists two-sided tester ofKt;t-freeness having query omplexity ��O(t) = poly(��t=4)). It is telling that [AS03, Se. 2℄ leaves the omplexityof one-sided error testing undetermined (at the \polynomial slakness" level). Indeed, like other prior works thataddress this issue, their interest is in demonstrating the gap between the omplexities of two-sided and one-sidederror testing, and not in determining the latter. 3

edges that orrespond to any forest that spans the set of onneted omponents of the graph.4 Wealso mention that a \girth versus edge-density" lower bound implies that any graph G = ([N ℄; E)that is �-far from being yle-free must have a simple yle of length O((logN)=�).5 6 The problem,however, is �nding suh a yle in sublinear time.Our one-sided error tester of yle-freeness �nds a yle in the original graph by randomlyreduing this problem to the problem of �nding an odd-length yle in an auxiliary graph. Speif-ially, the input graph G = ([N ℄; E) is randomly transformed into an auxiliary graph suh thateah edge e 2 E is replaed, with probability 1=2 by a 2-vertex path (with an auxiliary vertex),and remains intat otherwise. Thus, with probability 1=2, eah yle in G is transformed into anodd-length yle. Furthermore, we show that if G is �-far from being yle-free, then (w.h.p.) theresulting graph is
(�)-far from being bipartite.A ruial feature of the foregoing randomized redution is that it is loal in the sense that eahoperation on the transformed graph an be implemented by a onstant number of operations on theoriginal graph. Thus, we an emulate the exeution of a bipartite tester (i.e., the one of [GR99℄)on the transformed graph. This allows us to establish Theorem 1.5.1.3.2 Testing Ck-minor freeness, for any k > 3Reall that the set of Ck-minor-free graphs oinides with the set of graphs that have no simpleyle of length at least k. Theorem 1.2 is proved by a (loal) redution of testing Ck-minor-freenessto testing yle-freeness. For example, in the ase of k = 4 we replae eah triangle by a 3-vertexstar; that is, we omit the original edges of this triangle, and introdue an auxiliary vertex thatis onneted to the three orresponding verties. We then prove that if the original graph is C4-minor-free then the resulting graph is yle-free, whereas if the original graph is �-far from beingC4-minor-free then the resulting graph is
(�)-far from being yle-free.For larger values of k, a more sophistiated loal replaement is used. That is, replaing allsmall yles by auxiliary verties will not do. To illustrate the diÆulty of dealing with k > 4, notethat, unlike in the ase k = 4, a Ck-minor free graph may ontain yles of length smaller than kthat share some ommon edges, and so the simple replaement will not yield a yle-free graph.(In ontrast, note that a C4-minor free graph an not ontain a pair of triangles that share an edge(sine suh a subgraph ontains a yle of length 4).1.3.3 Testing H-minor freeness, for any yle-free HThe main hallenge for this problem is testing T -minor freeness, where T is an arbitrary tree.The simple ase in whih T is a k-vertex star, for some k � 2, provides a good illustration tothe underlying main idea. In this ase we may selet a random vertex and start a BFS at thisvertex, stopping whenever either we enounter a layer with at least k verties or we explored more4Note that any yle-free graph is a forest, and if the number of trees in this forest is t, then the di�erene betweenthe number of verties and the number of edges in the graph equals t. The two-sided error tester of [GR02℄ estimatesthe number of edges and the number of onneted omponents in the graph, and onduts the adequate omputation.The number of onneted omponents is estimated by the number of onneted omponents that have more thanO(1=�) verties, whereas the latter number is approximated by exploring the neighborhood of a few randomly seletedverties.5This is a onsequene of the Moore bound - a graph of girth k has at most n1+1=k edges.6Consider any onneted omponent of G, denoted G0 = ([N 0℄; E0), that is �-far from being yle-free, and let dbe the onstant degree bound of G. Note that jE0j � (1 + (d�=2)) �N 0, beause seleting an arbitrary spanning treeof G0 and omitting all non-tree edges yields a yle-free. The laim follows by realling that any n-vertex graph thathas at least n1+(1=k) edges has girth at most 2k (i.e., has a simple yle of length at most 2k).4

than 4k=� layers (or we explored the entire onneted omponent). In the �rst ase, we found thedesired minor and an safely rejet, whereas in the seond ase we found a set of at least 4k=�verties that is separated from the rest of the graph by less than dk edges. Thus, if the graphG = ([N ℄; E) ontains at least (1� �=4) �N start verties that do not lead the algorithm to rejet,then G an be deomposed to onneted omponents that are eah T -minor free by omitting atmost �dN=2 edges (i.e., the edges that are inident at the �N=4 exeptional verties and the edgesof the aforementioned small uts).Needless to say, the ase of a general tree T is muh more omplex, but the governing prinipleremains a tight relation between having few start verties that ontain a T -minor at their viinityand the ability to deompose the graph to onneted omponents with few edges between them.This relation is aptured by the following result, whih may be of independent interest.7Theorem 1.6 For every d and k there exists an r = r(d; k) suh that if the r-neighborhood of avertex s in a graph of degree bound d does not ontain a T -minor of some tree T with at most kverties, then this neighborhood ontains a set S that is separated from the rest of the graph by lessthan �djSj=4 edges.In other words, if all \sub-neighborhoods" of the r-neighborhood of s are \expanding" (i.e., are notseparated from the rest by small uts), then this r-neighborhood ontains a T -minor of every treeT with at most k verties.We redue �ndingH-minors, whereH is an arbitrary yle-free graph (forest), to �nding disjointtree minors. Again, the redution is loal, and in this ase it is almost straightforward, where thesubtlety is related to the fat that we refer to one-sided error. Spei�ally, if H onsists of theonneted omponents H1; :::;Hm, then it does not neessarily hold that G is H-minor free if andonly if G is Hi-minor free for all i 2 [m℄. Still, this is \almost true" and so a small modi�ation ofthe straightforward redution will do.1.4 Another perspetive: Finding arbitrary forbidden minorsOur results may be viewed as progress in resolving an open problem, posed by Benjamini, Shramm,and Shapira [BSS08℄, that refers to one-sided error testing of H-minor-freeness, for any �nite graphH (or even a �nite family of suh graphs).8 Spei�ally, Benjamini et al. [BSS08℄ proved that,for any H, the property of being H-minor-free an be tested within query omplexity that onlydepends on the proximity parameter,9 when allowing two-sided error. They onjetured that forany non-forest H, there exists an H-minor-freeness tester with query omplexity O(pN). Theyalso mention that the
(pN) lower bound of [GR℄ holds for testing any non-forest H.Our results (essentially) resolve this question in the aÆrmative for the speial ase of H = Ck,for every k � 3.7We mention that the problem of �nding small trees in loally expanding graphs has been studied before (f.,e.g. [FP87℄). However, our Theorem 1.6 seems inomparable, sine we seek spei� tree minors rather than spei�trees, whereas our expansion ondition is very weak.8Reall that the graph G has an H-minor if H an be obtained from G through a series of vertex removals, edgeremovals, and edge ontrations (see, e.g., Lov�asz [Lov06℄). The graph G is H-minor free, if it ontains no H-minor.Also reall that the set of yle-free graphs oinides with the set of C3-minor-free graphs, where Ck denote thek-yle graph (i.e., a graph onsisting of a simple yle of length k).9The query omplexity obtained in [BSS08℄ is triple-exponential in 1=�. The omplexity was reently improved toexponential in 1=� [HKNO09℄, 5

Theorem 1.7 (see Theorems 1.1 and 1.2): For any onstant k � 3, there exists a one-sided errortester of time omplexity eO(poly(dk=�) � pN) for testing whether a onstant degree N -vertex graphis Ck-minor-free. Furthermore, whenever the tester rejets, it outputs a simple yle of length atleast k (and at most poly(��1 logN)).We note that �nding yles seems the \hard" part of �nding minors; that is, yles are the soureof the
(pN) query lower bound. Reall that [GR02, Prop. 4.3℄ establishes an
(pN) query lowerbound for any algorithm that �nds C3-minors (or, in other words, a one-sided property tester foryle-freeness). Although it was mentioned in [BSS08℄ that this lower bound may extend to H-minor-freeness, for any H that ontains a yle, a proof of this fat has not appeared so far. Wepresent a proof of this fat, thus establishing an
(pN) query lower bound for any algorithm that�nds minors that ontain yles. This stands in ontrast to the following result (f. Corollary 1.4).Theorem 1.8 (see Theorem 1.3): For any �xed yle-free graph H, there exists a one-sided errortester of query omplexity that only depends on the proximity parameter for testing whether a givenonstant degree graph is H-minor-free. Furthermore, whenever the tester rejets, it outputs anH-minor of the input graph.The query omplexity of the foregoing tester is exponential in (16d=�)O(k), where k denotes thenumber of verties in H and � is the proximity parameter. We mention that better omplexity anbe ahieved in some speial ases (e.g., stars and depth-two trees, see Setion 7).A wider perspetive on �nding forbidden minors. The �rst result dealing with graphminors is the well known Kuratowski-Wagner theorem [Kur30, Wag37℄ that states that any non-planar graph ontains a K5 or K3;3 minor. Consider a property P suh that if G 2 P, then, for anyminor H of G, H 2 P. Suh a property is minor-losed. It was onjetured by Wagner that for anyminor-losed property P, there is a �nite set of graphs HP suh that G 2 P i� G is H-minor free,for all H 2 HP . Robertson and Seymour had a long series of deep papers, whih ulminated in theproof of this onjeture [RS04℄, alled the Graph-Minor Theorem. From an algorithmi perspetive,one of the milestones in this series was a polynomial time algorithm that heked H-minor freeness,for any graph H [RS95℄.It is natural to ask this algorithmi question, from a sublinear perspetive. Do we really needto look at the whole graph to �nd a forbidden minor? Suppose we are given a graph G that is farfrom being minor-free, say a (small) onstant fration of the edges needs to be removed to makeG minor-free. Then, an we �nd an H-minor by looking at a sublinear portion of the graph? Thiswould imply the interesting ombinatorial statement that suh a graph ontains sublinear sized H-minors. This paper is the �rst investigation into this problem. Indeed, one-sided property testersan be thought of as sublinear time minor �nders (see Setion 1.2).1.5 Further reetions regarding one-sided errorThe relative power of two-sided versus one-sided error randomized deision proedures has been thefous of onsiderable study in many settings, inluding in property testing. Indeed, in any setting,one-sided error proedures o�er the advantage of never rejeting yes-instanes. However, as wealready saw in Setion 1.2, this advantage has a speial appeal in the ontext of property testing,sine it yields algorithms for very eÆiently �nding some desired strutures (whenever the graphis far from being \free of them"). Additional bene�ts of one-sided error testers are disussed next.6

Firstly, we note that property testing is asymmetri in nature: It refers to distinguishing ob-jets that perfetly satisfy a predetermined property from objets that are far from satisfying thisproperty. Indeed, property testing is a relaxation of the original deision task (whih refers todistinguishing objets that satisfy the property from objets that do not satisfy it), where therelaxation is applied to one type of instanes but not to the other. In this ontext, it is naturalto apply the probabilisti relaxation also to one type of instanes (i.e., the far-away instanes) butnot to the other.Seondly, we note that one of the main appliations of property testers is their potential use asa preliminary \fast but rude" deision step, whih when oupled with an exat (but slow) deisionproedure yields a proedure that is always orret and often very fast. That is, we envision usinga property tester as a \sieve" that rejets \on the spot" (i.e., \fast") very bad instanes (i.e.,those that are far from satisfying this property), while passing the rest of the instanes for furtherexamination. In suh a ontext, we an a�ord passing very bad instanes for further examination(sine all this means is a waste of time), but we annot a�ord failing a good instane.Lastly, we onsider the relationship between property testing and loal strutures in the testedproperty. Intuitively, the existene of a property tester means that a global struture (i.e., dis-tane of the objet to the property) is reeted in (or o-related with) a loal struture (i.e., thepart of the objet being probed by the tester). In the general ase (of two-sided error), this o-relation is statistial, whereas in the ase of one-sided error this orrelation is atually a (\robust")haraterization.The last aspet is partiularly lear in the urrent study. Firstly, the notion of loal strutureis most appealing in the bounded-degree model, where it refers to graph neighborhoods. Seondly,the di�erent types of loal strutures underlying the two-sided and one-sided error testers is moststriking in the ase of yle-freeness. The two-sided error tester of [GR02℄ relies on the fat thatdistane from yle-freeness in onneted graphs is reeted by the di�erene between the numberof edges and the number of verties, whereas these numbers an be estimated (with two-sidederror) by sampling the graph's verties. Note that suh estimates annot yield a haraterization(let alone a robust one) of the yle-free graphs. In ontrast, our one-sided error tester relies on thefat that distane from yle-freeness is reeted in the density of short simple yles in the graph,whereas suh yles an be found by an appropriate randomized exploration of the graph. Indeed,this yields a (robust) haraterization of the set of yle-free graphs (i.e., a graph is yle-free i� itontains no simple yle, and the farther the graph is from being yle-free the shorter and moreabundant these yles are).1.6 The general (unbounded-degree) graph modelOur algorithm for �nding yles in bounded-degree graphs (i.e., Theorem 1.1) extends to thegeneral graphs model (i.e., the model in [PR02℄), where distanes are measured with respet tothe atual number of edges (see Setion 8).10 This follows by an alternative presentation of thebasi randomized redution, whih may be viewed as reduing yle-freeness to a generalizationof 2-olorability. In this generalization, edges of the graph are labeled by either eq or neq, and alegal 2-oloring (of the verties) is one in whih every two verties that are onneted by an edge10Algorithms in this model use the same type of inidene queries as in the main (bounded-degree) model weonsider. The di�erene is that a graph G = ([N ℄; E) is said to be �-far from H-minor-freeness if �jEj edges (ratherthan �dN=2 edges) must be removed from G in order to obtain an H-minor-free subgraph. The point is that thenumber of edges is related to the average degree of G rather than to its degree (upper) bound, whih may besigni�antly smaller. Thus, distanes under this model are possibly larger, and thus the testing requirement ispossibly harder. 7

labeled eq (resp. neq) are assigned the same olor (resp., opposite olors). We also observe thatthe Bipartite testers of [GR99, KKR04℄ extend to this generalization of 2-olorability.We mention that analogous extensions do not work for testing Ck-minor freeness, for k > 3, norfor testing tree-minor-freeness. In fat, we show that, in the general graph model, it is not possibleto �nd tree-minors (or even test freeness with two-sided error) by using o(pN) queries.1.7 OrganizationSetion 2 ontains a formal statement of the relevant de�nitions and terminology. The testers ofCk-minor freeness are presented in Setions 3{5. Our main result (i.e., the one-sided error testerof yle-freeness) is presented in Setion 3. The redution of testing Ck-minor freeness to testingyle-freeness is presented in Setion 5, but Setion 4 provides an adequate warm-up by treatingthe ase of k = 4.In Setion 6, we prove the lower bound laimed in [BSS08℄ regarding the query omplexity ofone-sided error testing H-minor freeness, when H ontains a yle. In ontrast, in Setion 7 weonsider the ase that H is yle-free, and present the improved testers for H-minor freeness in thisase (i.e., when H is a forest).Finally, in Setion 8 we onsider the unbounded-degree model, disussed in Setion 1.6.2 PreliminariesThis work refers to the bounded-degree model (introdued in [GR02℄). This model refers to a �xeddegree bound, denoted d. An N -vertex graph G = ([N ℄; E) (of maximum degree d) is representedin this model by a funtion g : [N ℄ � [d℄ ! f0; 1; :::; Ng suh that g(v; i) = u 2 [N ℄ if u is the ithneighbor of v and g(v; i) = 0 if v has less than i neighbors. Testing in this model is aptured bythe general de�nition of property testing of funtions, when applied to funtions of the foregoingtype and onsidering only graph properties (i.e., properties that are preserved under isomorphism).That is, saying that a tester has orale aess to a graph G means that it is given orale aess tothe orresponding funtion g.De�nition 2.1 (testers in the bounded-degree model): Let d 2 N be �xed and � be a property ofgraphs with maximum degree at most d. We denote the restrition of � to N -vertex graphs by �N .A randomized orale mahine T is alled a tester for � if the following two onditions hold:1. For every N 2 N and � 2 [0; 1℄, on input (N; �) and when given orale aess to any G 2 �Nthe mahine T aepts with probability at least 2=3; that is, Pr[TG(N; �) = 1℄ � 2=3.2. For every N 2 N and � 2 [0; 1℄, and every N -vertex graph G that is �-far from �N , it holds thatPr[TG(N; �) = 1℄ � 1=3, where G = ([N ℄; E) is �-far from �N if for every G0 = ([N ℄; E0) 2 �Nit holds that the symmetri di�erene of E and E0 ontains more than � � dN=2 elements.11In ase the �rst ondition holds with probability 1, we say that T has one-sided error. Otherwise,we say that T has two-sided error.11Alternatively, representing G by g : [N ℄ � [d℄ ! f0; 1; :::; Ng (resp., G0 by g0 : [N ℄ � [d℄ ! f0; 1; :::; Ng) wemay require that Prx2[N℄�[d℄[g(x) 6= g0(x)℄ > �. Note that in this ase, for eah G we should onsider all legitimaterepresentations of G0 as a funtion g0.
8

Throughout our study, the degree bound d � 3 is a onstant,12 and sometimes O/Omega-notionshide a dependene on d. The query and time omplexities of testers are stated as funtions of thegraph size, N , and the proximity parameter, �.Notation. For a graph G = ([N ℄; E), we denote the set of neighbors of v 2 [N ℄ (in G) by �G(v);that is, �G(v) = fu2 [N ℄ : fu; vg2Eg.Terminology. We stress that by a yle in a graph G = ([N ℄; E) we mean a sequene of verties(v1; : : : ; vt; vt+1) suh that v1 = vt+1 and for every i 2 [t℄ it holds that fvi; vi+1g 2 E; that is,(u; v; w; v; u) (or even (u; v; u)) is onsidered a yle. A simple yle is a yle as above in whiht � 3 and jfvi : i 2 [t℄gj = t.3 Testing Cyle-FreenessAs stated in the introdution, we redue testing yle-freeness to testing bipartiteness. Reall thatwe onsider bounded-degree graphs, where the degree bound d is assumed to be a onstant (for thegeneral ase, see Appendix 8). We stress that the redution is randomized and loal (i.e., operationsin the resulting graph are easily implemented via operations in the original graph). Wishing toavoid a general de�nition of (randomized) loal redutions, we expliitly present the tester obtainedby it.For a �xed graph G = ([N ℄; E) and funtion � : E ! f1; 2g, we denote by G� the graphobtained from G by replaing eah edge e 2 E suh that �(e) = 2 by a 2-edge path (with anauxiliary intermediate vertex). Eah edge e 2 E suh that �(e) = 1 remains an edge in G� . Thatis, the graph G� = (V� ; E�) is de�ned as follows:V� def= [N ℄ [fae : e 2 E ^ �(e) = 2g (1)E� def= fe : e 2 E ^ �(e) = 1g [ffu; aeg; fae; vg : e = fu; vg 2 E ^ �(e) = 2g (2)We now turn to the tester itself. The tester emulates the exeution of the bipartiteness testingalgorithm [GR99℄ on G� by performing queries to G. The bipartiteness testing algorithm performstwo types of operations: seleting a vertex uniformly at random and taking random walks byquerying verties on their neighbors. Thus the exeution of the tester boils down to emulatingthese operations, as desribed next. We use ? to denote \null". If we query for the ith neighbor ofvertex v and no suh neighbor exists, we get ? as an answer.Algorithm 3.1 (the yle-freeness tester): Given input graph G = ([N ℄; E), the tester seletsuniformly at random a funtion � : E ! f1; 2g and invokes a bipartite tester, denoted T , on thegraph G� , emulating its operations as follows.1. If T wishes to selet a random vertex in G� , then the tester selets uniformly a vertex v 2 [N ℄,outputs v with probability 1=(d+1), and otherwise selets eah neighbor u of v with probability1=(2(d + 1)) and outputs afu;vg if �(fu; vg) = 2. Indeed, this proess is guaranteed to outputa uniformly distributed vertex with probability at least 1=(d + 1), and in ase of failure it isrepeated (up to O(logN) times).12There is little point in onsidering d � 2, beause in this ase the problems we onsider are either trivial (i.e.,for d = 1) or very easy (i.e., for d = 2). Spei�ally, for d = 2, one an test Ck-minor-freeness by seleting a randomvertex and exploring its k=2-neighborhood. 9

2. If T queries for the ith neighbor of vertex v 2 [N ℄, then the tester queries for the ith neighborof v, and answers aordingly. That is, if the answer was ?, then ? is given as answer toT , whereas if the answer was u, then u is given to T if �(fu; vg) = 1 and afu;vg is givenotherwise.Finally, if T queries for the ith neighbor of a vertex afu;vg and u < v then the tester answerwith u if i = 1, with v if i = 2, and with ? if i > 2.When T halts, the urrent tester halts with the same verdit.Furthermore, if the bipartite tester provides an odd-length yle in G� , then we an easily obtaina orresponding yle in G (by ontrating the 2-vertex paths that appear on it into single edges).We note that the random funtion � : E ! f1; 2g an be seleted \on the y" (i.e., whenever weneed the value of �(e), if this value is still unde�ned then we selet it uniformly in f1; 2g and storeit for possible future use).Using the bipartite tester of [GR99℄ in the role of T , we obtain an algorithm of the desiredomplexity that always aepts a yle free graph (see below). Our analysis is thus foused on thease that G is not yle-free.Lemma 3.2 (analysis of the redution):1. If G is yle-free then, for every hoie of � : E ! f1; 2g, the graph G� is bipartite.2. If G is not yle-free then, with probability at least 1=2 over the random hoie of � : E !f1; 2g, the graph G� is not bipartite.3. There exists a universal onstant > 0 suh that if G is �-far from being yle free then, withprobability at least 1 � exp(��dN) over the random hoie of � : E ! f1; 2g, the graph G�is � �-far from being bipartite.Proof: The �rst item follows from the fat that if G is yle-free then, for every � : E ! f1; 2g,the graph G� is also yle-free, and thus bipartite. The seond item follows by observing that anyyle in G is transformed with probability 1=2 to an odd-length yle in G� . Turning to the lastitem, we onsider an arbitrary graph G that is not yle-free. Denoting by � the atual number ofedges (not its fration) that needs to be omitted from G in order to obtain a yle-free graph, weshall show that (with probability at least 1 � exp(��dN)) the number of edges that needs to beomitted from G� in order to obtain a bipartite graph is at least ��.We may assume, without loss of generality, that the graph G is onneted, or else we applythe laim separately to eah onneted omponent that is not yle-free. We may also assume thatG has no verties of degree 1, sine trunating suh verties maintains the value of � (i.e., theabsolute distane from being yle-free) as well as the (distribution of) the number of edges thathave to be removed to make G� bipartite. Finally, exept in the ase that G is a simple yle,we may also assume that there are no verties of degree 2, sine we an ontrat paths that onlyontain intermediate verties of degree 2 to a single edge, while again preserving � as well as the(distribution of) the number of edges that have to be removed to make G� bipartite.1313The latter assertion follows from the fat that the distribution of the parity of the path-lengths inG� is maintained(i.e., both the original path and the ontrated path inG� have odd/even length with probability 1=2. We also mentionthat the ontrated graph G may ontain self-loops and parallel edges, but the rest of the argument holds in this asetoo. We stress that the ontrated graph is merely a mental experiment for proving the urrent lemma.10

In light of the forgoing, we onsider a onneted graph G = ([N ℄; E) in whih eah vertex hasdegree at least 3. It follows that � = jEj � (N � 1) > N=2. We shall prove that, with highprobability over the hoie of � , more than �� edges must be omitted from the graph G� in orderto obtain a bipartite graph.For eah E0 � E of size �, we onsider the probability that G0� is bipartite, where G0� denotesthe graph obtained fromG� by omitting the edges ofG� that replae the edges inE0 (or alternativelyapplying the randomized redution to the graph G0 = ([N ℄; EnE0)).14 Note that G� is at (absolute)distane at most � from being bipartite if and only if there exists a set E0 of size � suh thatG0� is bipartite. Thus, we havep def= Pr� [9E0 � E suh that jE0j = � and G0� is bipartite℄� XE0�E: jE0j=�Pr� [G0� is bipartite℄� �jEj�� � 2N�1 � 2�(jEj��)where the seond inequality is due to onsidering all possible 2-partitions of [N ℄ and noting that foreah edge e in E nE0 and eah 2-partition �, with probability 1=2 over the hoie of �(e) 2 f1; 2g aviolation is ause by e. Spei�ally, if �(u) = �(v) and �(fu; vg) = 1, then the edge fu; vg violatesthe 2-partition �, and ditto if �(u) 6= �(v) and �(fu; vg) = 2. Note that the hypothesis that G is(onneted and is) at (absolute) distane � from being yle-free implies that jEj = (N � 1) + �.Now, substituting jEj by (N � 1) + � and using � � N=2 (and < 1=2), we getp < �N +�� � � 2�(1�)�< �3��� � 2��=2whih vanishes exponentially in � provided that > 0 is a suÆiently small onstant.Conlusion. Combining Lemma 3.2 with the straightforward observations preeding it, we on-lude that Algorithm 3.1 is a one-sided error tester for yle-freeness, and its omplexity iseO(poly(1=�) � pN). This establishes Theorem 1.5.4 Testing C4-Minor-FreenessAs a warm-up towards testing Ck-minor-freeness, for any k � 3, we present the treatment of thespeial ase of k = 4. We atually redue the task of testing C4-minor-freeness to the task of testingC3-minor-freeness. The redution is summarized in the following onstrution.Constrution 4.1 (the redution): Given a graph G = ([N ℄; E) (of max degree d), we (loally)onstrut the auxiliary graph G0 = ([N ℄[T;E0) suh that T ontains the vertex 5u;v;w (referred toas a \triangle" vertex), if and only if fu; vg; fv; wg; fw; ug 2 E andE0 =0�E n0� [u;v;w:5u;v;w2Tfu; vg1A1A [�fu;5u;v;wg : 5u;v;w 2 T	 : (3)14Note however that if G0� is bipartite then G� an be made bipartite by omitting jE0j (rather 2jE0j) edges, sineit suÆes to omit a single edge from eah path in G� that replaed an edge in E0.11

Spei�ally, the set of neighbors of v 2 [N ℄ in G0, denoted �G0(v), onsists of the following elementsof [N ℄ [T .1. Neighbors of v in G that do not reside in G on a triangle together with v; that is, u 2 �G(v)is in �G0(v) if and only if �G(u) \ �G(v) = ;.2. Eah triangle that ontains v in G; that is, 5u;v;w is in �G0(v) if and only if u;w 2 �G(v)and fw; ug 2 E.The set of neighbors of 5u;v;w 2 T equals fu; v; wg. Noting that d + �d2� � d2, we view G0 as agraph of maximal degree d2.For an illustration of Constrution 4.1 see Figure 1. Note that given any v 2 [N ℄, we an easily
c

a b d

e c

a b d

e

G’G

c

a b d

e

G

c

a b d

e

G’

Figure 1: An illustration for Constrution 4.1. On the left, G is C4-minor free, and indeed G0 is yle-free;while on the right, G is not C4-minor free, and G0 ontains yles (but no yles of length 3 (triangles).)determine its neighbors in G0 by heking the foregoing onditions. Similarly, for every u; v; w,we an easily determine whether 5u;v;w is in G0. Lastly, note that we an selet a vertex of G0uniformly by using the following proedure.1. Selet uniformly v 2 [N ℄.2. Selet one of the following two instrutions at random with equal probability.(a) (Generating a vertex of G):Output v with probability d�2.(b) (Generating a triangle):Selet uniformly u;w 2 �G(v). If fu;wg 2 E, then output 5u;v;w with probabilitypv = d�2 � j�G(v)j2=6.In all the other ases, there is no output.Thus, this proess outputs eah vertex of G with probability N�1 �0:5 �d�2 = d�2=2N , and outputseah 5u;v;w 2 T with probabilityPx2fu;v;wgN�1 �0:5 �2j�G(x)j�2 �px = d�2=2N . Sine there are atleast N verties in G0, the probability that the proess does not output any vertex in G0 is at most(1�d�2). If we repeat the proess �(logN) times (reall that d is assumed to be a onstant), thenthe probability that we get no output is 1=poly(N). Sine the total size of the sample needed iso(N), by a union bound, the probability that this ours at any step of the algorithm, is negligible,and this an be aounted for in the one-sided error probability by letting the algorithm aept inase sampling fails. 12

Algorithm 4.2 (the C4-minor-freeness tester): Given input graph G = ([N ℄; E), the tester emu-lates the exeution of Algorithm 3.1 on the graph G0 = ([N ℄[T;E0) as de�ned in Constrution 4.1.In the emulation, verties of G0 are seleted at random and their neighbors are explored on the y,as detailed above.The analysis of Algorithm 4.2 redues to an analysis of Constrution 4.1.Claim 4.3 If G is C4-minor-free, then G0 is yle-free.Proof: We �rst give a high-level idea of the proof and then give a detailed argument. By thehypothesis, the only simple yles in G are triangles, and they are replaed in G0 by stars enteredat auxiliary verties. Spei�ally, the triangle fu; v; wg (i.e., the edges fu; vg; fv; wg; fw; ug) isreplaed by a star-tree entered at 5u;v;w and having the leaves u; v; w. Note that this replaementan form no simple yles in G0, beause the simple paths in G0 orrespond to simple paths in G(where the sub-path v|5u;v;w |w orresponds to the edge v|w).The orresponding detailed argument proeeds as follows. Assume, ontrary to the laim, thatthere exists a simple yle 0 = v1|v2{ � � � {vt|vt+1 = v1 in G0. Consider replaing eah length-2subpath u|5u;w;x|w in 0 by the edge (in G) between u and w (where this edge exists beause uand w belong to a ommon triangle and u 6= w). Sine, by onstrution of G0, there are no edges inG0 between triangle verties, this way we obtain a yle in G, whih we denote by . We next showthat is a simple yle of length greater than 3, and we reah a ontradition to the hypothesisthat G is C4-minor-free.We �rst verify that the length of is greater than 2. This is true beause otherwise, the yle 0 is either of the form u|5u;w;x|w|u, or it is of the form u|5u;w;x1|w|5u;w;x2|u. In the�rst ase 0 ontains an edge fw; ug of a triangle in G, whih is not possible by onstrution of G0.In the seond ase, sine 0 is simple (so that x1 6= x2), there is a simple 4-yle u|x1|w|x2|uin G (ontraditing the hypothesis that G is C4-minor-free). It follows that is a simple yle andit remains to verify that its length is greater than 3.Suppose that the length of is 3, that is, = u|w|v|u is a triangle in G. It follows thatnone of the edges fu;wg; fw; vg; fv; ug belong to G0 and therefore, 0 = u|5u;w;x1 |w|5w;v;x2|v|5v;u;x3 |u, where the triangles are distint and hene at least one of them does not equal5u;w;v. But this implies that there exists a simple 4-yle in G (ontraditing the hypothesis thatG is C4-minor-free).Claim 4.4 If G is �-far from being C4-minor-free, then G0 is
(�)-far from being yle-free, wherethe Omega-notation hides a polynomial in d.Proof: Suppose that G0 is Æ-lose to being yle-free, where the distane refers to the degreebound of G0, whih is d2. Let R0 be a set of at most Æ � d2 � (N + jT j)=2 edges suh that removingR0 from G0 yields a yle-free graph, ([N ℄ [T;E0 n R0). Let R � E be a set of edges that onsistsof (1) all edges of E that are in R0, and (2) eah edge fu; vg 2 E suh that fu;5u;v;wg is in R0.Hene, jRj � 2jR0j < Æ � d4N , where we use jT j � �d2� �N . We next prove that removing R from Gyields a graph that is C4-minor-free, and it follows that G is 2d2Æ-lose to being C4-minor-free.Assume, ontrary to the laim, that for some t � 4 there exists a simple yle v1|v2{ � � � {vt|v1in the resulting graph (i.e., in the graph ([N ℄; EnR)). We onsider the orresponding (not neessarilysimple) yle in the graph ([N ℄ [T;E0 nR0):Case 1: If the edge fvi; vi+1g 2 E n R is not a part of any triangle in G, then fvi; vi+1g 2 E0 n R0,beause fvi; vi+1g is an edge of G0 and it annot be in R0 (sine this would imply that13

fvi; vi+1g 2 R). In this ase, we just use the edge fvi; vi+1g on the yle in the graph([N ℄ [T;E0 n R0).Case 2: If the edge fvi; vi+1g 2 E nR is part of a triangle vi; vi+1; w (in G), then fvi;5vi;vi+1;wg 2E0 nR0 and fvi+1;5vi;vi+1;wg 2 E0 nR0, beause both pairs are edges of G0 and annot be in R0(sine this would imply that fvi; vi+1g 2 R). In this ase, we replae the edge fvi; vi+1g 2 EnRby the length-two-path vi|5vi;vi+1;w |vi+1 (in the graph ([N ℄ [T;E0 nR0)).Observe that the \triangle" verties used in Case (2) need not be distint, but they an ollide onlywhen they refer to three onseutive verties on the original t-yle (i.e., if5vi;vi+1;w1 = 5vj ;vj+1;w2 ,for i < j, then vj = vi+1 must hold, and w1 = vj+1 = vi+2 follows). Suh ollisions an beeliminated at the ost of omitting a single \non-triangle" vertex (i.e., the path vi| 5vi;vi+1;vi+2|vi+1| 5vi;vi+1;vi+2 |vi+2 is replaed by the path vi| 5vi;vi+1;vi+2 |vi+2). Thus, we derive asimple yle of length at least t � 4 in the graph ([N ℄[T;E0 nR0) (sine we have a \triangle" vertexper eah omitted \non-triangle" vertex). This ontradits the hypothesis that ([N ℄ [T;E0 n R0) isyle-free, and so the laim follows.Conlusion. Combining Claims 4.3 and 4.4, we onlude that there exists a one-sided error testerof omplexity is eO(poly(1=�) � pN) for C4-minor-freeness.5 Testing Ck-Minor-Freeness, for any k � 4In this setion we show that, for any k � 4, the task of testing Ck-minor-freeness redues to thetask of testing C3-minor-freeness. The redution extends the ideas underlying the redution oftesting C4-minor-freeness to testing C3-minor-freeness (as presented in Setion 4).The basi idea of the redution is replaing simple yles that have length smaller than k bystars. Atually, we replae ertain subgraphs that ontain suh yles by stars. We start by de�ningthe lass of (indued) subgraphs that we intend to replae by stars. These subgraphs (or rathertheir vertex sets) will be alled spots. Below, the term 2-onnetivity means 2-vertex onnetivity;that is, a graph is alled 2-onneted if every two verties in the graph an be onneted by twovertex-disjoint paths.De�nition 5.1 (spots): A set S � [N ℄ is alled a k-spot of the graph G = ([N ℄; E) if the followingthree onditions hold:1. The subgraph indued by S, denoted GS, ontains no simple yle of length � k; that is, GSis Ck-minor-free.2. The subgraph indued by S is 2-onneted.3. For every u 6= v 2 S, either u and v are not onneted by any path that is external to GS orthe length of every suh external path is at least `(k) def= 2k. Here, by a path external to GS wemean a path that does not use any edge that is inident to a vertex in S (i.e., all intermediateverties of the path belong to [N ℄ n S).For example, every 4-spot ofG indues a triangle inG, whereas the set of possible subgraphs induedby 5-spots of G onsists of the following graphs: the 4-yle (i.e., C4), the 4-yle augmented bya hord, the 4-lique (i.e., K4), and the graphs K2;n and K 02;n for every n � 3, where K 02;n is the14

graph K2;n augmented by a single edge that onnets the two verties on the small side.15 (Indeed,in Setion 4 we essentially used a relaxed notion of a 4-spot in whih the third ondition was notrequired.)5.1 Some basi fats regarding spotsSine k is �xed throughout the rest of our disussion, we may omit it from the notations and referto k-spots as spots. A few basi properties of spots are listed below.Claim 5.2 If S is a k-spot of G, then the diameter of GS is smaller than k=2.It follows that jSj <Pk=2i=0 di < 2dk=2 < dk�1 (sine k � 4 and d � 3).16Proof: Otherwise, onsider u; v 2 S suh that the distane between u and v in GS is at leastk=2. Sine GS is 2-onneted, there exists a simple yle in GS that passes through both u andv, and it follows that this yle has length at least k, whih ontradits the hypothesis that GS isCk-minor-free.Note that, for any spot S and every three distint verties u; v; w 2 S, the subgraph GS ontainsa simple path that goes from u to v via w. This hold by the very fat that GS is 2-onneted (i.e.,the seond ondition in De�nition 5.1). By Claim 5.2 the length of this path is less than dk�1. Aswe shall show next, a muh better bound follows by using the fat that GS is Ck-minor-free (i.e.,the �rst ondition in De�nition 5.1),Claim 5.3 For every k-spot S and distint verties u; v; w 2 S, the subgraph GS ontains a simplepath of length at most 2k � 1 that goes from u to v via w.Su
v wx

Figure 2: An illustration for the proof of Claim 5.3. The jotted line is the path between u and v that passesthrough w.Proof: We just take a loser look at the standard proof that the fat that a graph is 2-onnetedimplies the existene of a u{ � � � {w{ � � � {v path (for every three verties u; v; w in the graph). The15Reall that Km;n denotes the omplete bipartite graph with m verties on one side and n verties on the otherside; that is, Km;n = ([m+ n℄; ffi; m+ jg : i2 [m℄; j2 [n℄g).16We mention that there may exists spots of size d(k�1)=2. Consider, for example, a graph that onsists of twoopies of a depth (d � 1)-ary tree of depth (k � 1)=2 suh that eah vertex in one tree is onneted to its mirrorvertex in the seond tree. To see that this graph is Ck-minor-free, onsider the orrespondene between yles on thisgraphs and traversals of parts of the original tree, and note that simple yles orrespond to traversals in whih eahedge is used at most twie. Sine suh traversals have length at most twie the depth of the tree, the laim follows.15

proof starts by onsidering two di�erent vertex-disjoint u{ � � � {w paths, and an arbitrary pathbetween v and w. In the urrent ase (i.e., by Ck-minor-freeness), we may assume that the totallength of the �rst two paths is smaller than k. Similarly, without loss of generality, the length ofthe third path is smaller than k. Proeeding as in the standard proof, we ask whether the thirdpath (i.e., the v{ � � � {w path) intersets both the u{ � � � {w paths. If the answer is negative, then weare done (as we obtain the desired simple path by onatenating the path v{ � � � {w to the w{ � � � {upath that does not interset it). Otherwise, let x be the \losest to v" vertex on the path v{ � � � {wthat appear on either of the u{ � � � {w paths; that is, x is on one of the u{ � � � {w paths and thesub-path v{ � � � {x (of the path v{ � � � {w) ontains no vertex from either the u{ � � � {w paths. Notethat x = v is possible (but x = w is not), and assume, w.l.o.g., that x resides on the �rst u{ � � � {wpath. Then, onsider the path obtained by ombining the following three path segments: (1) thesegment v{ � � � {x of the path v{ � � � {w, (2) the segment x{ � � � {w of the �rst u{ � � � {w path, and(3) the seond u{ � � � {w path. Note that the total length of this path is at most 2(k � 1) (i.e., thetotal length of the three paths), and that the three segment do not interset (sine the v{ � � � {xsegment does not interset the x{ � � � {w segment nor the u{ � � � {w path by hoie of v). For anillustration of the argument, see Figure 2.
wu0v0 S2uvS1

Figure 3: An illustration for the proof of Claim 5.4.Claim 5.4 If S1 6= S2 are k-spots of G, then jS1 \ S2j � 1.It follows that the number of spots in a graph G is upper-bounded by the number of edges in G,beause every spot S that ontains v must also ontain at least two of v's neighbors whereas spotsthat ontain v may not share any other vertex. Thus, vertex v may partiipate in at most j�(v)j=2spots.Proof: Otherwise, onsider u; v 2 S1 \ S2 and w 2 S2 n S1. By Claim 5.3, the subgraph GS2ontains a simple path of length at most 2k � 1 that goes from u to v via w. Let u0 (resp., v0)be the last (resp., �rst) vertex of S1 that appears on this path before reahing w (resp., afterleaving w). Then, we get a simple path (in G) from u0 2 S1 to v0 2 S1 n fu0g suh that this pathontains only intermediate verties of S2 n S1. Realling that this path has length at most 2k � 1,we reah a ontradition to the hypothesis that S1 is a k-spot (spei�ally to the third onditionof De�nition 5.1). For an illustration of the argument, see Figure 3.Claim 5.5 Eah simple yle in any Ck-minor-free graph G is a subset of some k-spot of G.Proof: Consider the following iterative proess of onstruting a spot S that ontains the afore-mentioned yle. Initially, we set S to equal the set of verties that reside on this yle. Clearly,this set S satis�es the �rst two onditions of the de�nition of a spot (i.e., De�nition 5.1), whih is16

an invariant that we shall maintain throughout the iterative proess. If the urrent S satis�es alsothe third ondition of the de�nition of a spot, then S is a spot and we are done. Otherwise, weonsider a simple path external to S that onnets two of its verties; that is, the verties u; v 2 S.Adding this path to S we obtain a new set that satis�es Condition 1 (sine G is Ck-minor-free).To see that the new set satis�es Condition 2, we need to show that there exist two disjoint pathsbetween eah pair of verties that are not both in S.uv vw1w2 w1w2 uSS
Figure 4: An illustration for the proof of Claim 5.5.In the ase that w1 and w2 are both new verties (whih reside on the aforementioned S-externalpath), we onnet them by the diret path that resides outside of S as well as by a simple paththat (wlog) onnets w1 to u (via the external path), onnets u and v via S, and onnets v andw2 (via the external path). In the ase that w1 is new but w2 2 S, we use the external path toonnet w1 to u and v, respetively, and use the fat that there are vertex disjoint paths in GS thatonnet u and v to w2. For an illustration see Figure 4.5.2 The atual redutionUsing these fats, we are ready to present our redution.Constrution 5.6 (the redution): Given a graph G = ([N ℄; E) (of max degree d), we (loally)onstrut the auxiliary graph G0 = ([N ℄[fhSi : S2Sg; E0) suh that S is the the set of all spots ofG and E0 = E n [S2Sffu; vg : u; v2Sg!! [ffv; hSig : S 2 S; v2Sg : (4)Spei�ally, the set of neighbors of v 2 [N ℄ in G0, denoted �G0(v), onsists of the following elementsof [N ℄ [fhSi : S2Sg.1. Neighbors of v in G that do not reside in any spot together with v; that is, u 2 �G(v) is in�G0(v) if and only if fu; vg is not a subset of any S 2 S.2. Eah spot that ontains v in G; that is, hSi is in �A(v) if and only if S 2 S and v 2 S.For any S 2 S, the set of neighbors of hSi in G0 equals S. Realling that eah S 2 S has size atmost dk�1, we view G0 as a graph of maximal degree dk�1.Observe that the set of spots that ontain a vertex v 2 [N ℄ is determined by the (k + `(k))-neighborhood of v in G, where the t-neighborhood of v ontains all verties that are at distane atmost t from v. Thus, we an determine the set of neighbors of eah vertex in G0. We note thatthe proess of determining the spots that ontain a vertex may fail if a yle of length at least kis enountered. In suh a ase the algorithm an learly rejet. Lastly, note that we an selet avertex of G0 uniformly by using the following proedure.17

1. Selet uniformly v 2 [N ℄.2. Selet one of the following two instrutions at random with equal probability.(a) (Generating a vertex of G):Output v with probability 1=d.(b) (Generating a spot):Selet uniformly a spot S that ontain v (i.e., S 2 Sv), and output hSi with probabilitypv = jSvjdjSj , where Sv def= fS 2 S : v 2 Sg.In all the other ases, there is no output.Thus, this proess output eah vertex of G with probability N�1 �0:5 �d�1 = 1=(2dN), and outputseah spot hSi 2 S with probabilityPv2S N�1 � 0:5 � jSvj�1 � pv = 1=(2dN).Algorithm 5.7 (the Ck-minor-freeness tester): Given input graph G = ([N ℄; E), the tester em-ulates the exeution of Algorithm 3.1 on the graph G0 as de�ned in Constrution 5.6. In theemulation, verties of G0 are seleted at random and their neighbors are being explored on the y,as detailed above.The analysis of Algorithm 5.7 redues to an analysis of Constrution 5.6.Claim 5.8 (yes-instanes): If G is Ck-minor-free, then G0 is yle-free.Proof: Suppose, ontrary to the laim, that v1|v2{ � � � {vt|v1 is a simple yle inG0. We onsidertwo ases.Case 1: All vi's are verties of G. In this ase, the edges fvi; vi+1g in G0 must be edges of G (sinethe only edges in G0 that are not edges in G are inident to spot-verties). On the other handt < k must hold, beause G is Ck-minor-free. But this yields a ontradition, beause, byClaim 5.5, the set fvi : i 2 [t℄g must be a subset of some spot of S, whih means that noneof the edges fvi; vi+1g may exist in G0.Case 2: Some vi represents a spot of G. Let vi = hSi, for some S 2 S. Then vi+1; vi�1 2 S. Now,onsider a minimal sub-path of vi+1; :::; vt; v1; :::; vi�1 that starts in a vertex of S, denoted u,and ends in a vertex of S, denoted v. That is, we onsider a sub-path that starts and ends inverties of S, but has no intermediate verties in S. This sub-path (in G0) annot onsist ofa single edge (beause the edge fu; vg � S annot appear in G0), it annot ontain the vertexhSi (beause hSi already appears as vi), and it annot be a 2-path that goes through anotherspot (beause, by Claim 5.4, no other spot may ontain both u and v). Sine this path maynot ontain intermediate verties in S, and sine spot-verties annot be adjaent in G0, itfollows that this path must ontain a vertex w 2 [N ℄ n S. That is, we get a path in G0 thatgoes from u to v via w, without passing through any vertex in S.We now obtain a orresponding path in G; that is, a path in G that goes from u to v viaw, without passing through any vertex in S. This is done by replaing any length-2 subpathu0|hS0i|v0 (in G0) by a sub-path u0{ � � � {v0 (in G) that does not pass through S, where thelatter path exists by the fat that u0; v0 2 S0 are onneted by vertex-disjoint paths (internalto S0) suh that their intersetion with S ontains at most a single vertex (see Claim 5.4).It follows that G itself ontains a path between u and v that passes through w and does not18

pass through S, where u; v 2 S but w 62 S. Thus, G itself ontains a simple (non-edge) pathbetween u and v that does not pass through S (i.e., an external path). By the third onditionin De�nition 5.1, the length of this external path is at least `(k) > k, but this ontraditsthe hypothesis that G is Ck-minor-free (beause u and v are onneted in GS and `(k) � k,yielding a simple yle of length at least k).The laim follows.Claim 5.9 (no-instanes): If G is �-far from being Ck-minor-free, then G0 is
(�)-far from beingyle-free, where the Omega-notation hides a dk fator.Proof: Suppose that G0 is Æ-lose to being yle-free, where the distane refers to the degree boundof G0, whih is dk�1. Reall that jSj � jEj � dN=2. Let R0 be a set of at most Æ �dk�1(N + jSj)=2 <Æ � dkN=2 edges suh that removing R0 from G0 yields a yle-free graph. Let R � E be a set ofedges that onsists of (1) all edges of E that are in R0, and (2) eah edge fv; wg 2 E suh thatfv; hSig is in R0. Hene, jRj � djR0j < Æ � dk+1N=2. We next prove that removing R from G yieldsa graph that is Ck-minor-free, and it follows that G is Æ � dk-lose to being Ck-minor-free.Suppose, ontrary to the laim, that for t � k there exists a simple yle v1|v2{ � � � {vt|v1 inthe resulting graph (i.e., in the graph ([N ℄; E nR)). We �rst show that there exists a orresponding(not neessarily simple) yle in E0 n R0. Spei�ally, for eah fvi; vi+1g 2 E n R, we onsider twoases.Case 1: This edge is not a subset of any spot in G. In this ase, fvi; vi+1g 2 E0 n R0, beause thisedge is in E0 and annot be in R0 (or else it would have been in R). So we just use this edgein the yle (in E0 n R0).Case 2: This edge is a subset of a spot S in G. In this ase, fvi; hSig; fvi+1; hSig 2 E0nR0, beauseboth these edges are in E0 and annot be in R0 (or else fvi; vi+1g would have been in R). Inthis ase, we replae the edge fvi; vi+1g 2 E nR by the length-two-path vi|hSi|vi+1.Thus, we obtain a yle in ([N ℄[fhSi : S2 Sg; E0 nR0) that ontains the verties v1; :::; vt 2 [N ℄ aswell as (possibly) some elements in fhSi : S2 Sg. Sine the latter elements may appear in multipleopies, the foregoing yle is not neessarily simple. Note that a simple yle in ([N ℄ [fhSi : S2Sg; E0nR0) yields a ontradition to the hypothesis that this graph is yle-free, and thus establishesour laim that the graph ([N ℄; E n R) is Ck-minor-free. We obtain a simple yle, in two steps, asfollows.First, we replae every maximal sub-path of the form vi|hSi|vi+1|hSi{ � � � {hSi|vj, wherej 6= i (or else S ontains a t-yle for t � k), by a length-two path vi|hSi|vj. If the resultingyle ontain distint spot (representative) verties, then we are done (sine we obtain a simpleyle). Otherwise, we obtain a yle of the formu1{ � � � {ut1|hS1i|ut1+1{ � � � {ut1+t2|hS2i|ut1+t2+1{ � � � {ut1+t2+t3|hS3i � � � hSmi|u1where the ui's are all distint and adjaent Si's are distint (but non-adjaent Si's may be idential).Next, we onsider a sub-path of the foregoing yle suh that the endpoints of this sub-path are twoopies of the same spot S and no other spot appears more than one on this sub-path. This sub-path annot have length two (beause adjaent Si's are distint), whih means that it is atually asimple yle, and we are done. 19

Conlusion. Combining Claims 5.8 and 5.9 with the straightforward observations preeding it,we onlude that Algorithm 5.7 is a one-sided error tester for Ck-minor-freeness, and its omplexityis eO(poly(dk=�) � pN). This establishes Theorem 1.2.6 Proof of the Lower BoundReall that Goldreih and Ron proved a
(pN) query lower bound on the omplexity of one-sided error testers for yle-freeness [GR02, Prop. 4.3℄. As stated in the introdution, Benjamini,Shramm, and Shapira [BSS08℄ mentioned that this lower bound may hold for testing H-minorfreeness, for any H that is not a forest. This is indeed the ase, as proved next.Theorem 6.1 For any �xed H that ontains a simple yle, the query omplexity of one-sidederror testing of H-minor freeness is
(pN).Indeed, as an been seen easily in the ase that H is a single edge, the lower bound does not holdin ase H ontains no simple yles. A general study of testing H-minor freeness for any yle-freeH is initiated in Setion 7.Proof: Following the proof of [GR02, Prop. 4.3℄, we show that for suÆiently large N , withhigh probability, the random N -vertex graphs onsidered in [GR02, Se. 7℄ are far from being H-minor free. One this is done, the theorem follows, beause it was shown in [GR02, Se. 7℄ that aprobabilisti mahine that makes o(pN) queries is unlikely to �nd a yle in suh a random graph(and so it must aept as otherwise it is not a one-sided error tester). Also note that it suÆes toshow that, for any �xed k and suÆiently large N , with high probability, suh a random graph isfar from being Kk-minor free, beause ontaining a minor of the Kk implies ontaining a minor ofany k-vertex graph H.The random graphs onsidered in [GR02, Se. 7℄ are graphs uniformly hosen in the family GN(whih is denoted GN1 in [GR02℄). Eah (N -vertex) graph in GN onsists of the union of a simpleN -vertex (Hamiltonian) yle and a perfet mathing of these N verties. (Indeed, eah graph inGN is 3-regular.) Furthermore, the yle is �xed to be (1; 2; :::; N; 1) and so a random graph inGN orresponds to a random hoie of a perfet mathing. Our aim is to prove that, with highprobability, suh a random graph is far from being Kk-minor free. We start with an overview ofthis proof.Fixing a suÆiently small onstant value � > 0 (i.e., � � 1=3k), we partition the yle to kequal-length segments (i.e., (1; 2; :::; (N=k)), ((N=k)+ 1; (N=k)+ 2; :::; (2N=k)), ..., (((k� 1)N=k)+1; ((k�1)N=k)+2; :::; N)). Fousing on the subgraph indued by eah segment, we �rst prove that,with high probability, omitting at most 3�N=2 edges from it yield a graph that has a onnetedomponent that ontains most of the verties (i.e., more than N=2k verties). Next, we prove thatfor every pair of onneted omponents, with high probability, there are more than 3�N=2 edgesgoing from one omponent to the other one. Contrating eah of these k onneted omponents,we get a opy of Kk that survives the omission of 3�N=2 edges. We now turn to the atual proof.We onsider a proess in whih a graph is uniformly seleted in GN , and then 3�N=2 edges are(adversarially) omitted from it. Our aim is to show that, with high probability, the resulting graphontains a Kk-minor. We shall atually onsider a worse proess in whih 3�N=2 edges are omittedfrom the Hamiltonian yle and 3�N=2 edges are omitted from the mathing. We shall show that,for any hoie of 3�N=2 edges from the Hamiltonian yle, with overwhelming high probability,the residual proess (i.e., seleting a random perfet mathing and (adversarially) omitting 3�N=2mathing edges) yields a graph that ontains a Kk-minor.20

Using � < 1=k5 and setting ` = �(k=�), we further partition eah of the large k segments into(N=k)=` small segments, eah of length `. Note that omitting any 3�N=2 edges (of the Hamiltonianyle), leaves all but at most 3�N=2 < N=4`k of these `-segments intat. Fixing any hoie ofthese 3�N=2 omitted edges, we onsider an auxiliary (random) graph that represents the mathingedges going between the `-segments. That is, this auxiliary graph has a vertex set that equals theset of the intat `-segments, and with (possibly multiple) edges onneting two `-segments if andonly if these segments ontain verties that are mathed in the original graph. The main tehnialfat (proved below) is that for every two disjoint (N=4`k)-sets of `-segments, with probability atleast 1 � exp(�
(N=k4)), there exist at least 2�N edges going between these sets. Applying aunion bound over all possible hoies of these two sets, we infer that, with probability at least1�� N=`N=4`k�2 �exp(�
(N=k4)) > 1�exp(�
(N=k4)), for every two disjoint (N=4`k)-sets of segmentsthere exist at least 2�N edges going between these sets. In this ase, after omitting any set of 3�N=2mathing edges, the auxiliary graph ontains onneted omponents that over more than half theverties assoiated with eah large segment and there are edges between eah pair of these onnetedomponents. Applying a union bound over all the possible hoies of 3�N=2 yle edges, the theoremfollows.Thus, it is left to prove the aforementioned tehnial fat. Let S1 and S2 be disjoint setsof `-segments suh that jS1j = jS2j = N=4`k. We need to prove that, with probability at least1� exp(�
(N=k4)), there exist at least 2�N mathing edges going between S1 and S2. Note thateah random mathing edge onnets S1 and S2 with probability (4k)�2, and if these events weremutually independent then the fat would follow by the Cherno� bound. However, these events arenot independent, yet setting an adequate Martingale and using Azuma's Inequality the fat followsjust as well. Details are omitted.7 Testing Tree-Minor FreenessAs noted in Setion 6, the
(pN) lower bound of Theorem 6.1 does not hold in the ase theforbidden minor is a tree. This is easiest to see in the ase that the forbidden minor is a singleedge. We show that, for any yle-free graph H, the set of H-minor free graphs an be tested withone-sided error with query omplexity independent of the input graph's size (and only depends onthe proximity parameter and on H).To begin, we provide a redution of the ase where H is a forest to the ase where H is a tree.Atually, this redution works for any H (regardless of yle-freeness) allowing to fous on theonneted omponents of H. Next, we turn to two speial ases (whih are easy to handle): thease that H is a k-path and the ase that H is a k-star. Sine these ases orrespond to the twopossible extremes, it is tempting to hope that all ases an be treated easily. We warn, however,that the extreme ases have simple haraterizations, whih are not available in non-extreme ases.Nevertheless, the ase of stars provides some intuition towards the more ompliated treatmentof general trees. Further intuition an be obtained from the ase of depth-two trees, treated inSetion 7.5, where we also obtain better omplexity than in the general ase.7.1 A redution of unonneted H to onneted HLet H be a graph with onneted omponents H1; :::;Hm. Then, essentially (but not exatly), agraph G is H-minor free if and only if for some i 2 [m℄ the graph G is Hi-minor free; in otherwords, G has an H-minor if and only if for every i 2 [m℄ the graph G ontains an Hi-minor. Thealternative formulation reveals the small inauray: it may be that the Hi-minors ontained in G21

are not disjoint (and in suh a ase G does not neessarily have an H-minor). Still, for our purposes(of studying one-sided error testers of sublinear query omplexity), this problem an be overome(as done next).Indeed, we fous on one-sided error testers of sublinear query omplexity. Given suh testersfor Hi-minor freeness, we present the following one-sided error tester for H-minor freeness.Algorithm 7.1 (the H-minor-freeness tester for yle-free H): On input G = ([N ℄; E) and prox-imity parameter �, set G0 = G and proeed in m iterations, as follows. For i = 1 to m,1. Invoke the Hi-minor tester on input Gi�1, using error parameter 1=3m and proximity param-eter �=2.2. If the answer is positive then aept.3. Otherwise, omit from Gi�1 all verties that were visited by the tester, obtaining a residualgraph Gi.If all iterations rejeted, then rejet.If Algorithm 7.1 rejets, then (by the one-sided error feature of the tests) the m exploration ontainorresponding (disjoint) Hi-minors, and so G ontains an H-minor. Thus, Algorithm 7.1 satis�esthe one-sided error ondition. On the other hand, if G is �-far from being H-minor free, then, forevery i 2 [m℄, the graph G must be �-far from being Hi-minor free (beause otherwise G is �-loseto an Hi-minor free graph, whih in turn is H-minor free). Furthermore, for every i 2 [m℄, thegraph Gi�1 is �=2-far from being Hi-minor free, beause Gi�1 is obtained from G by omitting o(N)edges (sine all testers have sublinear query omplexity). Thus, in eah iteration i, with probabilityat least 1� (1=3m), the orresponding tester rejets. It follows that Algorithm 7.1 rejets G withprobability at least 2=3 (as required). We thus get the following result.Proposition 7.2 Let H have onneted omponents H1; :::;Hm, and suppose that Hi-minor free-ness an be tester by a one-sided error tester of query omplexity qi(N; �). Suppose that qi(N; �) ismonotonially non-dereasing with N . Then, H-minor freeness an be tester by a one-sided errortester of query omplexity q(N; �) = O(logm) �Pni=1 qi(N; �=2).(The O(logm) fator is due to error redution that is employed on eah of the testers.)Detour. For sake of elegane, it would be nie to prove a similar redution also for the ase oftwo-sided error testers. Naturally, for testing H-minor freeness with two-sided error, we may justrun all Hi-minor freeness tests (with error probability parameter set to 1=3m) and aept if andonly if at least one of these tests aepted (i.e., rejet i� all these tests rejeted). Clearly, if G is�-far from being H-minor free, then, for every i, the graph G must be �-far from being Hi-minorfree (see above), and so in this ase, with probability at least 2=3, all tests will rejet, and so willwe. But what is missing is proving that if G is H-minor free, then the above tester aepts withhigh probability. (Indeed, it is not neessarily the ase that if G is H-minor free then for some i itholds that G is Hi-minor free).
22

7.2 Testing that the graph ontains no simple k-length pathHere we onsider the speial ase where H = Pk, where Pk denotes the k-length path. Note thata graph G is Pk-minor free if and only if G ontains no simple path of length k. Thus, we justsearh for suh a path at random. Spei�ally, we selet uniformly a start vertex and take a randomk-step walk, rejeting if and only if the walk orresponds to a simple path. Clearly, we never rejeta Pk-minor free graph.Claim 7.3 If G is �-far from being a Pk-minor free graph, then we rejet with probability at least�=2dk.Thus, Pk-minor freeness an be tested by a one-sided error tester of query omplexity q def= O(dkk=�)and time omplexity O(q logN).Proof: We all a vertex v bad if there is a simple path of length k starting at v. Let � denote thedensity of bad verties in G. Then, on the one hand, we rejet G with probability at least �=dk.On the other hand, � � �=2, beause omitting all bad verties (or rather their inident edges) fromG we obtain a graph that has no simple k-length paths.7.3 Testing that the graph ontains no k-star as a minorHere we onsider the speial ase where H = Tk, where Tk denotes the k-star (i.e., the (k+1)-vertextree that has k leaves). The key observation here is a graph G = ([N ℄; E) is Tk-minor free if andonly if for every set S suh that GS is onneted it holds that the set S has less than k neighbors(in [N ℄ n S). Another important observation is that it suÆes to onsider sets S of size at most4k=�, beause a set S of size 4k=� suh that all its subsets satisfy the ondition an be ignored(sine GS is Tk-minor free and has less than k edges to the rest of the graph). The latter reasoningwill be the rux of the formal analysis that follows. Yet another important observation is that theomplexity of searhing for sets that violate the ondition an be redued by using a BFS, as inthe following algorithm.Algorithm 7.4 (the k-star-minor-freeness tester): On input G = ([N ℄; E) and proximity parame-ter �, proeed as follows.1. Selet uniformly a start vertex s 2 [N ℄.2. Perform a BFS starting at s and stopping as soon as either 4k=� layers were explored or alayer with at least k verties was enountered.Note that it may also be that the BFS terminates before either of these onditions hold; thisan only happen if s resides in a onneted omponent of size smaller than 4k2=�.3. Aept if and only if the explored graph is Tk-minor free.Clearly, Algorithm 7.4 never rejets a Tk-minor free graph. In analyzing its performane on inputsthat are �-far from Tk-minor free, we shall refer to a weaker rejetion riterion that orresponds tothe motivating disussion (i.e., the existene of small sets S that have k neighbors). Step 2 is onlyused in order to improve the omplexities; it guarantees that Algorithm 7.4 has query omplexityq def= O(k2=�), and by [RS95℄ the time omplexity is O(q3 logN). Thus, all that is left is to provethe following. 23

Claim 7.5 If G is �-far from being a Tk-minor free graph, then Algorithm 7.4 rejets with proba-bility at least �=4.Thus, Tk-minor freeness an be tested by a one-sided error tester of query omplexity O(k2=�2) andtime omplexity O(k6��4 logN).Proof: We all a vertex v bad if there exists a set S 3 v suh that (i) GS is onneted and hasradius at most 4k=� from v (i.e., all verties are at distane at most 4k=� from v), and (ii) the set Shas at least k neighbors in G (i.e., jfu2 [N ℄ n S : 9w2S s.t. fu;wg2Egj � k). Note that if a badvertex is hosen in Step 1, then Algorithm 7.4 rejets in Step 3 (beause either a 4k=�-step BFSof G starting at v reahes a layer with at least k verties, or it reahes all verties in the witnessset S). Let � denote the density of bad verties in G. By the above, Algorithm 7.4 rejets withprobability at least �. We next show that G must be (2� + (�=2))-lose to Tk-minor free, and so� � �=4 follows.Let G(0) denote the graph obtained from G by omitting all the edges that are inident at badverties. Indeed, G(0) is 2�-lose to G. The rest of our analysis proeed in iterations. If the urrentgraph G(i�1) is Tk-minor free, then we are done. Otherwise, we pik an arbitrary vertex s(i) thatresides in some Tk-minor. Sine s(i) is not bad, it must reside in a onneted omponent of G(i�1)that has radius at least 4k=� from s(i) (beause otherwise the existene of a Tk-minor ontaining s(i)ontradits the hypothesis that v is not bad). Consider an arbitrary set S(i) 3 s(i) of 4k=� vertiessuh that G(i�1)S(i) is onneted. Sine s(i) is not bad, it follows that S(i) has less than k neighbors (inG(i�1)). We now obtain G(i) by omitting the (less than kd) edges of the ut (S(i); [N ℄ n S(i)), andobserve that G(i)S(i) is Tk-minor free (and that S(i) will not interset with any future S(j)). When theproess ends, we have a Tk-minor free graph. In total, we omitted at most tk � d edges (from G(0)),where t � N=(4k=�) denotes the number of iteration. Noting that tdk � (�=4)dN , we onlude thatG(0) is �=2-lose to G(t) and thus G is (2�+ (�=2))-lose to Tk-minor free.7.4 The general ase: Testing T -minor freeness for any tree TFollowing is a presentation of the main result of this setion: a one-sided tester for T minor-freeness,where T is an arbitrary rooted tree with k verties. The algorithm is an extension of the algorithmfor stars: We perform a BFS from a random starting vertex (but for more levels) and hek if we�nd a T -minor.The analysis of this algorithm, in the urrent (general) ase, is far more involved; nonetheless,the basi intuition remains the same. Suppose our proedure is typially unable to �nd a T -minorin G. We shall show that we an split up the graph into many small piees, eah being T -minorfree and having few edges leaving it. Removing the few edges going between these piees, we get aT -minor graph, whih proves that G is lose to being T -minor free.The main hallenge is to perform the foregoing deomposition. For that, we will de�ne anauxiliary proedure, alled find, that attempts to �nd T -minors. This proedure will not be usedby our algorithm; it will be used solely in the analysis. But, �rst, let us detail the alleged tester(while assuming that � � 1=2, or else we set � = 1=2).Algorithm 7.6 (the tree-minor-freeness tester): Given as input a proximity parameter � and givenquery aess to a graph G = ([N ℄; E) with maximum degree at most d, set D = k � (16d=�)4k+2 andproeed as follows.1. Selet uniformly, independently at random, 8=� start verties in [N ℄.24

2. For eah seleted start vertex s, perform a BFS starting at s and stop as soon as D layersare explored (or the BFS reahes all the verties of a onneted omponent in G).3. Aept if and only if all explored subgraphs are T -minor free.Clearly, Algorithm 7.6 never rejets a T -minor free graph. Its query omplexity is exponential inD, and its time omplexity is polynomial in its query omplexity (by [RS95℄). The orretness ofthe algorithm thus follows from the next lemma.Lemma 7.7 If G is �-far from being a T -minor free graph, then Algorithm 7.6 rejets with proba-bility at least 2=3.As stated above, the heart of the proof of this lemma is a proedure alled find that tries to�nd small T -minors. When invoked at a ertain vertex and failing to �nd a small T -minor, theproedure provides us with a sort of \explanation for it failure" in the form of a sparse ut. Thus,if the graph G is aepted by the tester with high probability, then we an use this proedure toget the desired deomposition. As may be expeted, the proedure find is designed by a (tedious,but not obvious) indution on the size of T . Following is an overview of our approah.Consider the tree T and remove an edge to two trees T1 and T2. Let the roots of these treesbe the endpoints of the edge removed. A T -minor an be broken up into a T1-minor and T2-minorwith a path onneting the two respetive roots. So, it seems that we should try to �nd \rootedminors", where we speify a vertex v that must be present in the onneted omponent that is theroot. Indutively, assume that we have a proedure find for T1 and T2. We an use find to getthese minors and try to onnet the roots by a path. The problem is that we have to get disjointminors to get a T -minor. Suppose we �nd a T1-minor in the original graph. Beause we want to �nda disjoint T2-minor, we make the verties in this minor a forbidden set F (and e�etively removethem from G). This means that find is not allowed to use the verties of F in the T2-minor. Butnow, find may return a sparse ut, instead of T2-minor, in the modi�ed graph. This ut is onlysparse in the modi�ed graph (without F), but may be dense in the graph G. To get around this,we somehow need to ensure that whenever a ut is found, the number of verties in the smaller sideis muh larger than jF j. Then, a sparse ut in the modi�ed graph remains sparse in the original.We will give an indiation of how this is done when we desribe the parameters of find.First, we introdue some de�nitions and notation. For a graph H = (V (H); E(H)) and a subsetof verties S � V (H), we use the standard notation HS to denote the subgraph of H that is induesby S.De�nition 7.8 (Distanes) Let H = (V (H); E(H)) be a �xed graph. For any pair of vertiesv; u 2 V (H), let distH(v; u) be the shortest-path distane between u and v in H. Given a set ofverties T � V (H) and a vertex v 2 V (H), let �H(v; T) def= maxu2T fdistH(v; u)g. More generally,for two sets of verties S; T � V (H), let �H(S; T) def= maxu2T minv2S distH(v; u).De�nition 7.9 (Sparse Cuts) For a graph H = (V (H); E(H)) with degree bound d, a ut(S; V (H) n S) is sparse with respet to H, if the number of edges in E(H) that ross the ut isat most �jSjd=4. For V (H) = [N ℄ we denote the ut (S; [N ℄ n S) by ut(S).To di�erentiate from the original input graph G, the input graph to find will be the graphG0. We usually refer to uts in G0, and hene, in suh ases we remove the expliit referene to G0(i.e., we shall say that ut(R) is sparse rather than say that it is sparse with respet to G0).25

The parameters of find: The proedure find takes as input a vertex v in a graph G0 =([N ℄; E0), a set of verties U ontaining v, a rooted tree T with k nodes, and a set of forbiddenverties F (not ontaining v). Let f = maxfjF j; k(16d=�)4k+2g, and G00 = G0[N ℄nF . The proedureworks under the onditions that U is disjoint from F , jU j � 16f=�, and �G00(v; U) � (16=�) ln(f=�).The proedure find(v; U; T; F) outputs a pair (�; S) suh that � 2 fminor; utg and S � [N ℄nF ,where there is a path in G00 between v and every vertex in S. It will be onvenient to expressquantities in terms of k̂ = 4k � 2.The requirement from find: The output of find(v; U; T; F) should satisfy the following on-ditions.� = minor. The graph G0S ontains a T -minor not involving F that is rooted at v (i.e., v residesin the onneted omponent that is ontrated to �t the root r of T). We have �G00(v; S) �(16d=�)k̂ ln(f=�).� = ut. The ut ut(S) is sparse and �G00(v; S) � (16d=�)k̂ ln(f=�).Intuitively, the set U ats as a kind of large bu�er around v. This deals with the issue that weraised earlier. When we try to �nd a T2-minor by making the verties of the T1-minor forbidden,we ould get a sparse ut in this modi�ed graph. The bu�er U ensures that this ut ontainssuÆiently many verties.Claim 7.10 There exists a proedure find that satis�es the foregoing properties.Before proving Claim 7.10 we state and prove some preliminary laims. In what follows, whenwe say we perform a BFS in a graph H = (V (H); E(H)) from a subset of verties M , we mean thefollowing. Consider the graphH 0(M) whose vertex set is (V (H)nM)[fv(M)g (so thatM is replaedby a single vertex v(M)), and whose edge set is f(u;w) 2 E(H) : u;w 2 V (H)nMg[f(u; v(M)) :u =2 M and 9w 2 M s.t. (u;w) 2 E(H)g. A BFS from M in H orresponds to a BFS in H 0(M)that starts from v(M).Claim 7.11 Let F and M be two disjoint subsets of verties in G0 suh that jM j � (8=�)jF j.Suppose we perform a BFS up to depth t in G0[N ℄nF , starting from M , and let ` be the size of thelast level reahed. Then either there exists a subset of verties R that are reahed by the BFS andsuh that ut(R) is sparse, or ` � jM j � e(�=9)t.Proof: Consider some intermediate level in the BFS, and let R be the set of verties reahed upto that level (inluding it). Suppose that the next level has at most �jRj=8 verties. All edges inut(R) are either inident to verties in the next level (whih ontains at most �jRj=8 verties) orto F . Sine jRj � jM j � 8jF j=�, the size of the ut is at most �jRjd=4, and hene it is sparse.Otherwise, the size of the levels keeps expanding by a fator of at least (1 + �=8). Sine thedepth of the BFS is t, the size of the last level is at least jM j � (1 + �=8)t � jM j � e(�=9)t.De�nition 7.12 (Boundaries) Given sets of verties S and F , let �F (S) denote the boundary ofS in G0[N ℄nF . That is, �F (S) def= fu 2 S : 9w 2 [N ℄ n (S [F) s.t. (u;w) 2 E(G0)g . We use �F (S)to denote the set S n �F (S). 26

Claim 7.13 Let F and M be two disjoint subsets of verties suh that jM j � (8=�)jF j, and leteF = �F (M) [F . There is a proedure that, given an integer parameter t, outputs one of thefollowing:� A set R suh that the ut(R) is sparse and �G0[N℄nF (�F (M); R) � t.� A vertex v 2 �F (M) and a set Uv disjoint from eF suh that v 2 Uv, jUvj � e(�=9)t, and�G0[N℄n eF (v; Uv) � tProof: We start by performing a BFS from M in G00 = G0[N ℄nF up to depth t. By the de�nition ofthe BFS, all the verties reahed in levels 1; : : : ; t are disjoint fromM and F . Applying Claim 7.11,in the proess of this BFS either we �nd a sparse ut, thus satisfying the �rst ondition, or the sizeof the last level is at least jM j � e(�=9)t. In the latter ase, for eah vertex v 2 �F (M), perform aBFS in G0[N ℄n eF up to depth t, and let Uv be the set of verties reahed. Sine the last level of theoriginal BFS is ontained in Sv Uv, we have that Pv2�F (M) jUvj � jM j � e(�=9)t. Therefore, thereexists a vertex v 2 �F (M) suh that jUvj � jM j � e(�=9)t=j�F (M)j � e(�=9)t.With these tools in hand, we are ready to desribe the proedure find.Proof of Claim 7.10. We prove the laim by indution over the size of the tree T . For the basease, let T be a singleton vertex. Then, the proedure find just outputs the pair (minor; U). Nowfor the indution step.Take an edge e of T that is inident to the root r. Removing this edge gives us two trees T1 andT2 with roots r1 and r2 (these are the respetive endpoints of e). We let T1 be the tree still rootedat r (so that r1 = r). Using subsripts to denote the respetive size parameters of these trees, wehave k̂ = k̂1 + k̂2 + 2 (reall that k̂ = 4k � 2). We also have that k̂1; k̂2 � 2.We will desribe the proedure find(v; U; T; F) using the respetive proedures for T1 and T2.We set D1 = (16d=�)k̂1 ln(18f=�2) (reall that f = maxfjF j; k(16d=�)4k+2g). We will be dealingmainly with the graph G00 = G0[N ℄nF and hene all our boundaries are in this graph. For ease ofnotation, for a set S, we shall use the shorthand �(S) for �F (S) and �(S) for �F (S). We also usethe shorthand �(�; �) for �G00(�; �) (and if distanes are measured with respet to another graphthen we'll state this expliitly). Reall that the proedure is required to work under the onditionsthat U is disjoint from F , jU j � 16f=�, and �(v; U) � (16=�) ln(f=�). We may atually assumethat jU j = 16f=�. Suppose this is not the ase. Take the vertex in U farthest from v and remove itfrom U . We keep repeating this until jU j = 16f=�. Note that the upper bound on �(v; U) remains.We now desribe the steps of the proedure find. Refer to Figure 5 to understand the varioussteps of the proedure.1. Initiate a BFS in the residual graph G00 = G0[N ℄nF starting from U for 2D1 steps. Let A denotethe set of all verties reahed (inluding U). We now invoke Claim 7.11 with F , M := U ,and t := 2D1. If we �nd a sparse ut ut(R), then observe that �(v;R) � �(v; U) + 2D1 �(16d=�)k̂ ln(f=�). In this ase, we output (ut; R). Otherwise, the BFS reahes 2D1 levels,and jAj � jU j �e(�=2)D1 . We trivially bound jAj � jU j �e2D1 ln d, and ontinue to the next stage.2. We invoke Claim 7.13 with F , M := A, and t := (9=�) ln(16jF2j=�), where observe thatjF2j = j�(A) [F j � jAj � jU j � e2D1 ln d. If we get a sparse ut ut(R), then we have�(v;R) � �(v; U) + �(U; �(A)) + (9=�) ln(16jAj=�)27

PSfrag replaements v v1 v2
�U

�A
U A 2D1P

S2

Figure 5: The various sets in find� (16=�) ln(f=�) + 2D1 + (9=�) ln(16jU j=�) + 18D1 lnd=�� (64=�) ln(f=�) + (18d=�)(16d=�)k̂1 ln(18f=�2)� (16d=�)k̂ ln(f=�)In this ase we output (ut; R). Otherwise, we get a vertex v2 2 �(A) and a set U2suh that v2 2 U2, jU2j � 16jF2j=�, and �G0[N℄nF2 (v2; U2) � (9=�) ln(16jF2j=�). Letf2 = maxfjF2j; k2(16d=�)4k2+2g. Sine jF2j � jU j = 16f=�, we have that f2 = jF2j, sothat jU2j � 16f2=� and �G0[N℄nF2 (v2; U2) � (16=�) ln(f2=�). Therefore, the onditions for all-ing find(v2; U2; F2; T2) are met. Let (�; S2) be the output of this proedure. By the indutionhypothesis:�(v; S2) � �(v; U) +�(U; �A) + �(v2; S2)� 16 ln(f=�)=�+ 2D1 + (16d=�)k̂2 ln(f2=�)� 16 ln(f=�)=�+ 2D1 + (16d=�)k̂2 � (ln(jU j=�) + 2D1 lnd)� 16 ln(f=�)=�+ 2D1 + (16d=�)k̂2 � (ln(16f=�2) + 2D1 lnd)� (16d=�)k̂ ln(f=�)If (ut; S2) is output, then the main proedure also returns (ut; S2). Otherwise, the set S2(disjoint from F2) ontains a T2-minor suh that v2 belongs to the subset whose ontrationorresponds to the root r2 of T2, and we ontinue to the next stage.3. Consider the shortest path P from U to v2 (in G00). By onstrution, jP j � 2D1. Note thatother than v2, the path P is disjoint from S2. We also have f = maxfjF j; k(16d=�)4k+2g �(16d=�)k̂ ln(f=�) � 2D1. Hene, jF [P j � 2f . Let F 0 := F [P , F1 := �(U) [F 0 and28

f1 = maxfjF1j; k1(16d=�)4k1+2g. We invoke Claim 7.13 with F 0 as the forbidden set, M := U ,and t := (9=�) ln(16f1=�). Sine jF1j � 16f=� + 2f (reall that we assumed without loss ofgenerality that jU j = 16f=�), we have that t = (9=�) ln(16f1=�) < (16d=�)k̂1 ln(18f=�2) = D1If we get a sparse ut ut(R), we output (ut; R).Otherwise, we get a vertex v1 2 �(U) and a set U1 3 v1 disjoint from F1 suh thatjU1j � 16jf1j=� and �G0[N℄nF1 (v1; U1) � t � 16 ln(f1=�)=�. We thus have the neessary on-ditions to all find(v1; U1; F1; T1). By the indution hypothesis, for the set S1 returned,�G0[N℄nF1 (v1; S1) � D1. Hene �(v; S1) � �(v; U) +D1 < 2D1 � (16d=�)k̂ ln(f=�). If we get(ut; S1), then the main proedure returns the same.4. Otherwise, S1 ontains a T1 minor suh that v1 belongs to a onneted subset in S1 whoseontration orresponds to r1 (the root of T1). Reall that we also have that S2 ontains aT2 minor suh that v2 belongs to a onneted subset in S2 whose ontration orresponds tor2 (the root of T2) We next show how to onstrut a T -minor using U , S1, S2, and P . Notethat all these sets are disjoint from F , and S1 is disjoint from S2 [P .Our aim is to onnet v1 to v2 (in G00) by a path that is disjoint to S1 [S2. If this pathontains v, we will get a T -minor rooted at v that involves no vertex of F . Take the path Pin G00 that onnets �F (U) to v2. This path is disjoint to S1 [S2. The vertex v1 is in �F (U)and v is onneted to all of U in G00. We take a path from v to P and a path from v to v1.This onnets v1 to v2 (via v) in G00 and ompletes the onstrution of the T -minor.Proof of Lemma 7.7. Reall that D = k � (16d=�)4k+2, and that Algorithm 7.7 performs a BFSfrom 8=� start verties, up to depthD for eah, and rejets if any of the subgraphs observed ontainsa T minor. We all a vertex v bad if its D-neighborhood (i.e., the subgraph indued by all vertiesat distane at most D from v) ontains a T -minor, and denote the fration of bad verties (in G)by �. We shall show that G is (2�+ �=2)-lose to being T -minor free. The lemma follows sine thisimplies that if G is �-far from being T -minor free, then � > �=4. In suh a ase, the probability thatno bad vertex is seleted as a start vertex by the algorithm is at most (1� �=4)8=� < e�2 < 1=3.In order to prove that G is (2� + �=2)-lose to being T -minor free, we will remove at most(�+ �=4)dN edges from G to make it T -minor free. We start by removing all edges inident to badverties, so that the number of edges removed at this stage is at most �dN . Let the resulting graphbe G(0). The rest of our analysis proeed in iterations. We have a urrent graph G0 = G(i�1) wheresome onneted omponents are marked \minor free". These omponents are erti�ed to have noT -minor. If all the omponents are marked, then we are done. Otherwise, onsider some unmarkedomponent C. Suppose there is v 2 C, suh that �G0(v; C) � D. If C ontains a T -minor, then vmust be bad. This ontradits that fat that C is a onneted omponent ontaining v. ThereforeC has no T -minor, and an be marked. We proeed in this fashion till we get a omponent C thatannot be marked.We take an arbitrary vertex s(i) 2 C and observe that �G0(s(i); C) > D. Let F be initializedto ;. We perform a BFS from s(i) up to depth D0 = (9=�) ln(16f=�) steps, and invoke Claim 7.11with M = fs(i)g, F = ;, and t = D0. Suppose we get a set S(i) suh that ut(S(i)) is sparse. Sine�G0(s(i); S(i)) = D0 � D, the subgraph GS(i) annot ontain a T -minor. We remove all edges inthe ut ut(S(i)) and mark the onneted omponents in GS(i) as minor free. This gives us thegraph G(i), and we ontinue with the next iteration.Otherwise, the BFS gives a set U , suh that jU j � e(�=9)D0 � 16f=�, and �G0(s(i); U) � D0 �(16=�) ln(f=�), and we all find(s(i); U; T; F). If it outputs (minor; S(i)), then v must be bad. This29

is a ontradition, and hene the output must be (ut; S(i)). We have �G0(s(i); S(i)) � D, whereut(S(i)) is sparse. We proeed as before by removing all edges in ut(S(i)) to get G(i).When the proess ends, we have a T -minor free graph. Sine all the S(i)'s onsidered aredisjoint, in total, we omitted at most Pi �djS(i)j=4 � �dN=4 edges (from G(0)), and thus G is(2�+ �=2)-lose to T -minor freeness.The ombinatorial ore of the analysis. We observe that the features of find imply that,if a graph ontain an \expanding neighborhood" (i.e., \loally looks as an expander"), then thisneighborhood ontains all possible tree-minors (of a related size). More formally,De�nition 7.14 Let G be a graph of maximum degree d and s be a vertex of G. We say that theR-neighborhood of s in G is �-expanding for every vertex set S suh that �(v; S) � R, it holds thatthe number of edges in the ut (S; [N ℄ n S) is at least �jSjd=4.Theorem 7.15 For any k and d, if the k(16d=�)4k+2-neighborhood of s in G is �-expanding, thenthis neighborhood ontains a T -minor of any tree T of at most k verties.Note that Lemma 7.7 an be derived from Theorem 7.15 similarly to the way it was derived fromClaim 7.10. This is hardly surprising sine Theorem 7.15 is losely related to Claim 7.10.Proof: Indeed, the theorem follows from Claim 7.10, where the key observation is that findworks well for any k-vertex tree T and that find may not return a sparse ut (beause no suhut exists by the hypothesis). Spei�ally, set F = ; and let U be a set suh that jU j � 16f=�and �G(v; U) � (16=�) ln(f=�) (whih exists sine the said neighborhood ontains no sparse uts).Now, for any k-vertex tree T , we run find(v; U; T; F) and get the output (�; S), where � 6= ut.Thus, we get the desired T -minor.7.5 Testing T -minor freeness for any depth-two tree TLet T be an arbitrary depth-two tree with k verties; that is, T onsists of a root, denoted r, andm stars, denoted T1; :::; Tm, that are rooted at neighbors of r, where here we onsider also thesingleton vertex as a star (with 0 leaves). Denote the m orresponding roots by r1; :::; rm, anddenote the number of leaves in these stars by k1; :::; km (i.e., k = 1+m+Pi2[m℄ ki). The followingalgorithm is tailored for this tree T .Algorithm 7.16 (tailored for the foregoing T): On input G = ([N ℄; E) and proximity parameter�, set D = (5d2k=�)2 and proeed as follows.1. Selet uniformly a start vertex s 2 [N ℄.2. Perform a BFS starting at s and stopping as soon as D layers are explored.3. Aept if and only if the explored graph is T -minor free.Clearly, Algorithm 7.16 never rejets a T -minor free graph. Its query omplexity is exponential inD, and its time omplexity is polynomial in its query omplexity (by [RS95℄).Lemma 7.17 If G is �-far from being a T -minor free graph, then Algorithm 7.16 rejets withprobability at least �=4. 30

Proof: We all a vertex v bad if its D-neighborhood (i.e., the verties of distane at most D fromv) ontains a T -minor, and denote the fration of bad verties (in G) by �. As in the proof ofClaim 7.5, it suÆes to show that G is (2�+ (�=2))-lose to being T -minor free, and we again startby omitting all edges inident at bad verties and onsidering the resulting graph, denoted G(0).Indeed, G(0) is 2�-lose to G.The rest of our analysis proeed in iterations. If the urrent graph G(i�1) is T -minor free, thenwe are done. Otherwise, we pik an arbitrary vertex s(i) that resides in (the root of) some T -minor.Sine s(i) is not bad, it must reside in a onneted omponent of G(i�1) that has radius at least Dfrom s(i). We shall show how to identify a set S(i) suh that G(i�1)S(i) has radius at most D and theut (S(i); [N ℄ n S(i)) has less that �djS(i)j=4 edges. Omitting these uts edges yields a graph G(i)suh that G(i)S(i) is T -minor free (and S(i) will not interset with any future S(j)). When the proessends, we have a T -minor free graph. In total, we omitted at most Pi �djS(i)j=4 � �dN=4 edges(from G(0)), and thus G is (2�+ (�=2))-lose to T -minor free.The rux of the proof is indeed the proess of identifying a suitable set S0 = S(i) in G0 def= G(i�1).The identi�ation proedure is initiated at s0 = s(i) and proeeds in two stages. In the �rst stage,the proedure tries to �nd either a set S0 of size at least 4m=� suh that the ut (S0; [N ℄ n S0) hasless than m edges or a set S0 of size at most 4dm=� suh that G0S0 ontains a m-star as a minorrooted at s0. (Clearly, in the �rst ase we are done.) In the seond ase, we get to the seond stageof the proedure, whih explores G0 (somewhat) beyond S0 in an attempt to extend the m-starminor into a T -minor, but this attempt is bound to fail, and this failure will allow �nding thedesired ut. Loosely speaking, this seond stage proeeds by trying to �nd disjoint Tj-minors, forj = 1; :::;m. This is done by invoking a \k0-star-minor �nding" proedure, denoted FSk0 , whihgeneralizes the proedure that is desribed in the proof of Claim 7.5, The proedure FSk0 is invokedon a vertex, v, and a set of forbidden verties, denoted F , and tries to either �nd a k0-star rooted atv in G0[N ℄nF or �nd a good ut. Indeed, F will ontain the set S0 as well as adequate sets that willprevent the urrent searh from entering any of the previously found star minors. We �rst providea spei�ation of FS, and then turn to it atual implementation.Spei�ation of the proedure FS. On input a vertex v and a forbidden set F , the proedure FSk0outputs a triplet (�;R0; F 0) suh that � 2 fminor; ut; freeg and F 0 � R0 � [N ℄ n F suh thatjF 0j < dk0 and jR0j < (5dk0=�) � (jF j + 1). In addition, it always holds that all verties of G0R0 areonneted to v, and one of the following ases holds.� = minor. The graph G0R0 ontains a k0-star as a minor that is rooted at v (i.e., v resides in theonneted omponent that is ontrated to �t the root of the k0-star). Furthermore, all edgesof the ut (R0 n F 0; [N ℄ n (R0 n F 0)) are inident at F [F 0.� = ut. The ut (R0; [N ℄ n R0) ontains less that �djR0j=4 edges.� = free. All edges of the ut (R0; [N ℄ n R0) are inident at F .Let T 0 denote a generi k0-star, where we may assume that k0 � 1.Implementing the proedure FS. Our aim is to either �nd a (relatively small) T 0-minor or �nd aset with a relatively small ut from the rest of the graph. This is done by initiating a BFS in theresidual graph G0[N ℄nF starting at v, and stopping as soon as one of the following three ases ours.Case 1: A layer ontaining at least k0 verties is found before 4(jF j+k0)=� verties are enountered.In this ase the proedure returns (minor; R0; F 0), where R0 is the set of enountered vertiesand F 0 is the set of verties in the last BFS layer.31

Note that in this ase G0R0 ontains a T 0-minor rooted at v, and that jF 0j < dk0 (as otherwisethe BFS would have terminated in a previous layer). Furthermore, by struture of the BFS,all edges of the ut (R0 n F 0; [N ℄ n (R0 n F 0)) are inident at F [F 0.Case 2: The searh enountered at least 4(jF j + k0)=� verties, while Case 1 does not hold. In thisase the proedure returns (ut; R0; ;), where R0 is the set of enountered verties.Note that in this ase the ut (R0; [N ℄ nR0) ontains less than (jF j+ k0) � d � �djR0j=4 edges.Case 3: The searh annot be extended any further, while Cases 1 and 2 do not hold. In this asethe proedure returns (free; R0; ;), where R0 is the set of enountered verties.Note that in this ase the ut (R0; [N ℄ n R0) ontains only edges that are inident at F .In all ases jR0j � 4d(jF j+ k0)=� < 4dk0(jF j+1)=�, beause if more than 4d(jF j+ k0)=� verties areenountered then either Case 1 or Case 2 holds. Thus, this implementation satis�es the spei�ation.We note that the above desription applies also in ase k0 2 f0; 1g, where k0 = 0 is trivial17 (i.e.,always return (minor; fvg; fvg)) and k0 = 1 is almost trivial (i.e., return (minor; fv; wg;�G0 (v) nF)if v has a neighbor w in G0[N ℄nF and (free; fvg; ;) otherwise).Using the star �nding proedure FS, we now turn to the main identi�ation proedure, whihis invoked on input vertex s0 = s(i) and aims at �nding an adequate set S0 = S(i). Reall thatr denotes the root of T , and r1; :::; rm denote the roots of the subtrees T1; :::; Tm, where Tj is akj-star. The main proedure operates as follows.1. It initiates a BFS in the graph G0 starting at s0, stopping as soon as at least B = 4dk=�verties are enountered. Let S0 denote the set of enountered verties. Note that jS0j � Bmust hold, beause s0 = s(i) resides in root of some T -minor having radius greater than D.Note that it holds that jS0j < dB (beause otherwise we would have stopped at the previousBFS-layer).2. Let F0 denote the last layer in the BFS performed in the previous step. If jF0j < m, then wejust use S0 as the desired set (i.e., let S(i) = S0).Note that, in this ase, the ut (S0; [N ℄ n S0) ontains less than m � d edges, whereas by thease hypothesis jS0j � B > 4m=�. So the onditions regarding this set are satis�ed.We ontinue to the next step only if jF0j � m.3. (The purpose of the urrent step is to generate alls to FS that will eventually lead to returninga set as in the seond output ase (i.e., ut), whih an serve as S(i) (see above). Thepresentation, however, pretends that we attempt to �nd a T -minor as in the �rst output ase(i.e., minor). Observing that S0 n F0 an serve as a ontration of the root of T , we attemptto �nd disjoint sets Sj that ontain Tj-minors rooted at some vj 2 F0.)For j = 1; :::;m, we try to �nd Sj as follows. Let F 0 = Sa2[j�1℄ Fa and V 0 = fv1; :::; vj�1g.For every v 2 F0 n V 0, we proeed as follows.We invoke FSkj , letting (�;X; Y) FSkj ((F0 n fvg) [F 0; v).We note that jXj � (5dkj=�) � (jF0j + jF 0j + 1) and jY j � dkj . Reall that jF0j <jS0j < dB = 4d2k=� and jF 0j = Pa2[j�1℄ jFaj < dPa2[j�1℄ ka < d(k � m), wherek = 1 +m+Pa2[m℄ ka. Thus, jXj < (5d2k=�)2.17Atually, this ase never ours; that is, we never invoke FS0. The ase k0 = 1 may our, but we ould haveavoided it too, but a diret treatment. 32

We onsider the following three ases regarding �.� = minor. In this ase we set vj v and (Sj ; Fj) (X;Y), and proeed to the nextvalue of j (i.e., j j + 1); see omment below.Note that jSj j < (5dk=�)2. In fat, the same upper bound an be proved forPja=0 jSaj.Note that this ase annot our when j = m, beause this would yield a smallT -minor rooted in s0 in ontradition to the hypothesis that s0 = s(i) is not bad.� = ut. In this ase we just use X as the desired set (i.e., let S(i) = X).Note that, by the spei�ation of FS, the ut (S(i); [N ℄ nS(i)) ontains relatively fewedges.� = free. In this ase we do nothing, and ontinue to the next andidate v.Note that we halted with a desired ut if either Step 2 found suh a ut or any of theinvoations of FS returned an ut-value. Furthermore, as noted, it annot be the ase thatin Step 3 we obtained a minor-value for eah j 2 [m℄. Thus, we remain with the ase that,for some j 2 [m℄, all invoations of FS returned a free-value. In this ase, we let X 0 be theunion of all sets X that were returned in the orresponding jF0j � (j � 1) invoations, anduse S0 [X 0 as the desired set (i.e., let S(i) = S0 [X 0).In this ase, the size of the ut (S(i); [N ℄ n S(i)) is at most d � jF 0j < d2k, beause for eah Xall edges of the ut (X; [N ℄nX) are inident at F0[F 0 � S0[F 0. Thus, the ut is suÆientlysmall, beause jS(i)j � jS0j � B = 4dk=�. On the other hand, the size of S0 [X 0 is at mostjF0j � (5dk=�) � jF 0j < (5dk=�)2.This ompletes the desription of the operation of the proedure I as well as the showing that itsatis�es its spei�ation. It follows that for any s(i) that reside in the root of some T -minor inG(i�1), we obtain a set S(i) suh that the ut (S(i); [N ℄ n S(i)) has less than 4djS(i)j=� edges. Usingthe fat jS(i)j < D, it follows that G(i�1)S(i) is T -minor free, and the lemma follows.8 The unbounded-degree graph modelIn this setion we onsider testing yle-freeness in what we shall refer to as the unbounded-degreeinidene-lists model [PR02℄. In this model, the maximum degree d may be as large as N � 1, sothere is e�etively no degree-bound, and a graph G is represented by a funtion g : [N ℄� [N �1℄!f0; : : : ; Ng. Similarly to the bounded-degree model, the algorithm may ask for the identity of theith neighbor of a vertex v, for any v 2 [N ℄ and i 2 [N � 1℄ of its hoie, by querying the funtiong. (If v has less than i neighbors, then the answer returned is `0'). For the sake of simpliity, weassume that the algorithm an also query the degree of any vertex of its hoie (where suh a queryan, of ourse, be replaed by O(logN) neighbor queries).The main and ruial di�erene between the unbounded-degree model and the bounded-degreemodel is in the distane measure between graphs. Rather than measuring distane between graphsin terms of the size of the domain of g, as done in the bounded-degree model, we measure it withrespet to the number of edges jEj in G = ([N ℄; E). That is, we shall say that a graph G is�-far from being yle-free (in the unbounded-degree model), if the number of edges that must beremoved in order to make it yle-free is greater than �jEj. Letting davg denote the average degreein G, this is equivalent to saying that the number of edges in G is greater than (N � 1)+ �davgN=2.We note that while the bounded-degree model is appropriate for testing graphs in whih themaximum degree is of the same order as the average degree (and in partiular onstant-degree33

graphs), the unbounded-degree model is appropriate for testing graphs in whih the maximumdegree may be muh higher than the average degree. We mention that the model onsideredin [KKR04℄ (see also Setion 8.3) also allows adjaeny queries (as in [GGR98℄), but suh queriesare useless when the degree is smaller than pN .8.1 Testing yle-freenessIn this subsetion, we show that the result of Theorem 1.5 (and thus also Theorem 1.1) extendsto the unbounded-degree (inidene lists) model. This will be done by viewing the randomizedredution that underlies Algorithm 3.1 in a slightly di�erent way, whih atually yields an alterna-tive tester (whih is losely related to but di�erent from Algorithm 3.1). We then show that thisalgorithm extends easily to the unbounded-degree model.The pivot of our exposition is the following generalization of 2-olorability in whih edges of thegraph are labeled by either eq or neq. That is, an instane of this problem is a graph G = ([N ℄; E)along with a labeling � : E ! feq; neqg. We say that � : [N ℄! f0; 1g is a legal 2-oloring of thisinstane if for every fu; vg 2 E it holds that �(u) = �(v) if and only if �(fu; vg) = eq. That is, alegal 2-oloring (of the verties) is one in whih every two verties that are onneted by an edgelabeled eq (resp. neq) are assigned the same olor (resp., opposite olors). Note that the standardnotion of 2-olorability orresponds to the ase in whih all edges are labeled neq.We observe that the Bipartite testers of [GR99℄ and [KKR04℄ an be extended to test thisgeneralization of 2-olorability.18 All that is needed is to de�ne edges labeled neq as having evenlength (say, length zero or two), whereas edges labeled eq are de�ned as having odd length (say,length one). Modulo this de�nition, the entire analysis of [GR99℄ remains intat. Spei�ally, allreferenes in [GR99℄ to the length of paths and yles are re-interpreted as referring to the foregoingde�nition. In partiular, an odd length yles (under this label-dependent de�nition of length)indiates that the graph annot be 2-olored (under the orresponding labeling of edges), whereasthe non-existene of odd length yles enables suh a 2-oloring. (The same holds for [KKR04℄,whih operates by a (loal) redution to [GR99℄.)Lastly, we observe that the randomized redution that underlies Algorithm 3.1 an be viewedas a randomized redution of yle-freeness to generalized 2-oloring, while keeping the graphintat. Spei�ally, the graph G = ([N ℄; E) is mapped to a random instane of the generalized2-oloring problem suh that the graph equals G itself and the labeling is seleted uniformly amongall possible � : E ! feq; neqg. Invoking the generalized 2-oloring tester (derived from [KKR04℄)on the resulting instane, we are done. (Indeed, in this ase, unlike in the ase of Algorithm 3.1,the emulation of the generalized 2-oloring tester is straightforward.)8.2 Testing tree-minor-freenessIn ontrast to Setion 8.1, we show that the result of Theorem 1.3 annot be extended to theunbounded-degree model. This follows by onsidering an N -vertex graph G that onsists of a yleof length N � pN and a lique of size pN (i.e., G = CN�pN + KpN). Denoting the 3-star byT3, note that G is
(1)-far from being T3-minor-free (sine we must omit pN � 3 edges fromeah vertex of the pN-lique in order to eliminate all opies of T3 itself). On the other hand, noo(pN)-query tester an �nd a T3-minor in a random isomorphi opy of G, exept with probability18A similar observation refers to the k-olorability testers of [GGR98℄, whih operate in the dense graph model.Thus, for every k � 2, the foregoing generalization of k-olorability an be tested in the dense graph model by usingpoly(1=�) queries. 34

o(1), Furthermore, any algorithm of query omplexity o(pN) annot distinguish a random opy ofG from a random opy of a N -vertex graph that onsists of a yle of length N � pN and pNisolated verties.We mention that an O(pN)-query one-sided tester for Tk-minor-freeness does exist for anyk (where Tk denotes the k-star). This tester may be obtained by ombining the tester for thebounded-degree model (for d = k, as presented in Setion 7.3) with an O(pN)-query proedurefor �nding a vertex of degree at least k. Clearly, if the former tester ever sees a vertex of degreeat least k, then the ombined tester rejets; otherwise, the analysis of Setion 7.3 applies to thegraph indued by the low degree verties. Thus, we should only worry about the ase that distanefrom being Tk-minor-free is mostly due to verties of degree at least k. In this ase (i.e., at least�jEj=2 edges are inident at verties of degree at least k), sampling a random edge and hekingthe degree of its endpoints will do, whereas suh sampling an be performed using eO(pN) queries(see [KKR04℄).8.3 Testing with adjaeny queriesHere we onsider an augmentation of the model with adjaeny queries. This augmentation was�rst onsidered in [KKR04℄, and it was shown to be useful (for testing bipartitness) when theaverage degree, davg, exeeds pN . We observe that the same holds with respet to testing yle-freeness (see details below). We also stress that in the bare model (i.e., without adjaeny queries)the results presented in Setion 8.1 are optimal.We note that the redution presented in Setion 8.1 remains valid, exept that in this ase thegeneralized 2-oloring tester (derived from [KKR04℄) may use adjaeny queries. In this ase, theresulting yle-freeness tester will have omplexity min(eO(pN); eO(N)=davg) �poly(1=�) (just as the2-oloring tester of [KKR04℄).Referenes[AS03℄ N. Alon and A. Shapira. Testing satis�ability. Journal of Algorithms, 47:87{103, 2003.[BSS08℄ I. Benjamini, O. Shramm, and A. Shapira. Every minor-losed property of sparsegraphs is testable. In Proeedings of the Fourtieth Annual ACM Symposium on theTheory of Computing, pages 393{402, 2008.[Fis01℄ E. Fisher. The art of uninformed deisions: A primer to property testing. Bulletin ofthe European Assoiation for Theoretial Computer Siene, 75:97{126, 2001.[FP87℄ J. Friedman and N. Pippenger. Expanding graphs ontain all small trees. Combinator-ia, 7:71{76, 1987.[GGR98℄ O. Goldreih, S. Goldwasser, and D. Ron. Property testing and its onnetion tolearning and approximation. Journal of the ACM, 45(4):653{750, 1998.[GR99℄ O. Goldreih and D. Ron. A sublinear bipartite tester for bounded degree graphs.Combinatoria, 19(3):335{373, 1999.[GR02℄ O. Goldreih and D. Ron. Property testing in bounded degree graphs. Algorithmia,pages 302{343, 2002. 35

[GS07℄ O. Goldreih and O. She�et. On the randomness omplexity of property testing. In Pro-eedings of the Eleventh International Workshop on Randomization and Computation(RANDOM), pages 296{310, 2007.[GT03℄ O. Goldreih and L. Trevisan. Three theorems regarding testing graph properties.Random Strutures and Algorithms, 23(1):23{57, 2003.[HKNO09℄ A. Hassidim, J. Kelner, H. Nguyen, and K. Onak. Loal graph partitions for approxi-mation and testing. In Proeedings of the Fiftieth Annual Symposium on Foundationsof Computer Siene (FOCS), 2009.[KKR04℄ T. Kaufman, M. Krivelevih, and D. Ron. Tight bounds for testing bipartiteness ingeneral graphs. SIAM Journal on Computing, 33(6):1441{1483, 2004.[Kur30℄ K. Kuratowski. Sur le probl�eme des ourbes gauhes en topologie. Fundamenta Math-ematia, 15:271{283, 1930.[Lov06℄ L. Lov�asz. Graph minor theory. Bulletin of the Amerian Mathematial Soiety,43(1):75{86, 2006.[PR02℄ M. Parnas and D. Ron. Testing the diameter of graphs. Random Strutures andAlgorithms, 20(2):165{183, 2002.[Ron08a℄ D. Ron. Property testing: A learning theory perspetive. Foundations and Trends inMahine Learning, 1(3):307{402, 2008.[Ron08b℄ D. Ron. Some tehniques in property testing. Presentation. Available fromhttp://www.eng.tau.a.il/�danar/talks.html, 2008.[RS95℄ N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem.Journal of Combinatorial Theory Series B, 63(1):65{110, 1995.[RS04℄ N. Robertson and P. D. Seymour. Graph minors. XX. Wagner's onjeture. Journal ofCombinatorial Theory Series B, 92(1):325{357, 2004.[Wag37℄ K. Wagner. �Uber eine eigenshaft der ebenen komplexe. Mathematishe Annalen,114:570{590, 1937.

36

