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Abstract

We present a (randomized) test for monotonicity of Boolean functions. Namely, given the
ability to query an unknown function f : {0,1}" — {0, 1} a arguments of its choice, the test
always accepts amonotone f, and rejects f with high probability if it is e-far from being monotone
(i.e., every monotone function differs from f on more than an ¢ fraction of the domain). The
complexity of the test ispoly(n/e).

Theanalysis of our agorithm relates two natural combinatorial quantities that can be measured
with respect to a Boolean function; one being global to the function and the other being locd toit.

We also consider the problem of testing monotonicity based only on random examples labeled
by the function. We show an (/2" /¢) lower bound on the number of required examples, and
provide a matching upper bound (via an agorithm).

*Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, ISRAEL.
E-mail: oded@i sdom wei zmann. ac. i | . Work done whilevisiting LCS, MIT.

fLaboratory for Computer Science, MIT, 545 Technology Sg., Cambridge, MA  02139. E-mail:
{shafi, e_l ehman, danar }@heory. | cs.mt. edu.

tsupported by an ONR Science Scholar Fellowship at the Bunting Institute.



1 Introduction

In this work we address the problem of testing whether a given Boolean function is monotone. A
function f : {0,1}" — {0,1} is said to be monotone if f(x) < f(y) for every @ < y, where <
denotes the natural partia order among strings (i.e., x1---x, < y1---y, if 2; < y,; for every » and
x; < y,; for some z). The testing algorithm can request the value of the function on arguments of
its choice, and is required to distinguish monotone functions from functions that are far from being
monotone.

More precisely, the testing algorithm is given a distance parameter ¢ > 0, and oracle access to an
unknown function f mapping {0,1}" to {0, 1}. If f isamonotone then the algorithm should accept
it with probability at least 2/3, and if f is at distance greater than ¢ from any monotone function then
the algorithm should reject it with probability at least 2/3. Distance between functions is measured in
terms of the fraction of the domain on which the functions differ. The complexity measures we focus
on are the query complexity and the running time of the testing algorithm.

We present arandomized algorithm for testing the monotonicity property whose query complexity
and running time are polynomial in »n and 1/¢. The algorithm performs asimple local test: It verifies
whether monotonicity is maintained for randomly chosen pairs of strings that differ exactly onasingle
bit. In our anaysis we relate this local measure to the global measure we are interested in — the
minimum distance of the function to any monotone function.

1.1 Perspective

Property Testing, as explicitly defined by Rubinfeld and Sudan [RS96] and extended in [GGR96], is
best known by the special case of low degree testings [BLR93, GLR91, RS96, RS97, AS97] which
plays a central role in the construction of probabilistically checkable proofs (PcP) [BFL91, BFLS91,
FGL*t96, AS98, ALM 198, RS97, AS97]. The recognition that property testing is agenera notion has
been implicit in the context of PcP: It is understood that low degree tests as used in this context are
actually codeword tests (in this case of BCH codes), and that such tests can be defined and performed
also for other error-correcting codes such as the Hadamard code [ALM* 98, BGLR93, BS94, BCH 95,
BGS98, Kiw96, Tre98], and the “Long Code” [BGS98, Has96, Has97, Tre98].

Forasmuch as error-correcting codes emerge naturally in the context of PcP, they do not seem to
provide a natural representation of familiar objects whose properties we may wish to investigate. That
is, one can certainly encode any given object by an error-correcting code — resulting in a (legitimate
yet) probably unnatural representation of the object — and then test properties of the encoded object.
However, this can hardly be considered as a “natural test” of a “natural phenomena’. For example,
one may indeed represent a graph by applying an error correcting code to its adjacency matrix (or to
itsincidence list), but the resulting string is not the “ natural representation” of the graph.

The study of Property Testing as applied to natural representation of (non-algebraic) objects was
initiated in [GGR96]. In particular, Property Testing as applied to graphs has been studied in [GGR96,
GR97, GR98] — where the first work considers the adjacency matrix representation of graphs (most
adequate for dense graphs), and the latter works consider the incidence list representation (adequate
for sparse graphs).

In this work we consider property testing as applied to the most generic (i.e., least structured)



object — an arbitrary Boolean function. In this case the choice of representation is “forced” upon us.

1.2 Monotonicity

In interpreting monotonicity it is useful to view Boolean functions over {0, 1}" as subsets of {0, 1}",
called concepts. This view is the one usually taken in the PAC Learning literature. Each position
in{1,...,n} corresponds to a certain attribute, and astring + = zy...x, € {0,1}" represents an
instance where z; = 1 if and only if the instance = has the " attribute. Thus, a concept (subset of
instances) is monotone if the presence of additional attributes maintains membership of instances in
the concept (i.e., if instance « is in the concept C then any instance resulting from = by adding some
attributesisasoin C).

The class of monotone conceptsis quite general and rich. On the other hand, monotonicity suggests
a certain aspect of simplicity. Namely, each attribute has a uni-directional effect on the value of the
function. Thus, knowing that a concept is monotone may be useful in various applications. In fact,
this form of simplicity is exploited by Angluin’s learning algorithm for monotone concepts [Ang88],
which uses membership queries and has complexity that is linear in the number of terms of the target
concept’s DNF representation.

We note that an efficient tester for monotonicity is useful as apreliminary stage before employing
Angluin’salgorithm. Asisusualy the case, Angluin’sagorithm relies on the premise that the unknown
target concept isin fact monotone. Itispossibleto simply apply thelearning a gorithm without knowing
whether the premise holds, and hope that either the algorithm will succeed nonetheless in finding a
good hypothesis or detect that the target is not monotone. However, due to the dependence of the
complexity of Angluin’s algorithm on the number of terms of the target concept’s DNF representation,
it may be much more efficient to first test whether the function isat al monotone (or closeto it).

1.3 The natural monotonicity test

The main result of the paper is that a tester for monotonicity is obtained by repeating the following
for poly(n/e) many times: Uniformly select a pair of strings at Hamming distance 1 and check if
monotonicity is satisfied with respect to the value of f on these two strings. That is,

ALGORITHM 1: Oninput n, ¢ and oracle accessto [ : {0, 1}"+— {0, 1}, repeat the following steps up
ton?/e times
1. Uniformly select = € {0,1}" andz € {1,...,n}.
2. Obtainthe values of f(z) and f(y), where y results from z by flipping the :*® bit.
3. Ifx,y, f(x), f(y) demonstrate that f is not monotone then reject.
That is, if either (z<y) A (f(z)> f(y)) or (y<z) A (f(y)> f(z)) then reject.

If al iterations were completed without rejecting then accept.

Theorem 1 (main result): Algorithm 1 is a testing algorithm for monotonicity. Furthermore, if the
function is monotone then Algorithm 1 always accepts.



Theorem 1 asserts that a (random) local check (i.e., Step 3 above) can establish the existence of a
global property (i.e., thedistance of f to the set of monotone functions). Actually, Theorem 1isproven
by relating two quantities referring to the above: Given f : {0,1}" — {0, 1}, we denote by éum( f)
the fraction of pairs (x,y) in which Step 3 rejects. Observe that éy( f) is actually a combinatoria
quantity (i.e., the fraction of pairs of n-bit strings, differing on one bit, which violate the monotonicity
condition). We then define e\ ( f) to be the distance of f from the set of monotone functions (i.e.,
the minimum over al monotone functions g of |[{x : f(x)#¢(x)}|/2"). Observing that Algorithm 1
always accepts a monotone function, Theorem 1 follows from Theorem 2, stated below.

Theorem 2 Forany f : {0,1}"— {0, 1},

We comment that a slightly more careful analysis yields a better bound than the one stated in the
theorem: namely,
em(f) )

bu(f) =9 (n Toa(1/en (/)

Asfor the reverse direction; that is, lower bounding ey ( f) in terms of dum( f), we have

D)

Proposition 3 For every function f : {0,1}"+—{0,1}, em(f) > om([f)/2.

Thus, for every function f

em(f)

A natura question that arises is that of the exact relation between éy;(-) and ey (). We observe that
this relation isnot simple; that is, it does not depend only on the values of 6y and ey.

Proposition 4 The following holds for every » and every 27" < o < 1 — O(ﬁ), where c is any
constant strictly smaller than 1.

1. There exists a function f : {0,1}" — {0,1} such that o < epm(f) < 2a and omu(f) =
o (244)

2. There exists a function f : {0,1}" +— {0,1} such that o < em(f) < 2a and dm(f) =
O (em(f))-

3. Foranya = O(n_%),
and dy(f) = © (2l

n

ere exists a function f : {0,1}"+— {0,1} suchthat o < em(f) < 2a

)

PERSPECTIVE. Analogousquantities capturing local and global properties of functionswereanalyzed in
thecontext of linearity testing. Forafunction f : {0, 1}"+— {0, 1} (asabove), onemay definee . ( f) to
beits distance from the set of linear functionsand ¢, ( f) to bethefraction of pairs, (z,y) € {0,1}" x
{0, 1} forwhich f(z)+ f(y) # f(x @ y). A sequence of works[BLR93, BGLR93, BS94, BCH*95]
has demonstrated afairly complex behavior of the relation between 6, and e, Theinterested reader
isreferred to [BCH™95].



1.4 Monotonicity testing based on random examples

Algorithm 1 makes essential use of queries. We show that this is no coincidence — any monotonicity
tester that utilizes only uniformly and independently chosen random examples, must have much higher
complexity.

Theorem 5 For any ¢ = O(n‘3/2), any tester for monotonicity that only utilizes random examples
must use at least 2(1/27/¢) such examples.

Interestingly, this lower bound istight up to apoly(n) factor.

Theorem 6 There exists a tester for monotonicity which only utilizes random examples and uses at
most O(+/n3 - 27 /¢) examples. Furthermore, the algorithmrunsintime poly(n) - 1/27/e.

We note that the above tester is significantly faster than any learning algorithm for the class of al
monotone concepts when the allowed error is O(1/y/n): Learning (under the uniform distribution)
requires €2(2" //n) examples (and even that number of queries) [KLV94].!

1.5 Extensionsand Open Problems

TESTING UNATENESS. A function f : {0,1}" — {0,1} is said to be unate if for every x; (where
r = x1...x, iSthe input to the function), exactly one of the following holds: whenever the value
of z; is flipped from O to 1 then the value of f does not decrease; or whenever the value of x; is
flipped from 1 to O then the value of f does not decrease. Thus, unateness is a more general notion
than monotonicity. We show that our algorithm can be extended to test whether a Boolean function is
unate or far from any unate function. The query and time complexities of the (extended) algorithm are
bounded by O(n®* /e).

OTHER DOMAINS AND RANGES. Let Y and = be finite sets, and <y and <= (total) orders on ¥
and =, respectively. Then we can extend the notion of monotonicity to functions from X" to =, in
the obvious manner: Namely, a function f : ¥ — = is said to be monotone if f(x) <z f(y) for
every ¢ <y y, wherezq -z, <x y1---y, if 2; <y vy, for every : and z; <y y; for some:. Our
algorithm generalizes to testing monotonicity over extended domains and ranges. The complexity of
the generalized algorithm scales quadratically with |%| and linearly with |=|. It is an interesting open
problem whether these dependencies can be removed (or reduced). In particular, we believe that the
dependence on the size of the range = can be removed.

REMOVING THE DEPENDENCE ON 1. Our algorithm (even for the base case), has a polynomial depen-
dence on the dimension of the input, n. As shown in Proposition 4, some dependence of the query
complexity onn is unavoidable in the case of our algorithm. However, it isan interesting open problem

1The claim follows by considering all possible concepts that contain all instances having [n/2] + 1 or more 1s,
no instances having |n/2] — 1 or less 1's, and any subset of the instances having exactly |n/2] 1's. In contrast,
“weak learning” [KV94] is possible in polynomial time. Specifically, the class of monotone concepts can be learned in
polynomial time with error at most 1/2 — €2(1/+/n) (though no polynomial-time learning agorithm can achieve an error

of 1/2 — w(log(n)/+/n)) [BBLIE].



whether other algorithms may have significantly lower query (and time) complexities, and in particular
have query complexity independent of n. A candidate aternative algorithm inspects pairs of strings
z,y, where z ischosen uniformly in {0, 1}", and y is chosen as follows: First select an index (weight)
w € {0,...,n} with probability (Z) - 27", and then select i uniformly among the strings having w
1's, and being comparableto = (i.e., y < x or y > x).

Related Wor k

The “spot-checker for sorting” presented in [EKK 98, Sec. 2.1] implies atester for monotonicity with
respect to functions from any fully ordered domain to any fully ordered range, having query and time
complexities that are logarithmic in the size of the domain. We note that this problem corresponds to
the special caseof n = 1 of the extension discussed in Subsection 1.5 (to general domains and ranges).

Organization

Theorem 2 is proved in Section 3. Propositions 3 and 4 are proved in Section 4, and Theorems 5 and 6
are proved in Section 5. The extensions are presented in Section 6.

2 Prdiminaries

For any pair of functions f,¢ : {0,1}" — {0, 1}, we define the distance between f and ¢, denoted,
dist(f,¢), to be the fraction of instances + € {0,1}" on which f(x) # g¢(x). In other words,
dist(f, ¢) isthe probability over auniformly chosen « that f and ¢ differ on . Thus, ey ( f) asdefined
in the introduction is the minimum, taken over al monotone functions ¢ of dist( f, ¢).

A genera formulation of Property Testing was suggested in [GGR96], but here we consider a
special case formulated previously in [RS96].

Definition 1 (property tester): Let P = U,>; P, be a subset (or a property) of Boolean functions, so
that P,, isa subset of the functions mapping {0, 1}" to {0, 1}. A(property) tester for P isa probabilistic
oracle machine?, M, which given n, a distance parameter ¢ > 0 and oracle access to an arbitrary
function f : {0,1}"— {0, 1} satisfiesthe following two conditions:
1. Thetester accepts f if itisin P :
If f € P, then Prob(M?(n,e)=1) > 2.
2. Thetester regjects f if itisfar from P :
If dist(f,g) > ¢ foreveryg € P,, then Prob(M/(n,e)=1) < +.

TESTING BASED ON RANDOM EXAMPLES. In case the queries made by the tester are uniformly and
independently distributed in {0,1}", we say that it only uses examples. Indeed, a more appealing
way of looking as such a tester is as an ordinary algorithm (rather than an oracle machine) which is
given asinput a sequence (1, f(x1)), (x2, f(22)), ... wherethe x;’s are uniformly and independently
distributed in {0, 1}".

2 Alternatively, one may consider a RAM model of computation, in which trivial manipulation of domain and range
elements (e.g., reading/writing an element and comparing elements) is performed at unit cost.
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Definition 2 (the Boolean-Lattice graph): For every string « € {0,1}", let w(x) denote the weight
of = (i.e, the number of 1'sin z). For each7, 0 < i < n,let L; C {0,1}" denote the set of n-bit
strings of weight ¢ (i.e, L; = {z € {0,1}" : w(x) =1}). Let G,, be the leveled directed (acyclic)
graph over the vertex set {0, 1}", where there is a directed edge fromy to « if and only if + < y and
w(x) =w(y) — 1 (i.e, x and y arein adjacent L,’s).

Given the definition of G,, we may view our agorithm as uniformly selecting edges in G,, and
guerying the function f on their end-points. We call an edge directed from y to = in G,, aviolating
edge with respect to f if f(x) > f(y) (whereas x < y). Thus, ém( f), as defined in the introduction,
isthe fraction of violating edgesin GG,, with respect to f.

3 Proof of the Main Technical Result

In order to prove Theorem 2 we prove the following two lemmas. Thefirst lemma shows the existence
of amatching between two relatively large (with respect to ey ( f)) sets of vertices (strings) belonging
to different layers of G,, where each vertex y in the first set is matched to a vertex = such that = < y
but f(z) > f(y). The second lemma shows that for any such matching there exist vertex disjoint
(directed) pathsin G,, between the two sets (though the paths may correspond to a different matching
— see Appendix A for further discussion).

Lemma 7 (existence of large violating matched sets) For any function f : {0,1}" — {0, 1}, there
exist two sets of verticesS C Ly, and R C L, where s > r, for which the following holds:

L [s] = R| = %427,

2. Foreveryy € S, f(y) = 0,andfor every = € R, f(x) = 1;

3. There exists a one-to-one mapping ¢ from S to R such that for every y € S, ¢(y) < y.
Lemma 8 (existence of digoint paths between matched sets) Letr and s beintegerssatisfying, 0 <
r<s<mn,andletS C L, and R C L, be sets each of size m. Suppose that there exists a 1-to-1
mapping ¢ from S to R such that for every y € S, thereisa directed pathin G,, fromy to ¢(y). Then
there exist m vertex-digoint directed pathsfromS to R in G,,.

We prove the two lemmas in the next two subsections. But first we show that Theorem 2 follows
by combining the two lemma

Proof of Theorem 2: Fixing f wefirstinvoke Lemma 7 to obtain the two matched sets S and R of size
aleast m = EBQAT@ - 2™, By Lemma 8 this matching implies the existence of m vertex disjoint paths
from S to R. Consider any suchpath zo = 4,...,24 = z,wherey € S,z € R,andd = s — r. Since
zo € S, wehave f(zo) = 0. Ontheother hand, since z; € R, wehave f(z;) = 1. Therefore, there
must exist some ¢ € {0,...,d— 1}, suchthat f(z,) = 0 and f(z,4+1) = 1. Thusthe edgedirected from
zy 10 zy11 IS aviolating edge with respect to f. Since the paths from S to R are vertex digoint, they
are necessarily edge digjoint, and hence there are at least m = EBZAT@ - 2" such violating edges (at |east
one per path). Because each vertex in G,, has total degree (indegree plus outdegree) ., the number of
edgesin G, is% - 2™ - n. Therefore, the fraction of violating edges is at least Ehi—gﬁ and the theorem
follows. W

The strengthening of Theorem 2 stated in Equation (1) isjustified by the fact that one may actually
show that there exist sets S and R asin Lemma 7 such that |S| = |R| = © (ﬁ%) <27 We
show how this improvement can be obtained after we prove Lemma?.
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3.1 Provingtheexistenceof largeviolating matched sets

Fixing f, let ¢ be a monotone function (over {0, 1}") for which dist(f,¢) = em(f). Namely, g isa
monotone function that isclosest to f. For b € {0,1}, let

D, € {x: f(x) #g(z) andg(x) = b} 2
That is, the set Dy U D4 isaset of minimum size such that if we flip the value of f on all elementsin
the set then we obtain amonotone function (i.e., g). Since |Do U D1| = em(f) - 2" and Do N Dy = 0,
we may assume, without loss of generality, that |D,| > %ﬁ - 2", Recdll that, by definition,

Di={z: g(z)=1and f(x)=0} C {x: f(z)=0}
Forany set Y C {0,1}", the shadow” of Y, denoted ('), is defined as follows:
oY) {2 ¢Y: IyeYst =<y} 3)

Namely, the shadow of Y is the set of al stringsnot in Y that are each smaller than some stringin Y.
Forany Y C D, define

a(Y) ¥ {zeo(Y): fle)=g(x)=1} C {z: f(x)=1} 4)
Namely, o1(Y) is the subset of the shadow of Y containing all strings on which both f and ¢ have
vaue 1. (Notethat forany Y C Dy, o(Y) \ o4(Y) C {2 : g(x) = 0}.) Asavisudization (see
Figure 3.1), we view ¢ as defining a boundary in the Boolean Lattice (similarly, in G,,), such that all
strings on and above the boundary arelabeled 1, and all other stringsare labeled 0. The set D, contains
those strings above the boundary that f labels 0. The set o4 (D) contains all stringsin the shadow of
D, that lie above the boundary. These strings are labeled 1 by f (as otherwise they would be in Dy).
Thus, by definition of Dy and o4(D1), we have that for every = € o1(D,), there exists y € Dy
such that the pair (x, y) satisfies: < y and f(y) < f(x) (i.e, f(y) = 0and f(x) = 1). We next
show that a stronger statement holds.

Lemma9 For every Y C Dy, there exists a 1-to-1 mapping ¢ from'Y into o4 (YY), such that for each
yeY,oly) <y.

Lemma 9 isthe main step in proving Lemma 7 (which a so requires that all elementsin the set 5 belong
to the same layer in G,,, and that the same hold for all the elements they are mapped to).

Proof: We first show that for every Y C Dy, |o4(Y)| > |Y|. Assume towards contradiction that, for
someY C Dy, |01(Y)| < |Y|. We show, contrary to our hypothesis on ¢, that there exists another
monotone function ¢’ that is (strictly) closer to f.

Define g’ as follows: For every + € Y U o(Y), ¢'(x) = 0. Otherwise, ¢'(z) = g(x).
We need to verify the following two claims.

Claim 9.1: ¢’ isa monotone function.
Claim 9.2: dist(f,¢") < dist(f, g).

Proof of Claim 9.1: We need to show that for every x, y such that « < y, it holds that ¢'(x) < ¢'(y).
Consider the following cases.

3Thisis not the standard definition of a shadow, asin [Bol86, Chap. 5].
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The Boundary —— '
of g

Figure 1. The sets D, and o4(D1).

Casel: z € YUo(Y). Inthiscase¢'(z) = 0,andso ¢'(z) < ¢'(y) for al v,

Case2: « ¢ YUo(Y). Notethat inthiscase ¢'(x) =
theny ¢ Y U o(Y) aswell, and thus ¢'(y) =
towards contradiction that for somey € Y U
subcases.

). We will show that for every y if « < y

g«
9(y) = g(x) = ¢'(x) as required. Suppose
o(Y) it holds that = < y. We consider two

1. Ify € Ythensincex < y wehavethat z € Y Uo(Y) in contradiction to the case hypothesis.

2. Ify € o(Y) thenthereexists = € Y suchthat y < z. Using « < y it followsthat + < = and
soagain x € Y U o(Y) in contradiction to the case hypothesis.

Clam9.1follows. O

Proof of Claim 9.2: By definition of ¢/, the functions ¢ and ¢’ differ on the set of strings A &

(YUo(Y))N{x:g(x)=1}. SinceY C Dy C {x: g(x)=1}, wehave
A = Y Uo(V)n e glo)=1))
= YU @Y)n{z:g(z)=1and f(z)=1}) |J (e(Y)N{z : g(x)=1and f(z)=0})
=Y U o1(Y) U A

where A & #(Y) N {2 : g(x)=1and f(z) = 0}. Consider the three (disjoint) subsets of A: Y,

o1(Y),and A.

e Forevery x € Y,wehave f(z) =0andg(x) = 1 (sinceY C D;), and ¢'(x) = 0 (by definition).
Such « contributes to dist( f, ¢) but not to dist( f, ¢’).

e Forevery x € 04(Y), wehave f(z) = g(z) = 1 (by definition of o4(Y)), and again ¢'(z) = 0.
Such 2 do not contribute to dist( f, ¢) but do contribute to dist( f, ¢').
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e Forevery x € A,wehave f(x) =0and g(x) = 1 (by definition of A), and again ¢'(x) = 0.
Such x contribute to dist( f, ¢) but not to dist( f, ¢').

Thus,
2" (dist(f.g) — dist(f.9) = |oa(Y)| — [YUA| < |os(Y)| = |Y] < 0
where the strict inequality is due to the assumption that |04 (Y)| < |Y]. Clam 9.2 follows. O

Consider any set Y € D;. We have established that for every Y’ C Y, |o1(Y")] > |Y'|. Lemma9
followsfrom Hall’s Theorem (cf. [Eve79, Thm. 6.12]): Consider the auxiliary bipartite graph B whose
vertex set is labeled by the stringsin Y U o4(Y), and whose edge set is {(z,y) : « € o4(Y), y €
Y, = < y}. By theabove, foreach Y’ C Y, we have [['(Y’)| > |Y’|, where I'(Y’) denotes the
neighbor set of Y’ in B. By Hall's Theorem, this implies that there exists a perfect matching between
Y and asubset of o4(Y). Lemma9 follows. W

Proof of Lemma 7: As noted previously, we may assume that D, (see EQ. (2)) has size at least
em(f) - 2"t (thecase |Dg| > em(f) - 2! isanalogous). Let Y, def D, N L;, and let s denote the
index of the largest set anong the Y;’s. It followsthat | Y| > mznﬁ A

We now invoke Lemma9with Y = Y,. Let X, & #(Y5), where ¢ is as guaranteed by the lemma.

Hence, X; C 01(Y5), and | X;| = |Y;|. Notethat while al elements of Y belong to L, the elements
of X, are contained in several L;’s, j < s. Foreach 5,0 < j < s, let X ; X, n L;. Let X,,
be the largest such set. Since |X,| = |Y,| > MU . 9" wehave [X,,| > 2. 2% Finally, let

Y., ¥ ¢1(X,,). ThenLemma7 holdswithS = Y,, CL,andR = X,, CL,. W

Comment: To obtain the stronger bound on the sizes of S and R we do the following. Let

dev & ¢%n “In(8/em(f)) -

Then we have that the total number of strings in layers L; where i > £ + dev is a most %ﬁ AL
Similarly, the total number of stringsin layers L; where: < £ — dev isat most EMSﬁ - 2. Assuming

(without loss of generality) that |D;| > %ﬁ - 2", we have that the number of stringsin D, that belong

tolayers I; where: < 7 + dev isat least SEMTU) - 2". By invoking Lemma 9 on the set

Y =Din ( U LZ»)
ig%—l—dev

we have a one-to-one mapping ¢ fromY to X = ¢(Y) C o4(Y). Note that by definition of Y,

X< U L.
i< 5 +dev
Since |X| = |Y]| > SEMT(f) - 2", and the total number of stringsin layers L; where: < & — dev is

at most %ﬁ - 2™ we have that

s aulf) o
4

%—I—dev
Xm( U LZ»)
i=5—dev
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Foreach i, 2 — dev < i < % + dev, l&t X; e X n L; and let X, be the largest such set. Then
X, | > @l on ey, € g-1(X,),andforeachi, 2 —dev < i < 24 dev, defineY;, ¥ Y, NL;.

4-2dev
Thenthereexistsaset Y, , C L, such that

> mlf)
= 16 - dev?

em(f)
n - log(1/em(f)

|Y5,T = Q(

).2m
WethenletS = Y,, andR = X,,.

3.2 Existenceof digoint paths between matched sets

LetS C L, andR C L, beasstated in Lemma8, and let d = s — r. Recall that foreach ) <1 < n,
L; isthe set of all vertices in G,, corresponding to strings with exactly ¢ 1's. We shall prove Lemma 8
by induction on m and d. The base cases, i.e., the casewhere m = 1 and d > 1, and the case where
d =1andm > 1, clearly hold. Consider general m > 1 and d > 1, and assume by induction that the
claim holdsfor every pair m’ and d’ such that either m’ < mandd < dorm’ < mandd’ < d. LetQ
be the set of verticesin I.;_ that are on adirected path going from some vertex in S to some vertex in
R, and let P be the set of verticesin L., that are on such directed paths from S to R (see Figure 3.2).
We shall prove the induction claim in two steps. In the first step we use the induction hypothesis (for
m’ < mand d = d) to show that either |Q| > m or |P| > m (or both). Inthe second step we use this
fact together with the induction hypothesis (for m’ < m and d’ = d and for m’ = m and d' < d) to
prove the induction claim.

S Level s
Q Level s-1
P . Level r+1

Figure2: ThesetsS, R, Q, and P.

Step 1. Either |Q| > mor |P| > m.

Proof: Consider the subgraph G/, of G,, containing S, R and all vertices and edges that belong to
paths between S and R.

Claim8.1: Letv beavertexinS and let v beavertexin somelevel L;, wherer +1 < < s — 1, such
that thereis a directed path fromv to « in GG/,. Then the outdegree of v in G/, is at least aslarge asthe
outdegree of w in G/,. Smilarly, ifw € Rand z € L, wherer + 1 < < s — 1, such that thereisa
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directed path from = to w in G/, then the indegree of w in GG/, is at least as large as the indegree of =
inGl.

Proof: We prove the claim concerning outdegrees. The claim about indegrees is proved analogously.
Let « > 1 bethe outdegree of u and consider the vertices »!, . .., u® in L;_; such that thereisan edge
in G/ from u to each u'. Recall that by definition of G, there are pathsin G/, from the u*’sto vertices
in R. Therefore, any vertex that is on a path from v to one of the u*’sisin G! aswell.

For each u*, let b' € [n] be the index of the bit on which the strings corresponding to « and «,
differ; i.e, uy = 1 whilew}, = 0. By definition, ', ..., 5" are distinct indices, and since w;; = 1 for
every 7, it also holds that v,: = 1 for every . For each b', let v bethe vertex in L,_; that differs from
v ontheb”thbit; i.e, vj; = 0, and for every j # b', v} = v’. Then each of the « v'’sis on apath from
vtou', and theclamfollows. O

We note that the above claim can be strengthened to show that the outdegree of v (respectively,
indegree of w) is greater than the outdegree of w« (respectively, indegree of z), by at least s — ¢
(respectively, : — r). Thisis done by taking into account the bits on which » and « (respectively, w
and z) differ.

Let & be the maximum outdegree of vertices in S, and let ¢ be the maximum indegree of vertices
in R. We partition S, R, Q, and P into subsets according to their degreesin G/, as follows. For every
: < k welet S; be the subset of vertices in S that have outdegree exactly ¢, and for every j < ¢, welet
R’ be the subset of vertices in R that have indegree exactly j. Similarly welet Q7 (respectively, P7)
be the subset of vertices in () (respectively, P) with outdegree exactly : and indegree exactly j. First
note that by Claim 8.1, the maximum outdegree of verticesin Q and P isat most &, and the maximum
/1, |P| = 0, and for every ¢ and j > {,

Q/].IP{| = 0.

Furthermore, by Claim 8.1, for every ¢, and each vertex v € S;, the vertices v in P such that there
exists a directed path from v to « must belong to Uy<; U; Py ;. Forany ¢ < k, let S, = U/_;S;.
By definition of £ (as the maximum degree of vertices in S), the set S; is nonempty and hence for

vertex disjoint paths between S<, and ¢(S<,) (where ¢ is the matching guaranteed by the hypothesis
of Lemma8). For any ¢ < k let II(S<,) C @ denote the set of neighbors of verticesin S, that lie on
these pathsto ¢(S<,). 4 H(S<q)| = |S<4|. Using the above and the fact
that the S;’s are disjoint and the P’s are digjoint, the following inequality holds for every ¢ < k:

q ) q ) 9 k )
218 = 18<] = 1(Sgy)l < UL U2 Py = X D [P = X3 [P, (§)

=1 =1 5=1 =1 5=1

Similarly, we can obtain that for every p < s,

ZIRJI < ZZIQ] 6)

=1 j5=1

Recall that we would like to show that either |Q| > m or |P| > m. Thus, assumein contradiction
that both |Q| < m and |P| < m. Therefore, by Equation (5), for every ¢ < k,

k q q t ]
218l = 8[=218] = m— Z|S| > m— ZZH” > [PI=2_ 2 Pl ()

i=g+1 =1 =1 j=1 i=1j=1
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and so

k Eoot 4
Y08 > >0 Yo IPil (®)
i=q+1 i=q+1 j=1
Similarly, for every p < ¢,
k Eoot 4
YR > >0 > Qi ©)
J=p+1 =1 j=p+1

By summing both sides of Equation (8) over al ¢ < & we get

k-1 & -1 kot 4
>0 s> X > P (10
=0 i=q+1 =0 i=q+1 j=1

or equivalently,

Z |S|>ZZ@ P/ (11)
1= =1 j5=1

Similarly, from Equation (9) we get
Z] |R]|>ZZ] Q7 (12)
=1 7=1
Summing Equations (11) and (12), we get

k
> i |S|+ZJ IRJI>ZZ@ IPJI+ZZJ Q] (13)

=1 =1 7=1 =1 j5=1

However, since the number of edges going out of verticesin S equals the number of edges entering
vertices in () we have that:

k Bt 4
oIS =323 1Q] (14)
=1 =1 j5=1
and similarly for R and P we have
13 ] k 13
Y iR = ZZ -|PY]. (15)
7=1 =1 j=1
Summing Equations (14) and (15) we get
k Bt 4 Bt 4
)MCIES SPNTIIIED 3) SR CIND 9 Sel s (16)
=1 7=1 =1 j5=1 =1 j5=1

contradicting Equation (13). M (Step 1.)
Step 2: Thereexist vertex digoint pathsfrom S to R.

Proof: From Step 1 we have that either |Q| > m or |P| > m. Assume the former is true — we
shall see that this can be done without loss of generality. We next show that (1) there exists a perfect
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matching between S and (a subset of) Q; and (2) there exists a 1-to-1 mapping ¢’ from the matched
vertices of Q) to R so that there is a path from each matched v € Q) to ¢'(u). Given (2) we can apply
the induction hypothesisfor & = d — 1 (and m’ = m) on Q and R, and by combining with (1) we get
the desired paths from S to R.

We actually prove both (1) and (2) together. Consider the following auxiliary network, A. It has
asingle source vertex s, asingle target vertex ¢, and the rest of the vertices are partitioned into three
layers corresponding to S, Q and R, respectively. There is an edge from s to each of the verticesin S,
and from each of the verticesin R to ¢. The edges between S and () areasin G/, and edges between Q
and R correspond to directed pathsin G!,. We show that the minimum s — ¢ vertex-separator in A has
sizem. Items (1) and (2) follow by one of the variations of Menger’s Theorem (see [Eve79, Thm. 6.4
and discussion on pp. 130]), which guarantees the existence of m vertex-digjoint paths from s to ¢.

Assume in contradiction that there exists a vertex-separator C of size smaller than m in A. Let
mi € CNS],me & [CNQl, and ms & |C N R|. Consider the subset of vertices §' C S
that do not belong to C and are not mapped by ¢ to verticesin R N C. The size of S’ is at least
m' =m — (my +ms) > |[C] — (my 4+ ms) = my. Let R & ¢(5'), and (@’ be the subset of vertices
in Q) that are on a directed path in GG/, going from some vertex in S’ to avertex in R’.

We consider twocases. If S = S (i.e, C C Q)thenQ’ = Q,andsince|C| < m < |Q], thereexists
at least onevertex in Q \ C on apath from avertex in S to avertex in R, contradicting the assumption
that C isavertex separator. If S’ C S, then by theinduction hypothesis(form’ = |S'| < mandd’ = d),
there exist vertex digioint pathsin G/, from S’ to ¢(S’) and hence necessarily |Q'| > |S'| > m2. Since
|C N Q| = m3, we again reach contradiction to the assumption that C isavertex separator. W

4 Proofsof Propositions3 and 4

Below we restate and prove the propositions concerning the relations between ey ( f) and 6y ( f) that
were stated in the introduction.

Proposition 3 For every function f : {0, 1}"—{0,1}, em(f) > dm(f)/2.
Proof: Let usfix f and consider the set E of its violating edges. In order to make f monotone, we
must modify the value of f on at least one end-point of each of its violating edges. Since each vertex
(string) isincident to at most » violating edges, the number of strings whose value must be modified
isat least

Bl _ - (52m) sl

no n N 2
and the proposition follows. MW

Comment: taking into account the fact that the number of violating edges incident to a vertex is
at most the maximum between its indegree and outdegree and that for most vertices this maximum
valuesis roughly n /2, the above bound can be improved to yield ey > (1 — o(1)) - ém( f), provided

om(f) > 27 for any constant ¢ < 1.
Proposition 4 The following holds for every n and every 27" < o < I — O(—=), where ¢ is any

constant strictly smaller than 1.
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1. Thereexistsa function f : {0,1}"+— {0, 1} suchthat o < ey(f) < 20 @and

2. Thereexistsafunction f : {0,1}"+ {0, 1} suchthat o < epm(f) < 2ar and

om(f) = O (em(f)) -

o) =0

3. For any a = O(n™7), there exists a function f : {0,1}"+— {0,1} suchthat o < ey (f) < 2a

o e(ﬁ)

n

o) =0

Proof:
ltems 1 and 2. We start by proving the first two items for the case where o = 1 — O(ﬁ).

1. Let f be the (symmetric) function that has value O on al vertices belonging to layers L; where
J = 5 andis1lonal vertices belonging to layers L; where : < . Then on one hand, all edges
between the layers, Lz and L2y, are violating edges, and so éyi(f) = ©(=). Onthe other

1

hand, we next show that ei( /) = 3 — O(=). Clearly, ey < ; astheall O function ismonotone

and at distance at most % from f. It remains to show that we cannot do better.

To this end we show the existence of a one-to-one mapping > between the vertices in the layers
L; where: > % and the vertices in the layers L; where: < % so that for every «, o(z) < z.
In particular for each ¢, 0 < ¢ < %, there exists such a one-to-one mapping between L,,_; and
L;: Consider the auxiliary bipartite graph over vertex sets L.,,_; and L;, where there is an edge
betweeny € L,,_; andx € L; ifanonlyif < y. Sincethisauxiliary graph isaregular bipartite
graph (with degree (”Z‘Z) ), where both sides are of the same size, there exists a perfect matching
between the two sides. We let +» be defined by such [ 5] — 1 perfect matchings, where for odd
n dl stringsin {0, 1}" are matched, and for even n. only the strings in the middle layer, Lz, are
left unmatched. To make f monotone, we must modify the value of at least one vertex in each
matched pair, and since these pairs are disjoint (and their number is at least (1 — O(ﬁ) - 2M),
the clam follows.

2. Let f bethe (symmetric) function that has value 0 on all vertices belonging to layers L., where
2 iseven, and has value 1 on al vertices belonging to layers L.; where : isodd. Since all edges
going from even layers to odd layers are violating edges, ém(f) = 1/2. We next show that
em(f) = 3 — O(-=) (where once again, evi(f) < ; sinceitis at distance at most 1/2 from
the al-0 function or the all-1 function). Consider any pair of adjacent layers such that the top
layer islabeled O (so that all edges between the two layers are violating edges). It can be shown
(cf. [Bol86, Chap. 2, Cor. 4]) using Hall’'s Theorem, that for any such pair of adjacent layers,
there exists a perfect matching between the smallest among the two layers and a subset of the
larger layer. Since we must modify the value of at least one end-point of each violating edge,
the claim follows.
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To generaize the above two constructions for smaler o we do the following. Let n’ = n —
|log(1/(2a))], and consider the set S of al strings whose last n — r’ bits are set to 0 (thus forming a
sub-cube of the n-dimensional cube). The size of the set S isat least 2« - 2 and at most 4« - 2".

1. Let /' bedefined on S analogously totheway f isdefinedon {0, 1} inltem 1 above (i.e,, it has
valueO on al stringsin S having weight at |east ”7' and is1 on all strings having weight less than
”7'). Onall stringsnot in S, the function f’ has value 1. By this definition, there are no violating
edges (w.r.t. f") between vertices not in S and vertices in S, and the only violating edges are
between the middle two layers of the subgraph of (5,, induced by S. The number of these edges

is@(%-%’),which by our assumption on « (and the definition of »") is@(ﬁ_/-n-Q”). Onthe
. 18]

other hand, as argued in the first item above, we can show that eyi( ') is approximately % T
which ranges between o and 2« as required.

2. Heretoo [’ hasvalue 1 on al strings not in S, and is defined on S analogously to theway f is
defined on {0, 1}" in Item 2 above, dternating between 0 and 1 on the layers of the subgraph of
G, induced by S. The rest of the argument follows asin Item 2 when restricting the attention to
this subgraph.

ltem 3. We start by proving the case o = Q(n~%/?). We consider the verticesin L, and L;_,, where
k= [%]. Weknow that |Ly|, |Ly_i| = Q(n~"/% - 2"). Asnoted in the proof of Item 2, between any
two adjacent layers there exists a matching whose size equals the size of the smaller among the two
layers. Let such amatching, between ., and L;_,, bedenoted M = {((v;, u;)}i_;, wheret = |L;_1].
Using a greedy approach, we find a large matching M’ = {(v;,,u;;)} C M such that there are no
edges (in G,,) between pairs v;, and u;, such that ¢; # ;. Since each edge (v;,, u;,) € M’ “rules out”
amost (k— 1)+ (n—(k—1) —1) < n other edgesin M (i.e,, an edge (v;,, u;,) is ruled out if
either (v;,,u;,) o (v;,, u;,) isanedgein G,,), we can obtain [M'| > £ = Q(n=3/2.2"). Sincewecan
always drop edges from M/, we can have [M/| = ©(n=/2 . 27),

Using M’ we define f asfollows. For each matched pair (v;,, u;; ) in M’, the function f has value
Oonw;,, and value 1 on u;;. All other vertices in layers £ and higher have value 1, and those in layers
k — 1 and lower have value 0. Hence, the violating edges with respect to f are only those that belong to
M, and s0 8yi(f) = gy = O(n~'/2). Ontheother hand, exi(f) = il = ©(n™/?) (asinorder to
make f/ monotone we must modify the value of at |east one end-point of each edgein M’). For smaller
values of o we simply define f based on asubset of M’ of size [« - 2"]. W

5 Testing based on Random Examples

In this section we prove Theorems 5 and 6: establishing a lower bound on the sample complexity of
such testers and a matching algorithm, respectively. For convenience, we first restate the theorems.

Theorem 5 For any ¢ = O(n~%/?), any tester for monotonicity which only utilizes random examples
must use at least (/2" /¢) such examples.

Theorem 6 There exists a tester for monotonicity which only utilizes random examples and uses at
most O(4/n3 - 27 /¢) examples. Furthermore, the algorithmrunsintime poly(n) - /2" /e.
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5.1 A Lower bound on sample complexity

Let M’ be as defined in the proof of Item 3 in Proposition 4. By possibly dropping edges from M’ we
can obtain amatching M” so that |M”| is even and of size 2¢ - 2" (recall that e = O(n~%/%)). Using M
we definetwo families of functions. A function in each of the two families is determined by a partition
of M” into two sets, A and B, of equal size.

1. A function f in thefirst family is defined as follows

For every (v,u) € A, define f(v) = 1 and f(u) = 0.

For every (v,u) € B, define f(v) = 0and f(u) = 1.

For 2 with w(x) > k, for which f has not been defined, define f(z) = 1.

For = with w(z) < k — 1, for which f has not been defined, define f(z) = 0.

2. A function f in the second family is defined as follows
e Forevery (v,u) € A, define f(v) = 1and f(u) = 1.
e Forevery (v,u) € B, define f(v) = 0and f(u) = 0.
e For z’sonwhich f has not been defined, define f(x) asin thefirst family.

It is easy to see that every function in the second family is monotone, whereas for every function f in
the first family ey (f) = |B|/2" = €. Theorem 5 is established by showing that an algorithm which
obtains o(,/| B|) random examples cannot distinguish a function uniformly selected in the first family
(which needs to be rejected with probability at least 2/3) from a function uniformly selected in the
second family (which needs to be accepted with probability at least 2/3). That is, we show that the
statistical distance between two such samplesis too small.

Claim 10 The statistical difference between the distributions induced by the following two random

processes is bounded above by (7;) . @/2[:;'. The first process (resp., second process) is define as follows

e Uniformly select a function f in the first (resp., second) family.
¢ Uniformly and independently select m strings, @1, ..., ©,,, in {0, 1}".
o OUtpUt (1’1, f(xl))v ) (l’m, f(xm))

Proof: The randomness in both processes amounts to the choice of B (uniform among al (|M"|/2)-
subsetsof M) and the uniform choice of the sequenceof «;’s. The processesdiffer only inthelabelings
of the x,’s which are matched by M”, yet for u (resp., v) so that (u,v) € M” the label of u (resp., v)
isuniformly distributed in both processes. The statistical difference is due merely to the casein which
for some«, j thepair (x;, «;) residesin M". The probability of this event is bounded by (”;) times the

probability that a specific pair («;, «;) residesin M”. The latter probability equals “\24# 227" O

Conclusion. By the above claim, m < 2"/4/3|M”| implies that the statistical difference between these

processesis lessthan ™ - 71 < 1 /6 and thus an algorithm utilizing m queries will fail to work for

the parameter ¢ = | B|/2". Theorem 5follows. W
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5.2 A matchingalgorithm

The agorithm consists of merely emulating Algorithm 1. That is, the algorithm is given m e
O(y/n? - 27 /¢) uniformly selected examplesand triesto find aviolating pair asin Step 3 of Algorithm 1.

ALGORITHM 2: Input n, e and (x1, f(x1)), ..., (2, f(20m)).
1. Placeall (z;, f(z;))’sonaheap arranged according to any ordering on {0, 1}".
def

2.Forj=1,...mandi = 1,...,n, try to retrieve from the heap thevalue y = x; & 0°-110"".
If successful then consider the values «;, y, f(x;), f(y) and in case they demonstrate that f is
not monotone then reject.

If al iterations were completed without rejecting then accept.

ANALYSIS. Clearly, Algorithm 2 always accepts a monotone function, and can be implemented in
time poly(n) - m. Using a Birthday Paradox argument, we show that for a suitable choice of m,
Algorithm 2 indeed rejects e-far from monotone functions with high probability. We merely need to
show the following.

Lemma 11 There exists a constant ¢ so that the following holds. If m > |/en327 /em(f) and if the
x;'s are uniformly and independently selected in {0, 1}" then Algorithm 2 rejects the function f with
probability at least 2/3.

Proof: We use the fact that the proof of Theorem 2 provides two disjoint sets, V and U, with the
following properties

1. Each set hassizeat least 2U) . o7,

2. Thereis 1-1 mapping, v, of V to U.
3. Forevery v € Vitholdsthat f(v) =0, f(¢(v)) = 1, and ¢»(v) is obtained from v by setting a
single bit to O.

We will show that with probability at least 2/3, thereexist ¢ and j sothat z; € Vand x; = ¢ (x;) € U,
and the lemma will follow.

We split the sampleinto two equal parts. Using aM ultiplicative Chernoff Bound,* with probability
at least 0.9 the number of x;’sin the first part which hit V is at least % S |2V—n| Denote the set of
examples hitting V by V', and consider the set U’ C U of vertices which are matched by ¢ to V'.

Then, the probability that none of the 1 /2 examples in the second part hits U’ is at most

mf2 "\ m/2 '
| V'] V| m VI )
(1_2—” =\ R TR B o S e T (19

The lemma follows by substituting |V | with % - 2" and m?* with en®2" feq(f). O

“We assumefor simplicity that enr(f) > n®/2", whichimpliesm > n®/en(f). Otherwise, ex(f) = O(n?/27),in
which casem = Q(1/n327 /em(f)) = (2™), which in turn suffices to hit even a single edge with constant probability.
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6 Extensions

6.1 Testingwhether afunction isunate

By our definition of monotonicity (used throughout the paper), a function is said to be monotone if,
for any string, flipping any bit of the string from O to 1, does not decrease the value of the function.
A more general notion is that of unate functions. A function f is unate if there exists a string
(=C(...¢ € {0,1}" for which the following holds: For any string + = 24 ...x,, and for any ¢
suchthat x; = (;,if welety = xy,..., 2,1, "%, i1, ..., T, (1.6, y iSthe same as = except for the
+*2 bit, which is flipped from ¢; to —(;), then f(y) > f(x). We say in such acasethe f is monotone
with respect to (. In particular, if a function is monotone with respect to the all-0 string, then we
simply say that it is a monotone function, and if a function is monotone with respect to some ¢, then
it isunate. Thus, the generalization of monotonicity to unateness allows that for each position there
be a (possibly different) direction (i.e., not necessarily the 0 — 1 direction), such that the value of the
function cannot decrease when the bit is flipped in that direction.

Similarly to Algorithm 1 (for testing monotonicity), which searchesfor evidenceto non-monotonicity,
the testing algorithm for unateness tries to find evidence to non-unateness. However, here it does not
sufficeto find apair of strings =, i that differ on the ;' bit such that = < y while f(z) > f(y), since
f could be monotone with respect to ¢ such that (; = 1. Instead we search for two pairs of strings,
zt < y'and 2? < y?, where each pair differs on the (same) ‘" bit, such that f(=') > f(y') and
f(z?) < f(y*) (or vicaversa). Thisimplies that thereisno ¢ such that f is monotone with respect to
( (since, in particular, (; can be neither O nor 1).

ALGORITHM 3 (TESTING UNATENESS): Oninput n, ¢ and oracle accessto f : {0,1}"— {0, 1}, do the
following:

1. Uniformly select m = O(n>?/e) strings in {0,1}", denoted z', ..., =™, and m indices in
{1,...,n}. denoted ¢', ... i™.

2. For each selected =7, obtain the values of f(z/) and f(y’), where y’ resultsfrom =7 by flipping
the 7’ th bit.

3. If unatenessis found to be violated then reject.

Violation occurs, if among the string-pairs {7, 5/}, there exist two pairs and an index 7, such
that in both pairs the strings differ on the :** bit, but in one pair the value of the function increases
when the bit is flipped for 0 to 1, and in the other pair the value of the function increases when
the bit isflipped from 1 to O.

If no contradiction to unateness was found then accept.

Theorem 12 Algorithm 3 is a testing algorithm for unateness. Furthermore, if the function is unate,
then Algorithm 3 always accepts.

We shall need the following notation. For ¢ € {0,1}", let <, denote the partia order on strings
with respect to (. Namely, « <, yifandonly if + & ( < y & (. Let em¢(f) denote the minimum
distance between f and any function ¢ that is monotone with respect to ¢, and let 6y ¢( ) denote the
fraction of pairs x, y that differ on asingle bit suchthat @ <. y but f(z) > f(y). It follows from the
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above definitions that for any f and ¢, em¢(f) = em(fe) and dm ¢ (f) = dm(fe), where f. is defined
by fe(x) = f(x & (). Hence, asacorollary to Theorem 2, we have

Corollary 13 For any f : {0,1}"— {0,1},andfor any ¢ € {0,1}", duc(f) > 2,
Proof of Theorem 12: Foreach: € {1,...,n}, let v, o(f) denote the fraction, among all pairs of
strings that differ on asingle bit, of the pairs =, y such that = and y differ only on the :*" bit, z; = 0,
y; = 1,and f(x) > f(y). Similarly, let v, 1(f) denote the fraction of pairs of strings «, y such that
z and y differ only on the i*" bit, 2; = 1, y; = 0, and f(x) > f(y). In other words, ~; o( f) isthe
fraction of pairs that can serve as evidence to f not being monotone with respect to any ¢ such that
¢; = 0, while; 1(f) isthe fraction of pairs that can serve as evidence to f not being monotone with
respect to any ( such that (; = 1. Note that in case f is monotone with respect to some (, then for
every ¢, vi¢,(f) = 0. More generaly, émc(f) = Yoiny i, (f) holds for every ¢ € {0,1}" (since
each edge contributing to 6y ¢( f) contributes to exactly one ; ¢,).

Let us define ey( f) to be ming(en,¢(f)) so that it equals the minimum distance of f to any unate
function (i.e., any function that is monotone with respect to some ().

Claim 12.1. Z?:l min(%’,o(f)a %l(f)) > %3&

Proof: Let ( = (;...(, be defined as follows: For each ¢, if v;o(f) < v.1(f) then ¢, = 0, and
otherwise, ¢; = 1. In other words, ; = argmin,e, 11(7i,5)- The key observation is

ome(f) = 2%@ = Zmin(%,o(f),%,l(f))

where the first equality holds for any ¢, and the second follows from the definition of this specific (.
Invoking Corollary 13, we have dn ¢ (f) > mn#g(f) > Wn—@ O

For each ¢, let T'; o(f) bethe set of al pairs of strings z, y that differ only on the :*® bit, where
z; =0andy;, = 1, and suchthat f(x) > f(y). Similarly, let I'; 1 (f) be the set of al pairs =, y that
differ only on the ' bit, where z; = 1 and y; = 0, and such that f(x) > f(y). Claim 12.1 givesus
alower bound on the sum 3=, min(|I; o, |I';1|). To prove Theorem 12, it suffices to show that if we
uniformly select Q(n*°/ey(f)) pairsof stringsthat differ on asingle bit, then with probability at least
2/3, for some ¢ we shall obtain both apair belonging to I'; o( f) and apair belongingto I'; 1 (f). The
above is derived from the following technical claim, which can be viewed as a generalization of the
Birthday Paradox.

Claim 12.2. Let Sy,...,5,,Ty,..., T, bedigoint sets of elements belonging to domain X. For each
7, let the probability of selecting an element = in S; (when z is chosen uniformly in X), be p;, and the
probability of selecting an element in T;, be ¢;. Suppose that for all z, ¢; > p;, and that 3", p; > p
for some p > 0. Then, for some constant ¢, if we uniformly select ¢ - \/n/p elementsin X, then with
probability at least 2/3, for some: we shall obtain one element in S; and onein T).

Proof: As a menta experiment, we partition the sample of elements into two parts of equal size,
c-\/n/(2p). Let I be arandom variable denoting the (set of) indices of sets S; hit by the first part of
the sample. We show below that with probability at least 5/6 over the choice of the first part of the
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sample,

P
pi = —= (18)
LN
The claim then follows since conditioned on Equation (18) holding, and by Claim 12.2's hypothesis
that ¢; > p; for all ¢, the probability that the second part of the sample does not include any el ements
from ;¢ T, isat most

e/ (20) G
(1 - Qi) < (1 - 7) < exp(—c/2)
n

1€l

whichislessthan 1/6 for an appropriate choice of c.

To provethat Equation (18) holdswith probability at least 5/6, we assumewithout loss of generality
that the sets S, are ordered according to size. Let Sq,...,S; be al sets with probability weight at
least p/(2n) each (i.e, p1 > ... > pr > p/(2n)). Then, the total probability weight of al other sets
Skets- .-, Sy islessthan p/2, and Y8, p; > p/2 follows. We first observe that by a (multiplicative)

Chernoff bound (for an appropriate choice of ¢), with probability at least 11/12, the first part of the

sample contains at least 4 - \/n elementsin S LR, S

Let I & 10 {1,...,k}. Thatis, I' is arandom variable denoting the indices of sets S;, ¢ €
{1,...,k} that are hit by the first part of the sample. Conditioned on there being at least 4 - \/n
elements from S in the first part of the sample, we next show that with probability at least 11/12,
Y ier Pi = = (from which Equation (18) follows). Since conditioned on an element belonging to S
it isuniformly distributed in that set, we may bound the probability of the above event, when selecting
4,/n elements uniformly in S. Consider the choice of the j** element from S, and let T/_, denote the
indices of setsS;, ¢ € {1,...,k}, among thefirst j — 1 selected elements of S. If

2- Zf—l bi
iell \/ﬁ

then, since %, p; > £, wearedone. Othervvise(zielz_1 pi < (255, pi)/+/n), the probability that
the ;' element belongsto I \ I:; (i.e, ithitsasetin {S;,...,S;} that was not yet hit), is at least
1 —2/y/n, whichisat least 3/4 for n > 36. Since we are assuming that the first part of the sample
includes at least 4 - \/n elements from S, with probability at least 11/12, we succeed in obtaining a
new element in at least 2 - \/n of these trids. Sincethe sets Sy, ..., S al have probability weight at
least p/(2n), theclaim follows. O

6.2 Other Domains and Ranges

Asdefined in the introduction, for finite sets ¥ and = and orders <y, and <= on X and =, respectively,
we say that a function f : X" +— = is monotone if f(z) <z f(y) for every « <y y, where
Xy, <y Y1 yn if 2, <s oy, forevery « and x; <y y; for some:.

Without loss of generality we may think of X as being the set {0,...,|X| — 1} (sothat <y is
simply the order < over integers). Similarly tothe > = {0, 1} case, the partial order <y, induces a
layered directed graph, denoted G, s, wherethe i*" layer L; contains all strings  suchthat 3", =; = .
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Hence, thisgraph hasn - (]3| — 1) layers. For each vertex = and every j such that =; > 0, thereisan
edgedirected fromztox’ = a4, ..., x50, — 1, @41, .., T

The agorithm we analyze is very similar to Algorithm 1. 1t uniformly selects ©(n? - |X]* - |Z]/¢)
strings and for each string = chosen it performs the following local test: It uniformly selects an index
J €1,...,n,and queries the function f on = and on either =’ = zy,..., 21,2, — L, 2j11, ..., 2,
oronz’ =wxy,...,x,-1,¢; + 1,241, ..., 2, (Wherethisdecision is done randomly unless z; = 0 or
x; = |¥| — 1). Theagorithm rgjectsif for some z, f(x) >= f(2') whilez <y 2’ (or f(2') >= f(z)
whilez’ <y ).

6.2.1 General Domains

Consider first the case in which ¥ may be any finite ordered set, but = = {0,1}. Asin the case
¥ = {0, 1}, we want to bound éni( f) in terms of en( f), where ey (f) and éni( f) are generalized in
the straightforward manner. Here we have that

Theorem 14 For any finite ordered set ¥, and for every f : ¥ — {0, 1}, om(f) > %

(Where similarly to the > = {0, 1} case adlightly stronger bound actually holds.)

The proof of Theorem 14 isanalogous to the proof of Theorem 2. In particular, the theorem follows
by combining slightly modified versions of Lemmas 7 and 8, as donein the proof of Theorem 2. Inthe
modified version of Lemma 7, the only changeisin Item 1, where the sets S and R are of size at |east
% -|X|™ (recall that |X|" isthe size of the domain). The cause for this modification isthat the
number of layersinthe graph G,z isn - (|¥| — 1). More precisely, when invoking Lemma 9 (which
can be easily verified to hold as is) in order to prove Lemma 7, we “break” the set D, (as defined in
Equation (2)) into subsets according to the layers of G, 5;. We then take the largest such subset Y,
whose size we can bound by W@l)) -|X|™. When breaking #(Y) into layers, we lose another factor
of n-(|X| —1).

Lemma 8 essentialy holds as stated. The only part of the proof that directly depends on the
underlying graph is Claim 8.1, and it is easily verified that Claim 8.1 (in the proof of Lemma 8) isin
fact still truein this case. Therest of the proof remains unaltered.

6.2.2 General Ranges

Let = be any ordered set, and for ease of the exposition, assume > = {0, 1} (the generalization to
other domains is done as described above in Subsection 6.2.1). In this case we can show that

Theorem 15 For any finite ordered set =, and for every f : {0,1}" — =, ém(f) > %% where
om(f) and en( f) are generalized in the natural manner.

Incase = isnot finite, we can replace |=| in the above expression with the size of the “effective” domain
of f (that is, the number of different values assigned by f.)

The proof of Theorem 15 also follows similar lines to those in the proof of Theorem 2. The
statement of Lemma 8 and its proof remain unaltered, since the underlying graph, G,, isthe same. The
statement of Lemma 7 is modified as follows:
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Lemma 16 For any ordered set =, and for any function f : {0,1}" — =, there exist two sets of
verticesS C L, and R C L., where s > r, for which the following holds:
1 |S] = [R| > add). o,

2n? !

2. There exists a one-to-one mapping ¢ from S to R such that for every y € S, ¢(y) < y, while
f(o(y)) >= f(y).

We prove Lemma 16 momentarily, but first show how it can be applied together with Lemma 8 to
obtain Theorem 15. Fixing f we invoke Lemma 7 to obtain the two matched sets S and R of size at
least m = %Qil - 2™, Unfortunately, we cannot continue by simply applying Lemma 8 to the sets S
and R as done in the proof of Theorem 2. The reason is that Lemma 8 only tells us that there exist
some vertex-digoint paths between S and R, but these paths do not necessarily respect the matching
¢. In the case of a Boolean range, this was sufficient. However, when the range is larger, the digoint
paths might be from y € S to « € R such that f(y) >= f(«), and the argument breaks down.
Thus, instead of invoking Lemma 8 directly on 5 and R, we do the following. For each ¢ € =, let
Se ¥ {yeS: f(y)=¢). LetS’ bethelargest among thesesubsets of S, sothat |S'] > m /|=|. Since
the value of f is constant on S/, we have that for every y € S’ and every @ € o(5'), f(y) <= f(x).
We then invoke Lemma 8 on S’ and R’ & #(S'), and the proof of Theorem 15 follows by the same
argument used in the proof of Theorem 2.

Onepossibleway to avoid theintroduction of thefactor of |=|, isby proving thefollowing conjecture
which is avariation of Lemma 8: While we relax the requirement that the paths between the matched
sets be vertex digjoint to being edge disjoint (which suffices for our purposes), we ask that these paths
respect the matching.

Conjecturel Letr and s beintegers satisfying, 0 < r < s < n,andletS C L, and R C L, be sets
each of size m. Suppose that there exists a 1-to-1 mapping ¢ from S to R such that for every y € S,
there is a directed path in G,, fromy to ¢(y). Then there exist m edge-digjoint directed pathsin G,,
connecting each y € S with ¢(y) € R.

Infact, it would beinteresting to show even the existence of m /poly(n) edge-disjoint paths that respect
the matching ¢ (instead of exactly m).

Proof of Lemma 16: Fixing f, we let ¢ be a monotone function closest to f, so that dist(f,¢) =

em(f). The proof of Lemma 16 is andogous to the proof of Lemma 7. We start by extending the
definition of Dy and D, (asgiven in Equation (2)) to a non-Boolean range. We define:

Dy £ {a: g(z)> f(x)} ad D= {z: g(x) < f(x)} (19)

sothat D |+ |D<| = em(f) - 2". Without loss of generality we assume [D~| > em(f) - 2"71. We
next extend the operator o (defined in Equation (4)). Forany Y C D-, let

os(Y) ¥ {2 IyeYsty=aandf(z)> fy)}
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where recall that o(Y') denotes the shadow of Y (and is defined in Equation (3)). Thus, o~ (Y) can be
viewed as the cause (or witness set) to the need to change (raise) the value of f on the pointsin'Y'.

We next slightly depart from the course taken in the proof of Lemma7. Namely, instead of showing
analogously to Lemma 9 that for every subset Y of D-, there exists a 1-to-1 mapping that maps each
elementy € Ytoanx € o5 (Y) suchthat «+ < y, weprove this claim only for sets Y whose elements
al belong to asingle layer in (G,,. While this suffices for our purposes (as it actually did for the proof
of Lemma 7), it is still interesting to note that it is not clear whether the stronger claim (referring to
all subsets of D+ ) holds for a general range or not. In particular, the proof technique we use does not
seem to be extendible (as we note in the proof below).

Lemmal7 For every s,0 < s < n, andfor every Y C (D~ N L), there exists a 1-to-1 mapping ¢
fromY into o~ (Y), such that for eachy € Y, ¢(y) < v.

Proof: We follow the same proof strategy of Lemma 9. Fixing s, we first show that for every
Y € (DsNLy), |o=(Y)| > |Y|. Assume towards contradiction that for some Y C (D. N L),
los(Y)| < |Y|. We show, contrary to our hypothesison g, that there exists another monotone function
¢’ that is (strictly) closer to f.

Define ¢’ as follows:

o Foreveryy €Y, d'(y) = f(y);

o Forevery z € o(Y),g'(x) = min(g(x), minyey o {f(y)})7"
e Forz¢YUo(Y), ¢'(2) =g(2);

Thus, while ¢ raises the value f hason pointsin Y so as to obtain monotonicity, ¢’ maintains the value
of f onpointsinY but reduced the value of points below Y .°

We need to verify the following two claims.

Claim 17.1: ¢’ isa monotone function.
Claim 17.2: dist(f,¢") < dist(f, ¢).

Proof of Claim 17.1: We need to show that for every «, y such that « < y, it holdsthat ¢'(z) < ¢'(y).
Consider the following four cases.

Casel: =,y ¢ YUo(Y). Inthiscaseg'(z) = g(x) < g(y) = ¢'(y), where g(x) < ¢(y) follows
from the monotonicity of ¢, and the two equalities from the third item in the definition of ¢'.

Case2: s e YUo(Y)andy ¢ YUo(Y). Ifz € Ytheng'(z) = f(z) < g(x) < g(y) = ¢'(y),
where the inequality f(x) < g(x) followsfrom Y C D and the equalities from the first and
third item, respectively, in the definition of ¢'. If z € o(Y) then¢'(z) < g(z) < g(y) = ¢'(y),
where ¢'(x) < g(«) followsfrom the second item in the definition of ¢'.

Case3: s ¢ YUo(Y)andy € Y Uo(Y). By definition of o(-), this case does not occur for z < y.

®>Note that in the Boolean case, this minimum is aways 0.
5Here we encounter the main difficulty in trying to prove the lemma for arbitrary Y C D-,. In particular, if, as done
above, we set ¢’ to equal f on all pointsinY, then it might not be monotone.
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Cased: z,y € YUo(Y). Sincex <yandY C L,, it cannot be the case that both = and i belong to
Y. Thus we have two sub-cases

1. IfyeYanda € o(Y)theng'(z) < minsey .o {f(2)} < fly) = ¢ (y), wherethefirst
inequality is due to the second item in the definition of ¢’, and the last equdity is due to the
first item in the definition.

2. If 2,y € o(Y), then since g(z) < ¢(y) (8 ¢ is monotone), and min,cy v {f(2)} <

min,ey .+, { f(2)} (asthefirst minimum istaken over alarger set containing al z - y > ),
by definition of ¢’ we have (by the second item in the definition of ¢'),

g'(e) = min (g(e), min {f()}) < min (gv)._min {£()}) =9 ).

2€Y 2> 2€Y 2>y

Clam 17.1follows. O
def

Proof of Claim 17.2: By definition of ¢’, the functions ¢ and ¢’ differ on the set of strings A = Y U A,
where A ¥ 5(Y) N {z : g(z) > mingey oo {f(y)}}. Foreachz € Y, wehave ¢'(z) = f(z) and

g(x) # f(x), sothat such « contributes to dist( f, ¢) but not to dist( f, ¢’). Next consider any x € A.
Since A C o(Y), by the second item in the definition of ¢/, ¢'(x) = min (¢(x), min.ev .+ {f(2)}),
andsinceby definitionof A, g(x) > mingey v { f(y)}, wehaveg'(x) = mingey 4o { f(v)} < g(2).
There are hence three sub-cases.

1 If f(z) = ¢'(x) (< g(x)), then = does not contribute to dist( f, ¢") but does contributed to
dist(f, ¢

2. 1f f(x) <
(z)

3. If f(x) > ¢'(«) then = contributes to dist( f, ¢’), and may or may not contribute to dist( f, ¢).

g'(z) (< g(x)), then = contributes both to dist( f, ¢') and to dist( f, ¢).

Thus,
2" (dist(f,g') — dist(f.9)) < |os(Y)| = |Y] < 0

where the strict inequality is due to the assumption that |0~ (Y)| < |Y|. Clam 17.2follows. O

Consider any set Y C (D N L;). We have established that for every Y’ C o (Y| > |Y'].

Similarly to the proof of Lemma 9, Lemma 17 follows from Hall’'s Theorem. W

The proof of Lemma 16 follows from Lemma 17 similarly to the way Lemma 7 was shown to
followsfrom Lemma 9, and is hence omitted. M
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A Pathsthat Respect the Mapping

It is interesting to note that Lemma 8 does not hold if one requires that the vertex-disjoint paths from
S to R respect the given 1-1 mapping ¢ (i.e., that the paths connect each y € S to the corresponding
#(y)). An example is depicted in Figure A. For the given example |S| = |R| = 8, and thereare no 8
vertex-digjoint paths that respect the given matching. More generaly, it can be shown [DL98] that if
the paths are required to correspond to a particular matching then the number of disjoint paths can be
assmall as O(m/n) where m is the number of matched vertices.

However, if weonly requirethat the paths be edge-disjoint (which actually sufficesfor our purposes),
then we have no counter-example to the conjecture that such paths always exist (i.e., Conjecture 1).

27



1101 1100 l 1011 1100 l l 0111 1100 l l 1110 1100 l l 1100 1110 l l 1100 0111 l l 1100 1011] l 1100 1101 l

— = AA e — /\‘\\\;

=z — = — — 1
1001 1100 l l 0011 1100 l l 0110 1100 l 1100 1100 l 1100 0110 l l 1100 0011 l l 1100 1001 l | 1000 1101
- - ==
- =~ /
\ U4 = ;
1000 1100 l 0001 1100 l l 0010 1100 l l 0100 1100 l l 1100 0100 l l 1100 0010 l l 1100 0001 l 1100 1000 /

Figure 3: An example in which there aren’t enough digoint paths respecting a particular 1-1 mapping (and
so the digjoint paths guaranteed by Lemma 7 correspond to a different mapping). The given 1-1 mapping is
from each 8-bit long string at the top level to the 8-bit long string that is aligned with it in the bottom level.
For each such “matched” pair there are (two) paths from the top vertex to the corresponding bottom one. All
possible paths connecting these matched pairs appear in the picture in solid arrows. (There are only two paths
between each pair of stringsthat are at Hamming distance 2.) Since the paths that respect the matching use only
7 intermediate vertices, there exist no 8 vertex-digoint paths respecting this mapping. However, there are other
1-1 mappings for which vertex-digoint paths from the top vertices to the bottom one do exist. For example,
consider the “circular shift-to-right mapping” and use the auxiliary vertex on theright.
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