
General Cryptographi Protools: The Very BasisOded GoldreihDepartment of Computer SieneWeizmann Institute of SieneRehovot, Israel.oded.goldreih�weizmann.a.ilMarh 13, 2010AbstratWe survey basi de�nitions and results onerning seure multi-party omputations, wherethe two-party ase is an important speial ase. In a nutshell, these results assert that, undera variety of reasonable settings and/or assumptions, it is possible to onstrut protools forseurely omputing any desirable multi-party funtionality. Con�ning ourselves to the verybasis of this vast area of study, we fous on the stand-alone setting, while leaving the surveyof the study of the seurity of onurrent exeutions to other surveys.

i

Contents1 Introdution 11.1 The problem in a nutshell : 11.2 Organization and prerequisites : 21.3 Three advaned omments : 31.3.1 Relation to the rest of modern ryptography : : : : : : : : : : : : : : : : : : 31.3.2 Relevane to pratie : 31.3.3 The issue of onurrent exeutions : 32 The De�nitional Approah and Some Models 42.1 Some parameters used in de�ning seurity models : 52.1.1 The ommuniation hannels : 52.1.2 Set-up assumptions : 62.1.3 Computational limitations : 62.1.4 Restrited adversarial behavior : 62.1.5 Restrited notions of seurity : 72.1.6 Upper bounds on the number of dishonest parties : : : : : : : : : : : : : : : 72.2 Example: Multi-party protools with honest majority : : : : : : : : : : : : : : : : : 72.3 Another example: Two-party protools allowing abort : : : : : : : : : : : : : : : : : 93 Some Known Results 103.1 In the standard ryptographi model : 103.2 In the private hannels model : 113.3 Additional models : 113.4 Additional omments : 114 Constrution Paradigms and Two Simple Protools 124.1 Construting passively-seure protools : 134.1.1 Passively-seure omputation with shares : 134.1.2 Passively-seure omputation with \srambled iruits" : : : : : : : : : : : : 154.2 Compilation of passively-seure protools into atively-seure ones : : : : : : : : : : 165 Seurity of Conurrent Exeutions 185.1 De�nitional treatment : 195.2 Some of the known results : 21Aknowledgments 21Referenes 22
ii

1 IntrodutionThe modern soiety is quite preoupied with various statistis like the average, median, anddeviation of various attributes (e.g., salary) of its members.1 On the other hand, individualsoften wish to keep their own attributes seret (although they are interested in the aforementionedstatistis). Furthermore, on top of being suspiious of other people, individuals are growing tobe suspiious of all (the soiety's) establishments and are unwilling to trust the latter with theirserets. Under these irumstanes it is not lear whether there is a way for the members of thesoiety to obtain various statistis (regarding all serets) without revealing their individual seretsto other people.The foregoing question is a speial ase of a general problem. We are talking about omputingsome (predetermined) funtion of inputs that are sattered among di�erent parties, without havingthese parties reveal their individual inputs. The mutually suspiious parties have to employ somedistributed protool in order to ompute the funtion value, without leaking any other informationregarding their inputs to one another. Furthermore, in some settings, some of the parties maydeviate from the protool, and it is desired that suh malfuntioning will not be of any advantageto them. At best, we would like to \emulate" a trusted party (whih ollets the inputs from theparties, omputes the orresponding outputs, and hand them to the orresponding parties), anddo so in a distributed setting in whih no trusted parties exist. This, in a nutshell, is what seureryptographi protools are all about.The results surveyed in this artile desribe a variety of reasonable models in whih suh an\emulation" is possible. The models vary by the underlying assumptions regarding the ommu-niation hannels, numerous parameters relating to the extent of adversarial behavior, and thedesired level of emulation of the trusted party (i.e., level of \seurity"). Our fous is on generalresults regarding seure multi-party (and two-party) omputations, where general means that weonsider arbitrary desired funtionalities (rather than spei� ones). In a nutshell, these generalresults assert that it is possible to onstrut protools for seurely omputing any desired multi-partyfuntionality. Indeed, what is striking about these results is their generality, and we believe thatthe wonder is not diminished by the (various alternative) onditions under whih these results hold.1.1 The problem in a nutshellA general framework for asting (m-party) ryptographi (protool) problems onsists of speifyinga random proess that maps m inputs to m outputs.2 The inputs to the proess are to be thoughtof as the loal inputs of m parties, and the m outputs are their orresponding (desired) loaloutputs. The random proess desribes the desired funtionality. That is, if the m parties wereto trust eah other (or trust some external party), then they ould eah send their loal inputto the trusted party, who would ompute the outome of the proess and send to eah party theorresponding output. A pivotal question in the area of ryptographi protools is to what extentan this (imaginary) trusted party be \emulated" by the mutually distrustful parties themselves.1We omment that it seems that more soially useful statistis onern the orrelation between various attributes.Needless to say, these two are overed by the urrent disussion.2That is, we onsider the seure evaluation of randomized funtionalities, rather than \only" the seure evaluationof funtions. Spei�ally, we onsider an arbitrary (randomized) proess F that on input (x1; :::; xm), �rst seletsat random (depending only on ` def= Pmi=1 jxij) an m-ary funtion f , and then outputs the m-tuple f(x1; :::; xm) =(f1(x1; :::; xm); :::; fm(x1; :::; xm)). In other words, F (x1; :::; xm) = F 0(r; x1; :::; xm), where r is uniformly seleted inf0; 1g`0 (with `0 = poly(`)), and F 0 is a funtion mapping (m+ 1)-sequenes to m-sequenes.1

REAL MODEL IDEAL MODELFigure 1: Seure protools emulate a trusted party { an illustration.The results surveyed below desribe a variety of models in whih suh an \emulation" is possible.This means that in eah of these models the servies of an (imaginary) trusted party an be\emulated" by the mutually distrustful parties themselves. In partiular, any desired funtionality,whih is trivially omputed with the help of a trusted party, an be seurely omputed by thesemutually distrustful parties.1.2 Organization and prerequisitesSetion 2 provides a rather omprehensive survey of the various de�nitions used in the area of seuremulti-party omputation, Setion 3 surveys the main known results, and Setion 2.2 desribes themain ideas that underly these results.Some readers may prefer to onsider one onrete ase of the de�nitional approah beforeenountering the general approah. Suh readers are enouraged to start with Setion 2.2, andpossibly proeed to Setion 4 before returning to Setion 2.1. We mention that on top of presentingthe basi ideas that underly the general onstrutions, Setion 4 also provides skethes of a oupleof onrete protools.All the above refers to the seurity of stand-alone exeutions. The preservation of seurity in anenvironment in whih many exeutions of many protools are being attaked is briey onsideredin Setion 5.Prerequisites and suggestions for further reading: We assume basi familiarity with thefoundations of ryptography. Spei�ally, the more tehnial parts of the exposition assume basifamiliarity with the notions of trapdoor permutations, omputational indistinguishability, zero-knowledge, enryption shemes, and ommitment shemes. For an introdution to these foun-dations, at the level of the urrent artile, we reommend our own primer [37℄.3 A muh moreomprehensive treatment an be found in the two-volume work [35, 36℄. (We also mention that atutorial of zero-knowledge, whih suÆes for our purposes, appears in this volume [38℄.)3In fat, the urrent artile is a revision of [37, Se. 7℄.
2

1.3 Three advaned ommentsBefore atually embarking, we address three advaned issues.1.3.1 Relation to the rest of modern ryptographyThe design of seure protools that implement arbitrary desired funtionalities is a major part ofmodern ryptography. Taking the opposite perspetive, the design of any ryptographi shememay be viewed as the design of a seure protool for implementing a suitable funtionality. Still, webelieve that it makes sense to di�erentiate between basi ryptographi primitives (whih involvelittle interation) like enryption and signature shemes, on the one hand, and general ryptographiprotools on the other hand.1.3.2 Relevane to pratieOur fous on the general study of seure multi-party omputation (rather than on protools forsolving spei� problems) is natural in the ontext of the theoretial treatment of the subjetmatter. We wish to highlight the importane of this general study to pratie. Firstly, this studylari�es fundamental issues regarding seurity in a multi-party environment. Seondly, it draws thelines between what is possible in priniple and what is not. Thirdly, it develops general tehniquesfor designing seure protools. And last, sometimes, it may even yield shemes (or modules) thatmay be inorporated in pratial systems.1.3.3 The issue of onurrent exeutionsThe bulk of this artile is devoted to the \stand-alone" setting. That is, exept in Setion 5, wepresuppose that during the exeution of the (seure) protool the parties that partiipate in theexeution do not partiipate in any other protool exeution. Thus, it is not guaranteed that theaforementioned protool maintains its seurity when exeuted onurrently with other protools (oreven with other instanes of the same protool): Coneivably, an adversary that ontrols partiesin several onurrent exeutions, may gain some illegitimate advantage. Thus, it is desirable (andin some settings imperative) to design protools that maintain their seurity also when exeutedonurrently to other protools (or to other instanes of themselves). In Setion 5, we briey andpartially survey the known results regarding seurity under onurrent exeutions. At this point,however, we wish to make several omments:When do onurrent exeutions pose a seurity problem? The issue of seurity underonurrent exeution arises only if the adversary may initiate and ontrol several onurrent ex-eutions. In ontrast, onurrent exeutions that are not ontrolled by the same adversary (orset of oordinating adversaries) do not introdue any new seurity problem (beyond stand-aloneseurity).An asymmetry between legitimate behavior and adversarial one. Preservation of seu-rity under onurrent exeutions seems essential in settings, suh as the Internet, in whih many(distributed) proesses do take plae onurrently and it is unreasonable to require these proessesto oordinate their ations (in order to ounter possible attaks of an adversary that may ontrolseveral proesses). We stress that although inter-proess oordination annot be required of thelegitimate proesses, it annot be assumed that the adversary does not oordinate its attaks on the3

various proesses. (Coordination is possible, but too expensive to be required in normal operation.Still the adversary may be willing to invest the neessary e�ort if, by oordinating its attak onthe various proesses, it an obtain substantial gain.)When may stand-alone seurity suÆe? It is hasty to onlude that \stand-alone seurity"is worthless in all distributed systems (i.e., is unsatisfatory in all reasonable settings). We believethat stand-alone seurity may be suÆient in some (typially, small) distributed systems.� On the one extreme, stand-alone seurity suÆes in distributed systems in whih exeutionsof seure multi-party omputations are rare and an be oordinated suh that they do nottake plae onurrently.� On the other extreme, in distributed systems in whih exeutions of seure multi-party om-putations involving all (or most) the proessors take plae all the time, it may be reasonableto \lump together" all these omputations into a single (reative) multi-party omputationthat supports on-line requests for various individual multi-party omputations.As another (related) example, onsider a (small) distributed system that operates under asingle distributed operating system. The desired funtionality of suh an operating systeman be asted as a (reative) multi-party funtionality, and as suh one an design a seureimplementation of it. This means that we obtain a seure distributed operating system thatmaintains its funtionality even if some of the proessors behave in a maliious way (e.g., aregoverned by an adversary).42 The De�nitional Approah and Some ModelsBefore desribing the aforementioned results, we further disuss the notion of \emulating a trustedparty", whih underlies the de�nitional approah to seure multi-party omputation (as initiatedand developed in [45, 56, 4, 5, 14, 15℄) The approah an be traed bak to the de�nition of zero-knowledge (f. [47℄), and even to the de�nition of seure enryption (f. [33℄, rephrasing [46℄). Theunderlying paradigm (alled the simulation paradigm) is that a sheme is seure if whatever afeasible adversary an obtain after attaking it, is also feasibly attainable \from srath". In thease of zero-knowledge this amounts to saying that whatever a (feasible) veri�er an obtain afterinterating with the prover on a presribed valid assertion, an be (feasibly) omputed from theassertion itself. In the ase of multi-party omputation we ompare the e�et of adversaries thatpartiipate in the exeution of the atual protool to the e�et of adversaries that partiipate in animaginary exeution of a trivial (ideal) protool for omputing the desired funtionality with thehelp of a trusted party. If whatever the adversaries an feasibly obtain in the former real setting analso be feasibly obtained in the latter ideal setting then the protool \emulates the ideal setting"(i.e., \emulates a trusted party"), and so is deemed seure. This basi approah an be applied ina variety of models, and is used to de�ne the goals of seurity in these models.54We omment that in a seure distributed operating system as suggested above, all (or most) parties will haveto atively partiipate in eah ation taken by the system. Atually, if one assumes that at most t parties may beontrolled by the adversary then it suÆes to have O(t) parties partiipate in eah ation taken by the system.5A few tehnial omments are in plae. Firstly, we assume that the inputs of all parties are of the same length.We omment that as long as the lengths of the inputs are polynomially related, the above onvention an be enforedby padding. On the other hand, some length restrition is essential for the seurity results, beause in general it isimpossible to hide all information regarding the length of the inputs to a protool. Seondly, we assume that thedesired funtionality is omputable in probabilisti polynomial-time, beause we wish the seure protool to run in4

We �rst disuss some of the parameters used in de�ning various models, and next demonstratethe appliation of this approah in two important models. For further details, see [15℄ or [36,Se. 7.2 and 7.5.1℄.2.1 Some parameters used in de�ning seurity modelsThe following parameters are desribed in terms of the atual (or real) omputation. In some ases,the orresponding de�nition of seurity is obtained by imposing some restritions or provisions onthe ideal model. For example, in the ase of two-party omputation (see below), seure omputa-tion is possible only if premature termination is not onsidered a breah of seurity. In that ase,the suitable seurity de�nition is obtained (via the simulation paradigm) by allowing (an analogueof) premature termination in the ideal model. In all ases, the desired notion of seurity is de�nedby requiring that for any adequate adversary in the real model, there exist a orresponding adver-sary in the orresponding ideal model that obtains essentially the same impat (as the real-modeladversary).2.1.1 The ommuniation hannelsThe parameters of the model inlude questions like whether or not the hannels may be tapped byan adversary, whether or not they are tamper-free, and questions referring to the network behavior(in the ase of multi-party protools).Wire-tapping versus the private-hannel model. The standard assumption in ryptographyis that the adversary may tap all ommuniation hannels (between honest parties). In ontrast,one may postulate that the adversary annot obtain messages sent between a pair of honest parties,yielding the so-alled private-hannel model (f. [11, 20℄). The latter postulate may be justi�ed insome settings. Furthermore, it may be viewed as a useful abstration that provides a lean modelfor the study and development of seure protools. In this respet, it is important to mention that,in a variety of settings of the other parameters, private hannels an be easily emulated by ordinary\tapped hannels".Broadast hannel. In the multi-party ontext, one may postulate the existene of a broadasthannel (f. [61℄), and the motivation and justi�ations are as in the ase of the private-hannelmodel.The tamper-free assumption. The standard assumption in the area is that the adversaryannot modify, dupliate, or generate messages sent over the ommuniation hannels (betweenhonest parties). Again, this assumption an be justi�ed in some settings and an be emulated inothers (f. [8, 16℄).Network behavior. Most works in the area assume that ommuniation is synhronous and thatpoint-to-point hannels exist between every pair of proessors (i.e., a omplete network). However,one may also onsider asynhronous ommuniation (f. [10℄) and arbitrary networks of point-to-point hannels (f. [27℄).probabilisti polynomial-time (and a protool annot be more eÆient than the orresponding entralized algorithm).Clearly, the results an be extended to funtionalities that are omputable within any given (time-onstrutible) timebound, using adequate padding. 5

2.1.2 Set-up assumptionsUnless stated di�erently, we make no set-up assumptions (exept for the obvious assumption thatall parties have idential opies of the protool's program). However, in some ases it is assumedthat eah party knows a veri�ation-key orresponding to eah of the other parties (or that apubli-key infrastruture is available). Another assumption, made more rarely, is that all partieshave aess to some ommon (trusted) random string.2.1.3 Computational limitationsTypially, we onsider omputationally-bounded adversaries (e.g., probabilisti polynomial-timeadversaries). However, the private-hannel model allows for the (meaningful) onsideration ofomputationally-unbounded adversaries.We stress that, also in the ase of omputationally-unbounded adversaries, seurity should bede�ned by requiring that for every real adversary, whatever the adversary an ompute after partii-pating in the exeution of the atual protool is omputable within omparable time by an imaginaryadversary partiipating in an imaginary exeution of the trivial ideal protool (for omputing thedesired funtionality with the help of a trusted party). That is, although no omputational re-stritions are made on the real-model adversary, it is required that the ideal-model adversary thatobtains the same impat does so within omparable time (i.e., within time that is polynomiallyrelated to the running time of the real-model adversary being simulated). Thus, any onstrutionproven seure in the omputationally-unbounded adversary model is (trivially) seure with respetto omputationally-bounded adversaries.2.1.4 Restrited adversarial behaviorThe parameters of the model inlude questions like whether or not the adversary is \adaptive" and\ative" (where these terms are disussed next).Adaptive versus non-adaptive. The most general type of an adversary onsidered in the liter-ature is one that may orrupt parties to the protool while the exeution goes on, and does so basedon partial information it has gathered so far (f. [17℄). A somewhat more restrited model, whihseems adequate in many settings, postulates that the set of dishonest parties is �xed (arbitrarily)before the exeution starts (but this set is, of ourse, not known to the honest parties). The lattermodel is alled non-adaptive as opposed to the adaptive adversary disussed �rst. Although theadaptive model is stronger, the author believes that the non-adaptive model provides a reasonablelevel of seurity in many appliations.Ative versus passive. An orthogonal parameter of restrition refers to whether a dishonestparty takes ative steps to disrupt the exeution of the protool (i.e., sends messages that di�erfrom those spei�ed by the protool), or merely gathers information (whih it may latter sharewith the other dishonest parties). The latter adversary has been given a variety of names suhas semi-honest, passive, and honest-but-urious. This restrited model may be justi�ed in ertainsettings, sine launhing an unrestrited attak may not be feasible in some ases.6 Furthermore,the passive adversary model provides a useful methodologial lous (f. [42, 43, 34℄ and Setion 4).6Note that deviation from the presribed program requires replaing the provided software by an alternative one,whereas passive attaks an be onduted by merely monitoring the exeution of the provided software. Thus, passiveattaks are muh easier to launh, whereas designing harmful ative attaks seems muh harder.6

Below we refer to the adversary of the unrestrited model as to ative; another ommonly usedname is maliious. We also mention the intermediate model of overt adversaries (f. [1℄: Covertadversaries may deviate arbitrarily from the presribed behavior as long as they do not run a riskof being aught doing so.2.1.5 Restrited notions of seurityOne important example is the willingness to tolerate \unfair" protools in whih the exeution anbe suspended (at any time) by a dishonest party, provided that it is deteted doing so. We stressthat in ase the exeution is suspended, the dishonest party does not obtain more informationthan it ould have obtained when not suspending the exeution. (What may happen is that thehonest parties will not obtain their desired outputs, but rather will detet that the exeution wassuspended.) We stress that the motivation to this restrited model is the impossibility of obtaininggeneral seure two-party omputation in the unrestrited model.Additional weaker (than standard) notions of seurity were proposed with similar motivationand inlude relaxing the simulation requirement (by allowing quasi-polynomial-time simulation,f. [2℄) and relaxing the indistinguishability requirement (by allowing a small but notieable prob-abilisti gap, f. [41, 52, 49℄).2.1.6 Upper bounds on the number of dishonest partiesIn some models, seure multi-party omputation is possible only if a majority of the parties ishonest (f. [11, 22℄). Sometimes even a speial majority (e.g., 2/3) is required. General \(resilient)adversarial-strutures" have been onsidered too (f. [51℄).Mobile adversary. In most works, one a party is delared dishonest it remains so throughoutthe exeution. More generally, one may onsider transient adversarial behavior (i.e., an adversaryseizes ontrol of some site and later withdraws from it). This model, introdued in [59℄, allowsto onstrut protools that remain seure even in ase the adversary may seize ontrol of all sitesduring the exeution (but never ontrol onurrently, say, more than 10% of the sites). We ommentthat shemes seure in this model were later termed \proative" (f. [18℄).2.2 Example: Multi-party protools with honest majorityHere we onsider an ative, non-adaptive, omputationally-bounded adversary, and do not assumethe existene of private hannels. Our aim is to de�ne multi-party protools that remain seureprovided that the honest parties are in majority. (The reason for requiring a honest majority willbe disussed at the end of this subsetion.)Consider any multi-party protool. We �rst observe that eah party may hange its loal inputbefore even entering the exeution of the protool. However, this is unavoidable also when theparties utilize a trusted party. Consequently, suh an e�et of the adversary on the real exeution(i.e., modi�ation of its own input prior to entering the atual exeution) is not onsidered a breahof seurity. In general, whatever annot be avoided when the parties utilize a trusted party, is notonsidered a breah of seurity. We wish seure protools (in the real model) to su�er only fromwhatever is unavoidable also when the parties utilize a trusted party. Thus, the basi paradigmunderlying the de�nitions of seure multi-party omputations amounts to requiring that the onlysituations that may our in the real exeution of a seure protool are those that an also ourin a orresponding ideal model (where the parties may employ a trusted party). In other words,7

the \e�etive malfuntioning" of parties in seure protools is restrited to what is postulated inthe orresponding ideal model.When de�ning seure multi-party protools with honest majority, we need to pin-point whatannot be avoided in the ideal model (i.e., when the parties utilize a trusted party). This is easy,beause the ideal model is very simple. Sine we are interested in exeutions in whih the majorityof parties are honest, we onsider an ideal model in whih any minority group (of the parties) mayollude as follows:1. Firstly this dishonest minority shares its original inputs and deides together on replaedinputs to be sent to the trusted party. (The other parties send their respetive original inputsto the trusted party.)2. Upon reeiving inputs from all parties, the trusted party determines the orresponding outputsand sends them to the orresponding parties. (We stress that the information sent betweenthe honest parties and the trusted party is not seen by the dishonest olluding minority.)3. Upon reeiving the output-message from the trusted party, eah honest party outputs itloally, whereas the dishonest olluding minority may determine their outputs based on allthey know (i.e., their initial inputs and their reeived outputs).Note that the foregoing behavior of the minority group is unavoidable in any exeution of anyprotool (even in presene of trusted parties). This is the reason that the ideal model was de�nedas above. Now, a seure multi-party omputation with honest majority is required to emulate thisideal model. That is, the e�et of any feasible adversary that ontrols a minority of the parties in areal exeution of the atual protool, an be essentially simulated by a (di�erent) feasible adversarythat ontrols the orresponding parties in the ideal model. That is:De�nition 1 (seure protools { a sketh): Let f be an m-ary funtionality and � be an m-partyprotool operating in the real model.� For a real-model adversary A, ontrolling some minority of the parties (and tapping all om-muniation hannels), and an m-sequene x, we denote by real�;A(x) the sequene of moutputs resulting from the exeution of � on input x under attak of the adversary A.� For an ideal-model adversary A0, ontrolling some minority of the parties, and an m-sequenex, we denote by idealf;A0(x) the sequene of m outputs resulting from the ideal proess de-sribed above, on input x under attak of the adversary A0.We say that � seurely implements f with honest majority if for every feasible real-model adversaryA, ontrolling some minority of the parties, there exists a feasible ideal-model adversary A0, on-trolling the same parties, so that the probability ensembles freal�;A(x)gx and fidealf;A0(x)gx areomputationally indistinguishable.7Thus, seurity means that the e�et of eah minority group in a real exeution of a seure protoolis \essentially restrited" to replaing its own loal inputs (independently of the loal inputs of themajority parties) before the protool starts, and replaing its own loal outputs (depending onlyon its loal inputs and outputs) after the protool terminates. (We stress that in the real exeution7Note that, as in the ase of zero-knowledge, the notion of indistinguishability used here refers to probabilityensembles indexed by strings and to distinguishers that are arbitrary polynomial-size iruits. That is, we refer tothe de�nition presented in [35, Def. 3.2.7 (2)℄ and in [38, Def. 3℄.8

the minority parties do obtain additional piees of information; yet in a seure protool they gainnothing from these additional piees of information, beause they an atually reprodue those bythemselves.)The fat that De�nition 1 refers to a model without private hannels is due to the fat thatour (skethy) de�nition of the real-model adversary allowed it to tap the hannels, whih in turne�ets the set of possible ensembles freal�;A(x)gx. When de�ning seurity in the private-hannelmodel, the real-model adversary is not allowed to tap hannels between honest parties, and thisagain e�ets the possible ensembles freal�;A(x)gx. On the other hand, when we wish to de�neseurity with respet to passive adversaries, both the sope of the real-model adversaries and thesope of the ideal-model adversaries hanges. In the real-model exeution, all parties follow theprotool but the adversary may alter the output of the dishonest parties arbitrarily depending onall their intermediate internal states (during the exeution). In the orresponding ideal-model, theadversary is not allowed to modify the inputs of dishonest parties (in Step 1), but is allowed tomodify their outputs (in Step 3).We omment that a de�nition analogous to De�nition 1 an be presented also in ase thedishonest parties are not in minority. In fat, suh a de�nition seems more natural, but the problemis that it annot be satis�ed in general. Furthermore, most natural funtionalities do not have aprotool for omputing them seurely (in the foregoing sense) when at least half of the partiesare dishonest and employ an adequate adversarial strategy. This follows from an impossibilityresult regarding two-party omputation, whih essentially asserts that there is no way to preventa party from prematurely suspending the exeution [24℄.8 On the other hand, seure multi-partyomputation with dishonest majority is possible if premature suspension of the exeution is notonsidered a breah of seurity (see Setion 2.3).2.3 Another example: Two-party protools allowing abortIn light of the last paragraph, we now onsider multi-party omputations in whih prematuresuspension of the exeution is not onsidered a breah of seurity. For onreteness, we fous hereon the speial ase of two-party omputations.9Intuitively, in any two-party protool, eah party may suspend the exeution at any point intime, and furthermore it may do so as soon as it learns the desired output. Thus, in ase theoutput of eah parties depends on both inputs, it is always possible for one of the parties to obtainthe desired output while preventing the other party from fully determining its own output. Thesame phenomenon ours even in ase the two parties just wish to generate a ommon randomvalue. Thus, when onsidering ative adversaries in the two-party setting, we do not onsider suhpremature suspension of the exeution a breah of seurity. Consequently, we onsider an idealmodel where eah of the two parties may \shut-down" the trusted (third) party at any point intime. In partiular, this may happen after the trusted party has supplied the outome of theomputation to one party but before it has supplied it to the other. That is, an exeution in theideal model proeeds as follows:1. Eah party sends its input to the trusted party, where the dishonest party may replae itsinput or send no input at all (whih an be treated as sending a default value).8We stress that although the foregoing impossibility result applies to many natural funtionalities (e.g., ointossing [24℄), it may not apply to other natural funtionalities (as demonstrated in [48℄). Furthermore, partialfairness an be obtained in many other ases (f. [49℄).9As in Setion 2.2, we onsider a non-adaptive, ative, omputationally-bounded adversary.9

2. Upon reeiving inputs from both parties, the trusted party determines the orrespondingoutputs, and sends the �rst output to the �rst party.3. In ase the �rst party is dishonest, it may instrut the trusted party to halt, otherwise italways instruts the trusted party to proeed. If instruted to proeed, the trusted partysends the seond output to the seond party.4. Upon reeiving the output-message from the trusted party, the honest party outputs it loally,whereas the dishonest party may determine its output based on all it knows (i.e., its initialinput and its reeived output).A seure two-party omputation allowing abort is required to emulate this ideal model. That is,as in De�nition 1, seurity is de�ned by requiring that for every feasible real-model adversary A,there exists a feasible ideal-model adversary A0, ontrolling the same party, so that the proba-bility ensembles representing the orresponding (real and ideal) exeutions are omputationallyindistinguishable. This means that eah party's \e�etive malfuntioning" in a seure protool isrestrited to supplying an initial input of its hoie and aborting the omputation at any point intime. (Needless to say, the hoie of the initial input of eah party may not depend on the inputof the other party.)We mention that an alternative way of dealing with the problem of premature suspension ofexeution (i.e., abort) is to restrit our attention to single-output funtionalities; that is, funtionali-ties in whih only one party is supposed to obtain an output. The de�nition of seure omputationof suh funtionalities an be made idential to De�nition 1, with the exeption that no restritionis made on the set of dishonest parties (and in partiular one may onsider a single dishonest partyin the ase of two-party protools). For further details, see [36, Se. 7.2.3℄.3 Some Known ResultsWe next list some of the models for whih general seure multi-party omputation is known tobe attainable (i.e., models in whih one an onstrut seure multi-party protools for omputingany desired funtionality). We mention that the �rst set of results of this type were obtained byGoldreih, Miali, Wigderson and Yao [42, 64, 43℄.3.1 In the standard ryptographi modelAssuming the existene of enhaned trapdoor permutations10 , seure multi-party omputation ispossible in the following models (f. [42, 64, 43℄ and details in [34, 36℄):1. Passive adversary, for any number of dishonest parties (f. [36, Se. 7.3℄).2. Ative adversary that may ontrol only a minority of the parties (f. [36, Se. 7.5.4℄).3. Ative adversary, for any number of bad parties, provided that suspension of exeution isnot onsidered a violation of seurity (i.e., as disussed in Setion 2.3). (See [36, Se. 7.4and 7.5.5℄.)10Loosely speaking, the enhanement refers to the hardness ondition of a standard olletion of trapdoor permu-tations, denoted ffi :Di ! f0; 1g�gi2I , and requires that it be hard to reover f�1i (y) also when given the oins usedto sample y (rather than merely y itself). See [36, Apdx. C.1℄.10

In all these ases, the adversary is omputationally-bounded and non-adaptive. On the other hand,the adversary may tap the ommuniation lines between honest parties (i.e., we do not assume\private hannels" here).The results for ative adversaries assume a broadast hannel. Indeed, the latter an be im-plemented (while tolerating any number of bad parties) using a signature sheme and assuming apubli-key infrastruture (or that eah party knows the veri�ation-key orresponding to eah ofthe other parties).3.2 In the private hannels modelMaking no omputational assumptions and allowing omputationally-unbounded adversaries, butassuming private hannels, seure multi-party omputation is possible in the following models(f. [11, 20℄):1. Passive adversary that may ontrol only a minority of the parties.2. Ative adversary that may ontrol only less than one third of the parties.11In both ases the adversary may be adaptive (f. [11, 17℄).3.3 Additional modelsSeure multi-party omputation is possible against an ative, adaptive and mobile adversary thatmay ontrol a small onstant fration of the parties at any point in time [59℄. This result makes noomputational assumptions, allows omputationally-unbounded adversaries, but assumes privatehannels.Assuming the existene of trapdoor permutations, seure multi-party omputation is possiblein a model allowing an ative and adaptive omputationally-bounded adversary that may ontrolonly less than one third of the parties [17, 25℄. We stress that this result does not assume \privatehannels".Results for asynhronous ommuniation and arbitrary networks of point-to-point hannels werepresented in [10, 12℄ and [27℄, respetively.3.4 Additional ommentsNote that the implementation of a broadast hannel an be ast as a ryptographi protoolproblem (i.e., for the funtionality (v; �; :::; �) 7! (v; v; :::; v), where � denotes the empty string).Thus, it is not surprising that the results regarding ative adversaries either assume the existeneof suh a hannel or require a setting in whih the latter an be implemented.Seure reative omputation: All the above results extend to a reative model of omputationin whih eah party interats with a high-level proess (or appliation). The high-level proesssupplies eah party with a sequene of inputs, one at a time, and expet to reeive orrespondingoutputs from the parties. That is, a reative system goes through (a possibly unbounded numberof) iterations of the following type:� Parties are given inputs for the urrent iteration.11Fault-tolerane an be inreased to a regular minority if a broadast hannel exists [61℄.11

� Depending on the urrent inputs, the parties are supposed to ompute outputs for the urrentiteration. That is, the outputs in iteration j are determined by the inputs of the jth iteration.A more general formulation allows the outputs of eah iteration to depend also on a global state,whih is possibly updated in eah iteration. The global state may inlude all inputs and outputsof previous iterations, and may only be partially known to individual parties. (In a seure reativeomputation suh a global state may be maintained by all parties in a \seret sharing" manner.)For further disussion, see [36, Se. 7.7.1℄.EÆieny onsiderations: One important eÆieny measure regarding protools is the numberof ommuniation rounds in their exeution. The aforementioned results were originally obtainedusing protools that use an unbounded number of rounds. In some ases, subsequent works ob-tained seure onstant-round protools: for example, in the ase of multi-party omputations withhonest majority (f. [6℄) and in the ase of two-party omputations allowing abort (f. [53℄). Otherimportant eÆieny onsiderations inlude the total number of bits sent in the exeution of a pro-tool, and the loal omputation time. The (ommuniation and omputation) omplexities of theaforementioned seure protools are related to the omputational omplexity of the omputation,but alternative relations (e.g., where the omplexities of the seure protools are related to the(inseure) ommuniation omplexity of the omputation) may be possible (f. [58℄).Theory versus pratie (or general versus spei�): This artile is foused on presentinggeneral notions and general feasibility results. Needless to say, pratial solutions to spei� prob-lems (e.g., voting [50℄, seure payment systems [7℄, and threshold ryptosystems [31℄) are typiallyderived by spei� onstrutions (and not by applying general results of the abovementioned type).Still, the (abovementioned) general results are of great importane to pratie beause they hara-terize a wide lass of seurity problems that are solvable in priniple, and provide tehniques thatmay be useful also towards onstruting reasonable solutions to spei� problems.4 Constrution Paradigms and Two Simple ProtoolsWe briey sketh a ouple of paradigms used in the onstrution of seure multi-party protools. Wefous on the onstrution of seure protools for the model of omputationally-bounded and non-adaptive adversaries [42, 64, 43℄. These onstrutions proeed in two steps (see details in [34, 36℄).First a seure protool is presented for the model of passive adversaries (for any number of dishonestparties), and next suh a protool is \ompiled" into a protool that is seure in one of the twomodels of ative adversaries (i.e., either in a model allowing the adversary to ontrol only a minorityof the parties or in a model in whih premature suspension of the exeution is not onsidered aviolation of seurity). These two steps are presented in the following two orresponding subsetions,in whih we also present two relatively simple protools for two spei� tasks, whih are usedextensively in the general protools.Reall that in the model of passive adversaries, all parties follow the presribed protool, butat termination the adversary may alter the outputs of the dishonest parties depending on all theirintermediate internal states (during the exeution). Below, we refer to protools that are seure inthe model of passive (resp., ative) adversaries by the term passively-seure (resp., atively-seure).
12

4.1 Construting passively-seure protoolsFor any m � 2, suppose that m parties, eah having a private input, wish to obtain the value ofa predetermined m-argument funtion evaluated at their sequene of inputs. Below, we outline apassively-seure protool for ahieving this goal. We mention that the design of passively-seuremulti-party protool for any funtionality (allowing di�erent outputs to di�erent parties as well ashandling also randomized omputations) redues easily to the aforementioned task.We present two alternative onstrutions of passively-seure protools, where the �rst onstru-tion applies to any m � 2 and the seond onstrution applies only to the two-party ase (i.e.,m = 2). Furthermore, while the protools resulting from the �rst onstrution are symmetri withrespet to the operation of the m parties, the protools resulting from the seond onstrution arehighly asymmetri. This asymmetry o�ers various advantages (f. [55℄ and the referenes therein).4.1.1 Passively-seure omputation with sharesWe assume that the parties hold a iruit for omputing the value of the funtion on inputs of theadequate length, and that the iruit ontains only and and not gates. The key idea is to haveeah party \seretly share" its input with everybody else, and \seretly transform" shares of theinput wires of the iruit into shares of the output wires of the iruit, thus obtaining shares of theoutputs (whih allows for the reonstrution of the atual outputs). The value of eah wire in theiruit is shared in a way suh that all shares yield the value, whereas laking even one of the shareskeeps the value totally undetermined. That is, we use a simple seret sharing sheme (f. [63℄) suhthat a bit b is shared by a random sequene of m bits that sum-up to b mod 2. First, eah partyshares eah of its input bits with all parties (by seretly sending eah party a random value andsetting its own share aordingly). Next, all parties jointly san the iruit from its input wires tothe output wires, proessing eah gate as follows:� When enountering a gate, the parties already hold shares of the values of the wires enteringthe gate, and their aim is to obtain shares of the value of the wires exiting the gate.� For a not-gate this is easy: the �rst party just ips the value of its share, and all other partiesmaintain their shares.� Sine an and-gate orresponds to multipliation modulo 2, the parties need to seurely om-pute the following randomized funtionality (in whih the xi's denote shares of one entry-wire,the yi's denote shares of the seond entry-wire, the zi's denote shares of the exit-wire, andthe shares indexed by i belongs to Party i):((x1; y1); :::; (xm; ym)) 7! (z1; :::; zm) (1)where Pmi=1 zi = (Pmi=1 xi) � (Pmi=1 yi), (2)and all arithmeti operations are mod 2. That is, the zi's are random subjet to Eq. (2).Finally, the parties send their shares of eah iruit-output wire to the designated party, whihreonstruts the value of the orresponding bit. Thus, the parties have propagated shares of theinput wires into shares of the output wires, by repeatedly onduting privately-seure omputationof the m-ary funtionality of Eq. (1)& (2). That is, seurely evaluating the entire (arbitrary) iruit\redues" to seurely onduting a spei� (very simple) multi-party omputation. But things geteven simpler: the key observation is that mXi=1 xi! � mXi=1 yi! = mXi=1 xiyi + X1�i<j�m (xiyj + xjyi) (3)13

Thus, the m-ary funtionality of Eq. (1) & (2) an be omputed as follows:1. Eah Party i loally omputes zi;i def= xiyi.2. Next, eah pair of parties (i.e., Parties i and j) seurely ompute random shares of xiyj+yixj .That is, Parties i and j (holding (xi; yi) and (xj ; yj), respetively), need to seurely omputethe randomized two-party funtionality ((xi; yi); (xj ; yj)) 7! (zi;j ; zj;i), where the z's are ran-dom subjet to zi;j + zj;i = xiyj + yixj. Equivalently, Party j uniformly selets zj;i 2 f0; 1g,and Parties i and j seurely ompute the deterministi funtionality ((xi; yi); (xj ; yj; zj;i)) 7!(zj;i + xiyj + yixj ; �), where � denotes the empty string.The latter simple two-party omputation an be seurely implemented using a 1-out-of-4Oblivious Transfer (f. [44℄ and [36, Se. 7.3.3℄), whih in turn an be implemented using en-haned trapdoor permutations (see below). Loosely speaking, a 1-out-of-k Oblivious Transferis a protool enabling one party to obtain one of k serets held by another party, without theseond party learning whih seret was obtained by the �rst party. That is, we refer to thetwo-party funtionality (i; (s1; :::; sk)) 7! (si; �) (4)Note that any deterministi funtionality of the form f : [k℄ � f0; 1g� ! f0; 1g� � f�gan be privately-omputed by invoking a 1-out-of-k Oblivious Transfer on inputs i and(f(1; y); :::; f(k; y)), where i (resp., y) is the initial input of the �rst (resp., seond) party.3. Finally, for every i = 1; :::;m, summing-up all the zi;j's yields the desired share of Party i.The above onstrution is analogous to a onstrution that was briey desribed in [43℄. A detaileddesription and full proofs appear in [34, 36℄.We mention that an analogous onstrution has been subsequently used in the private hannelmodel and withstands omputationally unbounded ative (resp., passive) adversaries that ontrolless than one third (resp., a minority) of the parties [11℄. The basi idea is to use a more sophis-tiated seret sharing sheme; spei�ally, via a low degree polynomial [63℄. That is, the Booleaniruit is viewed as an arithmeti iruit over a �nite �eld having more than m elements, and aseret element s of the �eld is shared by seleting uniformly a polynomial of degree d = b(m� 1)=3(resp., degree d = b(m� 1)=2) having a free-term equal to s, and handing eah party the value ofthis polynomial evaluated at a di�erent (�xed) point (e.g., party i is given the value at point i).Addition is emulated by (loal) point-wise addition of the (seret sharing) polynomials represent-ing the two inputs (using the fat that for polynomials p and q, and any �eld element e (and inpartiular e = 0; 1; :::;m), it holds that p(e) + q(e) = (p + q)(e)). The emulation of multipliationis more involved and requires interation (beause the produt of polynomials yields a polynomialof higher degree, and thus the polynomial representing the output annot be the produt of thepolynomials representing the two inputs). Indeed, the aim of the interation is to turn the sharesof the produt polynomial into shares of a degree d polynomial that has the same free-term as theprodut polynomial (whih is of degree 2d). This an be done using the fat that the oeÆients ofa polynomial are a linear ombination of its values at suÆiently many arguments (and the otherway around), and the fat that one an privately-ompute any linear ombination (of seret values).For details see [11, 32℄.A passively-seure 1-out-of-k Oblivious Transfer. Using a olletion of enhaned trapdoorpermutations, denoted ff� : D� ! D�g�2I (along with a orresponding hard-ore prediate [40℄,14

denoted b), we outline a passively-seure implementation of the funtionality of Eq. (4). Theimplementation originates in [30℄ (and a full desription is provided in [36, Se. 7.3.2℄).12Inputs: The sender has input (�1; �2; :::; �k) 2 f0; 1gk , the reeiver has input i 2 f1; 2; :::; kg.Step S1: The sender selets at random permutations f�1 ; ::; f�k along with orresponding trapdoors,denoted t1; :::; tk, and sends the permutations (i.e., their indies �1; :::; �k) to the reeiver.Step R1: Upon reeiving (�1; :::; �k), the reeiver uniformly and independently selets xj 2 D�jfor every j 2 f1; :::; kg, sets yi = f�i(xi) and yj = xj for every j 6= i, and sends (y1; y2; :::; yk)to the sender.Thus, the reeiver knows f�1�i (yi) = xi, but annot predit b(f�1�j (yj)) for any j 6= i. Of ourse,the last assertion presumes that the reeiver follows the protool (i.e., is semi-honest).Step S2: Upon reeiving (y1; y2; :::; yk), using the inverting-with-trapdoor algorithm (and the trap-doors t1; :::; tk), the sender omputes zj = f�1�j (yj), for every j 2 f1; :::; kg. It sends thek-tuple (�1 � b(z1); �2 � b(z2); :::; �k � b(zk)) to the reeiver.Step R2: Upon reeiving (1; 2; :::; k), the reeiver loally outputs i � b(xi).We �rst observe that the above protool orretly omputes 1-out-of-k Oblivious Transfer; that is,the reeiver's loal output (i.e., i�b(xi)) indeed equals (�i�b(f�1�i (f�i(xi))))�b(xi) = �i. Next, weo�er some intuition as to why the above protool onstitutes a privately-seure implementation of 1-out-of-k Oblivious Transfer. Intuitively, the sender gets no information from the exeution beause,for any possible value of i, the senders sees the same distribution; spei�ally, a k-sequene that isuniformly distributed in D�1 � � � � � � � � �D�k . (Indeed, the key observation is that applying f� toa uniformly distributed element of D� yields a uniformly distributed element of D�.) Intuitively,the reeiver gains no omputational knowledge from the exeution beause, for j 6= i, the onlyinformation that the reeiver has regarding �j is the triplet (�j ; xj; �j � b(f�1�j (xj))), where xj isuniformly distributed in D�, and from this information it is infeasible to predit �j better than bya random guess. The latter intuition presumes that sampling D� is trivial (i.e., that there is aneasily omputable orrespondene between the oins used for sampling and the resulting sample),whereas in general the oins used for sampling may be hard to ompute from the orrespondingoutome (whih is the reason that an enhaned hardness assumption is used in the general analysisof the the above protool). (See [36, Se. 7.3.2℄ for an atual proof of seurity.)4.1.2 Passively-seure omputation with \srambled iruits"The following tehnique refers mainly to two-party omputation; that is, we assume here thatm = 2. The idea is to have one party onstrut an \srambled" form of the iruit so that theother party an propagate enrypted values through the \srambled gates" and obtain the outputin the lear (while all intermediate values remain seret). Note that the roles of the two parties arenot symmetri, and reall that we are desribing a protool that is seure (only) with respet topassive adversaries. An implementation of this idea proeeds as follows:� Construting a \srambled" iruit: The �rst party onstruts a \srambled" form of theoriginal iruit. The \srambled" iruit onsists of pairs of enrypted serets that orrespond12The following presentation di�ers from the one in [36, Se. 7.3.2℄ in that k di�erent permutations are used ratherthan one. As pointed out by Ron Rothblum, the version of [36, Se. 7.3.2℄ is seure only in the ase that k = 2 (whihdoes suÆe via additional redutions). 15

to the wires of the original iruit and gadgets that orrespond to the gates of the originaliruit. The serets assoiated with the wires entering a gate are used (in the gadget thatorresponds to this gate) as keys in the enryption of the serets assoiated with the wireexiting this gate. Furthermore, there is a random orrespondene between eah pair of seretsand the Boolean values (of the orresponding wire). That is, wire w is assigned a pair ofserets, denoted (s0w; s00w), and there is a random 1-1 mapping, denoted �w, between this pairand the pair of Boolean values (i.e., f�w(s0w); �w(s00w)g = f0; 1g).Eah gadget is onstruted suh that knowledge of a seret that orrespond to eah wireentering the orresponding gate (in the iruit) yields a seret orresponding to the wire thatexits this gate. Furthermore, the reonstrution of serets using eah gadget respets thefuntionality of the orresponding gate. For example, if one knows the seret that orrespondsto the 1-value of one entry-wire and the seret that orresponds to the 0-value of the otherentry-wire, and the gate is an or-gate, then one obtains the seret that orresponds to the1-value of exit-wire.Spei�ally, eah gadget onsists of 4 templets that are presented in a random order, whereeah templet orresponds to one of the 4 possible values of the two entry-wires. A templetmay be merely a double enryption of the seret that orresponds to the appropriate outputvalue, where the double enryption uses as keys the two serets that orrespond to the inputvalues. That is, suppose a gate omputing f : f0; 1g2 ! f0; 1g has input wires w1 and w2, andoutput wire w3. Then, eah of the four templets of this gate has the form Esw1 (Esw2 (sw3)),where f(�w1(sw1); �w2(sw2)) = �w3(sw3).� Sending the \srambled" iruit: The �rst party sends the \srambled" iruit to the seondparty. In addition, the �rst party sends to the seond party the serets that orrespond toits own (i.e., the �rst party's) input bits (but not the values of these bits). The �rst partyalso reveals the orrespondene between the pair of serets assoiated with eah output (i.e.,iruit-output wire) and the Boolean values.13 We stress that the random orrespondenebetween the pair of serets assoiated with eah other wire and the Boolean values is keptseret (by the �rst party).� Oblivious Transfer of adequate serets: Next, the �rst party uses a 1-out-of-2 Oblivious Trans-fer protool (see Eq. (4)) in order to hand the seond party the serets orresponding to theseond party's input bits (without the �rst party learning anything about these bits).� Loally evaluating the \srambled" iruit: Finally, the seond party \evaluates" the \sram-bled" iruit gate-by-gate, starting from the top (iruit-input) gates (for whih it knows oneseret per eah wire) and ending at the bottom (iruit-output) gates (for whih, by onstru-tion, the orrespondene of serets to values is known). Thus, the seond party obtains theoutput value of the iruit (but nothing else), and sends it to the �rst party.For more details, see [55℄.4.2 Compilation of passively-seure protools into atively-seure onesWe show how to transform any passively-seure protool into a orresponding atively-seure pro-tool. The ommuniation model in both protools onsists of a single broadast hannel. Note13This an be done by providing, for eah output wire, a suint 2-partition (of all strings) that separates the twoserets assoiated with this wire. 16

that the messages of the original protool may be assumed to be sent over a broadast hannel, be-ause the adversary may see them anyhow (by tapping the point-to-point hannels), and beause abroadast hannel is trivially implementable in the ase of passive adversaries. As for the resultingatively-seure protool, the broadast hannel it uses an be implemented via an (authentiated)Byzantine Agreement protool [28, 54℄, thus providing an emulation of this model on the standardpoint-to-point model (in whih a broadast hannel does not exist). We mention that authentiatedByzantine Agreement is typially implemented using a signature sheme (and assuming that eahparty knows the veri�ation-key orresponding to eah of the other parties).Turning to the transformation itself, the main idea is to use zero-knowledge proofs in order tofore parties to behave in a way that is onsistent with the (passively-seure) protool. Atually,we need to on�ne eah party to a unique onsistent behavior (i.e., aording to some �xed loalinput and a sequene of oin tosses), and to guarantee that a party annot �x its input (and/or itsoins) in a way that depends on the inputs of honest parties. Thus, some preliminary steps haveto be taken before the step-by-step emulation of the original protool may start. Spei�ally, theompiled protool (whih like the original protool is exeuted over a broadast hannel) proeedsas follows:1. Committing to the loal input: Prior to the emulation of the original protool, eah partyommits to its input (using a ommitment sheme [57℄). In addition, using a zero-knowledgeproof-of-knowledge [47, 9, 42℄, eah party also proves that it knows its own input; that is, thatit an deommit to the ommitment it sent. (These zero-knowledge proof-of-knowledge areonduted sequentially to prevent dishonest parties from setting their inputs in a way thatdepends on inputs of honest parties; a more round-eÆient method was presented in [23℄.)2. Generation of loal random tapes: Next, all parties jointly generate a sequene of random bitsfor eah party suh that only this party knows the outome of the random sequene generatedfor it, but everybody gets a ommitment to this outome. These sequenes will be used asthe random-inputs (i.e., sequene of oin tosses) for the original protool. Eah bit in therandom-sequene generated for Party X is determined as the exlusive-or of the outomes ofinstanes of an (augmented) oin-tossing protool (f. [13℄ and [36, Se. 7.4.3.5℄) that Party Xplays with eah of the other parties. The latter protool provides the other parties with aommitment to the outome obtained by Party X.3. E�etive prevention of premature termination: In addition, when ompiling (the passively-seure protool to an atively-seure protool) for the model that allows the adversary toontrol only a minority of the parties, eah party shares its input and random-input with allother parties using a \Veri�able Seret Sharing" (VSS) protool (f. [21℄ and [36, Se. 7.5.5.1℄).Loosely speaking, a VSS protool allows to share a seret in a way that enables eah parti-ipant to verify that the share it got �ts the publily posted information, whih inludes (ontop of the ommitments posted in Steps 1 and 2) ommitments to all shares. The use of VSSguarantees that if Party X prematurely suspends the exeution, then the honest parties antogether reonstrut all Party X's serets and arry on the exeution while playing its role.This step e�etively prevents premature termination, and is not needed in a model that doesnot onsider premature termination a breah of seurity.4. Step-by-step emulation of the original protool: After all the foregoing steps were ompleted,we turn to the main step in whih the new protool emulates the original one. In eah step,eah party augments the message determined by the original protool with a zero-knowledgeproof that asserts that the message was indeed omputed orretly. Reall that the next17

message (as determined by the original protool) is a funtion of the sender's own input,its random-input, and the messages it has reeived so far (where the latter are known toeverybody beause they were sent over a broadast hannel). Furthermore, the sender'sinput is determined by its ommitment (as sent in Step 1), and its random-input is similarlydetermined (in Step 2). Thus, the next message (as determined by the original protool) is afuntion of publily known strings (i.e., the said ommitments as well as the other messagessent over the broadast hannel). Moreover, the assertion that the next message was indeedomputed orretly is an NP-assertion, and the sender knows a orresponding NP-witness (i.e.,its own input and random-input as well as the orresponding deommitment information).Thus, the sender an prove in zero-knowledge (to eah of the other parties) that the messageit is sending was indeed omputed aording to the original protool.The above ompilation was �rst outlined in [42, 43℄. A detailed desription and full proofs appearin [34, 36℄.A seure oin-tossing protool. Using a ommitment sheme, we outline a seure (ordinaryas opposed to augmented) oin-tossing protool, whih originates in [13℄.Step C1: Party 1 uniformly selets � 2 f0; 1g and sends Party 2 a ommitment, denoted , to �.Step C2: Party 2 uniformly selets �0 2 f0; 1g, and sends �0 to Party 1.Step C3: Party 1 outputs the value ���0, and sends � along with the deommitment information,denoted d, to Party 2.Step C4: Party 2 heks whether or not (�; d) �t the ommitment it has obtained in Step 1. Itoutputs � � �0 if the hek is satis�ed and halts with output ? otherwise (indiating thatParty 1 has essentially aborted the protool prematurely).Outputs: Party 1 always outputs b def= � � �0, whereas Party 2 either outputs b or ?.Intuitively, Steps C1{C2 may be viewed as \tossing a oin into the well". At this point (i.e., afterStep C2) the value of the oin is determined (essentially as a random value), but only one party(i.e., Party 1) \an see" (i.e., knows) this value. Clearly, if both parties are honest then they bothoutput the same uniformly hosen bit, reovered in Steps C3 and C4, respetively. Intuitively, eahparty an guarantee that the outome is uniformly distributed, and Party 1 an ause prematuretermination by improper exeution of Step 3. Formally, we have to show how the e�et of everyreal-model adversary an be simulated by an adequate ideal-model adversary (whih is allowedpremature termination). This is done in [36, Se. 7.4.3.1℄.5 Seurity of Conurrent ExeutionsThe de�nitions and results surveyed so far refer to a setting in whih, at eah time, only a singleexeution of a ryptographi protool takes plae (or only one exeution may be ontrolled bythe adversary). In ontrast, in many distributed settings (e.g., the Internet), many exeutionsare taking plae onurrently (and several of them may be ontrolled by the same adversary).Furthermore, it is undesirable (and sometimes even impossible) to oordinate these exeutions (soto e�etively enfore a single-exeution setting). Still, the de�nitions and results obtained in the18

single-exeution setting serve as a good starting point for the study of seurity in the setting ofonurrent exeutions.As in the ase of stand-alone seurity, the notion of zero-knowledge provides a good test asefor the study of onurrent seurity. Indeed, in order to demonstrate the seurity issues arisingfrom onurrent exeution of protools, we onsider the onurrent exeution of zero-knowledgeprotools. Spei�ally, we onsider a party P holding a random (or rather pseudorandom) funtionf : f0; 1g2n!f0; 1gn, and willing to partiipate in the following protool (with respet to seurityparameter n).14 The other party, alled A for adversary, is supposed to send P a binary valuev 2 f1; 2g speifying whih of the following ases to exeute:For v = 1: Party P uniformly selets � 2 f0; 1gn, and sends it to A, whih is supposed to replywith a pair of n-bit long strings, denoted (�;). Party P heks whether or not f(��) = .In ase equality holds, P sends A some seret information (e.g., the seret-key orrespondingto P 's publi-key).For v = 2: Party A is supposed to uniformly selet � 2 f0; 1gn, and sends it to P , whih seletsuniformly � 2 f0; 1gn, and replies with the pair (�; f(��)).Observe that P 's strategy (in eah ase) is zero-knowledge (even w.r.t auxiliary-inputs): Intuitively,if the adversary A hooses the ase v = 1, then it is infeasible for A to guess a passing pair (�;)with respet to a random � seleted by P . Thus, exept with negligible probability (when it mayget seret information), A does not obtain anything from the interation. On the other hand, ifthe adversary A hooses the ase v = 2, then it obtains a pair that is indistinguishable from auniformly seleted pair of n-bit long strings (beause � is seleted uniformly by P , and for any �the value f(��) looks random to A). In ontrast, if the adversary A an ondut two onurrentexeutions with P , then it may learn the desired seret information: In one session, A sends v = 1while in the other it sends v = 2. Upon reeiving P 's message, denoted �, in the �rst session, Asends it as its own message in the seond session, obtaining a pair (�; f(��)) from P 's exeutionof the seond session. Now, A sends the pair (�; f(��)) to the �rst session of P , this pair passesthe hek, and so A obtains the desired seret.An attak of the foregoing type is alled a relay attak: During suh an attak the adversaryjust invokes two exeutions of the protool and relays messages between them (without any modi�-ation). However, in general, the adversary in a onurrent setting is not restrited to relay attaks.For example, onsider a minor modi�ation to the above protool so that, in ase v = 2, partyP replies with (say) the pair (�; f(��)), where � = � � 1j�j, rather than with (�; f(��)). Themodi�ed strategy P is zero-knowledge and it also withstands a relay attak, but it an be \abused"easily by a more general onurrent attak.The foregoing example is merely the tip of an ieberg, but it suÆes for introduing the mainlesson: an adversary attaking several onurrent exeutions of the same protool may be able toause more damage than by attaking a single exeution (or several sequential exeutions) of thesame protool. This leads to the need to de�ne resiliene to suh attaks (i.e., de�ne seurity ofonurrent exeutions), and provide protools that satisfy the orresponding de�nition of seurity.5.1 De�nitional treatmentOne may say that a protool is onurrently seure if whatever the adversary may obtain by in-voking and ontrolling parties in real onurrent exeutions of the protool is also obtainable by a14In fat, assuming that P shares a pseudorandom funtion f with his friends, the foregoing protool is an abstra-tion of a natural \mutual identi�ation" protool. (The example is adapted from [39℄.)19

orresponding adversary that ontrols orresponding parties making onurrent funtionality allsto a trusted party (in a orresponding ideal model).15 More generally, one may onsider onurrentexeutions of many sessions of several protools, and say that a set of protools is onurrently seureif whatever the adversary may obtain by invoking and ontrolling suh real onurrent exeutions isalso obtainable by a orresponding adversary that invokes and ontrols onurrent alls to a trustedparty (in a orresponding ideal model). Consequently, a protool is said to be seure with respetto onurrent ompositions if adding this protool to any set of onurrently seure protools yieldsa set of onurrently seure protools.A muh more appealing approah was suggested by Canetti [16℄. Loosely speaking, Canettisuggests to onsider a protool to be seure (alled environmentally-seure (or Universally Com-posable seure [16℄)) only if it remains seure when exeuted within any (feasible) environment.Following the simulation paradigm, we get the following de�nition:De�nition 2 (environmentally-seure protools [16℄ { a rough sketh): Let f be an m-ary fun-tionality and � be an m-party protool, and onsider the following real and ideal models.In the real model the adversary ontrols some of the parties in an exeution of � and all partiesan ommuniate with an arbitrary probabilisti polynomial-time proess, whih is alled anenvironment (and possibly represents other exeutions of various protools that are taking plaeonurrently). Honest parties only ommuniate with the environment before the exeutionstarts and when it ends; they merely obtain their inputs from the environment and pass theiroutputs to it. In ontrast, dishonest parties may ommuniate freely with the environment,onurrently to the entire exeution of �.In the ideal model the (simulating) adversary ontrols the same parties, whih use an ideal (trusted-party) that behaves aording to the funtionality f (as in Setion 2.2). All parties an om-muniate with the (same) environment (as in the real model). Indeed, the dishonest partiesmay ommuniate extensively with the environment before and after their single ommunia-tion with the trusted party.We say that � is an environmentally-seure protool for omputing f if for every probabilisti polynomial-time adversary A in the real model there exists a probabilisti polynomial-time adversary A0 on-trolling the same parties in the ideal model suh that no probabilisti polynomial-time environmentan distinguish the ase in whih it is aessed by the parties in the real exeution from the ase itis aessed by parties in the ideal model.As hinted above, the environment may aount for other exeutions of various protools that aretaking plae onurrently to the main exeution being onsidered. The de�nition requires that suhenvironments annot distinguish the real exeution from an ideal one. This means that anythingthat the real adversary (i.e., operating in the real model) gains from the exeution and someenvironment, an be also obtained by an adversary operating in the ideal model and having aessto the same environment. Indeed, Canetti proves that environmentally-seure protools are seurewith respet to onurrent ompositions [16℄.15One spei� onern (in suh a onurrent setting) is the ability of the adversary to \non-trivially orrelatethe outputs" of onurrent exeutions. This ability, alled malleability, was �rst investigated by Dolev, Dwork andNaor [26℄. We omment that providing a general de�nition of what \orrelated outputs" means seems very hallenging(if at all possible). Indeed the fous of [26℄ is on several important speial ases suh as enryption and ommitmentshemes. 20

5.2 Some of the known resultsIt is known is that environmentally-seure protools for any funtionality an be onstruted forsettings in whih more than two-thirds of the ative parties are honest [16℄. This holds unondition-ally for the private hannel model, and under standard assumptions (e.g., allowing the onstrutionof publi-key enryption shemes) for the standard model (i.e., without private hannel). The im-mediate onsequene of this result is that general environmentally-seure multi-party omputationis possible, provided that more than two-thirds of the parties are honest.In ontrast, general environmentally-seure two-party omputation is not possible (in the stan-dard sense).16 Still, one an salvage general environmentally-seure two-party omputation in thefollowing reasonable model: Consider a network that ontains servers that are willing to partiipate(as \helpers", possibly for a payment) in omputations initiated by a set of (two or more) users.Now, suppose that two users wishing to ondut a seure omputation an agree on a set of serversso that eah user believes that more than two-thirds of the servers (in this set) are honest. Then,with the ative partiipation of this set of servers, the two users an ompute any funtionality inan environmentally-seure manner.Other reasonable models where general environmentally-seure two-party omputation is possi-ble inlude the ommon random-string (CRS) model [19℄ and variants of the publi-key infrastru-ture (PKI) model [3℄. In the CRS model, all parties have aess to a universal random string (oflength related to the seurity parameter). We stress that the entity trusted to post this universalrandom string is not required to take part in any exeution of any protool, and that all exeutionsof all protools may use the same universal random string. The PKI models onsidered in [3℄require that eah party deposits a publi-key with a trusted enter, while proving knowledge of aorresponding private-key. This proof may be onduted in zero-knowledge during speial epohsin whih no other ativity takes plae.AknowledgmentsI wish to than Ron Rothblum for disovering an error in the presentation provided in [36, Se. 7.3.2℄.

16Of ourse, some spei� two-party omputations do have environmentally-seure protools. See [16℄ for severalimportant examples (e.g., key exhange). 21

Referenes[1℄ Y. Aumann and Y. Lindell. Seurity Against Covert Adversaries: EÆient Protools forRealisti Adversaries. Journal of Cryptology, Vol. 23, N. 2, April 2010.[2℄ B. Barak and A. Sahai. How To Play Almost Any Mental Game Over The Net { ConurrentComposition via Super-Polynomial Simulation. In 46th IEEE Symposium on Foundations ofComputer Siene, pages 543{552, 2005.[3℄ B. Barak, R. Canetti and J.B. Nielsen. Universally omposable protools with relaxed set-upassumptions. In 45th IEEE Symposium on Foundations of Computer Siene, pages 186{195,2004.[4℄ D. Beaver. Foundations of Seure Interative Computing. In Crypto91, Springer-Verlag LetureNotes in Computer Siene (Vol. 576), pages 377{391.[5℄ D. Beaver. Seure Multi-Party Protools and Zero-Knowledge Proof Systems Tolerating aFaulty Minority. Journal of Cryptology, Vol. 4, pages 75{122, 1991.[6℄ D. Beaver, S. Miali and P. Rogaway. The Round Complexity of Seure Protools. In 22ndACM Symposium on the Theory of Computing, pages 503{513, 1990. See details in [62℄.[7℄ M. Bellare. Eletroni Commere and Eletroni Payments. Webpage of a ourse.http://www-se.usd.edu/users/mihir/se291-00/[8℄ M. Bellare, R. Canetti and H. Krawzyk. A Modular Approah to the Design and Analysisof Authentiation and Key-Exhange Protools. In 30th ACM Symposium on the Theory ofComputing, pages 419{428, 1998.[9℄ M. Bellare and O. Goldreih. On De�ning Proofs of Knowledge. In Crypto92, Springer-VerlagLeture Notes in Computer Siene (Vol. 740), pages 390{420.[10℄ M. Ben-Or, R. Canetti and O. Goldreih. Asynhronous Seure Computation. In 25th ACMSymposium on the Theory of Computing, pages 52{61, 1993. See details in [14℄.[11℄ M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-CryptographiFault-Tolerant Distributed Computation. In 20th ACM Symposium on the Theory of Comput-ing, pages 1{10, 1988.[12℄ M. Ben-Or, B. Kelmer and T. Rabin. Asynhronous Seure Computations with OptimalResiliene. In 13th ACM Symposium on Priniples of Distributed Computing, pages 183{192,1994.[13℄ M. Blum. Coin Flipping by Phone. IEEE Spring COMPCOM, pages 133{137, February 1982.See also SIGACT News, Vol. 15, No. 1, 1983.[14℄ R. Canetti. Studies in Seure Multi-Party Computation and Appliations. Ph.D. Thesis,Department of Computer Siene, Weizmann Institute of Siene, Rehovot, Israel, June 1995.Available from http://www.wisdom.weizmann.a.il/�oded/PS/ran-phd.ps.[15℄ R. Canetti. Seurity and Composition of Multi-party Cryptographi Protools. Journal ofCryptology, Vol. 13, No. 1, pages 143{202, 2000.22

[16℄ R. Canetti. Universally Composable Seurity: A New Paradigm for Cryptographi Protools.In 42nd IEEE Symposium on Foundations of Computer Siene, pages 136{145, 2001. Fullversion (with di�erent title) is available from Cryptology ePrint Arhive, Report 2000/067.[17℄ R. Canetti, U. Feige, O. Goldreih and M. Naor. Adaptively Seure Multi-party Computation.In 28th ACM Symposium on the Theory of Computing, pages 639{648, 1996.[18℄ R. Canetti and A. Herzberg. Maintaining Seurity in the Presene of Transient Faults. InCrypto94, Springer-Verlag Leture Notes in Computer Siene (Vol. 839), pages 425{439.[19℄ R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party andMulti-Party Seure Computation. In 34th ACM Symposium on the Theory of Computing,pages 494{503, 2002.[20℄ D. Chaum, C. Cr�epeau and I. Damg�ard. Multi-party unonditionally Seure Protools. In20th ACM Symposium on the Theory of Computing, pages 11{19, 1988.[21℄ B. Chor, S. Goldwasser, S. Miali and B. Awerbuh. Veri�able Seret Sharing and AhievingSimultaneity in the Presene of Faults. In 26th IEEE Symposium on Foundations of ComputerSiene, pages 383{395, 1985.[22℄ B. Chor and E. Kushilevitz. A Zero-One Law for Boolean Privay. SIAM J. on Dis. Math.,Vol. 4, pages 36{47, 1991.[23℄ B. Chor and M.O. Rabin. Ahieving independene in logarithmi number of rounds. In 6thACM Symposium on Priniples of Distributed Computing, pages 260{268, 1987.[24℄ R. Cleve. Limits on the Seurity of Coin Flips when Half the Proessors are Faulty. In 18thACM Symposium on the Theory of Computing, pages 364{369, 1986.[25℄ I. Damgard and J. B. Nielsen. Improved non-ommitting enryption shemes based on generalomplexity assumption. In Crypto00, Springer-Verlag Leture Notes in Computer Siene(Vol. 1880), pages 432{450.[26℄ D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal on Computing,Vol. 30, No. 2, pages 391{437, 2000. Preliminary version in 23rd STOC, 1991.[27℄ D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfetly seure message transmission. Journalof the ACM, Vol. 40 (1), pages 17{47, 1993.[28℄ D. Dolev and H.R. Strong. Authentiated Algorithms for Byzantine Agreement. SIAM Journalon Computing, Vol. 12, pages 656{666, 1983.[29℄ C. Dwork, M. Naor, and A. Sahai. Conurrent Zero-Knowledge. In 30th ACM Symposium onthe Theory of Computing, pages 409{418, 1998.[30℄ S. Even, O. Goldreih, and A. Lempel. A Randomized Protool for Signing Contrats. Com-muniations of the ACM, Vol. 28, No. 6, 1985, pages 637{647.[31℄ P.S. Gemmell. An Introdution to Threshold Cryptography. In CryptoBytes, RSA Lab., Vol. 2,No. 3, 1997. 23

[32℄ R. Gennaro, M. Rabin and T. Rabin. Simpli�ed VSS and Fast-trak Multiparty Computationswith Appliations to Threshold Cryptography. In 17th ACM Symposium on Priniples ofDistributed Computing, pages 101{112, 1998.[33℄ O. Goldreih. A Uniform Complexity Treatment of Enryption and Zero-Knowledge. Journalof Cryptology, Vol. 6, No. 1, pages 21{53, 1993.[34℄ O. Goldreih. Seure Multi-Party Computation. Working draft, June 1998. Available fromhttp://www.wisdom.weizmann.a.il/�oded/pp.html.[35℄ O. Goldreih. Foundations of Cryptography { Basi Tools. Cambridge University Press, 2001.[36℄ O. Goldreih. Foundations of Cryptography { Basi Appliations. Cambridge University Press,2004.[37℄ O. Goldreih. Foundations of Cryptography { A Primer. Foundations and Trends in TheoretialComputer Siene, Volume 1, Issue 1, 2005.[38℄ O. Goldreih. Zero-Knowledge Twenty Years After its Invention. Quaderni di Matematia,Vol. 13 (Complexity of Computations and Proofs, ed. J. Krajiek), pages 249{304, 2004. Seealso ECCC, TR02-063, 2002.[39℄ O. Goldreih and H. Krawzyk. On the Composition of Zero-Knowledge Proof Systems. SIAMJournal on Computing, Vol. 25, No. 1, February 1996, pages 169{192.[40℄ O. Goldreih and L.A. Levin. Hard-ore Prediates for any One-Way Funtion. In 21st ACMSymposium on the Theory of Computing, pages 25{32, 1989.[41℄ O. Goldreih and Y. Lindell. Session-Key Generation using Human Passwords Only. Journalof Cryptology, Vol. 19, No. 3, pages 241{340, 2006.[42℄ O. Goldreih, S. Miali and A. Wigderson. Proofs that Yield Nothing but their Validity or AllLanguages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol. 38, No. 1,pages 691{729, 1991. Preliminary version in 27th FOCS, 1986.[43℄ O. Goldreih, S. Miali and A. Wigderson. How to Play any Mental Game { A CompletenessTheorem for Protools with Honest Majority. In 19th ACM Symposium on the Theory ofComputing, pages 218{229, 1987. See details in [34℄.[44℄ O. Goldreih and R. Vainish. How to Solve any Protool Problem { An EÆieny Improvement.In Crypto87, Springer Verlag, Leture Notes in Computer Siene (Vol. 293), pages 73{86.[45℄ S. Goldwasser and L.A. Levin. Fair Computation of General Funtions in Presene of ImmoralMajority. In Crypto90, Springer-Verlag Leture Notes in Computer Siene (Vol. 537), pages77{93.[46℄ S. Goldwasser and S. Miali. Probabilisti Enryption. Journal of Computer and SystemSiene, Vol. 28, No. 2, pages 270{299, 1984. Preliminary version in 14th STOC, 1982.[47℄ S. Goldwasser, S. Miali and C. Rako�. The Knowledge Complexity of Interative ProofSystems. SIAM Journal on Computing, Vol. 18, pages 186{208, 1989. Preliminary version in17th STOC, 1985. 24

[48℄ S.D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete Fairness in Seure Two-PartyComputation. In 40th STOC, pages 413{422, 2008.[49℄ S.D. Gordon and J. Katz. Partial Fairness in Seure Two-Party Computation. To appear inEuroCrypt10, 2010.[50℄ R. Greenstadt. Eletroni Voting Bibliography, 2000.http://theory.ls.mit.edu/�is/voting/greenstadt-voting-bibliography.html.[51℄ M. Hirt and U. Maurer. Complete haraterization of adversaries tolerable in seure multi-party omputation. Journal of Cryptology, Vol. 13, No. 1, pages 31{60, 2000.[52℄ J. Katz. On Ahieving the "Best of Both Worlds" in Seure Multiparty Computation. In 39thSTOC, pages 11{20, 2007.[53℄ Y. Lindell. Parallel Coin-Tossing and Constant-Round Seure Two-Party Computation. InCrypto01, Springer Leture Notes in Computer Siene (Vol. 2139), pages 171{189, 2001.[54℄ Y. Lindell, A. Lysyanskaya and T. Rabin. On the Composition of Authentiated ByzantineAgreement. In 34th ACM Symposium on the Theory of Computing, pages 514{523, 2002.[55℄ Y. Lindell and B. Pinkas. A Proof of Seurity of Yao's Protool for Seure Two-Party Com-putation. Journal of Cryptology, Vol. 22, No. 2, pages 161{188, 2009.[56℄ S. Miali and P. Rogaway. Seure Computation. In Crypto91, Springer-Verlag Leture Notesin Computer Siene (Vol. 576), pages 392{404. Ellaborated working draft available from theauthors.[57℄ M. Naor. Bit Commitment using Pseudorandom Generators. Journal of Cryptology, Vol. 4,pages 151{158, 1991.[58℄ M. Naor and K. Nissim. Communiation preserving protools for seure funtion evaluation.In 33rd ACM Symposium on the Theory of Computing, 2001, pages 590{599.[59℄ R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attaks. In 10th ACM Symposiumon Priniples of Distributed Computing, pages 51{59, 1991.[60℄ M.O. Rabin. How to Exhange Serets by Oblivious Transfer. Teh. Memo TR-81, AikenComputation Laboratory, Harvard U., 1981.[61℄ T. Rabin and M. Ben-Or. Veri�able Seret Sharing and Multi-party Protools with HonestMajority. In 21st ACM Symposium on the Theory of Computing, pages 73{85, 1989.[62℄ P. Rogaway. The Round Complexity of Seure Protools. MIT Ph.D. Thesis, June 1991.Available from http://www.s.udavis.edu/�rogaway/papers.[63℄ A. Shamir. How to Share a Seret. Communiations of the ACM, Vol. 22, Nov. 1979, pages612{613.[64℄ A.C. Yao. How to Generate and Exhange Serets. In 27th IEEE Symposium on Foundationsof Computer Siene, pages 162{167, 1986. 25

