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Abstract

Property testers are algorithms whose goal is distinguishing between inputs that have

a certain property and inputs which are far from all instances with this property. We show

that for a wide variety of properties, there exists no deterministic tester that queries only

a sublinear number of input entries. Therefore, most sublinear property testers must be

probabilistic algorithms. Nevertheless, we aspire to reduce the randomness complexity

of property testers without increasing their query complexity. We also introduce and

motivate the Q-R complexity of a tester, which is the number of queries that a tester

makes multiplied by its randomness complexity.

We reduce the randomness complexity of testers mostly by using randomness-efficient

hitters and samplers, rather than the ones that use total independence. This alone

achieves a great improvement in the Q-R complexity of many testers. In addition, we

focus on the bipartiteness tester presented in [GGR98], and reduce its Q-R complexity.

To that end, we not only use randomness-efficient hitters and samplers, but also modify

the original tester, in more than one fashion.

We also present some general results regarding property testers. In particular, we

present a general, non-explicit, scheme to reduce the randomness complexity of all prop-

erty testers that share the same basic outline.
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1 Introduction

This thesis focuses on reducing the randomness complexity of property testers; that is, reduc-

ing the number of random bits that testers require. We show that testing for a property using

sublinear number of queries inherently requires randomness, so we cannot fully derandomize

testers without allowing them to view almost the entire input. Still, we wish to use as few

random bits as possible, for two reasons. The first is that reducing computational resources

is, in general, a good paradigm. The second is due to the implementation of property testers

under what we call the ”one weak random source” assumption. We show that one is able to

reduce the randomness complexity without increasing the query complexity of many property

testers.

1.1 A Brief Introduction to Property Testing

Property Testing, a concept invented more than 10 years ago by Goldreich, Goldwasser and

Ron [GGR98], is in short the notion of deciding whether a given input is a ”Yes”-instance

or ”far” from any ”Yes”-instances. More formally - given some domain D, let F be the

set of functions {f : D → {0, 1}∗}. Let Π be some property of F (we may consider Π to

be some subset of F). We say some g is ǫ-far from having Π if for every f ∈ Π, the set

{x ∈ D; f(x) 6= g(x)} is of size at least ǫ|D|. Then a Π-tester is a probabilistic oracle

machine M that gets as an input a distance parameter ǫ > 0 and has oracle access to f such

that

• If f ∈ Π, then Pr[Mf (ǫ) = 1] ≥ 2/3.

• If f is ǫ-far from having Π, then Pr[Mf (ǫ) = 0] ≥ 2/3.

If for every f in Π it holds that Pr[Mf (ǫ) = 1] = 1 then we say that the tester is 1-sided.1

Note that we are not guaranteed anything if f doesn’t belong to Π yet f isn’t ǫ-far from

Π. Thus, in fact, we have a relaxation of the notion of ”deciding” a property (in which we

should distinguish between the case where f ∈ Π and the case where f /∈ Π).

We define the query complexity of the tester to be the number of queries that M makes,

and the randomness complexity of the tester to be the number of random bits M requires.

The error probability of the tester is said to be the probability that T accepts some f which

is ǫ-far from Π, or, if T is 2-sided, the probability of T to reject some f ∈ Π. By definition,

the error probability of T is 1/3, but sometimes we may wish to increase or decrease it, in

which case we will state clearly that we take a property testers with error probability δ (for

some δ 6= 1/3). We note that by using the usual amplification methods, one can reduce the

error probability of the tester.2

1We may refer to a standard tester as 2-sided tester, to differentiate it from a 1-sided tester.
2We refer to Comment 1.6, where we discuss the cost of the usual amplification methods.
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An equivalent model is the one in which M is a probabilistic random access machine.

Given an input, M queries several (random) entries of its input, according to the random

string it was fed. Again, M should distinguish, according to the part of the input it read,

whether its input have Π or whether it is ǫ-far from Π. In this model, the query complexity

of M is the number of input entries that M reads.

As a convention, we assume D = [N ] = {0, 1}n for some integer n. We wish to find

property testers with query complexity of o(N), since we usually consider input instances to

be very large. That is, we assume N be very big. So big in fact, that reading the entire input

is an infeasible task. Thus, we use property testers to give us an approximated decision to

whether our instance is a ”Yes” instance or not. If the property tester queries Ω(N) places

in the domain, we manage to save no time by using the property tester, and we might as

well decide if the input is a ”Yes” instance or not, by querying all N entries.

A special role in the field of property testing is reserved for graph property testers. Several

”natural” graph properties have been studied extensively throughout the years, such as k-

connectivity, k-colorability, minor-exclusion, subgraph-freeness, etc. Furthermore, deciding

whether a given graph has a certain graph-property or not, is a common task in computer

science. When dealing with graphs of huge size, a graph-property tester may be the only

feasible way to give an educated guess whether they have some property or not.

We denote a graph as G = (V,E) (with no multiple edges or loops), where its set of

vertices is V = V (G) = [N ] = {0, 1}n. We consider two major representations of G:3

• For dense graphs, let A be the adjacency matrix of G. That is A is a matrix of

size N × N containing zeros and ones, where Ai,j = 1 if and only if 〈vi, vj〉 ∈ E(G).

This is called the matrix adjacency model, where the function represent G is of size
(

N
2

)

= O(N2). A query of the tester is of the form of a pair of vertices (vi, vj) ∈ V ×V ,

and is answered by a single bit reply, the value of Ai,j .

• For sparse graphs, we assume we have some bound d on the max-degree of G. We

represent G by N adjacency lists, each of length d. The jth element in the list of vi is

u if indeed u is the jth neighbor of vi, or ∅ if vi has less than j neighbors. This is called

the bounded degree model, where the function representing G is of size dN , and since

we assume d = O(1), then it is of size O(N). A query of the tester is of the form of

a pair (v, j) ∈ V × [d] and is answered by a n-bit reply, which is, as mentioned, either

some u ∈ V or ∅.

It turns out that there exists a great difference between the two representations, and while

several properties are efficiently testable in one model (i.e. with query complexity poly(1/ǫ)),

testing them in the other requires a great increase in the query complexity.

3[PR02] has introduces a third model, using some bound on |E(G)|. We do not deal with this model in
this thesis.
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1.2 On the Importance of Randomness for Property Testers

One crucial observation is that property testing is a procedure that inherently requires ran-

domness. For many natural properties no deterministic tester with query complexity of o(N)

exists. In fact, Canetti et al [CEG95] gave a lower bound on the randomness of samplers

(objects which are a special case of property tester and will be explained later on). As we

show in Section 3.1, a similar proof applies to a wide variety of graph property testers (in

the matrix adjacency model) as well. Similarly, the proof’s outline holds for other property

testers, and not only for graph properties.

So one cannot get rid altogether of the need for randomness in property testers. Nev-

ertheless, it does not mean that one can disregard the randomness complexity of a tester.

Randomness should be looked at a valuable resource for computation, and as such it is a

good costume to use as few random bits as possible. We believe that one should measure

the efficiency of a tester not only by its query complexity, but by its randomness complexity,

running time, space complexity, and any other resource that the tester might exploit. In this

work, we focus on the query complexity and the randomness complexity.

As we show next, reducing the randomness complexity of property testers have even

greater importance than just the good costume of saving computational resources. Another

reasoning for reducing the randomness complexity of property testers, presented also in [?],

involves the issue of using weak sources of randomness. We elaborate.

1.2.1 Weak Sources of Randomness

Let T be the TM that is a tester for some property Π, and denote its randomness complexity

as r. The machine T is a probabilistic TM, and often it is said that T tosses coins, and

operates according to the results of these coins.4 However, what we actually mean is that

T has a random tape with r totally random bits on it. This random tape comes from some

randomness source, meaning, the bits on the random tape are the result of some random

variable taking values uniformly in R = {0, 1}r.
The question of sources of randomness, and how common they in fact are, is a very com-

plex and philosophical question, which is outside the scope of computer science. Nonetheless,

most property testing algorithms assume that the tester has an access to a source of ran-

domness, which, as said, takes values uniformly over some set R. In this work, we wish to

base property testing on a weaker assumption.

We assume that sources of randomness are scarce, and that they are ”impure”, in some

sense. We first introduce some definitions:

Definition 1.1. Let X be a random variable taking values in {0, 1}n. The min-entropy of

4In fact, even in this thesis we analyze the randomness complexity of several algorithms by describing the
number of coins they toss.
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X is the largest k so that for every x ∈ {0, 1}n, it holds that Pr[X = x] ≤ 2−k. We denote

H∞(X) = k.

We assume that we only have access to one5 ”weak” source of randomness that takes

values in {0, 1}n for some integer n, but has only k min-entropy, for some k < n. We denote

the rate of the source as k
n . We wish to extract from the weak source a random variable that

is distributed uniformly, or almost uniformly, over {0, 1}k.

Definition 1.2. Let X1 and X2 be two distributions over the same domain D. Then the

variation distance or the statistical distance of X1 and X2 is denoted as ‖X1 −X2‖ and is

‖X1 −X2‖ = max
T⊂D

|PrX1 [T ]− PrX2 [T ]| = 1

2

∑

x∈D

|PrX1 [x]− PrX2 [x]|

We use the notation Ua to denote the uniform distribution over the set {0, 1}a. Our goal is

to turn X, our weak randomness source with k min-entropy, into a source whose distribution

is very close to Um, where m is as high as possible (obviously m ≤ k). Unfortunately,

this cannot be done without using a few additional truly uniform bits. The entire field of

extractors deals with this task.

Definition 1.3. A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is called a (k, ǫ)-extractor if for

every random variable X over {0, 1}n with H∞(X) ≥ k, we have that ‖Ext(X,Ud)−Um‖ < ǫ.

That is to say that an extractor takes such a ”weak” random source, and uses addition

d truly random bits, to produce an output which is ǫ-close to uniform over {0, 1}m.

In the field of extractors, a great deal of research was and is made. Let us state just few

known results regarding the connection between d, n and k. [RTS97] have proven a lower

bound on d, where 2d = Ω
(

1
ǫ2

(n− k)
)

. For ǫ taking constant values (for example, ǫ = 1
12),

we consider this lower bound to be 2d = Ω(n−k). Both works of [LRVW03] and of [GUV06]

give an explicit construction of an extractor, where, for ǫ = O(1), it holds that d = O(log n).

Two common cases are usually discussed regarding the connection between the values of

n,m, and k, where ǫ is some small constant:

• k = Ω(n) and m = Ω(k). In this case n = O(m). In such a case we say that X is

a constant rate source. Out of the two common cases, constant rate sources seems to

be the more natural and simple case. The best known construction of an extractor

for constant rate sources is the latest construction of Zuckermann [Zuc06] that uses

d = (1 + o(1)) log n = (1 + o(1)) logm truly random bits. This matches the lower

bound, which for constant rate sources is d ≥ log(n− k) = (1− o(1)) logm.

5We assume that such sources are relatively scarce, and therefore the tester have access to only one ”weak”
source, and not several.
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• k = nΩ(1) and m = kΩ(1). In this case n = mO(1). Here the best known constructions of

extractors belong to [LRVW03] and [GUV06], where d = O(log n) = c · logm, for some

constant c > 1. The lower bound in this case is of the form d ≥ log(n− k) = Ω(logm).

1.2.2 A ”Typical” Implementation of a Property Tester

So under the assumption that we only have access to one weak random source, can we still

accept all ”Yes” instances and reject all far from ”Yes” instances? The answer to this question

is: ”yes, but with some cost...” We present here a method of using T and a weak random

source in order accept all ”Yes” instances and reject all far from ”Yes” instances, with error

probability of no more than 1/3. We call this method a ”typical implementation of T under

the one weak random source assumption”, or just a ”typical” implementation, in short. In

the next section, we discuss the cost of such a ”typical” implementation.

Fix some property tester T and some distance parameter ǫ for T . Denote the query

complexity of T for this fixed distance parameter ǫ, by Q. Denote the randomness complexity

of T for this parameter ǫ by r. Assume also that T has error probability of at most 1/12.6

We are given a random variable X with min-entropy k ≥ r, and a (k, 1
12)-extractor Ext :

{0, 1}n × {0, 1}d → {0, 1}r, where d = c · log r for some constant c ≥ 1.

The tester T requires r truly random bits, but we only have an access to a ”weak” random

source. So we use an extractor Ext, to extract a random variable whose distribution is ǫ-close

to the uniform Ur. Therefore, Ext requires d = O(logm) = c · log r truly random bits, in

order to produce an output whose distribution is ǫ-close to the uniform distribution over

{0, 1}r. Alas, the extractor requires d truly uniform random bits, and we have no feasible

way to produce even a single random bit, let alone d bits.

The ”typical” implementation of T , given some instance I begins by sampling X one

time. Let x be the value sampled. Then, for every possible string i ∈ {0, 1}d, we compute

Ext(x, i), the output of the extractor on x and i, and we simulate T when fed Ext(x, i) as a

random string. We finally accept or reject I by a majority vote of the 2d simulations we do.

Claim 1.4. Let T be a property tester with error probability 1/12, and randomness complexity

r. Let X be a random variable over {0, 1}n with k min-entropy. Let Ext : {0, 1}n×{0, 1}d →
{0, 1}r, be a (k, 1/12)-extractor. The probability that the ”typical” implementation of T errs,

taken over x← X, is at most 1/3.

Proof. Fix an input I for the tester. Let f be the function f : {0, 1}r → {0, 1}, where

f(z) = 1 if and only if the tester T errs over the input I and the random input z. For

example, assume I is a ”Yes” instance. Then f(z) = 1 if the tester T , when I is its input,

and when z is fed to T as its random input, rejects I. Otherwise, f(z) = 0.

6See Comment 1.6.
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We know that Prz←Ur [f(z) = 1] < 1/12, because the error probability of T is at

most 1/12. Since by definition of the extractor, ‖Ext(X,Ud) − Ur‖ < 1/12, then also

‖f(Ext(X,Ud)) − f(Ur)‖ < 1/12, and therefore Prz←Ext(X,Ud)[f(z) = 1] < 1/6. Note that

in order to produce a string z that is distributed according to Ext(X,Ud), we can sample

x← X, and i← Ud, then compute z = Ext(x, i). We deduce that

Prx←X, i←Ud
[f(Ext(x, i)) = 1] < 1/6 (∗)

For every x ∈ {0, 1}n, denote by Px the probability Px = Pri←Ud
[f(Ext(x, i)) = 1]. Call

a x ∈ {0, 1}n bad if Px ≥ 1/2. We know, by (∗) that Ex←X [Py] < 1/6, and so, the Markov

inequality gives that

Prx←X

[

Px >
1

2

]

≤ 1/6

1/2
=

1

3

All that is left to show, is that when x isn’t bad, then the ”typical” implementation does

not err.

If x isn’t bad, it means that Pri←Ud
[f(Ext(x, i)) = 1] < 1/2. So, for less than half of

the values i takes, f(Ext(x, i)) = 1. Therefore, less than half of the simulations we perform

cause T to err. So the majority of the simulations are correct for I, causing the ”typical”

implementation to accept I if indeed I is a ”Yes” instance, and to reject I if I is ǫ-far from

all ”Yes” instances.

1.2.3 The Cost of a ”Typical Implementation” and the Q-R Complexity

We have shown that we can still use property testers even under the assumption that we

can only access one weak random source, due to what we call a ”typical” implementation of

testers. But the drawback of this ”typical” implementation is that it forces us to perform 2d

simulations of T . Suppose T has query complexity Q. Since we invoke it 2d times, we make

2d ·Q queries to the input. Now, if 2d ·Q = Ω(N) then we are in trouble...

Recall that the extractor from Section 1.2.2 uses d = c · log r truly random bits. Therefore

2d ·Q = rc ·Q, which leads us to the following definition:

Definition 1.5. Let c ≥ 1 be a constant. Given a property tester T for some property Π,

that has query complexity Q and randomness complexity r, we denote its Q-Rc complexity

by rc ·Q. For c = 1 we simply refer to Q-R1 complexity as the Q-R complexity of T .

As we showed, the Q-Rc complexity is the number of queries we perform during one

”typical” implementation of T , given an extractor that requires d = c · log r truly uniform

bits. The Q-R complexity applies to the case where we have an extractor for a constant rate

source, in which case c = 1. The analysis of testers in this work, refers solely to the Q-R
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complexity of testers, and not to their Q-Rc complexity.7 That is to say that we assume

that our weak random source has some constant rate, and we use an extractor that requires

logn = (1 + o(1)) log r truly random bits. Therefore, a ”typical” implementation of T using

one weak constant rate source, makes O(r) simulations of T , thus makes O(r · Q) queries.

Thus, the higher the randomness complexity of a tester is, the higher is Q-R complexity is.

For example, the bipartiteness tester for bounded degree graphs [GR98] has query com-

plexity of Õ(
√
N), and randomness complexity of Õ(

√
N), and therefore, its Q-R complexity

is Õ(N). Thus, a ”typical” implementation of this tester may query N input entries. We

show in Section 3.2.1 how to reduce the randomness complexity of this tester, to achieve a

Q-R complexity of Õ(
√
N).

Comment 1.6. Recall that the ”typical” implementation uses a property tester with error

probability of 1
12 . Assuming we only have a property tester T with error probability 1

3 ,

we have to amplify its error probability. Let Q and r be the query complexity and the

randomness complexity of T , respectively. The standard way to reduce the error probability

of T , is to perform K simulations of T (for some constant K), and take a majority vote

between all these K simulations. These simulations are performed using K independent

random strings, each of length r. Therefore, we use K · r random bits, and perform K · Q
queries. Since K = O(1), this does not change asymptotically the complexities of T . In

Appendix A we discuss another possible way to reduce the error probability of T . By using

samplers and hitters of the appropriate parameters, we can sample K random strings for T ,

instead of picking them independently, and then perform the K simulations. This technique

still has query complexity K · Q, but the randomness complexity remains r. Therefore, we

recommend the use of samplers and hitters, whenever K is not a constant.

1.3 Related Work

The work of Goldreich and Sudan [?] and the work of Ben-Sasson et al [?] discuss randomness-

efficient low-degree testing. The motivation in these works is to reduce the length of a PCP,

and they focus on testers for low-degree polynomials. Given a function f : F
m → F, a

low-degree tester accepts f if f is a polynomial of degree at most d (for some fixed d),

and rejects f if f is any function which is far from being a polynomial of degree at most

d. Goldreich and Sudan [?] prove that there exists a (non-explicit) low-degree tester that

makes O(|F|m · log(|F|)) queries, and Ben-Sasson et al [?] give an explicit construction with

slightly worse query complexity. Another work is of Shpilka and Wigderson [?], in which they

construct a randomness-efficient homomorphism tester. Given two fixed groups, G and H,

and a function f : G→ H, a homomorphism tester should accept f if f is a homomorphism

7In this work we reduce the randomness complexity of known testers, while maintaining their original
query complexity. This framework guarantees that reducing the Q-R complexity of a tester also reduces its
Q-Rc complexity.
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of groups (i.e. if for every x ∈ G and y ∈ H, it holds that f(x · y) = f(x) · f(y)), and reject

f if f is far from being a homomorphism. The construction in [?] is of a tester that requires

only (1 +O(1)) log(|G|) random bits.

1.4 Organization

We start with preliminary notions and definitions in the next section (Section 2), where we

also define the samplers and hitters we use in this work. We refer the reader to Appendix A

to a more elaborated discussion regarding sampler and hitters. In Section 3 we present

several results for reducing the randomness complexity of graph property testers. We discuss

testers for properties of graphs in the adjacency matrix model, and give a lower bound and a

non-constructive upper bound on their randomness complexity. We also show how to reduce

the randomness complexity of several testers for bounded degree graphs. We apply the same

technique for all of the testers we present - using randomness efficient hitters and samplers,

instead of the ones that use total independence. In Section 4 we focus on the Q-R complexity

of a single tester, the tester for bipartiteness of graphs in the matrix adjacency model. We

show how to decrease its Q-R complexity, using not only better samplers and hitters, but

also by modifying the tester, in more than one manner. We present all the modifications we

found, including those that give worse Q-R complexity than the original, since we believe

that these modifications are applicable to other property testers, and give good guidelines

for reducing the Q-R complexity of other testers as well. We end with conclusions and open

problems, in Section 5.

10



2 Preliminaries

2.1 General Notations

For readability, we often assume various quantities are integers, when they are not necessarily

so. It is not hard to see that this does not affect our analysis. For an integer n, let [n] denote

the set {1, 2, . . . , n}. All log x functions used in this work are log2(x), unless mentioned

otherwise. Given some set X and some subset A ⊂ X, we say that A is of density |A|
|X| , and

denote ρ(A) = |A|
|X| . In order to avoid tedious notation, we denote O(x · poly(log(x))) and

Ω(x · poly(log(x))) by Õ(x) and Ω̃(x) respectively.

A graph G = (V,E) is always an undirected, simple graph, with no multiple edges or

self-loops. We sometimes refer to V and E as V (G) or E(G). The size of G is the number

of vertices in V , which is usually considered to be N = 2n. We also identify the set V with

the set {0, 1}n, or alternatively, with the set [N ]. An edge in G is denoted as an unordered

pair 〈u, v〉. A query, that a tester for graphs represented by a adjacency matrix makes, is of

the form of an ordered vertex-pair, (u, v).

Given a subset X ⊂ V we denote by G[X] the subgraph of G that is induced on X. That

is G[X] = (X,E′) where 〈u, v〉 ∈ E′ if and only if both u and v belong to X, and the edge

〈u, v〉 belongs to E.

For any u ∈ V we denote u’s neighbors by Γ(u). If G is a graph where the neighbors of

each vertex are labeled, then we denote the ith neighbor of u by Γi(u). For a subset U ⊂ V
we denote by Γ(U) the set of neighbors that are adjacent to at least one vertex from U .

A (N,D, λ)-expander is a graph G over N vertices, each of degree D, where the second

largest eigenvalue of the adjacency matrix of G is λ.

2.2 Samplers and Hitters

We present here a very succinct description of the notion of samplers and hitters, and the ones

that we use throughout this work. We refer the reader to Appendix A, where we elaborate

on the subject.

We begin with the formal definition of samplers and hitters. Fix n and set N = 2n. Let

f : [N ]→ [0, 1] be any function. Denote E[f ] = avg(f) = 1
N

∑

x∈[N ] f(x).

Definition 2.1. A (ǫ, δ)-sampler S with query complexity Q and randomness complexity r,

is a probabilistic oracle machine that for every n and every f : [N ] = {0, 1}n → [0, 1] tosses at

most r coins and queries no more than Q of the entries of f , in order to output an estimation

EstS(f) that satisfies

Pr[|EstS(f)− E[f ]| > ǫ] < δ.

We call ǫ the accuracy of the sampler, and 1− δ the confidence of the sampler.
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Definition 2.2. For any ǫ, δ > 0 and c ≥ 1, a c-hitter S for sets of density ǫ and confidence

1 − δ, is a probabilistic oracle machine with the following property. For every set T ⊂ N =

{0, 1}n with density ρ(T ) > ǫ, the TM S uses at most r random bits, and queries at most Q

points in N , which are denoted as x1, x2, . . . , xQ, that satisfy

Pr [ |{x1, x2, . . . , xQ} ∩ T | < c] < δ

In most of this work we use 1-hitters, which we simply refer to as hitters. It is obvious

that a c-hitter is an extension of the standard notion of a hitter. The reason for introducing

c-hitters, and not standard hitters, is discussed in Appendix A.

In this work we use four hitters and samplers. Whenever we refer to ”a hitter/sampler

which is linear/logarithmic in confidence”, we mean one of the four presented below. We

give their full description in Appendix A, where we also prove there their correctness. Here

we just give a short description of their complexities. Fix any n, ǫ, δ > 0. Then we have:

1. A (ǫ, δ)-sampler with query complexity O
(

1
ǫ2δ

)

and randomness complexity n. We refer

to this sampler simply as the sampler linear in confidence.

2. A c-hitter, for any c = O(1), for sets of density ǫ and with confidence 1− δ, with query

complexity O
(

1
ǫδ

)

and randomness complexity n. We refer to this c-hitter simply as

the hitter linear in confidence.

3. A (ǫ, δ)-sampler with query complexity O
(

1
ǫ2

log(1/δ)
)

and randomness complexity n+

O(log(1/δ)). We refer to this sampler simply as the sampler logarithmic in confidence.

4. A c-hitter, for any c = O(1), for sets of density ǫ and with confidence 1− δ, with query

complexity O
(

1
ǫ log(1/δ)

)

and randomness complexity n + O(log(1/δ)). We refer to

this c-hitter simply as the hitter logarithmic in confidence.
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3 Randomness-Efficient Graph Property Testers

We turn our attention to reducing the randomness complexity of graph property testers. As

it was explained in the introduction, graphs can be represented in two different fashions, as

an adjacency matrix or as adjacency lists. The first model is more suitable for dense graph

and the second is usually used for graphs of bounded degree. Similarly, this section is divided

into two parts, one dealing with each model.

For the adjacency matrix model, we discuss general methods for reducing the randomness

complexity of any graph property testers. We first give a lower bound for the randomness

complexity of property testers for some natural class of properties. The lower bound is

roughly log(N2/Q), where Q is the query complexity of the tester. In particular, the lower

bound we prove, shows that for these properties, testers have no deterministic equivalent

with query complexity o(N2). Therefore, unlike BPP, there is no hope for us to achieve a

full derandomization of property testers, while keeping the query complexity of the testers

sublinear. On the other hand, we show a non-constructive scheme to reduce the randomness

complexity of property testers. We also present a non-constructive scheme that reduces the

randomness complexity of all property testers with the same general outline, regardless of

which property they check for.

For bounded degree graphs, we show how to reduce the randomness complexity of several

specific property testers (such as bipartiteness, connectivety etc.). Note that reducing the

randomness complexity of testers, automatically reduces their Q-R complexity. As we show,

even the basic scheme of using better hitters and samplers than the ones that use total

independence, has a dramatic effect for the Q-R complexity of the testers. This is best shown

by the bipartiteness tester for bounded degree graphs, in Section 3.2.1. Its original version

[GR98] has Q-R complexity of O(N), which we were able to reduce to roughly O(
√
N).

3.1 Reducing the Randomness Complexity of Property Testers in the Ad-

jacency Matrix Model

This part deals with some general results regarding property testing of graphs in the adja-

cency matrix model. We show a lower bound on their randomness complexity, and an almost

matching (non-explicit) upper bound.

3.1.1 A Lower Bound on the Randomness Complexity of Graph Property Testers

As usual, before moving on to the claims of this section, we start with some notation.

Fix N > 0. Let SN be the group of permutations over N elements. Let G = (V,E) be a

graph over N vertices. We denote the isomorphic copy of G under φ as φ(G), which is defined

formally as the graph φ(G) = (V,E′), where 〈u, v〉 ∈ E if and only if 〈φ(u), φ(v)〉 ∈ E′.
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Note that a graph property Π of N -vertex graphs is not merely a set of graphs, but

rather must be closed under isomorphism. Formally, for any G ∈ Π, it holds that any graph

isomorphic to G must also belong to Π. That is to say that if G ∈ Π then for any φ ∈ SN ,

then the graph φ(G) also belongs to Π.

As it will be shown, the fact that Π is closed under isomorphism is important for the

proof of the lower bound.

Theorem 3.1. Fix N > 6, ǫ > 0, and let Π be a graph property for graphs over N vertices.

Assume that the complete graph over N vertices is 3ǫ-far from Π. Then any non-adaptive

property tester for Π with distance parameter ǫ and query complexity Q, must have random-

ness complexity of at least 2n− lgQ−O(1).

Before going into the proof we wish to note that for many graph properties, the complete

graph over N vertices, denoted KN , is indeed far from having these properties. Let us name

just a few of such graph properties: k-colorability, having max-cut (or max-clique) of size at

most ρN2 for some ρ < 1, minor-exclusion for some minor H, and subgraph-freeness. An

analogous case is when we have a graph property where the empty graph is far from it. For

such a graph property the theorem also holds, with basically the same proof.

Proof. The proof basically follows the outline of the proof in [CEG95], regarding the lower

bound on the randomness complexity of samplers. Let T be a property tester for Π with

distance parameter ǫ. Denote its randomness complexity by r. Let R be the set of all possible

random strings of T . For every ω ∈ R, let Dω ⊂ V × V be the set of vertex-pairs that T

queries when fed ω as a random string.8 Note that the random string suffices for us to

determine which vertex-pair T queries, since T is non-adaptive. We know that T makes at

most Q queries for every random string it is fed, so we have that for every ω ∈ R it holds that

|Dω| ≤ 2Q. Let D =
⋃

ω∈RDω, be the set of possible queries that T might make. Clearly

|D| ≤ 2|R| ·Q.

We wish to show that |D| ≥ 1
2N

2. That would mean that |R| ·Q ≥ 1
4N

2 and would give

us the required.

The way for us to show this, is to assume that the opposite hold, i.e. |D| < 1
2N

2, and

then to show that T can be cheated. Meaning, we show that exists two graphs, one is in Π

and the other is ǫ-far from Π, which T acts the same way for either one of them. So if T

accepts the first with probability at least 2/3, then it also accepts the other (with the same

probability).

Proposition 3.2. If |D| < 1
2N

2 then there exists some G and H, such that G ∈ Π and H

is ǫ-far from Π, and for every (u, v) ∈ D, the edge 〈u, v〉 ∈ E(H) if and only if the edge

〈u, v〉 ∈ E(G).

8Since an edge 〈u, v〉 ∈ E(G) is a non-ordered pair, then if T queries some vertex pair (u, v), then we add
both the vertex-pair (u, v) and the vertex-pair (v, u) to Dω.
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Assume that Proposition 3.2 holds. Suppose that indeed |D| < 1
2N

2, and let G and H

be as in the claim. Note that when T gets H as an input, for every random string it is fed,

we have that T views the exact same edges, in the exact same locations, as if its input is G.

That is because any query that T makes is some vertex-pair (u, v) ∈ D, and so T gets the

same reply from both G and H, which have representing matrices that are identical over the

vertex-pairs in D. So when T gets H as its input, and is fed any random string in R, then

T acts identically as though its input is G. Therefore, for every ω ∈ R, when the random

string of T is ω, then we have that T accepts G if and only if it accepts H. That means that

Pr[TH = 1] = Pr[TG = 1].

This gives an immediate contradiction to the fact T is a tester for Π. On the one hand

we have that T accepts G, which is a graph in Π, with probability at least 2/3. On the other

hand we have that T rejects H, which is ǫ-far from Π, with probability at least 2/3, which

means that T accepts H with probability at most 1/3. Contradiction follows, and our lower

bound is proven.

Proof of Proposition 3.2. Let G be a graph over N vertices, which is in Π, and that among

all graphs that are in Π, it holds that G has the maximal number of edges. That is to say

that exists no other graph G′ ∈ Π so that |E(G′)| > |E(G)|. Let I(G) denote the number of

entries in the representing matrix of G that are 1. The maximality of G gives that for every

other G′ ∈ Π we have that I(G) ≥ I(G′).
Let Z(G) be the set of vertex-pairs (u, v) ∈ V × V so that 〈u, v〉 /∈ E(G). That means

that Z(G) is the set of all vertex-pairs (vi, vj) ∈ V × V where vi 6= vj and the (i, j)-entry

in the representing matrix of G is 0. We know that the complete graph over N vertices is

3ǫ-far from having Π, and that the complete graph has a representation matrix which has 1

in every entry (except for entries on the main diagonal). Therefore exist at least 3ǫN2 entries

in the representing matrix of G (which are not on the main diagonal) that are 0. This means

that |Z(G)| ≥ 3ǫN2.

Assume for a moment that |Z(G) \ D| > ǫN2. By the definition of D, our assumption

is that at least ǫN2 of vertex-pairs in Z(G) are never queried by T . Then let H be the

graph where for every vertex-pair in |Z(G) \ D| we add an edge to G connecting that pair

of vertices. Clearly, I(H), which is the number of 1-entries in the representing matrix of

H, is I(H) = I(G) + |Z(G) \ D| > I(G) + ǫN2, and therefore H is ǫ-far from G. By the

maximality of G it also means that for any G′ ∈ Π it holds that I(G′) ≤ I(G) < I(H)− ǫN2.

This means that H is ǫ-far from any G′ in Π, and so H is ǫ-far from Π. We deduce that if

|Z(G) \D| > ǫN2 holds, then G and H are two graphs for which the Proposition 3.2 holds.

So far we have assumed that |Z(G) \D| > ǫN2. We next show that if this does not hold,

then some isomorphic copy ofG, denoted as φ(G), satisfies this condition (i.e. |Z(φ(G))\D| >
ǫN2). Since Π is closed under isomorphism, we have that the graph φ(G) is in Π. Since every
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isomorphic copy of G has the same number of edges as G, then it also holds that for every

G′ ∈ Π, we have that |E(φ(G))| = |E(G)| ≥ |E(G′)|. Therefore, we can construct H as

before, only with respect to φ(G) instead of G, and the claim still holds.

We show that there exists some φ ∈ SN so that |Z(φ(G)) \D| > ǫN2, using the proba-

bilistic method. For any pair (u, v) ∈ Z(G) denote by Xu,v the random variable indicating

whether for a randomly and uniformly selected φ ∈ SN , the pair (φ(u), φ(v)) belongs to D

or not. We have that

E[Xu,v] = Pr[Xu,v = 1] ≤
∑

(w1,w2)∈D

Pr[(φ(u) = w1)∧(φ(v) = w2)] =
|D|

N(N − 1)
≤ 1

2
+

1

N
<

2

3

Let X =
∑

(u,v)∈Z(G)Xu,v. By linearity of expectation, E[X] ≤ 2
3 |Z(G)|. This means that

exists some φ ∈ SN so that the number elements of Z(φ(G)) that fall in D is less than
2
3 |Z(G)|, thus, for that φ, more than 1

3 |Z(G)| ≥ ǫN2 of the vertex-pairs of Z(φ(G)) fall

outsize D. We are done.

We wish to give a few remarks about the lower bound proven in the last theorem.

1. The first remark is to note how essential randomness is for graph property testing. A

property tester is assumed to have query complexity which is o(N2), for otherwise, we

consider it to be inefficient. The previous claim give rigorous proof to the fact that no

deterministic graph property tester (for non-trivial properties) has query complexity

much smaller than N . More formally, if Q = o(N2) then r ≥ 2n − logQ > 0, and

therefore the tester must be a probabilistic algorithm. Also note that if Q = No(1)

then r ≥ (2− o(1)) · n.

2. The second remark is regarding the connection between r and logQ. There is an

obvious way for us to reduce the number of coin tosses that a tester uses by a single bit.

Assume that T is one-sided. If T is a tester with query complexity Q and randomness

complexity of r, we can construct a tester T ′ that has randomness complexity r − 1.

Given a random input of length r − 1 for T ′, it will simulate T assuming the last bit

is 0, and also simulate T assuming the last bit is 1. We reject if either one of the

simulations rejects, and accept if both simulations accept. Note, however, that the

query complexity of T ′ is twice the query complexity of T . This tradeoff between r

and Q shows exactly why we believe the lower bound of r ≥ n − logQ demonstrates

the correct correlation between r, n and Q.

3. Another remark is that the lower bound given shows no relation between the random-

ness complexity of a property tester to the distance parameter ǫ. We admit it to be a

drawback, and furthermore, we believe that by using more sophisticated probabilistic

techniques, it is possible to show a similar lower bound to the one shown in [CEG95]

16



for samplers. That is to say, that we believe one can prove, by a more complicated

proof than the last proof, that 2r ·Q ≥ (1−O(ǫ)) ·N2. However, we believe that this

also does not reflect the true connection between r and ǫ, and in fact, the actual lower

bound on the randomness complexity of a graph property tester should be something

in the line of r ≥ 2n− logQ+ log(1/ǫ)−O(1).

4. The last remarks is that our hypothesis that the tester is non-adaptive is indeed a

drawback. Despite our efforts, we found no way to extend the proof for adaptive

testers as well.

3.1.2 An Upper Bound on the Randomness Complexity of Graph Property

Testers

We now give the (non-explicit) upper bound. This upper bound holds only for specific testers,

known as canonical graph tester. However, Goldreich and Trevisan [GT01] have proven that

if Π is a testable graph property by a tester with query complexity Q, then it is testable by

a canonical property tester that has query complexity Q2.

Recall that for any X ⊂ V , we denote G[X] the subgraph of G over the vertices of X.

We now define formally a canonical tester.

Definition 3.3. Let Π be a graph property for graphs over N vertices. T is said to be a

canonical tester for Π if it gets as an input G, a graph over N vertices, and some distance

parameter ǫ, and then, for some integer K = KΠ(N, ǫ), it operates in the following manner:

1. Randomly and uniformly selects a subset X ⊂ V of size K.

2. Queries all edges in the subgraph G[X].

3. Accepts or rejects G solely based on the adjacency matrix of G[X], disregarding the

labeling of the vertices in X.

Note that a canonical property tester only tosses coins to choose X, and after choosing X

it no longer requires any randomness, so by knowing which graph over K vertices it viewed,

we can determine whether it will accept or reject G. The query complexity of T is
(

K
2

)

,

and its randomness complexity is K logN . Recall that the error probability of the tester is

said to be the probability that T accepts some G which is ǫ-far from Π, or, if T is 2-sided,

the probability that T rejects some G ∈ Π. We assume that a canonical tester has error

probability of at most 1/3.

Lemma 3.4. Let T be a canonical tester for some graph property Π. Fix any N and ǫ > 0,

and denote K as the number of vertices T picks, randomly and uniformly. For every 0 < δ <

1/6, there exists T ′, a tester for Π, that has the same query complexity as T , randomness
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complexity of 2n+ 2 log(1/δ) +O(1), and error probability of at most 1/3 + δ. Furthermore,

if T is one-sided then so is T ′.

Proof. The proof uses the probabilistic method. We use the Chernoff inequality to show that

replacing all possible coin tosses of T by a randomly selected set of size O((N/δ)2), is likely

to give the desired T ′.

Denote by Ω =
(

V
K

)

the set of all possible subsets that the tester selects, or the set of all

possible coin-tosses of the tester. Denote G as the set of all possible graphs over N vertices,

which either have Π or ǫ-far from Π. Since T is canonical, then for every X ∈ Ω and every

G ∈ G, we can determine what T outputs just by knowing G[X]. We denote by T (G[X]) the

output of T when it views the subgraph G[X]. Denote by χ(G) the indicating function of Π,

meaning for every G ∈ Π we have that χ(G) = 1, and for every G which is ǫ-far from Π we

have that χ(G) = 0.

We pick randomly a set R ⊂ Ω, of size O((N/δ)2), by repeating O((N/δ)2) times the

process of selecting uniformly, independently and randomly an element from Ω. Denote

r = |R|, and let X1, X2, . . . , Xr be the sets picked, each Xi is a set of K vertices.

Call G, a graph over N vertices, R-bad if for more than 1/3 + δ of the Xis, we have that

T (G[Xi]) 6= χ(G). Let us show that there exists a set R0 such that no G is R0-bad, and once

we have R0, we will use it to construct the desired T ′.

Fix any G ∈ G. For every i, let Yi be the random variable indicating whether T (G[Xi]) 6=
χ(G) or not. Since we know that for every i it holds that E[Yi] = PrUΩ

[T (G[Xi]) 6= χ(G)] ≤
1/3, and since we pick each Xi independently, we apply the Chernoff inequality and bound

the probability that G is R-bad by:

PrR∈RΩr [G is R-bad] = Pr

[

1

r

∑

i

Yi >
1

3
+ δ

]

≤ Pr
[
∣

∣

∣

∣

∣

1

r

∑

i

Yi − E[Yi]

∣

∣

∣

∣

∣

> δ

]

≤ 2e−
1
2
δ2r

Thus, for a random R, the probability that exists a R-bad graph G ∈ G, is bounded from

above, using the union bound, by 2(
N
2 ) · 2e− δ2

2
r. By setting r = 2

δ2N
2 we have that this

probability is strictly less than 1. We deduce that there exists some subset R ⊂ Ω of size

O((N/δ)2) such that for every G, it holds that PrUR
[T (G[X]) 6= χ(G)] ≤ 1/3 + δ. Fix R0 to

be this subset.

We now define T ′, which depends on the fixed set R0. Formally, T ′ acts as follows:

1. Selects a set X ∈ R0 randomly and uniformly.

2. Queries G[X].

3. Replies as T would reply when viewing the graph G[X].

Then T ′ is the required tester: its query complexity is just like the query complexity of T ,
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its randomness complexity is log(|R0|) = 2n+ 2 log(1/δ) +O(1), and its error probability is

PrUR0
[T (G[X]) 6= χ(G)] ≤ 1/3 + δ.

Note that we can set the value of δ to be some constant strictly smaller than 1/6. This

yields a tester T ′ which has randomness complexity of 2n + O(1), and error probability

bounded by 1/3 + δ < 1/2. (For example, if we take δ = 1/9, then we have randomness

complexity of 2n+ 8 and error probability of at most 4/9.)

We can view Lemma 3.4 as a statement of the following type: For every graph property

Π, and every canonical tester T for Π, exists some set R such that some condition holds.

Indeed, Lemma 3.4 fits the framework of this statement. First, we are given T , and then,

we find the set R0, to construct a tester T ′, whose randomness complexity is smaller than

the randomness complexity of T . In the proof of Lemma 3.4, the choice of the set R0 was

based on T . It may very well be the case, that for one tester we pick a certain set R0, and

for another tester we pick a different set R0.

We wish to prove something stronger. We wish to fix in advance one set U that will

enable us to reduce the randomness complexity of every property tester T . That is to say

that first we pick U , and then we are given a property tester T for some graph property

Π, and we want to use U in order to construct some tester T ′, similarly to the construction

shown in the proof of Lemma 3.4. That is, we wish to prove a statement of the type: There

exists a set U , such that for every graph property Π and every canonical tester T for Π, some

condition (the same condition as before) holds. As we show, this statement can be proven.

We begin with definitions. Fix N,K. Denote by GN the set of all graphs over N vertices.

For any ǫ > 0, and any Π, a property of graphs in GN , we say Π is K-testable for ǫ by T , if

T is a canonical tester for Π and T randomly and uniformly selects a subset of K vertices in

V and queries the subgraph over these K vertices. As before, denote Ω =
(

V
K

)

, the set of all

possible subsets of vertices of size K.

Definition 3.5. Let δ > 0. We call U , a subset of Ω, a (K, δ)-universal set if for any Π, a

property for graphs in GN , any ǫ > 0 and any canonical tester T such that Π is K-testable

for ǫ by T , then there exists a tester T ′ that does the following:

1. Selects uniformly a set X ∈ U .

2. Queries G[X].

3. Replies as T replies when viewing (G[X]).

and has error probability at most 1/3 + δ.

A universal set U means the following. We have a fixed U . We then take any property Π

and any canonical tester T such that Π is K-testable (for some ǫ > 0) by T . We now restrict
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T to pick a subset of K vertices, uniformly from U , and not from all Ω. Then, the definition

of U guarantees us that the error probability of this restricted version of T does not exceed

1/3 + δ.

For instance, for any K, the set Ω =
(

V
K

)

, containing all possible sets of K vertices, is

(K, 0)-universal, by definition. Note that Ω is of size approximately NK . We show, that a

significantly smaller (K, δ)-universal set exists.

Theorem 3.6. Fix N,K, 0 < δ < 1/6. Then, exists a (K, δ)-universal set U of size

O
(

2K2
N2/δ2

)

.

At first glance, it seems that Theorem 3.6 has to be false. The number of all possible

graph properties can be huge. Even if we restrict ourselves to graph properties that are

testable, then it still can be very high. It seems highly unlikely that a set of size roughly

N2 ≪ NK can be universal, since a universal set means the same set is good for all graph

properties. However, we exploit the fact that there are at most 2(K
2 ) possible canonical testers

that query a subgraph over K vertices.9 Once we focus on the fact that U has to be good

for all property testers, then Theorem 3.6 seems much more reasonable.

Recall that we denote N = 2n. Theorem 3.6 means, that for every property Π which

for some ǫ is K-testable, there exists a tester T ′ with randomness complexity of 2n+K2 +

2 log(1/δ)+O(1), while the straightforward canonical tester for Π has randomness complexity

of K · n. When K does not depend on n, or when K is relatively small, this gives a great

decrease in randomness.

Proof. Again, we use the probabilistic method to show that a set of certain properties exists.

Given that set, we show that its properties yield the required universal set. Denote by GK

the set of all graphs over K vertices.

Proposition 3.7. There exists a set U ⊂ Ω of size O
(

2K2
N2/δ2

)

, with the following

property: For every G ∈ GN and every H ∈ GK we have that

|PrX∈RΩ[G[X] = H]− PrX∈RU [G[X] = H]| < δ/|GK |

That is to say, that for every U , any graph G over N vertices, and any graph H over K

vertices, we look at two probabilities: The first, p1, is the probability that when selecting a set

from all possible sets of K vertices, the subgraph of G over the set picked is H. The second,

p2, is that probability that when selecting a set of K vertices uniformly from U , the subgraph

of G over the set picked is H. The proposition claims that exists a set U that for any such G

9We explain the difference between the high number of graph properties to the relatively small number of
property testers, by the fact that the same tester may be good for several graph properties, and also by the
fact that many properties cannot be tested by a tester with query complexity

(

K
2

)

.
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and any such H, we have that p1 and p2 are extremely close: |p1 − p2| < δ
|GK | = δ/ exp

(

K
2

)

.

This property of U , suffices for us to show that U is (K, δ)-universal.

Proof (of Proposition 3.7). Similar to the proof of Lemma 3.4. Fix u = |U | = O
(

2K2
N2/δ2

)

and select U by randomly, independently and uniformly selecting u elements from Ω. Denote

those elements as X1, X2, . . . , Xu.

Fix any G,H. Let Yi be the random variable indicating whether G[Xi] = H. Denote

ρ = E[Yi] = PrX∈RΩ[G[X] = H], and also denote Y = 1
u

∑u
i=1 Yi. Let us bound the

probability that |ρ − Y | > δ/|GK |, using the independence of the Xis and applying the

Chernoff inequality:

Pr [|Y − ρ| > δ/|GK |] = Pr

[
∣

∣

∣

∣

∣

∑

i

Yi − uρ
∣

∣

∣

∣

∣

> u · δ/|GK |
]

≤ 2 exp

(

− δ2

2|GK |2
u

)

Since we set u = 4 · 2K2
N2/δ2, and since |GK | ≤ 2

1
2
(K2−K) we get that this probability is

upper bounded by 2 exp(−N22K).

Applying the union bound, and the fact that |GN | ≤ 2
1
2
N2
, |GK | ≤ 2

1
2
K2

we have that for

any N,K ≥ 4, it holds that

Pr [∃G,H s.t. |ρ− Y | > δ/|GK | ] ≤ |GN ||GK | exp(−N22K) ≤ 2
1
2
(N2+K2) · 2e−N22K

< 1

We deduce that ∃U ⊂ Ω of size 4 · 2K2
N2/δ2, with the required property.

Continuing with the proof of Theorem 3.6, we show that the set U from Proposition 3.7

is the alleged (K, δ)-universal set. Let Π ,ǫ > 0 and T be such that Π is K-testable for ǫ by

T . As before, let χΠ : Gn → {0, 1} be the indicating function of Π. Meaning, for every G ∈ Π

we have that χΠ(G) = 1, and for every G which is ǫ-far from Π we have that χΠ(G) = 0.10

Let G ∈ GN be any graph which either has Π or it is ǫ-far from every graph that has Π.

Denote by MT the set {H ∈ Gk; T (H) 6= χΠ(G)}. I.e. MT is the set of all graphs H ∈ GK

that if T finds that G[X] = H, it outputs the wrong answer (rejects G if G ∈ Π, or accepts

G if G is ǫ-far from Π). Thus, Pr[T errs] = Pr[T views a graph from MT ]. Since T is the

canonical tester that picks a set of K vertices uniformly from Ω, then we have:

Pr[T errs] = PrX∈RΩ[G[X] ∈MT ]

Define T ′ as the tester from the definition of (K, δ)-universal S. Since T ′ replies as T

replies, we have that Pr[T ′ errs] = Pr[T ′ views a graph from MT ]. Since T ′ picks a set

10For any G ∈ GN that is neither in Π nor is ǫ-far from Π, we care not what value χΠ gives G.
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uniformly from U , then we have:

Pr[T ′ errs] = PrX∈RU [G[X] ∈MT ]

Given the property of U , we deduce that

∣

∣Pr[T ′ errs]− Pr[T errs]
∣

∣ = |PrX∈RU [G[X] ∈MT ]− PrX∈RΩ[G[X] ∈MT ]| ≤
∑

H∈MT

|PrX∈RU [G[X] = H]− PrX∈RΩ[G[X] = H]| ≤ |MT |
δ

|GK |
≤ δ

This completes the proof of Theorem 3.6

Note, as before, that we can fix δ to be some small constant, and obtain a universal set of

size O(2K2
N2). This means that we have a tester with query complexity of

(

K
2

)

, randomness

complexity of 2n+K2 +O(1), and error probability bounded from 1/2.

We conjecture that one can find an explicit way to construct a universal set U of size

N c exp(O(K2)) for some constant c (preferably 2). We consider it as a very interesting open

problem.

3.2 Reducing the Randomness Complexity of Property Testers for Bounded

Degree Graphs

In the following section, we discuss several property testers for graphs in the bounded-degree

model, and show how to decrease their randomness complexity. We assume they all get as

input some graph G, over N vertices, with degree bound d. For each testable property, we

state the current known tester, how to reduce its randomness complexity, and how it affects

its query, randomness and Q-R complexity. Note that unlike our the bipartiteness tester for

the matrix adjacency model, we do not modify the testers discussed here. We do nothing

more than simply ”plug in” our hitters and samplers, instead of using total independence.

This simple technique produces a significant decrease in the randomness complexity of these

testers, yet keeps their original query complexity. As a result, we get a significant decrease

in the Q-R complexity of these testers. We refer to Section 3.2.6 for a quantitative summary

of the results. We note that in the majority of the cases here, we use a hitter or a sampler

linear in confidence.

3.2.1 Testing Bipartiteness

We begin with stating the original algorithm which was proved in [GR98] to be a one-sided

tester for bipartiteness.
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Algorithm 1 Bipartiteness Tester

1: Pick v1, v2, . . . , vs vertices, randomly, uniformly and independently, where s = Θ(1/ǫ).

2: For every vi, perform K = O
(

log1/2(N/ǫ)
ǫ3

)√
N independent random walks, each consists

of L = O
(

log6(N/ǫ)
ǫ8

)

independent steps. If those random walks found cycle of odd length,

reject G.
3: If no odd-cycle was found for any vi, accept G.

We indicate that the analysis of [GR98] refers to random walks that aren’t standard

random walks. They discuss random walks in which each step is taken in the following

manner: for every v in the walk and every u ∈ Γ(v), with probability ( 1
2d) we go from v to

u, and with probability 1− |Γ(v)|
2d we remain in v.

Algorithm 1 has:

Query Complexity: s(1 +K · L) = Õ(ǫ−12 ·
√
N).

Randomness Complexity: s · lgN +K · L · lg(2d) = Õ(ǫ−11 ·
√
N).

Q-R Complexity: Õ(ǫ−23 ·N).

Note that the Q-R complexity is greater than N , and so it is crucial that we reduce the

randomness complexity of this tester. We would like to add that Goldreich and Ron [GR02]

gave a lower bound of Ω(
√
N) on the query complexity of any one-sided bipartiteness tester

for bounded degree graphs. Therefore, it is not possible to reduce (significantly) the query

complexity of the tester. Thus, in order to reduce the Q-R complexity of the tester, we

reduce its randomness complexity.

Due to the fact that the analysis of this tester is quite complicated, we modify this algo-

rithm in two steps. The first step gives a one-sided testing algorithm whose error probability

is slightly smaller than 1, yet by a noticeable gap. The second step is to amplify the success

probability of the first tester, in order to achieve a tester with error probability at most 1/3.

We begin with the weaker version of the tester.

Algorithm 2 Modified Bipratiteness Tester, Weak Version

1: Pick a vertex u randomly and uniformly from V .

2: Let L be the set of all possible random walks of length L = O
(

log6(N/ǫ)
ǫ8

)

. Pick K =

O
(

log1/2(N/ǫ)
ǫ3

)√
N walks out of L in a 4-wise independent manner.

3: Perform the K random walks leaving v. If these walks close some odd-cycle, reject G.
Otherwise, accept G.

Lemma 3.8. Algorithm 2 accepts every G which is bipartite, and rejects any G which is

ǫ-far from bipartite, with probability at least ǫ
160 .

Lemma 3.8 is proven at a later stage. We first consider the complexity of Algorithm 2.
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The set L is of size (2d)L, since in every step we just need to pick one neighbor of the current

vertex. Therefore, we can pick one element in L using L·log(2d) = O
(

log6(N/ǫ)
ǫ8

)

random bits,

and we can pickK elements in a 4-wise independent manner using 4·L·log(2d) = O
(

log6(N/ǫ)
ǫ8

)

random bits. Therefore, the randomness complexity of Algorithm 2 is logN+4 ·L · log(2d) =

O
(

log6(N/ǫ)
ǫ8

)

. Therefore, we have that Algorithm 2 is of:

Query Complexity: K · L = Õ(ǫ−11 ·
√
N).

Randomness Complexity: O
(

log6(N/ǫ)
ǫ8

)

.

Q-R complexity: Õ(ǫ−19 ·
√
N).

Assuming Lemma 3.8 holds, we can amplify Algorithm 2, using a hitter linear in confi-

dence.

Algorithm 3 Modified Bipariteness Tester, Strong Version

1: Let R be the set of all possible coin tosses for Algorithm 2.
2: Pick a set S ⊂ R, using a hitter linear in confidence, for sets of density at least ǫ

160 , and
confidence 2/3.

3: For every ω ∈ S, simulate Algorithm 2 with ω as its random string.
4: If in one of the simulation G was rejected, reject G. Otherwise, accept G.

Theorem 3.9. Algorithm 3 is a one-sided tester for bipartiteness.

Proof of Theorem 3.9. Let G be a bounded degree graph over N vertices. If G is bipartite,

then we know Algorithm 2 always accepts G, and therefore, no matter what S Algorithm 3

picks, in all simulations G is accepted, and so Algorithm 3 also accepts G.

If G is ǫ-far from bipartiteness, then we know that there exists some subset T ⊂ R,

of density at least ǫ
160 , such that for every ω ∈ T , Algorithm 2 rejects T when given ω

as a random input. By the definition of the hitter of Step 2, we will hit a string from T

with probability at least 2/3. Therefore, with probability at least 2/3 in at least one of the

simulations G is rejected, causing Algorithm 3 to reject G.

We wish to note that Algorithm 3, which simulates Algorithm 2 many times in order to

reduce the error probability of Algorithm 2, is a specific case of a general error amplification

scheme, as shown in Appendix A. Using this scheme, we can perform many simulations of

Algorithm 2, using the same number of random bits as Algorithm 2 uses.

In Step 2 of Algorithm 3, we use a hitter linear in confidence. This means that the number

of samplers it requires is O(1
ǫ ), and it uses log(|R|) random bits. Denote the randomness

complexity of Algorithm 2 by r, and we have that log(|R|) = r = O
(

log6(N/ǫ)
ǫ8

)

. Note that

for every sample in S we simulate Algorithm 2, which means that the total query complexity

is Õ(1
ǫ · 1

ǫ11
·
√
N) = Õ(ǫ−12 ·

√
N). Therefore, Algorithm 3 is of:

Query Complexity: Õ(ǫ−12 ·
√
N).
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Randomness Complexity: O
(

log6(N/ǫ)
ǫ8

)

.

Q-R Complexity: Õ(ǫ−20 ·
√
N).

Note that we have not changed the query complexity of the tester, and it is the same

as in the original tester. The only difference is in the dramatic decrease in the randomness

complexity of the tester, which leads to a decrease in the Q-R complexity.

All is left is for us to prove that indeed Algorithm 2 has a non-negligible probability of

success.

Proof of Lemma 3.8. If G is bipartite, no odd-length cycles exist in G, so the modified tester

finds no odd-length cycles, and must accept G.

So from now on, assume G is ǫ-far from being bipartite. We show that the proof of [GR98]

still holds, despite the modifications made. The proof of [GR98] is fairly complicated. They

define, for every G, every H ⊂ V , and any two intergers l1, l2, a Markov chain M l2
l1

(H) that

simulates a random walk of length l1 · l2 over G[H], that whenever it leaves H, it takes at

least l2 steps before returning to H.

For any single random walk, each step is independent of the rest of the steps, so all

lemmas in the proof of [GR98] regarding the properties of such a walk hold.

Only a single lemma (Lemma 4.5 in [GR98]) refers to the behavior of a set of walks rather

than to an individual walk. Specifically, this lemma lower bounds the probability that K

random walks succeed in finding an odd-length cycle (given some properties of M l2
l1

(H)). For

any two walks, i, j, denote by ηi,j the random variable indicating whether some vertex v ∈ H
was met both in the ith walk and in the jth walk, while the lengths of the paths to v in

both walks are of different parity (i.e. one walk corresponds to an even-length path, and the

other walk corresponds to an odd-length path). In Lemma 4.5 of [GR98], the Chebyshev’s

inequality is used to upper bound the probability Pr
[

∑

i<j ni,j = 0
]

, meaning the probability

that in none of the walks, no such v was found.

Note that not all pairs of ηi,j , ηk,l are independent. For example ηi,j and ηi,k are very

much dependent (the same walk affects them both). Nevertheless, one can bound the variance

var
(

∑

i<j ηi,j

)

. In fact, most of the proof of Lemma 4.5 of [GR98] deals with bounding this

variance, in order to apply Chebyshev’s inequality.

We note that the original argument holds also if the walks are 4-wise independent, rather

than taken totally independent.

The original argument is based on the following two observations:

• For every i, j, l, k the random variables ηi,j and ηl,k are identically distributed.

• For every 4 distinct i, j, k, l, we have that ηi,j and ηl,k are independent.

Using these observations, they give bounds for the first and second moments of
∑

i<j ηi,j ,

based on bounds for the first and second moments of η1,2 · η1,2 and η1,2 · η1,3.
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Therefore, it is easy to see that by taking the walks to be 4-wise independent rather than

totally independent, both observations still hold. Furthermore, the analysis of the first and

second moments for η1,2 · η1,2 and η1,2 · η1,3 still holds, since the 4-wise independence of the

walks means also that every 2 or 3 walks are independent of one another. We conclude that

Lemma 4.5 of [GR98] holds, for the modified tester.

The rest of the analysis of [GR98] applies here. Let us elaborate. The final step in the

proof of [GR98] introduces the definition of a bad vertices - vertices for which such random

walks will find an odd-length cycle with probability at least 0.1. It is proven in [GR98] that

there must be at least ǫ
16N bad vertices in G, for otherwise, one can find a partition of G with

less than ǫdN violating edges. This proof is based on Lemma 4.5, and the analysis of the

success probability of the K random-walks to find an odd-length cycle. As we have shown

just now, performing these K random walks in a 4-wise independent manner, gives the same

success probability on finding an odd-length cycle. Therefore, there must be also at least
ǫ
16N vertices, which are bad with respect to the random walks of Algorithm 2. Meaning,

that by taking the K random walks in a 4-wise independent manner, we have that they find

an odd-length cycle with probability at least 0.1.

Therefore, the probability that Algorithm 2 picks a bad vertex as its starting point is at

least ǫ
16 . Given that the starting vertex is bad, we know that Algorithm 2 has probability of

at least 0.1 to find an odd-length cycle. Therefore, we deduce that with probability at least
ǫ
16 · 1

10 = ǫ
160 , Algorithm 2 finds an odd-length cycle, and rejects G.

3.2.2 Testing Connectivity

We begin with stating the original algorithm, which was proven in [GR02] to be a one-sided

tester for connectivity.

Algorithm 4 Connectivity Tester

1: for i = 1, 2, ..., l = log(8/ǫd) do

2: Select mi = 32 log(8/ǫd)
2iǫd

vertices randomly, uniformly and independently.
3: For each vertex v picked, do a BFS starting from v until 2i vertices are found. If a

component of size at most 2i is found then reject G.
4: end for
5: If for all i no component of size at most 2i was found, then accept G.

Algorithm 4 has:

Query complexity:
∑l

i=1
32 log(8/ǫd)

2iǫd
2i = O(l log(1/ǫd)

ǫd ) = O( log2(1/ǫd)
ǫd )

Randomness complexity:
∑l

i=1 logN 32 log(8/ǫd)
2iǫd

= O( log(1/ǫd)
ǫd logN)

Q-R complexity: O( log3(1/ǫd)
(ǫd)2

logN).

We now introduce a modified version of Algorithm 4, with better randomness complexity.
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Algorithm 5 Modified Connectivity Tester

1: For i = 1, 2, . . . , l = log(8/ǫd), let Si be a hitter linear in confidence, for sets of density

at least 2iǫd
16l , and confidence at least 2/3.

2: Let Ri be the set of all possible random inputs for Si. Since all Si are linear in confidence,
we may use R1 = R2 = . . . = Rl = R.

3: Pick randomly and uniformly a string ω ∈ R.
4: for i = 1, 2, . . . , l do
5: Use Si and ω to produce a set of mi vertices.
6: For each vertex v in this set, do a BFS starting from v until 2i vertices were found. If

a component of size at most 2i is found then reject G.
7: end for
8: If for all i no component of size at most 2i was found, then accept G.

We wish to note the use of several hitters, which all use the same random string. As

we show, the analysis is based on the success probability of some single iteration (i.e. for a

certain i). We do not know a-priori for which of the l values we wish for this hitter to succeed.

But that does not change the fact that we only need it to succeed in one iteration. The fact

that we could use the same coins for all hitters is due to the fact that we can construct hitters

and samplers with the same randomness complexity, regardless to the value of ǫ.

Claim 3.10. Algorithm 5 is a one-sided tester for connectivity.

Proof. If G is connected then a single connected component of size N exists, and so the

tester accepts G. If G is ǫ-far from being connected, then, as it was shown in [GR02], the

number of connected components of size at most 8
ǫd in G is at least ǫ

8dN . Denote by Bi the

number of connected components which are of size t for some t that belongs to the interval

[2i−1, 2i). Clearly,
∑l

i=1 |Bi| ≥ ǫ
8dN . Therefore, there exists i0 such that |Bi0 | ≥ ǫ

8ldN . For

every i, denote by Ti the set of vertices belonging to the connected components that are in

Bi. Thus, |Ti0 | ≥ 2i0−1 · |Bi0 | = (2i0ǫdN)/16l.

The probability that for this i0, the hitter Si0 fails to hit a vertex from Ti0 is at most 1/3.

If a vertex that belongs to Ti0 is hit, then the BFS starting from vertex finds a connected

component of size smaller than 2i0 , and thus the tester rejects G. Thus, with probability at

least 2/3, the tester succeeds in finding a small connected component, and rejects G.

This modification yields an algorithm of the following complexity:

Query complexity:
∑l

i=1mi2
i = O

(

log2(1/ǫd)
ǫd

)

= Õ
(

1
ǫd

)

.

Randomness complexity: logN .

Q-R complexity: O
(

log2(1/ǫd)
ǫd

)

· logN = Õ
(

1
ǫd

)

· logN .

Yet again we note that the query complexity of the original tester, and the query com-

plexity of the modified tester, are identical. The change in the Q-R complexity is all due to

the decrease in the randomness complexity.
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3.2.3 Testing Cycle-Freeness

Before discussing the tester for cycle freeness, we introduce the following notation. A con-

nected component C in G, is called big if its size is greater than 8
ǫd , and small if its size is

at most 8
ǫd .

As always, we first state the original algorithm, which was proven in [GR02] to be a

two-sided tester for cycle-freeness.

Algorithm 6 Cycle-Freeness Tester

1: Select randomly, uniformly and independently a sample S of l = O( 1
ǫ2

) vertices.
2: For each vertex selected, perform a BFS to check whether it belong to a small or big

component. If any small connected component containing a cycle is found, reject G.
3: Denote by Sb the set of vertices in S that belong to big components, and denote lb = |Sb|.

Denote also by eb half the sum of their degree. (eb = 1
2

∑

v∈Sb
deg(v)). If eb−lb

l ≥ ǫd
16 reject

G, otherwise, accept G.

Algorithm 6 has:

Query complexity: O( 1
ǫ2
· 1

ǫd) = O( 1
ǫ3

).

Randomness complexity: O( 1
ǫ2

logN).

Q-R complexity: O( 1
ǫ5d

logN).

We now introduce a modified version of Algorithm 6, with better randomness complexity.

Algorithm 7 Modified Cycle-Freeness Tester

1: Select S using a sampler logarithmic in confidence, with accuracy ǫ
16d and confidence at

least 1− 1
3(d+2) .

2: Perform Steps 2 and 3 as in the original Algorithm 6.

Claim 3.11. Algorithm 7 is a 2-sided tester for cycle-freeness.

Proof. A known fact is that a tree over t vertices contains t − 1 edges. Therefore, if G is a

cycle-free graph, and we denote its connected components as C1, C2, . . . , Ck, then we have

that the number of edges in G is
∑k

i=1(|Ci| − 1) = N − k. However, if G is ǫ-far from

cycle-freeness, then at least 1
2ǫdN edges, which we call superfluous edges, need to be removed

from G in order to have a cycle-free graph. That means that the total number of edges in G

is at least N + 1
2ǫdN − k. Therefore, the basic notion of the tester is to estimate the number

of edges in G. Recall that the number of edges in a graph is |E| = 1
2

∑

v∈V deg(v), so we can

estimate that number of edges in G by estimating the average degree of the vertices in G.

However, the number of edges in both cases depends on k, the number of connected

components in G, which can be as high as O(N). Therefore, Goldreich and Ron [GR02]

treat big and small components differently. They only estimate the number of vertices and
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edges that reside in big components. Small components are dealt by traversing all vertices

in them, and seeking a cycle.

Suppose we only had to test for graphs which are either cycle-free or that they have many

cycles in small components. That means, that a lot of cycles belong to components with no

more than 8
ǫd vertices. This is easily solvable by repeating the following procedue: Pick a

vertex at random and perform a BFS of no more than 8
ǫd vertices. If G is cycle free, this

procedure never finds a cycle, and if G is a graph with many cycles, we are likely to find a

cycle, if we repeat this procedure a sufficient number of times.

Suppose the opposite case, in which we have to test for graphs which are either cycle-free,

or that have many cycles in big components. Note that we can upper bound the number of

big connected components by N
8/ǫd = 1

8ǫdN . This time, we estimate the number of edges

in the big components, by estimating the average degree of vertices that belong to the big

components of G. If we have that too many edges belong to big components, we can reject

G, since that means that some cycle in these components exists.

Since we know that G has at least 1
2ǫdN superfluous edges, then one of two must hold:

either G has at least 1
4ǫdN superfluous edges that belong to small connected components, or

at least 1
4ǫdN superfluous edges belong to big connected components. We therefore test for

both cases. If G has at least 1
4ǫdN edges that belong to small connected components, then

we need a sample set S which is likely to hit a vertex in the set C = {v ∈ V ; v belongs to a

small component}. If G has at least 1
4ǫdN edges belong to big connected components, then

we need S to give a good estimation on the following d+ 1 sets:

B0 = {v ∈ V ; v belongs to a big component},
Bj = {v ∈ V ; v belongs to a big component, and deg(v) = j} for j = 1, 2, . . . , d.

The point is that we can use a single sampler that gives a good estimation for all d + 2

sets. For any set A ∈ {C,B0, B1, B2, . . . , Bd}, a sampler of accuracy of ǫ/16d and confidence

at least 1 − 1
3(d+2) produces an estimation which is ǫ

16d -far from the density of A, with

probability at most 1
3(d+2) . Using the union bound, the probability that exists some set

A ∈ {C,B0, B1, . . . , Bd} for which the sampler gives an estimation which is ǫ
16d -far from the

density of A, is at most (d + 2) 1
3(d+2) = 1

3 . We have that with probability at least 2/3, the

sample S allows us to estimate the densities of all sets in {C,B0, B1, B2, . . . , Bd}, up to an

accuracy factor of ǫ
16d .

So now, let us prove the correctness of the tester. Denote by tb the number of big

components of G. Denote by N ′ the number of vertices that belong to big components of

G and by M ′ the number of edges in these components. For any i ∈ {1, 2, . . . , l}, denote by

χi the indicator random variable which equals 1 if and only if the ith vertex of S is in a big

component. For any i ∈ {1, 2, . . . , l} and any j ∈ {1, 2, . . . , d}, denote by ψi,j the indicator

random variable which equals 1 if any only if the degree of the ith vertex is j, and the ith

vertex belongs to a big component.
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This notation means that for lb, the number of a vertices in S that belong to big com-

ponents, it holds that lb =
∑l

i=1 χi. Similarly, for eb = 1
2

∑

v∈Sb
deg(v), it holds that

eb = 1
2

∑l
i=1

∑d
j=1 j · ψi,j . Also, E[ lb

l ] = E[χi] = N ′

N , and E[ eb
l ] = M ′

N .

Now, if G is cycle free, Step 2 does not find a cycle in G. Let us assume that for every

set in {C,B0, B1, . . . , Bd}, the sampler gave an estimation which is ǫ
16d -close to its density.

Since d ≥ 2 we have that lb
l = 1

l

∑l
i=1 χi is ǫ

32 -close to E[ lb
l ] = N ′

N . Also, for every j, we have

that we have that 1
l

∑

i ψi,j is ǫ
16d -close to E[

j·|Bj |
N ]. That means that

∣

∣

∣

eb
l
− E

[eb
l

]
∣

∣

∣
=

∣

∣

∣

∣

∣

∣

1

l
· 1
2

l
∑

i=1

d
∑

j=1

j · ψi,j −
d
∑

j=1

E

[

j · ψi,j

2l

]

∣

∣

∣

∣

∣

∣

≤
d
∑

j=1

j

2
·
∣

∣

∣

∣

∣

1

l

∑

i

ψi,j − E [ψi,j ]

∣

∣

∣

∣

∣

≤ d2

2
· ǫ

16d
≤ ǫd
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and therefore
∣

∣

∣

∣

eb − lb
l
− M ′ −N ′

N

∣

∣

∣

∣

≤
∣

∣

∣

∣

eb
l
− M ′

N

∣

∣

∣

∣

+

∣

∣

∣

∣

lb
l
− N ′

N

∣

∣

∣

∣

≤ ǫd

16

Recall that G is cycle free, therefore, M ′ < N ′ and so we have that eb−lb
l < 0 + ǫd

16 = ǫd
16 .

Therefore, if S estimates all d + 2 sets correctly, we have that the tester accepts G. Since

with probability at least 2/3 we have that all d + 2 sets are correctly estimated, we deduce

that Algorithm 7 accepts G with probability at least 2/3.

If G is ǫ-far from cycle-free, we have shown that either G has at least 1
4ǫdN superfluous

edges that belong to small connected components, or at least 1
4ǫdN superfluous edges belong

to big connected components.

In the first case - since any component with e edges must contain at least 2e
d vertices,

then the total number of vertices in small components with at least one superfluous edge is

at least 1
2ǫN . Thus, with probability greater than 2/3 the set S hits a vertex from such a

small component, and so Step 2 rejects G, in this case.

If at least (ǫd/4)N superfluous edges belong to big connected components, we have that

tb ≤ N
8/ǫd = ǫd

8 N , and so

M ′ −N ′
N

=
M ′ − (N ′ − tb)− tb

N
≥ (ǫd/4)N

N
− 1

8
ǫd ≥ ǫd

8

As before, with probability at least 2/3 we have that
∣

∣

∣

eb−lb
l − M ′−N ′

N

∣

∣

∣
≤ ǫd

16 , meaning that
eb−lb

l ≥ ǫd
8 . Therefore, with probability at least 2/3, Step 3 rejects G.

We have that in each case we reject G with probability at least 2/3, and therefore, we

have a tester for cycle-freeness.

We wish to note that we want a sampler of accuracy of ǫ/(16d) and confidence at least
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1− 1
3(d+2) . By using a sampler logarithmic in confidence, we have that the set S of samples

that the sampler produces, is of size O(d2 · ǫ−2 log(1/d)) = O(ǫ−2), and that the sampler

requires logN +O(log(3(d+ 2))) random bits. That means that Algorithm 7 has:

Query complexity (which remains the same as in Algorithm 6): O( 1
ǫ3

).

Randomness complexity: logN +O(log(d)) = logN +O(1).

Q-R complexity: O(ǫ−3 logN).

3.2.4 Testing Subgraph Freeness

Fix some graph H, and denote vh = V (H), dh = diam(H). We say a graph G is H-free if it

contains no subgraph isomorphic to H.

We state the original algorithm, which was proven in [GR02] to be a one-sided tester for

subgraph-freeness.

Algorithm 8 H-freeness Tester

1: Select randomly, uniformly and independently m = O(1
ǫ ) vertices.

2: For every v selected, perform a BFS starting from s that ends after depth dh.
3: If found a subgraph isomorphic to H, Reject G. Otherwise, accept G.

Algorithm 8 has:

Query complexity: O(1
ǫd

dh).

Randomness complexity: O(1
ǫ logN).

Q-R complexity: O(ǫ−2ddh logN).

We now introduce a modified version of Algorithm 8, with better randomness complexity.

Algorithm 9 Modified H-freeness Tester

1: Select S using a hitter linear in confidence for sets of density at least ǫ and confidence at
least 2

3 .
2: Perform Steps 2 and 3 as in the original Algorithm 8.

Claim 3.12. Algorithm 9 is a one-sided tester for H-freeness.

Proof. Clearly if G is H-free then this algorithm accepts G, since no matter what vertices

we pick, the BFS will never find a subgraph isomorphic to H.

If G is ǫ-far from H-freeness, then at least 1
2ǫdN edges reside in copies of H, since every

vertex is of degree at most d then at least 1
d · 2 ·

(

1
2ǫdN

)

= ǫN vertices reside in these copies

of H. Thus, with probability at least 2/3 the hitter will hit one, and the tester will reject

G.

This modification yields a tester which has:

Query complexity (which remains the same as in Algorithm 8): O(1
ǫd

dh).
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Randomness complexity: logN .

Q-R complexity: O(ǫ−1ddh logN).

3.2.5 Testing if a Graph is Eulerian

Recall that a graph G is Eulerian if exists a path that traverses every edge of G exactly once.

A well known fact is that G is Eulerian if and only if it is connected, and either all of its

vertices are of even degree, or exactly two of them are of odd degree and the rest are of even

degree.

We begin by stating the original algorithm, which was proven in [GR02] to be a tester

for Eulerian graphs.

Algorithm 10 Eulerian Testing Algorithm

1: Check whether G is ǫ/2-far from being connected, using the previous connectivity tester.
If it rejects - reject G.

2: Select randomly, uniformly and independently m = O(1
ǫ ) vertices. Query for every vertex

its neighbors.
3: If more than two vertices out of the m vertices are found to have odd-degree - reject G.
4: Otherwise - accept G.

Algorithm 10 has:

Query Complexity: O( log2(1/ǫd)
ǫ ).

Randomness Complexity: O
(

log(1/ǫd)
ǫ + 1

ǫ logN
)

= O
(

log(1/ǫd)
ǫ logN

)

.

Q-R Complexity: O( log3(1/ǫd)
ǫ2

logN) = Õ(ǫ−2 logN).

We now introduce a modified version of Algorithm 10, with better randomness complexity.

Recall that there exist Eulerian graphs G with two of their vertices having odd degree. That

is why Algorithm 10 rejects its input only if 3 vertices of odd degree are found. If it were the

case that Algorithm 10 rejects the input after seeing solely one odd-degree vertex, then it

would be possible for the tester to reject some Eulerian graph, and therefore it wouldn’t be

a one-sided tester. As in all modifications done thus far, the randomness-efficient version of

the tester that we show here, uses a hitter. This time, we cannot use a hitter in order to find

vertices of odd-degree, because this may cause the tester to reject Eulerian graphs. Therefore,

we must hit 3 vertices of odd-degree in order to reject the input. This is why our modified

version uses a 3-hitter, and not merely a 1-hitter, as used in all previous modifications.

Algorithm 11 Modified Eulerian Testing Algorithm

1: Check whether G is ǫ/2-far from being connected, using the modified tester for connec-
tivity, Algorithm 5. If it rejects, then reject G.

2: Use a 3-hitter, linear in confidence, for sets of density at least ǫd
16 and confidence at least

2/3, to pick a sample S of m = O( 1
ǫd) vertices.

3: If found distinct v1, v2, v3 ∈ S with odd degree, then reject G. Otherwise, accept G.
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Claim 3.13. Algorithm 11 is a one-sided Eulerian graph tester.

Proof. Clearly, if G is Eulerian then it is connected and no distinct 3 vertices of G are of odd

degree, so the algorithm accepts G.

Suppose G is ǫ-far from being Eulerian. The following lemma was proven by Goldreich

and Ron.

Lemma 3.14 ([GR02]). If G is ǫ-far from being Eulerian, then either it has at least ǫ
8dN

connected components, or it has at least ǫ
16dN vertices of odd degree.

Suppose G has at least ǫ
8dN connected components. Following the same logic from the

proof of the tester for connectivity, at least half of them contain at most 16
ǫd vertices. This

means that the modified connectivity tester, Algorithm 5 rejects G with probability at least

2/3.

Suppose G has at least ǫ
16dN vertices of odd degree. The 3-hitter of Step 2 hits at least

3 of the vertices of odd-degree with probability at least 2/3, and it rejects G.

We have that in any case, the tester rejects G with probability at least 2/3.

We wish to note that naively, we have randomness complexity of 2 logN . The first logN

bits are used for the hitter of Algorithm 5 we simulate, and the latter logN bits are used for

the 3-hitter used in Step 2. However, we can only use logN random bits by simply using the

same random string for both Step 1 and Step 2, from the same reasoning which we used in

the randomness complexity analysis of Algorithm 5.

Query complexity (which remains the same as in Algorithm 10): O( log2(1/ǫd)
ǫ ).

Randomness complexity: logN .

Q-R complexity: O( log2(1/ǫd)
ǫ ) · logN .

3.2.6 Summation

We end by a sum-up of the tester we presented in this section.

Query Original Modified Q-R

Complexity Randomness

Complexity

Randomness

Complexity

Complexity

Bipartiteness Õ(ǫ−12
√
N) Õ(ǫ−11

√
N) Õ(ǫ−8 logN) Õ(ǫ−20

√
N)

Connectivity Õ(ǫ−1) Õ(ǫ−1) · logN logN Õ(ǫ−1) · logN

Cycle-

Freeness

O(ǫ−3) O(ǫ−2) · logN logN +O(1) O(ǫ−3) · logN

Subgraph-

Freeness

O(ǫ−1 · ddh) O(ǫ−1 logN) logN O(ǫ−1ddh) · logN

Eulerian Õ(ǫ−1) Õ(ǫ−1) · logN logN Õ(ǫ−1) · logN

33



4 Reducing the Q-R Complexity of Testing Bipartiteness in

the Adjacency Matrix Model

We use testing bipartiteness as a test-case. We wish to modify the original [GGR98] tester in

order to reduce its Q-R complexity. We first take the original tester and implement it using

good hitters, and already improve its randomness and Q-R complexity. Then we modify

the tester, to achieve even better results, using techniques which we believe that are imple-

mentable for several other testers. We refer to section 4.8 for a quantitative summary of all

the results. Note that in order to reduce the Q-R complexity of the tester, we do not neces-

sarily focus on achieving the smallest possible randomness complexity. The emphasis in this

section is on reducing the randomness complexity without increasing the query complexity.

As an intermediate step, we present testers that have randomness complexity that is close to

optimal, yet have worse query complexity than the original tester. We also present testers

that have the same query complexity as the original tester, yet have randomness complexity

far from optimal. Eventually, in Section 4.7, we present a tester whose Q-R complexity is

close to optimal.

Recall that a graph is considered to be bipartite, or 2-colorable, if there exists S ⊂ V , so

that for every two adjacent vertices, u, v ∈ V , either u ∈ S and v ∈ S = V \ S, or v ∈ S
and u ∈ S. We call 〈S, S〉 a 2-coloring of G, and we identify 〈S, S〉 with 〈S, S〉. For every

vertex u ∈ S, we say that S is side (or the color) of u. A well known fact is that any graph

is bipartite if and only if it contains no odd-length cycles.

4.1 The Original Tester

Recall our basic settings. We are given a graph G = (V,E) as input, where |V | = N = 2n.

The graph is represented as a matrix of size N ×N , for which we can check for every pair of

vertices (v1, v2) ∈ V × V whether 〈v1, v2〉 ∈ E or not.

We begin with a review of the known tester, due to Goldreich, Goldwasser and Ron [GGR98].

The most simple tester is to select O( 1
ǫ2

) vertices at random (uniformly and independently),

and to query the subgraph over these vertices. If the subgraph queried is bipartite - accept

G, and if it contains an odd-length cycle - reject G. We however, go over the more elaborate

version of their tester, which has lower query complexity. In order to do this, we first define

the notion of a violating edge for a 2-partition of a subgraph of G:

Definition 4.1. Given some U ⊂ V (G), and a 2-partition of U , denoted as 〈U1, U2〉, we

say an edge 〈u, v〉 ∈ E(G) violates this 2-partition, if for some i ∈ {1, 2}, both its endpoints

belong to Γ(Ui).

A violating edge for a 2-coloring 〈U1, U2〉 of U , gives witness to the fact that V have no

2-coloring in which all vertices in U1 are given one color, all vertices in U2 are given the other
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color. Had such a 2-coloring of V existed, then it would have given both endpoints of the

violating edge the same color, which would have resulted in an immediate contradiction. Let

us now state the original tester and prove its correctness.

Algorithm 12 GGR Bipartiteness Tester

1: Pick a set U ⊂ V by picking randomly, uniformly and independently Õ(1
ǫ ) vertices of V .

Query all of O(|U |2) = Õ( 1
ǫ2

) vertex-pairs in G[U ].

2: Pick a set A ⊂ V ×V by picking randomly, uniformly and independently Õ(1/ǫ2) vertex-
pairs in G. For every pair (v1, v2) ∈ A query it to see whether the edge 〈v1, v2〉 belongs
to E(G), as well as all potential edges between v1 and U , and between v2 and U .

3: If for every 2-coloring of U a violating edge is found - output ”not bipartite”, otherwise
output ”bipartite”.

Theorem 4.2 ([GGR98]). Algorithm 12 is a 1-sided bipartiteness tester, with query com-

plexity Õ( 1
ǫ3

).

Proof. We say that the set U is good if it dominates all but at most a fraction of ǫ/3 of the

vertices with a degree of least (ǫ/3)N .

Our goal is to show that we are likely to pick a good U , and that if indeed G is ǫ-far from

bipartiteness, then by going over all 2|U | possible 2-partitions of U , we will be able to deduce

that no 2-coloring of U exists. The analysis is based on the following claim:

Claim 4.3. 1. With probability at least 5/6, the set U is good.

2. If G is ǫ-far from being bipartite, and U is good, then for any 2-partition of U there

are at least (ǫ/3)N2 edges in the graph that violate that partition.

We first show that Claim 4.3 implies the validity of Theorem 4.2. Clearly, if G is bipartite,

then any 2-coloring of V induces a 2-coloring of U with no violating edges. Hence, U has

(at least) one 2-coloring for which no violating edge will be found. So the tester outputs

”bipartite”.

Let G be a graph ǫ-far from being bipartite. If U is good, then for every possible 2-

partition of U , the probability that a uniformly chosen vertex-pairs does not violate the

partition is at most (1− ǫ/3). Thus, by picking Õ(1/ǫ2) vertex-pairs independently, we have

that the probability that a violating edge for a fixed 2-partition of U won’t be found is at

most (1 − ǫ/3)Ω̃( 1
ǫ2

) ≤ e−
ǫ
3
·Ω̃(1/ǫ) = e−Ω̃(1/ǫ). By the union bound over all 2|U | possible 2-

partitions of U , the probability that for some partition of U no violating edges is found is

upper bounded by

2|U | · e−Ω̃(1/ǫ) = 2Õ(1/ǫ) · e−Ω̃(1/ǫ) ≤ 1/6

Thus, the probability that the tester doesn’t rejectG is upper bounded by 1/6+1/6 = 1/3,

when one term comes from the probability that U isn’t good, and the other comes from the
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probability the for some 2-partition of U , a violating edge will not be found. Since the query

complexity of the tester is Õ
(

1
ǫ2

+ 1
ǫ2·ǫ
)

= Õ
(

1
ǫ3

)

, we conclude that if indeed the claim holds

then we are done.

Proof of the Claim. 1. Let v be a vertex in G with degree at least (ǫ/3)N . Thus, by uni-

formly selecting a vertex u ∈ V (G), we have that Pr[u dominates v] ≥ ǫ/3. Therefore,

by picking t = Õ(ǫ−1) vertices independently, the probability that none of the vertices

dominates v is at most (1− ǫ/3)t ≤ ǫ/18.

Therefore, the expected fraction of vertices in G with degree at least (ǫ/3)N that aren’t

dominated by U , is at most ǫ/18. By Markov inequality, the probability that a fraction

of ǫ/3 of these vertices aren’t dominated by U is bounded above by ǫ/18
ǫ/3 = 1/6.

2. Assume U is good, and G is ǫ-far from being bipartite. Fix some 2-coloring 〈U1, U2〉
of U . This 2-coloring of U induces the following 2-coloring of V (G), denoted Π =

〈 Γ(U1), (V (G) \ Γ(U1)) 〉.
Since G is ǫ-far from being bipartite then for every 2-coloring of V (G) there are at least

ǫN2 bad edges, which are edges Π gives both their endpoints the same color. We show

that (1) any bad edge of Π with both endpoints adjacent to U is a 〈U1, U2〉-violating

edge, and (2) there are many bad edges with both endpoints adjacent to U . Both facts

combined give that there are many 〈U1, U2〉 violating edges.

Showing (1) is no more than ”playing” with the definitions. Let 〈u, v〉 be a bad edge

with both endpoints adjacent to U . As a bad edge both its endpoints belong to some

side of Π. If u, v ∈ Γ(U1), then by definition is violates 〈U1, U2〉. Otherwise u, v ∈
V (G) \ Γ(U1), then both u and v are adjacent to vertices in U \U1 = U2, and so 〈u, v〉
is a 〈U1, U2〉 violating edge.

To prove (2) we suppose by contradiction that at most ǫ
3N

2 bad edges have that both

their endpoints are adjacent to U . We now upper bound the number of edges with at

least one vertex not adjacent to U . Recall that U is good. In fact we shall upper bound

a larger set of edges - the set of edges with one endpoint that isn’t a vertex dominated

by U and has degree at least (ǫ/3)N :

• There are at most N vertices with degree smaller than (ǫ/3)N , and they ”give”

at most ǫ
3N

2 edges.

• Since U is good, there are at most (ǫ/3)N vertices with degree at least (ǫ/3)N

that aren’t dominated by U , and these vertices ”give” at most ǫ
3N

2 edges.

This means Π has less than ǫN2 bad edges, and so G is ǫ-close to bipartiteness. We

have a contradiction, and deduce that at least ǫ
3N

2 violating edges for 〈U1, U2〉 exist.
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Total Complexity of Algorithm 12:

Query complexity: Õ(ǫ−3).

Randomness complexity: Õ(ǫ−1) · n+ Õ(ǫ−2) · (2n) = Õ(ǫ−2n).

Q-R complexity: Õ(ǫ−5n).

We look at this Q-R complexity, ǫ−5n, as our yardstick, which we wish to improve. (It

may be worth noting that Alon et al [AK02] have found a bipartitness tester with Q-R

complexity of Θ̃(ǫ−4n), and we also improve this Q-R complexity.)

4.2 Decreasing Randomness by Using Better Hitters

Our goal is to mimic the above tester, while using as few coin tosses as possible. A closer

examination of the two stages of the tester shows us what exactly we need in order to achieve

this goal:

1. A sample of vertices U , so that for each vertex v ∈ V of degree at least ǫ
3N , it holds

that U hits one of v’s neighbors with probability at least 1− ǫ
18 .

2. A sample of vertex-pairs A, so that for each 2-coloring of U , it holds that A hits an

edge that violates the 2-coloring with probability at least 1− 1
6 · 2−|U |.

Item (1) gives us a set U that has ”many” violating edges if G is ǫ-far from bipartiteness,

and item (2) allows us to use the union bound and to rule out all 2|U | possible 2-partitions of

U . Below, we refer to 1/6 and 2−|U |/6 as the error parameters for Steps 1 and 2 respectively.

4.2.1 Implementation with a Hitter Linear in Confidence

In order to save randomness, we use our hitter linear in confidence. The hitter makes O(1/ǫδ)

queries, and uses only n = logN random bits.

The first stage needs a hitter for sets of density ǫ/3, which has confidence at least 1 −
ǫ/18. Thus, it takes O(3

ǫ · 18
ǫ ) = O(ǫ−2) samples, meaning |U | = O(ǫ−2). The randomness

complexity is simply n = logN .

The second stage needs a hitter for a set of density ǫ/3 with confidence 1−2−|U |/6. Thus

it takes O(3
ǫ · 6 · 2|U |) = 2O(ǫ−2) samples, meaning |A| = 2O(ǫ−2). The randomness complexity

is log(N2) = 2n.

Note that the total number of queries that the bipartiteness tester makes is |U |2+|U |·|A| =
2O(ǫ−2).

Total Complexity:

Query complexity: 2O(ǫ−2).

Randomness Complexity: n+ 2n = 3n.

Q-R complexity: 2O(ǫ−2)n.
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This shows that just decreasing the randomness will not decrease the total Q-R com-

plexity of the tester. However, should one only consider a way to minimize the randomness

complexity of Algorithm 12, we believe that this is the best possible implementation, since

this algorithm requires us to choose a subset U ⊂ V and a subset A ⊂ V × V , tasks which

take (roughly) at least n and 2n random bits, respectively.

4.2.2 Implementation with a Hitter Logarithmic in Confidence

Another possible implementation of the original tester, is with the hitter logarithmic in

confidence.

The first step needs a hitter for subsets of V of density ǫ/3 and confidence 1 − ǫ/18.

Thus, it takes O(3
ǫ log(18

ǫ )) = Õ(ǫ−1) samples, meaning that |U | = Õ(ǫ−1), and will use

n+O(log(1/ǫ)) coin tosses. It then makes O(|U |2) = Õ(ǫ−2) queries to the graph.

The second step needs a hitter for subsets of V × V of density ǫ/3 and confidence 1 −
1
6 · 2−|U |. Thus it takes O(3

ǫ log(2|U |)) = Õ( 1
ǫ2

) samples, meaning |A| = Õ(ǫ−2), and uses

2n + O(|U |) = 2n + Õ(ǫ−1) coin tosses. It then makes O(|U | · |A|) queries to the graph, so

this step takes Õ(ǫ−3) queries.

Total Complexity:

Query Complexity: Õ(ǫ−3).

Randomness Complexity: n+O(log(1/ǫ)) + 2n+ Õ(1/ǫ) = 3n+ Õ(1/ǫ).

Q-R Complexity: Õ(ǫ−3)(3n+ Õ(1/ǫ)) = Õ(ǫ3) · n+ Õ(1/ǫ4).

Note the considerable improvement in the Q-R complexity, just by using the new hitter.

However, we inspire to achieve a lower Q-R complexity.

We note that the best Q-R complexity one can expect (assuming one doesn’t decrease

the query complexity of the algorithm) is Õ(ǫ−3n). The query complexity of Algorithm 12 is

Õ(ǫ−3). The randomness complexity of any property tester must be Ω(n), as it is shown in

Section 3.1. This results in a Q-R complexity which is roughly ǫ−3 · n, and we achieve this

goal.

As a ”warm-up”, we starting by presenting three algorithms, in which we modify the

original GGR tester (Algorithm 12), and use different approaches to the problem. These

three testers (presented in Sections 4.4, 4.5 and 4.6) have Q-R complexity which is worse

than the Q-R complexity of the implementation of Algorithm 12 with a hitter logarithmic in

confidence. However, the ideas that they use eventually lead (see Section 4.7) to the tester

with better Q-R complexity. Furthermore, we believe that they offer interesting approaches

that might also be applicable to other graph-property testers.
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4.3 The Requirements Graph

Before we describe the algorithms we have come up with, we begin with introducing an

important notion. All algorithms we present in Sections 4.4 through 4.7 share, in a way, the

same general approach for reducing the randomness complexity of Algorithm 12. It is fairly

obvious that the bottleneck of the randomness in the original tester is Step 2. Since we use

the union bound to find violations for all 2|U | possible 2-colorings of U , we have to make the

probability that for a single 2-coloring a violating edge isn’t found be smaller than 2−|U |.

This requires us to use a hitter with confidence at least 1 − 2−|U |, which in turn requires a

randomness complexity at least |U | > ǫ−1. Roughly speaking, our goal, from now on, is to

reduce the number of ”bad events” in the union bound to something that isn’t proportional to

exp(|U |) but rather to poly(|U |). Towards that end, we introduce the notion of requirements,

and the notion of the requirements graph of a set U ⊂ V . Finding requirements will be the

key ingredient in reducing the number of ”bad events”.

Definition 4.4. Given any 2- partition of U , denoted 〈U1, U2〉, we denote u1 ∼ u2 if u1 and

u2 belong to the same side of the 2-partition, and we denote u1 ≁ u2 if u1 and u2 belong to

different sides. We call (u ∼ v) or (u ≁ v) a requirement, and say that a 2-partition satisfy

the requirement u1 ∼ u2 (respectively u1 ≁ u2) if indeed u1 and u2 belong to the same side

(respectively different sided) of the 2-partition.

Edges and paths in G, connecting two vertices of U , automatically yield requirements

that any 2-coloring of V must satisfy. We give here three archetypical examples, which will

be repeatedly used in the analysis of the algorithms in the next sections. We denote by u1

and u2 two (different) vertices of U , and by v1 and v2 two (different) vertices in V \ U .

Example 4.5. 1. If we have an edge 〈u1, u2〉 in G[U ], then we know that every 2-coloring

of U must give u1 and u2 different colors. Therefore we have that requirement u1 ≁ u2

that every 2-coloring of U must satisfy.

2. If we have a path of length 2, of the form (u1, v1, u2), then we know that any 2-coloring

of V gives u1 and v1 different colors, and similarly, it gives u2 and v1 different colors.

Since we only have two colors, we deduce that every 2-coloring of V must satisfy

u1 ∼ u2. Specifically, if G is bipartite, then any 2-coloring of V satisfies u1 ∼ u2, and

therefore, any 2-coloring of U that is induced by a 2-coloring of V , also must satisfy

u1 ∼ u2.

3. If we have a path of length 3, of the form (u1, v1, v2, u2), then by the same reasoning,

any 2-coloring of V must satisfy u1 ≁ u2. And again, if G is bipartite, than any

2-coloring of U that is induced by a 2-coloring of V must satisfy u1 ≁ u2 as well.

We note that by the definition of a violating edge, it yields a requirement over two vertices

in U . Suppose we fixed some 2-partition of U , and we found a violating edge for it, denoted
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as 〈v1, v2〉. That means that we now have two vertices u1 and u2 in U , where u1 is adjacent

to v1, and u2 is adjacent to v2. Therefore, just like in Case 3 of Example 4.5, we have found a

path (u1, v1, v2, u2), which yields the requirement u1 ≁ u2, which every 2-coloring of V must

satisfy.

Definition 4.6. Given a subset U ⊂ V (G), and a set T of requirements that every 2-coloring

of U must satisfy, the requirements graph of U and T , denoted R(U, T ), is a graph whose

vertices are the vertices of U . An edge 〈u, v〉 belongs to R(U, T ) if and only if a requirement

over u and v belongs to T , meaning if either (u ≁ v) ∈ T or (u ∼ v) ∈ T . We label every edge

of R(U, T ) with ′ ≁
′ if the requirement u ≁ v belongs to T , or with ′ ∼′, if the requirement

u ∼ v belongs to T .

Given an edge 〈u, v〉 in R(U, T ), we say that the requirement u ∼ v (respectively u ≁ v)

is associated with the edge, if the edge 〈u, v〉 is labeled with ′ ∼′ (respectively with ′ ≁
′).

Theoretically, it is possible that some edge is labeled both with ′ ∼′ and with ′ ≁′.

We say a 2-coloring satisfies an edge 〈u, v〉 in R(U, T ) if it satisfies the requirement over

u and v associated with that edge.11 Let C be a connected component of R(U, T ). We say a

2-coloring satisfies the component C if it satisfies all edges in C. Recall that we identify any

2-coloring 〈U1, U2〉 with 〈U2, U1〉. The following claim, as easy as it is to prove, is the basis

for all of the algorithms presented in the next sections.

Claim 4.7. Fix U and T . For every connected component C in R(U, T ), there exists at most

one 2-coloring of the vertices of C that satisfy C.

Proof. Clearly, if even one edge in C is labeled both with ′ ∼′ and with ′ ≁
′, then no 2-

coloring of C satisfies this edge and we are done, so we assume all edges have a single label.

Since all vertices in C are connected, then we have some spanning tree S. Fix an arbitrary

vertex u ∈ C and a side for u. Let v be a vertex adjacent to u is S. Since the side of u is

fixed, then there is only one side we can give v in order to satisfy the edge 〈u, v〉. So fixing

a side for one vertex, fixes the side of all of its neighbors. We can now go over the neighbors

of v is S, and fix their side, and then go over their neighbors, and so on. Eventually, by

traversing all edges in S, we fix a side for each vertex in C.

Therefore, we have found a single 2-partition of C, which is the only 2-partition that

satisfies the edges in S. Since the edges in S are a subset of the edges in the connected

component, then this is the only possible 2-partition of C that can satisfy C.

Now, look at any edge in C, that does not belong to S. If the 2-partition we fixed doesn’t

satisfy this edge, then it is obvious that no 2-partition can satisfy both this edge and all

the edges in S, and therefore, no 2-partition of C satisfies C. Otherwise, all edges in C are

satisfied by the 2-partition we fixed, and by definition this 2-partition is a 2-coloring that

satisfy C.

11If the edge is labeled with both ′ ∼′ and with ′
≁

′, then no 2-coloring of U satisfies it.
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How does Claim 4.7 help us? Assume that R(U, T ) has k connected components. Pick

from each component Ci some arbitrary vertex ui. The proof of Claim 4.7 shows that fixing

the color of each ui fixes the color of all the vertices in Ci. Therefore, we only need to consider

all 1
2 · 2k possible 2-colorings of {u1, u2, . . . , uk}. So the less components R(U, T ) has, the

less 2-partitions of U we need to consider. Furthermore, note that for every new requirement

we find, we add another edge to R(U, T ). That means that we either unite two connected

components C1 and C2 into a single connected component, or we add an edge inside some

connected component C. If we find an edge that unites two connected components, then we

reduce that number of possible 2-partitions of U that we need to consider in half. If we find

an edge that connects two vertices that belong to the same connected component, then it is

possible that this edge causes no 2-partition of C to satisfy C. Therefore, all algorithms in

the next sections will try to find more requirements and have a requirements graph R(U, T )

with as many edges as they can find.

4.4 Sequential Forcing of Partitions

We introduce a new algorithm, whose Q-R complexity isn’t better than the one presented in

Section 4.2.2, but it demonstrates the use of iterations in testing bipartiteness. Its analysis

also demonstrates the usefulness of the requirements graph. The basic idea of this algorithm

is as in the original Algorithm 12: We pick a set U ⊂ V , and we now wish to rule-out all 2|U |

possible 2-partitions it may have. Note that even though there are 2|U | different 2-partitions

for U , we can rule out these 2-partitions not all together, but rather one by one. More

importantly, it suffices to consider only |U | of these 2-partitions, which can be determined

”on the fly”, in iterations. The general outline of the algorithm is as follows.

First, we select a set U ⊂ V , and query all edges in G[U ]. As shown in Example 4.5,

every edge 〈u, v〉 in G[U ] yields an edge 〈u, v〉 labeled ′ ≁
′ in the requirements graph of U .

So the algorithm begins with the set of requirements that the edges in G[U ] yield. Then the

algorithm begins the iterations part.

At the beginning of each iteration, we have a set of requirements which we assume some

2-partition of U satisfies. We fix a 2-partition 〈U1, U2〉 of U , that satisfies all requirement

found thus far. We then seek a violating edge for it. Once a violating edge, denoted 〈v1, v2〉,
is found, it means that there exists a path of the form (uj , v1, v2, uk) for some two vertices

uj and uk, both belong to either U1 or both belong to U2. We thus deduce that if G is

bipartite, then the induced 2-coloring over U must satisfy the requirement uj ≁ uk. So we

add the requirement uj ≁ uk to the list of all requirements found thus far. We then repeat

this iteration, with respect to a new 2-partition of U that satisfies all requirements found

(which includes the newly found requirement uj ≁ uk).

Now, look at the requirements graph of U with respect to the requirements found prior

to the iteration. The new requirement uj ≁ uk adds a new edge to this requirements graph.
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Either both endpoints of this edge belong to two different components, or we have that both

endpoints of this edge belong to the same component. As we will show, after at most |U |
iterations, it is likely that we add an edge 〈uj , uk〉 where both its endpoints belong to the

same connected component. We also show that once we have that uj and uk belong to the

same component C in R(U, T ), then we have that no 2-partition of C satisfies both the newly

add edge 〈uj , uk〉 and C. Therefore G isn’t 2-colorable, for otherwise the 2-coloring of V

would induce a 2-partition of U that satisfies all requirements found.

We wish to note that this algorithm uses a requirements graph with only ′ ≁
′-labeled

edges. That is because we only look at requirements that result from edges in G[U ], as in

Case 1 of Example 4.5, and at requirements that result for violating edges, as in Case 3 of

Example 4.5.

We also note that in each iteration we use independent coin toss, in order to avoid any

dependencies between the samplers used to rule out the 2-partition of one iteration, with

the samples used in some other iteration. Since we have |U | iterations, it means that the

randomness complexity of this algorithm is still proportional to |U |.
Formally, our algorithm is as follows:

Algorithm 13 Testing Bipartiteness by Sequential Forcing of Partitions

1: Pick a set U ⊂ V , using a hitter for sets of density at least ǫ/3 and confidence at least
1− ǫ/18. Query G[U ], and let T be the set of requirements that the edges in G[U ] yield
(all labeled ′ ≁′).

2: for i = 1, 2, . . . , |U | do
3: If there exists no 2-coloring of U that satisfies all requirements in T , output ”not

bipartite” and halt.
4: Choose an arbitrary 2-partition of U that satisfy all requirements in T , denoted 〈Ui, Ui〉.
5: Pick a set A ⊂ V × V using a hitter for sets of density at least ǫ/3 and confidence at

least 1 − 1
6|U | . For every vertex-pair (v1, v2) ∈ A, query all potential edges between

v1, v2 and U , to see whether the edge 〈v1, v2〉 is a violating edge for 〈Ui, Ui〉.
6: For every (v1, v2) ∈ A such that 〈v1, v2〉 is found to be a violating edges for 〈Ui, Ui〉,

let u1 and u2 be two vertices in U that belong to the same side, where u1 is adjacent
to v1 and u2 is adjacent to v2. Add the requirement u1 ≁ u2 to T .

7: end for
8: If there exists a 2-coloring of U that satisfies all requirements in T , output ”bipartite”.

Otherwise, output ”not bipartite”.

Theorem 4.8. Algorithm 13 is a 1-sided tester for bipartiteness.

Proof. If G is bipartite, any 2-coloring of V satisfies T , the set of all requirements found by

Algorithm 13. That is because the requirements in T are ′ ≁′ requirements arising from the

connectivity in G. Therefore, any 2-coloring of V induces some 2-coloring of U that satisfies

T . This means that no matter which requirements the tester has found - there exists a 2-
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coloring of U that satisfies all requirements found, and so the tester completes all iterations,

and eventually outputs ”bipartite”.

Fix a graph G that is ǫ-far from bipartiteness. As in Claim 4.3 and the discussion

in Section 4.2, the probability that U isn’t good is at most 1/6. If U is good, again by

Claim 4.3, any 2-partition of U has at least (ǫ/3)N2 violating edges. Specifically, for each

iteration i, each 〈Ui, Ui〉 has at least (ǫ/3)N2 violating edges. By the definition of a hitter,

the set A fails to hit a violating edge for 〈Ui, Ui〉 with probability at most 1
6|U | . Therefore,

given that U is good, the probability that for one of the |U | iterations of the algorithm the set

A fails to hit a violating edge, is upper bounded by
∑|U |

i=1
1

6|U | = 1/6. Thus, with probability

at least 2/3, at every iteration, the set A did manage to hit a violating edge, which means

that a new requirement was found, as shown in Case 3 of Example 4.5.

Assume that at each iteration, we find a new violating edge, and add one more edge to the

requirements graph of U . Suppose this new edge has its endpoints in two different connected

components. Then after adding this new edge, those two components were united into a

single component, and so the number of components in the requirements graph decreases

by 1. Since we repeat |U | iterations in which we add an edge to a graph over |U | vertices,

then at some iteration i, we add a new edge with both its endpoints in the same connected

component.

We use the following notation: At the beginning of the ith iteration, we had a set of

requirements, denoted T . At the end of the ith iteration, we add an edge 〈u1, u2〉 to the

requirements graph R(U, T ), where both its vertices belong to the same connected component

C. By the definition of the tester, the edge 〈u1, u2〉 was added to R(U, T ) because we have

found a violating edge 〈v1, v2〉 ∈ E(G) for the 2-partition of U that we fixed, that is to

〈Ui, Ui〉.
Recall, we fixed 〈Ui, Ui〉 because it was a 2-partition that satisfies all requirements in

T , and specifically, it satisfied C. By Claim 4.7 we have that at most one 2-partition of

C can satisfy C. Therefore, 〈(Ui ∩ C), (Ui ∩ C)〉 is the only 2-partition of C that satisfies

C. However, we add the edge 〈u1, u2〉 to R(U, T ), which we know this 2-partition does not

satisfy, because it results from the violating edge 〈v1, v2〉. Thus, there exists no 2-partition

that satisfies both C and the requirement u1 ≁ u2, and so, in the next iteration, the tester

outputs ”not bipartite”.

We deduce that if G is ǫ-far from bipartiteness, then with probability at least 2/3 the

algorithm finds a new requirement in each iteration, and eventually outputs ”not bipartite”.

4.4.1 Implementation with a Hitter Linear in Confidence

As before, U is picked by using a hitter for sets of density ǫ/3 with probability at least 1−ǫ/18

which requires O(ǫ−2) samples and n random bits, and thus Step 1 take O(ǫ−4) queries.
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As noted before, each iteration uses new coins, independent of the coins used in other

iterations. Otherwise, it is possible that the random bits used to find a violating edge for

the 2-coloring of iteration i may fail to find a violating edge in some iteration j, where j > i.

One extreme example to that is where all iterations use the same random bits to produce A,

and so A is the exact same set in all iterations. In such a case iterations 2 through |U | will

fail to introduce new requirements for a 2-coloring of U , even through that G might be ǫ-far

from bipartite, and U is good.

We repeat independently |U | times the procedure of hitting a set of edges with density at

least ǫ/3 with confidence at least 1− 1
6|U | . This requires 2n random bits and s = O(|U |ǫ−1)

samples per iteration, where for each sample we query O(|U |) edges in the graph. Thus, the

entire process takes |U | · 2n random bits, and |U | · s ·O(|U |) = O(ǫ−7) queries.

Total Complexity:

Query Complexity: O(1/ǫ7).

Randomness Complexity: n+O(|U |) · 2n = O(ǫ−2n).

Q-R Complexity: O(ǫ−9n).

4.4.2 Implementation with a Hitter Logarithmic in Confidence

Note that the query and randomness complexity of the tester is polynomially dependent on

the size of U , so reducing the size of U will reduce drastically the number of samples and

random bits the tester needs. It was already shown that if we use a hitter logarithmic in

confidence, then U is of size Õ(ǫ−1). This way U is produced using n+O(log(1/ǫ)) random

bits, and the number of queries made in Step 1 is O(|U |2) = Õ(ǫ−2).

As before, we need to repeat independently |U | times the procedure of hitting a set of

edges with density at least ǫ/3 with confidence at least 1− 1
6|U | . This requires 2n+O(log(|U |))

random bits and s′ = O(ǫ−1 log(|U |)) samples per iteration, where for each sample we query

O(|U |) edges in the graph. Thus, the entire process takes |U | · s′ · O(|U |) = Õ(ǫ−3) queries

and Õ(|U | · n) random bits.

Total Complexity:

Query Complexity: Õ(1/ǫ3).

Randomness Complexity: n+O(log(1/ǫ)) + 2n · |U | = Õ(ǫ−1) · n.

Q-R Complexity: Õ(ǫ−4) · n.

Again, we note that even though this algorithm gives worse Q-R complexity than the

previous algorithm, we described it here because the notion of the requirements graph will

play a crucial role in the future design of a tester that has smaller Q-R complexity than what

we have thus far. Furthermore, the idea of iterations will be applied there.
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4.5 Concurrent Forcing of a Partition

This time we try another approach. Instead of choosing sequentially several 2-colorings of

U , we choose in advance just one 2-coloring and seek violating edges only for this 2-coloring.

Our goal is to choose wisely a ”useful” 2-coloring of U , ”useful” in the sense that if G is

bipartite then it has ”few” violating edges, and if G is ǫ-far from being bipartite then it

has ”many” violating edges. This will be achieved by finding requirements and adding them

to the requirements graph of U , and focusing only on a single 2-coloring that satisfy all

components in the requirements graph. Details follow.

Suppose that we’ve already picked a set U . Denote by l the number of connected compo-

nent in G[U ] (naturally l ≤ |U |), and denote these components by C1, C2, . . . , Cl. Note, that

as it was already shown, if two vertices u, v ∈ U , are adjacent, then the edge 〈u, v〉 ∈ E(G)

yields the requirement u ≁ v, which every 2-coloring of U must satisfy. Suppose we are lucky,

and G[U ] is connected. Then the requirements graph of U consists of a single connected com-

ponent, and by Claim 4.7 only a single 2-partition of U can satisfy the requirements that

the edges in G[U ] yield. We thus fix this 2-partition, and seek violations only for it. If G

is bipartite, then this 2-partition has no violations, and if G is ǫ-far from bipartite (and we

have a good U), then by Claim 4.3 it has at least (ǫ/3)N2 violating edges.

Now assume that another extreme case holds, and that G[U ] is consisted of isolated

vertices. Assume also that for any two vertices, u and v in U , there exists no path, even in

G, that connects u and v. In this case, if G is bipartite, any 2-partition we fix for U will

have no violating edges, because any 2-coloring of U is induced by some 2-coloring of V . If

G is ǫ-far from bipartiteness (and we have a good U), then any 2-partition of U still has at

least (ǫ/3)N2 violating edges, by Claim 4.3. If this extreme case holds, then the endpoints

of each violating edge are both adjacent to the same vertex u ∈ U .

Naturally, we cannot assume that G[U ] is connected, nor can we assume its connected

components are not connected even in G. However, we aspire to find a requirements graph

of U in which every two different components are, in a way, very close to being disconnected

in G. We therefore seeks vertices and edges in V \ U that connect two components in G[U ]

by paths of length 2 or 3. As shown in Example 4.5, such paths yield requirements for U .

Let us formally define what we wish to find.

Definition 4.9. We say that a pair of vertices (v1, v2) forms a bypass between Ci and Cj

(where i 6= j), if Ci and Cj are connected in G[Ci ∪ Cj ∪ {v1, v2}].

This means that we have some vertex ui ∈ Ci and some vertex vj ∈ Cj , such that (at

least) one of the following cases must hold.

• For some v ∈ {v1, v2} the path (ui, v, uj) exists in G[Ci ∪Cj ∪ {v}], and we have found

the requirement ui ∼ uj .
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• The path (ui, v1, v2, uj) exists inG[Ci∪Cj∪{v1, v2}], and we have found the requirement

ui ≁ uj .

Therefore, if the vertex-pair (v1, v2) forms a bypass between Ci and Cj , then we have

found a new requirements, that unites the components Ci and Cj in the requirements graph

of U into a single connected component.

Conceptually, the algorithm goes over all
(

l
2

)

pairs of connected components Ci and Cj ,

and tries to find vertex-pairs that form a bypass between Ci and Cj . This raises the question

of when can we expect the tester to find a vertex-pair that forms a bypass between Ci and

Cj . To that end, we introduce the next definition.

Definition 4.10. A pair of connected component (Ci, Cj) is said to be heavily connected if

at least ǫ
5|U |2N

2 vertex-pairs in V × V form a bypass between Ci and Cj.

Using a good hitter for pairs of vertices, we are likely to hit a vertex-pair that forms a

bypass between Ci and Cj , if they are a pair of heavily connected components. But what

about pairs of components which aren’t heavily connected? This also helps us, since, as we

show, a pair of connected components that aren’t heavily connected has relatively few edges

interfering with any 2-partition that satisfy both components. So, in a way, this resembles

the case in which all components of G[U ] are disconnected even in G.

And so, this is what our algorithm does. It goes over all pairs of components of G[U ] and

tries to hit a vertex-pair that forms a bypass for each pair. Each vertex-pair that forms a

bypass between two connected components, yields some requirement that connects these two

components in the requirements graph of U . After going over all
(

l
2

)

pairs of components,

assume we have a requirements graph of U with k components. The algorithm fixes one of

the 2k−1 possible 2-partitions of U that satisfy all requirements found. Now, if G is bipartite,

we show that any violating edge for this 2-partition is an edge whose endpoints form a bypass

between two connected components of G[U ]. We also show that if for any pair of components

in G[U ] that are heavily connected, the algorithm hits a vertex-pair that forms a bypass for

this pair, then only relatively few vertex-pairs interfere with the fixed 2-partition. So, on

the one hand we have that if G is bipartite, we are likely to fix a 2-partition of U that has

relatively few violating edges. On the other hand, if G is ǫ-far from bipartiteness (and U is

good), then Claim 4.3 assures us that this 2-partition has relatively many violating edges. So

the final step of the algorithm is to estimate the number of violating edge for the 2-partition it

fixed, and to accept or reject G based on finding a few or many violating edges, respectively.

Before introducing the algorithm, we wish to note, that the fact we go over all
(

l
2

)

=

O(|U |2) pairs of connected components, does not mean that we need to use a hitter O(|U |2)
times, each time using an independent coin toss. We use the same sample set for all

(

l
2

)

pairs, but we make the failure probability of the hitter be O
(

l−2
)

. Using the union bound,
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we can upper bound the probability that there exists some pair of connected components for

which the hitter fails, by 1
2 l

2 ·O
(

l−2
)

= 1/6.

Formally, the algorithm is:

Algorithm 14 Testing Bipratitness by Forcing a Partition (2-Sided Version)

1: Pick a set U ⊂ V , using a hitter for sets of density at least ǫ/3 and confidence at least
1− ǫ/18. Query G[U ], and let T be the set of requirements that the edges in G[U ] yield.

2: Pick a set A ⊂ V × V using a hitter for sets of density at least ǫ
5|U |2 and confidence at

least 1− 1
6 · 1

1
2
|U |2 . For every vertex-pair (u, v) ∈ A, query all potential edges connecting

u, v and U , to see whether the vertex-pair (u, v) forms a bypass between some pair of
connect components of G[U ].

3: For every vertex-pair (v1, v2) that forms a bypass between some two connected com-
ponent, Ci and Cj , let ui ∈ Ci and uj ∈ Cj be the two vertices that (v1, v2) yields a
requirement for. Add to T the requirement found (either ui ∼ uj or ui ≁ uj , according
to Example 4.5).

4: Choose an arbitrary 2-partition 〈U1, U2〉 of U that satisfies all requirements in T (if
such exists, otherwise declare ”not bipartite” and halt). Pick a set B ⊂ V × V using a
sampler with accuracy ǫ/10 and confidence 5/6. For every vertex-pair (u, v) ∈ B query
all potential edges between u, v and U , to see whether 〈u, v〉 is a violating edge for
〈U1, U2〉.

5: If the fraction of violating edges for 〈U1, U2〉 is found to be at most ǫ/5 then output
”bipartite”, and if it is found to be greater than ǫ/5 output ”not bipartite”.

Theorem 4.11. Algorithm 14 is a 2-sided error bipartiteness tester.

The reason that this tester has 2-sided error is due to the fact that we allow the case

where G is bipartite and still we fix a 2-partition of U that has violations. The analysis

of previous algorithms was based showing that if G is bipartite then some 2-partition of U

has no violations, and if G is ǫ-far from bipartiteness then all 2-partitions of U have many

violations. Therefore, once for any 2-partition of U we found even one violation, we had

a proof that G isn’t bipartite. The analysis of Algorithm 14 is based on the fact that we

fix an arbitrary 2-partition of U for which the following holds: If G is bipartite, it has few

violating edges, and if G is ǫ-far from bipartiteness it has many violating edges. Therefore,

we need to estimate the number of violating edge for the 2-partition we fix. It might hold

that G is bipartite, yet we fix a 2-partition that has violating edges, and obtaine a wrong

estimation as to the number of violating edges. Therefore, it is possible we reject a graph

which is bipartite.

Proof. By Claim 4.3 and the analysis in Section 4.2, Step 1 will fail to produce a set U that

dominates all but a fraction of ǫ/3 of the vertices with high degree (deg(v) ≥ (ǫ/3)N) with

probability at most 1/6. Thus, we will assume that we have a good U .
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The probability that Step 2 fails is the probability that for some pair (Ci, Cj), even though

more than ǫ
5|U |2N

2 of the vertex-pairs of the graph do form a bypass between Ci and Cj , we

failed to hit such a vertex-pair. For a certain pair (Ci, Cj) this happens with probability at

most 1
6 · 1

1
2
|U |2 and since that there are at most 1

2 |U |2 pairs, by the union bound we have that

Step 2 fails with probability at most 1/6.

By definition, the sampler of Step 4 produces an estimation that is ǫ/10 far from the real

fraction of violating edges in the graph with probability at most 1/6.

Suppose G is bipartite, and so, no matter which U ⊂ V we pick, G[U ] is bipartite. Assume

Step 2 did not fail; that is, for all pairs of connected components, which are heavily connected,

we found a vertex-pair that forms a bypass between them. Under that assumption, let us

look at Step 4, and prove that the 2-partition we pick, 〈U1, U2〉, doesn’t have many violating

edges.

If we picked 〈U1, U2〉 which is a 2-coloring of U induced from a 2-coloring of V , then it

has no violating edges, and we are done. So assume we picked some 2-partition of U that

does have violating edges. Recall that we picked 〈U1, U2〉 that satisfies all requirements in T .

In particular, 〈U1, U2〉 satisfies all connected components in the requirements graph R(U, T ).

We claim that if G is bipartite, and 〈v1, v2〉 is a violating edge for 〈U1, U2〉, then the vertex-

pair (v1, v2) forms a bypass between two connected components of G[U ], that are not heavily

connected.

We know that each violating edge found, 〈v1, v2〉, yields a requirement for some ui and

uj in U , and therefore, adds an edge 〈ui, uj〉 to the requirements graph R(U, T ). Suppose

ui and uj belong to the same component. We know that 〈U1, U2〉 satisfies this component,

and still, a violating edge for the 2-coloring of this component was found. By Claim 4.7

we deduce that this component has no 2-coloring. But G is bipartite, and so the 2-coloring

of V induces some 2-coloring of this connected component, and we have a contradiction.

Therefore, we deduce that ui and uj must belong to two different components in R(U, T ).

Specifically, it means that ui ∈ Ci and uj ∈ Cj for some two different components, Ci and

Cj , of the subgraph G[U ]. If Ci and Cj were heavily connected, then, assuming the hitter of

Step 2 did not fail, we would hit a vertex-pair that forms a bypass between Ci and Cj , and

they both would be contained in the same component in R(U, T ). That means that Ci and

Cj are not heavily connected.

We deduce that for all violating edges of 〈U1, U2〉, their endpoints must form a bypass

between pairs of connected components of U that are not heavily connected. Since at most
1
2 |U |2 pairs are not heavily connected, we deduce that the total number of such vertex-pairs

is at most 1
2 |U |2 · ǫ

5|U |2N
2 = ǫ

10N
2. If Step 4 doesn’t fail then the sampler’s estimation must

be at most ǫ
10 + ǫ

10 = ǫ
5 . As shown before, the probability that both step 2 and step 3 do not

fail is bounded by 1− (1/6 + 1/6) = 2/3, so with probability at least 2/3 the tester outputs

”bipartite”.
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Suppose G is ǫ-far from being bipartite. By Claim 4.3 and the analysis in Section 4.2,

we have that Step 1 picks a good U with probability at least 5/6. By Claim 4.3, for a good

U and for every 2-partition of U , there are at least (ǫ/3)N2 violating edges. Note that no

matter what 2-partition we fix in Step 4, it will have at least (ǫ/3)N2 violating edges, and

if sampler’s estimation is ǫ/10 close to the actual fraction of violating edges in the graph,

then its estimation is at least ǫ/3 − ǫ/10 > ǫ/5. The probability of failure is thus upper

bounded by the probability that either Step 1 or Step 3 fail, which is upper bounded by

1/6 + 1/6 = 1/3.

4.5.1 Implementation with a Hitter/Sampler Linear in Confidence

By the same analysis from before, U will be of size O(ǫ−2) which means that Step 1 takes

O(ǫ−4) queries and n random bits. Step 2 will require s = 5|U |2
ǫ · 1

2 |U |2 = O(ǫ−9) samples

(since we use the same samples for all pairs of connected components), where for each vertex-

pair we make (2|U | + 1) = O(|U |) queries. So Step 2 takes a total of s · O(|U |) = O(ǫ−11)

queries, and 2n random bits. Step 4 requires O(ǫ−2) samples, where for each we make O(|U |)
queries, meaning in Step 4 we make O(ǫ−2 · |U |) = O(ǫ−4) queries, and use additional 2n

random bit. All in all, we make O(ǫ−11) queries, and use 5n random bits.

Total Complexity:

Query Complexity: O(ǫ−11).

Randomness Complexity: n+ 2n+ 2n = 5n.

Q-R Complexity: O(ǫ−11 · n).

4.5.2 Implementation with a Hitter/Sampler Logarithmic in Confidence

U is of size Õ(ǫ−1) and so the number of queries made in Step 1 is Õ(ǫ−2), where we use

n + O(log(1/ǫ)) random bits to produce U . The number of samples needed in Step 2 is

s = O(5|U |2
ǫ log(|U |2)) = Õ(ǫ−3), where for each edge we make O(|U |) = Õ(ǫ−1) queries,

meaning we do s · O(|U |) = Õ(ǫ−4) queries, while using 2n + O(log(1/ǫ)) random bits. In

Step 4 we use a sample of O(1/ǫ2 log(1/6)) = O(ǫ−2) vertex-pairs, and for each vertex-

pair we make O(|U |) queries, thus Step 4 takes Õ(1/ǫ3) queries, and additional 2n + O(1)

random bits. All in all, our query complexity is Õ(ǫ−4), and the number of random bits is

5n+O(log(1/ǫ)).

Total Complexity:

Query Complexity: Õ(ǫ−4).

Randomness Complexity: 5n+O(log(1/ǫ)).

Q-R Complexity: Õ(ǫ−4) · n.
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4.6 Changing the 2-Sided Tester into a 1-Sided Tester

Clearly, the fact that we have a 2-sided tester and not a 1-sided tester is a drawback, which, as

we show here, can be removed without asymptotically increasing the query/randomness/Q-

R complexity of the tester. In order to turn Algorithm 14 into a 1-sided tester, let us look

carefully at its analysis.

Suppose we picked a set U and found a set T of requirements. What we showed in the

analysis of Algorithm 14 is that with respect to R(U, T ) there exist two type of violating

edges. The first type are violating edges that yield a requirement over two vertices that

belong to two different components of R(U, T ). The second type are violating edge that

yield a requirement over two vertices that belong to the same component in R(U, T ). If G

is bipartite, then any 2-coloring of G satisfies T , and more importantly any 2-partition of U

that satisfies T has only violating edges of the first type. If G is ǫ-far from bipartite, then

any 2-partition of U , is likely to have at least (ǫ/3)N2 violating edges of both types.

In the analysis of Algorithm 14, we have shown how to come up with a set of requirements

T , such that the number of violating edges of the first type is (likely to be) at most (ǫ/10)N2.

This means that by finding such a set T , and fixing a 2-partition of U that satisfies all

requirements in T , the following holds: If G is bipartite, then no violating edge of the second

type exists. If G is ǫ-far from bipartite, then at least
(

ǫ
3 − ǫ

10

)

N2 ≥ ǫ
6N

2 violating edges of

the second type exist. Now, using a hitter for sets of density ǫ
6 we are likely to hit a violating

edge of the second type, if G is ǫ-far from bipartiteness.

All is left for us is to define formally what is a violating edge of the first type, and what

is a violating edge of the second type.

Definition 4.12. Given U ⊂ V (G) and a set T of requirements for U , a partition Π =

(U1, U2, . . . , Ut) of U is said to be T -legal if every Ui consists of a single connected component

in R(U, T ).

That means, that when we have U and a set of requirements T , then, by Claim 4.7, for

every set Ui in the T -legal partition of U , there exists at most one 2-partition of Ui that can

satisfy all requirements in T . As we have already shown in the end of Section 4.3, if there

exists Ui ∈ Π that has no 2-partition that satisfies T , then U has no 2-partition that satisfies

T . Otherwise, for every Ui there exists a 2-partition that does satisfy T , and U has 2t−1

possible 2-partitions that satisfy T .

The following is the formal definition for a violating edge of the second type mentioned

above.

Definition 4.13. Let U be a subset of V and let T be a set of requirements. Let Π be a

T -legal partition of U . Let 〈S, S〉 be any 2-partition of U that satisfies every requirement in

T . Suppose that 〈v1, v2〉 is a violating edge for 〈S, S〉, which yields a requirement over some
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uj and uk in U . Then we say that the vertex-pair (v1, v2) is Π-violating if for some i we

have that both uj and uk belong to Ui.

This means that once we have Π, we have that for each violating edge, either its endpoints

are Π-violating, or its endpoints are such that for uj and uk from Definition 4.13, there exist

two different sets, Uj and Uk, such that uj ∈ Uj and uk ∈ Uk.

We wish to show that if G is bipartite, and we have a set of requirements T that every

2-coloring of U must satisfy, and Π is a T -legal partition, then no Π-violating edges exist.

Claim 4.14. Let G be a bipartite graph. Let U be any subset of V . Let T be a set of

requirements that every 2-coloring of V (G) must satisfy. Let Π be the T -legal partition of

U , and let 〈S, S〉 be a 2-partition of U that satisfies T . Then 〈S, S〉 has no Π-violating

vertex-pairs.

Proof. Since 〈S, S〉 satisfies T , then it satisfies every connected component C in R(U, T ). By

Claim 4.7, we have that for every C, the 2-partition 〈(S ∩C), (S ∩C)〉 is the only 2-partition

of C that can satisfy T . Assume that there exists an edge 〈v1, v2〉 which is a 〈S, S〉-violating

edge, so that (v1, v2) is a Π-violating vertex-pair. Then by definition, the pair (v1, v2) yields

a requirement over some uj and uk, which belong to the same Ui. By the definition of a

T -legal partition, we have that Ui consists of the vertices of some connected component Ci

in R(U, T ), so uj and uk both belong to Ci. We have that the edge 〈v1, v2〉 violates the

2-partition 〈(S∩Ci), (S∩Ci)〉. We deduce that there exists no 2-partition of Ci that satisfies

both T and the edge 〈uj , uk〉. This gives an immediate contradiction to the fact that G is

bipartite.

The tester we introduce begins, as usual, by picking a subset U ⊂ V . Then it goes

over all pair of connected components in G[U ], and finds a requirement for all pairs of

components that are heavily connected. It then fixes a partition Π that is legal, with respect

to all requirements found, and seeks a Π-violating vertex-pair. As Claim 4.14 proves, if

G is bipartite then no Π-violating vertex-pairs exist. If G is ǫ-far from bipartiteness and

U is good, then by Claim 4.3 we have that every 2-partition of U has (ǫ/3)N2 violating

edges. We show that if we found a requirement for every pair of connected component that

is heavily connected, then the number of the non Π-violating vertex-pairs is upper bounded

by (ǫ/10)N2. Therefore, at least (ǫ/6)N2 vertex-pairs in V × V must be Π-violating. We

note that, just as we did in Algorithm 14, when we go over all pairs of connected components

of G[U ], we use the same sample set for all of them.

Let us formally introduce our next tester.
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Algorithm 15 Testing Bipratitness by Forcing a Partition (1-Sided Version)

1: Pick a set U ⊂ V , using a hitter for sets of density at least ǫ/3 and confidence at least
1− ǫ/27. Query G[U ], and let T be the set of requirements that the edges in G[U ] yield.

2: Select randomly a set A ⊂ V × V using a hitter for sets of density at least ǫ
5|U |2 and

confidence at least 1− 1
9 · 1

1
2
|U |2 . For every pair (u, v) ∈ A, query all potential edge con-

necting u,v and U , to see whether (u, v) forms a bypass between some pair of connected
components in G[U ].

3: For every (v1, v2) ∈ A that forms a bypass between some Ci and Cj , let ui ∈ Ci and
uj ∈ Cj be the two vertices in U that (v1, v2) yield a requirement for. Add the requirement
found to T .

4: Find the T -legal partition Π of U , by uniting components of G[U ] that were found to
be connected in R(U, T ). If U has no 2-partition that satisfies T , output ”not bipartite”
and halt.

5: Fix an arbitrary 2-partition 〈S, S〉 of U that satisfies T . Select randomly a set B ⊂ V ×V
using a hitter for sets of density at least ǫ/6 and confidence at least 8/9. For every vertex-
pair (u, v) ∈ B query all potential edges connecting u, v and U , to see whether (u, v) is
a Π-violating pair.

6: If a Π-violating vertex-pair is found, then output ”not bipartite”. Else output ”bipartite”.

Theorem 4.15. Algorithm 15 is a 1-sided bipartiteness tester.

Proof. If G is bipartite, so is G[U ]. Since all requirements in T were yield from edges or

paths in G, as shown in Example 4.5, then every 2-coloring of V (G) must satisfy T . By

Claim 4.14 we have that the 2-partition 〈S, S〉 that we fixed in Step 5, has no Π-violating

edges, and so the tester outputs ”bipartite”.

If G is ǫ-far from being bipartite, then due to Claim 4.3 and the discussion in Section 4.2,

we have that the set U picked at Step 1 is good with probability at least 8/9. Due to Claim 4.3

this means that for any 2-partition of U there exist at least (ǫ/3)N2 violating edges in G. In

particular, for S found in Step 5, the 2-partition〈S, S〉 has at least (ǫ/3)N2 violating edges.

Suppose the hitter of Step 2 did not fail. This means that we found a vertex-pair that

forms a bypass for every pair of connected components of G[U ] that is heavily connected. Let

us now look at any two sets in Π, which we denote as Ui and Uj . Denote Ui as a union of ki

connected components of G[U ], so we have Ui =
⋃ki

l=1Cil and denote Uj as a union of kj other

connected components, Uj =
⋃kj

l′=1Cjl′
. Clearly, for every il and jl′ , the components Cil and

Cjl′
can not be heavily connected. Because we assume that the hitter of Step 2 did not fail, if

Cil and Cjl′
were heavily connected, then the tester would find a vertex-pair forming a bypass

between Cil and Cjl′
, and they would have been united into a single connected component

in R(U, T ). This would contradict the fact that Π is a T -legal partition.

Recall that a pair of connected components, Ci and Cj is heavily connected if the number

of vertex-pairs that form a bypass between Ci and Cj is at least ǫ
5|U |2N

2. Look at all the

violating edges of 〈S, S〉, whose endpoint yield a requirement between a vertex from Ui and

52



a vertex of Uj . We call these edges (i, j)-interfering. The (i, j)-interfering edges yield a

requirement between some Cil and some Cjl′
, that are not heavily connected. Therefore, the

number of the (i, j)-interfering edges is at most

ki
∑

l=1

kj
∑

l′=1

ǫ

5|U |2N
2 = ki · kj ·

ǫ

5|U |2N
2.

It follows (see details next) that the number of Π-violating pairs is at most ǫ
10 · N2. We

assume Π has t sets, and recall that we denote by l the number of connected component in

G[U ]. We also denoted each Ui ∈ Π to be the union of ki connected components of G[U ]. By

going over all pair of sets in Π, we have that the number of violating edges for 〈S, S〉 that

are (i, j)-interfering for some i and some j is at most

∑

1≤i<j≤t

ki · kj

(

ǫ

5|U |2N
2

)

where k1 + k2 + . . .+ kt = l

Due to the concavity of the function
∑

1≤i<j≤t ki · kj , we have that the maximum value is

reached when k1 = k2 = . . . = kt = l
t . That means that the number of vertex-pairs that form

a bypass between any pair of Ui, Uj is upper bounded by

ǫ

5|U |2N
2 ·
(

t

2

)

·
(

l

t

)2

≤ N2 · ǫ · t2l2
5 · 2 · t2|U |2 ≤

ǫ

10
N2

where the last inequality is due to the fact that l ≤ |U |.
Therefore, out of all violating edges for 〈S, S〉, the number of edges whose endpoints are

Π-violating is at least ǫ
3N

2 − ǫ
10N

2 > ǫ
6N

2. Therefore, we have that if the hitter of Step 5

does not fail, then the tester hits a Π-violating vertex-pair, and so it outputs ”not bipartite”.

So, with probability at least
(

1− 1
9 − 1

9 − 1
9

)

= 2/3 we have that the hitters of Steps 1,2 and

5 do not fail, the tester finds a Π-violating edge for Π, and output ”not bipartite”.

4.6.1 Implementation with a Hitter Linear in Confidence

As before, U will be of size O(ǫ−2) which means that Step 1 takes O(ǫ−4) queries, and

n random bits. In Step 2 we take s = 5|U |2
ǫ (1/2)|U |2 = O(ǫ−9) samples, where for each

sample we make (2|U |+ 1) = O(|U |) queries to the edges of the graph, so in Step 2 we make

s · O(|U |) = O(ǫ−11) queries, and use 2n random bits. In Step 5 we take O(ǫ−1) samples,

where for each we make O(|U |) queries, meaning that in Step 5 we make O(|U |/ǫ) = O(ǫ−3)

queries, and use additional 2n random bits. In total we have query complexity of O(ǫ−11),

and randomness complexity of 5n.

Total Complexity:
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Query Complexity: O(ǫ−11).

Randomness Complexity: 5n.

Q-R Complexity: O(ǫ−11 · n).

4.6.2 Implementation with a Hitter Logarithmic in Confidence

The size of U we pick is Õ(ǫ−1), thus the number of queries made in Step 1 is Õ(ǫ−2),

while using n + O(log(1/ǫ)) random bits. The number of samples needed in Step 2 is s =

O(6|U |2
ǫ log(|U |2)) = Õ(ǫ−3), where for each sample we make O(|U |) = Õ(ǫ−1) queries. So

in Step 2 we query s · O(|U |) = Õ(ǫ−4) edges in the graph, using 2n + O(log(1/ǫ)) random

bits. The number of samples in Step 5 is O(1
ǫ · log(1/6)) = O(ǫ−1) and for each we do O(|U |)

queries, thus Step 5 takes Õ(1/ǫ2) queries, and additional 2n + O(1) random bits. In total

the number of queries is Õ(ǫ−4), and the randomness complexity is 5n+O(log(1/ǫ)).

Total Complexity:

Query Complexity: Õ(ǫ−4).

Randomness Complexity: 5n+O(log(1/ǫ)).

Q-R Complexity: Õ(ǫ−4) · n.

4.7 Combining the Iterative Approach and the Concurrent Approach

We now introduce our last tester, which will achieve Q-R complexity of Õ(ǫ−3) · n. This

tester combines the previous iterative approach with the concurrent approach. The tester

performs iterations, in which it seeks requirements that every 2-coloring of U must satisfy.

At every iteration, the tester looks at the requirements graph it currently has. Each

component in the requirement graph is marked either ”interesting” or ”not-interesting”,

where initially, all component are interesting. It goes only over the interesting components

in the requirements graph. For every interesting component C, it seeks a vertex-pair in

V × V that yields a requirement between C and any other interesting component C ′, as

shown in Example 4.5. If the tester finds a requirement that connects C with some C ′, then

in the requirements graph of the next iteration, we have a single component C ∪ C ′ instead

of the two separated C and C ′, and the tester marks this component as ”interesting”. If the

tester finds no requirement that connects C with any other C ′, then C is marked as ”not-

interesting”, and it will be disregarded in all next iterations. We will show that the tester

either unites many components in the requirements graph, or it marks many components as

”not-interesting”. In any case, the number of interesting components decreases by a factor

of 1/2 from one iteration to the next. So after at most log(|U |) iterations, the tester remains

with a requirement graph that has no interesting components, and the iterative part of the

tester ends. Then the tester fixes a legal partition of U with respect to the requirements found

in all iterations, and as in Algorithm 15, it seeks Π-violating vertex-pairs. By Claim 4.14, if
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G is bipartite, then no Π-violating vertex-pairs exist. And as we will show, if G is ǫ-far from

bipartiteness, then it is likely that at least ǫ
6N

2 vertex-pairs are Π-violating.

As always, before we introduce the tester, we begin with some new notations and defini-

tions. Denote a (n,m)-partition of U , as Π = (V1, V2, . . . , Vn;W1,W2, . . . ,Wm). This is a par-

tition in the usual manner, where all sets are disjoint and their union is U
(

i.e. U =
⋃n

i=1 Vi ∪
⋃m

j=1Wj

)

.

The fact that Π has of two different types of sets, V -sets and W -sets, is to distinguish be-

tween the interesting sets of Π and the non-interesting sets. The interesting sets will be

the V -sets, and the non-interesting sets will be the W -sets. Note that the notions from

the previous section, of legal partitions (Definition 4.12), and of a Π-violating vertex-pairs

(Definition 4.13), are notions that do not depend on the names of the sets in Π. Therefore,

they apply to (n,m)-partitions, as they apply to any partition.

The notion of a vertex-pair that forms a bypass, presented in Definition 4.9, originally

refers to connected components of G[U ]. We now extend this definition to hold for any two

arbitrary subsets of U .

Definition 4.16. Let A and B be any two disjoint subsets of V (G). We say a vertex-pair

(v1, v2) ∈ V (G) × V (G) forms a bypass between A and B if there exists some u1 ∈ A and

u2 ∈ B, such that one of the two following hold:

• For some v ∈ {v1, v2}, we have that u1 is adjacent to v and u2 is adjacent to v. By

Case 2 of Example 4.5, we have that (v1, v2) yield the requirement u1 ∼ u2.

• We have that u1 is adjacent to v1, that u2 is adjacent to v2, and that v1 and v2 are

adjacent. By Case 3 of Example 4.5, we have that (v1, v2) yield the requirement u1 ≁ u2.

We denote by CP (A,B), standing for connecting pairs, the set of all vertex-pairs that

form a bypass between A and B. Given a (n,m)-partition Π for U , and a set A ∈ Π, we

denote by CPΠ(A) the set of all vertex-pairs that form a bypass between A and some other

set B ∈ Π. That is, CPΠ(A) =
⋃

{B∈Π: B 6=A}CP (A,B).

We now introduce two definitions, which are crucial for understanding the new tester.

They discuss properties for the interesting sets (i.e. V -sets) of Π, and the non interesting

sets (i.e. W -sets) of Π.

Definition 4.17. Let Π be a (n,m)-partition of U . Denote Π = (V1, V2, . . . , Vn;W1,W2, . . . ,Wm).

Fix some Vj ∈ Π. We say that Vj is heavily aligned with Π, if the number of vertex-pairs

in V × V that form a bypass between Vj and any other Vk ∈ Π is at least ǫ
12|U |N

2. That is,
∣

∣

∣

⋃

k 6=j CP (Vj , Vk)
∣

∣

∣
≥ ǫ

12|U |N
2.

Let us clarify the definition. Fix some Vj , and then look at the set of the vertex-pairs

that form a bypass between Vj and some other V -set of Π, denoted Vk, where Vk 6= Vj . These

vertex-pairs are exactly those in
⋃

k 6=j CP (Vj , Vk). Then Vj is said to be heavily aligned with
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Π, if the number of all of these vertex-pairs is at least ǫ
12|U |N

2. Note that the definition of a

V -set being heavily aligned with Π ignores all the W -sets of Π, and regards solely the vertex

pairs that form a bypass between Vj and other V -sets of Π.

Definition 4.18. Let Π be a (n,m)-partition of U . Denote Π = (V1, V2, . . . , Vn;W1,W2, . . . ,Wm).

We say that a vertex-pair (v1, v2) is W -affecting if for some j it forms a bypass between Wj

and any other set B ∈ Π, where B 6= Wj. Formally, (v1, v2) is W -affecting, if there exists a

j such that (v1, v2) ∈ CPΠ(Wj), or alternatively, if (v1, v2) ∈
⋃m

j=1CP
Π(Wj). We call Π a

δ-bounded partition, if the number of vertex-pairs in V (G) × V (G) that are W -affecting, is

at most δN2. That is,
∣

∣

∣

⋃m
j=1CP

Π(Wj)
∣

∣

∣
≤ δN2.

Let us emphasize which vertex-pairs we discuss here, or more formally, which vertex-pairs

are in
⋃m

j=1CP
Π(Wj). These vertex-pairs close a path of length 2 or 3 between some two

vertices u1 and u2 in U , where u1 belongs to some Wj , and u2 belongs to any other set B ∈ Π

which isn’t Wj , meaning B ∈ Π \ {Wj}. Again we stress: the set
⋃m

j=1CP
Π(Wj) does not

include vertex-pairs that close a path of length 2 or 3 only between some two vertices u1 and

u2 in U , where both u1 and u2 belong to the same Wj . Note the the definition of a partition

that is δ-bounded ignores all vertex-pairs that form a bypass between two V -sets.

Let us describe our tester informally. At the beginning of iteration i it has a set of require-

ments found thus far, T i, and a (n,m)-partition Πi of U which is T i-legal. It focuses only on

the V i-sets of Πi. For every V i
j , it tries to hit a vertex-pair that belongs to

⋃

k 6=j CP (V i
j , V

i
k ).

If V i
j is heavily aligned with Πi, then a vertex-pair inducing a requirement for V i

j and some

other V i
k is likely to be found, and the requirement this vertex-pair yield is added to T i

(towards forming Ti+1). If V i
j is not heavily aligned with Π, then it may ”cast” V i

j aside,

and in the next iteration, V i
j will be a non-interesting W i+1-set, which is ignored in all of the

following iterations. Once the tester reaches an iteration i where Πi has no V i-sets to find

requirements for, then it fixes some 2-partition 〈S, S〉 of U that satisfies T i. It then seeks a

Πi-violating vertex-pair. If G is bipartite, then as Claim 4.14 shows, no Πi-violating edges

exist. If G is ǫ-far from bipartiteness and all the hitters that the tester uses do not fail, then,

as we show, after at most log(|U |) iteration, the tester has a T i-legal partition Πi, for which

that number of Πi-violating vertex-pairs is at least (ǫ/6)N2.

Note that as in Algorithm 14 and Algorithm 15, at each iteration we use the same sample

set to check for all V -sets together, whether each V -set is heavily aligned with Π or not.

Here, however, like in Algorithm 13, at each iteration we use new random bits, independent

from the random bits that were used in the previous iterations. Formally, the tester is as

follows.
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Algorithm 16 Bipartiteness Tester Combining Both Approaches

1: Pick a set U ⊂ V , using a hitter for sets of density at least ǫ/3 and confidence at least
1− ǫ/27. Query G[U ].

2: Denote the connected components of U to be C1, . . . , Cl. If any component isn’t bipartite,
output ”not bipartite” and halt. Let T 0 be the set of requirements that the edges of G[U ]
yield. Let Π0 be the (l, 0)-partition: (C1, C2, . . . , Cl; ∅), which is T 0-legal.

3: for i = 0, 1, . . . t = log2(|U |) do
4: Denote the set of requirement found thus far by T i, and the legal T i-partition by

Πi =
(

V i
1 , . . . , V

i
ni

;W i
1, . . . ,W

i
mi

)

.
5: Select randomly a set Bi ⊂ V (G) × V (G) using a hitter for sets of density at least

ǫ
12|U | and confidence at least 1 − 1

9ni log(|U |) . For every (u, v) ∈ Bi query all potential

edges between u, v and V i
1 , V

i
2 , . . . , V

i
ni

to see whether (u, v) forms a bypass between
some two sets, V i

j and V i
k (possibly V i

j = V i
k ).

6: For every vertex-pair (v1, v2) ∈ Bi that forms a bypass between V i
j and V i

k , find the

requirement they yield over some two vertices uj ∈ V i
j and uk ∈ V i

k . Unite T i with all

requirements found in the ith iteration, into a new set of requirements, T i+1.
7: Let Πi+1 be the T i+1-legal partition,12 where every connected component of R(U, T i+1)

is a set in Πi+1. Divide Πi+1 to V -sets and W -sets as follows:

• If C is a component of R(U, T i+1) that is the union of two or more V -sets of Πi,
then it is a V -set in Πi+1.

• If C is a component of R(U, T i+1) that was a W -set in Πi, then it is a W -set in
Πi.

• If C is a component of R(U, T i+1) that was a V -set in Πi, yet no requirement
connecting it with any other component in R(U, T i) was found, then it is a W -set
in Πi+1.

8: end for
9: Denote the set of requirements T t+1 and the T t+1-legal partition Πt+1 that were defined

in the last iteration, as T f and Πf , respectively. These are the final set of requirements,
and the final (n,m)-partition, that the iterations part of the tester ends with. If no
2-partition of U satisfies T f , then output ”not bipartite” and halt.

10: Fix an arbitrary 2-partition 〈S, S〉 that satisfies all requirements in T f . Select randomly
a set C ⊂ V (G) × V (G) using a hitter for sets of density at least ǫ/6 and confidence
at least 8/9. For every (u, v) ∈ C, query all potential edge between u, v and U , to see
whether 〈u, v〉 is a 〈S, S〉-violating edge, whose endpoints are Πf -violating.

11: If a Πf -violating vertex-pair is found, output ”not bipartite”, otherwise, output ”bipar-
tite”.

Theorem 4.19. Algorithm 16 is a 1-sided tester for bipartiteness:

12Recall that by Definition 4.12, legal partitions refer solely to the components in R(U, T ). Therefore, a
T i+1-legal partition always exists, regardless of whether there exists a 2-partition of U that satisfies T i+1 or
not.
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Proof. The analysis of the algorithm is based on the following claim:

Claim 4.20. For every iteration i:

1. ni, the number of V -sets in Πi, is at most
(

1
2

)i |U |.

2. If all the hitters in all iterations did not fail, then Πi is a
(

ǫ · 1−(1/2)i

6

)

-bounded parti-

tion.

We first show how Claim 4.20 implies the validity the theorem. If G is bipartite, then for

every iteration i, any 2-coloring of V (G) must satisfy the set of requirements T i. Therefore,

any 2-coloring of U induced from a 2-coloring of V (G) must satisfy T i. By Claim 4.20, after

at most log(|U |) iterations, we have a set of requirements T f and a T f -legal partition, Πf ,

such that the number of V -sets in Πf is at most 1. No matter which edges and vertex-pair

Algorithm 16 picks in Step 5, the set T f that they yield is satisfied by any 2-coloring of V (G).

Since Πf is a T f -legal partition, then by Claim 4.14, we have that Πf has no Πf -violating

vertex-pairs. Thus the tester never finds any Πf -violating vertex-pair, and it must output

”bipartite”.

Let us now show that for any G that is ǫ-far from being bipartite, the tester outputs

”not bipartite” with probability at least 2/3. Fix any G which is ǫ-far from being bipartite.

Assume that none of the hitters used in all of the stages failed. (The probability that one

failed is upper bounded by: 1
9 +

∑log(|U |)
i=0

1
9ni log(|U |)ni + 1

9 = 1/3.) Let us show that if this is

the case, the tester doesn’t fail.

As shown in Claim 4.3 and in Section 4.2, if the hitter of the first Step did not fail, we

have a good set U . By Claim 4.3, we have that that every 2-partition of U has at least

(ǫ/3)N2 violating edges. In particular, we have that the 2-partition that Algorithm 16 fixes

in Step 10, 〈S, S〉, has at least (ǫ/3)N2 violating edges.

Since we assume Claim 4.20 holds, then after at most log(|U |) iterations the tester finds

a partition with at most one V -set, and quits doing iterations. Thus, Πf is a partition with

no heavily aligned components, because it has at most one V -set. Look at the endpoints of

a violating edge of 〈S, S〉 that are not Πf -violating. By definition, this vertex-pair forms a

bypass between two different sets of Πf . Since there is at most one V -set in Πi, we deduce

that one of the sets this vertex-pair forms a bypass for, is a W -set of Πf . Therefore, this is a

W -affecting vertex-pair. By Claim 4.20, we have that Πi is a ǫ/6-bounded partition, so the

number of W -affecting vertex-pairs for Πf is at most (ǫ/6)N2. We deduce that the number

of Πi-violating vertex-pairs is at least
(

ǫ
3 − ǫ

6

)

N2 = ǫ
6N

2. We assume the last hitter also

doesn’t fail, so it hits one Πf -violating vertex-pair. Therefore, if G is ǫ-far from bipartite, all

hitters did not fail, and Claim 4.14 holds, then the tester outputs ”not bipartite”.

Proof of Claim 4.20. We show that the claim holds by induction. Obviously, Π0 has l ≤ |U |
components, and since by definition Π0 has no W -sets, then there exists no W -affecting
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vertex-pair for Π0, so Π0 is trivially a 0-bounded partition.

We now prove the induction step for Item 1. That is, assuming that ni ≤ 2−i|U |, we

show that ni+1 ≤ 2−(i+1)|U |. We know that the number of V -sets in Πi is ni. Take H to

be a graph over ni vertices, each represents a V i-set in Πi. In Step 5 of Algorithm 16, we

find vertex-pairs that form a bypass between two different V -sets. For each pair of V -sets,

V i
j and V i

k , that a bypass was found for, add an edge to H that connects the two vertices

representing V i
j and V i

k . Recall that each vertex-pair that forms a bypass between V i
j and

V i
k , yields a requirement that connects V i

j and V i
k in the requirements graph R(U, T i+1).

Therefore, the edge we add to H indicates that V i
j and V i

k are united into a single V -set in

Πi+1. After adding all edges to H, every vertex that remains isolated from the rest of H

represents a V -set of Πi that turns into a W -set in Πi+1. This means that the number of

V -set in Πi+1 is the number of components in H that are of size at least 2. Since H has ni

vertices, then at most it has ni
2 connected components of size at least 2. This means that

the number of V -sets in Πi is at most 1
2 · 2−i|U | = 2−(i+1)|U |.

We now prove the induction step of Item 2. That is, assuming that Πi is a
(

ǫ · 1−2−i

6

)

-

bounded partition, we show that Πi+1 is a
(

ǫ · 1−2−(i+1)

6

)

-bounded partition. Recall that Πi

is δ-bounded if the number of W -affecting vertex-pairs is at most δN2. Also recall that a

vertex-pair is W -affecting if it yields a requirement for two vertices u1 and u2 in U , where

u1 belongs to some W i
j ∈ Πi and u2 belongs to any set B ∈ Πi \ {W i

j}.
First, look at the W -sets of the partition Πi+1. They can be classified into two types.

The first type is of W -sets that were W -sets already in Πi, and we call them the old W -sets.

The second type is of W -sets that were V -set in Πi, and we call them the new W -sets. This

classification helps us to classify the vertex-pairs in
⋃

j CP
Π(W i+1

j ) into two types, and thus

upper bounds their number.

Let (v1, v2) be a vertex-pair that is W -affecting, for the W -sets of Πi+1. As in the

definition of a vertex-pair that forms a bypass, Definition 4.16, we assume v1 and v2 close

a path of length 2 or 3 between some two different vertices of U , denoted u1 and u2. Since

(v1, v2) is W -affecting, then either u1 or u2 belong to some W -set in Πi+1. Since we have old

W -sets and new W -sets, then we have two cases:

Case 1: Either u1 or u2 belong to some old W -set. Then in this case, we have that the

vertex-pair (v1, v2) forms a bypass between some W i
j set in Πi, and some other set of

Πi. Therefore, (v1, v2) is a vertex-pair that is W -affecting for the W -sets of Πi.

Case 2: Both u1 and u2 do not belong to an old W -set, and one of them belongs to a new

W -set. Without loss of generality, u1 belongs to a new W -set, which in Π was a V -set,

denoted V i
j . Since u2 also does not belong to an old W -set, then it must belong to some

other V -set in Πi. This means that the vertex-pair (v1, v2) forms a bypass between V i
j

and some other V -set of Πi.
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If V i
j were heavily aligned with Πi, then

⋃

k 6=j CP (V i
j , V

i
k ) would be a set of size at least

ǫ
12|U |N

2. By the assumption that the hitter of the ith iteration did not fail, we would

hit a vertex-pair in
⋃

k 6=j CP (V i
j , V

i
k ). Thus V i

j would be united with some other V i
k

into a new V -set in Πi+1. But since V i
j is a W -set in Πi+1, we have a contradiction.

We deduce that V i
j isn’t heavily aligned with Πi.

Therefore, Πi+1 has that the W -affecting vertex-pairs are of two types. Type one is of

vertex-pairs that were W -affecting for Πi. By the induction hypothesis, we have at most

ǫ · 1−2−i

6 N2 vertex-pairs of type one. Type two is of vertex-pairs that form a bypass between

two V -sets of Πi, where one V -set is not heavily aligned with Πi. Each non heavily aligned

V i
j set of Πi contributes at most ǫ

12|U |N
2 vertex-pair that form a bypass between V i

j and some

other V -set of Πi. Since the number of V -sets in Π is ni, then we have at most ni · ǫ
12|U |N

2

vertex-pairs of type two. Since Item 1 holds, the number of V -sets in Πi is ni ≤ 2−i|U |.
Therefore, we can upper bound the number of W -affecting vertex-pairs, for Πi+1, by

(

ǫ · 1− 2−i

6
N2

)

+ ni ·
(

ǫ

12|U |N
2

)

≤ ǫ

6
N2 ·

(

1− 2−i +
2−i|U |
2|U |

)

=

ǫ

6
N2

(

1− (1− 1

2
) · 2−i

)

= ǫ · 1− 2−(i+1)

6
N2

Item 2 is proven, and we are done.

4.7.1 Implementation with a Hitter Linear in Confidence

As before, U will be of size O(ǫ−2) which means that in Step 1 we make O(ǫ−4) queries and

use n random bits. Each time we performs Step 5, it requires 2n random bits to produce

s = O(12|U |
ǫ · 9ni log(|U |)) = O(|U |2 log(|U |)/ǫ) = O( log(1/ǫ)

ǫ5
) samples of vertex-pairs. For

each vertex-pair we make (2|U |+1) queries to the edges of the graph, meaning each iteration

takes s · O(|U |) = O( log(1/ǫ)
ǫ7

) queries and 2n random bits. We do at most t = log(|U |)
iterations, each time with new random bits, so the iterations part of the algorithm we use

t · 2n = 2 log(1/ǫ) ·n random bits, to make s · (2|U |+ 1) · t = O( log2(1/ǫ)
ǫ7

) queries to the edges

of the graph.

In Step 10, we use additional 2n random bits to produce another O(1
ǫ ) samples, for each

we make O(|U |) queries, which means we make O(|U |/ǫ) = O(ǫ−3) queries. All in all, we

make O( log2(1/ǫ)
ǫ7

) queries, and use n+ t · (2n) + 2n = O(log(1/ǫ) · n) random bits.

Total Complexity:

Query Complexity: O( log2(1/ǫ)
ǫ7

).

Randomness Complexity: O(log(1/ǫ) · n).

Q-R Complexity: O( log3(1/ǫ)
ǫ7

· n).
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4.7.2 Implementation with a Hitter Logarithmic in Confidence

The size of U we pick is Õ(ǫ−1), thus in Step 1 we use n+O(log(1/ǫ)) random bits and make

Õ(ǫ−2) queries.

Each time we perform Step 5, it requires 2n + O(log(ni log(|U |))) = 2n + Õ(log(1/ǫ))

random bits, to produce s = O
(

|U |
ǫ · log(ni log(|U |))

)

= Õ(ǫ−2) samples of vertex-pairs. For

each sample we make (2|U |+1) queries to the edges of the graph, meaning each iteration takes

s ·O(|U |) = Õ(ǫ−3) queries. We do at most t = log(|U |) iterations, so in the iterations part of

the algorithm, we make s·O(|U |)·t = Õ
(

1/ǫ3
)

queries, and uses (2n+Õ(log(1/ǫ)))·log(|U |) =

O(log(1/ǫ)) · n random bits.

In Step 10, we use 2n + O(1) random bits to take another sample of O(1
ǫ ) vertex-pairs,

where for each sample we make O(|U |) queries, So in step 10 we make Õ(ǫ−2) queries. All in

all, we make Õ
(

(1/ǫ)3
)

queries and use n+ t · n+ 2n+O(1) = O(log(1/ǫ)) · n random bits.

Total Complexity:

Query Complexity: Õ(ǫ−3).

Randomness Complexity: O(log(1/ǫ)) · n.

Q-R Complexity: Õ
(

ǫ−3
)

· n.

4.8 Summation

In this section we have introduce several algorithms for testing bipartitness. We now sum

up their complexities:

Tester Query Randomness Q-R

Complexity Complexity Complexity

Algorithm 12: Original GGR Õ(ǫ−3) Õ(ǫ2n) Õ(ǫ−5) · n
GGR + hitter linear in confi-

dence

2O(ǫ−2) 3n 2O(ǫ−2) · n

GGR + hitter logarithmic in

confidence

Õ(ǫ−3) 3n+ Õ(ǫ−1) Õ(ǫ−3)·n+Õ(ǫ−4)

Algorithm 13: Sequential

Forcing

Õ(ǫ−3) Õ(ǫ−1n) Õ(ǫ−4) · n

Algorithm 15: Concurrent

Forcing

Õ(ǫ−4) 5n+O(log(ǫ−1)) Õ(ǫ−4) · n

Algorithm 16: Combining

concurrent and sequential

Õ(ǫ−3) O(log(ǫ−1)) · n Õ(ǫ−3) · n
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5 Conclusions and Open Problems

Again, we would like to stress the importance of reducing the randomness complexity of

property testers. Besides the fact that saving resources is a good paradigm, we have shown

that when using a single weak random source, the randomness complexity of a tester affects

the number of queries it makes.

Also, we believe that the techniques presented in Section 4 are of importance for other

testers as well. In particular, we would like to stress the following notion. When faced with

an exponential number of events, the standard way to rule out all of them is to reduce the

probability of each event to be exponentially small. Instead, try and gather more information

by querying other entries of the input, and reduce the number of bad events from exponential

to polynomial. This approach requires only slightly more queries, and may reduce signifi-

cantly the randomness complexity. It might even be possible that once can fix one event,

with the following property: If the input is a ”Yes” instance, then this event is likely to have

relatively few refutations (or none at all). If the input is a far from ”Yes” instance, then

this event has many refutations. If this is to hold, then one can use a randomness-efficient

sampler (or a hitter) to estimate the number of refutations this specific event has.

We end with open questions. The most important open question this thesis raises is how

to explicitly find a set U that is (K, δ)-universal (see Definition 3.5). We made some attempts

in that direction, following the work of Nisan [Nis90] and of Nisan and Zuckerman [NZ96],

but were unsuccessful. The approach we tried was to think of a canonical property tester for

some Π as a probabilistic space bounded TM that gets K logN random bits, indicating the

K vertices of the subgraph that the canonical tester checks. In order to check whether the

subgraph over these K vertices has some property Π′, we need to save this subgraph into the

tester’s workspace and then use a lookup table to determine whether to accept or reject the

input. Saving this subgraph requires O(K2) space. Note, however, that in order to query

all pairs of vertices of the given K vertices, the tester has to either save its entire K logN

random bits into its workspace, or read the random tape several times, instead of just once.

In the first case, the workspace of the machine is of size at least K logN , and so the known

PRGs for such machines have seeds of length at least K logN . In the second case, the known

PRGs are for space bounded machines with one-time access to their random tape, and are

not adaptable to machines that read the random tape several times. Still, it is tempting to

consider property testing (and not just canonical testers for graphs, but also other testers

fall into that category) as a type of space bounded machines, that only store the result of

their queries to their workspace, and thus determining their output. If the locations of the

entries that the tester queries were written explicitly on the random tape, then property

testing would fall in the known framework of space bounded computations. However, the
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tester computes its queries from the random tape, and this computation either requires too

much workspace, or requires that we read the random tape several times. In both cases,

applying the space-bounded model, in a straightforward way, fails.

A second question is to try and find a tighter lower bound for the randomness complexity

of samplers and property testers. In particular, we wish to add a term of 2 log(1/ǫ) to the

known lower bound of samplers. It is not clear what is the connection between the randomness

complexity and the accuracy of the sampler/distance parameter of the tester (the parameter

ǫ). Perhaps some ”translation” between the term of ”entropy loss” in extractors to the field

of samplers is required.

Finally, we believe it to be very interesting, yet very difficult, to prove some bounds on the

Q-R complexity of property testers, with emphasis on a lower bound (other than the trivial

multiplication of the lower bound on Q with the lower bound on r). Perhaps techniques

related to space-time tradeoffs are applicable towards finding such a lower bound.
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A Samplers

A.1 Basic Definitions and Notations

Let N be a positive integer, and denote n = log2N .Let f : [N ] → [0, 1] be any function.

Denote E[f ] = avg(f) = 1
N

∑

x∈[N ] f(x).

Definition A.1. A (ǫ, δ)-sampler S with query complexity Q and randomness complexity

r, is a probabilistic oracle machine that for every n and every f : [N ] = {0, 1}n → [0, 1]

tosses at most r coins and queries no more than Q of the entries of f , in order to output an

estimation EstS(f) that satisfies

Pr[|EstS(f)− E[f ]| > ǫ] < δ.

We call ǫ the accuracy of the sampler, and 1− δ the confidence of the sampler.

We wish to stress that a sampler can be adaptive, meaning that its queries may depend

on the function values it already queried. The number of queries made by a sampler may

also vary according to its sample points and the function values over these points, but we

assume that the number of queries never exceeds Q.

We call a sampler oblivious if it is non-adaptive and its estimation doesn’t depend on the

labeling of the Q points it queries. We call a sampler averaging if it is an oblivious tester

whose estimation is EstS(f) = 1
Q

∑Q
i=1 f(xi).

Similarly, we define a {0, 1}-sampler, of the same parameters, to be a sampler that for

every f : [N ]→ {0, 1}, produces an ǫ-close estimation of E[f ], with confidence at least 1− δ.

We classify samplers into two major kinds, according to the dependence of their sample

complexity in their confidence. To be exact, the dependence is between Q, the query com-

plexity of the sampler, to δ, which is the complementary of the confidence of the sampler to

1 (or, even more formally, between Q and 1/δ).13

Definition A.2. We say that a sampler S is polynomial in confidence if its sample com-

plexity is proportional to poly(1/δ), and linear in confidence if it is proportional to O(1/δ).

We say that a sample S is logarithmic in confidence if its sample complexity is proportional

to O(log(1/δ)).

The subject of samplers have been extensively studied, and there are many known sam-

plers (See [Gol97] for survey, [Zuc97] for the connection between samplers and extractors

13We apologize for the confusion that may arise from the term dependence ”in confidence”. We assume
however that the average reader if familiar with the common terminology, and understands the choice of
words.
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and [GUV06] for the best known construction of extractors). They vary from very simple

samplers to extremely non-trivial one. Here, we wish to present just two samplers, one linear

in confidence, and the other logarithmic in confidence.

A.2 Lower and Upper Bounds for Samplers

Before introducing our samplers, we wish to first discuss the known lower bounds and upper

bounds on the query complexity and the randomness complexity of samplers.

The work of Canetti et al. [CEG95] gave a lower bound of Ω( 1
ǫ2

log(1
δ )) on the query

complexity of any sampler. This lower bound is matched by a simple sampler that performs

O( 1
ǫ2

log(1
δ )) queries: The sampler that selects randomly, independently and uniformly Q

points in N , and averages of the function values over these points. The Chernoff bound

shows that it suffices to take O( 1
ǫ2

log(1
δ )) samples in order to produce an ǫ-close estimation

of E[f ] with probability greater than 1− δ.
The same paper [CEG95] gave also a lower bound of n−logQ+log(1/δ)+log(1−2ǫ)−2 on

the randomness complexity of any sampler having query complexity Q. Since we may assume

ǫ < 1/4, we can intuitively interpret this lower bound as n − logQ + log(1/δ) − O(1). The

trivial sampler that queries Q entry points, chosen randomly, independently and uniformly,

has randomness complexity of Q · n = O( 1
ǫ2

log(1
δ )) · n, which is very far from the lower

bound. Zuckerman [Zuc97] introduced a sampler with randomness (1 + α)(n+ log(1/δ)) for

any 0 < α < 1. However, the query complexity of Zuckerman’s sampler is far from the

optimal, and depends on n.

Ultimately, we would like to construct a sampling algorithm, that both its query complex-

ity and its randomness complexity match the lower bounds. Here, we construct a sampler

that has the optimal query complexity of O(1
ǫ log(1/δ)), and is very close to having an optimal

randomness complexity - it has randomness complexity of n+O(log(1/δ)).

A.3 A Sampler Linear in Confidence

Let us introduce a new-old sampler. This sampler is linear in confidence, and has already

been proven [Gol97] to be a {0, 1}-sampler. Here we apply almost the same method to show

that this is also a sampler, in the standard sense.

We wish to emphasize the randomness complexity of this sampler. It has randomness

complexity r = n, so this sampler is as efficient as picking one sample point in N uniformly.

Furthermore, for samplers linear in confidence (i.e. Q is proportional to 1
δ ), the lower bound

on the randomness of samplers linear in confidence is r ≥ n − logQ + log(1/δ) − O(1) =

n − O(1). This means that this sampler exactly meets the lower bound for samplers linear

in confidence without any constant factor (as apposed to, say, the pair-wise independent

sampler, which has randomness complexity of 2n).
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Let us now describe the sampling algorithm. Fix any ǫ, δ > 0. Let G be a (N,D, λ)-

expander, where D = O
(

1
ǫ2δ

)

and λ
D = O

(

1√
D

)

. For any v ∈ [N ], denote the ith neighbor

of v as Γi(v).

Algorithm 17 Sampling Algorithm 1

1: Select randomly and uniformly a vertex v ∈R [N ] = [2n] = {0, 1}n.
2: Query f for the following D values: f(Γ1(v)), f(Γ2(v)), . . . , f(ΓD(v)).
3: Output Estv(f) = 1

D

∑D
i=1 f(Γi(v)).

Theorem A.3 (Expander Neighbors Sampler). ∀n, ǫ, δ > 0, Algorithm 17 is a (ǫ, δ)-

averaging sampler, with query complexity of O
(

1
ǫ2δ

)

and randomness complexity of n.

Proof. First, let us state the trivial properties of Algorithm 17. Randomness-wise, all Algo-

rithm 17 needs, is to select one vertex uniformly from G, therefore its randomness complexity

is r = n. The query complexity of Algorithm 17 is D = O
(

1
ǫ2δ

)

, since it queries all D neigh-

bors of the vertex selected. By definition, Algorithm 17 outputs the average of its sampling

points. So, all that is left for us to show is that Algorithm 17 is a (ǫ, δ)-sampler. That is, we

wish to show that indeed Prv←Ur [|Estv(f)− E[f ]| > ǫ] < δ.

Denote by B+ the set of {v ∈ [N ] : Estv(f) − E[f ] > ǫ}, and B− = {v ∈ [N ] :

Estv(f)−E[f ] < −ǫ}. Our goal is to upper bound |B+∪B−| = |B+|+ |B−|. We begin with

bounding |B+|.
Denote by b the indicating vector of B+, and let a be the vector where ax = f(x).

Both a and b are of length N . Let M the normalized adjacency matrix of G. Naturally,

M is symmetric and thus has a basis of orthonormal eigenvectors, which we will denote as

{u1, u2, . . . , uN}. Their matching eigenvalues are denotes as µ1, µ2, ..., µN respectively, where

|µ1| ≥ |µ2| ≥ ... ≥ |µN |. As usual, u1 = 1√
N

1̄ and µ1 = 1, and by our notation µ2 = λ/D.

Let us look at bTMa. Since Mx,y = 1/D for any x, y such that y ∈ Γ(x) and otherwise

Mx,y = 0, we have that (Ma)v =
∑D

i=1

a(Γi(v))

D = Estv(f), thus, by the definition of the set

B+,

bTMa =
∑

v∈B+

Estv(f) ≥ |B+| · (E[f ] + ǫ)

which implies that
bTMa

N
− B+

N
E[f ] ≥ ρ(B+) · ǫ (i)

On the other hand, using the orthonormal basis, we can represent a =
∑

x âxux and

b =
∑

x b̂xux, where âx = 〈a, ux〉, b̂x = 〈b, ux〉. Therefore
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bTMa =

(

∑

y

b̂yu
T
y

)

M

(

∑

x

âxux

)

=

(

∑

y

b̂yu
T
y

)(

∑

x

âxµxux

)

=
∑

x,y

âxb̂yµxu
T
y ux =

=
∑

x

âxb̂xµx ≤ â1b̂1 + |µ2|

∣

∣

∣

∣

∣

∣

|N |
∑

x=2

âxb̂x

∣

∣

∣

∣

∣

∣

(1)

≤ â1b̂1 + |µ2|‖â‖2‖b̂‖2

(2)
= â1b̂1 + |µ2|‖a‖2‖b‖2

(ii)

where the (1) inequality is simply the Cauchy Schwartz inequality, and the (2) equality is

due to the fact that replacing one orthonormal basis in another doesn’t change the norm of

the vector.

Simple calculations show that

â1 = aT

(

1√
N

1̄

)

=
1√
N

∑

x

ax =
1√
N

∑

x

f(x) =
√
N · E[f ]

b̂1 = bT
(

1√
N

1̄

)

=
1√
N

∑

x

bx =
√
N · ρ(B+)

‖b‖22 =
∑

x

b2x =
∑

x∈B+

12 = |B+|

‖a‖22 =
∑

x

a2
x =

∑

x

f(x)2
(3)

≤
∑

x

f(x) = N · E[f ]

where (3) holds because 0 ≤ f(x) ≤ 1. This inequality is, in fact, the only place where this

analysis differs from one in [Gol97].

By ”plugging in” the values for â1, b̂1, ‖a‖, ‖b‖ in (ii) we get:

bTMa ≤ Nρ(B+) · E[f ] +
λ

D
·
√

N |B+| · E[f ]

which implies

∣

∣

∣

∣

bTMa

N
− ρ(B+)E[f ]

∣

∣

∣

∣

≤ λ

D
·
√

B+

N
· E[f ] (iii)

Combining both bounds in (i) and in (iii) we deduce:

ǫ · ρ(B+) ≤
∣

∣

∣

∣

bTMa

N
− ρ(B+)E[f ]

∣

∣

∣

∣

≤ λ

D
·
√

E[f ]ρ(B+)⇒ ρ(B+) ≤
(

λ

Dǫ

)2

E[f ]
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Since we set λ/D ≤ ǫ
√
δ we have that ρ(B+) ≤ δ · E[f ].

Now, in order to bound |B−| one can apply the method used to bound the size of B+.

Alternatively, one may use the following reduction. We look at the complementary function

of f , which is the function defined as f = 1 − f . Let B+ be the set of v ∈ [N ] such that

Estv(f) > E[f ] + ǫ. The calculation from above holds for f as well, thus ρ(B+) ≤ δ · E[f ].

But note that B+ = B−, meaning that every vertex producing an estimation which is at

least ǫ smaller than E[f ], produces also an estimation which is at least ǫ bigger than E[f ].

We deduce that ρ(B−) ≤ δ · E[f ] = δ · (1− E[f ]).

Thus ρ(B) = ρ(B+)+ρ(B−) ≤ δ ·E[f ]+ δ · (1−E[f ]) = δ. This completes the proof.

A.4 A Sampler Logarithmic in Confidence

We now show a sampler that is logarithmic in confidence. This sampler is based on the

sampler that is linear in confidence, built in the previous section.

Bellare et al. [BGG93] introduced a general scheme, to construct a sampler logarithmic in

confidence, given any sampler and an expander of suitable size. Originally, they implemented

it using a pair-wise independent sampler and an expander random walk. This yields a

construction of a sampler logarithmic in confidence, that has randomness complexity of

2n + O(log(1/δ)). Here, we apply the same scheme, using the sampler from the previous

section and an expander of suitable size, to construct a sampler also logarithmic in confidence,

which has randomness complexity of n+O(log(1/δ)).

For any ǫ, δ > 0, let S(ǫ, δ) be the (ǫ, δ)-sampler from Theorem A.3. Let R be the set of

all possible coin tosses for S(ǫ, δ).14 For every x ∈ R denote the estimation that S outputs

when fed x as a random string, as Estx(f).

Algorithm 18 Sampling Algorithm 2

1: Let S be the sampling algorithm in Algorithm 17 with accuracy ǫ and confidence 0.99.
Denote R = {0, 1}n as the set of all possible random strings that S uses as a random
input.

2: Let G be a (R,D, λ)-expander, where |R| = N , D = O(1), and λ
D ≤ 0.01.

3: Denote l = 4 log2(1/δ).
4: Select randomly and uniformly a sequence v, i1, i2, . . . , il in [N ]× ([D])l.
5: Denote by v1, v2, . . . , vl+1 a walk of length l over G, where v1 = v and for every j we

have that vj+1 = Γij (vj).
6: For every i = 1, 2, . . . , l + 1, simulate S with vi as its random string.
7: Let Est be the median of the set {E1, E2, . . . , El+1}, where for every i we denote Ei =
Estvi(f). Output Est.

We wish to show that indeed Algorithm 18 is a sampling algorithm. In order to show

that, we first state, without proof, the expander random walk theorem:

14Since R is always [N ], no matter what ǫ, δ are, there is no need to define R to be dependent of ǫ, δ
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Theorem A.4 (Expander Random Walk Theorem, see [Gol97]). Let G be a (N,D, λ)-

expander. Let W0,W1, . . . ,Wl be subsets of V , and denote for every i = 0, 1, . . . , l their

density as ρi = |Wi|
|V | . Then the fraction of random walks in G of length l which intersect

W0 ×W1 × . . .×Wl is at most

√
ρ0ρl

l
∏

i=1

√

ρi + (1− ρi)

(

λ

D

)

Claim A.5. For any N, ǫ, δ > 0, Algorithm 18 is a (ǫ, δ)-sampling algorithm with query

complexity Q = O
(

1
ǫ2

log(1/δ)
)

, and randomness complexity r = n+O(log(1/δ)).

Proof. We begin by showing that Algorithm 18 is indeed a (ǫ, δ)-sampler, meaning that

Pr[|Est− E[f ]| > ǫ] < δ, where N, ǫ, δ and f : [N ]→ [0, 1] are fixed arbitrarily.

Since Algorithm 18 outputs the median of l estimations, then the median is ǫ-far from

the actual average of f if at least ⌈l/2⌉ estimations are either all bigger than E[f ] + ǫ or all

smaller than E[f ]− ǫ. We bound the probability that Algorithm 18 performs at least ⌈l/2⌉
simulations of S that give estimations which are ǫ-far from E[f ].

Let B = {x ∈ R : |Estx(f) − E[f ]| ≥ ǫ}. We know that |B|/R ≤ δ. By the expander

random walk theorem stated above and the union bound, the probability that at least l/2

vertices in the random walk that Algorithm 18 performs reside in B is upper-bounded by

l
∑

j=l/2

(

l

j

)(

1

100
+

1

100

)j/2

≤ 2l · (0.02)l/4 = (0.32)l/4 < δ

since we set l = 4 log2(1/δ).

This means that w.p. greater than 1−δ taking the median of all estimations will produce

an estimation which is ǫ-close to E[f ]. This guarantees that T is indeed a (ǫ, δ)-sampler.

Obviously, Algorithm 18 uses n+l·log2(D) coins, and therefore its randomness complexity

is n+O(log(1/δ)). Since S has query complexity of O
(

1
ǫ2

)

, then Algorithm 18 which simulates

S at most l + 1 different times, has query complexity of (l + 1) · O
(

1
ǫ2

)

= O
(

1
ǫ2

log(1/δ)
)

.

We are done.

Comment A.6. In fact, the scheme described in the proof of Claim A.5, gives a general scheme

that applies to the error amplification of any randomized algorithm, and in particular, for

property testers. Let T be a property tester with query complexityQ, randomness complexity

r and error probability 1/3. Suppose we wish to reduce the error probability of T to be at

most δ. Then usually, we perform l independent simulations of T , and then take a majority

vote between the l = O(log(1/δ)) simulations. By the Chernoff inequality, the majority

vote is wrong with probability at most δ. In each of the l simulations, we do Q queries

and use r random bits, so this standard amplification technique has query complexity l · Q
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and randomness complexity l · r. Note that when δ is a constant, then these complexities

are asymptotically the same as Q and r, respectively. However, we can reduce the error

probability of T , just as we have reduced the error probability of Algorithm 17 from 0.01

to δ. We use a random walk of length l = O(log(1/δ)) over some fixed (N,D, λ)-expander,

whose vertices represent all possible random coin tosses of T . A similar proof to the one of

Claim A.5, shows that simulating T with the vertices traversed by this walk, and taking a

majority vote, gives a tester with error probability at most δ. This amplification has query

complexity of l · Q, just as in the standard amplification, but randomness complexity of

r + l · log(D) = r + O(log(1/δ)). The fact that the number of queries increases by a factor

of l = O(log(1/δ)) seems unavoidable, as all known techniques for amplification perform at

least log(1/δ) simulations of T .

A.5 Hitters

We end this part with a weaker notion of samplers, called hitters. The standard notion of

hitters regards algorithms that produce a set of query points, out of which at least one point

is likely to fall inside a set of sufficiently large size. Here we introduce a generalization of

this notion.

Definition A.7. For any n, ǫ, δ > 0 and c ≥ 1, a c-hitter S for sets of density ǫ and

confidence 1− δ, is a probabilistic oracle machine with the following property. For every set

T ⊂ N = {0, 1}n with density ρ(T ) > ǫ, the TM S uses at most r random bits, and queries

at most Q points in N , which are denoted as x1, x2, . . . , xQ, that satisfy

Pr [ |{x1, x2, . . . , xQ} ∩ T | < c] < δ

This means that for every set T with density at least ǫ, we are likely to hit at least c

points that belong to T using a c-hitter. We usually think of c as a small constant. We

mostly refer to c = 1, in which case a 1-hitter is simply called a hitter.

One may ask why we bother and introduce the notion of c-hitters, instead of discussing

1-hitters, or merely hitters. True, the typical case is when one only needs one sample that

falls in some set. Even in this work, only once, for testing whether a given graph is Eulerian

(Section 3.2.5), we require the use of c-hitter instead of a hitter, and even in this case, we

deal with c = 3. Nevertheless, as we argue next, it is worth to consider cases in which we

need to produce c > 1 different samples.

Trivially, when c different samples are needed, one can use the regular amplification, and

repeat c independent times the procedure of hitting one sample. Suppose we have a hitter

with query complexity Q and randomness complexity r. Then using this hitter c independent

times gives query complexity of c · Q, randomness complexity of c · r, and Q-R complexity
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of c2r · Q. Granted, for this work, c = O(1), and so this multiplication does not ”cost” us,

asymptotically. But when c is not a constant, this amplification is very wasteful.

However, as we show, c-hitters have query complexity and randomness complexity that

are asymptotically identical to the complexities of 1-hitters. That means, that we can put

the same amount of effort as the amount of effort a 1-hitter required, and find c samples,

and not just one.

This is best demonstrated by an example. The Pairwise Independent Hitter is an al-

gorithm that produces Q entries in [N ] in a pairwise independent manner. Given any set

T ⊂ [N ], where ρ(T ) > ǫ, and a sample of Q = max{4c
ǫ ,

2
ǫδ} entries in [N ], denote by Xi

the random variable indicating whether the i sample point belongs to T or not. Since the

Q query points are taken in a pairwise independent manner, then we apply the Chebyshev

inequality, and deduce:

Pr

[

Q
∑

i=1

Xi < c

]

≤ Pr
[
∣

∣

∣

∣

∣

ρ(T ) ·Q−
Q
∑

i=1

Xi

∣

∣

∣

∣

∣

≥ (ρ(T ) ·Q− c)
]

≤ ρ(T )(1− ρ(T )) ·Q
ρ(T )2Q2 − 2Q · ρ(T ) · c+ c2

(1)

≤ ρ(T ) ·Q
1
2ρ(T )2Q2

≤ 2

ǫQ

(2)

≤ δ

where (1) is due to the fact that Q ≥ 4c
ǫ ≥ 4c

ρ(T ) and (2) is due to the fact that Q ≥ 2
ǫδ .

Note that for any c < 1
2δ , the Pairwise Independent c-hitter has query complexity of

Q = 2
ǫδ , and there is a known construction for a Pairwise independent hitter with randomness

complexity of 2n. These complexities do not depend on c, and they are the same for every

possible value that c takes, between 1 and 1
2δ . If instead of using a c-hitter, we were to use

the regular amplification method for a 1-hitter, we would have query complexity of c · 2
ǫδ and

randomness complexity of 2c · n.

The Pairwise Independent Hitter also demonstrates another point. As a thumb rule, sam-

plers have their analogous hitters, where the construction of the hitter is very similar to the

construction of the sampler. Usually, the difference between the hitter and the sampler lies

in their query complexity. While the query complexity of samplers is usually proportional to

1/ǫ2, the query complexity of hitters is usually proportional to 1/ǫ. The Pairwise Indepen-

dent hitter demonstrate this point, because it is the analogous of the Pairwise Independent

sampler, that queries a function f : N → [0, 1] over a set of sample points from [N ] taken in

a pairwise independent manner. The Pairwise Independent Hitter has query complexity of

O( 1
ǫ2δ

), while, as we have shown, the query complexity of the Pairwise Independent Hitter is

O( 1
ǫδ ).

We also classify hitters in an analogous way to our classification of samplers:

Definition A.8. We call a c-hitter polynomial in confidence if its query complexity Q is

proportional to p(1/δ) for some polynomial p. We say it is linear in confidence if Q is
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proportional to 1/δ. We call a c-hitter logarithmic in confidence if Q is proportional to

log(1/δ).

We show here the two hitters that are analogous to two samplers of Section A.3 and

Section A.4.

A.5.1 A Hitter Linear in Confidence

The analog of the Expander Neighbors Sampler is the Expander-Neighbors Hitter (see [Gol97]).

Fix any ǫ, δ > 0. Let G be a (N,D, λ)-expander, where D = O
(

1
ǫδ + c

ǫ

)

and λ
D ≤

√

ǫδ
2 .

For any v ∈ [N ], denote the ith neighbor of v as Γi(v).

Algorithm 19 Hitting Algorithm 1

1: Select randomly and uniformly a vertex v ∈R [N ] = [2n] = {0, 1}n.
2: Output the following D entries: f(Γ1(v)), f(Γ2(v)), . . . , f(ΓD(v)).

Claim A.9. For every n, ǫ, δ > 0 and c ≥ 1, Algorithm 19 is a c-hitter with for sets of density

at least ǫ and confidence 1 − δ. Its randomness complexity is n and its query complexity is

O
(

1
ǫδ + c

ǫ

)

.

As mentioned before, we assume that c = O(1), therefore, we have that the query com-

plexity of Algorithm 19 is O( 1
ǫδ ).

In order to proof the claim, we use the Expander Mixing Lemma, which we state here

without proof:15

Theorem A.10 (Expander Mixing Lemma). Let G be a (N,D, λ)-expander. For any

two A,B subsets of V (G), we denote by E(A,B) the number of edges with one endpoint in

A and the other in B. Then the following holds that for any A and B:

∣

∣

∣

∣

|E(A,B)|
N ·D − ρ(A)ρ(B)

∣

∣

∣

∣

<
λ

D

√

ρ(A)ρ(B)

Proof. The hitter selects uniformly a vertex in G, by tossing n coins, and queries all of its

neighbors. Therefore, it is clear that its randomness complexity is r = n, and its query

complexity is Q = D = O
(

1
ǫδ + c

ǫ

)

. Let us now show that with probability at least 1− δ it

hits at least c times any set with density at least ǫ.

Fix any T ⊂ [N ] such that ρ(T ) ≥ ǫ, and let B ⊂ [N ] be the set of all vertices {x ∈ [N ] :

|Γ(x)∩ T | < c}. Therefore, Algorithm 19 fails to produce a set of queries that hit T at least

c times, if the vertex that Algorithm 19 select belongs to B. So let us bound the probability

PrUn [v ∈ B] = ρ(B).

15In fact, its proof is implicit in the proof of Theorem A.3.
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By the expander mixing lemma we have that

∣

∣

∣

∣

|E(B, T )|
N ·D − ρ(B)ρ(T )

∣

∣

∣

∣

≤ λ

D

√

ρ(B)ρ(T )

The definition of B gives that |E(B, T )| < c|B|, and recall that λ
D ≤

√

ǫδ/2. ”Plugging in”

these values, we have

ρ(B) · (ρ(T )− c

D
) ≤

√

ǫδ

2
· ρ(B)ρ(T )⇒ ρ(B) ≤ δ

(

ǫ · ρ(T )

2(ρ(T )− c
D )2

)

≤ δ
(

ǫ

2(ρ(T )− c
D )

)

Recall that ρ(T ) ≥ ǫ and that D > 2c
ǫ . This gives that ρ(T ) − c

D > ǫ
2 , and so we have that

ρ(B) < δ.

Thus Algorithm 19 is indeed a c-hitter, since with probability at least 1−δ it hits at least

c times any set of density ǫ or more.

A.5.2 A Hitter Logarithmic in Confidence

Analogously to the construction of the sampler from Section A.4, we use the hitter linear in

confidence, to construct a hitter logarithmic in confidence. To that end we also use random

walks over expanders. Only this time, we use a weaker theorem regarding expander random

walks:

Theorem A.11 (Expander Random Walk, see [Gol97]). Given G, a (N,D, λ)-expander

and a set W ⊂ N , the fraction of random walks of length l over G, that stay within W , is at

most

ρ(W )

(

ρ(W ) + (1− ρ(W ))
λ

D

)l

Let us formally define the hitting algorithm. For any ǫ, δ > 0, let S(ǫ, δ) be the c-hitter

from Claim A.9 for sets of density at least ǫ and confidence at least 1− δ. Let R be the set of

all possible coin tosses for S(ǫ, δ). For every v ∈ R denote the set of queries that S outputs

when fed v as a random string, as Pv.

Algorithm 20 Hitting Algorithm 2

1: Let S be Algorithm 19 with accuracy ǫ and confidence 0.75. Denote R = {0, 1}n as the
set of all possible random strings that S uses as a random input.

2: Let G be a (R,D, λ)-expander, where |R| = N , D = O(1), and λ
D ≤ 0.25.

3: Denote l = log2(1/δ).
4: Select randomly and uniformly a sequence v, i1, i2, . . . , il in [N ]× ([D])l.
5: Denote by v1, v2, . . . , vl+1 a walk of length l over G, where v1 = v and for every j we

have that vj+1 = Γij (vj).

6: Output
⋃l+1

i=1 Pvi .

75



Claim A.12. For any n, ǫ, δ and c ≥ 1, Algorithm 20 is a c-hitter for sets of density at

least ǫ and with confidence 1− δ. It has query complexity of O
(

c
ǫ log(1/δ)

)

, and randomness

complexity of n+O(log(1/δ)).

Proof. Fix n, ǫ, δ and c. Since S has query complexity of O
(

c
ǫ

)

, it is clear that Algorithm 20

has query complexity of l·|Pv| = O
(

c
ǫ log(1/δ)

)

. The randomness complexity of Algorithm 20

is log(|R|) + l · log2(D) = n + O(log(1/δ)). So we have to show that the probability that

Algorithm 20 does not produce at least c queries into elements of a set of density at least ǫ,

is upper bounded by δ.

Let T be any subset of [N ] of density at least ǫ. Denote, as before, the set B = {v ∈ R :

|Pv ∩ T | < c}. Since S is a c-hitter with confidence at least 0.75, we have that ρ(B) < 0.25.

The Expander Random Walk theorem assures us, the the probability that the random

walk v1, v2, . . . , vl+1 stays within B is at most

(

ρ(B) +
λ

D

)l

=

(

1

4
+

1

4

)l

= 2−l ≤ δ

Therefore, the probability that Algorithm 20 produces a set that does not contain c elements

from T is at most δ. This proves the claim.

Comment A.13. Just as in Comment A.6, we wish to stress that Claim A.12 describes a

general scheme to reduce the error of any randomized one-sided algorithm. Specifically, let

T is a one-sided property tester, with query complexity Q, randomness complexity r and

error probability 1/3. We can perform a random-walk of length l = O(log(1/δ)) over a

(N,D, λ)-expander, whose vertices represent the possible coin tosses of T , and simulate T

with the vertices traversed by this walk. The probability that T accepts some input that is

ǫ-far from the property, can be upper bounded by δ, just as in the proof of Claim A.12. This

amplification has query complexity of l · Q and randomness complexity of r + l · log(D) =

r + O(log(1/δ)). Again, we stress that all known amplification techniques perform at least

log(1/δ) simulations of T , and thus increasing the original query complexity of T by a factor

of log(1/δ).
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