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1 IntrodutionIn the last ouple of deades, the area of property testing has attrated muh attention (see, e.g., aouple of reent surveys [18, 19℄). Loosely speaking, property testing typially refers to super-fastprobabilisti algorithms for deiding whether a given objet has a predetermined property or is farfrom any objet having this property. Suh algorithms, alled testers, obtain loal views of theobjet by making suitable queries. The urrent work belongs to the study of property testing, butpursues somewhat di�erent themes than the standard ones.1.1 Testing membership in omplexity lassesIn the foregoing desription, objets are viewed as funtions, and so properties are sets of funtions.Given this perspetive, it is most natural to ask whether various traditional omplexity lasses aretestable. Interestingly, this question was not addressed till [20℄.1 Instead, whenever (before [20℄)omputational devies were referred to in the ontext of property testing, the perspetive was thateah �xed omputational devie de�nes a set of strings and the testing problem studied was ofmembership of the input string in this set (f. [2, 16, 14℄). In ontrast, following Ron and Tsur [20℄,we �x a omplexity lass and study the testing problem that refers to whether the input funtionis in this lass.To illustrate the di�erene reall that Alon et al. [2℄ �x any regular set, and study the problemof testing whether a given (input) string is in the set. In ontrast, Ron and Tsur [20℄ onsider theomplexity lass of width-2 OBDDs,2 and study the problem of testing whether a given (input)funtion belongs to this omplexity lass.The main result of [20℄ is that testing width-2 OBDD has query omplexity �(logn), wheren denotes the length of the argument to the funtion being tested (i.e., the question is whetherf : f0; 1gn ! f0; 1g an be implemented by a width-2 OBDD). This should be ompared to thequery omplexity of learning this very lass, whih is �(n). Thus, testing this omplexity lass issigni�antly easier than learning this lass. Two natural questions arise:1. What about width-w OBDDs, for any �xed w > 2?That is, is testing width-w OBDDs signi�antly easier (i.e., (poly)logarithmially easier)than learning width-w OBDDs? (Reall that learning width-w OBDDs requires 
(n) queries,whereas proper learning is possible with O(n) queries.)2. What about testing sublasses of width-w OBDDs, for any �xed w � 2 (i.e., testing whether agiven funtion belongs to a �xed sublass of width-w OBDDs)? Spei�ally, is every sublassof width-2 OBDDs testable in query omplexity O(log n) or poly(logn)?3We provide rather gloomy answers to both questions: We prove that even at low omputationalomplexity levels suh as onstant-width OBDDs, testing may not be signi�antly easier than learn-ing; that is, these omplexities are polynomially related rather than being exponentially related.Spei�ally:1Indeed, this is a ontroversial statement, whih relies on not viewing the lasses of ditatorship funtions, juntas,monomials, and onstant-term DNFs as traditional omplexity lasses. The testability of these lasses was studiedin various works; see, for example [17, 9, 6℄.2OBDDs are ordered binary deision diagrams, whih are a restrited type of read-one branhing programs inwhih the variables are read in a �xed order (aross all possible omputation paths). See de�nition in Setion 1.4.3Note that the query omplexity of testing suh a sublass need not be smaller that the query omplexity of testingthe lass. 1



Theorem 1 (see Theorem 4.2): Testing width-4 OBDD requires 
(pn) queries.We onjeture that the atual query omplexity is �(n).Theorem 2 (see Theorem 2.1): There exists a sublass of width-2 OBDDs suh that testing thissublass requires 
(n) queries. Furthermore, this sublass is a lass of linear funtions (over GF(2)).1.2 Sublasses of linear and quadrati funtionsA di�erent perspetive on our results is best illustrated by a question of Sha� Goldwasser, whoasked whether there is more to algebrai property testing than testing low degree. (Atually, thiswas a rhetorial question; she meant to advoate suh studies.) We mention that a lear exampleof suh a study was provided by Rubinfeld [22℄ in the mid 1990s, and that various properties ofpolynomials (e.g., ditatorship funtions [17℄, juntas [9, 4℄, sparse polynomials [6, 7℄) were studiedin the last deade (although these studies were not viewed from this perspetive).In any ase, taking this perspetive, we view Theorem 2 as saying that a ertain property oflinear funtions (from GF(2)n to GF(2)) annot be tested signi�antly faster than learning (i.e.,annot be tested with o(n) queries). More generally, we present a full hierarhy of properties (orlasses) of linear funtions arranged by their query omplexity:Theorem 3 (see Theorem 2.3): For every funtion t : N ! N that is at most linear, there existsa property of linear funtions (over GF(2)) suh that testing this property has query omplexity�(t+ ��1). Furthermore, learning eah of the orresponding onept lasses requires 
(n) queries.This leads to the question of how natural are these properties, whih build on the property used inthe proof of Theorem 2. Sine the property is not very natural, we also prove the following.Theorem 4 (see Theorem 2.7): Testing the set of linear funtions from GF(2)n to GF(2) with atmost n=2 inuential variables requires 
(pn) queries.Here too, we onjeture that the atual query omplexity is �(n). Another natural property oflinear funtions is the subjet of the following result.Theorem 5 (see Theorem 3.2): Testing the lass of linear funtions from GF(3)n to GF(3) thathave 0-1 oeÆients requires 
(pn) queries.Again, we onjeture that the atual query omplexity is �(n). (Note that the foregoing lassis implemented by width-3 OBDDs.) Lastly, we mention that the proof of Theorem 1 atuallyestablishes also the following.Theorem 6 (see end of Setion 4): Testing the lass of linear funtions from GF(2)n to GF(2)that have no onseutive inuential variables requires 
(pn) queries.And, again, we onjeture that the atual query omplexity is �(n).
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1.3 TehniquesThe proofs of all the foregoing lower bounds, with the exeption of Theorem 2, follow a ommontheme and ope with a similar diÆulty. The ommon theme is that in all these ases the analysisredues to upper-bounding the ability of query-bounded observers to distinguish two spei� distri-butions of linear funtions. In eah ase, these two distributions are very natural, and the diÆultyis in analyzing the orresponding answer distributions (i.e., the distributions of the sequene ofanswers obtained by querying eah funtion distribution).To illustrate the diÆulty, onsider the set of linear funtions from GF(2)n to GF(2), denotedL. It is well known that if f is uniformly distributed in L, then its values on a sequene of t linearlyindependent vetors are uniformly distributed over GF(2)t. But it is less lear what happens whenf is uniformly distributed in some natural subset L0 � L. In partiular, what happens when L0 isthe set of all linear funtions that depend on exatly n=2 variables? Furthermore, what if these tstrings are seleted adaptively?Our proofs deal with these types of problems. For example, in the ase of the set of linearfuntions that depend on either (n� 1)=2 or (n+ 1)=2 variables, we prove that the deviation of tnon-adaptive queries is at most t=n (f. Proposition 2.10). For t adaptive queries we only prove anupper bound of O(t2=n) (f. Lemma 2.8 and the proof of Theorem 2.7).1.4 Preliminaries: OBDDs and Property TestingIn this setion we review the quite standard de�nitions used in this paper. We merely stress thatwhen we talk of OBDDs, we assume (as in [20℄) that the order of the variables is �xed (and known).1.4.1 OBDDs: Ordered Binary Deision DiagramsSeveral di�erent de�nitions of this notion appear in the literature, and we adopt the one that allsfor a �xed ordering of the variables (knows as \strit"). That is, an ordered binary deision diagram(OBDD) is a read-one branhing program in whih the order in whih the variables are read is �xedfor all omputing devies in the model. Spei�ally, we shall assume, without loss of generality,that the ith variable is always read at the ith level. This yields the following de�nition.De�nition 7 An OBDD is a direted ayli graph with labeled edges and marked sinks that satis�esthe following onditions:1. The graph ontains a single soure vertex.2. Eah sink vertex in the graph is marked either 0 or 1.3. Eah non-sink vertex has two out-going edges (whih may be parallel) one labeled 0 and theother labeled 1.4. The graph edges onnet verties in onseutive levels, where the level of a vertex is its distanefrom the soure.5. All sinks have the same level, alled the graph length.The width of an OBDD is the maximum number of verties that have the same level. An OBDDof length n omputes the funtion f : f0; 1gn ! f0; 1g suh that, for every x 2 f0; 1gn it holds thatthe sink that is reahed from the soure by following the path with edge labels x is marked f(x).Indeed, we may view x = x1 � � � xn as a sequene of variables, and observe that in the ith step (i.e.,when moving from the i� 1st level to the ith level) the OBDD branhes aording to the value ofxi. 3



We mention that in a subsequent work, Ron and Tsur [21℄ onsidered OBDDs with a variableordering of the variables. Indeed, in suh a ase, one should speify the ordering, and in moregeneral models that allow di�erent variables to be queried along di�erent omputation paths it isneessary to speify the variable queried at eah non-sink vertex (by marking the non-sink vertieswith variable names).1.4.2 Property testingWe merely reall the standard de�nition.De�nition 8 Let � = Sn2N�n, where �n ontains funtions de�ned over the domain Dn (andrange Rn). A tester for a property � is a probabilisti orale mahine T that satis�es the followingtwo onditions:1. The tester aepts eah f 2 � with probability at least 2=3; that is, for every n 2 N andf 2 �n (and every � > 0), it holds that Pr[T f (n; �)=1℄ � 2=3.2. Given � > 0 and orale aess to any f that is �-far from �, the tester rejets with probabilityat least 2=3; that is, for every � > 0 and n 2 N, if f : Dn ! Rn is �-far from �n, thenPr[T f (n; �)=0℄ � 2=3, where f is �-far from �n if, for every g 2 �n, it holds that jfe 2 Dn :f(e) 6= g(e)gj > � � jDnj.If the tester aepts every funtion in � with probability 1, then we say that it has one-sided error;that is, T has one-sided error if for every f 2 � and every � > 0, it holds that Pr[T f (n; �)=1℄ = 1.A tester is alled non-adaptive if it determines all its queries based solely on its internal oin tosses(and the parameters n and �); otherwise it is alled adaptive.Almost all our results are lower bounds on the query omplexity of property testing tasks, and theyare obtained for �xed values of the proximity parameter � (i.e., � = 1=16 will do in all). In theseases we omit mention of the proximity parameter.2 Testing Sublasses of Width 2 OBDDsWe onsider various sublasses of linear funtions over GF(2), whih in partiular are realizableby width-2 OBDDs. For a set of strings S � f0; 1gn we denote by LS the set of linear funtionsffv : v 2 Sg, where fv : f0; 1gn ! f0; 1g satis�es fv(x) def= hv; xi =Pni=1 vixi mod 2.We present a hierarhy of properties of linear funtions arranged aording to the query om-plexity of testing them. Our starting point is a property of linear funtions having maximal queryomplexity, and the hierarhy an be derived using any suh property. (This is indeed reminisentof [11℄.) After establishing the said hierarhy (and sine it refers to somewhat unnatural properties),we also onsider the natural property of linear funtion having a bounded number of inuentialvariables.2.1 A hierarhy of lasses of linear funtionsWe start by presenting a lass of linear funtions that is hard to test, and then exhibit the fullhierarhy by ombining any suh lass with the lass of all linear funtions.4



2.1.1 Linear funtions with oeÆients from a small-bias spaeLet S � f0; 1gn be a small bias sample spae [15, 1℄, say, of size 20:99n and bias 2�0:3n. Then, testingLS requires 
(n) queries, even if we allow two-sided error and adaptive testers. More generally, wehave the following.Theorem 2.1 (Theorem 2, restated): Let S � f0; 1gn be a Æ-bias sample spae; that is, for every 2 f0; 1gnnf0ng, it holds that jPrv2S [h; vi = 1℄�0:5j � Æ. Then, testing LS requires log2((1��)=3Æ)queries, where � = jSj=2n.Typially (e.g., in the following example), � is small (i.e., � � 1=2), and so the lower bound simpli�esto log2(1=6Æ). An appealing example onsists of the set of all n-bit long strings having a numberof 1 that is a multiple of 3 (i.e., S = fv 2 f0; 1gn :Pni=1 vi � 0 (mod 3)g), whih has exponentiallysmall bias and density � 1=3 (see Proposition A.1). Thus, we getCorollary 2.2 Let S be the set of all n-bit strings having a number of 1-entries that is divisible bythree. Then, testing LS requires 
(n) queries.Proof of Theorem 2.1: The theorem follows by ombining the following two observations.1. A random linear funtion is unlikely to be in LS, and thus is 0:5-far from LS. Spei�ally,with probability 1� �, a random linear funtion is 0:5-far from LS .2. A random linear funtion and a funtion uniformly seleted in LS annot be distinguishedwith log2(1=Æ) �O(1) queries. Spei�ally, distinguishing these two distributions with a gapof Æ0 requires log2(Æ0=Æ) queries. This holds beause for every sequene of queries and everysequene of potential answers, the probability that this spei� answer sequene ours undera funtion seleted uniformly in LS deviates by at most Æ from the orresponding probabilitythat refers to a random linear funtion (see Item 1 of Lemma A.4).Now, on the one hand, the probability that a tester aepts a random linear funtion is at most� � �+ (1 � �) � 13 , where � � 23 denotes the probability that the test aepts a funtion uniformlydistributed in LS . (Indeed, we assume here that � < 1=2, whih implies that the tester aeptslinear funtions that are not in LS with probability at most 1=3). On the other hand, if the testdistinguishes random linear funtions from funtions in LS with gap at most Æ0, then it must aepta random linear funtion with probability at least � � Æ0. We infer that (1 � �)(� � (1=3)) � Æ0,whih implies Æ0 � (1 � �)=3. Combing this with the query lower bound of log2(Æ0=Æ), the laimfollows.2.1.2 The HierarhyThe following hierarhy theorem follows by ombining any set of hard-to-test linear funtions (fromGF(2)t to GF(2)) with the lass of all linear funtions (from GF(2)n�t to GF(2)).Theorem 2.3 (Theorem 3, restated): For every funtion t : N ! N that is at most linear, thereexist sets S � f0; 1gn suh that testing LS has query omplexity �(t+ ��1). Furthermore, learningLS requires 
(n) queries.Proof: Letting t = t(n), we start with an arbitrary set H � f0; 1gt suh that LH is a propertyof linear funtions from GF(2)t to GF(2) that requires 
(t) queries for testing. Indeed, suh a5



property is provided by Corollary 2.2. Next, we onsider an arbitrary set G � f0; 1gn�t suh thatLG is a property of linear funtions from GF(2)n�t to GF(2) that an be tested in O(1=�) queries(with one-sided error) but requires 
(n � t) queries for learning. Indeed, the set S = f0; 1gn�twill do (and other alternatives are provided by Theorem 2.4). Combining these two properties, weonsider the set S = H � G, and the orresponding property LS. Note that eah f 2 LS an bewritten as the sum of some h 2 LH and some g 2 LG suh thatf(x1; :::; xt; xt+1; ::::; xn) = h(x1; :::; xt) + g(xt+1; ::::; xn): (1)Learning LS requires 
(n) queries, sine reovering f requires reovering both h and g. Formally, wean redue learning h (resp., g) to learning f , by �xing g (resp., h). Similarly (i.e., by �xing g (resp.,h)), we an redue testing LH (resp., LG) to testing LS, and onlude that the query omplexity ofthe latter task is 
(t+��1). It is thus left to show that LS an be tested in O(t+��1) queries. Thisis shown by presenting an algorithm that, on input n and proximity parameter � > 0, proeeds asfollows.1. Testing if f is linear: The algorithm repeats the basi BLR Test for O(1=�) times, where ineah repetition the algorithm selets uniformly a; b 2 GF(2)n, and rejets if f(a) + f(b) 6=f(a+ b). The algorithm ontinues to the next steps only if none of these heks has rejeted,and so we will assume in these steps that f is �-lose to linear.Let h : GF(2)t ! GF(2) and g : GF(2)n�t ! GF(2) be linear funtions suh that h(x1:::; xt)+g(xt+1; :::; xn) is the linear funtion losest to f(x1:::; xt; xt+1; :::; xn).2. Reonstruting the funtion h: Using O(t) queries, the algorithm reonstruts h; by usingself-orretion, see details bellow. The algorithm rejets if h 62 LH .For starters, onsider a naive algorithm that reovers eah oeÆient of h with suess prob-ability at least 1� (1=10n) by making O(log n) queries. Spei�ally, for every i 2 [t℄, the ithoeÆient is reonstruted by taking a majority vote of O(log n) experiments, where in eahexperiment we selet uniformly a 2 GF(2)n, and ompute f(a)+f(a+0i�110n�i). Below, weshall desribe a more eÆient reonstrution proedure, whih uses O(t) queries rather thanO(t log n) queries.3. Testing the residual funtion g: Atually, for a random a = (a1; :::; at) 2 GF(2)t, the algorithmtests whether the residual funtion fa de�ned as fa(xt+1; :::; xn) = f(a1; :::; at; xt+1; :::; xn)�h(a) belongs to LG. This is done by using the tester of LG.We �rst observe that this algorithm aepts any f 2 LS with probability 1, sine f = h+ g passesthe linearity test (of Step 1) with probability 1, Step 2 always reonstruts h, and Step 3 alwaysaepts g (assuming that the tester of LG has one-sided error). Thus, we turn to analyze thebehavior of this algorithm when f is �-far from LS .We may assume that f is �-lose to being linear, sine otherwise Step 1 rejets with high onstantprobability (say, probability at least 2=3). Considering h and g as de�ned at the end of Step 1,we note that either h 62 LH or g 62 LG. In the �rst ase (i.e., h 62 LH) Step 2 rejets with highprobability, sine (with high probability) the reonstruted funtion will be h. In the seond ase,we onsider for every a = (a1; :::; at) 2 GF(2)t, the linear funtion that is losest to fa (wherefa(xt+1; :::; xn) = f(a1; :::; at; xt+1; :::; xn)�h(a)), and note that for at least 1� 4� of the hoies ofa 2 GF(2)t this linear funtion equals g (sine f is �-lose to h + g).4 Assuming that � � 0:01 (or4For a uniformly distributed a, the expeted relative distane of fa from g is at most �. If fa is loser to somelinear funtion other than g, then its relative distane to g must be at least 1=4.6



else we reset � 0:01), we infer that Step 3 rejets with probability at least 0:96 � 0:9 > 2=3, wherewe assume (without loss of generality) that the LG-tester has error probability at most 0:1.It is left to provide a more eÆient implementation of Step 2. Indeed, instead of reoveringeah oeÆient of h with error probability of 1=10n, we reover eah bit in the \enoding of h'soeÆients" (via a good linear error-orreting ode) with probability at least 0:9, and obtain hby using an error-orreting deoder. Spei�ally, we use a good linear error-orreting ode C :GF(2)t ! GF(2)T , where T = O(t), and let `1; :::; `T : GF(2)t ! GF(2) denote the orrespondinglinear funtions; that is, C(z) = `1(z) � � � `T (z). Viewing eah `i as an element of GF(2)t, we obtainh(`i) via self-orretion; that is, we selet uniformly a 2 GF(2)n, and ompute f(a)+f(a+ `i0n�t).Thus, we obtain eah h(`i), whih is a linear ombination of h's oeÆients, with probability atleast 1�2� > 0:9, and by using error orretion this yields the values of h(10t�1); :::; h(0t�11) (withoverwhelmingly high probability).52.1.3 Linear funtions in a �xed linear spaeReall that the standard linearity property (i.e., the set of all linear funtions over GF(2)) istestable by O(1=�) non-adaptive queries. Here we point out that this is not the only property oflinear funtions having �(1=�) testing omplexity, but is merely a speial ase of a larger lass ofproperties. Spei�ally, we onsider arbitrary lasses LS suh that S is a linear spae. That is, letS = fGs : s 2 f0; 1gkg, where G is an k-dimensional generator matrix. Thus, for every s 2 f0; 1gk ,we de�ne the funtion gs 2 LS as gs(x) = fGs(x) = hGs; xi, and note that hGs; xi = hs;G>xi.Theorem 2.4 Let S � f0; 1gn be a linear spae, and LS = ffv : v 2Sg. Then, LS an be testedwith O(1=�) non-adaptive queries.Proof: The ase of S = f0; 1gn orresponds to linearity testing, whih is handled by the BLRlinearity test [5℄, and so we fous on the ase that S � f0; 1gn. We atually present a proximity-oblivious tester (f. [13℄). When given orale aess to a funtion for f , we perform the followingtwo heks.1. BLR Linearity Chek: Uniformly selet a; b 2 f0; 1gn, and rejet if f(a) + f(b) 6= f(a+ b).2. Cheking (via self orreting) that the kernel of G> evaluates to zero: Uniformly selet a 2f0; 1gn and b 2 fx : G>x = G>ag, and rejet if f(a) 6= f(b). (This is a self-orretion ofheking for a random  2 fx : G>x = 0g whether f() = 0.)The test aept only if none of the foregoing heks rejeted. Clearly, any f 2 LS passes bothheks with probability 1. Thus, we fous on analyzing the probability that a funtion f 62 LS isrejeted, denoting by Æ the distane of f to the set of all linear funtions.We �rst note that f is rejeted by the �rst hek with probability at least Æ (f. [3℄). Denotingthe linear funtion losest to f by g, we note that if g 62 LS then there exists x suh that G>x = 0and g(x) 6= 0, sine otherwise g is onstant on eah set S� def= fx : G>x = �g and it follows thatg(x) is linear in G>x (sine g is linear and only depends on G>x). Furthermore, at most half ofthe kernel of G evaluates to 0 under g, sine these vetors form a subgroup. Thus, in this ase (i.e.,5Indeed, our reasoning interhanges the roles of funtion and argument between h and its argument, but reallingthat h is linear it is atually the ase that the roles of funtion and argument are �tiious, when we assoiated thelinear funtion h with its oeÆient sequene, denoted u. Indeed, if h(z) = hu; zi = Pti=1 uizi mod 2, then u andz atually play the same role. Our reonstrution of the bits of u, viewed as h(10t�1); :::; h(0t�11), by obtaining anoisy version of C(u) = `1(u) � � � `T (u), where eah `i(u) equals hu; `ii = h(`i).7



g 62 LS), the seond hek rejets with probability at least 0:5 � 2 � Æ. It follows that if f is �-farfrom LS , then it is rejeted with probability at least min(�; 1=6) � �=6, where the �rst term is dueto the ase that g 2 LS (sine in this ase f is rejeted with probability at least Æ � �) and theseond term is due to the ase that g 62 LS (sine in this ase f is rejeted with probability at leastmax(Æ; 0:5 � 2Æ) � 1=6).2.2 Linear funtions with at most �n inuential variablesFor any onstant � > 0, let W� denote the lass of linear funtions with at most �n inuentialvariables. That is, W� = LS for S = fv : wt(v) � �ng, where wt(v) = jfi : vi = 1gj.Conjeture 2.5 Testing W0:5 requires 
(n) queries, even when allowing adaptive testers of two-sided error.If true, then (by using tehniques as in the proof of Theorem 2.3) it will follow that, for any funtion� : N! [0; 1℄, testing W� requires 
(�(n) � n) queries. We present two partial results that supportConjeture 2.5: the �rst is an 
(n) lower bound for non-adaptive testers and the seond is an
(pn) lower bound for general (adaptive) testers. In partiular, this establishes Theorem 4.2.2.1 Linear lower bound for non-adaptive testersWe show that Conjeture 2.5 holds when restrited to non-adaptive testers.Proposition 2.6 Testing W0:5 requires 
(n) non-adaptive queries, even when allowing two-sidederror.Proof: We onsider two lasses of linear funtions, denoted good and bad, suh that good �W0:5, whereas bad \W0:5 = ;, whih implies that every funtion in bad is 0:5-far from W0:5. Form = n=2, eah of these funtions will be spei�ed by an index j0 2 [m℄ and a sequene of m bits�1; :::; �m 2 f0; 1g, Spei�ally, we let gj0;�1;:::;�m denote the linear funtion fv suh thatv = �1�1 � � � �j0�1�j0�100�j0+1�j0+1 � � � �m�m; (2)and let good = fgj0;�1;:::;�m : j0 2 [m℄; �1; :::; �m 2 f0; 1gg. Similarly, we let bj0;�1;:::;�m denote thelinear funtion fv suh thatv = �1�1 � � � �j0�1�j0�111�j0+1�j0+1 � � � �m�m; (3)and let bad = fbj0;�1;:::;�m : j0 2 [m℄; �1; :::; �m 2 f0; 1gg. Note thatgj0;�1;:::;�m(x) = Xj 6=j0(�jx2j�1 + (1� �j)x2j) (4)bj0;�1;:::;�m(x) = x2j0�1 + x2j0 + Xj 6=j0(�jx2j�1 + (1� �j)x2j) (5)and that eah term in these sums equals (x2j�1 + x2j)�j + x2j. That is, the value of a generigj0;�1;:::;�m at a query q 2 f0; 1gn equals Pj 6=j0(q2j�1 + q2j)�j +Pj 6=j0 q2j .Note that elements of good an be distinguished from elements of bad by using O(log n)adaptive queries. Spei�ally, every query of the form q1 � � � qn 2 f00; 11gm is answered byPj 6=j0 q2j ,whih allows �nding j0 by a binary searh (sine j0 2 fj 2 [m℄ : q2j = 1g if and only if the answer8



to the query q1 � � � qn 2 f00; 11gm di�ers from Pj2[m℄ q2j). Needless to say, one j0 is found, wedistinguish any gj0;� from any bj0;� by the query q = 02j0�110n�2j0 (sine gj0;�(q) = 0 whereasbj0;�(q) = 1).Our aim is to prove that 
(n) non-adaptive queries are required in order to distinguish, withonstant probability gap, between a uniformly seleted element of good and a uniformly seletedelement of bad. Reall that an element in either sets is seleted by speifying an index j0 2 [m℄and an m-bit string. Fixing any sequene of queries q = (q(1); :::; q(t)), we shall show that formost hoies of j0 2 [m℄ the answers to q are distributed identially in the two distributions. Theexeptional indies j0 are alled speial and de�ned next.De�nition 2.6.1 An index j 2 [m℄ is alled speial with respet to a sequene of queries q =(q(1); :::; q(t)) if there exists a linear ombination of these queries that yields an n-bit string q suhthat q 2 f00; 11gj�1 � f01; 10g � f00; 11gm�j .It will be onvenient to use matrix notation in our analysis. We present q as a matrix, denoted Q,suh that the ith row of Q equals q(i). The ondition in De�nition 2.6.1 asserts that there exists at-vetor v suh that q = vQ is in f00; 11gj�1 � f01; 10g � f00; 11gm�j . Denoting by I2 an n-by-mbinary matrix in whih the (i; j) entry is 1 if and only if j = di=2e (i.e., I2 maps the row vetorq1 � � � qn to p1 � � � pm suh that pk = q2k�1+ q2k), the latter ondition means that qI2 is the jth unitvetor (i.e., the vetor 0j�110m�j). Using this observation, we immediately getClaim 2.6.2 For any sequene of t queries, q, there exists at most t indies that are speial withrespet to q.Proof: For every speial index j, there exists a t-vetor v suh that vQI2 = 0j�110m�j . Thus, thenumber of speial indies is a lower bound on the rank of the matrix Q, whih is upper boundedby t. 2Claim 2.6.3 Suppose that j0 is not speial with respet to q = (q(1); :::; q(t)). Then, when � =(�1; :::; �m) is seleted uniformly in f0; 1gm, the t-tuple (gj0;�(q(1)); :::; gj0 ;�(q(t))) is distributed iden-tially to the t-tuple (bj0;�(q(1)); :::; bj0;�(q(t))).Proof: Let I 02 be as I2 exept that the jth0 olumn is all zeros. Then the value of gj0;� at any query q(i.e., Pj 6=j0(q2j�1+ q2j)�j+Pj 6=j0 q2j) an be written as hqI 02; �i+ hqI 01; 1mi, where I 01 is an n-by-mbinary matrix in whih the (i; j) entry is 1 if and only if i = 2j and j 6= j0. Likewise, the valueof bj0;� at q is written as hqI 02; �i+ hqI 01; 1mi+ q2j0�1 + q2j0 , where q2j0�1 + q2j0 = hq(I2 � I 02); 1mi.That is, in both ases, the randomness omes from the �rst term; that is, hqI 02; �i = qI 02�>, sineq is �xed and only � is random (i.e., it is uniformly distributed in f0; 1gm). Looking at the entirevetor of answers, we have(gj0;�(q(1)); :::; gj0;�(q(t)))> = QI 02�> +QI 011m (6)(bj0;�(q(1)); :::; bj0;�(q(t)))> = QI 02�> +Q(I 01 + I2 � I 02)1m (7)where, again, the �rst term is random and the seond term is �xed (but di�erent in the two ases).Our goal is to show that these two vetors of answers are identially distributed.Considering the matrix Q, we �x an arbitrary maximal set of rows suh that for orresponding(generalized) submatrix Q0 it holds that Q0I 02 is of full rank, denote t0. (For simpliity, suppose thatQ0 onsists of the �rst t0 rows of Q.) Note that QI 02 has rank t0, whereas Q may have rank t � t0.9



We �rst observe that in both distributions, the orresponding t0 answers are uniformly dis-tributed in f0; 1gt0 , sine Q0I 02�> 2 f0; 1gt0 is uniformly distributed. As for eah of the other rows,denoted q, it holds that qI 02 is a linear ombination of the rows of Q0I 02; that is, qI 02 = u0Q0I 02 forsome t0-vetor u0. (Again, note that q need not equal u0Q0.) The key observation (to be provedbelow) is that hq(I2 � I 02); 1mi = q2j0�1+q2j0 is obtained by the same linear ombination (i.e., u0) ofthe orresponding (q(i)2j0�1 + q(i)2j0)i2[t0℄; that is, hq(I2 � I 02); 1mi equals hu0Q0(I2 � I 02); 1mi. It followsthat gj0;�(q) = qI 02�> + qI 011m (8)= u0Q0I 02�> + qI 011m (9)= u0(gj0;�(q(1)); :::; gj0;�(q(t0)))> � u0Q0I 011m + qI 011m (10)where the seond equality uses qI 02 = u0Q0I 02. Similarly,bj0;�(q) = qI 02�> + qI 011m + q(I2 � I 02)1m (11)= u0Q0I 02�> + u0Q0(I2 � I 02)1m + qI 011m (12)= u0(bj0;�(q(1)); :::; bj0 ;�(q(t0)))> � u0Q0I 011m + qI 011m (13)where the seond equality uses both qI 02 = u0Q0I 02 and u0Q0(I2�I 02) = q(I2�I 02). Thus, both gj0;�(q)and bj0;�(q) are obtained by the same linear transformation (i.e., x> 7! u0x> + h(q � u0Q0)I 01; 1mi)on the orresponding (gj0;�(q(1)); :::; gj0;�(q(t0))) and (bj0;�(q(1)); :::; bj0;�(q(t0))), whih in turn areidentially distributed.Thus, it is left to prove that u0Q0(I2 � I 02) = q(I2 � I 02). Assume, towards the ontraditionthat q(I2 � I 02) 6= u0Q0(I2 � I 02), whih implies (q � u0Q0)(I2 � I 02) 6= 0m. On the other hand, reallthat qI 02 = u0Q0I 02 (i.e., (q � u0Q0)I 02 = 0m), whih implies that (q� u0Q0)I2 = (q � u0Q0)(I2 � I 02) isnon-zero and hene equals 0j0�110m�j0 (sine the image of I2� I 02 is in f0j0�1�0m�j0 : � 2 f0; 1gg).Denoting by i (i > t0) the row index of q in Q, note that v = u00i�t0�110t�i satis�es vQ = u0Q0 + qand so vQI2 = (q � u0Q0)I2 = 0j0�110m�j0 . But this (i.e., the fat that QI2 spans 0j0�110m�j0)ontradits the hypothesis that j0 is not speial with respet to q. 2Combining the laims, we onlude that the probability gap observed by a query sequene q isupper-bounded by the probability that j0 is speial with respet to q.2.2.2 A square root lower bound for adaptive testersFor general (adaptive) testers, we prove a lower bound that is weaker than the one in Conjeture 2.5.Theorem 2.7 (Theorem 4, restated): Testing W0:5 requires 
(pn) queries, even when allowingadaptive testers of two-sided error.Realling that the (strutured) distributions used in the proof of Proposition 2.6 an be distin-guished by O(logn) adaptive queries, we onsider instead random permutations of the strings inboth distributions. This destroys the struture used by the aforementioned adaptive distinguisher,and yields a proof of Theorem 2.7. The key to the proof is provided by the following lemma, whihis of independent interest.Lemma 2.8 Let t < pn=6 and let Q be a t-by-n full rank matrix suh that its rows do not spanthe vetor 1n. Suppose that v is uniformly distributed among all n-bit binary vetors having weight10



m = n=2. Then, with probability at least 1� (18t2=n), the vetor Qv is uniformly distributed overf0; 1gt; that is, there exists a set G that is a subspae of the probability spae 
 that underlies thehoie of v (i.e., v = v(!) 2 f0; 1gn for every ! 2 
) suh that1. jGj � (1� (18t2=n)) � j
j.2. For every � 2 f0; 1gt, it holds that Pr!2G[Qv = �℄ = 2�t, where v = v(!).Furthermore, if G0 is a set as guaranteed for the matrix Q0 obtained by omitting a row of Q, thenthere exists a set G � G0 that satis�es the foregoing onditions with respet to Q.Note that the requirement that Q is full rank and does not span 1n is essential; spei�ally, for anyv of weight m it holds that h1n; vi = m mod 2.Proof: We view the uniform distribution over fv 2 f0; 1gn : wt(v) = mg as generated by thefollowing two-step random proess:1. Selet uniformly a partition � of [n℄ intom ordered pairs, let �(j) denote the jth pair, and �1(j)(resp., �2(j)) denote the �rst (resp., seond) element of the jth pair (i.e., �(j) = (�1(j); �2(j))).2. Selet uniformly a string v = (v1; :::; vn) 2 f0; 1gn suh that v�1(j) = 1� v�2(j) holds for everyj 2 [m℄. That is, we selet uniformly � = (�1; :::; �m) 2 f0; 1gm and determining v suh thatv�1(j) = �j (and v�2(j) = 1� �j).For � as seleted in Step 1 (and the orresponding �1; �2), we let I 0� (resp., I 00�) be an n-by-m binarymatrix suh that entry (i; j) in I 0� (resp., I 00�) equals 1 if and only if i = �1(j) (resp., i = �2(j)).Then, for v and � as above, it holds that v = I 0�� + I 00�(1m + �), whih implies thatQv = QI�� +QI 00�1m (14)where I� = I 0� + I 00� . Noting that QI 00�1m is a �xed vetor, it follows that the deviation of Qv fromthe uniform distribution over f0; 1gt equals the deviation of QI�� from the uniform distribution.Lastly, the latter distane is upper-bounded by the probability that QI� is not full rank. The restof the proof is devoted to upper-bounding this probability.We upper-bound the probability that QI� is not full rank by the sum taken over all  2f0; 1gt nf0tg of the probability that QI� equals the all-zero vetor. Reall that, by the hypothesis,the vetor Q is neither the all-zero vetor nor the all-one vetor. Furthermore, when we vary in f0; 1gt n f0tg and onsider any t linearly independent olumns of Q, we see all possible 2t � 1non-zero patterns. It follows that, for every k 2 [t℄, the ardinality of f2f0; 1gt nf0tg : wt(Q)�kgis upper-bounded by Pi2[k℄ �ti�. Similarly, for every k 2 [t℄, the ardinality of f 2 f0; 1gt n f0tg :n� wt(Q)�kg is upper-bounded by 1 +Pi2[k℄ �ti�, where the added 1 is due to the ase that thepattern 1t appears in these k olumns (but even then Q 6= 1n). Hene, for every k 2 [t℄:jf2f0; 1gt n f0tg : min(wt(Q); n� wt(Q))�kgj � 1 + 2 Xi2[k℄ ti!;: (15)Next, �xing any  2 f0; 1gt n f0tg, we upper-bound the probability that QI� is all-zeros. Notethat QI� is all-zeros if and only if all pairs in the partition � are \monohromati" (i.e., forevery j 2 [m℄ it holds that the �1(j)th and �2(j)th positions in Q have the same value, where11



�(j) = (�1(j); �2(j))). Letting w = wt(Q), and denoting by #pairs(x) the number of partitionsof x elements to pairs, we havePr�[QI� = 0n℄ = #pairs(w) �#pairs(n� w)#pairs(n) = �n=2w=2��nw� (16)Indeed, if w is odd, then this probability equals zero. Using Eq. (16), we getPr�[9 6= 0t s.t QI� = 0n℄ � X6=0t Pr�[QI� = 0n℄ (17)� Xw2[m℄\f2i:i2Ng X : wt(Q)2fw;n�wg �n=2w=2��nw� (18)< 3 Xk2[t℄\f2i:i2Ng  tk � 1!+  tk!! � �n=2k=2��nk� (19)where the last inequality optimizes the ontribution of the various 's aording to the weight ofQ, while using Eq. (15). Next, using �n=2k=2�2 = o(�nk�), we upper-bound Eq. (19) bytXk=2 tk! �  nk!�1=2 < tXk=2(3t=k)k � (k=n)k=2 (20)= tXk=2(9t2=nk)k=2 (21)Finally, using t < pn=6, we upper-bound Eq. (21) by 2 � (9t2=n), and the lemma follows.Proof of Theorem 2.7: Again, we onsider two lasses of linear funtions, denoted good andbad, suh that good � W0:5, whereas bad \W0:5 = ;, whih implies that every funtion in badis 0:5-far from W0:5. This time, however, the partition of [n℄ to bloks is not �xed but is ratherrandom.That is, for m = n=2, we onsider a uniformly hosen mathing of [n℄ into m ordered pairs, anddenote the jth pair in � by �(j) = (�1(j); �2(j)). For every suh � and j0 2 [m℄, we let g�;j0;�1����mdenote the linear funtion fv suh that v = (v1; :::; vn) satis�es (1) v�1(j0) = v�2(j0) = 0 and (2) forevery j 2 [n℄ n fj0g it holds that v�1(j) = 1 � v�2(j) = �j. The funtion b�;j0;�1����m is de�nedsimilarly, exept that ondition (1) is replaed by v�1(j0) = v�2(j0) = 1. Now, good onsists of allthe funtions g�;j0;�1����m , whereas bad onsists of all the funtions b�;j0;�1����m .The foregoing desription orresponds to the desription of the distribution of (n� 2)-bit longstrings of weight m� 1 = (n� 2)=2 provided in the proof of Lemma 2.8. Indeed, the distributionsdesribed there orrespond to setting the oordinates �1(j0) and �2(j0) to zero, whih indeed �tsthe de�nition of g�;j0;�. Here, however, it will be more onvenient to onsider the sublassesgoodi1;i2 and badi1;i2 de�ned by onditioning the distribution over all (�; j0; �)-indexed funtionson �(j0) = (i1; i2). We thus onsider the following generi randomized proess:1. Selet i1 6= i2 uniformly in [n℄.2. Uniformly selet j0 2 [m℄ and an m-way partition into ordered pairs, �, suh that �(j0) =(i1; i2). Uniformly selet � 2 f0; 1gm. Output g�;j0;� (resp., b�;j0;�).12



Indeed, depending on the ase used in the last step (i.e., outputting g�;j0;� or b�;j0;�), this proessoutputs a funtion uniformly distributed in either good or bad. It will be instrutive to thinkof this seletion as onsisting of two steps: First, a pair (i1; i2) is seleted, and next we selet afuntion uniformly in goodi1;i2 (resp., badi1;i2).We onsider the sequene of queries in the order they were issued, and evaluate the situationafter eah query. For eah pre�x of the sequene of queries, q = (q(1); :::; q(t)), and every �xed pair(i1; i2) seleted as above, we say that the pair (i1; i2) is speial w.r.t q if q(1); :::; q(t) spans a vetorof weight in f0; 1; 2; n � 2; n � 1; ng with the exeptional positions belonging to fi1; i2g. That is, if(i1; i2) is speial w.r.t q then q(1); :::; q(t) span a vetor q that satis�es the following ondition: thereexists a � 2 f0; 1g suh that for every i 2 [n℄ n fi1; i2g it holds that qi = � .We may assume that the vetors in q are linearly independent, beause all funtions onsid-ered are linear and so their values at any linear ombination of the q(j)'s is determined by theorresponding answers. Likewise, we may assume that the vetors in q do not span 1n, sine allfuntions that we onsider evaluate to (m � 1) mod 2 at 1n. Thus, if (i1; i2) is speial w.r.t q,then it is the ase that q spans a vetor q suh that wt(q) 2 f1; 2; n � 2; n � 1g (i.e., qi = � forevery i 2 [n℄ n fi1; i2g and qi = 1 � � for some i 2 fi1; i2g). We upper-bound the number, M ,of speial pairs (w.r.t q = (q(1); :::; q(t))) as follows. We onsider a graph in whih these pairs areverties and edges onnet pairs that have non-empty intersetion. Then, eah vertex has degree atmost 4n, and hene the graph ontains an independent set of size M=4n. Considering the vetorsorresponding to these pairs (i.e., or eah pair (i1; i2) we onsider a vetor q suh that qi = � forevery i 2 [n℄ n fi1; i2g and qi = 1 � � for some i 2 fi1; i2g), we obtain at least M=8n independentvetors (i.e., vetors that use the same value � and orrespond to disjoint pairs). Thus, M=8n � t,and it follows that the number of speial pairs is at most 8tn.Fixing a pair (i1; i2) and letting Q+ denote the t-by-n matrix obtained by using the q(i)'s asrows in a matrix, we let Q denote the t-by-(n � 2) matrix obtained from Q+ when omitting theolumns i1 and i2. Note that if (i1; i2) is not speial w.r.t q, then Q is full rank and its rows do notspan 1n�2, beause Q = �n�2 (for  6= 0t) implies that (i1; i2) is speial w.r.t q. Thus, in this ase,the onditions of Lemma 2.8 hold (exept that here the number of olumns is n� 2 rather than n).Our analysis proeeds in iterations orresponding to the queries made by the adaptive tester. Forevery t, we denote the orresponding t-by-n matrix of queries by Q(t), and denote the orrespondingset of non-speial pairs of indies by P (t). Starting with t = 1, we invoke Lemma 2.8 on the matriesQ obtained from Q(1) = q(1) by dropping eah (i1; i2) 2 P (1), where q(1) is oblivious of everything(sine it is the �rst query issued by the tester). We obtain orresponding sets G(1)i1;i2 that satisfy thetwo onditions of the lemma, whih means that for every (i1; i2) 2 P (1) onditioned on ! 2 G(1)i1;i2the answer seen by the tester is uniformly distributed (regardless of whether the answer is obtainedfrom a random funtion in goodi1;i2 or in badi1;i2). We stress that, for any (i1; i2) 2 P (1), theseond query of the tester will be distributed identially, when onsidering the exeutions thatorrespond to a uniformly seleted ! 2 G(1)i1;i2 . Fousing only on these exeutions, we let q(2)desribe the distribution of the seond query, whih is oblivious of (i1; i2) 2 P (1), and onsider theorresponding set P (2). (Indeed, q(2) as well as P (2) are random variables, but we shall treat themas if they were �xed, while noting that their distribution is independent of (i1; i2) 2 P (1).)6Likewise, in the tth iteration, we invoke Lemma 2.8 on the matries Q obtained from Q(t) bydropping eah (i1; i2) 2 P (t), and obtain sets G(t)i1;i2 � G(t�1)i1;i2 . The fat that the sets G(t)i1;i2 satisfythe two onditions of the lemma means that, for every (i1; i2) 2 P (t), onditioned on ! 2 G(t)i1;i2 the6Atually, also q(1) and P (1) are random variables, but their independene of (i1; i2) introdued later is trivial.13



answer seen by the tester is uniformly distributed (regardless of whether the answer is obtainedfrom a random funtion in goodi1;i2 or in badi1;i2). So again, for any (i1; i2) 2 P (t), the next query(i.e., t+1st query) of the tester will be distributed identially, when onsidering the exeutions thatorrespond to a uniformly seleted ! 2 G(t)i1;i2 .This foregoing proess makes sense as long as the sets P (t) and G(t)i1;i2 are not empty. Atually,we wish the sets P (t) and G(t)i1;i2 to be relatively large (i.e., have high density with respet to[n℄ � [n℄ and 
, respetively), so that the probability mass of the exeutions that we onsider islarge. Realling the upper bound on the number of speial pairs, we have jP (t)j = (1 � o(1)) � n2as long as t = o(n), whereas Lemma 2.8 guarantees that jG(t)i1 ;i2 j � (1 � (18t2=n)) � j
j. Thus, fort = pn=9, with probability at least (1 � o(1)) � 7=9 > 2=3, a random pair (i1; i2) is in P (t) and! 2 G(t)i1;i2 . In this ase, the answers to the t adaptively hosen queries are distributed identiallyregardless of whether the answers are from a random funtion in good or from a random funtionin bad. Thus, the statistial gap between random funtions in good and in bad that an beobserved by t adaptive queries is smaller than 1=3, and the theorem follows.On the tightness of the analysis. As we show next (in Proposition 2.9), Lemma 2.8 providesan aurate piture of the deviation (from the uniform distribution) of the answers to individualqueries (i.e., the ase of t = 1). Thus, improvements are possible only with respet to the handlingof t > 1, where the hope is to redue the deviation upper bound from its urrent value of O(t2=n)to a possible value of O(t=n).Proposition 2.9 Suppose that v is uniformly distributed among all n-bit binary vetors havingweight m = n=2. Then, for any q 2 f0; 1gn n f0n; 1ng, the value of hq; vi equals 1 with probability12 + �2(wt(q)) � (1� 2�4(wt(q))) � � n=2wt(q)=2�� nwt(q)� (22)where �i(w) def= 1 if w � 0 (mod i) and �i(w) def= 0 otherwise.Note that for odd w = wt(q) the value of Eq. (22) equals 1/2 (sine �2(w) = 0), whereas for even wthe value of Eq. (22) deviates from 1/2 (sine �2(w) = 1 and 1� 2�4(wt(q) = �1). Spei�ally, forw � 2 (mod 4) the value of Eq. (22) is stritly larger than 1/2 (sine �2(w) � (1� 2�4(w)) = 1).7Reall that (n=2w=2)(nw) is �(w�1=2) � �nw��1=2 (and always smaller than �nw��1=2).Proof: We use the same random proess used in the proof of Lemma 2.8. Referring to the m-waypartition � (seleted in the �rst step), we all � good if it mathes some 1-entry of q with a 0-entryof q (i.e., if there exists j 2 [m℄ suh that fq�1(j); q�2(j)g = f0; 1g). Note that every � is good ifwt(q) is odd, and that if � is good then for a random v (seleted in the seond step) the valuehq; vi is uniformly distributed (beause the ase in whih v�1(j) = 1 6= v�2(j) is mathed with thease in whih v�1(j) = 0 6= v�2(j), where j satis�es fq�1(j); q�2(j)g = f0; 1g). On the other hand,if � is not good, then the value hq; vi equals (wt(q)=2) mod 2 (beause for every j 2 [m℄ it holdsthat q�1(j) = q�2(j) whereas v�1(j) 6= v�2(j)).8 Thus, it remains to ompute the probability that� is not good, whih was essentially done in the proof of Lemma 2.8 (f., Eq. (16)). Reall that7Likewise, for w � 0 (mod 4) the value of Eq. (22) is stritly smaller than 1/2 (sine �2(w) � (1� 2�4(w)) = �1).8Indeed, it follows thatPi qivi =Pj q�1(j) = wt(q)=2.14



letting w = wt(q), and denoting by #pairs(x) the number of partitions of x elements to pairs, theprobability that � is not good equals#pairs(w) �#pairs(n� w)#pairs(n) = �n=2w=2��nw� : (23)The laim follows.An alternative proof of a linear lower bound for non-adaptive testers. Building onProposition 2.9, one an derive an alternative proof of Proposition 2.6. The key new omponent isthe following Proposition 2.10, whih seems of independent interest.Proposition 2.10 Let t < n=2 and let Q be a t-by-n full rank matrix suh that its rows do notspan the vetor 1n. Suppose that v is uniformly distributed among all n-bit binary vetors havingweight m = n=2. Then, the variation distane between Qv and the uniform distribution over t-bitstrings is at most t=n.Considering the random proess presented in the proof of Theorem 2.7 (whih starts by seletinga random pair (i1; i2)), and de�ning speial pairs as in that proof, we establish Proposition 2.6 byonsidering the ase that (i1; i2) is not speial, and then invoking Proposition 2.10 on the residualmatrix. Thus, it is left to prove the latter.Proof: By using a variant of the XOR Lemma (i.e., Item 2 of Lemma A.4), we upper-bound thevariation distane by the square root of the sum of the square of the orresponding biases. Thatis, we use the upper-boundX�2f0;1gt ���Prv[Qv = �℄� 2�t��� � 12 �s X2f0;1gtnf0tg jPrv[Qv = 1℄� Prv[Qv = 0℄j2 (24)= 12 �vuuut X2f0;1gtnf0tg0�� n=2wt(Q)=2�� nwt(Q)� 1A2 (25)where the equality is due to Proposition 2.9. Using the same reasoning as in the justi�ation ofEq. (19) (in the the proof of Lemma 2.8), we upper bound Eq. (25) by12 �vuuuut3 Xk2[t℄\f2i:i2Ng  tk � 1!+  tk!! �0��n=2k=2��nk� 1A2 < vuuut tXk=2 tk! �0��n=2k=2��nk� 1A2 (26)< vuut12 � tXk=2 �tk��nk� (27)where the last inequality uses �n=2k=2�2 = o(�nk�). Hene, we obtain an upper bound of t=n, and thelaim follows.
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3 Hardness of Testing a Sublass of Width 3 OBDDsWe shall onsider the lass of linear funtions over GF(3), onsisting of all suh funtions that havebinary oeÆients. That is, for every v 2 f0; 1gn, we onsider the funtion fv : GF(3)n ! GF(3)de�ned by fv(x) =Pni=1 vixi, where the arithmeti is modulo 3. Let BL3 = ffv : v 2 f0; 1gng.Conjeture 3.1 Testing BL3 requires 
(n) queries, even when allowing adaptive testers of two-sided error.Theorem 3.2 (Theorem 5, restated): Testing BL3 requires 
(pn) queries, even when allowingadaptive testers of two-sided error.Proof: We onsider the lass bad = fbj0;v : j0 2 [n℄; v 2 f0; 1gng suh that bj0;v(x) def= fv(x)+xj0 .Note that all funtions in bad are linear and that exatly half of bad is not in BL3 (sine bj0;v 2 BL3if and only if vj0 = 0). Hene, with probability 1/2, a uniformly seleted funtion in bad is 2=3-farfrom BL3. Our goal is to prove that distinguishing a uniformly seleted funtion in BL3 from auniformly seleted funtion in bad requires 
(pn) queries.Reall that an element in either sets is seleted by speifying an index j0 2 [n℄ and an n-bitstring. Fixing any sequene of queries q = (q(1); :::; q(t)), we shall show that if this sequene has aertain feature with respet to j0, then the answers are distributed almost identially in the twodistributions. This feature is de�ned next, where w is an integer (i.e., we shall use w = pn).De�nition 3.2.1 An index j 2 [n℄ is alled w-speial with respet to a sequene of queries q =(q(1); :::; q(t)) if there exists a linear ombination of these queries that yields an n-bit string q suhthat j 2 supp(q) and jsupp(q)j � w, where supp(q) def= fi : qi 6= 0g.It will be onvenient to use matrix notation in our analysis. Presenting q as a matrix, denoted Q,suh that the ith row of Q equals q(i), the foregoing ondition asserts that there exists a t-vetor suh that supp(Q) ontains j as well as at most w � 1 other indies. Thus, we get:Claim 3.2.2 For any sequene of t queries, q, there exists at most w � t indies that are w-speialwith respet to q.Proof: Let S denote the set of w-speial indies with respet to q. For every j 2 S, there exists at-vetor (j) suh that supp((j)Q) ontains j as well as at most w � 1 other elements of S. Usinga greedy strategy, we an obtain a set I of at least jSj=w elements of S suh that for every j 2 I itholds that supp((j)Q) \ I = fjg. Thus, the rank of Q is lower bounded by jSj=w, and the laimfollows. 2Claim 3.2.3 Suppose that j0 is not w-speial with respet to q = (q(1); :::; q(t)). Then, for every� 2 f0; 1; 2gt, when v = (v1; :::; vn) is seleted uniformly in f0; 1gn, it holds thatPrv[(fv(q(1)); :::; fv(q(t))) = �℄ = Prv[(bj0;v(q(1)); :::; bj0;v(q(t))) = �℄� 2�(w�1) : (28)Proof: For every � 2 f0; 1; 2gn, we denote by Dj0;q(�) the di�erene between the two probabilitiesin Eq. (28); that is,Dj0;q(�) def= Prv[(fv(q(1)); :::; fv(q(t))) = �℄ � Prv[(bj0;v(q(1)); :::; bj0;v(q(t))) = �℄: (29)16



Our aim is to prove that the max-norm of Dj0;q(�) is at most 2�(w�1). By using the relation betweenbases (f. Lemma A.5 (Part 2)),9 it suÆes to show that for every  2 f0; 1; 2gt it holds thatX�2f0;1;2g ������ X�2S;� Dj0;q(�)������ � 2�(w�1); (30)where S;� def= f� 2 f0; 1gt : Pti=1 i�i = �g denotes the set of all t-bit vetors that have 3k + �non-zero entries (for some k). The l.h.s of Eq. (30) equalsX�2f0;1;2g �����Prv " tXi=1 ifv(q(i)) = �# � Prv " tXi=1 ibj0;v(q(i)) = �#�����: (31)Using the linearity of both funtions, and moving to matrix notation, eah term in Eq. (31) equalsPrv[fv(Q) = � ℄ � Prv[bj0;v(Q) = � ℄; (32)whih equals Prv[Qv = � ℄� Prv[Q(v + uj0) = � ℄, where uj0 = 0j0�110n�j0 is the jth0 unit vetor.Thus, Eq. (31) equals X�2f0;1;2g ���Prv hQv = � ℄ � Prv[Qv + Quj0 = �i���: (33)To upper-bound Eq. (33), we onsider two ases (regarding the value of Quj0). If Quj0 = 0,then Eq. (33) equals zero. On the other hand, if Quj0 6= 0, then supp(Q) ontains j0, and itfollows that jsupp(Q)j > w (beause otherwise j0 would have been w-speial w.r.t q). But in thisase, it follows that P�2f0;1;2g jPrv[Qv = � ℄ � 13 j < 2�w (see Eq. (58)) and the same holds forPrv[Qv = � � Quj0 ℄. Thus, Eq. (33) is upper-bounded by 2 � 2�w, and the laim follows. 2Armed with Claims 3.2.2 and 3.2.3, we prove the theorem by onsidering the sequene of queriesin the order they were issued. Setting w = pn, we evaluate the situation after eah additionalquery. Using Claim 3.2.3, we note that as long as j0 is not speial with respet to the queries made,the answers are almost oblivious of whether the funtion is uniformly seleted in bad or in BL3 inthe sense that the probabilisti deviation on eah possible sequene of answers (i.e., �) is at most2�(w�1). Realling that the funtions in BL3 are oblivious of j0, it follows that the answers obtainedfrom a random funtion in bad are also almost oblivious of j0 (as long as j0 is not speial withrespet to the queries made). Noting that the answers determine the next query, we infer that thisquery is also almost oblivious of the urrently non-speial value of j0, and so the probability thatj0 is speial with respet to the augmented sequene of queries an be bounded using Claim 3.2.2.Details follow.We may assume, (as usual and) without loss of generality, that the tester is deterministi, andso the query sequene is determined adaptively by the previous answers. Intuitively, we onsiderthe 3t�1 possible t-query sequenes that arise from eah possible sequene of t answers. For eahsuh sequene, we �rst dispose of the ase that j0 is speial with respet to it, whih by Claim 3.2.2happens with probability at most tw=n. Assuming that j0 is not speial with respet to thatsequene, we onlude (by Claim 3.2.3) that the orresponding sequene of answers ours with9Spei�ally, letting ! denote the third root of unity, it suÆes to upper-bound jP�2GF(3) !�P�2S;� Dj0;q(�)j,where S;� = f� :Pi i�i = �g. Instead, we upper-bound eah of the three terms of the outer summation (and usej!j = 1). 17



about the same probability in both distributions. Over all, the statistial distane between theobserved answers is at most (tw=n)+3t�1 �2�(w�1), and the theorem follows. Formally, letX = X(v)be a random variable representing the sequene of answers that the tester sees when querying auniformly distributed funtion in BL3 (i.e., the funtion fv, where v is uniformly distributed inf0; 1gn). Likewise, let Yj = Yj(v) be a random variable representing the sequene of answersthat the tester sees when querying bj;v, where v is uniformly distributed in f0; 1gn. Then, we areinterested in � def= 12 � X�2f0;1;2gt ������Pr[X=�℄� 1n � Xj2[n℄Pr[Yj=�℄������ (34)� 12n � X�2f0;1;2gt Xj2[n℄��;j ; (35)where ��;j def= jPr[X=�℄� Pr[Yj=�℄j. (36)For every i 2 [t℄ and � 2 f0; 1; 2gt , we let Si� denote the set of indies that are w-speial withrespet to the �rst i queries indued by the answer sequene � (or rather the (i�1)-trit long pre�xof �), and de�ne S0� = ;. Then, � is upper-bounded by12n � X�2f0;1;2gt tXi=1 Xj2Si�nSi�1� ��;j + 12n � X�2f0;1;2gt Xj2[n℄nSt���;j : (37)The seond large sum in Eq. (37) is easily bounded by using Claim 3.2.3; spei�ally, in this aseeah ��;j is upper-bounded by 2�(w�1), and we have at most 3t � n suh terms. Thus we fous onupper-bounding the �rst large sum; that is, we seek to upper-boundX�2f0;1;2gt tXi=1 Xj2Si�nSi�1� ��;j = tXi=1 X�2f0;1;2gt Xj2Si�nSi�1� ��;j : (38)The key observation is that Si� only depends on the (i � 1)-long pre�x of �, denoted �0, and so(abusing notation) we may write Si� = Si�0 . Thus, we write Eq. (38) as Pti=1�(i), where�(i) def= X�02f0;1;2gi�1 Xj2Si�0nSi�1�0 X�002f0;1;2gt�(i�1)��0�00;j ; (39)and upper-bound eah �(i) as follows�(i) � X�02f0;1;2gi�1 Xj2Si�0nSi�1�0 X�002f0;1;2gt�(i�1) �Pr[X=�0�00℄ + Pr[Yj=�0�00℄� (40)= X�02f0;1;2gi�1 Xj2Si�0nSi�1�0 �Pr[X 0=�0℄ + Pr[Y 0j =�0℄� (41)where X 0 (resp., Y 0j ) represents the (i�1)-long pre�x of X (resp., Yj). By Claim 3.2.3, for j 62 Si�1�0 ,we have jPr[X 0=�0℄� Pr[Y 0j =�0℄j � 2�(w�1), and so Eq. (41) is upper-bounded byX�02f0;1;2gi�1 Xj2Si�0nSi�1�0 �2 � Pr[X 0=�0℄ + 2�(w�1)� (42)18



= X�02f0;1;2gi�1 �jSi�0 j � jSi�1�0 j� � �2 � Pr[X 0=�0℄ + 2�(w�1)� (43)< X�2f0;1;2gt �jSi�j � jSi�1� j� � �2 � Pr[X=�℄ + 2�(w�1)� ; (44)where the inequality is due to the 2�(w�1) terms (i.e., we used the fat that Pr[X 0 = �0℄ equalsP�002f0;1;2gt�(i�1) Pr[X=�0�00℄). Combining Eq. (38){(44), we obtaintXi=1 X�2f0;1;2gt Xj2Si�nSi�1� ��;j < tXi=1 X�2f0;1;2gt �jSi�j � jSi�1� j� � �2 � Pr[X=�℄ + 2�(w�1)� (45)= 3t � 2�(w�1) + 2 � X�2f0;1;2gt Pr[X=�℄ � tXi=1 �jSi�j � jSi�1� j� (46)= 3t � 2�(w�1) + 2 � X�2f0;1;2gt Pr[X=�℄ � jSt�j (47)� 3t � 2�(w�1) + 2wt � X�2f0;1;2gt Pr[X=�℄ ; (48)and so Eq. (37) is upper-bounded by 12n � ((3t � 2�(w�1) + 2wt) + 3t � n � 2�(w�1)), whih equals3t�2�(w�1)n + wtn . For w = 2t = pÆn, the statistial distane between the answer sequenes is at mostÆ + o(1), and the theorem follows.4 Hardness of Testing the Class of Width 4 Realizable FuntionsIn this setion we establish Theorems 1 and 6.Conjeture 4.1 Testing the lass of funtions that are implementable by width-4 OBDDs requires
(n) queries, even when allowing adaptive testers of two-sided error.Theorem 4.2 (Theorem 1, restated): Testing the lass of funtions that are implementable bywidth-4 OBDDs requires 
(pn) queries, even when allowing adaptive testers of two-sided error.Proof: We onsider Boolean funtions of 4n-bit long strings, whih are quadrati polynomialsover GF(2). Spei�ally, these funtions are linear ombinations of n quadrati expressions, whereeah quadrati expression refers to a distint blok of four variables. A generi blok, ontainingthe variables x1; x2; x3; x4, will ontribute a linear ombination of x1x3 and x2x4, where the ombi-nation x1x3+x2x4 is onsidered bad beause the expression x0+x1x3+x2x4 annot be omputedby a width-4 OBDDs. Spei�ally, letting f0(x1; x2; x3; x4) = 0, f1(x1; x2; x3; x4) = x1x3, andf2(x1; x2; x3; x4) = x2x4, we will onsider the lass good that onsists of funtions of the formg�1;:::;�n suh that g�1;:::;�n(x1; :::; x4n) = Xj2[n℄ f�j (x4(j�1)+1; :::; x4(j�1)+4); (49)where �1; :::; �n 2 f0; 1; 2g. Note that eah suh funtion an be omputed by a width-4 OBDD,whih uses one \bit" to store the aumulated sum and another \bit" to ompute the value of the19



urrent blok. In ontrast, the lass bad onsists of funtions of the form bj0;�1;:::;�n suh thatbj0;�1;:::;�n(x1; :::; x4n) = Xj2[n℄nfj0g f�j (x4(j�1)+1; :::; x4(j�1)+4)+ x4(j0�1)+1x4(j0�1)+3 + x4(j0�1)+2x4(j0�1)+4 (50)Sine, exept when �1 � � � �j0�1 = 0j0�1, the jth0 blok an not be omputed by a width-4 OBDD(while maintaining the aumulated sum), it follows that suh funtions are 1=16-far from the setof funtions that are omputable by width-4 OBBDs (see Lemma A.6, whih is a simple version ofYao's XOR Lemma for OBDDs, whih is also an over-kill).Our goal is to prove that a random funtion in good is hard to distinguish from a randomfuntion in bad, where \random" does not neessarily refer to the uniform distribution over theorresponding set (but rather any two distributions will do). Spei�ally, we onsider a distributionover good, in whih eah �i is set to 0 with probability 1=2 and is uniformly distributed in f1; 2gotherwise. (This random seletion proess determines a funtion g�1;:::;�n 2 good.) We onsider arelated distribution over good[bad, where �1; :::; �n are seleted as above, the index j0 is seleteduniformly in [n℄, and the funtion being determined is g�1;:::;�n + aj0 , where aj0(x1; :::; x4n) =x4(j0�1)+1x4(j0�1)+3 + x4(j0�1)+2x4(j0�1)+4. Note that the resulting funtion is in bad if and onlyif both �1 � � � �j0�1 6= 0j0�1 and �j0 = 0, whih means that it is in bad with probability 12 � o(1).Our analysis redues to analyzing related families of linear funtions de�ned over variablesy1; :::; y2n suh that y2(j�1)+1 = x4(j�1)+1x4(j�1)+3 and y2(j�1)+2 = x4(j�1)+2x4(j�1)+4. Spei�ally,we �rst show that distinguishing the foregoing two distributions (of quadrati funtions) leads todistinguishing the two orresponding distributions of linear funtions, where in both the latterdistributions �1; :::; �n and j0 are seleted as above (i.e., j0 is distributed uniformly in [n℄ andeah �i is set to 0 with probability 1=2 and is uniformly distributed in f1; 2g otherwise). Lettingf 00(y1; y2) = 0, f 01(y1; y2) = y1, and f 02(y1; y2) = y2, the linear funtions in these two distributionsare: g0�1;:::;�n(y1; :::; y2n) = Xj2[n℄f 0�j (y2(j�1)+1; y2(j�1)+2) (51)b0j0;�1;:::;�n(y1; :::; y2n) = g0�1;:::;�n(y1; :::; y2n) + y2(j0�1)+1 + y2(j0�1)+2 : (52)The redution between these distinguishing problems is quite straightforward: Given a distinguisherD for the original distinguishing problem (i.e., regarding quadrati funtions), we obtain a distin-guisherD0 for the distinguishing problem regarding linear funtions. The new distinguisher (i.e., D0)invokes D and serves eah query q = (q1; :::; q4n) that it issues (to its quadrati orale) by forwardingthe query q0 = (q01; :::; q02n) to the atual (linear funtion) orale, where q02(j�1)+1 = q4(j�1)+1q4(j�1)+3and q02(j�1)+2 = q4(j�1)+2q4(j�1)+4 for every j 2 [n℄. Thus, when given orale aess to g0�1;:::;�n,we emulate an exeution of D with g�1;:::;�n, whereas when given orale aess to b0j0;�1;:::;�n, weemulate an exeution of D with bj0;�1;:::;�n.We now turn to prove that distinguishing the two aforementioned distributions on linear fun-tions requires 
(pn) queries. Our proof follows the struture of the proof of Theorem 3.2. Speif-ially, in analogy to De�nition 3.2.1, we say that j 2 [n℄ is w-speial with respet to a sequeneof queries q if there exists a linear ombination of these queries that yields a 2n-bit string q suhthat f2j � 1; 2jg \ supp(q) 6= ; and jsupp(q)j � w. Analogously to Claim 3.2.2, the number ofw-speial indies with respet to a sequene of t queries is bounded by w � t. Next, analogously toClaim 3.2.3 we upper-bound the deviation of the answers whenever j0 is not w-speial with respetto the sequene of queries. 20



Claim 4.2.1 Suppose that j0 is not w-speial with respet to q = (q(1); :::; q(t)) 2 (f0; 1g2n)t. Then,for every � 2 f0; 1gt, when � = (�1; :::; �n) is seleted as above, it holds thatPr[(g0�(q(1)); :::; g0�(q(t))) = �℄ = Pr[(b0j0;�(q(1)); :::; bj0;�(q(t))) = �℄� 2�
(w) : (53)Proof: Like in the proof of Claim 3.2.3, it suÆes to show that, for every  2 f0; 1gt,���Pr� �g0�(Q) = 1� � Pr� hb0j0;�(Q) = 1i��� � 2�
(w); (54)where Q is the matrix with the q(i)'s as rows. Let q = Q and reall that b0j0;�(q) = g0�(q)+q2j0�1+q2j0 . We onsider two ases. If q2j0�1 = q2j0 = 0, then the l.h.s of Eq. (54) equals zero. Otherwise(i.e., f2j0�1; 2j0g\ supp(q) 6= ;), sine j0 is not w-speial, it holds that jsupp(q)nf2j0�1; 2j0gj �w � 1. Hene, there exists at least (w � 1)=2 indies j in [n℄ n fj0g suh that (q2j�1; q2j) 6= (0; 0),whih means that for eah suh j the value of f 0�j (q2(j�1)+1; q2(j�1)+2) is not �xed when �j is randomas above. Spei�ally, for eah suh j (i.e., j suh that (q2j�1; q2j) 6= (0; 0)), it holds thatPr�j hf 0�j (q2(j�1)+1; q2(j�1)+2) = 1i = ( 14 if q2(j�1)+1 + q2(j�1)+2 = 112 otherwise (i.e., q2(j�1)+1 = q2(j�1)+2 = 1) (55)and these events, whih refer to di�erent j's, are independent. Realling Eq. (51)&(52), we onludethat eah of the two probabilities in the l.h.s of Eq. (54) is 12 � 2�
(w), and the laim follows. 2The rest of the analysis mimis the proof of Theorem 3.2.Establishing Theorem 6. In the ourse of the proof of Theorem 4.2 we atually established alower bound on the omplexity of testing the set of linear funtions de�ned in Eq. (51). Lettingg00�(z1; :::; z3n) equal g0�(z1; z2; z4; z5; :::; z3n�2; z3n�1) we obtain a set of linear funtions in whihthere are no onseutive inuential variables. Theorem 6 follows by observing that the argumentestablishing the hardness of testing the former property also establishes the hardness of testing thelatter property.AknowledgmentsPart of this work is based on joint researh with Dana Ron, who refused to o-author it.
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Appendix: Tehnial BakgroundThis appendix ontains bakground material that is known, but may not be easily aessible oth-erwise. In partiular, Setion A.1 reprodues Guy Even's upper bound on the bias of random n-bitstrings of weight that is a multiple of 3 (f. [8℄); Setion A.2 reprodues a known proof of UmeshVazirani's Information Theoreti XOR Lemma (as well as its generalization to GF(p) for any primep); and Setion A.3 provides a simple proof of Yao's XOR Lemma for OBDDs (and other relatedmodels of omputation).A.1 The bias of the Mod 3 Sample SpaeReferring to the uniform distribution over n-bit strings having weight that is a multiple of 3, wepresent a proof that this distribution has an exponentially vanishing bias, where the bias of adistribution is as de�ned in Eq. (60).Proposition A.1 [8℄: Let S be the set of all n-bit strings having a number of 1-entries that isdivisible by three. Then, S is an 2�O(n)-bias sample spae.Proof: We let X = X1 � � �Xn denote a uniformly distributed n-bit string. We �rst onsider thedistribution of Pni=1Xi mod 3. Letting p�(n) def= Pr[Pni=1Xi � � (mod 3)℄, we note thatp�(n) = 12 � p�(n� 1) + 12 � p��1(n� 1) = 12 � p�+1(n� 1)2 (56)and it follows that jp�(n)� 13 j = 12 � jp�+1(n� 1)� 13 j. Thus, we getX�2f0;1;2g ����p�(n)� 13 ���� = 12 � X�2f0;1;2g ����p�(n� 1)� 13 ���� (57)and similarly for max�2f0;1;2gfjp�(n � 1) � 13 jg. Realling that p0(1) = p1(1) = 12 , it follows thatp�(n) = 13 � 2�n. We also mention (for use in the proof of Claim 3.2.3) thatX�2f0;1;2g ����p�(n)� 13 ���� = 23 � 2�(n�1) (58)We now turn to analyze the bias of the various XORs. That is, for any �xed non-zero stringq 2 f0; 1gn, we onsider the probabilityPr "hq;Xi=0 ���� nXi=1Xi � 0 (mod 3)# = Pr[hq;Xi=0 ^Pni=1Xi � 0 (mod 3)℄Pr[Pni=1Xi � 0 (mod 3)℄We know that the denominator is 13 � 2�n, and so we fous on the numerator. We distinguish twoases, aording to the weight of q, where we assume (w.l.o.g.) that q = 1wt(q)0n�wt(q).Case 1: w def= wt(q) � n=2. In this ase, we havePr "hq;Xi=0 ^ nXi=1Xi � 0 (mod 3)# = Pr " wXi=1Xi � 0 (mod 2) ^ nXi=1Xi � 0 (mod 3)#= 12 � Pr " nXi=1Xi � 0 (mod 3) ���� wXi=1Xi � 0 (mod 2)#24



We note that, for any �xing of values to X1; :::;Xw and every � 2 f0; 1; 2g, it holds thatPr24 nXi=w+1Xi � � (mod 3)35 = p�(n� w) = 13 � 2�(n�w)and using w � n=2 we get that Pr[hq;Xi=0 ^Pni=1Xi � 0 (mod 3)℄ = 16 � 2�n=2.Case 2: w def= wt(q) � n=2. In this ase, we usePr "hq;Xi=0 ^ nXi=1Xi � 0 (mod 3)# = Pr" nXi=1Xi � 0 (mod 6)#and observe thatPni=1Xi � 0 (mod `) represents a random walk on a direted `-yle wherewe traverse an edge with probability 1=2 and otherwise remain in plae. It an be easily seenthat the orresponding Markov Chain has a seond eigenvalue of 1 � �(`�2), and so theprobability of reahing any �xed node in an n-step random walk is 1̀ � 2�
(n=`2).The laim follows.A.2 The Information Theoreti XOR-LemmaThe Information Theoreti XOR-Lemma, ommonly attributed to Umesh Vazirani (see also [1,Apdx℄), relates two measures of the \randomness" of distributions over n-bit long strings.� The statistial di�erene from uniform; namely, the statistial di�erene (variation di�erene)between the \target" distribution and the uniform distribution.� The maximum bias of the xor of ertain bit positions; namely, the bias of a 0-1 randomvariable obtained by taking the exlusive-or of ertain bits in the \target" distribution.The Information Theoreti XOR-Lemma asserts that the statistial di�erene from uniform isupper-bounded by p2n times the maximum bias of the XOR's.Formal setting. Let � be a an arbitrary probability distribution over f0; 1gn and let � denotethe uniform distribution over f0; 1gn (i.e., �(x) = 2�n for every x 2 f0; 1gn). Let x = x1 � � � xn andN def= 2n. The XOR-Lemma relates two \measures of loseness" of � to �.� The statistial di�erene (\variation di�erene") between � and �; namely,stat(�) def= 12 �Xx j�(x)� �(x)j (59)� The \maximum bias" of the exlusive-or of ertain bit positions in strings hosen aordingto the distribution �; namely,maxbias(�) def= maxS 6=; fj�(fx : �i2Sxi = 0g)� �(fx : �i2Sxi = 1g)jg (60)The XOR-Lemma states that stat(�) � pN � maxbias(�). Its proof is based on viewing distribu-tions as elements in an N -dimensional vetor spae and observing that the two measures onsideredby the lemma are merely two norms taken with respet to two di�erent orthogonal bases. Hene,the XOR-Lemma follows from a (more general and quite straightforward) tehnial laim thatrelates norms taken with respet to di�erent orthonormal bases.25



The XOR-Lemma and vetor spaes. Probability distributions over f0; 1gn are funtionsfrom f0; 1gn to the reals. Suh funtions form a N -dimensional vetor spae. The standard basis,denoted K, for this spae is the orthonormal basis de�ned by the \Kroniker funtions" (i.e., theBoolean funtions fk� : � 2 f0; 1gng where k�(x) = 1 if x = �). The statistial di�erenebetween two distributions equals (half) the norm L1 of their di�erene taken in the above Kbasis. On the other hand, the maxbias of a distribution equals the maximum \Fourier oeÆient"of the distribution, whih in turn orresponds to the max-norm (norm L1) of the distributiontaken in a di�erent basis. The basis is de�ned by the funtions fbS : S � f1; 2; :::; ngg, wherebS(x) = (�1)�i2Sxi . Note that bS(x) = 1 if the exlusive-or of the bits fxi : i 2 Sg is 0 andbS(x) = �1 otherwise. The new basis is orthogonal but not orthonormal. We hene onsider thenormalized basis, denoted F , onsisting of the funtions fS = 1pN � bS.Notation: Let B be an orthonormal basis and r an integer. We denote by NBr (v) the norm Lrof v with respet to the basis B. Namely, NBr (v) = (Pe2Bhe; vir)(1=r), where he; vi is the absolutevalue of the inner produt of the vetors e and v. We denote by NB1(v) the limit of NBr (v) whenr !1 (i.e., NB1(v) is maxe2Bhe; vi).Clearly, stat(�) = 12 � NK1 (� � �), whereas maxbias(�) = pN � NF1(� � �). Following isa proof of the seond equality. Let Æ(x) = �(x) � �(x). Clearly, maxbias(�) = 0, and henemaxbias(�) = maxbias(Æ). Also Px Æ(x) = 0, and so Px f;(x) � Æ(x) = 0. We getmaxbias(Æ) = maxS 6=; fjÆ(fx : bS(x)=1g) � Æ(fx : bS(x)=�1g)jg (61)= maxS 6=; (�����Xx bS(x) � Æ(x)�����) (62)= pN �maxS (�����Xx fS(x) � Æ(x)�����) (63)= pN � NF1(Æ) (64)The proof of the XOR-Lemma. The XOR-Lemma follows from the following tehnial laimClaim A.2 (on bases and norms): For every two orthogonal bases A and B and every vetor vNA1 (v) � N � NB1(v) (65)This tehnial laim has a three line proof:1. For every orthogonal basis A, NA1 (v) � pN � NA2 (v).2. For every pair of orthonormal bases A and B, NA2 (v) = NB2 (v).3. For every orthogonal basis B, NB2 (v) � pN � NB1(v).Using Claim A.2, we getLemma A.3 (The XOR-Lemma): stat(�) � 12 � pN � maxbias(�).Proof: By the above stat(�) = 12 � NK1 (� � �) and maxbias(�) = pN � NF1(� � �), whereasNK1 (� � �) � N � NF1(� � �). 26



Variants. Using small variations on the proof of the Claim A.2, we obtain the following.Lemma A.4 (variants of the XOR-Lemma):1. maxx2f0;1gnfj�(x)� �(x)jg � maxbias(�).2. stat(�) � 12 �qPS 6=; biasS(�)2, where biasS(�) =Px bS(x) � �(x).Proof: The �rst part follows by using NA1(v) � NA2 (v) (instead of NA1 (v) � pN � NA2 (v)), andobtaining NK1(� � �) � pN � NF1(� � �). The seond part follows by using NA1 (v) � pN � NB2 (v)and NF2 (� � �) = qPS 6=; biasS(�)2. In both parts we also use bias;(� � �) = 0.Generalization to GF(p), for any prime p. The entire treatment an be generalized to dis-tributions over GF(p)n. In this ase, we rede�ne N def= pn, and stat(�) denote the statistialdi�erene between � and the uniform distribution over GF(p)n (f. Eq. (59)). Letting ! denote thepth root of unity, we generalize Eq. (60) tomaxbias(�) def= max�2GF(3)nnf0gn8<:������ Xe2GF(p)!e � � �nx :Pi2[n℄�ixi � e (mod p)o�������9=; (66)The Fourier basis is generalized analogously: The new basi onsists of the funtions fb� : � 2GF(p)ng, where b�(x) = !�i2[n℄�ixi . The normalized basis, denoted F , onsists of the funtionsf� = N�1=2 � b�. Note that, in the ase of p = 2, these de�nitions oinides with the de�nitionspresented before. By following exatly the same manipulations as in the ase of p = 2, we obtainthe following generalization.Lemma A.5 (The XOR-Lemma, generalized to GF(p)): Let � be an arbitrary distribution overGF(p)n, and let � denote the uniform distribution over GF(p)n.1. stat(�) � 12 � pN � maxbias(�).2. maxx2f0;1gnfj�(x)� �(x)jg � maxbias(�).3. stat(�) � 12 �qPS 6=; biasS(�)2, where biasS(�) =Px bS(x) � �(x).A.3 Yao's XOR Lemma for OBDDsLoosely speaking, Yao's Lemma asserts that unpreditability is ampli�ed by taking the exlusive-orof values that are individually hard to predit. The lemma holds in various omputational models(f., e.g., [12℄), and essentially says that if the prediates f1 and f2 annot be approximated byalgorithms of a ertain lass any better than with suess probability 1+�12 and 1+�22 , respetively,then f(y; z) = f1(y) � f2(z) annot be approximated by algorithms of a ertain lass any betterthan with suess probability 1+�1�22 . In this appendix we provide a simple proof of this result forthe ase of OBDDs.Atually, the phrasing of the following lemma avoids referene to any omplexity lass. Itonly assumes (unidiretional) on-line aess to the input in the sense that the value of F (y; z) =f1(y) � f2(z) is predited by a funtion of the form G(y; z) = g2(g1(y); z), whih means that thealgorithm �rst proesses y, produing g1(y), and outputs its �nal verdit based solely on g1(y) and27



z. Indeed, the reader should onsider the ase that jg1(y)j � jyj. This applies, in partiular, to thebounded-width OBDD model. The atual statement is in terms of a reduibility argument. It saysthat G might as well have the form �(g1(y)) � g2(a; z), where � : f0; 1g� ! f0; 1g and a 2 f0; 1g�are �xed. This presupposes that omputing � Æ g1 is not more omplex that omputing g1, andthat hardwiring onstants is for free. Both assumptions holds in the bounded-width OBDD model.As is usually the ase with the XOR Lemma, it is more onvenient to work with the �1 notation.Thus, � 2 f0; 1g is replaed by (�1)� , and � is replaed by multipliation.Lemma A.6 Let f1; f2 : f0; 1g� ! f�1g, and g1 : f0; 1g� ! f0; 1g�, g2 : f0; 1g� �f0; 1g� ! f�1g.Then, there exists � : f0; 1g� ! f�1g and a 2 f0; 1g� suh thatEy;z[(f1(y)f2(z))g2(g1(y); z)℄ � Ey;z[f1(y)f2(z)�(g1(y))g2(a; z)℄ (67)= Ey[f1(y)�(g1(y))℄ �Ez[f2(z)g2(a; z)℄ (68)where y and z are arbitrarily distributed in f0; 1g�, but are independent of one another.In partiular, it follows that if f1 and f2 annot be orrelated by a width-w OBDD better than p1and p2, respetively, then f(y; z) = f1(y)f2(z) annot be orrelated by this lass better than p1p2.For our purposes, it suÆes to have the (even simpler) speial ase in whih either p1 or p2 equals 1.Proof: The equality is obvious, and so we fous on the inequality. Let p1 = max�fEy[f1(y)�(g1(y))gand p2 = maxa;s2f�1gfs � Ez[f2(z)g2(a; z)℄g.De�ne � : f0; 1g� ! R suh that �(x) def= Ez[f2(z)g2(x; z)℄=p2. Note that by the de�nition of p2we have �(x) 2 [�1;+1℄ for every x (beause otherwise jEz[f2(z)g2(x; z)℄j > p2). Combining thede�nition of p1 and a simple probabilisti fat10, we haveEy[f1(y)�(g1(y))℄ � p1: (69)Substituting �(g1(y)) in Eq. (69), we getEy[f1(y)Ez[f2(z)g2(g1(y); z)℄=p2℄ � p1 (70)whih implies Ey;z[f1(y)f2(z)g2(g1(y); z)℄ � p1p2 (71)Plugging in the de�nitions of p1 and p2, we getEy;z[f1(y)f2(z)g2(g1(y); z)℄ � max�;a;sfs �Ey[f1(y)�(g1(y))℄ � Ez[f2(z)g2(a; z)℄g (72)= max�;a fEy[f1(y)�(g1(y))℄ �Ez[f2(z)g2(a; z)℄g (73)and the lemma follows.10The fat is that if for every � : f0; 1g� ! f�1g it holds that E[Y �(Z)℄ � p, then the same holds for � :f0; 1g� ! [�1;+1℄. The proof follows by the ounterpositive. Assuming that E[Y �(Z)℄ > p holds for some � :f0; 1g� ! [�1;+1℄, we �rst de�ne a random proess � suh that �(x) = 1 with probability (1 + �(x))=2 and�(x) = �1 otherwise. Then, E[Y�(Z)℄ = E[Y �(Z)℄ > p, beause E[�(z)℄ = �(z), and it follows that there exists a� : f0; 1g� ! f�1;+1g (in the support of �) that ontradits the hypothesis.28


