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1 IntroductionThe past two decades of cryptography research has had amazing success in putting most of the clas-sical cryptographic problems | encryption, authentication, protocols | on complexity-theoreticfoundations. However, there still remain several important problems in cryptography about whichtheory has had little or nothing to say. One such problem is that of program obfuscation. Roughlyspeaking, the goal of (program) obfuscation is to make a program \unintelligible" while preservingits functionality. Ideally, an obfuscated program should be a \virtual black box," in the sense thatanything one can compute from it one could also compute from the input-output behavior of theprogram.The hope that some form of obfuscation is possible arises from the fact that analyzing programsexpressed in rich enough formalisms is hard. Indeed, any programmer knows that total unintel-ligibility is the natural state of computer programs (and one must work hard in order to keep aprogram from deteriorating into this state). Theoretically, results such as Rice's Theorem andthe hardness of the Halting Problem and Satisfiability all seem to imply that the only usefulthing that one can do with a program or circuit is to run it (on inputs of ones choice). However, thisinformal statement is, of course, an over-generalization, and the existence of obfuscators requiresits own investigation.To be a bit more clear (though still informal), an obfuscator O is an (e�cient, probabilistic)\compiler" that takes as input a program (or circuit) P and produces a new programO(P ) satisfyingthe following two conditions:� (functionality) O(P ) computes the same function as P .� (\virtual black box" property) \Anything that can be e�ciently computed from O(P ) can bee�ciently computed given oracle access to P ."While there are heuristic approaches to obfuscation in practice (cf., Figure 1 and [CT00]), therehas been little theoretical work on this problem. This is unfortunate, since obfuscation, if it werepossible, would have a wide variety of cryptographic and complexity-theoretic applications.In this work, we initiate a theoretical investigation of obfuscation. We examine various formal-izations of the notion, in an attempt to understand what we can and cannot hope to achieve. Ourmain result is a negative one, showing that obfuscation (as it is typically understood) is impossible.Before describing this result and others in more detail, we outline some of the potential applicationsof obfuscators, both for motivation and to clarify the notion.1.1 Some Applications of ObfuscatorsSoftware Protection. The most direct applications of obfuscators are for various forms of soft-ware protection. By de�nition, obfuscating a program protects it against reverse engineering. Forexample, if one party, Alice, discovers a more e�cient algorithm for factoring integers, she may wishto sell another party, Bob, a program for apparently weaker tasks (such as breaking the RSA cryp-tosystem) that use the factoring algorithm as a subroutine without actually giving Bob a factoringalgorithm. Alice could hope to achieve this by obfuscating the program she gives to Bob.Intuitively, obfuscators would also be useful in watermarking software (cf., [CT00, NSS99]). Asoftware vendor could modify a program's behavior in a way that uniquely identi�es the person towhom it is sold, and then obfuscate the program to guarantee that this \watermark" is di�cult toremove. 2



#include<stdio.h> #include<string.h>main(){char*O,l[999]="'`acgo\177~|xp .-\0R^8)NJ6%K4O+A2M(*0ID57$3G1FBL";while(O=fgets(l+45,954,stdin)){*l=O[strlen(O)[O-1]=0,strspn(O,l+11)];while(*O)switch((*l&&isalnum(*O))-!*l){case-1:{char*I=(O+=strspn(O,l+12)+1)-2,O=34;while(*I&3&&(O=(O-16<<1)+*I---'-')<80);putchar(O&93?*I&8||!( I=memchr( l , O , 44 ) ) ?'?':I-l+47:32); break; case 1: ;}*l=(*O&31)[l-15+(*O>61)*32];while(putchar(45+*l%2),(*l=*l+32>>1)>35); case 0:putchar((++O ,32));}putchar(10);}}Figure 1: The winning entry of the 1998 International Obfuscated C Code Contest, an ASCII/Morsecode translator by Frans van Dorsselaer [vD98] (adapted for this paper).Homomorphic Encryption. A long-standing open problem in cryptography is whether homo-morphic encryption schemes exist (cf., [RAD78, FM91, DDN00, BL96, SYY99]). That is, we seeka secure public-key cryptosystem for which, given encryptions of two bits (and the public key), onecan compute an encryption of any binary Boolean operation of those bits. Obfuscators would allowone to convert any public-key cryptosystem into a homomorphic one: use the secret key to con-struct an algorithm that performs the required computations (by decrypting, applying the Booleanoperation, and encrypting the result), and publish an obfuscation of this algorithm together withthe public key.1Removing Random Oracles. The Random Oracle Model [BR93] is an idealized cryptographicsetting in which all parties have access to a truly random function. It is (heuristically) hoped thatprotocols designed in this model will remain secure when implemented using an e�cient, publiclycomputable cryptographic hash function in place of the random function. While it is known that thisis not true in general [CGH98], it is unknown whether there exist e�ciently computable functionswith strong enough properties to be securely used in place of the random function in various speci�cprotocols (e.g., in Fiat-Shamir type schemes [FS87]). One might hope to obtain such functionsby obfuscating a family of pseudorandom functions [GGM86], whose input-output behavior is byde�nition indistinguishable from that of a truly random function.Transforming Private-Key Encryption into Public-Key Encryption. Obfuscation canalso be used to create new public-key encryption schemes by obfuscating a private-key encryptionscheme. Given a secret key K of a private-key encryption scheme, one can publish an obfuscation1There is a subtlety here, caused by the fact that encryption algorithms must be probabilistic to be semanticallysecure in the usual sense [GM84]. However, both the \functionality" and \virtual black box" properties of obfus-cators become more complex for probabilistic algorithms, so in this work, we restrict our attention to obfuscatingdeterministic algorithms(except in Section 6). This restriction only makes our main (impossibility) result stronger.3



of the encryption algorithm EncK .2 This allows everyone to encrypt, yet only one possessing thesecret key K should be able to decrypt.Interestingly, in the original paper of Di�e and Hellman [DH76], the above was the reasongiven to believe that public-key cryptosystems might exist even though there were no candidatesknown yet. That is, they suggested that it might be possible to obfuscate a private-key encryptionscheme.31.2 Our ResultsThe Basic Impossibility Result. Most of the above applications rely on the intuition that anobfuscated program is a \virtual black box." That is, anything one can e�ciently compute fromthe obfuscated program, one should be able to e�ciently compute given just oracle access to theprogram.Our main result shows that it is impossible to achieve this notion of obfuscation. We prove thisby constructing (from any one-way function) a family F of functions which is unobfuscatable in thesense that there is some property � : F ! f0; 1g such that:� Given any program (circuit) that computes a function f 2 F , the value �(f) can be e�cientlycomputed;� Yet, given oracle access to a (randomly selected) function f 2 F , no e�cient algorithm cancompute �(f) much better than by random guessing.Thus, there is no way of obfuscating the programs that compute these functions, even if (a) theobfuscation is meant to hide only one bit of information about the function (namely �(f)), and (b)the obfuscator itself has unbounded computation time.We believe that the existence of such functions shows that the \virtual black box" paradigm forobfuscators is inherently awed. Any hope for positive results about obfuscator-like objects mustabandon this viewpoint, or at least be reconciled with the existence of functions as above.Approximate Obfuscators. The basic impossibility result as described above applies to ob-fuscators O for which we require that the obfuscated program O(P ) computes exactly the samefunction as the original program P . However, for some applications it may su�ce that, for everyinput x, O(P ) and P agree on x with high probability (over the coin tosses of O). Using someadditional ideas, our impossibility result extends to such approximate obfuscators.2This application involves the same subtlety pointed out in Footnote 1. Thus, our results regarding the(un)obfuscatability of private-key encryption schemes (described later) refer to a relaxed notion of security in whichmultiple encryptions of the same message are not allowed (which is consistent with a deterministic encryption algo-rithm).3From [DH76]: \A more practical approach to �nding a pair of easily computed inverse algorithms E and D; suchthat D is hard to infer from E, makes use of the di�culty of analyzing programs in low level languages. Anyone whohas tried to determine what operation is accomplished by someone else's machine language program knows that Eitself (i.e. what E does) can be hard to infer from an algorithm for E. If the program were to be made purposefullyconfusing through the addition of unneeded variables and statements, then determining an inverse algorithm could bemade very di�cult. Of course, E must be complicated enough to prevent its identi�cation from input-output pairs.Essentially what is required is a one-way compiler: one which takes an easily understood program written in ahigh level language and translates it into an incomprehensible program in some machine language. The compiler isone-way because it must be feasible to do the compilation, but infeasible to reverse the process. Since e�ciency insize of program and run time are not crucial in this application, such compilers may be possible if the structure ofthe machine language can be optimized to assist in the confusion."4



Impossibility of Applications. To give further evidence that our impossibility result is notan artifact of de�nitional choices, but rather that there is something inherently awed in the\virtual black box" idea, we also demonstrate that several of the applications of obfuscators arealso impossible. We do this by constructing unobfuscatable signature schemes, encryption schemes,and pseudorandom functions. These are objects satisfying the standard de�nitions of security(except for the subtlety noted in Footnote 2), but for which one can e�ciently compute the secretkey K from any program that signs (or encrypts or evaluates the pseudorandom function, resp.)relative to K. (Hence handing out \obfuscated forms" of these keyed-algorithms is highly insecure.)In particular, we complement Canetti et. al.'s critique of the RandomOracle Methodology [CGH98].They show that there exist (contrived) protocols that are secure in the idealized Random OracleModel (of [BR93]), but are insecure when the random oracle is replaced with any (e�ciently com-putable) function. Our results imply that for even for natural protocols that are secure in therandom oracle model (e.g., Fiat-Shamir type schemes [FS87]), there exist (contrived) pseudoran-dom functions, such that these protocols are insecure when the random oracle is replaced with anyprogram that computes the contrived pseudorandom function.Obfuscating restricted complexity classes. Even though obfuscation of general programs/circuitsis impossible, one may hope that it is possible to obfuscate more restricted classes of computations.However, using the pseudorandom functions of [NR97] in our construction, we can show that theimpossibility result holds even when the input program P is a constant-depth threshold circuit (i.e.,is in TC0), under widely believed complexity assumptions (e.g., the hardness of factoring).Obfuscating Sampling Algorithms. Another way in which the notion of obfuscators can beweakened is by changing the functionality requirement. Up to now, we have considered programsin terms of the functions they compute, but sometimes one is interested in other kinds of behavior.For example, one sometimes considers sampling algorithms, i.e. probabilistic programs that takeno input (other than, say, a length parameter) and produce an output according to some desireddistribution. We consider two natural de�nitions of obfuscators for sampling algorithms, and provethat the stronger de�nition is impossible to meet. We also observe that the weaker de�nition impliesthe nontriviality of statistical zero knowledge.Software Watermarking. As mentioned earlier, there appears to be some connection betweenthe problems of software watermarking and code obfuscation. We consider a couple of formalizationsof the watermarking problem and explore their relationship to our results on obfuscation.1.3 DiscussionOur work rules out the standard, \virtual black box" notion of obfuscators as impossible, alongwith several of its applications. However, it does not mean that there is no method of makingprograms \unintelligible" in some meaningful and precise sense. Such a method could still proveuseful for software protection.Thus, we consider it to be both important and interesting to understand whether there arealternative senses (or models) in which some form of obfuscation is possible. Toward this end,we suggest two weaker de�nitions of obfuscators that avoid the \virtual black box" paradigm (andhence are not ruled out by our impossibility proof). These de�nitions could be the subject of futureinvestigations, but we hope that other alternatives will also be proposed and examined.5



As is usually the case with impossibility results and lower bounds, we show that obfuscators(in the \virtual black box" sense) do not exist by presenting a somewhat contrived counterexampleof a function ensemble that cannot be obfuscated. It is interesting whether obfuscation is possiblefor a restricted class of algorithms, which nonetheless contains some \useful" algorithms. Thisrestriction should not be con�ned to the computational complexity of the algorithms: if we try torestrict the algorithms by their computational complexity, then there's not much hope for obfusca-tion. Indeed, as mentioned above, we show that (under widely believed complexity assumptions)our counterexample can be placed in TC0. In general, the complexity of our counterexample isessentially the same as the complexity of pseudorandom functions, and so a complexity class whichdoes not contain our example will also not contain many cryptographically useful algorithms.1.4 Additional Related WorkThere are a number of heuristic approaches to obfuscation and software watermarking in the lit-erature, as described in the survey of Collberg and Thomborson [CT00]. A theoretical study ofsoftware protection was previously conducted by Goldreich and Ostrovsky [GO96], who consideredhardware-based solutions.Hada [Had00] gave some de�nitions for code obfuscators which are stronger than the de�nitionswe consider in this paper, and showed some implications of the existence of such obfuscators. (Ourresult rules out also the existence of obfuscators according to the de�nitions of [Had00].)Canetti, Goldreich and Halevi [CGH98] showed another setting in cryptography where gettinga function's description is provably more powerful than black-box access. As mentioned above,they have shown that there exist protocols that are secure when executed with black-box accessto a random function, but insecure when instead the parties are given a description of any explicitfunction.1.5 Organization of the PaperIn Section 2, we give some basic de�nitions along with (very weak) de�nitions of obfuscators. InSection 3, we prove the impossibility of obfuscators by constructing an unobfuscatable functionensemble. In Section 4, we give a number of extensions of our impossibility result, includingimpossibility results for obfuscators which only need to approximately preserve functionality, forobfuscators computable in low circuit classes, and for some of the applications of obfuscators.We also show that our main impossibility result does not relativize. In Section 5, we discusssome conjectural complexity-theoretic analogues of Rice's Theorem, and use our techniques toshow that one of these is false. In Section 6, we examine notions of obfuscators for samplingalgorithms. In Section 7, we propose weaker notions of obfuscation that are not ruled out by ourimpossibility results. In Section 8, we discuss the problem of software watermarking and its relationto obfuscation. Finally, in Section 9, we mention some directions for further work in this area.2 De�nitions2.1 PreliminariesStandard Notations. TM is shorthand for Turing machine. PPT is shorthand for probabilisticpolynomial-time Turing machine. By circuit we refer to a standard boolean circuit with AND,ORand NOT gates. If C is a circuit with n inputs and m outputs, and x 2 f0; 1gn then by C(x) wedenote the result of applying C on input x. We say that C computes a function f : f0; 1gn ! f0; 1gm6



if for any x 2 f0; 1gn, C(x) = f(x). For algorithms A and M and a string x, we denote by AM (x)the output of A when executed on input x and oracle access to M . When M is a circuit, thiscarries the standard meaning (on answer to oracle query x, A receives M(x)). When M is a TM,this means that A can make oracle queries of the form (x; 1t) and receive in response either theoutput of M on input x (if M halts within t steps on x), or ? (if M does not halt within t steps onx).4 If A is a probabilistic Turing machine then by A(x; r) we refer to the result of running A oninput x and random tape r. By A(x) we refer to the distribution induced by choosing r uniformlyand running A(x; r). If D is a distribution then by x R D we mean that x is a random variabledistributed according to D. If S is a set then by x R S we mean that x is a random variable that isdistributed uniformly over the elements of S. Supp(D) denotes the support of distribution D, i.e.the set of points that have nonzero probability under D. A function � : N ! N is called negligible ifit grows slower than the inverse of any polynomial. That is, for any positive polynomial p(�) thereexists N 2 N such that �(n) < 1=p(n) for any n > N . We'll sometimes use neg(�) to denote anunspeci�ed negligible function. We will identify Turing machines and circuits with their canonicalrepresentations as strings in f0; 1g�.Nonstandard Notations. IfM is a TM then we denote by hMi the function hMi : 1��f0; 1g� !f0; 1g� given by:hMi(1t; x) def= n y M(x) halts with output y after at most t steps? otherwiseIf C is a circuit then we denote by [C] the function it computes. Similarly if M is a TM then wedenote by [M ] the (possibly partial) function it computes.2.2 ObfuscatorsIn this section, we aim to formalize the notion of obfuscators based on the \virtual black box"property as described in the introduction. Recall that this property requires that \anything thatan adversary can compute from an obfuscation O(P ) of a program P , it could also compute givenjust oracle access to P ." We shall de�ne what it means for the adversary to successfully computesomething in this setting, and there are several choices for this (in decreasing order of generality):� (computational indistinguishability) The most general choice is not to restrict the nature ofwhat the adversary is trying to compute, and merely require that it is possible, given justoracle access to P , to produce an output distribution that is computationally indistinguishablefrom what the adversary computes when given O(P ).� (satisfying a relation) An alternative is to consider the adversary as trying to produce an out-put that satis�es an arbitrary (possibly polynomial-time) relation with the original programP , and require that it is possible, given just oracle access to P , to succeed with roughly thesame probability as the adversary does when given O(P ).� (computing a function) A weaker requirement is to restrict the previous requirement to re-lations which are functions; that is, the adversary is trying to compute some function of theoriginal program.4In typical cases (i.e., when the running time is a priori bounded), this convention makes our de�nitions ofobfuscator even weaker since it allows A to learn the actual running-time of M on particular inputs. This seems thenatural choice because a machine given the code of M can de�nitely learn its actual running-time on inputs of itsown choice. 7



� (computing a predicate) The weakest is to restrict the previous requirement to f0; 1g-valuedfunctions; that is, the adversary is trying to decide some property of the original program.Since we will be proving impossibility results, our results are strongest when we adopt theweakest requirement (i.e., the last one). This yields two de�nitions for obfuscators, one for programsde�ned by Turing machines and one for programs de�ned by circuits.De�nition 2.1 (TM obfuscator) A probabilistic algorithm O is a TM obfuscator if the followingthree conditions hold:� (functionality) For every TM M , the string O(M) describes a TM that computes the samefunction as M .� (polynomial slowdown) The description length and running time of O(M) are at most poly-nomially larger than that of M . That is, there is a polynomial p such that for every TM M ,jO(M)j � p(jM j), and if M halts in t steps on some input x, then O(M) halts within p(t)steps on x.� (\virtual black box" property) For any PPT A, there is a PPT S and a negligible function �such that for all TMs M���Pr [A(O(M)) = 1]� Pr hShMi(1jM j) = 1i��� � �(jM j):We say that O is e�cient if it runs in polynomial time.De�nition 2.2 (circuit obfuscator) A probabilistic algorithm O is a (circuit) obfuscator if thefollowing three conditions hold:� (functionality) For every circuit C, the string O(C) describes a circuit that computes the samefunction as C.� (polynomial slowdown) There is a polynomial p such that for every circuit C, jO(C)j � p(jCj).� (\virtual black box" property) For any PPT A, there is a PPT S and a negligible function �such that for all circuits C���Pr [A(O(C)) = 1]� Pr hSC(1jCj) = 1i��� � �(jCj):We say that O is e�cient if it runs in polynomial time.We call the �rst two requirements (functionality and polynomial slowdown) the syntactic re-quirements of obfuscation, as they do not address the issue of security at all.There are a couple of other natural formulations of the \virtual black box" property. The�rst, which more closely follows the informal discussion above, asks that for every predicate �, theprobability that A(O(C)) = �(C) is at most the probability that SC(1jCj) = �(C) plus a negligibleterm. It is easy to see that this requirement is equivalent to the one above. Another formulationrefers to the distinguishability between obfuscations of two TMs/circuits: ask that for every C1and C2, jPr [A(O(C1)) = 1]�Pr [A(O(C2))] j is approximately equal to jPr �SC1(1jC1j; 1jC2j) = 1��Pr �SC2(1jC1j; 1jC2)� j. This de�nition appears to be slightly weaker than the ones above, but ourimpossibility proof also rules it out. 8



Note that in both de�nitions, we have chosen to simplify the de�nition by using the size ofthe TM/circuit to be obfuscated as a security parameter. One can always increase this length bypadding to obtain higher security.The main di�erence between the circuit and TM obfuscators is that a circuit computes a functionwith �nite domain (all the inputs of a particular length) while a TM computes a function within�nite domain. Note that if we had not restricted the size of the obfuscated circuit O(C), then the(exponential size) list of all the values of the circuit would be a valid obfuscation (provided we allowS running time poly(jO(C)j) rather than poly(jCj)). For Turing machines, it is not clear how toconstruct such an obfuscation, even if we are allowed an exponential slowdown. Hence obfuscatingTMs is intuitively harder. Indeed, it is relatively easy to prove:Proposition 2.3 If a TM obfuscator exists, then a circuit obfuscator exists.Thus, when we prove our impossibility result for circuit obfuscators, the impossibility of TM ob-fuscators will follow. However, considering TM obfuscators will be useful as motivation for theproof.We note that, from the perspective of applications, De�nitions 2.1 and 2.2 are already too weakto have the wide applicability discussed in the introduction. The point is that they are neverthelessimpossible to satisfy (as we will prove).3 The Main Impossibility ResultTo state our main result we introduce the notion of unobfuscatable function ensemble.De�nition 3.1 An unobfuscatable function ensemble is an ensemble fHkgk2N of distributions Hkon �nite functions (from, say, f0; 1glin(k) to f0; 1glout(k)) satisfying:� (e�cient computability) Every function f R Hk is computable by a circuit of size poly(k).(Moreover, a distribution on circuits consistent with Hk can be sampled uniformly in timepoly(k).)� (unobfuscatability) There exists a function � : Sk2N Supp(Hk)! f0; 1g such that1. �(f) is hard to compute with black-box access to f : For any PPT SPrf R Hk[Sf (1k) = �(f)] � 12 + neg(k)2. �(f) is easy to compute with access to any circuit that computes f : There exists a PPTA such that for any f 2 Sk2N Supp(Hk) and for any circuit C that computes fA(C) = �(f)We prove in Theorem 3.11 that, assuming one-way functions exist, there exists an unobfus-catable function ensemble. This implies that, under the same assumption, there is no obfuscatorthat satis�es De�nition 2.2 (actually we prove the latter fact directly in Theorem 3.8). Since theexistence of an e�cient obfuscator implies the existence of one-way functions (Lemma 3.9), weconclude that e�cient obfuscators do not exist (unconditionally).However, the existence of unobfuscatable function ensemble has even stronger implications. Asmentioned in the introduction, these functions can not be obfuscated even if we allow the followingrelaxations to the obfuscator: 9



1. As mentioned above, the obfuscator does not have to run in polynomial time | it can be anyrandom process.2. The obfuscator has only to work for functions in Supp(Hk) and only for a non-negligiblefraction of these functions under the distributions Hk.3. The obfuscator has only to hide an a priori �xed property � from an a priori �xed adversaryA.Structure of the Proof of the Main Impossibility Result. We shall prove our result by�rst de�ning obfuscators that are secure also when applied to several (e.g., two) algorithms andproving that they do not exist. Then we shall modify the construction in this proof to provethat TM obfuscators in the sense of De�nition 2.1 do not exist. After that, using an additionalconstruction (which requires one-way functions), we will prove that a circuit obfuscator as de�nedin De�nition 2.2 does not exist if one-way functions exist. We will then observe that our proofactually yields an unobfuscatable function ensemble (Theorem 3.11).3.1 Obfuscating two TMs/circuitsObfuscators as de�ned in the previous section provide a \virtual black box" property when asingle program is obfuscated, but the de�nitions do not say anything about what happens whenthe adversary can inspect more than one obfuscated program. In this section, we will considerextensions of those de�nitions to obfuscating two programs, and prove that they are impossible tomeet. The proofs will provide useful motivation for the impossibility of the original one-programde�nitions.De�nition 3.2 (2-TM obfuscator) A 2-TM obfuscator is de�ned in the same way as a TMobfuscator, except that the \virtual black box" property is strengthened as follows:� (\virtual black box" property) For any PPT A, there is a PPT S and a negligible function �such that for all TMs M;N���Pr [A(O(M);O(N)) = 1]� Pr hShMi;hNi(1jM j+jN j) = 1i��� � �(minfjM j; jN jg)De�nition 3.3 (2-circuit obfuscator) A 2-circuit obfuscator is de�ned in the same way as acircuit obfuscator, except that the \virtual black box" property is replaced with the following:� (\virtual black box" property) For any PPT A, there is a PPT S and a negligible function �such that for all circuits C;D���Pr [A(O(C);O(D)) = 1]� Pr hSC;D(1jCj+jDj) = 1i��� � �(minfjCj; jDjg)Proposition 3.4 Neither 2-TM nor 2-circuit obfuscators exist.Proof: We begin by showing that 2-TM obfuscators do not exist. Suppose, for sake of con-tradiction, that there exists a 2-TM obfuscator O. The essence of this proof, and in fact of allthe impossibility proofs in this paper, is that there is a fundamental di�erence between gettingblack-box access to a function and getting a program that computes it, no matter how obfuscated:A program is a succinct description of the function, on which one can perform computations (or10



run other programs). Of course, if the function is (exactly) learnable via oracle queries (i.e., onecan acquire a program that computes the function by querying it at a few locations), then thisdi�erence disappears. Hence, to get our counterexample, we will use a function that cannot beexactly learned with oracle queries. A very simple example of such an unlearnable function follows.For strings �; � 2 f0; 1gk, de�ne the Turing machineC�;�(x) def= n� x = �0k otherwiseWe assume that on input x, C�;� runs in 10 � jxj steps (the constant 10 is arbitrary). Now wewill de�ne a TM D�;� that, given the code of a TM C, can distinguish between the case that Ccomputes the same function as C�;� from the case that C computes the same function as C�0;�0 forany (�0; �0) 6= (�; �). D�;�(C) def= n 1 C(�) = �0 otherwise(Actually, this function is uncomputable. However, as we shall see below, we can use a modi�edversion of D�;� that only considers the execution of C(�) for poly(k) steps, and outputs 0 if C doesnot halt within that many steps, for some �xed polynomial poly(�). We will ignore this issue fornow, and elaborate on it later.) Note that C�;� and D�;� have description size �(k).Consider an adversary A, which, given two (obfuscated) TMs as input, simply runs the secondTM on the �rst one. That is, A(C;D) = D(C). (Actually, like we modi�ed D�;� above, we alsowill modify A to only run D on C for poly(jCj; jDj) steps, and output 0 if D does not halt in thattime.) Thus, for any �; � 2 f0; 1gk ,Pr [A(O(C�;�);O(D�;�)) = 1] = 1 (1)Observe that any poly(k)-time algorithm S which has oracle access to C�;� and D�;� has onlyexponentially small probability (for a random � and �) of querying either oracle at a point whereits value is nonzero. Hence, if we let Zk be a Turing machine that always outputs 0k, then for everyPPT S, ���Pr hSC�;� ;D�;�(1k) = 1i� Pr hSZk;D�;�(1k) = 1i��� � 2�
(k); (2)where the probabilities are taken over � and � selected uniformly in f0; 1gk and the coin tosses ofS. On the other hand, by the de�nition of A we have:Pr [A(O(Zk);O(D�;�)) = 1] = 0 (3)The combination of Equations (1), (2), and (3) contradict the fact that O is a 2-TM obfuscator.In the above proof, we ignored the fact that we had to truncate the running times of A andD�;� .When doing so, we must make sure that Equations (1) and (3) still hold. Equation (1) involvesexecuting (a) A(O(D�;�);O(C�;�)), which in turn amounts to executing (b) O(D�;�)(O(C�;�)).By de�nition (b) has the same functionality as D�;�(O(C�;�)), which in turn involves executing(c) O(C�;�)(�). Yet the functionality requirement of the obfuscator de�nition assures us that(c) has the same functionality as C�;�(�). By the polynomial slowdown property of obfuscators,execution (c) only takes poly(10 � k) = poly(k) steps, which means that D�;�(O(C�;�)) need onlyrun for poly(k) steps. Thus, again applying the polynomial slowdown property, execution (b) takespoly(k) steps, which �nally implies that A need only run for poly(k) steps. The same reasoning11



holds for Equation (3), using Zk instead of C�;�.5 Note that all the polynomials involved are �xedonce we �x the polynomial p(�) of the polynomial slowdown property.The proof for the 2-circuit case is very similar to the 2-TM case, with a related, but slightlydi�erent subtlety. Suppose, for sake of contradiction, that O is a 2-circuit obfuscator. For k 2 Nand �; � 2 f0; 1gk , de�ne Zk, C�;� and D�;� in the same way as above but as circuits rather thanTMs, and de�ne an adversary A by A(C;D) = D(C). (Note that the issues of A and D�;�'s runningtimes go away in this setting, since circuits can always be evaluated in time polynomial in theirsize.) The new subtlety here is that the de�nition of A as A(C;D) = D(C) only makes sense whenthe input length of D is larger than the size of C (note that one can always pad C to a larger size).Thus, for the analogues of Equations (1) and (3) to hold, the input length of D�;� must be largerthan the sizes of the obfuscations of C�;� and Zk. However, by the polynomial slowdown propertyof obfuscators, it su�ces to let D�;� have input length poly(k) and the proof works as before.3.2 Obfuscating one TM/circuitOur approach to extending the two-program obfuscation impossibility results to the one-programde�nitions is to combine the two programs constructed above into one. This will work in a quitestraightforward manner for TM obfuscators, but will require new ideas for circuit obfuscators.Combining functions and programs. For functions, TMs, or circuits f0; f1 : X ! Y , de�netheir combination f0#f1 : f0; 1g �X ! Y by (f0#f1)(b; x) def= fb(x). Conversely, if we are givena TM (resp., circuit) C : f0; 1g �X ! Y , we can e�ciently decompose C into C0#C1 by settingCb(x) def= C(b; x); note that C0 and C1 have size and running time essentially the same as that ofC. Observe that having oracle access to a combined function f0#f1 is equivalent to having oracleaccess to f0 and f1 individually.Theorem 3.5 TM obfuscators do not exist.Proof Sketch: Suppose, for sake of contradiction, that there exists a TM obfuscator O. For�; � 2 f0; 1gk , let C�;�, D�;� , and Zk be the TMs de�ned in the proof of Proposition 3.4. Combiningthese, we get the TMs F�;� = C�;�#D�;� and G�;� = Zk#C�;�.We consider an adversary A analogous to the one in the proof of Proposition 3.4, augmentedto �rst decompose the program it is fed. That is, on input a TM F , algorithm A �rst decomposesF into F0#F1 and then outputs F1(F0). (As in the proof of Proposition 3.4, A actually should bemodi�ed to run in time poly(jF j).) Let S be the PPT simulator for A guaranteed by De�nition 2.1.Just as in the proof of Proposition 3.4, we have:Pr [A(O(F�;�)) = 1] = 1 and Pr [A(O(G�;�)) = 1] = 0���Pr hSF�;�(1k) = 1i� Pr hSG�;� (1k) = 1i��� � 2�
(k);where the probabilities are taken over uniformly selected �; � 2 f0; 1gk , and the coin tosses of A,S, and O. This contradicts De�nition 2.1. 25Another, even more minor subtlety that we ignored is that, strictly speaking, A only has running time polynomialin the description of the obfuscations of C�;�, D�;�, and Zk, which could conceivably be shorter than the originalTM descriptions. But a counting argument shows that for all but an exponentially small fraction of pairs (�; �) 2f0; 1gk � f0; 1gk, O(C�;�) and O(D�;�) must have description size 
(k).12



There is a di�culty in trying to carry out the above argument in the circuit setting. (Thisdi�culty is related to (but more serious than) the same subtlety regarding the circuit settingdiscussed earlier.) In the above proof, the adversary A, on input O(F�;�), attempts to evaluateF1(F0), where F0#F1 = O(F�;�) = O(C�;�#D�;�). In order for this to make sense in the circuitsetting, the size of the circuit F0 must be at most the input length of F1 (which is the same as theinput length of D�;�). But, since the output F0#F1 of the obfuscator can be polynomially largerthan its input C�;�#D�;� , we have no such guarantee. Furthermore, note that if we compute F0,F1 in the way we described above (i.e., Fb(x) def= O(F�;�)(b; x)) then we'll have jF0j = jF1j and soF0 will necessarily be larger than F1's input length.To get around this, we modify D�;� in a way that will allow A, when given D�;� and a circuitC, to test whether C(�) = � even when C is larger than the input length of D�;�. Of course, oracleaccess to D�;� should not reveal � and �, because we do not want the simulator S to be able totest whether C(�) = � given just oracle access to C and D�;�. We will construct such functionsD�;� based on pseudorandom functions [GGM86].Lemma 3.6 If one-way functions exist, then for every k 2 N and �; � 2 f0; 1gk, there is a distri-bution D�;� on circuits such that:1. Every D 2 Supp(D�;�) is a circuit of size poly(k).2. There is a polynomial-time algorithm A such that for any circuit C, and any D 2 Supp(D�;�),AD(C; 1k) = 1 i� C(�) = �.3. For any PPT S, Pr �SD(1k) = �� = neg(k), where the probability is taken over �; � R f0; 1gk,D R D�;�, and the coin tosses of S.Proof: Basically, the construction implements a private-key \homomorphic encryption" scheme.More precisely, the functions in D�;� will consist of three parts. The �rst part gives out an encryp-tion of the bits of � (under some private-key encryption scheme). The second part provides theability to perform binary Boolean operations on encrypted bits, and the third part tests whether asequence of encryptions consists of encryptions of the bits of �. These operations will enable oneto e�ciently test whether a given circuit C satis�es C(�) = �, while keeping � and � hidden whenonly oracle access to C and D�;� is provided.We begin with any one-bit (probabilistic) private-key encryption scheme (Enc;Dec) that satis�esindistinguishability under chosen plaintext and nonadaptive chosen ciphertext attacks. Informally,this means that an encryption of 0 should be indistinguishable from an encryption of 1 even foradversaries that have access to encryption and decryption oracles prior to receiving the challengeciphertext, and access to just an encryption oracle after receiving the challenge ciphertext. (See[KY00] for formal de�nitions.) We note that such encryptions schemes exist if one-way functionsexist; indeed, the \standard" encryption scheme EncK(b) = (r; fK(r)� b), where r R f0; 1gjKj andfK is a pseudorandom function, has this property.Now we consider a \homomorphic encryption" algorithm Hom, which takes as input a private-key K and two ciphertexts c and d (w.r.t. this key K), and a binary boolean operation � (speci�edby its 2� 2 truth table). We de�neHomK(c; d;�) def= EncK(DecK(c)�DecK(d)):It can be shown that such an encryption scheme retains its security even if the adversary is givenaccess to a Hom oracle. This is formalized in the following claim:13



Claim 3.7 For every PPT A,��Pr �AHomK ;EncK (EncK(0)) = 1�� Pr �AHomK ;EncK (EncK(1)) = 1��� � neg(k):Proof of claim: Suppose there were a PPT A violating the claim. First, we argue thatwe can replace the responses to all of A'S HomK -oracle queries with encryptions of 0 withonly a negligible e�ect on A's distinguishing gap. This follows from indistinguishabilityunder chosen plaintext and ciphertext attacks and a hybrid argument: Consider hybridswhere the �rst i oracle queries are answered according to HomK and the rest withencryptions of 0. Any advantage in distinguishing two adjacent hybrids must be due todistinguishing an encryption of 1 from an encryption of 0. The resulting distinguishercan be implemented using oracle access to encryption and decryption oracles prior toreceiving the challenge ciphertext (and an encryption oracle afterward).Once we have replaced the HomK-oracle responses with encryptions of 0, we have anadversary that can distinguish an encryption of 0 from an encryption of 1 when givenaccess to just an encryption oracle. This contradicts indistinguishability under chosenplaintext attack. 2Now we return to the construction of our circuit family D�;�. For a key K, let EK;� be analgorithm which, on input i outputs EncK(�i), where �i is the i'th bit of �. Let BK;� be analgorithm which when fed a k-tuple of ciphertexts (c1; : : : ; ck) outputs 1 if for all i, DecK(ci) = �i,where �1; : : : ; �k are the bits of �. A random circuit from D�;� will essentially be the algorithmDK;�;� def= EK;�#HomK#BK;�(for a uniformly selected key K). One minor complication is that DK;�;� is actually a probabilisticalgorithm, since EK;� and HomK employ probabilistic encryption, whereas the lemma requiresdeterministic functions. This can be solved in the usual way, by using pseudorandom functions.Let q = q(k) be the input length of DK;�;� and m = m(k) the maximum number of random bitsused by DK;�;� on any input. We can select a pseudorandom function fK0 : f0; 1gq ! f0; 1gm,and let D0K;�;�;K0 be the (deterministic) algorithm, which on input x 2 f0; 1gq evaluates DK;�;�(x)using randomness fK0(x).De�ne the distribution D�;� to be D0K;�;�;K0, over uniformly selected keys K and K 0. We arguethat this distribution has the properties stated in the lemma. By construction, each D0K;�;�;K0 iscomputable by circuit of size poly(k), so Property 1 is satis�ed.For Property 2, consider an algorithm A that on input C and oracle access to D0K;�;�;K0 (which,as usual, we can view as access to (deterministic versions of) the three separate oracles EK;�,HomK , and BK;�), proceeds as follows: First, with k oracle queries to the EK;� oracle, A obtainsencryptions of each of the bits of �. Then, A uses the HomK oracle to do a gate-by-gate emulationof the computation of C(�), in which A obtains encryptions of the values at each gate of C. Inparticular, A obtains encryptions of the values at each output gate of C (on input �). It then feedsthese output encryptions to DK;�, and outputs the response to this oracle query. By construction,A outputs 1 i� C(�) = �.Finally, we verify Property 3. Let S be any PPT algorithm. We must show that S has onlya negligible probability of outputting � when given oracle access to D0K;�;�;K0 (over the choice ofK, �, �, K 0, and the coin tosses of S). By the pseudorandomness of fK0, we can replace oracleaccess to the function D0K;�;�;K0 with oracle access to the probabilistic algorithm DK;�;� with only anegligible e�ect on S's success probability. Oracle access to DK;�;� is equivalent to oracle access to14



EK;�, HomK , and BK;�. Since � is independent of � and K, the probability that S queries BK;� ata point where its value is nonzero (i.e., at a sequence of encryptions of the bits of �) is exponentiallysmall, so we can remove S's queries to BK;� with only a negligible e�ect on the success probability.Oracle access to EK;� is equivalent to giving S polynomially many encryptions of each of the bitsof �. Thus, we must argue that S cannot compute � with nonnegligible probability from theseencryptions and oracle access to HomK . This follows from the fact that the encryption schemeremains secure in the presence of a HomK oracle (Claim 3.7) and a hybrid argument.Now we can prove the impossibility of circuit obfuscators.Theorem 3.8 If one-way functions exist, then circuit obfuscators do not exist.Proof: Suppose, for sake of contradiction, that there exists a circuit obfuscator O. For k 2 Nand �; � 2 f0; 1gk , let Zk and C�;� be the circuits de�ned in the proof of Proposition 3.4, and letD�;� be the distribution on circuits given by Lemma 3.6. For each k 2 N, consider the followingtwo distributions on circuits of size poly(k):Fk: Choose � and � uniformly in f0; 1gk , D R D�;�. Output C�;�#D.Gk: Choose � and � uniformly in f0; 1gk , D R D�;� . Output Zk#D.Let A be the PPT algorithm guaranteed by Property 2 in Lemma 3.6, and consider a PPT A0which, on input a circuit F , decomposes F = F0#F1 and evaluates AF1(F0; 1k), where k is theinput length of F0. Thus, when fed a circuit from O(Fk) (resp., O(Gk)), A0 is evaluating AD(C; 1k)where D computes the same function as some circuit from D�;� and C computes the same functionas C�;� (resp., Zk). Therefore, by Property 2 in Lemma 3.6, we have:We now argue that for any PPT algorithm S���Pr hSFk(1k) = 1i� Pr hSGk(1k) = 1i��� � 2�
(k);which will contradict the de�nition of circuit obfuscators. Having oracle access to a circuit fromFk (respectively, Gk) is equivalent to having oracle access to C�;� (resp., Zk) and D R D�;�, where�; � are selected uniformly in f0; 1gk . Property 3 of Lemma 3.6 implies that the probability thatS queries the �rst oracle at � is negligible, and hence S cannot distinguish that oracle being C�;�from it being Zk.We can remove the assumption that one-way functions exist for e�cient circuit obfuscators viathe following (easy) lemma.Lemma 3.9 If e�cient obfuscators exist, then one-way functions exist.Proof Sketch: Suppose that O is an e�cient obfuscator as per De�nition 2.2. For � 2 f0; 1gkand b 2 f0; 1g, let C�;b : f0; 1gk ! f0; 1g be the circuit de�ned byC�;b(x) def= n b x = �0 otherwise.15



Now de�ne fk(�; b; r) def= O(C�;b; r), i.e. the obfuscation of C�;b using coin tosses r. We will arguethat f = Sk2N fk is a one-way function. Clearly fk can be evaluated in time poly(k). Since thebit b is information-theoretically determined by fk(�; b; r), to show that f is one-way it su�ces toshow that b is a hard-core bit of f . To prove this, we �rst observe that for any PPT S,Pr�;b hSC�;b(1k) = bi � 12 + neg(k):By the virtual black box property of O, it follows that for any PPT A,Pr�;b;r [A(f(�; b; r)) = b] = Pr�;b;r [A(O(C�;b; r)) = b] � 12 + neg(k):This demonstrates that b is indeed a hard-core bit of f , and hence that f is one-way. 2Corollary 3.10 E�cient circuit obfuscators do not exist (unconditionally).As stated above, our impossibility proof can be cast in terms of \unobfuscatable functions":Theorem 3.11 (unobfuscatable functions) If one-way functions exist, then there exists an un-obfuscatable function ensemble.Proof: Let Fk and Gk be the distributions on functions in the proof of Theorem 3.8,and let Hkbe the distribution that, with probability 1=2 outputs a sample of Fk and with probability 1=2outputs a sample of Gk. We claim that fHkgk2N is an unobfuscatable function ensemble.The fact that fHkgk2N is e�ciently computable is obvious. We de�ne �(f) to be 1 if f 2Sk Supp(Fk) and 0 otherwise (note that (Sk Supp(Fk)) \ (Sk Supp(Gk)) = ; and so �(f) = 0 forany f 2 Sk Supp(Gk)). The algorithm A0 given in the proof of Theorem 3.8 shows that �(f) canbe computed in polynomial time from any circuit computing f 2 Supp(Hk). Because oracle accessto Fk cannot be distinguished from oracle access to Gk (as shown in the proof of Theorem 3.8),it follows that �(f) cannot be computed from an oracle for f R Hk with probability noticeablygreater than 1=2.4 Extensions4.1 Totally unobfuscatable functionsSome of the extensions of our impossibility result require a somewhat stronger form of unobfus-catable functions, in which it is not only possible to compute �(f) from any circuit for f , buteven to recover the \original" circuit for f . This can be achieved by a slight modi�cation of ourconstruction. It will also be useful to extend the construction so that not only the one bit �(f) isunpredictable given oracle access to f , but rather that there are many bits of information aboutf which are completely pseudorandom. These properties are captured by the de�nition below. Inthis de�nition, it will be convenient to identify the functions f in our family with the canonicalcircuits that compute them.De�nition 4.1 A totally unobfuscatable function ensemble is an ensemble fHkgk2N of distribu-tions Hk on circuits (from, say, f0; 1glin(k) to f0; 1glout(k)) satisfying:� (e�cient computability) Every circuit f 2 Supp(Hk) is of size poly(k). Moreover, f R Supp(Hk) can be sampled uniformly in time poly(k).16



� (unobfuscatability) There exists a poly-time computable function � : Sk2N Supp(Hk)! f0; 1g�,such that1. �(f) is pseudorandom given black-box access to f : For any PPT S����� Prf R Hk[Sf (�(f)) = 1]� Prf R Hk;z R f0;1gk[Sf (z) = 1]����� � neg(k)2. f is easy to reconstruct given any other circuit for f : There exists a PPT A such thatfor any f 2 Sk Supp(Hk) and for any circuit C that computes the same function as fA(C) = f,Note that totally unobfuscatable functions imply unobfuscatable functions: given oracle access to atotally unobfuscatable f , pseudorandomness implies that the �rst bit of �(f) cannot be computedwith probability noticeably more than 1=2, and given any circuit for f , one can e�ciently �nd thecanonical circuit for f , from which one can compute �(f) (and in particular, its �rst bit).Theorem 4.2 (totally unobfuscatable functions) If one-way functions exist, then there existsa totally unobfuscatable function ensemble.Proof Sketch: The �rst step is to observe that the ensemble D�;� of Lemma 3.6 can be modi�edso that Property 2 instead says AD(C; 1k) = � if C(�) = � and AD(C; 1k) = 0k otherwise.(To achieve this, replace BK;� with B0K;�;� which outputs � when fed a sequence of ciphertexts(c1; : : : ; ck) whose decryptions are the bits of � and outputs 0k otherwise.)Now our totally unobfuscatable function ensemble Hk is de�ned as follows.Hk: Choose �; �;  uniformly in f0; 1gk , D R D�;�. Output C�;�#D#C�;(D;).(Above, C�;(D;) is the circuit which on input � outputs (D; ), and on all other inputs outputs0j(D;)j.)E�ciency is clearly satis�ed. For unobfuscatability, we de�ne �(C�;�#D#C�;(D;)) = . Let'sverify that  is pseudorandom given oracle access. As in the proof of Theorem 3.11, it follows fromProperty 3 of Lemma 3.6 that a PPT algorithm given oracle access to C�;�#D#C�;(D;). will onlyquery C�;(D;) with negligible probability and hence  is indistinguishable from uniform.Finally, let's show that given any circuit C 0 computing the same function as C�;�#D#C�;(D;),we can reconstruct the latter circuit. First, we can decompose C 0 = C1#D0#C2. SinceD0 computesthe same function as D and C1(�) = �, we have AD0(C1) = �, where A is the algorithm from (themodi�ed) Property 2 of Lemma 3.6. Given �, we can obtain � = C1(�) and (D; ) = C2(�), whichallows us to reconstruct C�;�#D#C�;(D;). 24.2 Approximate obfuscatorsOne of the most reasonable ways to weaken the de�nition of obfuscators, is to relax the conditionthat the obfuscated circuit must compute exactly the same function as the original circuit. Rather,we can allow the obfuscated circuit to only approximate the original circuit.17



We must be careful in de�ning \approximation". We do not want to lose the notion of anobfuscator as a general purpose scrambling algorithm and therefore we want a de�nition of approx-imation that will be strong enough to guarantee that the obfuscated circuit can still be used inthe place of the original circuit in any application. Consider the case of a signature veri�cationalgorithm VK . A polynomial-time algorithm cannot �nd an input on which VK does not output0 (without knowing the signature key). However, we clearly do not want this to mean that theconstant zero function is an approximation of VK .4.2.1 De�nition and Impossibility ResultIn order to avoid the above pitfalls we choose a de�nition of approximation that allows the obfus-cated circuit to deviate on a particular input from the original circuit only with negligible probabilityand allows this event to depend on only the coin tosses of the obfuscating algorithm (rather thanover the choice of a randomly chosen input).De�nition 4.3 For any function f : f0; 1gn ! f0; 1gk, � > 0, the random variable C is called an�-approximate implementation of f if the following holds:1. C ranges over circuits from f0; 1gn to f0; 1gk2. For any x 2 f0; 1gn , PrC [C(x) = f(x)] � 1� �We then de�ne a strongly unobfuscatable function ensemble to be an unobfuscatable functionensemble where the hard property �(f) can be computed not only from any circuit that computesf but also from any approximate implementation of f .De�nition 4.4 A strongly unobfuscatable function ensemble fHkgk2N is de�ned in the same wayas an unobfuscatable function ensemble, except that Part 2 of the \unobfuscatability" condition isreplaced with the following:2. �(f) is easy to compute with access to a circuit that approximates f : There exists a PPT Aand a polynomial p(�) such that for any f 2 Sn2N Supp(Hn) and for any random variable Cthat is an �-approximate implementation of fPr[A(C) = �(f)] � 1� � � p(n)Our main theorem in this section is the following:Theorem 4.5 If one-way functions exist, then there exists a strongly unobfuscatable function en-semble.Similarly to the way that Theorem 3.11 implies Theorem 3.8, Theorem 4.5 implies that, assum-ing the existence of one-way functions, an even weaker de�nition of circuit obfuscators (one thatallows the obfuscated circuit to only approximate the original circuit) is impossible to meet. Wenote that it some (but not all) applications of obfuscators, a weaker notion of approximation mightsu�ce. Speci�cally, in some cases it su�ces for the obfuscator to only approximately preservefunctionality with respect to a particular distribution on inputs, such as the uniform distribution.(This is implied, but apparently weaker, than the requirement of De�nition 4.3 | if C is an "-approximate implementation of f , then for for any �xed distribution D on inputs, C and f agree18



on a 1�p" fraction of D with probability at least 1�p".) We do not know whether approximateobfuscators with respect to this weaker notion exist, and leave it as an open problem.We shall prove this theorem in the following stages. First we will see why the proof of Theo-rem 3.11 does not apply directly to the case of approximate implementations. Then we shall de�nea construct called invoker-randomizable pseudorandom functions, which will help us modify theoriginal proof to hold in this case.4.2.2 Generalizing the Proof of Theorem 3.11 to the Approximate CaseThe �rst question is whether the proof of Theorem 3.11 already shows that the ensemble fHkgk2Nde�ned there is actually a strongly unobfuscatable function ensemble. As we explain below, theanswer is no.To see why, let us recall the de�nition of the ensemble fHkgk2N that is de�ned there and usesthe distributions Fk and Gk that are de�ned in the proof of Theorem 3.8. The distribution Hkis de�ned by taking an element from Fk or Gk, with probability 1=2 each. The distribution Fk isde�ned by choosing �; � R f0; 1gk , a function D R D�;� and outputting C�;�#D. Similarly, Gk isde�ned by choosing �; � R f0; 1gk , D R D�;� and outputting Zk#D. The property � is de�nedsimply to distinguish functions in Fk from those in Gk.That proof gave an algorithm A0 which computes �(f) given a circuit computing any functionf from H. Let us see why A0 might fail when given only an approximate implementation of f . Oninput a circuit F , A0 works as follows: It decomposes F into two circuits F = F1#F2. F2 is used onlyin a black-box manner, but the queries A0 makes to it depend on the gate structure of the circuitF1. The problem is that a vicious approximate implementation for a function C�;�#D 2 Supp(Fk)may work in the following way: choose a random circuit F1 out of some set C of exponentially manycircuits that compute C�;�, and take F2 that computes D. Then see at which points A0 queries F2when given F1#F2 as input.6 As these places depend on F1, it is possible that for each F1 2 C,there is a point x(F1) such that A0 will query F2 at the point x(F1), but x(F1) 6= x(F 01) for anyF 01 2 C n fF1g. If the approximate implementation changes the value of F2 at x(F1), then A0'scomputation on F1#F2 is corrupted.One way to solve this problem would be to make the queries that A0 makes to F2 independentof the structure of F1. If A0 had this property, then given an �-approximate implementation ofC�;�#D, each query of A0 would have only an � chance to get an incorrect answer and overall A0would succeed with probability 1 � � � p(k) for some polynomial p(�). (Note that the probabilitythat F1(�) changes is at most �.)We will not be able to achieve this, but something slightly weaker that still su�ces. Let's lookmore closely at the structure of D�;� which is de�ned in the proof of Lemma 3.6. We de�ned therethe algorithm DK;�;� def= EK;�#HomK#BK;�and turned it into a deterministic function by using a pseudorandom function f 0K and de�ningD0K;�;�;K0 to be the deterministic algorithm that on input x 2 f0; 1gq evaluates DK;�;�(x) usingrandomness fK0(x). We then de�ned D�;� to be D0K;�;�;K0 = E0K;�;K0#Hom0K;K0#BK;� for uni-formly selected private key K and seed K 0.Now our algorithm A0 (that uses the algorithm A de�ned in Lemma 3.6) treats F2 as threeoracles: E, H, and B , where if F2 computes D = E0K;�;K0#Hom0K;K0#BK;� then E is the oracle6Recall that A0 is not some given algorithm that we must treat as a black-box but rather a speci�c algorithm thatwe de�ned ourselves. 19



to E0K;�;K0, H is the oracle to Hom0K;K0 and B is the oracle to BK;�. The queries to E are at theplaces 1; : : : ; k and so are independent of the structure of F1. The queries that A makes to the Horacle, however, do depend on the structure of F1.Recall that any query A0 makes to the H oracle are of the form (c; d;�) where c and d areciphertexts of some bits, and � is a 4-bit description of a binary boolean function. Just formotivation, suppose that A0 has the following ability: given an encryption c, A0 can generate arandom encryption of the same bit (i.e., distributed according to EncK(DecK(c); r) for uniformlyselected r). For instance, this would be true if the encryption scheme were \random self-reducible."Suppose now that, before querying the H oracle with (c; d;�), A0 generates c0; d0 that are randomencryptions of the same bits as c; d and query the oracle with (c0; d0;�) instead. We claim thatif F2 is an �-approximate implementation of D, then for any such query, there is at most a 64�probability for the answer to be wrong even if (c; d;�) depend on the circuit F . The reason is thatthe distribution of the modi�ed query (c0; d0;�) depends only on (DecK(c);DecK(d);�), and thereare only 2 � 2 � 24 = 64 possibilities for the latter. For each of the 64 possibilities, the probabilityof an incorrect answer (over the choice of F ) is at most �. Choosing (DecK(c);DecK(d);�) after Fto maximize the probability of an incorrect answer multiplies this probability by at most 64.We shall now use this motivation to �x the function D so that A0 will essentially have thisdesired ability of randomly self-reducing any encryption to a random encryption of the same bit.Recall that Hom0K;K0(c; d;�) = EncK(DecK(c) �DecK(d); fK0(c; d;�)). Now, a naive approach toensure that any query returns a random encryption of DecK(c)�DecK(d) would be to change thede�nition of Hom0 to the following: Hom0K;K0(c; d;�; r) = EncK(DecK(c) � DecK(d); r). Then wechange A0 to an algorithm A00 that chooses a uniform r 2 f0; 1gn and thereby ensures that theresult is a random encryption of DecK(c)�DecK(d). The problem is that this construction wouldno longer satisfy Property 3 of Lemma 3.6 (security against a simulator with oracle access). Thisis because the simulator could now control the random coins of the encryption scheme and use thisto break it. Our solution will be to rede�ne Hom0 in the following way:Hom0K;K0(c; d;�; r) = EncK(DecK(c)�DecK(d); fK0(c; d;�; r))but require an additional special property from the pseudorandom function fK0 .4.2.3 Invoker-Randomizable Pseudorandom FunctionsThe property we would like the pseudorandom function fK0 to possess is the following:De�nition 4.6 A function ensemble ffK0gK02f0;1g� (fK0 : f0; 1gq+n ! f0; 1gn , n ,q polynomiallyrelated to jK 0j) is called an invoker-randomizable pseudorandom function ensemble if the followingholds:1. ffK0gK02f0;1g� is a pseudorandom function ensemble2. For any x 2 f0; 1gq , if r is chosen uniformly in f0; 1gn then fK0(x; r) is distributed uniformly(and so independently of x) in f0; 1gn.Fortunately, we can prove the following lemma:Lemma 4.7 If pseudorandom functions exist then there exist invoker-randomizable pseudorandomfunctions. 20



Proof Sketch: Suppose that fgK0gK02f0;1g� is a pseudorandom function ensemble and thatfpSgS2f0;1g� is a pseudorandom function ensemble in which for any S 2 f0; 1g� , pS is a permutation(the existence of such ensembles is implied by the existence of ordinary pseudorandom functionensembles [LR88]).We de�ne the function ensemble ffK0gK02f0;1g� in the following way:fK0(x; r) def= pgK0(x)(r)It is clear that this ensemble satis�es Property 2 of De�nition 4.6 as for any x, the functionr 7! fK0(x; r) is a permutation.What needs to be shown is that it is a pseudorandom function ensemble. We do this by showingthat for any PPT D, the following probabilities are identical up to a negligible factor.1. PrK0[DfK0 (1k) = 1] (where k = jK 0j).2. PrG[D(x;R)7!pG(x)(R)(1k) = 1], where G is a true random function.3. PrP1;:::;Pt [DP1;:::;Pt(1k) = 1], where t = t(k) is a bound on the number of queries that D makesand each time D makes a query with a new value of x we use a new random function Pi.(This requires a hybrid argument).4. PrF [DF (1k) = 1], where F is a truly random function. 24.2.4 Finishing the Proof of Theorem 4.5Now, suppose we use a pseudorandom function fK0 that is invoker-randomizable, and modify thealgorithm A0 so that all its queries (c; d;�) to the H oracle are augmented to be of the form(c; d;�; r), where r is chosen uniformly and independently for each query. Then the result of eachsuch query is a random encryption of DecK(c)�DecK(d). Therefore, as argued above, A0 never getsa wrong answer from the H oracle with probability at least 1� p(k) � �, for some polynomial p(�).Indeed, this holds because aside from the �rst queries which are �xed and therefore independentof the gate structure of F1, all other queries are of the form (c; d;�; r) where c and d are uniformlydistributed and independent encryptions of some bits a and b, and r is uniformly distributed. Only(a; b;�) depend on the gate structure of F1, and there are only 64 possibilities for them. AssumingA0 never gets an incorrect answer from the H oracle, its last query to the B oracle will be auniformly distributed encryption of �1; : : : ; �k, which is independent of the structure of F1, and sohas only an � probability to be incorrect. This completes the proof.One point to note is that we have converted our deterministic algorithm A0 of Theorem 3.11into a probabilistic algorithm.4.3 Impossibility of the applicationsSo far, we have only proved impossibility of some natural and arguably minimalistic de�nitions forobfuscation. Yet it might seem that there's still hope for a di�erent de�nition of obfuscation, onethat will not be impossible to meet but would still be useful for some intended applications. We'llshow now that this is not the case for many of the applications we described in the introduction.Rather, any de�nition of obfuscator that would be strong enough to provide them, will be impossibleto meet. 21



Note that we do not prove that the applications themselves are impossible to meet, but ratherthat there does not exist an obfuscator7 that can be used to achieve them in the ways that aredescribed in Section 1.1. Our results in the section also extend to approximate obfuscators.Consider, for example, the application to transforming private-key encryption to public-keyones. The circuit fEk in the following de�nition can be viewed as an encryption-key in the corre-sponding public-key encryption scheme.De�nition 4.8 A private-key encryption scheme (G;E;D) is called unobfuscatable if there existsa PPT A such that PrK R G(1k)[A(gEK) = K] � 1� neg(k)where gEK is any circuit that computes the encryption function with private key K.Note that an unobfuscatable encryption scheme is unobfuscatable in a very strong sense. Anadversary is able to completely break the system given any circuit that computes the encryptionalgorithm.We prove in Theorem 4.12 that if encryption schemes exist, then so do unobfuscatable encryp-tion schemes that satisfy the same security requirements.8 This means that any de�nition of anobfuscators that will be strong enough to allow the conversion of private-key encryption schemesinto public-key encryption schemes mentioned in Section 1.1, would be impossible to meet (becausethere exist unobfuscatable encryption schemes).9We present analogous de�nitions for unobfuscatable signature schemes, MACs, and pseudoran-dom functions.De�nition 4.9 A signature scheme (G;S; V ) is called unobfuscatable if there exists a PPT A suchthat Pr(SK ;VK ) R G(1k)[A(gSSK ) = SK ] � 1� neg(k)where gSSK is any circuit which computes the signature function with signing key SK .De�nition 4.10 A message authentication scheme (G;S; V ) is called unobfuscatable if there existsa PPT A such that PrK R G(1k)[A(fSK) = K] � 1� neg(k)where fSK is any circuit which computes the tagging function with tagging key K.De�nition 4.11 A pseudorandom function ensemble fhKgK2f0;1g� is called unobfuscatable if thereexists a p.p.t A such that PrK R f0;1gk[A(gHK) = K] � 1� neg(k)7By this, we mean any algorithm that satis�es the syntactic requirements of De�nition 2.2 (functionality andpolynomial slowdown).8Recall that, for simplicity, we only consider deterministic encryption schemes here and relaxed notions of securitythat are consistent with them (cf., Footnote 2).9Of course, this does not mean that public-key encryption schemes do not exist, nor that there do not existprivate-key encryption schemes where one can give the adversary a circuit that computes the encryption algorithmwithout loss of security (indeed, any public-key encryption scheme is in particular such a private-key encryption).What this means is that there exists no general purpose way to transform a private key encryption scheme into apublic key encryption by obfuscating the encryption algorithm.22



where gHK is any circuit that computes hK .One implication of the existence of unobfuscatable pseudorandom function ensembles is thatfor many natural protocols that are secure in the random oracle model (such as the Fiat{Shamirauthentication protocol [FS87]), one can �nd a pseudorandom function ensemble fhkgk2f0;1g� suchthat if the random oracle is replaced with any circuit that computes hk, the protocol would not besecure.Theorem 4.12 1. If signature schemes exist, then so do unobfuscatable signature schemes.2. If private-key encryption schemes exist, then so do unobfuscatable encryption schemes.3. If pseudorandom function ensembles exist, then so do unobfuscatable pseudorandom functionensembles.4. If message authentication schemes exist, then so do unobfuscatable message authenticationschemes.Proof Sketch: First note that the existence of any one of these primitives implies the existenceof one-way functions [IL89]. Therefore, Theorem 4.2 gives us a totally unobfuscatable functionensemble H = fHkg.Now, we shall sketch the construction of the unobfuscatable signature scheme. All other con-structions are similar. Take an existing signature scheme (G;S; V ) (where G is the key generationalgorithm, S the signing algorithm, and V the veri�cation algorithm). De�ne the new scheme(G0; S0; V 0) as follows:The generator G0 on input 1k uses the generator G to generate signing and verifying keys(SK ;VK ) R G(1k). It then samples a circuit f R H`, where ` = jSK j. The new signing key SK 0is (SK ; f) while the veri�cation key VK 0 is the same as VK .We can now de�ne S0SK ;f(m) def= (SSK (m); f(m);SK � �(f));where � is the function from the unobfuscatability condition in De�nition 4.1.V 0VK (m; (�; x)) def= VVK (m; �)We claim that (G0; S0; V 0) is an unobfuscatable, yet secure, signature scheme. Clearly, given anycircuit that computes S0SK ;f , one can obtain SK � �(f) and a circuit that computes the samefunction as f . Possession of the latter enables one to reconstruct the original circuit f itself, fromwhich �(f) and then SK can be computed.To see that scheme (G0; S0; V 0) retains the security of the scheme (G;S; V ), observe that beinggiven oracle access to S0SK ;f is equivalent to being given oracle access to SSK and f , along withbeing given the string �(f) � SK . Using the facts that �(f) is indistinguishable from randomgiven oracle access to f and that f is chosen independently of SK , it can be easily shown that thepresence of f and �(f)� SK does not help an adversary break the signature scheme.The construction of an unobfuscatable encryption scheme and pseudorandom function ensembleis similar. The only detail is that when we construct the pseudorandom function ensemble, we needto observe that Theorem 4.2 can be modi�ed to give H which is also a family of pseudorandomfunctions. (To do this, all places where the functions f in H were de�ned to be zero should insteadbe replaced with values of a pseudorandom function.) 223



4.4 Obfuscating restricted circuit classesGiven our impossibility results for obfuscating general circuits, one may ask whether it is easier toobfuscate computationally restricted classes of circuits. Here we argue that this is unlikely for allbut very weak models of computation.Theorem 4.13 If factoring Blum integers is \hard"10 then there is a family Hk of unobfuscatablefunctions such that every f R Hk is computable by a constant-depth threshold circuit of size poly(k)(i.e., in TC0).Proof Sketch: Naor and Reingold [NR97] showed that under the stated assumptions, there existsa family of pseudorandom functions computable in TC0. Thus, we simply need to check that wecan build our unobfuscatable functions from such a family without a substantial increase in depth.Recall that the unobfuscatable function ensemble Hk constructed in the proof of Theorem 3.11consists of functions of the form C�;�#D or Zk#D, where D is from the family D�;� of Lemma 3.6.It is easy to see that C�;� and Zk are in TC0, so we only need to check that D�;� consistsof circuits in TC0. The computational complexity of circuits in the family D�;� is dominatedby performing encryptions and decryptions in a private-key encryption scheme (Enc;Dec) andevaluating a pseudorandom function fK0 which is used to derandomize the probabilistic circuitDK;�;�. If we use the Naor{Reingold pseudorandom functions both for fK0 and to construct theencryption scheme (in the usual way, setting EncK(b) = (r; fK(r) � b)), then the resulting circuitis in TC0. 24.5 RelativizationIn this section, we discuss whether our results relativize. To do this, we must clarify the de�nitionof an obfuscator relative to an oracle F : f0; 1g� ! f0; 1g�. What we mean is that all algorithms inthe de�nition, including the one being obfuscated and including the adversary, have oracle accessto F . For a circuit, this means that the circuit can have gates for evaluating F . We �x an encodingof (oracle) circuits as binary strings such that a circuit described by a string of length s can onlymake oracle queries of total length at most s.By inspection, our initial (easy) impossibility results hold relative to any oracle, as the involveonly simulation and diagonalization.Proposition 4.14 Proposition 3.4 (impossibility of 2-circuit obfuscators) and Theorem 3.5 (im-possibility of TM obfuscators) hold relative to any oracle.Interestingly, however, our main impossibility results do not relativize.Proposition 4.15 There is an oracle relative to which e�cient circuit obfuscators exist. Thus,Theorem 3.8,3.11, and Corollary 3.10 do not relativize.This can be viewed both as evidence that these results are nontrivial, and as (further) evidencethat relativization is not a good indication of what we can prove.10This result is also implied if the Decisional Di�e{Hellman problem is \hard"; see [NR97] for precise statementsof these assumptions.
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Proof Sketch: The oracle F = Sk Fk will consist of two parts Fk = Ok#Ek, where Ok :f0; 1gk�f0; 1gk ! f0; 1g6k , and Ek : f0; 1g6k�f0; 1gk ! f0; 1gk . Ok is simply a uniformly randominjective function of the given parameters. Ek(x; y) is de�ned as follows: If there exists a (C; r)such that Ok(C; r) = x, then Ek(x; y) = CF (y) (where C is viewed as the description of a circuit).Otherwise, Ek(x; y) = ?. Note that this de�nition of Fk is not circular, because C can only makeoracle queries of size at most jCj = k, and hence can only query Fk0 for k0 � k=2.Now we can view x = Ok(C; r) as an obfuscation of C using coin tosses r. This satis�esthe syntactic requirements of obfuscation, since jxj = O(jCj) and the Ek allows one to e�cientlyevaluate C(y) given just x and y. (Technically, we should de�ne the obfuscation of C to be a circuitwhich has x hardwired in and makes an oracle query to Ek.)So we only need to prove the virtual black-box property. By a union bound over polynomial-time adversaries A of description size smaller than k=2 and circuits C of size k, it su�ces to provethe following claim.11Claim 4.16 For every PPT A there exists a PPT S such that for every circuit C of size k, thefollowing holds with probability at least 1� 2�2k over F :����� Prr R f0;1gk �AF (Ok(C; r)) = 1�� Pr hSF;C(1k) = 1i����� � 2�
(k)Fix a PPT A. We de�ne the simulator S as follows. SF;C(1k) chooses x R f0; 1g6k and simulatesAF (x), using its own F -oracle to answer A's oracle queries, except A's queries to Ek0 for k0 � k.On A's query (x0; y0) to Ek0 , S feeds A the response z computed as follows:1. If x0 = x, then set z = C(y0) (computed using oracle access to C).2. Else if x0 = Ok0(C 0; r0) for some previous query (C 0; r0) to the Ok0-oracle, then set z =(C 0)F (y0) (computed recursively using these same rules).3. Else set z = ?.From the fact that a circuit of size s can only make oracle queries of total length s, it follows thatthe recursive evaluation of (C 0)F (y) only incurs a polynomial overhead in running time. Also notethat S never queries the Ek0 oracle for k0 � k.Let us denote the execution of the above simulation for a particular x by SF;C(x). Notice thatwhen x = Ok(C; r) for some r, then SF;C(x) and AF (x) have exactly the same behavior unlessthe above simulation produces some query (x0; y0) such that x0 2 Image(Ok0), x0 6= x, and x0 wasnot obtained by a previous query to Ok0 . Since O is a random length-tripling function, it followsthat the latter happens with probability at most poly(k) � 22k=26k, taken over the choice of F anda random r (recall that x = Ok(C; r)).12 Thus, with probability at least 1 � 2�3k over the choiceof F , SF;C(Ok(C; r)) = AF (Ok(C; r)) for all but a 2�
(k) fraction of r's.Thus, proving Claim 4.16 reduces to showing that:����� Prr R f0;1gk �SF;C(Ok(C; r)) = 1�� PrxR f0;1g6k �SF;C(x) = 1������ � 2�
(k)11Note that we are only proving the virtual black-box property against adversaries of \bounded nonuniformity,"which in particular includes all uniform PPT adversaries. Presumably it can also be proven against nonuniformadversaries, but we stick to uniform adversaries for simplicity.12Technically, this probability (and later ones in the proof) should also be taken over the coin tosses of A/S.25



with high probability (say, 1� 23k) over the choice of F .In other words, we need to show that the function G(r)def=Ok(C; r) is a pseudorandom generatoragainst S. Since G is a random function from f0; 1gk ! f0; 1g6k , this would be obvious were it notfor the fact that S has oracle access to F (which is correlated with G). Recall, however, that wemade sure that S does not query the Ek0-oracle for any k0 � k. This enables us to use the followinglemma, proven in Appendix B.Lemma 4.17 There is a constant � > 0 such that the following holds for all su�ciently large Kand any L � K2. Let D be an algorithm that makes at most K� oracle queries and let G be arandom injective function G : [K]! [L]. Then with probability at least 1� 2�K� over G,���� Prx2[K] �DG(G(x)) = 1�� Pry2[L] �DG(y) = 1����� � 1K� :Let us see how Lemma 4.17 implies what we want. Let K = 2k and associate [K] with f0; 1gk .We �x all values of Ok0 for all k0 6= k and Ek0 for all k0 < k. We also �x the values of Ok(C 0; r) forall C 0 6= C, and view G(r) def= Ok(C; r) as a random injective function from [K] to the remainingL = K6�(K�1)�K elements of f0; 1g6k . The only oracle queries of S that vary with the choice of Gare queries to Ok at points of the form (C; r), which is equivalent to queries to G. Thus, Lemma 4.17implies that the output of G is indistinguishable from the uniform distribution on some subset off0; 1g6k of size L. Since the latter has statistical di�erence (K6�L)=K6 < 1=K4 from the uniformdistribution on f0; 1g6k , we conclude that G is "-pseudorandom (for " = 1=K� + 1=K4 = 2�
(k))against S with probability at least 1� 2�K� > 1� 2�3k, as desired. 2While our result does not relativize in the usual sense, the proof does work for a slightlydi�erent form of relativization, which we refer to as bounded relativization (and is how the RandomOracle Model is sometimes interpreted in cryptography.) In bounded relativization, an oracle isa �nite function with �xed input length (polynomially related to the security parameter k), andall algorithms/circuits in the protocol can have running time larger than this length (but stillpolynomial in k). In particular, in the context of obfuscation, this means that the circuit to beobfuscated can have size polynomial in this length.Proposition 4.18 Theorems 3.11 and 3.8 (one-way functions imply unobfuscatable functions andimpossibility of circuit obfuscators), and Corollary 3.10 (unconditional impossibility of e�cientcircuit obfuscators) hold under bounded relativization (for any oracle).Proof Sketch: The only modi�cation needed in the construction is to deal with oracle gatesin the Hom algorithm in the proof of Lemma 3.6. Let's call say the oracle F has input length` and output length 1 (without loss of generality). We augment the HomK to also take inputsof the form (c1; : : : ; c`; oracle) (where (c1; : : : ; c`) are ciphertexts), on which it naturally outputsEncK(F (DecK(c1);DecK(c2); : : : ;DecK(c`))). The rest of the proof proceeds essentially unchanged.25 On a Complexity Analogue of Rice's TheoremRice's Theorem asserts that the only properties of partial recursive functions that can be decidedfrom their representations as Turing machines are trivial. To state this precisely, we denote by [M ]the (possibly partial) function that the Turing Machine M computes. Similarly, for [C] denotes thefunction computed by a circuit C. 26



Rice's Theorem Let L � f0; 1g� be a language such that for any M;M 0 , [M ] � [M 0] impliesthat M 2 L () M 0 2 L. If L is decidable, then L is trivial in the sense that either L = f0; 1g�or L = ;.The di�culty of problems such as SAT suggest that perhaps Rice's theorem can be \scaled-down" and that deciding properties of �nite functions from their descriptions as circuits is in-tractable.Simply replacing the word \Turing machine" with \circuit" and \decidable" with \polynomialtime" does not work. A counterexample is the language L = fC 2 f0; 1g� j C(0) = 0g that canbe decided in polynomial time, even though [C] � [C 0] implies (C 2 L () C 0 2 L), and bothL 6= f0; 1g� and L 6= ;. Yet, there is a sense in which L is trivial | to decide whether C 2 Le�ciently one does not need to use C itself, but rather one can do with oracle access to C only.This motivates the following conjecture:Conjecture 5.1 (Scaled-down Rice's Theorem) Let L � f0; 1g� be a language such that forcircuits C;C 0, [C] � [C 0] implies that C 2 L () C 0 2 L. If L 2 BPP, then L is trivial in thesense that there exists a PPT S such thatC 2 L) Pr[S[C](1jCj) = 1] > 23C 62 L) Pr[S[C](1jCj) = 0] > 23We now consider a generalization of this conjecture to promise problems [ESY84], i.e., decisionproblems restricted to some subset of strings. Formally, a promise problem � is a pair � = (�Y ;�N )of disjoint sets of strings, corresponding to yes and no instances, respectively. The generalizationof Conjecture 5.1 we seek is the following, where BPP is the generalization of BPP to promiseproblems:Conjecture 5.2 Let � = (�Y ;�N ) be a promise problem such that for circuits C;C 0, [C] � [C 0]implies that both C 2 �Y () C 0 2 �Y and C 2 �N () C 0 2 �N . If � 2 BPP, then � istrivial in the sense that there exists a PPT S such thatC 2 �Y ) Pr[S[C](1jCj) = 1] > 23C 2 �N ) Pr[S[C](1jCj) = 0] > 23Our construction of unobfuscatable functions implies that the latter conjecture is false.Theorem 5.3 If one-way functions exist, then Conjecture 5.2 is false.Proof Sketch: Let H = fHkgk2N be the unobfuscatable function ensemble given by Theo-rem 3.11, and let � : Sk Supp(Hk) ! f0; 1g be the property guaranteed by the unobfuscatabilitycondition.Consider the following promise problem � = (�Y ;�N ):�Y = (C : [C] 2[k Supp(Hk) and �([C]) = 1)�N = (C : [C] 2[k Supp(Hk) and �([C]) = 0)27



� 2 BPP because �(f) is easy to compute with access to a circuit that computes f . But since�(f) is hard to compute with black-box access to f , no S satisfying Conjecture 5.2 can exist. 2It is an interesting problem to weaken or even remove the hypothesis that one-way functionsexist. Reasons to believe that this may be possible are: 1. The conjecture is only about worst casecomplexity and not average case, and 2. The conjectures imply some sort of computational di�culty.For instance, if NP � BPP then both conjectures are false, as Circuit Satisfiability is notdecidable using black-box access. (Using black-box access, one cannot distinguish a circuit that issatis�ed on exactly one randomly chosen input from an unsatis�able circuit.) So if we could weakenthe hypothesis of Theorem 5.3 to NP 6� BPP, Conjecture 5.2 would be false unconditionally.We have shown that in the context of complexity, the generalization of Scaled-down Rice'sTheorem (Conjecture 5.1) to promise problems (i.e., Conjecture 5.2) fails. When trying to �nd outwhat this implies about Conjecture 5.1 itself, one might try to get intuition from what happensin the context of computability. This direction is pursued in Appendix A. It turns out that theresults in this context are inconclusive. We explore three ways to generalize Rice's Theorem topromise problems. The �rst, naive approach fails, and there are two non-naive generalizations, ofwhich one succeeds and one fails.What do our results say about the claim \the best thing you can do with a circuit/program isrun it"? To answer this question, we must �rst interpret this sentence in a more formal way. Theinterpretation we suggest is \deciding any non-trivial semantic property of circuits is intractable"where \nontrivial" is de�ned above and by \semantic property" we mean a property of the functionthat the circuit computes, rather than a property of the particular circuit. This interpretation isexpressed in Conjectures 5.1 and 5.2.Since we haven't disproved Conjecture 5.1, how can we say that obfuscation is impossible? Theanswer is that obfuscation needs much more than Conjecture 5.1. Informally, Conjecture 5.1 onlysays that for every nontrivial property (i.e., one which cannot be decided with oracle access), thereexist circuits from which it is hard to decide the property. Obfuscation, on the other hand, requiresthat for every nontrivial property and every function f (for which the property is hard to decidegiven oracle access), there exist circuits that compute the function f from which it is hard to decidethe property. Still, it may be within reach to also disprove Conjecture 5.1, and we leave this as anopen problem.6 Obfuscating Sampling AlgorithmsIn our investigation of obfuscators thus far, we have interpreted the \functionality" of a program asbeing the function it computes. However, sometimes one is interested in other aspects of a program'sbehavior, and in such cases a corresponding change should be made to the de�nition of obfuscators.In this section, we consider programs that are sampling algorithms, i.e. are probabilistic algorithmsthat take no input (other than possibly a length parameter), and produce an output according tosome desired distribution.For simplicity, we only work with sampling algorithms given by circuits | a circuit C with minput gates and n output gates can be viewed as a sampling algorithm for the distribution hhCii onf0; 1gn obtained by evaluating C on m uniform and independent random bits. If A is an algorithmand C is a circuit, we write AhhCii to indicate that A has sampling access to C. That is, A canobtain, on request, independent and uniform random samples from the distribution de�ned by C.The natural analogue of the de�nition of circuit obfuscators to sampling algorithms follows.28



De�nition 6.1 (sampling obfuscator) A probabilistic algorithm O is a sampling obfuscator if,for some polynomial p, the following three conditions hold:� (functionality) For every circuit C, O(C) is a circuit that samples the same distribution asC.� (polynomial slowdown) There is a polynomial p such that for every circuit C, jO(C)j � p(jCj).� (\virtual black box" property) For any PPT A, there is a PPT S and a negligible function �such that for all circuits C���Pr [A(O(C)) = 1]� Pr hShhCii(1jCj) = 1i��� � �(jCj):We say that O is e�cient if it runs in polynomial time.We do not know whether this de�nition is impossible to meet, but we can rule out the following(seemingly) stronger de�nition.De�nition 6.2 (strong sampling obfuscator) A strong sampling obfuscator is de�ned in thesame way as a sampling obfuscator, expect that the \virtual black box" property is replaced with thefollowing.� (\virtual black box" property) For any PPT A, there is a PPT S such that the ensemblesfA(O(C))gC and fShhCii(1jCj)gC are computationally indistinguishable. That is, for everyPPT D, there is a negligible function � such that���Pr [D(C;A(O(C))) = 1]� Pr hD(C;ShhCii(1jCj)) = 1i��� � �(jCj):Proposition 6.3 If one-way functions exist, then strong sampling obfuscators do not exist.Proof Sketch: If one-way functions exist, then there exist message authentication codes (MACs)that are existentially unforgeable under chosen message attack. Let TagK denote the tagging (i.e.,signing) algorithm for such a MAC with key K, and de�ne a circuit CK(x) = (x;TagK(x)). Thatis, the distribution sampled by CK is simply a random message together with its tag. Now supposethere exists a sampling obfuscator O, and consider the PPT adversary A de�ned by A(C) = C. Bythe de�nition of a sampling obfuscator, there exists a PPT simulator S which, when giving samplingaccess to hhCKii, produces an output computationally indistinguishable from A(O(CK)) = O(CK).That is, after receiving the tags of polynomially many random messages, S produces a circuit whichis indistinguishable from one which generates random messages with its tags. This will contradictthe security of the MAC.Let q = q(jKj) be a polynomial bound on the number of samples received from hhCKii obtainedby S, and consider a distinguisher D which does the following on input (CK ; C 0): Recover the keyK from CK . Obtain q + 1 random samples (x1; y1); : : : ; (xq+1; yq+1) from C 0. Output 1 if the xi'sare all distinct and yi = TagK(xi) for all i.Clearly, D outputs 1 with high probability on input (CK ; A(O(CK))). (The only reason itmight fail to output 1 is that the xi's might not all be distinct, which happens with exponentiallysmall probability.) On the other hand, the security of the MAC implies that D outputs 1 withnegligible probability on input (CK ; ShhCK ii(1jKj)) (over the choice of K and the coin tosses of allalgorithms). The reason is that, whenever D outputs 1, the circuit output by S has generated avalid message-tag pair not received from the hhCKii-oracle. 229



For sampling obfuscators in the sense of De�nition 6.1, we do not know how to prove impos-sibility. Interestingly, we can show that they imply the nontriviality of SZK, the class of promiseproblems possessing statistical zero-knowledge proofs.Proposition 6.4 If e�cient sampling obfuscators exist, then SZK 6= BPP.Proof: It is known that the following promise problem � = (�Y ;�N ) is in SZK [SV97] (and infact has a noninteractive perfect zero-knowledge proof system [DDPY98, GSV99]):�Y = fC : hhCii = Ung�N = fC : jSupp(C)j � 2n=2g;where n denotes the output length of the circuit C and Un is the uniform distribution on f0; 1gn.Now suppose that an e�cient sampling obfuscator O exists. Since, analogous to Lemma 3.9,such obfuscators imply the existence of one-way functions, there also exists a length-doublingpseudorandom generator G [HILL99]. Let Gn : f0; 1gn=2 ! f0; 1gn denote the circuit that evaluatesG on inputs of length n=2.Now, by the de�nition of pseudorandom generators and a hybrid argument, sampling accessto hhGnii is indistinguishable from sampling access to Un. Thus, by the de�nition of a samplingobfuscator, O(Gn) is computationally indistinguishable from O(Un), where by Un we mean thetrivial circuit that samples uniformly from Un. By functionality, O(Un) is always a yes instance of� and O(Gn) is always a no instance. It follows that � =2 BPP.Remark 6.5 By using Statistical Difference, the complete problem for SZK from [SV97],in place of the promise problem �, the above proposition can be extended to the natural de�nitionof approximate sampling obfuscators, in which O(C) only needs to sample a distribution of smallstatistical di�erence from that of C.7 Weaker Notions of ObfuscationOur impossibility results rule out the standard, \virtual black box" notion of obfuscators as impos-sible, along with several of its applications. However, it does not mean that there is no method ofmaking programs \unintelligible" in some meaningful and precise sense. Such a method could stillprove useful for software protection. In this section, we suggest two weaker de�nitions of obfusca-tors that avoid the \virtual black box" paradigm (and hence are not ruled out by our impossibilityproof).The weaker de�nition asks that if two circuits compute the same function, then their obfusca-tions should be indistinguishable. For simplicity, we only consider the circuit version here.De�nition 7.1 (indistinguishability obfuscator) An indistinguishability obfuscator is de�nedin the same way as a circuit obfuscator, except that the \virtual black box" property is replaced withthe following:� (indistinguishability) For any PPT A, there is a negligible function � such that for any twocircuits C1; C2 which compute the same function and are of the same size k,jPr [A(O(C1))]� Pr [A(O(C2))]j � �(k):Some (very slight) hope that this de�nition is achievable comes from the following observation.30



Proposition 7.2 (Ine�cient) indistinguishability obfuscators exist.Proof: Let O(C) be the lexicographically �rst circuit of size jCj that computes the same functionas C.While it would be very interesting to construct even indistinguishability obfuscators, their use-fulness is limited by the fact that they provide no a priori guarantees about obfuscations of circuitsC1 and C2 that compute di�erent functions. However, it turns out that, if O is e�cient, then it is\competitive" with respect to any pair of circuits. That is, we will show that no e�cient O0 makesC1 and C2 much more indistinguishable than O does. Intuitively, this will say that an indistin-guishability obfuscator is \as good" as any other obfuscator that exists. For example, it will implythat if \di�ering-input obfuscators" (as we will de�ne later) exist, then any indistinguishabilityobfuscator is essentially also a di�ering-input obfuscator.To state this precisely, for a circuit C of size at most k, we de�ne Padk(C) to be a trivial paddingof C to size k. Feeding Padk(C) instead of C to an obfuscator can be thought of as increasing the\security parameter" from jCj to k. (We chose not to explicitly introduce a security parameter intothe de�nition of obfuscators to avoid the extra notation.) For the proof, we also need to impose atechnical, but natural, constraint that the size of O0(C) only depends on the size of C.Proposition 7.3 Suppose O is an e�cient indistinguishability obfuscator. Let O0 be any algorithmsatisfying the syntactic requirements of obfuscation, also satisfying the condition that jO0(C)j =q(jCj) for some �xed polynomial q. Then for any PPT A, there exists a PPT A0 and a negligiblefunction � such that for all circuits C1, C2 of size k,��Pr �A(O(Padq(k)(C1)) = 1�� Pr �A(O(Padq(k)(C2)) = 1���� ��Pr �A0(O0(C1)) = 1�� Pr �A0(O0(C2)) = 1���+ �(k):Proof: De�ne A0(C) def= A(O(C)). Then, for any circuit Ci of size k, we have��Pr �A(O(Padq(k)(Ci))) = 1�� Pr �A0(O0(Ci)) = 1���= ��Pr �A(O(Padq(k)(Ci))) = 1�� Pr �A(O(O0(Ci))) = 1���� neg(q(k)) = neg(k);where the inequality is because Padq(k)(Ci) and O0(Ci) are two circuits of size q(k) which computethe same function and because O is an indistinguishability obfuscator. Thus,��Pr �A(O(Padq(k)(C1)) = 1�� Pr �A(O(Padq(k)(C2))) = 1���� ��Pr �A(O(Padq(k)(C1)) = 1�� Pr �A0(O0(C1)) = 1���+ ��Pr �A0(O0(C1)) = 1�� Pr �A0(O0(C2)) = 1���+ ��Pr �A0(O0(C2)) = 1�� Pr �A(O(Padq(k)(C2))) = 1���� neg(k) + ��Pr �A0(O0(C1)) = 1�� Pr �A0(O0(C2)) = 1���+ neg(k):Even with the competitiveness property, it still seems important to have explicit guarantees on thebehavior of an obfuscator on circuits that compute di�erent functions. We now give a de�nitionthat provides such a guarantee, while still avoiding the \virtual black box" paradigm. Roughlyspeaking, it says that if it is possible to distinguish the obfuscations of a pair of circuits, then onecan �nd inputs on which they di�er given any pair of circuits which compute the same functions.31



De�nition 7.4 (di�ering-inputs obfuscator) An di�ering-inputs obfuscator is de�ned in thesame way as an indistinguishability obfuscator, except that the \indistinguishability" property isreplaced with the following:� (di�ering-inputs property) For any PPT A, there is a probabilistic algorithm A0 and a negli-gible function � such that the following holds. Suppose C1 and C2 are circuits of size k suchthat " def= jPr [A(O(C1)) = 1]� Pr [A(O(C2)) = 1]j > �(k):Then, for any C 01; C 02 of size k such that C 0i computes the same function as Ci for i = 1; 2,A0(C 01; C 02) outputs an input on which C1 and C2 di�er in time poly(k; 1=(" � �(k))).This de�nition is indeed stronger than that of indistinguishability obfuscators, because if C1and C2 compute the same function, then A0 can never �nd an input on which they di�er and hence" must be negligible.8 Watermarking and ObfuscationGenerally speaking, (fragile) watermarking is the problem of embedding a message in an objectsuch that the message is di�cult to remove without \ruining" the object. Most of the work onwatermarking has focused on watermarking perceptual objects, e.g., images or audio �les. (See thesurveys [MMS+98, PAK99].) Here we concentrate on watermarking programs, as in [CT00, NSS99].A watermarking scheme should consist of a marking algorithm which embeds a message m into agiven program, and an extraction algorithm which extracts the message from a marked program.Intuitively, the following properties should be satis�ed:� (functionality) The marked program computes the same function as the original program.� (meaningfulness) Most programs are unmarked.� (fragility) It is infeasible to remove the mark from the program without (substantially) chang-ing its behavior.There are a various heuristic methods for software watermarking in the literature (cf., [CT00]),but as with obfuscation, there has been little rigorous work on this problem. Here we do not attemptto provide a thorough de�nitional treatment of software watermarking, but rather consider a coupleof weak formalizations which we relate to our results on obfuscation. The di�culty in formalizingwatermarking comes, of course, in capturing the fragility property. Note that it is easy to removea watermark from programs for functions that are (exactly) learnable with membership queries(by using the learning algorithm to generate a new program (for the function) that is independentof the marking). A natural question is whether learnable functions are the only ones that causeproblems. That is, can the following de�nition be satis�ed?De�nition 8.1 (software watermarking) A (software) watermarking scheme is a pair of (keyed)probabilistic algorithms (Mark;Extract) satisfying the following properties:� (functionality) For every circuit C, key K, and message m, the string MarkK(C;m) describesa circuit that computes the same function as C.� (polynomial slowdown) There is a polynomial p such that for every circuit C, jMarkK(C;m)j �p(jCj+ jmj+ jKj). 32



� (extraction) For every circuit C, key K, and message m, ExtractK(MarkK(C;m)) = m.� (meaningfulness) For every circuit C, PrK [ExtractK(C) 6= ?] = neg(jCj).� (fragility) For every PPT A, there is a PPT S such that for every C and mPrK �A(MarkK(C;m)) = C 0 s.t. C 0 � C and ExtractK(C 0) 6= m�� Pr hSC(1jCj) = C 0 s.t. C 0 � Ci+ neg(jCj);where K is uniformly selected in f0; 1gmax(jCj;jmj), and C 0 � C means that C 0 and C computethe same function.We say that the scheme is e�cient if Mark and Extract run in polynomial time.Actually, a stronger fragility property than the one above is probably desirable; the abovede�nition does not exclude the possibility that the adversary can remove the watermark by changingthe value the function at a single location. Nevertheless, by using our construction of totallyunobfuscatable functions, we can prove that this de�nition is impossible to meet.Theorem 8.2 If one-way functions exist, then no watermarking scheme in the sense of De�ni-tion 8.1 exists.Proof Sketch: Consider the totally unobfuscatable function ensemble guaranteed by Theo-rem 4.2. No matter how we try to produce a marked circuit from f R H, the algorithm A given bythe unobfuscatability condition in De�nition 4.2 can reconstruct the canonical circuit f , which bythe meaningfulness property is unmarked with high probability. On the other hand, the simulator,given just oracle access to f , will be unable produce any circuit computing the same function (sinceif it could, then it could compute �(f), which is pseudorandom). 2Corollary 8.3 E�cient watermarking schemes in the sense of De�nition 8.1 do not exist (uncon-ditionally).Given these impossibility results, we are led to seek the weakest possible formulation of thefragility condition | that the any adversary occasionally fails to remove the mark.De�nition 8.4 (occasional watermarking) An occasional software watermarking scheme is de-�ned in the same way as De�nition 8.1, except that the fragility condition is replaced with thefollowing:� For every PPT A, there exists a circuit C and a message m such thatPrK �A(MarkK(C;m)) = C 0 s.t. C 0 � C and ExtractK(C 0) 6= m� � 1� 1=poly(jCj);where K is uniformly selected in f0; 1gmax(jCj;jmj).Interestingly, in contrast to the usual intuition, this weak notion of watermarking is inconsistentwith obfuscation (even the weakest notion we proposed in Section 7).33



Proposition 8.5 Occasional software watermarking schemes and e�cient indistinguishability ob-fuscators (as in De�nition 7.1) cannot both exist. (Actually, we require the watermarking schemeto satisfy the additional natural condition that jMarkK(C;m)j = q(jCj) for some �xed polynomialq and all jCj = jmj = jKj.)Proof: We view the obfuscator O as a \watermark remover." By functionality of water-marking and obfuscation, for every circuit C and key K, O(MarkK(C; 1jCj)) is a circuit com-puting the same function as C. Let C 0 be a padding of C to the same length as MarkK(C; 1jCj).By fragility, ExtractK(O(MarkK(C; 1))) = 1 with nonnegligible probability. By meaningfulness,ExtractK(O(C 0)) = 1 with negligible probability. Thus, ExtractK distinguishesO(C 0) andO(MarkK(C; 1jCj)),contradicting the indistinguishability property of O.Note that this proposition fails if we allow MarkK(C;m) to instead be an approximate imple-mentation of C in the sense of De�nition 4.3. Indeed, in such a case it seems that obfuscators wouldbe useful in constructing watermarking schemes, for the watermark could be embedded by changingthe value of the function at a random input, after which an obfuscator is used to \hide" this change.Note that approximation may also be relevant in the fragility condition, for it would be nice toprevent adversaries from producing unmarked approximate implementations of the function.As with obfuscation, positive theoretical results about watermarking would be very welcome.One approach, taken by Naccache, Shamir, and Stern [NSS99], is to �nd watermarking schemes forspeci�c useful families of functions.9 Directions for Further WorkWe have shown that obfuscation, as it is typically understood (i.e., satisfying a virtual black-boxproperty), is impossible. However, we view it as an important research direction to explore whetherthere are alternative senses in which programs can be made \unintelligible." These include (butare not limited to) the following notions of obfuscation which are not ruled out by our impossibilityresults:� Indistinguishability (or di�ering-input) obfuscators, as in De�nition 7.1 (or De�nition 7.4,respectively).� Sampling obfuscators, as in De�nition 6.1.� Obfuscators that only have to approximately preserve functionality with respect to a speci�eddistribution on inputs, such as the uniform distribution. (In Section 4.2, we have ruled out aobfuscators with approximately preserve functionality in a stronger sense; see discussion afterTheorem 4.5.)� Obfuscators for a restricted, yet still nontrivial, class of functions. By Theorem 4.13, any suchclass of functions should not contain TC0. That leaves only very weak complexity classes(e.g., AC0, read-once branching programs), but the class of functions need not be restrictedonly by \computational" power: syntactic or functional restrictions may o�er a more fruitfulavenue. We note that the constructions of [CMR98] can be viewed as some form of obfuscatorsfor \delta functions" (i.e., functions f : f0; 1gn ! f0; 1g which take on the value 1 at exactlyone point in f0; 1gn.) 34
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Conjecture A.1 (Rice's Theorem | naive generalization) Let � = (�Y ;�N ) be a promiseproblem closed under [�]. If � is decidable, then � is trivial in the sense that either �Y = ; or�N = ;.This generalization is really too naive. Consider the following promise problem (�Y ;�N )�Y = fM jM always halts, M(0) = 1g�N = fM jM always halts, M(0) = 0gIt is obviously decidable, non-trivial, and closed under [�].Our next attempt at generalizing Rice's Theorem to promise problems is based on the idea of asimulator, which we use to formalize the interpretation of Rice's Theorem as \the only useful thingyou can do with a machine is run it." Recall that for a Turing machine M , the function hMi(1t; x)is de�ned to be y if M(x) halts within t steps with output y, and ? otherwise.Theorem A.2 (Rice's Theorem | second generalization) Let � = (�Y ;�N ) be a promiseproblem closed under [�]. Suppose that � is decidable, then � is trivial in the sense that there existsa Turing machine S such that M 2 �Y ) ShMi(1jM j) = 1M 2 �N ) ShMi(1jM j) = 0Proof: Suppose that � = (�Y ;�N ) is decided by the Turing machine T . We will build a machineS which will satisfy the conclusion of the theorem.We say that a machine N is n-compatible with a machine M if hNi(1t; x) = hMi(1t; x) for alljxj; t � n. Note that:1. n-compatibility with M can be decided using oracle access to hMi.2. M is n-compatible with itself for all n.3. If [M ] 6� [N ] then there exists a number n0 such that N is not n-compatible with M for alln > n0.4. It may be the case than [M ] � [N ] but N is not n-compatible with M for some n.With oracle hMi and input 1jM j, S does the following for n = 0; 1; 2; : : ::1. Compute the set Sn which consists of all the machines of size jM j that are n-compatible withM (this can be done in �nite time as there are only �nitely many machines of size jM j).2. Run T on all the machines in Sn for n steps. If T halts on all these machines and returns thesame answer �, then halt and return �. Otherwise, continue.It is clear that if S halts then it returns the same answer as T (M). This is because M isn-compatible with itself for all n and so M 2 Sn for all n.We claim that S always halts. For any machine N of size jM j such that [N ] 6� [M ] , there's anumber n0 such that n is not in Sn for all n > n0. Since there are only �nitely many such machines,there's a number n00 such that all the machines N 2 Sn for n > n00 satisfy [N ] � [M ]. For any suchmachine N with [N ] � [M ] , T halts after a �nite number of steps and outputs the same answeras T (M). Again, since there are only �nitely many of them , there's a number n > n00 such that Thalts on all the machines of Sn in n steps and returns the same answer as T (M).38



Our previous proof relied heavily on the fact that the simulator was given an upper bound onthe size of the machine M . While in the context of complexity we gave this length to the simulatorto allow it enough running time, one may wonder whether it is justi�able to give this bound to thesimulator in the computability context. That is:Conjecture A.3 (Rice's Theorem | third generalization) Let � = (�Y ;�N ) be a promiseproblem closed under [�]. Suppose that � is decidable. Then � = is trivial in the sense that thereexists a Turing machine S such that M 2 �Y ) ShMi() = 1M 2 �N ) ShMi() = 0It turns out that this small change makes a di�erence.Theorem A.4 Conjecture A.3 is false.Proof: Consider the following promise problem � = (�Y ;�N ):�Y = fM jM always halts, 9x < KC([M ]) s.t. [M ](x) = 1g�N = fM jM always halts, 8x M(x) = 0gwhere for a partial recursive function f , KC(f) is the description length of the smallest Turingmachine that computes f . It is obvious that � is closed under [�].We claim that � is decidable. Indeed, consider the following Turing machine T : On input M ,T invokes M(x) for all x < jM j and returns 1 i� it gets a non-zero answer. Since any machine in�Y [ �N always halts, T halts in �nite time. If T returns 1 then certainly M is not in �N . IfM 2 �Y then M(x) = 1 for some x < KC([M ]) � jM j and so T returns 1.We claim that � is not trivial in the sense of Conjecture A.3. Indeed, suppose for contradictionthat there exists a simulator S such thatM 2 �Y ) ShMi() = 1M 2 �N ) ShMi() = 0Consider the machine Z which reads its input and then returns 0. We have thathZi(1t; x) = n? t < jxj0 otherwiseAs Z 2 �N , we know that ShZi() will halt after a �nite time and return 0. Let n be an upperbound on jxj and t over all oracle queries (1t; x) of ShZi().Let r be a string of Kolmogorov complexity 2n. Consider the machine Nn;r which computesthe following function, Nn;r(x) = ( 0 x � n1 x = n+ 1r x � n+ 2and runs in time jxj on inputs x such that jxj � n.For any t; jxj � n, hZi(1t; x) = hNn;ri(1t; x). Therefore ShNn;ri() = ShZi() = 0. But Nn;r 2 �Ysince Nn;r(n + 1) = 1 and KC([Nn;r]) > n + 1. This contradicts the assumption that S decides�. 39



B Pseudorandom OraclesIn this section, we sketch a proof of the following lemma, which states that a random function is apseudorandom generator relative to itself with high probability.Lemma 4.17 There is a constant � > 0 such that the following holds for all su�ciently large Kand any L � K2. Let D be an algorithm that makes at most K� oracle queries and let G be arandom injective function G : [K]! [L]. Then with probability at least 1� 2�K� over G,���� Prx2[K] �DG(G(x)) = 1�� Pry2[L] �DG(y) = 1����� � 1K� : (4)We prove the lemma via a counting argument in the style of Gennaro and Trevisan's proofthat a random permutation is one-way against nonuniform adversaries [GT00]. Speci�cally, we willshow that \most" G for which Inequality (4) fails have a \short" description given D, and hencethere cannot be too many of them.Let G be the collection of G's for which Inequality (4) fails (for a su�ciently small �, whosevalue is implicit in the proof below). We begin by arguing that, for every G 2 G, there is a large setSG � [K] of inputs on which D's behavior is \independent," in the sense that for x 2 S, none of theoracle queries made in the execution of DG(G(x)) are at points in S, yet D still has nonnegligibleadvantage in distinguishing G(x) from random. Actually, we will not be able to a�ord specifyingSG when we \describe" G, so we actually show that there is a �xed set S (independent of G)such that for most G, the desired set SG can be obtained by just throwing out a small number ofelements from S.Claim B.1 There is a set S � [K] with jSj = K1�5�, and G0 � G with jG0j = jGj=2 such that forall G 2 G0, there is a set SG � S with the following properties:1. jSGj = (1� )jSj, where  = K�3�.2. If x 2 SG, then DG(G(x)) never queries its oracle at an element of SG.3. ���� Prx2SG �DG(G(x)) = 1�� Pry2LG �DG(y) = 1����� > 12K� ;where LG def= [L] nG([K] n SG). (Note that LG contains more than a 1�K=L fraction of L.)Proof: First consider choosing both a random G R G and a random S (among subsets of [K]of size K1�5�). We will show that with probability at least 1=2, there is a good subset SG � Ssatisfying Properties 1{3. By averaging, this implies that there is a �xed set S for which a goodsubset exists for at least half the G 2 G, as desired. Let's begin with Property 2. For a randomG, S, and a random x 2 S, note that DG(G(x)) initially has no information about S, which is arandom set of density K�5�. Since D makes at most K� queries, the probability that it queriesits oracle at some element of S is at most K� �K�5� = K�4�. Thus, with probability at least 3=4over G and S, DG(G(x)) queries its oracle at an element of S for at most a 4=K�4� <  fraction ofx 2 S. Throwing out this  fraction of elements of S gives a set SG satisfying Properties 1 and 2.Now let's turn to Property 3. By a Cherno�-like bound, with probability at least 1�exp(
(K1�5� �(K��)2)) > 3=4 over the choice of S,���� Prx2S �DG(G(x)) = 1�� Prx2[K] �DG(G(x)) = 1����� � 14K� :40



Then we have: ���� Prx2SG �DG(G(x)) = 1�� Pry2LG �DG(y) = 1������ ���� Prx2[K] �DG(G(x)) = 1�� Pry2[L] �DG(y) = 1������ ���� Prx2SG �DG(G(x)) = 1�� Prx2[S] �DG(G(x)) = 1������ ����Prx2S �DG(G(x)) = 1�� Prx2[K] �DG(G(x)) = 1������ ���� Pry2[L] �DG(y) = 1�� Pry2LG �DG(y) = 1�����> 1=K� �  � 1=4K� �K=L> 1=2K�Now we show how the above claim implies that every G 2 G0 has a \small" description.Claim B.2 Every G 2 G0 can be uniquely described by (logB)� 
(K1�7�) bits given D, where Bis the number of injective functions from [K] to [L].Proof: For starters, the description of G will contains the set SG and the values of G(x) for allx =2 SG. Now we'd like to argue that this information is enough to determine DG(y) for all y. Thiswon't exactly be the case, but rather we'll show how to compute MG(y) for some M that is \asgood" as D. From Property 3 in Claim B.1, we havePrx2SG �DG(G(x)) = 1�� Pry2LG �DG(y) = 1� > 12K� :(We've dropped the absolute values. The other case is handled analogously, and the only cost is onebit to describe which case holds.) We will describe an algorithm M for which the same inequalityholds, yet M will only use the information in our description of G instead of making oracle queriesto G. Speci�cally, on input y, M simulates D(y), except that it handles each oracle query z asfollows:1. If z =2 SG, then M responds with G(z) (This information is included in our description of G).2. If z 2 SG, then M halts and outputs 0. (By Property 2 of Claim B.1, this cannot happen ify 2 G(SG), hence outputting 0 only improves M 's distinguishing gap.)Thus, given SG and Gj[K]nSG, we have a function M satisfyingPrx2SG [M(G(x)) = 1]� Pry2LG [M(y) = 1] > 12K� (5)To complete the description of G, we must specify GjSG , which we can think of as �rst specifyingthe image T = G(SG) � LG and then the bijection G : SG ! T . However, we can save in ourdescription because T is constrained by Inequality (5), which can be rewritten as:Pry2T [M(y) = 1]� Pry2LG [M(y) = 1] > 12K� (6)41



Cherno� Bounds say that most large subsets are good approximators of the average of a booleanfunction. Speci�cally, at most a exp(�
((1 � )K1�5� � (K��)2)) = exp(�
(K1�7�)) fraction ofsets T � LG of size (1� )K1�5� satisfy Equation 6.Thus, using M , we have \saved" 
(K1�7�) bits in describing G(SG) (over the standard \truth-table" representation of a function G). However, we had to describe the set SG itself, which wouldhave been unnecessary in the truth-table representation. Fortunately, we only need to describeSG as a subset of S, and this only costs log � K1�5�(1�)K1�5�� = O(H2()K1�5�) < O(K1�8� logK) bits(where H2() = O( log(1=)) denotes the binary entropy function). So we have a net savings of
(K1�7�)�O(K1�8� logK) = 
(K1�7�) bits.From Claim B.2, G0 can consist of at most an exp(�
(K1�7�)) < K��=2 fraction of injectivefunctions [K]! [L], and thus G has density smaller than K��, as desired.
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