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1 Introdu
tionVarious types of proof systems play a 
entral role in the theory of 
omputation. In addition toNP-proof systems, whi
h provide the de�nitional pillar of NP, probabilisti
 proof systems givingrise to 
lasses su
h as IP;ZK and PCP have also played a major role. (For further ba
kground,see [6, Chap. 9℄.)In all these 
ases, the veri�
ation pro
edure is personi�
ated by a player, 
alled the veri�er,whi
h intera
ts (impli
itly or expli
itly) with a more powerful entity, 
alled the prover. The natureof this intera
tion may vary a

ording to the type of proof system being 
onsidered, but in all
ases the intera
tion may depend on a 
ommon input, whi
h represents the 
laim being provedand veri�ed. In parti
ular, in all 
ases, the a
tions of the pres
ribed prover may depend on this
ommon input.In this work we ask how is the expressive power of these proof system e�e
ted when the pre-s
ribed prover is only given the length of the 
laim to be proved. We stress that we restri
t thepower of the prover being referred to in the 
ompleteness 
ondition, but maintain the original for-mulation of the soundness 
ondition. That is, we ask what is the power of input-oblivious proversin ea
h of these proof systems.1.1 The 
ase of NPConsider for example the 
ase of NP. Re
all that S 2 NP if there exists a polynomial-time(veri�
ation) pro
edure V and a polynomial p su
h thatCompleteness: For every x 2 S there exists w 2 f0; 1gp(jxj) su
h that V (x;w) = 1.Soundness: For every x 62 S and every w, it holds that V (x;w) = 0.We ask whether (for this pro
edure V or for an alternative one) it holds that for every n 2 Nthere exists w 2 f0; 1gp(n) su
h that for every x 2 Sn def= S \ f0; 1gn it holds that V (x;w) = 1.Su
h a string w may be 
onsidered a universal NP-witness (for all x 2 Sn), and its existen
e yieldsa poly(n)-sized 
ir
uit for de
iding Sn (i.e., S 2 P=poly). But does every set in NP \ P=polyhave su
h universal NP-witnesses? Denoting the 
lass of sets having input-oblivious NP-proofs byONP , we show thatTheorem 1.1 (on the power of input-oblivious NP-proofs):1. ONP = NP if and only if NP � P=poly.2. If NE 6= E, then ONP 6= P.3. RP � ONP � NP \ P=poly.While the proofs of all items of Theorem 1.1 are quite easy, we �nd the foregoing assertions quiteinteresting. In parti
ular, we highlight the fa
t that the �rst item provides a uniform 
omplexityformulation of the 
onje
ture NP 6� P=poly. We mention that it is not 
lear whether or notONP = NP \ P=poly; ditto whether or not BPP \ NP � ONP (or whether \BPP � NPimplies BPP � ONP").We also de�ne and study input-oblivious versions of intera
tive proof systems (i.e., IP), zero-knowledge proof systems (i.e., ZK), and probabilisti
ally 
he
kable proof systems (i.e., PCP).1



Related work. Chakaravarthy and Roy [4℄ 
onsidered an input-oblivious version of the symmet-ri
 alternation 
lass S2, and showed that this new 
lass, denoted O2, 
ontains BPP . They alsoshowed that if NP � P=poly, then the Polynomial-time Hierar
hy 
ollapses to O2. We note that itis not 
lear how O2 relates to NP, but it is synta
ti
ally obvious that O2 
ontains the 
lass ONP ,de�ned by us.1.2 Conne
tion to 
ir
uit lower boundsAn additional motivation for the study of input-oblivious proof systems 
omes from their 
on-ne
tion to 
ir
uit 
omplexity. As we explain below, input-oblivious proof systems may be viewedas a restri
tion of P=poly to advi
e strings that 
an be veri�ed. As su
h, it turns out that, whileinput-oblivious proof systems are stri
tly weaker than P=poly, there are 
ases in whi
h the the 
om-putational limitations of input-oblivious proof systems imply 
orresponding limitations on P=poly.Thus, proving that 
ertain 
lasses do not have small 
ir
uits is equivalent to proving that these
lasses have no input-oblivious proof systems. Details follow.Re
all that P=poly may be viewed as the 
lass of sets that 
an be de
ided by a Turing ma
hinethat takes advi
e. The advi
e is an arbitrary string of polynomial length, whi
h may depend onthe length of the input but not on the input itself. Consider the fun
tion f : N! f0; 1g� that mapsea
h input length to its 
orresponding advi
e string. The de�nition of P=poly pla
es no restri
tionson the 
omplexity of 
omputing f , and in parti
ular f is not even required to be 
omputable. Thisfeature of the advi
e makes P=poly a powerful 
lass, whi
h 
an even 
ompute fun
tions that arenot 
omputable by Turing ma
hines.It is a natural question to ask what happens when we pla
e 
omputational restri
tions on f .The �rst restri
tion that may 
ome to mind is to require that f(n) is 
omputable in time poly(n).However, restri
ting P=poly in this way results in the 
lass P, and is therefore not very interesting.A se
ond natural restri
tion is requiring the fun
tion f to be veri�able. In other words, werequire that although we may not be able to 
ompute the advi
e eÆ
iently, we 
an at least verifyits 
orre
tness. This idea 
an be realized in few possible ways, and our notions of input-obliviousproof systems 
an be thought as su
h realizationsOur notions of input-oblivious proof systems (e.g., ONP) may be useful towards studyingthe 
ir
uit 
omplexity of the their standard 
ounterparts (resp., NP), be
ause on the one handthese input-oblivious proof systems are stri
tly weaker than P=poly, and on the other hand theyretains mu
h of the power of P=poly. As an example, 
onsider the 
lass ONP, On the one hand,ONP is 
ontained in NP , and is therefore stri
tly weaker than P=poly (sin
e it 
an not de
ideun
omputable fun
tions). On the other hand, Theorem 1.1 shows that if P=poly 
ontains NP,then so does ONP , and this is sense ONP is quite powerful. A parti
ulary interesting 
orollaryof this theorem is that proving 
ir
uit lower bounds for NP is equivalent to separating ONP fromNP .The foregoing dis
ussion is not resti
ted to ONP . In Se
tion 3 we 
onsider the 
lass OIP,whi
h is the input-oblivious version of IP. The 
lass OIP may also be thought of as the 
lassthat results from restri
ting the advi
e of P=poly (i.e., the above fun
tion f) to be veri�able by anintera
tive proto
ol. We show thatOIP = IP \ P=poly ; whi
h equals PSPACE \ P=poly.This equality gives a 
hara
terization of OIP as a powerful restri
tion of P=poly. It also impliesthat proving 
ir
uit lower bounds for PSPACE is equivalent to separating OIP from IP.An additional example is the 
lass OMA, the input-oblivious version of MA (see Se
tion 3).The 
lass OMA may also be thought of as the 
lass that results by restri
ting the advi
e of P=poly2



to be veri�able by in probabilisti
 polynomial-time (rather than in determinsti
 polynomial-time).Babai et al. [3℄ showed that if EXP � P=poly then EXP =MA, and their proof impli
itly yieldsthe stronger 
on
lusion EXP = OMA. The latter result may be viewed as saying that OMA,while being a restri
tion of P=poly, is still suÆ
iently powerful to 
ontain EXP if P=poly 
ontainsEXP . This implies that in order to prove 
ir
uit lower bounds for EXP , it suÆ
es to separateEXP from OMA.Similarly, Impagliazzo et al. [8℄ showed that NEXP � P=poly implies NEXP = MA, andimpli
itly that NEXP � P=poly implies NEXP = OMA. This result too may be interpreted assaying that in order to prove 
ir
uit lower bounds for NEXP , it suÆ
es to separate NEXP fromOMA.We 
on
lude that input-oblivious proof systems su
h as ONP , OMA, and OIP 
an be viewedas powerful restri
tions of P=poly, and therefore may serve as a useful target for resear
h on lowerbounds.1.3 Organization and a pie
e of notationIn Se
tion 2 we study input-oblivious NP-proof systems (ONP). The study of general input-obliviousintera
tive proof systems (i.e., OIP) and the spe
ial 
ase of input-oblivious MA are presented inSe
tion 3. Other forms of input-oblivious probabilisti
 proof systems are investigated in Se
tion 4.Re
urring notation. For an arbitrary set S � f0; 1g� and n 2 N, we denote by Sn the setS \ f0; 1gn.2 Input-Oblivious NP-Proof Systems (ONP)In 
ontinuation to the dis
ussion in the introdu
tion, we de�ne the input-oblivious version of NP-proof systems as follows:De�nition 2.1 (input-oblivious NP-proofs { ONP): A set S has an input-oblivious NP-proof sys-tem if there exists a polynomial-time algorithm V and a polynomial p su
h that the following two
onditions hold.Completeness: For every n 2 N, there exists w 2 f0; 1gp(n) su
h that for every x 2 Sn def= S\f0; 1gnit holds that V (x;w) = 1. We 
all w a universal witness.Soundness: For every x 62 S and every w, it holds that V (x;w) = 0.The 
lass ONP 
onsists of all sets having input-oblivious NP-proof systems.Clearly, ONP � NP\P=poly, sin
e the \universal NP-witnesses" (guaranteed by the 
ompleteness
ondition) 
an be used as non-uniform advi
e. We next establish all other 
laims of Theorem 1.1:Claim 2.2 RP � ONP.Proof: Let S 2 RP . Using error redu
tion, we obtain a polynomial-time algorithm A and apolynomial p su
h that for every x 2 S it holds that Prr2f0;1gp(jxj) [A(x; r)=1℄ > 1� 2�jxj (whereasA(x; r) = 0 for every x 62 S and r). Thus, there exists a string r 2 f0; 1gp(n) su
h that A(x; r) = 1for every x 2 Sn, whi
h yields the desired universal NP-witness (w.r.t V = A).3



Claim 2.3 ONP = NP if and only if NP � P=poly.Proof: Clearly, if ONP = NP , then NP = ONP � P=poly. The proof of the opposite dire
tionuses one main idea of the proof of the Karp{Lipton theorem [9℄ (i.e., NP � P=poly impliesthat the Polynomial-time Hierar
hy 
ollpases to its se
ond level). We follow the presentation in [6,Se
. 3.2.3℄, where the hypothesis is shown to yield polynomial-size 
ir
uits for �nding NP-witnesses.Spe
i�
ally, 
onsider any NP-
omplete set S, and re
all that sear
hing NP-witnesses for x 2 S isredu
ible to de
iding S; that is, there exists a relation R su
h that S = fx : 9w (x;w) 2Rg andsolving the sear
h problem asso
iated with R is redu
ible to de
iding S (
f. [6, Thm. 2.16℄). Now,assuming that NP � P=poly, it follows that this sear
h problem 
an be solved by polynomial-sized 
ir
uits (i.e., by applying the said redu
tion and using the 
ir
uits guaranteed for de
idingS 2 NP � P=poly).The input-oblivious NP-proof system for S will use these (witness �nding) 
ir
uits as universalwitnesses; that is, 
onsider V su
h that V (x;w) = 1 if and only if w is a des
ription of a 
ir
uitCw and (x;Cw(x)) 2 R, and use w as a universal witness for length n if it des
ribes a poly(n)-sizewitness-�nding 
ir
uit for instan
e length n. Finally, sin
e S is NP-
omplete (and S 2 ONP), itfollows that NP = ONP .1Claim 2.4 If NE 6= E (resp., NE 6� BPE), then ONP 6= P (resp., ONP 6� BPP).Proof: Let S 2 NE n E (resp., S 2 NE n BPE), and let V be a polynomial-time algorithm and 
be a 
onstant su
h that x 2 S if and only if there exists w 2 f0; 1gN , where N = 2
jxj, su
h thatV (x;w) = 1. De�ning S0 def= fxy : x2S ^ jyj=2jxj � jxjg; (1)we show that S0 2 ONP. Consider a pro
edure V 0 su
h that V 0(xy; uwv) = 1 if and only ifjyj = 2jxj�jxj and V (x;w) = 1; that is, on input x0 and w0, the pro
edure V 0 a

epts x0 if and onlyif jx0j is a power of two and w0 
ontains a substring that is a NE-witness for the membership ofthe log2 jx0j-bit long pre�x of x0 in the set S. Note that if xy 2 S0 (and jyj = 2jxj � jxj), then thereexists wx 2 f0; 1gjxyj
 su
h that V (x;wx) = 1. Then, letting wn = w0n � � �w1n 2 f0; 1g2n �2
n su
hthat V (x;wx) = 1 if (and only if) x 2 Sn, it holds that wn is a universal NP-witness for length 2n:Indeed, for every z 2 S02n it holds that V 0(z; wn) = 1, whereas for every z 62 S0 and w it holds thatV 0(z; w) = 0. The 
laim follows, sin
e S0 62 P (resp., S0 62 BPP).Remark 2.5 (on sparse sets): The proof of Claim 2.4 
an be used to show that every sparse NP-setis in ONP, where a set S is sparse if jSnj � poly(n). The key idea is that if proving membershipof any n-bit long string (in Sn) 
an be done by using one of poly(n)-many NP-witnesses, then
on
atenating these witnesses yields a universal NP-witness. The same argument 
an be applied toshow that NE = ONE, where ONE is the universal witness analogue of NE (and so the number ofyes-instan
es of a spe
i�
 length is polynomial in the length of the 
orresponding NE-witnesses).Lastly note that, while every 
o-sparse is in P=poly, it is un
lear whether every 
o-sparse NP-setis in ONP.21We use the fa
t that if S0 is Karp-redu
ible to a set in ONP, then S0 2 ONP. This is obvious if the redu
tion islength-regular (i.e., it maps instan
es of the same length to instan
es of the same length). In general, when redu
ing S0to S, we may use as universal witnesses for S0n the 
on
atenation of universal witnesses for Sm for m = 1; :::; poly(n).2A set S is 
alled 
o-sparse if jSnj � 2n � poly(n). We mention that relative to a random ora
le, there exists a
o-sparse set in NP n ONP. 4



3 Input-Oblivious Intera
tive Proof Systems (OIP)When de�ning an input-oblivious version of IP, we should make sure that the veri�er does not
ommuni
ate the input to the prover, who does not get it. The simplest way to guarantee thisfeature is to de
ouple the intera
tion into two stages: In the �rst stage, both parties are onlypresented with the length of the input, and in the se
ond stage the veri�er is given the a
tual inputbut is dis
onne
ted from the prover. Thus, the veri�er is de
omposed into two parts, denoted V1and V2, and its de
ision regarding the input x is written as V2(x; (P; V1)(1jxj)), where (P; V1)(1n)denotes the output of V1 after intera
ting with the prover P on 
ommon input 1n. (Note that thesaid output of V1 may 
ontain its entire view of the intera
tion with P , and that without loss ofgenerality V2 may be deterministi
 (sin
e its 
oins may be tossed and re
orded by V1).)De�nition 3.1 (input-oblivious intera
tive proofs { OIP): A set S has an input-oblivious inter-a
tive proof system if there exists a probabilisti
 polynomial-time intera
tive ma
hine V1 and apolynomial-time algorithm V2 su
h that the following two 
onditions hold.
ompleteness: There exists a strategy P su
h that, for every x 2 S, it holds that Pr[V2(x; (P; V1)(1jxj))=1℄ � 2=3.If the latter probability always equals 1, then we say that the system has perfe
t 
ompleteness.soundness: For every x 62 S and every strategy P , it holds that Pr[V2(x; (P; V1)(1jxj)=1℄ � 1=3.The 
lass OIP 
onsists of all sets having input-oblivious intera
tive proof systems.As in the 
ase of ONP , the soundness 
ondition of OIP maintains the analogous 
ondition of IP.Theorem 3.2 (on the power of input-oblivious intera
tive proofs): OIP = IP \ P=poly. Fur-thermore, ea
h set in IP \ P=poly has an input-oblivious intera
tive proof system with perfe
t
ompleteness.Proof: To see that OIP is 
ontained in P=poly, we �rst apply error redu
tion to an input-obliviousintera
tive proof system for any S 2 OIP su
h that the error probability on instan
es of length nis smaller than 2�n. Thus, there exists an output of V1 (after intera
ting with P on 1n), denotedy, su
h that for every x 2 f0; 1gn it holds that x 2 S if and only if V2(x; y) = 1. This output (i.e.,y) 
an be used as non-uniform advi
e, whi
h implies that S 2 P=poly.We now assume that S 2 IP \ P=poly, and let fCng be a family of polynomial-size 
ir
uitde
iding S. On 
ommon input 1n, the (input oblivious) prover sends Cn to the veri�er V1, andproves to it that Cn is 
orre
t (i.e., that for every x 2 f0; 1gn it folds that Cn(x) = 1 i� x 2 S).Note that the latter assertion 
an be veri�ed in polynomial-spa
e, and hen
e it 
an be proved byan intera
tive proof (with perfe
t 
ompleteness) [13, 14℄. The output of V1 equals Cn if V1 were
onvin
ed by the proof, and is the identi
ally zero 
ir
uit otherwise. Finally, on input x and y(representing V1's output), algorithm V2 outputs Cy(x), where Cy is the 
ir
uit represented by thestring y. Thus, S 2 OIP (and furthermore S has an input-oblivious intera
tive proof with perfe
t
ompleteness).The 
lass OMA. The 
lass OMA is the input-oblivious version of MA, whi
h in turn is arandomized version of NP (in whi
h the �nal veri�
ation of witnesses is probabilisti
). In terms ofinput-oblivious intera
tive proofs (i.e., OIP), the 
lass OMA 
ontains sets having a uni-dire
tional5



intera
tive proof system of perfe
t 
ompleteness (in whi
h, �rst the prover sends a message, andthen the veri�er tosses some 
oins). We observe that Lautemann's argument [12℄, whi
h has beenused to show BPP �MA, allows showing that BPP � OMA.Proposition 3.3 BPP � OMA.Proof: Let S 2 BPP and 
onsider an algorithm A su
h that Prr2f0;1gp(jxj) [A(x; r) = �S(x)℄ >1 � 2�jxj, where �S(x) = 1 is x 2 S and �S(x) = 0 otherwise. Re
all that the standard argumentasserts that for every x 2 S there exists s1; :::; sp(jxj) 2 f0; 1gp(jxj) su
h that for every r 2 f0; 1gp(jxj)it holds that Wi2[p(jxj)℄A(x; r�si) = 1, whereas for any x 62 S and s1; :::; sp(jxj) 2 f0; 1gp(jxj) it holdsthat Prr2f0;1gp(jxj) [Wi2[p(jxj)℄A(x; r�si) = 1℄ is smaller than p(jxj)=2jxj. We just note that, for everyn 2 N, there exists s1; :::; sp(jxj)+jxj 2 f0; 1gp(jxj) su
h that for every x 2 Sn and every r 2 f0; 1gp(jxj)it holds that Wi2[p(jxj)+jxj℄A(x; r�si) = 1.4 Input-Oblivious Versions of PCP and ZKIn this se
tion, we 
onsider input-oblivious versions of the 
lasses PCP (Probabilisti
ally Che
kableProofs) and ZK (Zero-Knowledge intera
tive proofs). In both 
ases, we provide eviden
e that thesaid 
lasses extend beyond the obvious (e.g., beyond P), but note that they are unlikely to 
ontainall of ONP.4.1 Input-Oblivious PCPFor sake of simpli
ity, we fo
us on PCP system of logarithmi
 randomness 
omplexity and 
onstantquery 
omplexity, and identify su
h systems with the term PCP.De�nition 4.1 (input-oblivious probabilisti
ally 
he
kable proofs { OPCP): A set S has an input-oblivious PCP system if there exists a probabilisti
 polynomial-time ora
le ma
hine V of logarithmi
randomness 
omplexity and 
onstant query 
omplexity su
h that the following two 
onditions hold.Completeness: For every n 2 N there exists an ora
le �n su
h that, on input any x 2 Sn and a

essto the ora
le �n, ma
hine V always a

epts x.Soundness: For every x 62 S and every ora
le �, on input x and a

ess to ora
le �, ma
hine Vreje
ts x with probability at least 12 .The 
lass OPCP 
onsists of all sets having input-oblivious PCP systems.Clearly, OPCP � ONP , but the 
onverse may not hold. It is not even 
lear that every sparseNP-set is in OPCP . Still, Claim 2.4 extends to OPCP .Proposition 4.2 (on the power of input-oblivious PCPs): If NE 6= E (resp., NE 6� BPE), thenOPCP 6= P (resp., OPCP 6� BPP).Proof: Re
alling the 
onstru
tion used in the proof of Claim 2.4, we obtain a set S0 in ONP thathas the following additional property: There exist a polynomial-time 
omputable length-preservingfun
tion, denoted f , su
h that f maps all n-bit long strings to a polynomial-time 
onstru
tible setof representatives while maintaining membership in S0; that is, the following 
onditions hold.6



1. The set ff(z) : z 2 f0; 1gng is poly(n)-time 
onstru
tible;2. z 2 S0 if and only if f(z) 2 S0.(Referring to the set S0 as de�ned in Eq. (1), 
onsider f(xy) = x0jyj, where jyj = 2jxj � jxj.) Thus,proving membership of an arbitrary n-bit long string in S0 redu
es to proving membership in S0of the 
orresponding representative, whi
h means that we need only take 
are of poly(n)-manyinstan
e-witness pairs. Applying the PCP Theorem (
f. [2, 1℄) to the inputs in the range of falong with 
orresponding NP-witnesses, we obtain the desired input-oblivious PCP. Spe
i�
ally, oninput z, the veri�er 
omputes r  f(z), determines the index of r in the set ff(s) : s 2 f0; 1gjzjg,and a

esses the 
orresponding portion of the proof ora
le, where the latter portion 
ontains theproof ora
le produ
ed for the input f(z) using a 
orresponding NP-witness (whi
h may just be auniversal NP-witness for length jzj = jf(z)j).Digest. The proof of Proposition 4.2 does not use the fa
t that S0 2 ONP, but rather usesthe additional stru
ture guaranteed by the polynomial-time 
omputable fun
tion f . This seemsrequired sin
e in standard PCP 
onstru
tions the proof ora
le depends on the input (and notonly on the 
orresponding NP-witness).3 Note that it is even un
lear whether RP is in OPCP ,although 
learly P � OPCP . On the other hand, we note that Condition (1) 
an be relaxed su
hthat it is only required that the set Rn def= ff(z) : z 2 f0; 1gng has poly(n)-size (rather than beingpoly(n)-time 
onstru
tible). A
tually, it suÆ
es to required that jRn \ Snj � p(n), for some �xedpolynomial p (and all n). This relaxation is shown to suÆ
e by using a suitable hashing s
heme tomap elements of Rn to indi
es in, say, [3p(n)℄ su
h that no two elements are mapped to the sameindex, and using these indi
es as in the proof of Proposition 4.2. Spe
i�
ally, we use a poly(n)-sizefamily of eÆ
iently 
omputable hashing fun
tions, Hn, that map f0; 1gn to [3p(n)℄ su
h that forevery two distin
t a; b 2 f0; 1gn it holds that Prh2Hn [h(a)=h(b)℄ < 1=2p(n).4 On input z 2 f0; 1gn,the modi�ed veri�er 
omputes r f(z), sele
ts uniformly h 2 Hn, and a

esses the portion of theproof ora
le that 
orresponds to (h; h(r)), whi
h is supposed to 
ontain a proof that there existsw 2 Rn \Sn su
h that h(f(w)) = v, where v  h(r). Note that the latter NP-assertion refers onlyto h and v (and n), and so we may use any NP-witness for it (and obtain a 
orresponding PCP ora
leproof). Hen
e, the 
ompleteness 
ondition is satis�ed by a proof ora
le that is a 
on
atenation ofproofs for the various possible values of (h; v), whereas on input z 2 Sn the veri�er always a

essesa portion that 
orresponds to a valid assertion (sin
e it uses v = h(f(z))). The soundness 
onditionholds be
ause any z 62 Sn is mapped with 
onstant probability to an h Æ f -image (for a randomh 2 Hn) that has no h Æ f -preiamge in Rn \ Sn.4.2 Input-Oblivious ZKThe 
lass OZK 
onsists of sets having an input-oblivious intera
tive proof system in whi
h thepres
ribed prover is zero-knowledge in the standard (
omplexity oriented) sense.5 This de�nitionrequires eÆ
ient simulation of the (pres
ribed) veri�er's view of the intera
tion, based solely on theveri�er's a
tual input. (Indeed, here we refer to the veri�er as the 
ombination of the two stages,3Thus, it is not 
lear that a universal NP-witness yields a universal PCP proof ora
le.4Su
h 
onstru
tions are presented in [7, 10, 11, 15℄.5The standard (
omplexity theoreti
) de�nition of zero-knowledge requires eÆ
ient simulation of the view of thepres
ribed veri�er (of the intera
tion with the prover); a stronger de�nition, 
ommonly used in 
ryptography (
f. [5,Se
. 4.3.1℄), requires eÆ
ient simulation of the view of arbitrary probabilisti
 polynomial-time adversaries. We notethat our positive results extend also to the general (i.e., adversarial veri�er) notion of zero-knowledge.7



denoted V1 and V2, and note that this 
ombined veri�er gets the a
tual input (rather than merelyits length).)6Clearly, BPP � OZK (sin
e any set in BPP has an input-oblivious intera
tive proof system inwhi
h the pres
ribed prover does nothing, and hen
e is easily simulatable). It turns out that OZKmay extend beyond BPP only in the 
ase of sets for whi
h it is hard to �nd yes-instan
es of anydesired length.Proposition 4.3 (on the power of input-oblivious zero-knowledge proofs):1. If S 2 OZK and there exists a probabilisti
 polynomial-time algorithm A su
h that Pr[A(1n) 2Sn℄ � 2=3 holds for all suÆ
iently large n, then S 2 BPP.2. If S 2 ZK and jSnj � 1 for all suÆ
iently large n, then S 2 OZK. Thus, if NE 6� BPE andone-way fun
tions exist, then OZK 6� BPP.Proof: For the negative result of Part 1 we may weaken the de�nition of zero-knowledge, andonly 
onsider simulating the output of the �rst stage (rather than the veri�er's view of this stage).That is, referring to the notation in De�nition 3.1, we 
onsider the requirement that, on inputx 2 S, one 
an eÆ
iently simulate (P; V1)(1jxj); that is, there exists a probabilisti
 polynomial-timema
hine M su
h that fM(x)gx2S and f(P; V1)(1jxj)gx2S are 
omputationally indistinguishable (bypolynomial-size 
ir
uits). Let S and A be as in Part 1, and let P; V1;M be as above (and V2 as inDe�nition 3.1). A
tually, we assume (w.l.o.g.) that the intera
tive proof has error probability atmost 0:1 (rather than at most 1=3). Then, for all but �nitely many z 2 S and all x 2 f0; 1gjzj, itholds that Pr[V2(x;M(z))=1℄ = Pr[V2(x; (P; V1)(1jzj))=1℄� 0:01;be
ause otherwise x 
an be in
orporated in a small 
ir
uit that distinguishesM(z) from (P; V1)(1jzj).Thus, for all but �nitely many x, it holds thatPr[V2(x;M(A(1jxj)))=1℄ = Pr[V2(x; (P; V1)(1jxj))=1℄ � 0:35;be
ause Pr[A(1jxj) 2 Sjxj℄ > 0:66. This suggests an eÆ
ient probability de
ision pro
edure for S:On input x, invoke V2(x;M(A(1jxj))), and rule a

ordingly. Observing that this de
ision pro
edurehas error probability at most 0:1 + 0:35 = 0:45, it follows that S 2 BPP.Turning to Part 2, we �rst 
onsider a set S 2 ZK su
h that jSnj � 1, and show that it isin OZK. On input 1n, the prover �rst determines the unique n-bit string in Sn (or halts if nosu
h string exists), sends it to the veri�er, then the two parties pro
eed using the standard zero-knowledge proof, and at the end the veri�er (i.e., V2) 
he
ks whether the input equals the n-bitlong string sent by the prover (at the beginning of the intera
tion). Thus, S 2 OZK. Lastly,assuming NE 6� BPE (and the existen
e of one-way fun
tions), we obtain a set S 2 ZK n BPPsu
h that jSnj � 1 (by 
ombining a twist on the 
onstru
tion presented in the proof of Claim 2.4with a standard zero-knowledge proof for sets in NP).76A stronger requirement (whi
h mandates simulating the �rst stage based solely on the length of the a
tual input)is dis
ussed in Remark 4.5.7Given S0 2 NE n BPE, 
onsider the unary set S = f12jxj+idx(x)�1 : x 2 S0g, where idx(x) is the index of x in thestandard lexi
ographi
 order of all jxj-bit strings. Clearly S 2 NP n BPP and jSnj � 1. Re
all that the standard
onstru
tion of zero-knowledge proofs for sets in NP uses any one-way fun
tion [5, Se
. 4.4℄.8



Remark 4.4 (OZK may extend beyond ONP): While OZK � OIP holds trivially, assumingthat NE 6= ESPACE yields that OZK extends beyond NP. Analogously to the proof of Part 2in Proposition 4.3, the foregoing assumption yields a unary set in PSPACE n NP, and usingzero-knowledge proofs for sets in IP (
f. [5, Thm. 4.4.12℄) we are done.Remark 4.5 (strong zero-knowledge): We say that an input-oblivious intera
tive proof system isstrongly zero-knowledge if one 
an eÆ
iently simulate the veri�er's view of the �rst stage basedsolely on 1jxj (rather than based on x). It is easy to see that su
h proof systems exist only for setsin BPP, even if it is only required to eÆ
iently simulate the veri�er's output of the �rst stage (i.e.,(P; V1)(1jxj)) based on 1jxj.
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