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1 IntrodutionVarious types of proof systems play a entral role in the theory of omputation. In addition toNP-proof systems, whih provide the de�nitional pillar of NP, probabilisti proof systems givingrise to lasses suh as IP;ZK and PCP have also played a major role. (For further bakground,see [6, Chap. 9℄.)In all these ases, the veri�ation proedure is personi�ated by a player, alled the veri�er,whih interats (impliitly or expliitly) with a more powerful entity, alled the prover. The natureof this interation may vary aording to the type of proof system being onsidered, but in allases the interation may depend on a ommon input, whih represents the laim being provedand veri�ed. In partiular, in all ases, the ations of the presribed prover may depend on thisommon input.In this work we ask how is the expressive power of these proof system e�eted when the pre-sribed prover is only given the length of the laim to be proved. We stress that we restrit thepower of the prover being referred to in the ompleteness ondition, but maintain the original for-mulation of the soundness ondition. That is, we ask what is the power of input-oblivious proversin eah of these proof systems.1.1 The ase of NPConsider for example the ase of NP. Reall that S 2 NP if there exists a polynomial-time(veri�ation) proedure V and a polynomial p suh thatCompleteness: For every x 2 S there exists w 2 f0; 1gp(jxj) suh that V (x;w) = 1.Soundness: For every x 62 S and every w, it holds that V (x;w) = 0.We ask whether (for this proedure V or for an alternative one) it holds that for every n 2 Nthere exists w 2 f0; 1gp(n) suh that for every x 2 Sn def= S \ f0; 1gn it holds that V (x;w) = 1.Suh a string w may be onsidered a universal NP-witness (for all x 2 Sn), and its existene yieldsa poly(n)-sized iruit for deiding Sn (i.e., S 2 P=poly). But does every set in NP \ P=polyhave suh universal NP-witnesses? Denoting the lass of sets having input-oblivious NP-proofs byONP , we show thatTheorem 1.1 (on the power of input-oblivious NP-proofs):1. ONP = NP if and only if NP � P=poly.2. If NE 6= E, then ONP 6= P.3. RP � ONP � NP \ P=poly.While the proofs of all items of Theorem 1.1 are quite easy, we �nd the foregoing assertions quiteinteresting. In partiular, we highlight the fat that the �rst item provides a uniform omplexityformulation of the onjeture NP 6� P=poly. We mention that it is not lear whether or notONP = NP \ P=poly; ditto whether or not BPP \ NP � ONP (or whether \BPP � NPimplies BPP � ONP").We also de�ne and study input-oblivious versions of interative proof systems (i.e., IP), zero-knowledge proof systems (i.e., ZK), and probabilistially hekable proof systems (i.e., PCP).1



Related work. Chakaravarthy and Roy [4℄ onsidered an input-oblivious version of the symmet-ri alternation lass S2, and showed that this new lass, denoted O2, ontains BPP . They alsoshowed that if NP � P=poly, then the Polynomial-time Hierarhy ollapses to O2. We note that itis not lear how O2 relates to NP, but it is syntatially obvious that O2 ontains the lass ONP ,de�ned by us.1.2 Connetion to iruit lower boundsAn additional motivation for the study of input-oblivious proof systems omes from their on-netion to iruit omplexity. As we explain below, input-oblivious proof systems may be viewedas a restrition of P=poly to advie strings that an be veri�ed. As suh, it turns out that, whileinput-oblivious proof systems are stritly weaker than P=poly, there are ases in whih the the om-putational limitations of input-oblivious proof systems imply orresponding limitations on P=poly.Thus, proving that ertain lasses do not have small iruits is equivalent to proving that theselasses have no input-oblivious proof systems. Details follow.Reall that P=poly may be viewed as the lass of sets that an be deided by a Turing mahinethat takes advie. The advie is an arbitrary string of polynomial length, whih may depend onthe length of the input but not on the input itself. Consider the funtion f : N! f0; 1g� that mapseah input length to its orresponding advie string. The de�nition of P=poly plaes no restritionson the omplexity of omputing f , and in partiular f is not even required to be omputable. Thisfeature of the advie makes P=poly a powerful lass, whih an even ompute funtions that arenot omputable by Turing mahines.It is a natural question to ask what happens when we plae omputational restritions on f .The �rst restrition that may ome to mind is to require that f(n) is omputable in time poly(n).However, restriting P=poly in this way results in the lass P, and is therefore not very interesting.A seond natural restrition is requiring the funtion f to be veri�able. In other words, werequire that although we may not be able to ompute the advie eÆiently, we an at least verifyits orretness. This idea an be realized in few possible ways, and our notions of input-obliviousproof systems an be thought as suh realizationsOur notions of input-oblivious proof systems (e.g., ONP) may be useful towards studyingthe iruit omplexity of the their standard ounterparts (resp., NP), beause on the one handthese input-oblivious proof systems are stritly weaker than P=poly, and on the other hand theyretains muh of the power of P=poly. As an example, onsider the lass ONP, On the one hand,ONP is ontained in NP , and is therefore stritly weaker than P=poly (sine it an not deideunomputable funtions). On the other hand, Theorem 1.1 shows that if P=poly ontains NP,then so does ONP , and this is sense ONP is quite powerful. A partiulary interesting orollaryof this theorem is that proving iruit lower bounds for NP is equivalent to separating ONP fromNP .The foregoing disussion is not restited to ONP . In Setion 3 we onsider the lass OIP,whih is the input-oblivious version of IP. The lass OIP may also be thought of as the lassthat results from restriting the advie of P=poly (i.e., the above funtion f) to be veri�able by aninterative protool. We show thatOIP = IP \ P=poly ; whih equals PSPACE \ P=poly.This equality gives a haraterization of OIP as a powerful restrition of P=poly. It also impliesthat proving iruit lower bounds for PSPACE is equivalent to separating OIP from IP.An additional example is the lass OMA, the input-oblivious version of MA (see Setion 3).The lass OMA may also be thought of as the lass that results by restriting the advie of P=poly2



to be veri�able by in probabilisti polynomial-time (rather than in determinsti polynomial-time).Babai et al. [3℄ showed that if EXP � P=poly then EXP =MA, and their proof impliitly yieldsthe stronger onlusion EXP = OMA. The latter result may be viewed as saying that OMA,while being a restrition of P=poly, is still suÆiently powerful to ontain EXP if P=poly ontainsEXP . This implies that in order to prove iruit lower bounds for EXP , it suÆes to separateEXP from OMA.Similarly, Impagliazzo et al. [8℄ showed that NEXP � P=poly implies NEXP = MA, andimpliitly that NEXP � P=poly implies NEXP = OMA. This result too may be interpreted assaying that in order to prove iruit lower bounds for NEXP , it suÆes to separate NEXP fromOMA.We onlude that input-oblivious proof systems suh as ONP , OMA, and OIP an be viewedas powerful restritions of P=poly, and therefore may serve as a useful target for researh on lowerbounds.1.3 Organization and a piee of notationIn Setion 2 we study input-oblivious NP-proof systems (ONP). The study of general input-obliviousinterative proof systems (i.e., OIP) and the speial ase of input-oblivious MA are presented inSetion 3. Other forms of input-oblivious probabilisti proof systems are investigated in Setion 4.Reurring notation. For an arbitrary set S � f0; 1g� and n 2 N, we denote by Sn the setS \ f0; 1gn.2 Input-Oblivious NP-Proof Systems (ONP)In ontinuation to the disussion in the introdution, we de�ne the input-oblivious version of NP-proof systems as follows:De�nition 2.1 (input-oblivious NP-proofs { ONP): A set S has an input-oblivious NP-proof sys-tem if there exists a polynomial-time algorithm V and a polynomial p suh that the following twoonditions hold.Completeness: For every n 2 N, there exists w 2 f0; 1gp(n) suh that for every x 2 Sn def= S\f0; 1gnit holds that V (x;w) = 1. We all w a universal witness.Soundness: For every x 62 S and every w, it holds that V (x;w) = 0.The lass ONP onsists of all sets having input-oblivious NP-proof systems.Clearly, ONP � NP\P=poly, sine the \universal NP-witnesses" (guaranteed by the ompletenessondition) an be used as non-uniform advie. We next establish all other laims of Theorem 1.1:Claim 2.2 RP � ONP.Proof: Let S 2 RP . Using error redution, we obtain a polynomial-time algorithm A and apolynomial p suh that for every x 2 S it holds that Prr2f0;1gp(jxj) [A(x; r)=1℄ > 1� 2�jxj (whereasA(x; r) = 0 for every x 62 S and r). Thus, there exists a string r 2 f0; 1gp(n) suh that A(x; r) = 1for every x 2 Sn, whih yields the desired universal NP-witness (w.r.t V = A).3



Claim 2.3 ONP = NP if and only if NP � P=poly.Proof: Clearly, if ONP = NP , then NP = ONP � P=poly. The proof of the opposite diretionuses one main idea of the proof of the Karp{Lipton theorem [9℄ (i.e., NP � P=poly impliesthat the Polynomial-time Hierarhy ollpases to its seond level). We follow the presentation in [6,Se. 3.2.3℄, where the hypothesis is shown to yield polynomial-size iruits for �nding NP-witnesses.Spei�ally, onsider any NP-omplete set S, and reall that searhing NP-witnesses for x 2 S isreduible to deiding S; that is, there exists a relation R suh that S = fx : 9w (x;w) 2Rg andsolving the searh problem assoiated with R is reduible to deiding S (f. [6, Thm. 2.16℄). Now,assuming that NP � P=poly, it follows that this searh problem an be solved by polynomial-sized iruits (i.e., by applying the said redution and using the iruits guaranteed for deidingS 2 NP � P=poly).The input-oblivious NP-proof system for S will use these (witness �nding) iruits as universalwitnesses; that is, onsider V suh that V (x;w) = 1 if and only if w is a desription of a iruitCw and (x;Cw(x)) 2 R, and use w as a universal witness for length n if it desribes a poly(n)-sizewitness-�nding iruit for instane length n. Finally, sine S is NP-omplete (and S 2 ONP), itfollows that NP = ONP .1Claim 2.4 If NE 6= E (resp., NE 6� BPE), then ONP 6= P (resp., ONP 6� BPP).Proof: Let S 2 NE n E (resp., S 2 NE n BPE), and let V be a polynomial-time algorithm and be a onstant suh that x 2 S if and only if there exists w 2 f0; 1gN , where N = 2jxj, suh thatV (x;w) = 1. De�ning S0 def= fxy : x2S ^ jyj=2jxj � jxjg; (1)we show that S0 2 ONP. Consider a proedure V 0 suh that V 0(xy; uwv) = 1 if and only ifjyj = 2jxj�jxj and V (x;w) = 1; that is, on input x0 and w0, the proedure V 0 aepts x0 if and onlyif jx0j is a power of two and w0 ontains a substring that is a NE-witness for the membership ofthe log2 jx0j-bit long pre�x of x0 in the set S. Note that if xy 2 S0 (and jyj = 2jxj � jxj), then thereexists wx 2 f0; 1gjxyj suh that V (x;wx) = 1. Then, letting wn = w0n � � �w1n 2 f0; 1g2n �2n suhthat V (x;wx) = 1 if (and only if) x 2 Sn, it holds that wn is a universal NP-witness for length 2n:Indeed, for every z 2 S02n it holds that V 0(z; wn) = 1, whereas for every z 62 S0 and w it holds thatV 0(z; w) = 0. The laim follows, sine S0 62 P (resp., S0 62 BPP).Remark 2.5 (on sparse sets): The proof of Claim 2.4 an be used to show that every sparse NP-setis in ONP, where a set S is sparse if jSnj � poly(n). The key idea is that if proving membershipof any n-bit long string (in Sn) an be done by using one of poly(n)-many NP-witnesses, thenonatenating these witnesses yields a universal NP-witness. The same argument an be applied toshow that NE = ONE, where ONE is the universal witness analogue of NE (and so the number ofyes-instanes of a spei� length is polynomial in the length of the orresponding NE-witnesses).Lastly note that, while every o-sparse is in P=poly, it is unlear whether every o-sparse NP-setis in ONP.21We use the fat that if S0 is Karp-reduible to a set in ONP, then S0 2 ONP. This is obvious if the redution islength-regular (i.e., it maps instanes of the same length to instanes of the same length). In general, when reduing S0to S, we may use as universal witnesses for S0n the onatenation of universal witnesses for Sm for m = 1; :::; poly(n).2A set S is alled o-sparse if jSnj � 2n � poly(n). We mention that relative to a random orale, there exists ao-sparse set in NP n ONP. 4



3 Input-Oblivious Interative Proof Systems (OIP)When de�ning an input-oblivious version of IP, we should make sure that the veri�er does notommuniate the input to the prover, who does not get it. The simplest way to guarantee thisfeature is to deouple the interation into two stages: In the �rst stage, both parties are onlypresented with the length of the input, and in the seond stage the veri�er is given the atual inputbut is disonneted from the prover. Thus, the veri�er is deomposed into two parts, denoted V1and V2, and its deision regarding the input x is written as V2(x; (P; V1)(1jxj)), where (P; V1)(1n)denotes the output of V1 after interating with the prover P on ommon input 1n. (Note that thesaid output of V1 may ontain its entire view of the interation with P , and that without loss ofgenerality V2 may be deterministi (sine its oins may be tossed and reorded by V1).)De�nition 3.1 (input-oblivious interative proofs { OIP): A set S has an input-oblivious inter-ative proof system if there exists a probabilisti polynomial-time interative mahine V1 and apolynomial-time algorithm V2 suh that the following two onditions hold.ompleteness: There exists a strategy P suh that, for every x 2 S, it holds that Pr[V2(x; (P; V1)(1jxj))=1℄ � 2=3.If the latter probability always equals 1, then we say that the system has perfet ompleteness.soundness: For every x 62 S and every strategy P , it holds that Pr[V2(x; (P; V1)(1jxj)=1℄ � 1=3.The lass OIP onsists of all sets having input-oblivious interative proof systems.As in the ase of ONP , the soundness ondition of OIP maintains the analogous ondition of IP.Theorem 3.2 (on the power of input-oblivious interative proofs): OIP = IP \ P=poly. Fur-thermore, eah set in IP \ P=poly has an input-oblivious interative proof system with perfetompleteness.Proof: To see that OIP is ontained in P=poly, we �rst apply error redution to an input-obliviousinterative proof system for any S 2 OIP suh that the error probability on instanes of length nis smaller than 2�n. Thus, there exists an output of V1 (after interating with P on 1n), denotedy, suh that for every x 2 f0; 1gn it holds that x 2 S if and only if V2(x; y) = 1. This output (i.e.,y) an be used as non-uniform advie, whih implies that S 2 P=poly.We now assume that S 2 IP \ P=poly, and let fCng be a family of polynomial-size iruitdeiding S. On ommon input 1n, the (input oblivious) prover sends Cn to the veri�er V1, andproves to it that Cn is orret (i.e., that for every x 2 f0; 1gn it folds that Cn(x) = 1 i� x 2 S).Note that the latter assertion an be veri�ed in polynomial-spae, and hene it an be proved byan interative proof (with perfet ompleteness) [13, 14℄. The output of V1 equals Cn if V1 wereonvined by the proof, and is the identially zero iruit otherwise. Finally, on input x and y(representing V1's output), algorithm V2 outputs Cy(x), where Cy is the iruit represented by thestring y. Thus, S 2 OIP (and furthermore S has an input-oblivious interative proof with perfetompleteness).The lass OMA. The lass OMA is the input-oblivious version of MA, whih in turn is arandomized version of NP (in whih the �nal veri�ation of witnesses is probabilisti). In terms ofinput-oblivious interative proofs (i.e., OIP), the lass OMA ontains sets having a uni-diretional5



interative proof system of perfet ompleteness (in whih, �rst the prover sends a message, andthen the veri�er tosses some oins). We observe that Lautemann's argument [12℄, whih has beenused to show BPP �MA, allows showing that BPP � OMA.Proposition 3.3 BPP � OMA.Proof: Let S 2 BPP and onsider an algorithm A suh that Prr2f0;1gp(jxj) [A(x; r) = �S(x)℄ >1 � 2�jxj, where �S(x) = 1 is x 2 S and �S(x) = 0 otherwise. Reall that the standard argumentasserts that for every x 2 S there exists s1; :::; sp(jxj) 2 f0; 1gp(jxj) suh that for every r 2 f0; 1gp(jxj)it holds that Wi2[p(jxj)℄A(x; r�si) = 1, whereas for any x 62 S and s1; :::; sp(jxj) 2 f0; 1gp(jxj) it holdsthat Prr2f0;1gp(jxj) [Wi2[p(jxj)℄A(x; r�si) = 1℄ is smaller than p(jxj)=2jxj. We just note that, for everyn 2 N, there exists s1; :::; sp(jxj)+jxj 2 f0; 1gp(jxj) suh that for every x 2 Sn and every r 2 f0; 1gp(jxj)it holds that Wi2[p(jxj)+jxj℄A(x; r�si) = 1.4 Input-Oblivious Versions of PCP and ZKIn this setion, we onsider input-oblivious versions of the lasses PCP (Probabilistially ChekableProofs) and ZK (Zero-Knowledge interative proofs). In both ases, we provide evidene that thesaid lasses extend beyond the obvious (e.g., beyond P), but note that they are unlikely to ontainall of ONP.4.1 Input-Oblivious PCPFor sake of simpliity, we fous on PCP system of logarithmi randomness omplexity and onstantquery omplexity, and identify suh systems with the term PCP.De�nition 4.1 (input-oblivious probabilistially hekable proofs { OPCP): A set S has an input-oblivious PCP system if there exists a probabilisti polynomial-time orale mahine V of logarithmirandomness omplexity and onstant query omplexity suh that the following two onditions hold.Completeness: For every n 2 N there exists an orale �n suh that, on input any x 2 Sn and aessto the orale �n, mahine V always aepts x.Soundness: For every x 62 S and every orale �, on input x and aess to orale �, mahine Vrejets x with probability at least 12 .The lass OPCP onsists of all sets having input-oblivious PCP systems.Clearly, OPCP � ONP , but the onverse may not hold. It is not even lear that every sparseNP-set is in OPCP . Still, Claim 2.4 extends to OPCP .Proposition 4.2 (on the power of input-oblivious PCPs): If NE 6= E (resp., NE 6� BPE), thenOPCP 6= P (resp., OPCP 6� BPP).Proof: Realling the onstrution used in the proof of Claim 2.4, we obtain a set S0 in ONP thathas the following additional property: There exist a polynomial-time omputable length-preservingfuntion, denoted f , suh that f maps all n-bit long strings to a polynomial-time onstrutible setof representatives while maintaining membership in S0; that is, the following onditions hold.6



1. The set ff(z) : z 2 f0; 1gng is poly(n)-time onstrutible;2. z 2 S0 if and only if f(z) 2 S0.(Referring to the set S0 as de�ned in Eq. (1), onsider f(xy) = x0jyj, where jyj = 2jxj � jxj.) Thus,proving membership of an arbitrary n-bit long string in S0 redues to proving membership in S0of the orresponding representative, whih means that we need only take are of poly(n)-manyinstane-witness pairs. Applying the PCP Theorem (f. [2, 1℄) to the inputs in the range of falong with orresponding NP-witnesses, we obtain the desired input-oblivious PCP. Spei�ally, oninput z, the veri�er omputes r  f(z), determines the index of r in the set ff(s) : s 2 f0; 1gjzjg,and aesses the orresponding portion of the proof orale, where the latter portion ontains theproof orale produed for the input f(z) using a orresponding NP-witness (whih may just be auniversal NP-witness for length jzj = jf(z)j).Digest. The proof of Proposition 4.2 does not use the fat that S0 2 ONP, but rather usesthe additional struture guaranteed by the polynomial-time omputable funtion f . This seemsrequired sine in standard PCP onstrutions the proof orale depends on the input (and notonly on the orresponding NP-witness).3 Note that it is even unlear whether RP is in OPCP ,although learly P � OPCP . On the other hand, we note that Condition (1) an be relaxed suhthat it is only required that the set Rn def= ff(z) : z 2 f0; 1gng has poly(n)-size (rather than beingpoly(n)-time onstrutible). Atually, it suÆes to required that jRn \ Snj � p(n), for some �xedpolynomial p (and all n). This relaxation is shown to suÆe by using a suitable hashing sheme tomap elements of Rn to indies in, say, [3p(n)℄ suh that no two elements are mapped to the sameindex, and using these indies as in the proof of Proposition 4.2. Spei�ally, we use a poly(n)-sizefamily of eÆiently omputable hashing funtions, Hn, that map f0; 1gn to [3p(n)℄ suh that forevery two distint a; b 2 f0; 1gn it holds that Prh2Hn [h(a)=h(b)℄ < 1=2p(n).4 On input z 2 f0; 1gn,the modi�ed veri�er omputes r f(z), selets uniformly h 2 Hn, and aesses the portion of theproof orale that orresponds to (h; h(r)), whih is supposed to ontain a proof that there existsw 2 Rn \Sn suh that h(f(w)) = v, where v  h(r). Note that the latter NP-assertion refers onlyto h and v (and n), and so we may use any NP-witness for it (and obtain a orresponding PCP oraleproof). Hene, the ompleteness ondition is satis�ed by a proof orale that is a onatenation ofproofs for the various possible values of (h; v), whereas on input z 2 Sn the veri�er always aessesa portion that orresponds to a valid assertion (sine it uses v = h(f(z))). The soundness onditionholds beause any z 62 Sn is mapped with onstant probability to an h Æ f -image (for a randomh 2 Hn) that has no h Æ f -preiamge in Rn \ Sn.4.2 Input-Oblivious ZKThe lass OZK onsists of sets having an input-oblivious interative proof system in whih thepresribed prover is zero-knowledge in the standard (omplexity oriented) sense.5 This de�nitionrequires eÆient simulation of the (presribed) veri�er's view of the interation, based solely on theveri�er's atual input. (Indeed, here we refer to the veri�er as the ombination of the two stages,3Thus, it is not lear that a universal NP-witness yields a universal PCP proof orale.4Suh onstrutions are presented in [7, 10, 11, 15℄.5The standard (omplexity theoreti) de�nition of zero-knowledge requires eÆient simulation of the view of thepresribed veri�er (of the interation with the prover); a stronger de�nition, ommonly used in ryptography (f. [5,Se. 4.3.1℄), requires eÆient simulation of the view of arbitrary probabilisti polynomial-time adversaries. We notethat our positive results extend also to the general (i.e., adversarial veri�er) notion of zero-knowledge.7



denoted V1 and V2, and note that this ombined veri�er gets the atual input (rather than merelyits length).)6Clearly, BPP � OZK (sine any set in BPP has an input-oblivious interative proof system inwhih the presribed prover does nothing, and hene is easily simulatable). It turns out that OZKmay extend beyond BPP only in the ase of sets for whih it is hard to �nd yes-instanes of anydesired length.Proposition 4.3 (on the power of input-oblivious zero-knowledge proofs):1. If S 2 OZK and there exists a probabilisti polynomial-time algorithm A suh that Pr[A(1n) 2Sn℄ � 2=3 holds for all suÆiently large n, then S 2 BPP.2. If S 2 ZK and jSnj � 1 for all suÆiently large n, then S 2 OZK. Thus, if NE 6� BPE andone-way funtions exist, then OZK 6� BPP.Proof: For the negative result of Part 1 we may weaken the de�nition of zero-knowledge, andonly onsider simulating the output of the �rst stage (rather than the veri�er's view of this stage).That is, referring to the notation in De�nition 3.1, we onsider the requirement that, on inputx 2 S, one an eÆiently simulate (P; V1)(1jxj); that is, there exists a probabilisti polynomial-timemahine M suh that fM(x)gx2S and f(P; V1)(1jxj)gx2S are omputationally indistinguishable (bypolynomial-size iruits). Let S and A be as in Part 1, and let P; V1;M be as above (and V2 as inDe�nition 3.1). Atually, we assume (w.l.o.g.) that the interative proof has error probability atmost 0:1 (rather than at most 1=3). Then, for all but �nitely many z 2 S and all x 2 f0; 1gjzj, itholds that Pr[V2(x;M(z))=1℄ = Pr[V2(x; (P; V1)(1jzj))=1℄� 0:01;beause otherwise x an be inorporated in a small iruit that distinguishesM(z) from (P; V1)(1jzj).Thus, for all but �nitely many x, it holds thatPr[V2(x;M(A(1jxj)))=1℄ = Pr[V2(x; (P; V1)(1jxj))=1℄ � 0:35;beause Pr[A(1jxj) 2 Sjxj℄ > 0:66. This suggests an eÆient probability deision proedure for S:On input x, invoke V2(x;M(A(1jxj))), and rule aordingly. Observing that this deision proedurehas error probability at most 0:1 + 0:35 = 0:45, it follows that S 2 BPP.Turning to Part 2, we �rst onsider a set S 2 ZK suh that jSnj � 1, and show that it isin OZK. On input 1n, the prover �rst determines the unique n-bit string in Sn (or halts if nosuh string exists), sends it to the veri�er, then the two parties proeed using the standard zero-knowledge proof, and at the end the veri�er (i.e., V2) heks whether the input equals the n-bitlong string sent by the prover (at the beginning of the interation). Thus, S 2 OZK. Lastly,assuming NE 6� BPE (and the existene of one-way funtions), we obtain a set S 2 ZK n BPPsuh that jSnj � 1 (by ombining a twist on the onstrution presented in the proof of Claim 2.4with a standard zero-knowledge proof for sets in NP).76A stronger requirement (whih mandates simulating the �rst stage based solely on the length of the atual input)is disussed in Remark 4.5.7Given S0 2 NE n BPE, onsider the unary set S = f12jxj+idx(x)�1 : x 2 S0g, where idx(x) is the index of x in thestandard lexiographi order of all jxj-bit strings. Clearly S 2 NP n BPP and jSnj � 1. Reall that the standardonstrution of zero-knowledge proofs for sets in NP uses any one-way funtion [5, Se. 4.4℄.8



Remark 4.4 (OZK may extend beyond ONP): While OZK � OIP holds trivially, assumingthat NE 6= ESPACE yields that OZK extends beyond NP. Analogously to the proof of Part 2in Proposition 4.3, the foregoing assumption yields a unary set in PSPACE n NP, and usingzero-knowledge proofs for sets in IP (f. [5, Thm. 4.4.12℄) we are done.Remark 4.5 (strong zero-knowledge): We say that an input-oblivious interative proof system isstrongly zero-knowledge if one an eÆiently simulate the veri�er's view of the �rst stage basedsolely on 1jxj (rather than based on x). It is easy to see that suh proof systems exist only for setsin BPP, even if it is only required to eÆiently simulate the veri�er's output of the �rst stage (i.e.,(P; V1)(1jxj)) based on 1jxj.
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