
On the Randomness Complexity of Property Testing�Oded GoldreichyDepartment of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded.goldreich@weizmann.ac.il Or She�etz24 Tirza streetRamat GanIsrael.or.sheffet@gmail.comAugust 9, 2007AbstractWe initiate a general study of the randomness complexity of property testing, aimed at re-ducing the randomness complexity of testers without (signi�cantly) increasing their query com-plexity. One concrete motivation for this study is provided by the observation that the productof the randomness and query complexity of a tester determine the actual query complexityof implementing a version of this tester that utilizes a weak source of randomness (through arandomness-extractor). We present rather generic upper- and lower-bounds on the randomnesscomplexity of property testing and study in depth the special case of testing bipartiteness intwo standard property testing models.Keywords: Property Testing, Randomness Complexity, Weak Sources of Randomness, Random-ness Extractors, Sampling.

�This work is based on the M.Sc. thesis of the second author, which was completed under the supervision of the�rst author.yPartially supported by the Israel Science Foundation (grant No. 460/05).zWork done while Or was a graduate student at the Weizmann Institute of Science.



Contents1 Introduction 21.1 The Perspective of Average-Estimation : : : : : : : : : : : : : : : : : : : : : : : : : : 21.2 A Concrete Motivation: Using Weak Sources of Randomness : : : : : : : : : : : : : 21.3 Speci�c Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41.4 Generic Bounds : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52 Generic Bounds 52.1 Lower Bounds : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52.1.1 Strongly evasive properties : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62.1.2 Relabeling-invariant properties : : : : : : : : : : : : : : : : : : : : : : : : : : 72.1.3 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82.2 Upper Bounds : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92.2.1 A generic bound : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92.2.2 Bounds for canonical testers of graph properties : : : : : : : : : : : : : : : : 103 Speci�c Algorithms: The Case of Bipartiteness 113.1 In the Adjacency Matrix Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 113.1.1 The tester of [GGR] : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 113.1.2 A warm-up: randomness-e�cient tester of query complexity ~O(��4) : : : : : 123.1.3 The actual algorithm: randomness-e�cient tester of query complexity ~O(��3) 143.2 In the Bounded-Degree Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 17Bibliography 19Appendix: Preliminaries 21A.1 On Using Weak Random Sources : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21A.1.1 Analysis of the standard use of extractors : : : : : : : : : : : : : : : : : : : : 21A.1.2 On two main types of weak sources : : : : : : : : : : : : : : : : : : : : : : : : 21A.2 Randomness-E�cient Hitters : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

1



1 IntroductionProperty testing [RS, GGR] is concerned with a relaxed type of decision problems; speci�cally,for a �xed property (resp., a set) �, the task is to distinguish between objects that have property� (resp., are in �) and objects that are \far" from have property � (resp., are \far" from anyobject in �). The focus of property testing is on sublinear-time algorithms, which in particularcannot examine the entire object. Instead, these algorithms, called testers, may obtain bits in therepresentation of the object by issuing adequate queries. Indeed, in this case, the query complexityof testers becomes a measure of central interest.For natural properties, testers of sublinear query-complexity must be randomized (see articu-lation in Section 2.1). This is a qualitative assertion, and the corresponding quantitative questionarises naturally: for any �xed property � and a sublinear function q, what is the randomness-complexity of testers for � that have query-complexity q?In addition to the natural appeal of the foregoing question, there are concrete reasons to careabout it. Firstly, the randomness-complexity of a tester determines the length of PCPs that areconstructed on top of this tester. Indeed, this was the motivation for the interest of [GS, BSVW] inreducing the randomness complexity of low-degree testing. Secondly, the randomness-complexityof a tester a�ects the complexity of implementing a version of this tester while utilizing a weaksource of randomness. This motivation is further discussed in Section 1.2.Indeed, the randomness-complexity of testers was considered in some prior work, startingin [GS]. This subject is the pivot of [BSVW] and the main topic of [SW]. However, all theseworks refer to speci�c (algebraic) tasks (i.e., testing low-degree polynomials and group homomor-phisms). In contrast, our focus in this paper is either on general properties (see Section 1.4) or onspeci�c combinatorial properties (see Section 1.3).1.1 The Perspective of Average-EstimationProperty testing is a vast generalization of the task of estimating the average value of a function.Speci�cally, consider the task of distinguishing between functions f : f0; 1gn ! f0; 1g having av-erage value exceeding 0:5 and functions that are �-far from having this property (i.e., functionshaving average value below 0:5 � �). Clearly, this task can be solved by a randomized algorithmthat queries the function at O(1=�2) (random) points. This query-complexity is optimal and anyalgorithm achieving it, called a sampler, must be randomized (see [CEG]). Furthermore, a quanti-tative study of the randomness-complexity of samplers in terms of their query-complexity was alsocarried out in [CEG]. The current paper may be viewed as extending this study to the domain ofgeneral property testing.Note that estimating the average value of a function corresponds to very restricted properties offunctions. In particular, these properties are symmetric (i.e., are invariant under any relabeling ofthe inputs to the function). In contrast, most of the study of property testing refers to propertiesthat are not symmetric (e.g., being a low-degree polynomial, monotonicity, representing a graphthat has a certain graph property, etc). Furthermore, while all symmetric properties of Booleanfunctions are easily testable by straightforward sampling, this cannot be said about property testingin general (nor about the numerous special cases that were studied in the last decade [F, R]).1.2 A Concrete Motivation: Using Weak Sources of RandomnessIn the standard context of randomized algorithms, a concrete motivation for minimizing therandomness-complexity is provided by the exponential e�ect of the latter measure on the time-2



complexity of a possible derandomization. In contrast, in the context of property testing, de-randomization is typically infeasible, because (as noted above) deterministic testers cannot havesublinear query complexity. Instead, a di�erent motivation (advocated in [G]), becomes very rele-vant in this context.We refer to the e�ect of the randomness-complexity on the overhead involved in implementingthe tester when using only weak sources of randomness (rather than perfect ones). Speci�cally, werefer to the paradigm of implementing randomized algorithms by using (a single sample from) sucha weak source, and trying all possible seeds to an adequate randomness extractor (see below). Weshall see that the overhead created by this method is determined by the randomness-complexity ofthe original algorithm.Recall that a randomness extractor is a function E : f0; 1gs�f0; 1gn ! f0; 1gr that uses an s-bitlong random seed in order to transform an n-bit long (outcome of a) weak source of randomnessinto an r-bit long string that is almost uniformly distributed in f0; 1gr . Speci�cally, we considerarbitrary weak sources that are restricted (only) in the sense that, for a parameter k, no stringappears as the source outcome with probability that exceeds 2�k. Such sources are called (n; k)-sources (and k is called the min-entropy). Now, E is called a (k; �)-extractor if for any (n; k)-sourceX it holds that E(Us;X) is �-close to Ur, where Um denotes the uniform distribution over m-bitstrings (and the term `close' refers to the statistical distance between the two distributions). Forfurther details about (k; �)-extractors, the interested reader is referred to Shaltiel's survey [Shal].Next we recall the standard paradigm of implementing randomized algorithms while usingsources of weak randomness. Suppose that the algorithm A has time-complexity t and randomness-complexity r � t. Recall that, typically, the analysis of algorithm A refers to what happenswhen A obtains its randomness from a perfect random source (i.e., for each possible input �, weconsider the behavior of A(�;Ur), where A(�; !) denotes the output of A on input � when givenrandomness !). Now, suppose that we have at our disposal only a weak source of randomness;speci�cally, a (n; k)-source for n � k � r (e.g., n = 10k and k = 2r). Then, using a (k; �)-extractor E : f0; 1gs � f0; 1gn ! f0; 1gr , we can transform the n-bit long outcome of the weaksource into 2s strings, each of length r, and use the resulting 2s strings (which are \random onthe average") in 2s corresponding invocations of the algorithm A. That is, upon obtaining theoutcome x 2 f0; 1gn from the source, we invoke the algorithm A for 2s times such that in the ithinvocation we provide A with randomness E(i; x). The results of these 2s invocations are processedin the natural manner. For example, if A is a decision procedure, then we output the majority voteobtained in the 2s invocations (i.e., when given the input �, we output the majority vote of thesequence hA(�;E(i; x))ii=1;:::;2s). An analysis of the error probability of this procedure is providedin Appendix A.1.1.Let us consider the cost of the foregoing implementation. We assume, for simplicity, that therunning-time of the randomness extractor is dominated by the running-time of A. Then, algorithmA can be implemented using a weak source, while incurring an overhead factor of 2s. Recallingthat s > log2(n � k) and n > k > r � s must hold (cf. [Shal]), it follows that for k = n � 
(n)the aforementioned overhead is at least linear in r. On the other hand, for n = O(k) = O(r)(resp., n = poly(k) = poly(r)) e�cient randomness-extractors using s = (1 + o(1)) log2 n (resp.,s = O(log n)) are known (see Appendix A.1.2). This establishes our claim that the time-complexityof implementing randomized algorithms when using weak sources is related to the randomness-complexity of these algorithms. The same applies to the query complexity of testers. Speci�cally,for n = O(k) = O(r) (resp., n = poly(k) = poly(r)) the query-complexity of implementing a testeris almost linear in r � q (resp., is poly(r) � q), where q is the query-complexity of the original tester(which uses a perfect source of randomness). 3



1.3 Speci�c AlgorithmsThe motivation discussed in Section 1.2 is best illustrated by our results regarding testing bipar-titeness in the bounded-degree model of [GR1]. Speci�cally, �xing a degree bound d, the task is todistinguish (N -vertex) bipartite graphs of maximum degree d from (N -vertex) graphs of maximumdegree d that are �-far from bipartite (for some parameter �), where �-far means that � � dN edgeshave to be omitted from the graph in order to yield a bipartite graph. It is easy to see that nodeterministic algorithm of o(N) time-complexity can solve this problem. Yet, there exists a prob-abilistic algorithm of time-complexity ~O(pNpoly(1=�)) that solves this problem correctly (withprobability 2=3). This algorithm makes q def= ~O(pNpoly(1=�)) incidence-queries to the graph, and(as described in the work [GR2]) has randomness-complexity r > q > pN (yet r < q � log2N).1Let us now turn to the question of implementing the foregoing tester in a setting where we haveaccess only to a weak source of randomness. In this case, the implementation calls for invoking theoriginal tester ~O(r) times, which yields a total running time of ~O(r) � ~O(pNpoly(1=�)) > N (andthe same bound holds for its query-complexity). But in such a case we better use the standard(deterministic) decision procedure for bipartiteness!Fortunately, a randomness-e�cient implementation of the original tester of [GR2] is possible.This implementation (presented in Section 3.2) has randomness-complexity r0 = poly(��1 logN)(rather than r = poly(��1 logN) � pN). Thus, the cost of the implementation that uses a weaksource of randomness is related to r0 � s = ~O(pNpoly(1=�)), which matches the original bound (upto di�erences hidden in the ~O() and poly() notation).The randomness-e�cient implementation of the [GR2]-tester presented in Section 3.2 is basedon pin-pointing the \random features" used in the original analysis, and providing an alterna-tive implementation that satis�es the same features. In contrast, the randomness-e�cient testerpresented in Section 3.1 is based on new ideas.In Section 3.1 we consider testers for graph properties in the adjacency matrix model of [GGR].Speci�cally, we consider the task of testing bipartiteness. Recall that the tester presented in [GGR]works by selecting a random set of ~O(��2) vertices and inspecting the (corresponding) induced sub-graph. In fact, as shown [GGR], it su�ces to make ~O(��3) queries. A randomness-e�cient imple-mentation of the \random features" used in the original analysis, allows reducing the randomness-complexity to ~O(��1) + O(logN), where N denotes the number of vertices. In contrast, usingan alternative approach, we present a tester of randomness-complexity O(log(1=�)) � logN , whilemaintaining a query-complexity bound of ~O(��3). The latter randomness-e�cient tester is the maintechnical contribution of this work. In the next paragraph, we provide an extremely high-level de-scription of the principles underlying its design.The original tester works by �rst selecting a random sample of t = ~O(��1) vertices, and theanalysis refers to 2t candidate 2-colorings that are induced by all possible 2-partitions of this sample.The tester then selects an auxiliary sample of ~O(t=�) vertex-pairs and checks whether this samplerules out all these 2t candidate 2-colorings. The analysis boils down to showing that if the graph is�-far from bipartite then, with high probability, all these candidate 2-colorings are ruled out. Thisis shown by applying a union bound on this set of 2t candidate 2-colorings, which means that eachcandidate has to be ruled out with probability at least 1� 2�t. Thus, the randomness complexityof any implementation of this tester must exceed t. Seeking to achieve randomness-complexity thatis linearly related to log t, we perform a preliminary step aimed at obtaining a single 2-partitionof the initial t-vertex sample that induces a single candidate 2-coloring, which will be checked as1We comment that 
(pN) is a lower-bound on the query-complexity of any property tester of bipartiteness (inthe bounded-degree model; see [GR1]). 4



in the original tester. The preliminary step obtains such a 2-partition by collecting constraints onthe mutual placements of pair of vertices. These constraints are found using the same mechanismthat underlies the checking of candidates in the original tester. The punch-line is that here weare dealing with �t2� (rather than 2t) events, which allows us to work with an error probability oft�2=O(1) (rather than 2�t=O(1)) per each event.1.4 Generic BoundsIn contrast to the speci�c algorithms described in Section 1.3, we now consider quite generic lower-and upper-bounds on the randomness-complexity of property testers as a function of their query-complexity. We stress that these results do not refer to the time-complexity of the testers, whichmakes the lower-bounds stronger (and the upper-bound weaker).Loosely speaking, we show that, for a wide class of properties of functions de�ned over a domainof size D, the randomness-complexity of testing with q queries is essentially log2(D=q). Needlessto say, the dependence on the query-complexity is essential, because deterministic testers of query-complexity D exist for any property. Furthermore, the randomness-complexity of any tester canbe decreased by an additive term of t while increasing the query complexity by a factor of 2t.The lower-bounds established in Section 2.1 are exactly of the foregoing form, and they applyto two general and natural classes of properties. In particular, these lower-bounds apply to testinglow-degree polynomials (cf., e.g., [BLR, RS]), locally-testable codes (cf., e.g., [GS]), testing graphproperties (in both the adjacency matrix and incidence-list models, see [GGR, GR1], resp.), testingmonotonicity (cf., e.g., [GGLRS]), and testing of clustering (cf., e.g., [ADPR]). The upper-boundestablished in Section 2.2 refers to any property but is actually of the form log2D+log2 log2R+O(1)(rather than log2(D=q)), where R is the size of the range of the functions we refer to.2 Generic BoundsWe consider testing properties of functions from D to R. Fixing a set of such functions �, we saythat a randomized oracle machine T is an �-tester for � if the following two conditions hold:1. For every f 2 � it holds that Pr[T f = 1] � 2=3.2. For every f that is �-far from � it holds that Pr[T f = 1] � 1=3, where f is �-far from � if forevery g 2 � it holds that Prx2D[f(x) 6= g(x)] > �.In case the �rst condition holds with probability 1, we say that T has one-sided error. The queryand randomness complexities of T are de�ned in the natural manner. A tester is called non-adaptiveif it determines its queries based solely on its internal coin-tosses (and independently of the answersto prior queries).Note that we have de�ned property testers for �nite properties and a �xed value of the proximityparameter �. The de�nition may be extended to in�nite properties and varying �, by providing thetester with jDj; jRj and � as inputs (and assuming D = [D]).22.1 Lower BoundsWe provide lower-bounds on the randomness complexity of testing two general classes of properties.2Occasionally, we shall assume that � � jDj�1; otherwise, �-testers coincide with standard decision procedures.5



2.1.1 Strongly evasive propertiesWe �rst consider properties that are \strongly evasive" in the sense that determining the values ofsome function at a constant fraction of the domain leaves the promise problem (of distinguishingbetween yes-instances and \far from yes"-instances) undetermined.3 That is, for �xed parameters� and �, the property � is called strongly evasive if there exists a function f : D ! R such thatfor every D0 � D of density � (i.e., D0 = � �D), there exists f1 2 � and f0 : D ! R that is �-farfrom � such that for every x 2 D0 it holds that f1(x) = f0(x) = f(x). Many natural properties arestrongly evasive (with respect to various pairs of parameters); see examples below. The followingresult can be easily proved by extending a similar result regarding samplers (which is presentedin [CEG]).Theorem 1 Let � be strongly evasive with respect to � and �. Then any �-tester for � that hasquery complexity q, must have randomness complexity greater than log2(�jDj=q).Proof: Let T be an arbitrary �-tester of query-complexity q and randomness-complexity r, andf be a function witnessing the fact that � is strongly evasive. For every ! 2 f0; 1gr , we considerthe set of queries made by T when the outcome of T 's coin-tosses equals ! and T is given oracleaccess to f . Denoting the latter set by Q!, we let D0 = [!2f0;1grQ!. Clearly, jD0j � 2r � q. Thetheorem follows by proving that jD0j > � � jDj.Suppose towards the contradiction that jD0j � � � jDj. Then there exists f1 2 � and f0 : D ! Rthat is �-far from � such that for every x 2 D0 it holds that f1(x) = f0(x) = f(x). It followsthat T f1 and T f0 behaves exactly as T f (because all these functions agree on D0), which yields acontradiction because T must accept f1 with probability at least 2=3 and accept f0 with probabilityat most 1=3.Some applications. Many graph properties are strongly evasive, but since such properties willbe at the focus of Section 2.1.2, we mention �rst a few examples that refer to di�erent types ofproperties.1. Multi-variate polynomial. For every m and d, we consider the set of m-variate polynomialof total degree d (over a �nite �eld F ). To see that this set of functions is strongly evasiveconsider the all-zero function, f , and let f1 = f . Then, for every D0 of density 1=2, letf0(x) = 0 if x 2 D0 and f0(x) = 1 otherwise. Assuming jF j > 4d, it follows that f0 is 1=4-farfrom any degree d polynomial.2. Codes of linear distance. A binary code C � f0; 1gn of distance d = 
(n), is viewed as a setof functions of the form f : [n]! f0; 1g, where each function corresponds to a codeword. Tosee that this set is strongly evasive consider any codeword f , and let f1 = f . Then, for everyD0 of density 1� (d=2n), let f0(x) = f(x) if x 2 D0 and f0(x) = 1� f(x) otherwise. Clearly,f0 is (d=2n)-far from any codeword.3. Monotone functions. A function f : f0; 1gn ! f0; 1g is said to be monotone if f(x) � f(y) forevery x � y, where � denotes the natural partial order among strings (i.e., x1 � � � xn � y1 � � � ynif xi � yi for every i and xi < yi for some i). To see that the set of monotone functions is3This notion of \strongly evasive" is incomparable to the standard de�nition of evasiveness (cf. [LY]). On onehand, strong evasiveness has a non-deterministic 
avor and furthermore it refers to the relaxation of property testing.On the other hand, we shall focus on �� 1, whereas standard evasiveness refers to � = 1� jDj�1.6



strongly evasive consider the all-one function f , and let f1 = f . Then, for every D0 of density1=4, let f0(�z) = f(�z) if f0z; 1zg \ D0 6= ; and f0(�z) = 1 � � otherwise. Note that iff0z; 1zg \D0 = ; then f0 must be modi�ed at either 0z or 1z in order to obtain a monotonefunction. Thus, f0 is 1=4-far from being monotone.Turning back to graph properties, we focus on the bounded incidence lists model (of [GR1]) becausethe results of Section 2.1.2 do not apply to it. We mention a few properties of bounded-degree graphsthat are strongly evasive in the (bounded) incidence lists model. Examples include connectivityand being Eulerian (or Hamiltonian), which can be demonstrated to be strongly evasive by startingwith the N -cycle (and omitting edges). Additional examples such as planarity and bipartitenesscan be demonstrated to be strongly evasive by starting with the empty graph (and adding edges).2.1.2 Relabeling-invariant propertiesWe now consider properties that are invariant under some \nice" relabeling of D. Speci�cally, forany set SD of permutations over D, we say that the property � is SD-invariant if for every f : D ! Rand every � 2 SD it holds that f 2 � if and only (f � �) 2 �, where (f � �)(x) = f(�(x)). Weconsider only sets SD that correspond to a transitive group of permutations over D; that is, SD ispermutation group4 and for every x; y 2 D there exists a permutation � 2 SD such that �(x) = y.Needless to say, the set of all permutations is a transitive group of permutations, but so are alsomany other permutation groups (e.g., the group of all cyclic permutations).Theorem 2 Let SD be a transitive group of permutations over D, and � be a non-empty andSD-invariant property of functions from D to R. Suppose that, for some � 2 R, the all-� functionis 2�-far from �. Then any non-adaptive �-tester for � that has query complexity q, must haverandomness complexity at least log2(jDj=q)� 1.Proof: Like the proof of Theorem 1, the current proof is based on deriving a contradiction fromthe hypothesis that the tester never examines most of the function (i.e., jD0j � jDj). The di�erenceis in the way that this contradiction is derived, since we can no longer take the straightforwardroute o�ered by strong evasiveness.Let T be an �-tester for �, and denote its query-complexity and randomness-complexity byq and r respectively. Since T is non-adaptive, its queries are oblivious of the oracle. For every! 2 f0; 1gr , we denote by Q! the set of queries made by T when the outcome of its coin-tossesequals !, and let D0 = [!2f0;1grQ!. Again, jD0j � 2r � q, and the theorem follows by proving thatjD0j > jDj=2.Let f : D ! R be a function in � with the maximum number of � values, among all functionsin �. By the hypothesis, jfx 2 D : f(x) 6= �gj > 2�jDj. Suppose, for a moment, that jfx 2 D nD0 :f(x) 6= �gj � �jDj, and let h be de�ned such that h(x) = f(x) if x 2 D0 and h(x) = � otherwise.Then (by the maximality of f), h is �-far from �. However, T h behaves exactly as T f (because hand f agree on D0), which yields a contradiction because T must accept f with probability at least2=3 and accept h with probability at most 1=3.It is left to prove that if jD n D0j � jDj=2 then jfx 2 D n D0 : f(x) 6= �gj � �jDj. This doesnot necessarily hold, but we shall show that it holds when replacing f by another function in �that also has a maximum number of � values. Here we use the hypothesis that � is a SD-invariantproperty, where SD is a transitive group of permutations over D. Speci�cally, consider a randompermutation � 2 SD, and let f 0 = (f ��) 2 �. Then, f 0 2 � and jfx 2 D : f 0(x) 6= �gj > 2�jDj. On4Indeed, without loss of generality, we may assume that SD is a permutation group.7



the other hand, since SD is a transitive group of permutations over D, for every x; y 2 D it holdsthat Pr�2SD [�(x)=y] = 1=jDj. It follows that, for a random permutation � 2 SD, the expected sizeof fx 2 D nD0 : f 0(x) 6= �g equalsjD nD0j � jD n f�1(�)jjDj � �jDj ;where the inequality is due to the hypotheses jD n D0j � jDj=2 and jD n f�1(�)j > 2�jDj. Thus,there exists a f 0 2 � such that jfx 2 D nD0 : f 0(x) 6= �gj � �jDj, and the theorem follows.Main application. As hinted in Section 2.1.1, the most appealing application of Theorem 2 isto testing graph properties in the adjacency matrix model (of [GGR]). In this model, N -vertexgraphs are represented by Boolean functions de�ned over [N ] � [N ]. For technical reasons, weprefer to represent such graphs as Boolean functions de�ned over the set of the �N2 � (unordered)vertex-pairs, which is actually more natural (as well as non-redundant). Note that the set ofall permutations over [N ] induces a transitive group of permutations over these pairs, where thepermutation � : [N ]! [N ] induces a permutation that maps pairs of the form fi; jg to f�(i); �(j)g.Indeed, any graph property is invariant under this group, and Theorem 2 can be applied whenevereither the empty graph or the complete graph is far from the property. We note that all the graphproperties considered in [GGR] fall into the latter category (and that the testers of [GGR] are allnon-adaptive).5Other applications. We note that any property that refers to sets of objects (e.g., sets of pointsas in [ADPR]) is invariant under the group of all permutations. Another application domain consistsof matrix-properties that are preserved under row and column permutations.Generalizations. Theorem 2 can be generalized to properties that are SD-invariant under a setof permutations that is \su�ciently mixing" in the sense that a permutation selected uniformly inSD maps each element of the domain to a distribution that has high min-entropy. For example, for aparameter � � 1, it su�ces that for every x 2 D and y 2 R it holds that Pr�2SD [�(x) = y] � �=jDj.In this case, we shall prove that jD0j > jDj=2�, and a lower-bound of log2(jDj=q)� log2(2�) on therandomness-complexity follows. A di�erent generalization is obtained by replacing � with a set ofvalues S � R and referring to properties for which every function f : D ! S is 2�-far from theproperty.2.1.3 DiscussionAlthough Theorems 1 and 2 are incomparable, most applications of Theorem 2 can be obtainedalso by using Theorem 1. Still, in some cases, it is easier to see that the conditions of Theorem 2are met. For example, this is the case when the invariance of the property is obvious from thesetting (e.g., as in the case of any graph property in the adjacency matrix model).Both Theorems 1 and 2 yield a lower-bound of the form log2(jDj=q)�O(1), which is independentof the proximity parameter �. We believe that, for a wide range of parameters, the right lower-boundshould be log2(jDj=q) + 
(log(1=�)) �O(1). Furthermore, in some cases where q = O(��2)� jDj,5Note that q adaptive Boolean queries can always be replaced by 2q non-adaptive Boolean queries. We warn thatthe more query-e�cient transformation provided in [GT] is inapplicable here, because this transformation does notpreserve the randomness-complexity. 8



one may hope to obtain a log2 jDj�O(1) lower-bound. Indeed, this is the case for average-estimation(see [RT, Z]), which in turn is a special case of property testing.2.2 Upper BoundsWe start with a totally generic bound, and later focus on testing graph properties.2.2.1 A generic boundRecall that we refer to properties of functions from D to R. The following result can be easilyproved by extending a similar result regarding samplers (presented in [CEG]), which in turn isproved using well-known techniques (cf., e.g., [N]).Theorem 3 If � has an �-tester that makes q queries then it has an �-tester that makes O(q)queries and tosses log2 jDj+ log2 log2 jRj+O(1) coins. Furthermore, one-sided error and/or non-adaptivity are preserved.For Boolean functions we get an upper-bound of log2 jDj + O(1), which di�ers from the lower-bounds presented in Section 2.1 by an additive term of log2 q+O(1). Indeed, the conjecture at theend of Section 2.1.3 shrinks the gap to a constant.Proof: Let T be a tester as in the hypothesis, and suppose that it tosses r coins. Consider an2r-by-jRjjDj matrix in which the rows correspond to r-bit strings (representing possible outcomes ofT 's coin tosses) and the columns correspond to possible functions such that the entry (!; f) equalsthe verdict of T f (!) (i.e., when T uses randomness ! and has oracle access to the function f).Note that the average values in any column that corresponds to a function in � (resp., a functionthat is �-far from �) is at least 2=3 (resp., at most 1=3).Using the probabilistic method, we will show that there exists a multi-set 
 of O(jDj log jRj) rowssuch that, for each column, the average of this column taken only over the rows in 
 is 1=15-closeto the average over the entire column. Using this set 
, we consider the oracle machine that, whengiven access to any function f , selects uniformly ! 2 
 and emulates T f (!). This machine acceptsevery f 2 � with probability at least (2=3)� (1=15) = 3=5, rejects every f that is �-far from � withprobability at least 3=5, and its randomness complexity is log2 j
j = log2 jDj+ log2 log2 jRj+O(1).Using randomness-e�cient error-ampli�cation (e.g., using the neighbors of a random vertex in anexpander), we obtain the desired tester.The probabilistic argument proceeds via a union bound over all possible jRjjDj functions. Fixingany function f , we consider the probability that, for a uniformly distributed multi-set 
 of size s,the following bad event occurs:������2�r � X!2f0;1gr T f (!)� s�1 � X!2
T f (!)������ > 115 (1)Using Cherno� Bound, the probability that the bad event in Eq. (1) holds is at most exp(�
(s)).Thus, for s = O(jDj log jRj), we conclude that there exists a multi-set of size s such that, for everyf , the bad event in Eq. (1) does not hold. The theorem follows.Corollary. Applying Theorem 3 to testers of graph properties in the adjacency matrix model(of [GGR]), we conclude that if a property of N -vertex graphs is �-testable using q queries then ithas an �-tester that makes O(q) queries and tosses 2 log2N + O(1) coins. We further discuss thismodel in Section 2.2.2. 9



2.2.2 Bounds for canonical testers of graph propertiesThe proof of Theorem 3 shows that for every tester T (of randomness complexity r) there existsa small set of coin-sequences 
T (� f0; 1gr) that is essentially as good as the original set of coin-sequences used by this tester (i.e., f0; 1gr). This raises the question of whether there may exists auniversal set 
 that is good for all testers (of randomness complexity r). Needless to say, the latterformulation is too general and is doomed to yield a negative answer (e.g., by considering, for any
, a pathological tester that behaves badly when fed with any sequence in 
). Still such universalsets may exist for naturally restricted classes of testers.One adequate class of testers was suggested in [GT], and it refers to testing graph properties inthe adjacency matrix model. A canonical �-tester for a property � of N -vertex graphs is determinedby an integer k and a property �0 of k-vertex graphs. Such a tester, sometimes referred to as k-canonical, selects uniformly a set of k vertices in the input graph G and accepts G if and only if thecorresponding induced (k-vertex) subgraph has the property �0. It was shown in [GT] that if �is �-testable with query complexity q then � has a k-canonical �-tester with k = O(q). Thus, it isnatural to consider the notion of a \universal set" of k-subsets of [N ] that is good for all k-canonicaltesters.De�nition 4 A set 
 � fS � [N ] : jSj = kg is called (�; k)-universal if for every property � ofN -vertex graphs and for every k-canonical �-tester for �, denoted T , the following holds:1. For every G that has property �, it holds that Pr!2
[TG(!) = 1] � 3=5, where TG(!) denotesthe execution of T when given the coin-sequence ! and oracle access to G.2. For every G that is �-far from property �, it holds that Pr!2
[TG(!) = 1] � 2=5.Using an (�; k)-universal set, we can reduce the randomness complexity of any k-canonical �-testerT by selecting uniformly ! 2 
 and emulating T (!). The residual oracle machine, denoted T 0, isessentially an �-tester for the same property, except that T 0 may err with probability at most 2=5(rather than 1=3) Needless to say, T 0 has randomness complexity log2 j
j and query complexity �k2�.Furthermore, T 0 preserves the possible one-sided error of T .Clearly, the set of all k-subsets is (�; k)-universal, because using this set coincides with thede�nition of a k-canonical �-tester. We seek (�; k)-universal sets that are much smaller; speci�cally,by prior results we may hope to have (�; k)-universal sets of size O(N2). By extending the proof ofTheorem 3, we can prove the following result.Theorem 5 There exist (�; k)-universal sets (of subsets of [N ]) having size O(2k2 +N2).The randomness complexity of the derived �-tester is O(1)+max(k2; 2 log2N). For relatively smallk and in particular for k that only depends on � (as in [GGR, AFKS, AFNS]), this is much smallerthan the randomness complexity of the k-canonical �-tester (i.e., k log2N).Proof: The key observation is that a k-canonical tester is determined by the property �0 thatit decides (for the induced k-vertex subgraph), while �0 can be described by K = 2(k2) < 2k2 bitswhich determine for each k-vertex graph whether it is in �0. Thus, when applying a union boundas in the proof of Theorem 3, the number of k-canonical testers that we need to consider is lessthan 2K . Hence, it su�ces to have 2K � 2N2 � exp(�
(s)) < 1, where 2K upper-bounds the numberof testers, 2N2 upper-bounds the number of N -vertex graphs, and exp(�
(s)) upper-bounds theprobability that a multi-set of size s is bad (as in Eq. (1)) with respect to a �xed tester and a �xedgraph. Using s = O(K +N2), the claim follows.10



Open problems. Can the upper-bound of Theorem 5 be improved; in particular, do there exist(�; k)-universal sets (of subsets of [N ]) having size O(poly(k) �N2) or even O(N2)? Can universalsets of small size (e.g., as in Theorem 5) be e�ciently constructed?Extension. Theorem 5 extends to any class of non-adaptive testers (for any property of functionsfrom D to R) whose �nal decision only depends on the oracle answers. The point is that each suchtester that makes q queries can be described by a function f : Rq ! f0; 1g, and thus the numberof such testers is 2jRjq . Hence, the size of the corresponding \universal set" is O(jRjq + jDj log jRj).3 Speci�c Algorithms: The Case of BipartitenessWe consider two standard models for testing graph properties: the adjacency matrix model (intro-duced in [GGR]) and the bounded-degree model (introduced in [GR1]). We focus on the problem oftesting bipartiteness in these models. Further details and additional testers are provided in [Shef].We make extensive use of randomness-e�cient hitters as de�ned and discussed in Appendix A.2.3.1 In the Adjacency Matrix ModelIn the adjacency matrix model an N -vertex graph G = (V;E) is represented by the Booleanfunction g : [N ]� [N ]! f0; 1g such that g(u; v) = 1 if and only if u and v are adjacent in G (i.e.,fu; vg 2 E). In this section we present a randomness-e�cient Bipartite Tester for graphs in theadjacency matrix model. This tester is strongly in
uenced by the tester of [GGR], but di�ers fromit in signi�cant ways. Still, it is instructive to start with a description of the tester of [GGR].3.1.1 The tester of [GGR]Essentially, the bipartite tester of [GGR] selects a random set of ~O(��2) vertices, inspects thesubgraph of G induces by this set, and accepts if and only if this induced subgraph is bipartite.The analysis in [GGR] actually refers to the following description, which also has a lower query-complexity.Algorithm 6 On input parameters N and �, and oracle access to an adjacency predicate of anN -vertex graph, G = (V;E), proceed as follows:1. Uniformly select a sample U of ~O(��1) vertices.2. Uniformly select a sample S of ~O(��2) vertex-pairs.3. For each u 2 U and (v1; v2) 2 S, check whether fu; v1g; fu; v2g and fv1; v2g are edges.4. Accept if and only if the subgraph viewed in Step 3 is bipartite.Clearly, this algorithm never rejects a bipartite graph, and thus its analysis focuses on the casethat G is �-far from being bipartite. One key observation is that each 2-partition, (U1; U2), of Uinduces a 2-partition of the entire graph in which all neighbors of U1 are on one side and all theother vertices are on the other side. A pair of vertices (v1; v2) detects that the latter partition isnot a valid 2-coloring of G if there exists u1; u2 2 U1 (resp., u1; u2 2 U2) such that fu1; v1g; fv1; v2gand fv2; u2g are all edges of G. In such a case, we call the pair (v1; v2) a witness against (U1; U2).The analysis in [GGR] shows that if G is �-far from being bipartite then, with high probability,11



for every 2-partition of U there exists a pair in S that is a witness against this 2-partition. Let usbrie
y recall how this is done.The �rst step is proving that, with high probability (say, with probability at least 5=6), the setU dominates6 all but an �=8 fraction of the vertices of G that have degree at least �N=8. This stepis quite straightforward. The next step is proving that this implies that for every 2-partition of Uthere exists at least �N2=2 (ordered) vertex-pairs that are each a witness against this 2-partition.The implication is proved by confronting the following two facts:1. Since G is �-far from being bipartite, the 2-partition of V induced by any 2-partition of Uhas at least �N2 (ordered) vertex-pairs that reside on the same side of the partition and yetare connected by an edge.2. The number of (ordered) vertex-pairs (v1; v2) such that fv1; v2g 2 E but either v1 or v2 is notdominated by U is at most �N2=2, because each low-degree vertex contributes at most �N=4such (ordered) pairs and there are at most �N=8 high-degree vertices that are not dominatedby U .Having established the existence of at least �N2=2 vertex-pairs that constitute a witness againstany �xed 2-partition of U , it is clear that each random pair of vertices will be a witness withprobability at least �=2, and selecting enough random pairs will do the job. The point, however, isthat we need to rule out each of the 2jU j possible 2-partitions of U . Thus, the number of selectedpairs is set such that the probability that we do not �nd a witness against any speci�c 2-partitionis smaller than 2�jU j. Indeed, setting jSj = O(jU j=�) will do. This completes our review of [GGR].As stated in Section 1.3, the foregoing approach supports a randomness-e�cient implementation(of Algorithm 6). Speci�cally, U needs to be selected so that sets of density �=8 are avoided withprobability at most �=48, while S is selected such that sets of density �=8 are avoided with probabilityat most 2�jU j=6. This yields randomness-complexity ~O(��1) + O(logN). The problem with theforegoing approach is that it is impossible to implement it using randomness-complexity below jU j,which in turn is 
(��1). Recall, however, that our aim is to obtain randomness-complexity that islinearly related to O(log(1=�)).3.1.2 A warm-up: randomness-e�cient tester of query complexity ~O(��4)A closer look at the foregoing argument reveals that a pair (v1; v2) such that fu1; v1g; fv1; v2g andfv2; u2g are all edges of G is not merely a witness against a speci�c 2-partition of U that places u1and u2 on the same side. It is actually a witness against any 2-partition of U that places u1 andu2 on the same side. Viewed from a di�erent perspective, such a pair (v1; v2) imposes a constrainton the \relevant" 2-partition of U ; the constraint being that u1 and u2 should not be placed on thesame side. It will be useful to consider the graph of these constraints, which has the vertex-setU and edges between each pair of vertices to which such a constraint is applied (i.e., there is anedge between u1 and u2 if there exists a pair (v1; v2) 2 V � V that imposes a constraint on thepair (u1; u2)). Indeed, the 2-partitions of U that satisfy the set of these constraints are exactly the2-colorings of this auxiliary graph.The foregoing perspective suggests that it may be useful to try to accumulate constraints. Atthe very extreme, the graph of constraints will not be bipartite, which de�nitely allows us to reject(because it indicates that there are witnesses against each 2-partition of U). Discarding this case,we consider another extreme case in which the graph of constraints is connected, leaving us with a6We say that a set U dominates a vertex v in the graph G if v is adjacent to some vertex in U .12



single allowed 2-partition of U (i.e., a single 2-coloring of the constraint graph), which can be checkedas in Algorithm 6. The point, however, is that in this case it will su�ce to set jSj = O(��1) andmore importantly to have a sample that rules out the remaining partition with constant probability(rather than with probability 2�jU j). This opens the door to a randomness-e�cient implementation.But what if the graph of constraints that we found is not connected? Unless this event is due tosheer lack of luck, it indicates that there are few pairs in V � V that impose constraints regardingvertex-pairs in U � U that are in di�erent connected components of the constraint graph. Thisimplies that, for every 2-partition of U that is consistent with the constraint graph (i.e., every2-coloring of this graph), there are many pairs in V � V that constitute a witness against the2-partition of some of the connected components. That is, each such pair imposes a constraint thatrefers to vertices that reside in the same connected component, and furthermore this constraintcontradicts the constraints that are already present regarding this connected component.Needless to say, for the foregoing to work, we should determine adequate thresholds for thenotion of \few pairs in V � V that impose a constraint regarding vertex-pairs" (in U � U). Letus start by spelling out the notion of imposing (or rather forcing) a constraint. We say that thepair (v1; v2) 2 V � V constrains the pair (u1; u2) 2 U � U if fu1; v1g; fv1; v2g and fv2; u2g are alledges of G. Next, we say that a pair (u1; u2) 2 U � U is �-constrained if there are at least � � N2vertex-pairs in V � V that constrain (u1; u2). Leaving � unspeci�ed for a moment, we make thefollowing observations:1. Using a sample of O(��1 �log jU j) vertex-pairs in V �V , with high probability, it holds that forevery �-constrained pair (u1; u2) 2 U �U , the sample contains a pair that constrains (u1; u2).This holds even if the sample is generated using a randomness-e�cient hitter (which hitsany set of density � with probability at least 1 � (jU j�2=10), using randomness-complexityO(log jV j + log jU j) = O(log jV j)). The point is that there are at most jU j2 relevant pairs(i.e., pairs that are �-constrained), and we may apply a Union Bound as long as we fail oneach such pair with probability at most jU j�2=10 (or so).2. Consider the graph GU;� consisting of the vertex-set U and edges corresponding to the �-constrained pairs of vertices. Then, the number of vertex-pairs in V �V that constrain somepair of vertices (in U) that does not belong to the same connected component of GU;� is atmost jU j2 � �N2.Recall that if G is �-far from bipartite and U is good (i.e., U dominates almost all high-degree vertices) then, for every 2-partition of U , there are at least �N2=2 pairs that constrainsome pair of vertices that are on the same side of this 2-partition. It follows that at least((�=2)� jU j2�) �N2 of these pairs constrain pairs that are in the same connected componentof GU;�. Setting � = �=(4jU j2), we need to hit a set of density �=4, which is easy to do usinga randomness-e�cient hitter.This analysis lead to an algorithm that resembles Algorithm 6, except that it uses a secondarysample S that has di�erent features than in the original version. In Algorithm 6 the set S hadto hit any �x set of density �=2 with probability at least 1 � 2�jU j. Here the set S needs to hitany �x set of density � = �=(4jU j2) < ��3 with probability at least 1� (jU j�2=10). Thus, while inAlgorithm 6 we used jSj = O(jU j=�) but generating the set S required at least jU j random bits,here jSj = O(jU j2=�) = ~O(��3) but generating the set S can be done using O(logN) random bits.(The set U is generated with the same aim as in Algorithm 6; that is, hitting a set of density �with probability at least 1� ��1. Such a set can be generated using O(logN) random bits.)13



Thus, we obtain a (computational e�cient) �-tester with randomness-complexity O(logN) andquery-complexity O(jU j � jSj) = ~O(��4). Our aim in the next section is to reduce the query-complexity to ~O(��3) while essentially maintaining the randomness-complexity.3.1.3 The actual algorithm: randomness-e�cient tester of query complexity ~O(��3)The query-complexity bottleneck in Section 3.1.2 is due to the size of S, which in turn needs tohit sets of density � = O(�3). Our improvement will follow by using a larger value of the threshold� (essentially � = O(�2)). Recall that in Section 3.1.2 we used � = O(�3) in order to bound thetotal number of pairs that constrain pairs that are not �-constrained. Thus, using � = O(�3) seemsinherent to an analysis that refers to each pair separately, and indeed we shall deviate from thatparadigm in this section.The planned deviation is quite natural. After all, we not not care about having speci�c edges inour constraint graph, but rather care about the connected components of that graph. For example,looking at any vertex u 2 U , any pair in V �V that constrains any pair (u; u0), where u0 2 U nfug,increases the connected component in which u resides. That is, let 
(u1; u2) denote the fraction ofvertex-pairs in V �V that constrain (u1; u2), and recall that a pair (u1; u2) was called �-constrainedif 
(u1; u2) � �. Thus, we (tentatively) say that u 2 U is �-constrained if Pu02Unfug 
(u; u0) � �.Let us now see what happens.1. Using a sample of O(��1 �log jU j) vertex-pairs in V �V , with high probability, it holds that forevery �-constrained vertex u 2 U , the sample contains a pair that constrains (u; u0), for someu0 2 U n fug. Again, this holds even if the sample is generated using a randomness-e�cienthitter.2. The number of vertex-pairs in V � V that constrain some pair of vertices (u1; u2) 2 U � Usuch that either u1 or u2 is not �-constrained is at most 2jU j � �N2. This means that we canignore such vertex-pairs (in V � V ) even when setting � = O(�=jU j) or so.Thus, taking a sample S0 as in Item 1, will result in having a constraint graph GU;S0 in which each�-constrained vertex resides in non-singleton connected components. In particular, the number ofnon-singleton connected components is at most jU j=2.Note, however, that unlike in Section 3.1.2, the foregoing facts do not yield an upper-bound onthe number of vertex-pairs in V �V that constrain some pair of vertices (in U) that does not belongto the same connected component of GU;S0. Loosely speaking, we shall iterate the same processon the non-singleton connected components of GU;S0 , while recalling that the only vertices thatform singleton connected components in GU;S0 are not �-constrained (and thus can be ignored).This suggests an iterative process, which will halt after at most log2 jU j iterations in a situationanalogous to having no �-constrained vertices. At this point we may proceed with a �nal sampleof pairs that, with high probability, will yield a constraint that con
icts with the existing ones.Clarifying the foregoing iterative process requires generalizing the notion of �-constrained ver-tices such that it will apply to the connected components determined in the previous iteration. Con-sider a partition of U , denoted U = (U (0); U (1); :::; U (k)), where U (0) may be empty and k may equal0, but for every i 2 [k] it holds that U (i) 6= ;. In the �rst iteration, we use U = (;; fu1g; :::; futg),where U = fu1; :::; utg. In later iterations, U (1); :::; U (k) will correspond to connected componentsof the current constraint graph and U (0) will contain vertices that were cast aside at some point.De�nition 7 (being constrained w.r.t a partition): For i 2 f0; 1; :::; kg, we say that u 2 U (i)is �-constrained w.r.t U if Pu02U 0 
(u; u0) � �, where U 0 = [j2[k]nfigU (j). Recall that 
(u1; u2)14



denote the fraction of vertex-pairs in V �V that constrain (u1; u2), where the pair (v1; v2) 2 V �Vconstrains the pair (u1; u2) 2 U � U if fu1; v1g; fv1; v2g and fv2; u2g are all edges of G.We stress that the foregoing sum does not include vertices in either U (0) or U (i). Our analy-sis will refer to the following algorithm, which can be implemented within randomness-complexityO(log(1=�)) � log2N and query-complexity ~O(��3).Algorithm 8 (The Bipartite Tester, revised):1. Select a sample U of ~O(��1) vertices by using a hitter that hits any set of density �=8 withprobability at least 1� (�=100).2. For i = 1; :::; ` + 1, where ` = log2 jU j, select a sample Si of ~O(��2) vertex-pairs by using ahitter that hits any set of density � = �= ~O(jU j) with probability at least 1 � ~O(jU j)�1. (Thishitter has randomness-complexity O(logN + log jU j) = O(logN).) Let S = [`+1i=1Si.3. For each u 2 U and (v1; v2) 2 S, check whether fu; v1g; fu; v2g and fv1; v2g are edges.4. Accept if and only if the subgraph viewed in Step 3 is bipartite.Needless to say, the peculiar way in which S is selected is aimed to support the analysis.Lemma 9 If G is �-far from being bipartite then Algorithm 8 rejects with probability at least 2=3.Proof: We may assume that U is good in the sense that it dominates all but �N=8 of the verticesthat have degree at least �N=8. As argued above (and shown in [GGR]), there are at most �N2=2vertex pairs that have an endpoint that is not dominated by U = fu1; :::; utg. Starting withU = (;; fu1g; :::; futg), we shall proceed in iterations proving that in each iteration one of thefollowing two events occur:1. There are 
(�N2) vertex pairs that form constraints that contradicts the existing constraints.In this case, with very high probability, the algorithm will select such a pair and will reject(because the subgraph that it sees is not 2-colorable).2. There exist �-constrained vertices with respect to the current partition U = (U (0); U (1); :::; U (k)),where U (1); :::; U (k) are connected components of the current constraint graph and U (0) con-tains vertices that were cast aside in previous iterations. We shall also show that �-constrained(w.r.t U) vertices cannot be in U (0). In this case, with very high probability, the algorithm will�nd new constraints and in particular it will �nd such a constraint between every �-constrained(w.r.t U) vertex and some vertex that is in one of the other k connected components.We shall shortly take a closer look at what happens in the second case (i.e., Case 2) and prove thatindeed at least one of the foregoing cases must hold. But before doing so, we note that the secondcase (i.e., Case 2) becomes impossible once we reach a situation in which k = 1, at which point thealgorithm must reject due to the �rst case (i.e., Case 1).Let us �rst take a closer look at what happens in Case 2. Suppose that u 2 U (i) is �-constrainedw.r.t the current U . Then by the foregoing, due to a newly found constraint, vertex u gets connectedto some vertex in [j2[k]nfigU (j). This means that each U (i) (i 6= 0) that contains some �-constrainedvertex gets merged to some U (j) (j 6= 0 and j 6= i). We will not add any constraint that refers tovertices that were cast aside (i.e., those in U (0)). Thus, vertices that were cast aside in the past(since they were not �-constrained w.r.t a previous partition) will remain in U (0), and indeed they15



are also not �-constrained w.r.t any later partition.7 For i 6= 0, if U (i) was not merged with anyother U (j) (j 6= 0 and j 6= i) then it contains no �-constrained vertex, and we cast it aside (i.e.,move it to the new U (0)). Thus, in each iteration, the number of connected components not castaside (i.e., k) shrinks by a factor of at least two.We now prove that at least one of the two aforementioned conditions must hold. Lookingat the current partition U , we �rst note that if one of the connected components (including thosecontained in U (0)) is not bipartite then we already have a set of constraints that is self-contradictory(i.e., does not allow a 2-coloring of the subgraph we have seen so far). This situation is a specialcase of Case 1, and indeed in this sub-case the algorithm rejects. Disposing of this sub-case, wenow consider an arbitrary 2-coloring of the constraint graph, and the 2-partition that it induces onthe rest of G (i.e., we put on the �rst side all the vertices that are dominated by some vertex of Uthat was colored by the second color). Then, there are at least �N2 vertex-pairs that are adjacentand were put on the same side, and at least �N2=2 of these vertex-pairs have both its verticesdominated by U . Each such (v1; v2) is of one of the following two types.(i) The vertex-pair (v1; v2) constrains a pair of vertices (u1; u2) where both vertices are in thesame connected component of the constraint graph. As showed next, such a pair imposes aconstraint that contradicts the constraints of the current graph. Thus, this pair contributesto the pairs counted in Case 1.To see that the said constraint contradicts the constraints of the current graph, recall thatsince (v1; v2) constrains the pair (u1; u2) 2 U � U it holds that the edges fu1; v1g, fv1; v2g,and fv2; u2g form an odd-length path between u1 and u2. On the other hand, v1 and v2were placed on the same side of the 2-partition of V , which implies that u1 and u2 wereassigned the same color by a 2-coloring of the current constraint graph. Since u1 and u2 arein the same connected component of that graph, it follows that they are connected by aneven-length path (which re
ects an even-length path in G). Thus, the new set of constraintsform an odd-length cycle.(ii) The vertex-pair (v1; v2) constrains a pair of vertices (u1; u2) that belong to di�erent connectedcomponent of the constraint graph. As showed next, the existence of more than �N2=4 suchpairs implies Case 2 (i.e., the existence of �-constrained vertices, which in particular are notin U (0)).We �rst recall that a vertex in U (0) can not be �-constrained with respect to the currentpartition, because it is not �-constrained with respect to some previous partition and becausethe previous partition allows more pairs to be counted.As for the main claim, note that each pair of the current type is counted towards determiningwhether u1 (resp., u2) is �-constrained with respect to the current partition. The total \paircount" of vertices that are not �-constrained is smaller than �N2, which implies that Thus,for � = �=(4jU j), there are less than jU j � �N2 = �N2=4 pairs of the current type that referto vertices that are not �-constrained. It follows if there are more than �N2=4 pairs of thecurrent type, then �-constrained vertices must exist, which imply that Case 2 holds.We conclude that either there are more than �N2=4 vertices of type (ii), which imply that Case 2holds, or there are more than �N2=4 vertices of type (i), which imply that Case 1 holds.7In a later partition, some components get merged and some move to U (0). This can only decrease the counttowards being �-constrained. 16



Recall that if Case 2 holds then the number of non-discarded connected components (i.e., k)shrinks by a factor of at least 2. Thus, after log2 jU j iterations, the current partition must satisfyk � 1, and thus Case 2 cannot hold in the next iteration. The lemma follows.Conclusion. Using Algorithm 8 and its analysis as provided by Lemma 9, we obtain:Theorem 10 There exists a Bipartite tester (in the adajency matrix model) of time-complexitypoly((logN)=�), query-complexity ~O(��3) and randomness-complexity O(log(1=�)) � log2N . Fur-thermore, as Algorithm 6, this tester always accepts a Bipartite graph, and in case of rejection itprovides a witness of length ~O(��2) � log2N (that the graph is not bipartite).Theorem 10 improves over the randomness-e�cient implementation of Algorithm 6 (which hasrandomness-complexity ~O(��1) +O(logN)) whenever � < 1= ~O(logN).Open problem. Needless to say, we are aware of the Bipartite Tester of [AK], which has betterquery-complexity than the tester of [GGR] (as well as ours). Speci�cally, the query-complexity ofthe tester of [AK] is ~O(��2) rather than ~O(��3). Theorem 3 implies that the tester of [AK] has arandomness-e�cient implementation, but it does not provide an explicit one. We conjecture thatthere exists a randomness-e�cient bipartite tester that has query-complexity ~O(��2) and time-complexity poly(��1 logN).3.2 In the Bounded-Degree ModelThe bounded-degree model refers to a �xed degree bound, denoted d. An N -vertex graph G =(V;E) (of maximum degree d) is represented in this model by a function g : [N ]� [d]! f0; 1; :::; Ngsuch that g(v; i) = u 2 [N ] if u is the ith neighbor of v and g(v; i) = 0 if v has less than i neighbors.In this section we provide a randomness-e�cient implementation of the Bipartite Tester of [GR2],which refers to the bounded-degree model. Thus, we start with a description of that tester.Algorithm 11 (The Bipartite Tester of [GR2]): On input parameters N , d, �, and oracle accessto an incidence function for an N -vertex graph, G = (V;E), of degree bound d, repeat T def= �(1� )times:1. Uniformly select a (\start") vertex s in V .2. (Try to �nd an odd-length cycle through vertex s):(a) Perform K def= poly((logN)=�) � pN random walks starting from vertex s, where eachwalk is of length L def= poly((logN)=�).(b) Let R0 (respectively, R1) denote the set of vertices that were reached from vertex s inan even (respectively, odd) number of steps in any of these walks.(c) If R0 \R1 is not empty then reject.If the algorithm did not reject in any one of the above T iterations, then it accepts.Clearly, this algorithm never rejects a bipartite graph. Indeed, the analysis of [GR2] focuses on thecase that the graph G is �-far from bipartite, and shows that the algorithm will reject G with highprobability. The rather involved analysis breaks down to two complimentary facts that refer to a17



notion of a good start vertex. Loosely speaking, a start vertex is called good if, when the testerselects it in Step 1, the probability that the tester �nds an odd-length cycle in Step 2 is somewhatsmall (say, below 1=10). We note that the actual de�nition of a good vertex refers to the probabilityof �nding an odd-length cycle when taking two independent random walks from this vertex.Most of [GR2] is devoted to establishing the fact that if G is �-far from bipartite then an 
(�)fraction of the vertices are not good. It is crucial for us that this technically involved analysis doesnot refer at all to the algorithm; it rather refers to the de�nition of a good vertex, which (as stressedabove) refers to a mental experiment in which one takes two independent random walks from thisvertex. Thus, this analysis remains intact regardless of how we chose to implement Algorithm 11.The complimentary fact regarding good vertices is that when the tester selects a vertex that isnot good (in Step 1), the probability that it �nds an odd-length cycle in Step 2 is not too small (say,at least 1=10). Indeed, this fact refers to Algorithm 11 itself, but its rather simple proof (providedin [GR2]) only presumes that the K random walks are distributed in a 4-wise independent manner.Speci�cally, the analysis de�nes a random variable for each pair of walks such that this randomvariable represents the event of �nding an odd-length cycle via the corresponding two walks. Then,Chebyshev's Inequality is applied while relying on the expectation and variance of the sum of theserandom variables. As one may guess, the said expectation and variance are computed by onlyrelying on the expectation of the individual random variables and the co-variances of all possiblepairs of random variables. Thus, the analysis remains valid as long as the said expectation andco-variance maintain their value, which is de�nitely the case provided that each pair of randomvariables maintains its behavior. Noting that each pair of random variables refers to at most fourdi�erent random walks, we establish our claim that the analysis of [GR2] only presumes that theK random walks are distributed in a 4-wise independent manner.The foregoing discussion suggests the following implementation of Algorithm 11. For Step 1use a randomness-e�cient hitter that hits any set of density 
(�) with constant probability. Moreimportantly, for Step 2 use a randomness-e�cient construction of K four-wise independent randomstrings, each specifying a random walk of length L (i.e., each being a string of length L log2 d). Bythe foregoing discussion, this implementation preserves the performance guarantees of Algorithm 11;that is, this implementation is also an �-test for bipartiteness. The crucial point, however, isthat Step 2 is now implemented using 4 � L log2 d = poly((logN)=�) random coins (rather thanK � L log2 d = 
(pN) random coins). Thus, we obtain:Theorem 12 There exists a Bipartite tester (in the incidence function model) of time-complexitypoly((logN)=�) � pN and randomness-complexity poly((logN)=�). Furthermore, as Algorithm 11,this tester always accepts a Bipartite graph, and in case of rejection it provides a witness of lengthpoly((logN)=�) (that the graph is not bipartite).

18



References[ADPR] N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of Clustering. SIAM Journal onDiscrete Mathematics, Vol. 16 (3), pages 393{417, 2003.[AFKS] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. E�cient testing of large graphs.In 40th IEEE Symposium on Foundations of Computer Science, pages 645{655, 1999.[AFNS] N. Alon, E. Fischer, I. Newman, and A. Shapira. A Combinatorial Characterization ofthe Testable Graph Properties: It's All About Regularity. In 38th ACM Symposium onthe Theory of Computing, pages 251{260, 2006.[AK] N. Alon and M. Krivelevich. Testing k-Colorability. SIAM Journal on Discrete Mathe-matics, Vol. 15 (2), pages 211-227, 2002.[BSVW] E. Ben-Sasson, M. Sudan, S. Vadhan, and A. Wigderson. Randomness-e�cient lowdegree tests and short PCPs via epsilon-biased sets. In Proc. 35th ACM Symposium onthe Theory of Computing, June 2003, pp. 612{621.[BLR] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to nu-merical problems. Journal of Computer and System Science, Vol. 47, pages 549{595,1993.[CEG] R. Canetti, G. Even and O. Goldreich. Lower Bounds for Sampling Algorithms forEstimating the Average. Information Processing Letters, Vol. 53, pages 17{25, 1995.[F] E. Fischer. The art of uninformed decisions: A primer to property testing. Bulletinof the European Association for Theoretical Computer Science, Vol. 75, pages 97{126,2001.[G] O. Goldreich. Another motivation for reducing the randomness complexity of algorithms.Position paper, ECCC, 2006.[GGR] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learningand approximation. Journal of the ACM, pages 653{750, July 1998.[GGLRS] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky. Testing Mono-tonicity. Combinatorica, Vol. 20 (3), pages 301{337, 2000.[GR1] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica,pages 302{343, 2002.[GR2] O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree graphs.Combinatorica, Vol. 19 (3), pages 335{373, 1999.[GS] O. Goldreich and M. Sudan. Locally testable codes and PCPs of almost linear length.Journal of the ACM, Vol. 53 (4), pages 558{655, 2006.[GT] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. Ran-dom Structures and Algorithms, Vol. 23 (1), pages 23{57, 2003.[LY] L. Lov�asz and N. Young. Lecture Notes on Evasiveness of Graph Properties. TechnicalReport TR-317-91, Princeton University, Computer Science Department, 1991.19



[N] I. Newman. Private vs. Common Random Bits in Communication Complexity. Infor-mation Processing Letters, Vol. 39 (2), pages 67-71, 1991.[RT] J. Radhakrishnan and A. Ta-Shma. Bounds for Dispersers, Extractors, and Depth-TwoSuperconcentrators. SIAM Journal on Discrete Mathematics, Vol. 13 (1), pages 2-24,2000.[R] D. Ron. Property testing. In Handbook on Randomization, Volume II, pages 597{649,2001. (Editors: S. Rajasekaran, P.M. Pardalos, J.H. Reif and J.D.P. Rolim.)[RS] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applicationsto program testing. SIAM Journal on Computing, Vol. 25 (2), pages 252{271, 1996.[Shal] R. Shaltiel. Recent Developments in Explicit Constructions of Extractors. Bulletin ofthe European Association for Theoretical Computer Science, Vol. 77, pages 67{95, 2002.[SU] R. Shaltiel and C. Umans. Simple Extractors for All Min-Entropies and a New Pseudo-Random Generator. In 32nd IEEE Symposium on Foundations of Computer Science,pages 648{657, 2001.[Shef] O. She�et. Reducing the Randomness Complexity of Property Testing, with an Emphasison Testing Bipartiteness. M.Sc. Thesis, Weizmann Institute of Science, December 2006.Available from http://www.wisdom.weizmann.ac.il/�oded/msc-os.html[SW] A. Shpilka and A. Wigderson. Derandomizing Homomorphism Testing in GeneralGroups. SIAM Journal on Computing, Vol. 36-4, pages 1215{1230, 2006.[TZS] A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors from Reed-Muller Codes. In 32ndIEEE Symposium on Foundations of Computer Science, pages 638{647, 2001.[Z] D. Zuckerman. Randomness-Optimal Oblivious Sampling. Journal of Random Structuresand Algorithms, Vol. 11, Nr. 4, December 1997, pages 345{367.

20



Appendix: PreliminariesA.1 On Using Weak Random SourcesA.1.1 Analysis of the standard use of extractorsIn continuation to Section 1.2, we prove the following claim.Claim 13 Let A be a randomized decision procedure of randomness-complexity r and error proba-bility p, and E : f0; 1gs � f0; 1gn ! f0; 1gr be an (k; �)-extractor. Consider the algorithm A0 that,on input �, obtains a single sample x from an (n; k)-source and rules according to the majorityvalue in hA(�;E(i; x))ii=1;:::;2s. Then, A0 has error probability at most 2(p+ �). Furthermore, if Eis actually a (k � t; �)-extractor and p+ � < 1=2 then A0 has error probability 2�t.Proof: The analysis of the foregoing implementation is based on the fact that \on the average" the2s strings extracted from the source approximate a perfect r-bit long source (i.e., a random settingof the s-bit seed yields an almost uniformly distributed r-bit string). Speci�cally, by de�nition, if Xis a (n; k)-source then E(Us;X) is �-close to Ur. It follows that the probability that A(�;E(Us;X))errs is at most p + �. By Markov Inequality, the probability that the majority of the values inhA(�;E(i;X))ii=1;:::;2s are wrong is at most 2(p+ �). The main part of the claim follows.Towards the furthermore clause, �xing any �, we call a string x 2 f0; 1gn bad if the probabilitythat A(�;E(Us; x)) is wrong is at least 1=2. Using the hypothesis that E is (k � t; �)-extractor itfollows that there are at most 2k�t bad strings (otherwise, de�ning X 0 to be uniformly distributedon the set of bad strings, we reach a contradiction to the hypothesis (because E(Us;X 0) is not�-close to Ur)). Hence, the outcome of a (n; k)-source is bad with probability at most 2�t and theclaim follows.Comment. We note that randomized procedures with one-sided error probability p can be imple-mented using a weak random source as long as p+ � < 1. An important case is of search problemsfor which the randomized algorithm �nds a correct solution with probability 1�p and halts withoutsolution otherwise. When implementing such an algorithm, we may output any solution obtainedin any of the invocations of the original algorithm, which means that we \rule by or" rather than\ruling by majority".A.1.2 On two main types of weak sourcesWe stress that the two types of (n; k)-sources that were mentioned in Section 1.2 (i.e., k = 
(n)and k = n
(1)) are the most natural types of weak sources and indeed most research on extractorshas focused on them. Let us take a closer look at these two cases. Recall that r denotes the numberof bits that we need to extract from such a source (in order to feed our algorithm, denoted A).Furthermore, it su�ces to set the deviation parameter of the extractor (i.e., �) to a small constant(e.g., � = 1=10 will do). The two cases we consider are:1. Linearly related n; k and r: that is, for some constants c > c0 > 1, it holds that n = c � r andk = c0 � r. In other words, we refer to sources having a constant rate of min-entropy.In this case, e�cient randomness extractors that use s = log n+O(log log n) = log2 ~O(n) areknown (cf. [TZS, Shal]). Using these extractors, we obtain an implementation of A (usingsuch weak sources) with overhead factor ~O(r). Thus, a tester of query-complexity q andrandomness-complexity r will be implemented using a number of queries that is ~O(r) � q.21



2. Polynomially related n; k and r: that is, for some c > c0 > 1, it holds that n = rc and k = rc0 .In other words, we refer to a source having min-entropy that is polynomially related to itslength.In this case, e�cient randomness extractors that use s = log ~O(n) = c log2 ~O(r) are known(cf. [SU, Shal]). Using these extractors, we obtain an implementation of A (using such weaksources) with overhead factor ~O(rc).In both cases, the overhead factor is approximately linear in the length of the source's outcome(which, in turn, is linearly or polynomially related to r).A.2 Randomness-E�cient HittersThe hitting problem is a one-sided version of the Boolean sampling problem. Given parameters n(length), � (density) and � (error), and oracle access to any function f : f0; 1gn ! f0; 1g such thatjfx : f(x)=1gj � �2n, the task is to �nd a string that is mapped to 1.De�nition 14 (hitter): A hitter is a randomized algorithm that on input parameters n, � and �,and oracle access to any function f :f0; 1gn!f0; 1g such that jf�1(1)j � �2n, satis�esPr[hitterf (n; �; �) 2 f�1(1)] > 1� �For any constant � > 0, using a pairwise-independent sequence of length O(1=�), we obtain a hitterfor sets of density � and error probability �. Thus, this hitter has query-complexity O(1=�) andrandomness-complexity 2n. An alternative hitter based on the neighborhood of a random vertex inan expander graph has query-complexity O(1=�) and randomness-complexity n. Combining any ofthese hitters with a random walk (of length O(log(1=�))) on an expander graph, we obtain a hitterfor sets of density � and any desired error probability � such that this hitter has query-complexityO(��1 log(1=�)) and randomness-complexity r + O(log(1=�)), where r 2 fn; 2ng depending on thebasic hitter we use.Note that each of the foregoing hitters generates a sequence of candidate strings in f0; 1gn, anduses queries to f merely for the selection of one of these strings. In the main text, we actually referonly to the sample-generating part of these hitters.

22


