
Candidate One-Way Functions Based on Expander GraphsOded Goldreich�Department of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded@wisdom.weizmann.ac.ilDecember 3, 2000AbstractWe suggest a candidate one-way function using combinatorial constructs such as expandergraphs. These graphs are used to determine a sequence of small overlapping subsets of inputbits, to which a hard-wired random predicate is applied. Thus, the function is extremely easyto evaluate: all that is needed is to take multiple projections of the input bits, and to use theseas entries to a look-up table. It is feasible for the adversary to scan the look-up table, but webelieve it would be infeasible to �nd an input that �ts a given sequence of values obtained forthese overlapping projections.The conjectured di�culty of inverting the suggested function does not seem to follow fromany well-known assumption. Instead, we propose the study of the complexity of invertingthis function as an interesting open problem, with the hope that further research will provideevidence to our belief that the inversion task is intractable.

�Supported by MINERVA Foundation, Germany. 0

1 IntroductionIn contrary to the present attempts to suggest a practical private-key encryption scheme in placeof the des, we believe that attempts should focus on suggesting practical one-way functions andpseudorandom functions. Being a simpler object, one-way functions should be easier to construct,and such constructions may later yield directly or indirectly a variety of other applications (includingprivate-key encryption schemes).The current attempts to suggest a practical private-key encryption scheme in place of thedes seem quite ad-hoc: not only that they cannot be reduced to any well-known problem, but(typically) they do not relate to a computational problem of natural appeal. Thus, the study ofthese suggestions is of limited appeal (especially from a conceptual point of view).In this manuscript, we propose a general scheme for constructing one-way functions. We donot believe that the complexity of inverting the resulting function follows from some well-knownintractability assumptions. We believe that the complexity of inverting this function is a newinteresting open problem, and hope that other researcher will be able to obtain better understandingof this problem.In addition to the abstract presentation, we propose several concrete instantiations of our pro-posal. It seems to us that a reasonable level of \security" (i.e., hardness to invert) may be achievedat very modest input lengths. Speci�cally, on input length at the order of a couple of hundreds ofbits, inverting the function may require complexity (e.g., time) beyond 2100.Style and Organization: This write-up is intended to two di�erent types of readers: researchersin the the area of computational complexity as well as researchers interested in the practice ofcryptography. Consequently, we provide an asymptotic presentation coupled with suggestions forconcrete parameters. The basic suggestion is presented in Sections 2 and 3. Concrete instantiationsof this suggestion are proposed in Section 4. Concluding comments appear in Section 5.2 The Basic SuggestionWe construct a (uniform) collection of functions ffn : f0; 1gn ! f0; 1gngn2N. Our constructionutilizes a collection of `(n)-subsets, S1; :::; Sn � [n] def= f1; :::; ng, and a predicate P : f0; 1g`(n) !f0; 1g. Jumping ahead, we hint that:1. The function ` is relatively small: Theoretically speaking, ` = O(log n) or even ` = O(1).In practice ` should be in the range f7; :::; 16g, whereas n should range between a couple ofhundreds and a couple of thousands.2. We prefer to have P : f0; 1g` ! f0; 1g be a random predicate. That is, it will be randomlyselected, �xed, and \hard-wired" into the function. For sure, P should not be linear, nordepend on few of its bit locations.3. The collection S1; :::; Sn should be expanding: speci�cally, for some k, every k subsets shouldcover at least k +
(n) elements of f1; :::; ng. The complexity of the inversion problem (forfn constructed based on such a collection) seems to be exponential in the \net expansion" ofthe collection (i.e., the cardinality of the union minus the number of subsets).
1

For x = x1 � � � xn 2 f0; 1gn and S � [n], where S = fi1; i2; :::; itg and ij < ij+1, we denote by xSthe projection of x on S; that is, xS = xi1xi2 � � � xit . Fixing P and S1; :::; Sn as above, we de�nefn(x) def= P (xS1)P (xS2) � � �P (xSn) (1)Note that we think of ` as being relatively small (i.e., ` = O(log n)), and aim at having fn beunivertible within time 2n=O(1). Thus, the hardness of inverting fn cannot be due to the hardnessof inverting P . Instead, the hardness of inverting fn is supposed to come from the combinatorialproperties of the collection of sets C = fS1; :::; Sng (as well as from the combinatorial properties ofpredicate P).2.1 The preferred implementationOur preference is to have P be a �xed randomly chosen predicate, which is hard-wired into thealgorithm for evaluating fn. Actually, one better avoid some choices; see next section. (In case` = �(log n) bad choices are rare enough.) In practice, we think of ` in the range f7; :::; 16g,and so hard-wiring a (random) predicate de�ned on f0; 1g` is quite feasible. The `-subsets will bedetermined by combinatorial constructions called expander graphs. At this point the reader maythink of them too as being hard-wired into the algorithm. On input x 2 f0; 1gn, the algorithm forcomputing fn proceeds as follows:1. For i = 1; ::; n, projects x on Si, forming the `-bit long string x(i).2. For i = 1; ::; n, by accessing a look-up table for P , determines the bit yi = P (x(i)).The output is the n-bit long string y1y2 � � � yn.(Note that the n actions, in each of the above two steps, can be performed in parallel.)2.2 An alternative implementationAn alternative to having P \hard-wired" to the algorithm (as above) is to have it appear as partof the input (and output). That is, letting hP i denote the 2`-bit string that fully speci�es P , wehave f 0n(hP i; x) def= (hP i; P (xS1)P (xS2) � � �P (xSn)) (2)Thus, P is essentially random since the inversion problem is considered with respect to a uniformlychosen input. This implementation is more appealing from a theoretical point of view, and in sucha case one better let ` = log2 n (rather than ` = O(1)).2.3 Determining suitable collectionsAs hinted above, the collection of `-subsets, C = fS1; :::; Sng, is to be determined by a suitablecombinatorial construction known as expander graphs. The reason for this choice will become moreclear from the analysis of one obvious attack (presented in Section 3.2). The speci�c correspon-dence (between expanders and subsets) depends on whether one uses the bipartite or non-bipartiteformulation of expander graphs:Bipartite formulation: In this case one considers a bipartite graph B = ((U; V); E), where(U; V) is a partition of the vertex set, with jU j = jV j, and E � U �V is typically sparse. Theexpanding property of the graph provides, for every U 0 � U (of size at most jU j=2), a lowerbound on j�(U 0)j � jU 0j (in terms of jU 0j), where �(U 0) = fv : 9u 2 U 0 s.t. (u; v) 2 Eg.Our collection of subsets will be de�ned as C = fSugu2U , where Su = fv : (u; v) 2 Eg.2

Non-bipartite formulation: In this case one considers a graph G = (V;E), so that for everyV 0 � V (of size at most jV j=2), a suitable lower bound on j�(V 0) n V 0j holds, where �(V 0) =fv : 9v0 2 V 0 s.t. (v0; v) 2 Eg.Our collection of subsets is de�ned as C = fSvgv2V , where Sv = fw : (v; w) 2 Eg [fvg.In both cases, the lower bound provided by the expansion property on the size of the neighborset is linear in the size of the vertex set; e.g., for the non-bipartite formulation it holds thatj�(V 0) n V 0j � c � jV 0j for some constant c > 0 and every admissible V 0.3 Avoiding obvious weaknessesConsidering a few obvious attacks, we rule out some obviously bad choices of the predicate P andthe collection C.3.1 The choice of the predicateWe start by discussing two bad choices (for the predicate P), which should be avoided.Linear predicates. It is certainly bad to use a linear predicate P (i.e., P (�1 � � � �`) = p0 +Pì=1 pi�i, for some p0; p1; :::; p`). Under a linear P , the question of inverting fn, regardless of whatcollection of subsets C is used, boils down to solving a linear system (of n equations in n variables),which is easy. Having a predicate P that is close to a linear predicate is dangerous too.Horn predicates. Likewise, one should avoid having any predicate that will make the systemof equations (or conditions) solvable in polynomial-time. The only other type of easily solvableequations are these arising from Horn formulae (e.g., an OR of all variables).Degenerate predicates. The rest of our analysis refers to the collection of sets that determinethe inputs to which the predicate P is applied. For this analysis to be meaningful, the predicateshould actually depend on all bits in its input (i.e., be non-degenerated).Good predicates. We believe that most predicates are good for our purpose. In particular, wesuggest to use a uniformly chosen predicate.3.2 The choice of the collectionSince the inverting algorithm can a�ord to consider all preimages of the predicate P , it is importantthat the inversion of fn cannot be performed by interactively inverting P . To demonstrate thispoint, consider the case ` = 1 and the collection fS1; :::; Sng such that Si = fig. In this case theSi's are disjoint and we can recover the preimage by inverting P on each of the bits of the image,separately from the others. For a less trivial example, consider the case where the collection Cconsists of n=2` sub-collections, each having 2` subsets of some distinct set of 2` elements. In thiscase, inversion can be performed in time O(n � 22`) by considering each of these disjoint sets (of 2`elements) separately. Recall that we wish the complexity of inversion to be exponential in n (andnot in `, which may be a constant).In general, a natural inverting algorithm that should be defeated is the following: On inputy = fn(x), the algorithm proceeds in n steps, maintaining a list of partially speci�ed preimages of3

y under fn. Initially, the list consists of the unique fully-undetermined string �n. In the �rst step,depending on the �rst bit of y = y1 � � � yn, we form the list L1 of strings over f�; 0; 1g so that forevery z 2 L1 it holds that P (zS1) = y1 and z[n]nS1 = �n�`, where [m] def= f1; :::;mg. In the i + 1ststep, we extend Li to Li+1 in the natural manner:� Let U 0 = [ij=1Sj and U = [i+1j=1Sj.� For every z0 2 Li, we consider all 2jUnU 0j strings z 2 f�; 0; 1gn satisfying1. zU 0 = z0U 0 ,2. zUnU 0 2 f0; 1gjUnU 0 j, and3. z[n]nU = �n�jU j.The string z is added to Li+1 if and only if P (zSi+1) = yi+1.Thus, for every i,Li = 8><>:z 2 f�; 0; 1gn : zk = � if and only if k 2 [n] n [ij=1SjandP (zSj) = yj for j = 1; :::; i 9>=>;:The average running-time of this algorithm is determined by the expected size of the list at step i,for the worst possible i. Letting U = [ij=1Sj ,A�1����i def= 8><>:z 2 f�; 0; 1gn : zk = � if and only if k 2 [n] n UandP (zSj) = �j for j = 1; :::; i 9>=>;;and X be uniformly distributed over f0; 1gn, the expected size of Li equalsX�2f0;1gi Pr[f(X)[i] = �] � jA�j = X�2f0;1gi Pr[9z2A� s.t. XU = zU] � jA�j= X�2f0;1gi jA�j2jU j � jA�j = 2�jU j � X�2f0;1gi jA�j2� 2�jU j � �2jU j�22i = 2jU j�iwhere the inequality is due to the fact that the minimum value of Pi z2i , taken over M (= 2i)non-negative zi's summing to N (= 2jU j), is obtained when the zi's are equal, and the value itselfis M � (N=M)2 = N2=M .Note that the algorithm needs not proceed by the above given order of sets. In general, forevery 1-1 permutation � over [n], we may proceed by considering in the ith step the set S�(i). Still,the complexity of this (generalized) algorithm is at least exponential inmin� �maxi n���[ij=1S�(j)���� io� (3)We should thus use a collection such that Eq. (3) is big (i.e., bounded below by
(n)).4

Bad collections. It is a bad idea to have Sj = fj + 1; :::; j + `g, since in this case we havej [ij=1 Sjj � i � `� 1 for every i. It also follows that we cannot use ` � 2, since in this case one canalways �nd an order � so that Eq. (3) is bounded above by `� 1.Good collections. An obvious lower bound on Eq. (3) is obtained by the expansion property ofthe collection C = fSjg, where the expansion of C is de�ned asmaxk minI: jIj=k fj[j2ISjj � kjg (4)A natural suggestion is to determine the collection C according to the neighborhood sets of anexpander graph. Loosely speaking, known constructions of expander graphs allow to let ` be asmall constant (in the range f7; :::; 16g), while guaranteeing that Eq. (4) is a constant fraction ofn.4 Concrete parameters for practical useIf we go for random predicates, then we should keep ` relatively small (say, ` � 16), since ourimplementation of the function must contain a 2`-size table look-up for P . (Indeed, ` = 8 poses nodi�culty, and ` = 16 requires a table of 64K bits which seems reasonable.) For concrete security wewill be satis�ed with time complexities such as 280 or so. Our aim is to have n as small as possible(e.g., a couple of hundreds).The issue addressed below is which expander to use. It is somewhat \disappointing" that forsome speci�c parameters we aim for, we cannot use the \best" known explicit constructions.Below we use the bipartite formulation of expanders. By expansion we mean a lower boundestablished on the quantity in Eq. (4). Recall that the time complexity is exponential in this bound.Random construction. This yields the best results, but the \cost" is that with small probabilitywe may select a bad construction. (The fact that we need to hard-wire the construction intothe function description is of little practical concern, since we are merely talking of hard-wiringn � ` � log2 n bits, which for the biggest n and ` considered below merely means hard-wiring 20Kbits.) Alternatively, one may incorporate the speci�cation of the construction in the input of theone-way function, at the cost of augmenting the input by n � ` � log2 n (where the original input isn-bit long). Speci�c values that may be used are tabulated below.1degree (i.e., `) #vertices (i.e., n) expansion error prob.10 256 77 2�8112 256 90 2�10114 256 103 2�10416 256 105 2�1528 384 93 2�8310 384 116 2�12112 384 139 2�1418 512 130 2�10110 512 159 2�15112 512 180 2�2021The expansion was computed in a straightforward manner; the key component is to provide for any �xed k andh an upper bound on the probability that a speci�c set of k vertices has less than h neighbors.5

The last column (i.e., error prob.) states the probability that a random construction (with givenn and `) does not achieve the stated expansion. Actually, we only provide upper bounds on theseprobabilities.Alon's Geometric Expanders [2]. These constructions do not allow ` = O(log n), but rather` is polynomially related to n. Still for our small numbers we get meaningful results, when using` = q + 1 and n = q2 + q + 1, where q is a prime power. Speci�c values that may be used aretabulated below.2degree (i.e., `) #vertices (i.e., n) expansion comment10 91 49 expansion too low12 133 76 quite good14 183 109 very goodNote that these are all the suitable values for Alon's construction (with ` � 16); in particular, `uniquely determines n and `� 1 must be a prime power.The Ramanujan Expanders of Lubotzky, Phillips, and Sarnak [6]. Until one plays withthe parameters governing this construction, one may not realize how annoying these may be withrespect to an actual use: The di�culty is that there are severe restrictions regarding the degreeand the number of vertices,3 making n � 2000 the smallest suitable choice. Admissible values aretabulated below.4 Parameters Resultsp q bipartite? ` n expansion (+ comment)13 5 NO 15 120 20 (unacceptable)5 13 NO 7 2184 160 (better than needed)13 17 YES 14 2448 392 (better than needed)Note that p = 5 and p = 13 are the only admissible choices for ` � 16. Larger values of q may beused, but this will only yield larger value of n.Using the simple expander of Gaber{Galil [4]. Another nasty surprise is that the easy tohandle expander of Gaber{Galil performs very poorly on our range of parameters. This expanderhas degree 7 (i.e., ` = 7), and can be constructed for any n = m2, where m is an integer. But itsexpansion is (c=2) � n, where c = 1�p3=4 � 0:1339746, and so to achieve expansion above 80 weneed to use n = 1225. See table below:2The expansion is computed from the eigenvalues, as in [3]. Actually, we use the stronger bound provided by [2,Thm. 2.3] rather than the simpler (and better known) bound. Speci�cally, the lower bounds in [2, Thm. 2.3] are onthe size of the neighborhood of x-subsets, and so we should subtract x from them, and maximize over all possible x's.(We use the stronger lower bound of n � (n�x)(`n+1)`n+1+(n�`�2)x , rather than the simpler bound of n � n3=2x , both providedin [2, Thm. 2.3].)3Speci�cally, ` = p+ 1 and n = (q3 � q)=2, where p and q are di�erent primes, both congruent to 1 mod 4, and pis a square mod q. For the non-bipartite case, p is a non-square mod q, and n = q3 � q. Recall that for non-bipartitegraphs ` equals the degree plus 1 (rather than the degree).4Again, the expansion is computed from the eigenvalues, as in [3].6

degree (i.e., `) #vertices (i.e., n) expansion comment7 400 27 expansion way too low7 1225 83 good7 1600 108 very good7 2500 168 beyond our requirementsA second thought. In some applications having n on the magnitude of a couple of thousandsmay be acceptable. In such a case, the explicit constructions of Lubotzky, Phillips, and Sarnak [6]and of Gaber and Galil [4] become relevant. In view of the lower degree and greater exibility, wewould prefer the construction of Gaber{Galil.5 Concluding remarks5.1 VariationsOne variation is to use either a speci�c predicate or predicates selected at random from a smalldomain, rather than using a truly random predicate (as in the presentation above). The advantageof these suggestions is that the description of the predicate is shorter, and so one may use largervalues of `. Two speci�c suggestions follow:1. Use the predicate that partitions its input into two equal length strings and takes their innerproduct modulo 2. That is, P (z1; :::; z2t) =Pti=1 zizt+i mod 2.In this case, the predicate is described without reference to `, and so any value of ` can beused (in practice). This suggestion is due to Adi Shamir.2. Use a random low-degree `-variant polynomial as a predicate. Speci�cally, we think of arandom `-variant polynomial of degree d 2 f2; 3g over the �nite �eld of two elements, andsuch a polynomial can be described by �d̀� bits.In practice, even for d = 3, we may use ` = 32 (since the description length in this case isless than 6K bits).On the other extreme, for sake of simplifying the analysis, one may use di�erent predicates in eachapplication (rather than using the same predicate in all applications).5.2 Directions for investigation1. The combinatorial properties of the function fn. Here we refer to issues such as under whatconditions is fn 1-to-1 or merely \looses little information"; that is, how is fn(Xn) distributed,when Xn is uniformly selected in f0; 1gn. One can show that if the collection (S1; :::; Sn) issu�ciently expending (as de�ned above) then the former distribution has min-entropy
(n);i.e., Pr[fn(Xn) = �] < 2�
(n), for every � 2 f0; 1gn. We seek min-entropy bounds of theform n�O(log n).2. What happens when fn is iterated? Assuming that fn \looses little information", iterating itmay make the inverting task even harder, as well as serves as a starting point for the nextitem.55An additional motivation for iterating fn is to increase the dependence of each output bit on the input bits.A dependency of each output bit on all output bits is considered by some researchers to be a requirement from aone-way function; we beg to di�er. 7

3. Modifying the construction to obtained a \keyed"-function with the hope that the result isa pseudorandom function (cf. [5]). The idea is to let the key specify the (random) predicateP . We stress that this modi�cation is applied to the iterated function, not to the basic one.6We suggest using �(log n) iteration; in practice 3{5 iterations should su�ce.Our construction is similar to a construction that was developed by Alekhnovich et. al. [1] in thecontext of proof complexity. Their results may be applicable to show that certain search methodthat are related to resolution will require exponential-time to invert our function [Avi Wigderson,private communication]. This direction requires further investogation.5.3 InspirationOur construction was inspired by the construction of Nisan and Wigderson [7]; however, we deviatefrom the latter in two important aspects:1. Nisan and Wigderson reduce the security of their construction to the hardness of the predicatein use. In our construction, the predicate is not complex at all (and our hope that the functionis hard to invert can not arise from the complexity of the predicate). That is, we hope thatthe function is harder to invert than the predicate is to compute.72. The set system used by Nisan and Wigderson has di�erent combinatorial properties than thesystems used by us. Speci�cally, Nisan and Wigderson ask for small intersections of each pairof sets, whereas we seek expansion properties (of a type that cannot be satis�ed by pairs ofsets).Our construction is also reminiscent of a sub-structure of of the des; that is, the mapping from32-bit long strings to 32-bit long strings induced by the eight S-boxes. However, the connectionwithin input bits and output bits is far more complex in our case. Speci�cally, in the des, eachof the 8 (4-bit) output strings is a function (computed by an S-box) of 6 (out of the 32) inputbits. The corresponding 8 subsets have a very simple structure; the ith subset holds bit locationsf4(i � 1) + j : j = 0; :::; 5g, where i = 1; :::; 8 and 32 is identi�ed with 0. Indeed, inverting themapping induced on 32-bit strings is very easy.8 In contrast, the complex relation between theinput bits corresponding to certain output bits in our case, defeat such a simple inversion attack.We stress that this complex (or rather expanding) property of the sets of input bits is the heart ofour suggestion.AcknowledgmentsWe are grateful to Noga Alon, Adi Shamir, Luca Trevisan and Avi Wigderson for useful discussions.References[1] M. Alekhnovich, E. Ben-Sasson, A. Razborov, and A. Wigderson. Pseudoran-dom Generators in Propositional Proof Complexity. In 41st FOCS, pages 43{53, 2000.6We note that applying this idea to the original function will de�nitely fail. In that case, by using 2` queries (andinspecting only one bit of the answers) we can easily retrieve the key P .7We comment that it is not clear whether the Nisan and Wigderson construction can be broken within timecomparable to that of computing the predicate; their paper only shows that it cannot be broken substantially faster.8In an asymptotic generalization of the scheme, inversion takes time linear in the number of bits.8

[2] N. Alon. Eigenvalues, Geometric Expanders, Sorting in Rounds, and Ramsey Theory.Combinatorica, Vol. 6, pages 207{219, 1986.[3] N. Alon and V.D. Milman. �1, Isoperimetric Inequalities for Graphs and Supercon-centrators, J. Combinatorial Theory, Ser. B, Vol. 38, pages 73{88, 1985.[4] O. Gaber and Z. Galil. Explicit Constructions of Linear Size Superconcentrators.JCSS, Vol. 22, pages 407{420, 1981.[5] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions.JACM, Vol. 33, No. 4, pages 792{807, 1986.[6] A. Lubotzky, R. Phillips, P. Sarnak. Ramanujan Graphs. Combinatorica, Vol. 8,pages 261{277, 1988.[7] N. Nisan and A. Wigderson. Hardness vs Randomness. JCSS, Vol. 49, No. 2, pages149{167, 1994.

9

