An Experimental Evaluation of Goldreich’s One-Way Function

Saurabh Kumar Panjwani}
Department of Computer Science and Engineering,
Indian Institute of Technology,

Bombay, INDIA.
panjwani@cse.iitb.ac.in

July 20, 2001

Abstract

In this manuscript we present the results of the experimental evaluation of a candidate one-
way function suggested in [1] and discuss the behaviour of the function against a few proposed
attacks. Specifically, we study the collision properties of the function and the performance of
algorithms designed to invert the function. We also propose an attack on one paricular version
of the function which defies the lower bound on inversion time, as claimed in [1].

“The work was done while working as a visiting student at the Weizmann Institute of Science, Rehovot, Israel

1 Introduction

One-way functions form an integral part of all cryptographic schemes because they abstract the
desired gap between the ease of computation of efficient algorithms and the computational infea-
sibility of the ones designed to break them. Intuitively speaking, a function is called one-way if it
is easy to compute in one direction but hard to compute in the other i.e. we can find an efficient
algorithm to compute the value of the one-way function at every point in it’s domain but no effi-
cient algorithm which finds the preimage of any point in it’s range with non-negligible probability.
One-way functions are simple cryptographic toolboxes using which more sophisticated schemes can
be designed.

The purpose of this document is to describe the experimental analysis of one particular (sugges-
tion for a) one-way function proposed by Oded Goldreich. The detailed description of the function
is given in [1] and our purpose here is to make a useful addendum to the same by providing exper-
imental results on the properties of this function. We don’t attempt to prove the intractibility of
the function in any way and we don’t even try to challenge the same, even though we are inclined
to believe that the function is a good candidate for being one-way.

1.1 A brief description of the function and it’s variants

The suggested one-way function is a function (rather a collection of functions), f,, that maps strings
in {0,1}"™ to {0,1}". It uses as parameters two sets of values

e A collection (of size n) of small overlapping subsets of [n], C o {Si:|Sil =d;S; € [n];i € [n]}

(typically d is chosen to be of the order of log(n)) and
o A predicate 7 : {0,1}¢ — {0,1}.

For every string, = x123..2,, in {0,1}", computing f,(z) involves, first, projecting = onto each of
the subsets on the collection (if S; = {41, 2, ..,74} then the projection of x on S;, denoted zg,, is a
string of length d which is given by z;, x;,..x;,) and then evaluating the predicate m on each of the
n projections, thus giving us the n bit values which represent the output string. In other words,
fn(z) is the bit string in {0,1}"™ equal to

(s,)m(zs,)...m(zs,) (1)

As should be very clear, computing the function in the forward direction is quite simple. But
it appears that if the collection, C, has some desirable combinatorial properties then inverting the
function is apparently a hard problem. Specifically, if C' is an expanding collection i.e. for some £k,
every subset of C' containing k subsets of [n] be such that the union of these k subsets is of the form
k + ©(n), then the problem of inverting the function doesn’t seem to have any efficient solution.
We could thus use combinatorial constructions like expander graphs to construct the collection.
Specifically, if we use the bipartile version of an expander, viz. G(U,V) with |U| = |V| = n with
every vertex in |U| and |V| having a fixed degree d, a natural suggestion would be using the set
{N(9)|i € U}, where N (i) denotes the set of neighbors of 7 in G as C. Such a choice of C satisfies
the desired expansion property spoken of above.

It appears that the choice of the predicate used by the function is not so restrictive (we just
need to avoid a few weaknesses mentioned in [1]). In practice, the suggestion implementation is to
select a random predicate and to hardwire 2¢ values in the form of a lookup table into the function
(since d is small 2¢ values do not increase the space complexity greatly). A few other predicates

(suggested in [1]) which are relatively easier to hardwire and thus reduce the complexity of the
function are -

e Using a random d-variant low-degree polynomial. Specifically, we think of such a polynomial
as one having degree k € {2,3} over the finite field of two elements. Such a polynomial can
be described by (g) bit values, which is significantly less than 2.

e Using a predicate that partitions its input into two equal length strings and takes their inner
product modulo 2 i.e. 7(z1,..,24) = (Zfﬁ 2iZiyq/2)mod2. This predicate (we refer to it as
Tip) can be described even more concisely but it appears that it renders the function more
vulnerable to attacks. We will further discuss the choice of this particular predicate in Section
4.

1.2 The basic attack

Before we present the more sophisticated attacks we tried on the function, it would be nice to
introduce the reader to the basic suggestion for inversion of the function given in [1]. This basic
attack works by examining the given output sequence bit by bit, in stages, and by maintaining
a list of (incompletely known) candidate input strings which could cause the output bits (under
application of the function) examined till a certain stage. For a set S = {i1,42,..,ix} C [n] let

P(z,S) def Zi, Ziy--%i,, denote the projection function that projects z onto S. The the attack works
as follows
Attack Basic_Attack(y, C, n, d)

1. Pick a random bit position, i; € [n], and make a list, Ly, of strings in {0, 1, *} such that for
every z € Ly it holds that 7(P(z,S;,)) = y;, and z; = * if and only if j ¢ S;,.

2. Put U; « S;. Put Rem « [n]\ {i1}.
3. For k in {2,3,..,n} do the following -

e Choose a random ¢ € Rem.
o Put Uy « Up_1 US;,. Initialize list Ly.

e Forevery z € Lj_1, consider all possible strings 2’ € {0, 1, }"™ for which (a) P(z',Ux_1) =
P(2,Ux 1), (b) zj = x iff j ¢ Uy. Append 2’ to Ly if n(P(2',S;,)) = yi,-

e Put Rem «— Rem \ {i}.
4. Output all strings in L,,.

The running time of the attack would depend almost entirely on the size of the list of candidate
strings with maximum size, L;Cmm), which needs to be maintained during the process. It was
shown in [1] that the expected size of |Lg| is lower bounded by a quantity exponential in E(k) =
|Ui<j<k Sj| — k and thus ngmaw) would have a lower bound corresponding to that k for which E(k)
is maximum. Thus, the basic attack (which proceeds by making no assumption on the nature of
C) seems to suggest that a collection which is sufficiently expanding would be a good candidate for
being used in the function since for such a collection there will exist a k such that E(k) is of the
order of ©(n)

We now go straight into describing the various experiments we performed on the function. For

more details on the details of the function, the user is encouraged to read [1].

2 Collision Tests on the Iterated/Non-iterated Versions of the
Function

2.1 The collision probability of a function

The collision probability of a function is defined as the probability that two elements chosen uni-
formly and independantly at random from the domain of the function are mapped to the same
image under it’s application. Thus, the collision probability can be written as -

pe = Prlf(UV) = fUP) (2)

where UT(Ll) and UT(LQ) are independant random variables with uniform distribution over {0,1}".
Clearly, a high collision probability (for a function, like ours, whose domain and co-domain coincide)
implies that the function shrinks it’s domain greatly.

2.2 Motivation for studying collision probability

As suggested in [1], an iterated version of the one-way function can be used for creating a pseudoran-
dom function which can, in turn, be used to design cryptographic schemes. For the pseudorandom
function to be utilizable in such a scheme, it’s important that it (the pseudorandom function) and
thus, the iterated version of the one-way function, doesn’t have a very small range. In other words,
it’s important that the collision probability of the one-way function (and it’s iterated version) be
low.

2.3 Finding the collision probability (p.) by exhaustive search

The easiest way to determine the collision probability is by exhaustively computing the function
at all points in the domain ({0,1}") and by collecting information about the number of pre-images
every point in the range, R C {0,1}", has. Consider the mapping induced by the function as a
partition, P, of the domain where every element of any subset, S;, in P maps to the same image,

J € R, under f. Let N(i) be the number of elements in S;. Let Cx denote the number of subsets
in P with cardinality N (Note that the partition is well- deﬁned since the one-way function itself

is well-defined). Then the collision probability can be computed as follows (where U,sl) and UT(L2)
are again independant random variables with uniform distribution over {0,1}") -

pe = Pr[f(UM) = fUP)
= Y Pr((f(UM) =) A(FUP) =)]

JER

Since USY and U,gz), and hence f(Uél)) and f(Ug)), are independant, we have
pe = Y Pr(f(UM) =] Pr(f(UP) =]

JER

= Y PruM e s [UP €5
S;epP
maxp{|S|:SeP}

= Z Z Pr[Un € S]’]2

N=1 S;:|Sj|l=N

maxp{|S|:SEP} N

-y ez

N=1

2.4 Experimental Observations for the exhaustive approach

We tried the above technique with n equal to 20 and 22 and random expanders. The results
presented below are both for the iterated (upto 10 iterations) and non-iterated versions of the
function.

2.4.1 Notations used
e fi - The function iterated ¢ times.

. p?) - calculated collision probability for f?

e «; - shrinkage in domain size (= |Range|/|Domain| = |Range|/2") for fi

In all the tables, every column tabulates values of C'y corresponding to f* where i is the label
of the column and NV is the label of the row. Each experiment corresponds to a different instance
of the function (with parameters as given) and in all the cases the predicate used is a random
predicate. For brevity’s sake, we’ve omitted the detailed statistics of all experiments except for one
of them.

e For n =20,d =8
(ai)

Experiment 1 - For this experiment, we list only the values for p¢ '/ and «; (and not the
detailed statistics).

| N | i=1] i=2]| i=3| i=4| i=5| i=6| i=7| i=8] i=9] i=10|
| pY | 2220 3.0 4.0 622 7.9720[8220 9.9720[112720 | 12.2720] 13.272 |

;] 0.5908 | 0.4235 | 0.3309 | 0.2720 | 0.2311 | 0.2009 | 0.1777 | 0.1593 | 0.1443 | 0.1319
@ifaiy — [0.7168 | 0.7813 | 0.8220 | 0.8500 | 0.8693 | 0.8845 | 0.8965 | 0.9058 | 0.9141

Experiment 2 - For this particular experiment, we list the values of C'y for N =1,2,..,30

for the varios f*’s with i in the range [1,10] in addition to p,(gi) and .

N | i=1] i=2 i=3] i=4] i=5]| i=6] i=7]| i=8 i=9 | i=10 |
1 | 356745 | 182120 | 111405 | 75670 | 54732 | 41420 | 32569 | 26146 | 21521 | 18013
2 | 177858 | 124385 | 86565 | 62863 | 47732 | 37396 | 30132 | 24846 | 20800 | 17730
3 67746 | 72082 | 59155 | 46822 | 37596 | 30738 | 25428 | 21405 | 18159 | 15577
4 21756 | 38849 | 38618 | 33983 | 28960 | 24756 | 21080 | 18160 | 15779 | 13734
5 6157 | 20253 | 24508 | 24114 | 21829 | 19290 | 17018 | 14954 | 13225 | 11749
6 1790 | 10418 | 15536 | 16815 | 16430 | 15164 | 13862 | 12471 | 11179 | 10053
7 439 | 5189 | 9559 | 11605 | 12117 | 11821 | 11055 | 10232 | 9391 | 8688
8 103 | 2655 | 6031 | 8277 | 9076 | 9249 | 9008 | 8609 | 8101 | 7552
9 32 | 1268 | 3696 | 5646 | 6734 | 7201 | 7244 | 7039 | 6753 | 6355
10 12| 624 2320 3997 | 5090 | 5688 | 5840 | 5784 | 5679 | 5473
11 1| 202 | 1362 | 2645 | 3700 | 4328 | 4716 | 4840 | 4829 | 4703
12 1| 153 | 870 | 1836 | 2807 | 3404 | 3772 | 3973 | 4045 | 4020
13 0 70 | 467 | 1213 | 1978 | 2573 | 3053 | 3355 | 3438 | 3489
14 0 41| 341 | 924 | 1499 | 2084 | 2478 | 2743 | 2894 | 2932
15 0 21| 210 | 559 | 1043 | 1504 | 1875 | 2164 | 2410 | 2490
16 0 5| 114 | 403 | 779 | 1190 | 1546 | 1854 | 2057 | 2153
17 0 4 80 | 283 | 600 | 897 | 1217 | 1473 | 1625 | 1769
18 0 2 41| 173 | 414| 706 | 954 | 1188 | 1365 | 1564
19 0 0 28 | 129 | 326| 550 | 794| 982 1176 | 1333
20 0 0 14 84| 247| 450 675 871| 1031 | 1157
21 0 0 6 53| 157 | 337 | 486| 670 | 843 | 972
22 0 0 5 47| 140 | 266 | 440 | 587 | 747 | 847
23 0 0 4 30 81| 185| 317| 438 570 | 688
24 0 0 3 18 56 | 151 | 255 | 345| 420 | 557
25 0 1 0 13 50 | 112 | 209 | 333 | 401 499
26 0 0 0 4 25 68 | 147 | 231 | 337 | 442
27 0 0 2 4 26 66 | 147 | 230| 319 387
28 0 0 1 9 30 55| 100 | 166 | 224 | 283
29 0 0 0 4 25 54 o1 | 138 | 226| 298
30 0 0 0 1 12 41 59| 119] 168 | 218
| pY | 222 322 4902 590 7.020][8220 9.g20][9.920]10.220]11.22|
;| 0.6033 [0.4372 [0.3442 | 0.2844 [0.2425 [0.2116 | 0.1877 | 0.1687 | 0.1532 | 0.1403
@ifaiy — [0.7247 | 0.7873 | 0.8263 | 0.8527 | 0.8726 | 0.8871 | 0.8988 | 0.9081 | 0.9158

Note that the collision probability obtained for higher iterations is a bit inaccurate because
the value for N was restricted to less than 30. (The collision probability was computed for
N being in {1,2,..,30} and higher values of N were ignored.)

e For n=22,d=38

Experiment 1

| N [=1 =2 i=3] i=4| i=5]| i=6] i=7| i=8] i=9]

i=10 |

‘ pgz) ‘ 1_2—20‘ 1_2—20‘ 1_2—20‘ 1_2—20‘ 2_2—20‘ 2_2—20‘ 2_2—20‘ 2_2—20‘ 2_2—20‘ 3_2—20‘

1435

/oG

o 0.6087 | 0.4428 | 0.3495 | 0.2893 | 0.2470 | 0.2157 | 0.1915 | 0.1723 | 0.1566 | 0.
—10.7274 | 0.7893 | 0.8278 | 0.8538 | 0.8733 | 0.8878 | 0.8997 | 0.9089 | 0.

9163

Experiment 2

| N | =] i=2] =3 i=4] i=5]| i=6] i=7| i=8[i=9] i=10]
‘ pgz) ‘ 1_2—20 ‘ 1_2—20 ‘ 1_2—20 ‘ 2_2—20 ‘ 2_2—20 ‘ 2_2—20 ‘ 2_2—20 ‘ 3_2—20 ‘ 3_2—20 ‘ 3_2—20 ‘
o 0.5888 | 0.4189 | 0.3252 | 0.2655 | 0.2242 | 0.1940 | 0.1709 | 0.1527 | 0.1380 | 0.1259
a; /oG — | 0.7114 | 0.7763 | 0.8164 | 0.8444 | 0.8652 | 0.8809 | 0.8935 | 0.9037 | 0.9123

2.5 Finding p. by random sampling of the domain

Unfortunately, the limitation of computational capacities does not allow us to obtain estimates
of collision probability by the exhaustive method for values of n significantly larger than 20. For
such values, we obtained approximate estimates to p. by randomly sampling points in {0,1}" and
computing f at these points only. The size of the sampling set was taken to be v/27 = 2/2 the
expected number of samples after which a repetition in {0,1}" is observed (by the birthday paradoz).
Even though with this we couldn’t reach very high values of n, it gave us some improvement above
the limit we could reach with exhaustive search.

The actual estimation involved the following algorithm. Let the number of points sampled be
denoted by M (in our case, we used M = 2*/2). Let x1, xy,..,¢); denote the values of the samples.
Apply the function at each of the x;’s and compute the set V = {(4,5)|f(x;) = f(x;) Ai < j}. This
computation can be carried out by maintaining a data structure for all the points, J, in the range
obtained by applying f on the samples, which also includes information about the number of times,
Cj, each point, j € J, is obtained. The size of V' will be 3= ; ((’;]) Output % = %
Analysis : There are two important conditions that the above algorithm should satisfy to be able

to serve as an effective technique for estimating the collision probability -
e The expected value of the output should be p. or very close to pe.
o With high probability, the deviation of the output from it’s expectation should not be large.

The first of the above conditions can be seen to hold in the following manner. Let 7;; denote the
indicator random variable for two indepandant samples, x; and z;, chosen uniformly at random
from {0,1}" to have the same image under f ie. n; = x[f(z;) = f(x;)]. Thus, n;; is 1 with
probability p. (i.e. when f(z;) = f(z;)) and 0 with probability 1 — p. (i.e. when f(z;) # f(x;)).
Clearly, the expected size of V' in the algorithm is the expectation value of the sum of these 7;;’s
taken over all possible pairs (7,7). Thus,

E[Output] = El%]
- ﬁ-Envn

1
= o Bl X 772'1]
(2) |ijeiargici
1
= @ > Elni]
2) ije[Mli<i

- ()

C

I
h@/—\

To prove the second part, we’ll use Chebyshev’s inequality. Since 7;; is an indicator random
variable for two independant random samples, z; and z;, to have the same image under f, n;;
and 7y, (which has the same distribution as 7;;) will be indepandant for every 1 < ¢,j,k,1 < M
(i # k or j # 1). Hence the numerator of the output is a sum of m = (]\2/‘[) pairwise independant
and identically distributed random variables (say (’s) with the same expectation p. and the same
variance, say Var(f). That is, our output is equal to the following quantity.

Z;n:l B
m

Using Chebyshev’s inequality, we get that for every € > 0

m
v \%4
Pr |Zk_1 ﬂk _pc| Z ¢ S (];“(ﬂ)
m €“m
_ pc(l _pc)
e2m

Hence, the probability that the output deviates from its expected value, p., is bounded above by
2

PerPe | which becomes smaller as M, and thus, m, becomes larger. Thus, if € is of the order of p.

and we sample M = /2" points in our domain, the probability of our output deviating from p. by

a value greater than ¢ will be bounded above by a small constant.

2.6 Results obtained for the random sampling technique

In all the tables that follow, we tabulate the estimated collision probability for two cases, n =
40,d = 10 and n = 20,d = 8. The quantity ¢ refers to the difference in the number of points
sampled and the number of images obtained for a paricular sampling set. Recall that the number
of sampled points is 27/2.

e For n=40, d=10

— Experiment 1

| N | i=1] i=2] i=3] i=4]| i=5| i=6]| i=7] i=8] i=9] i=10

0 0 1 1 2 2 3 4 4

5

C
p) [1290 1290309399599 [592%][7.904][9.94]g.040][11.2%

e For n=20, d=8

— Experiment 1 - In the following 2 tables, we make a comparison of the random sam-
pling technique with the exhaustive search technique. The function (rather instance of
the function) used was same in both cases.

(i) Result for the random sampling technique :-

| N | i=1] i=2] i=3] i=4] i=5] i=6]| i=7[i=8] i=9] i=10|
c 0 0 1 2 2 2 3 3 3 3
pg) 1.9720 [1.9720 [3.9-20 | 5.9-20 | 5.9-20 | 5.9-20 | 7.9-20 | 7.9-20 | 7.9-20 | 7.9-20

(ii) Result for the exhaustive search technique :-

| N | i=1] i=2] i=3] i=4| i=5] i=6]| i=7| i=8] i=9] =10
P [2.2720] 3.220] 4020] 6020 7.020| g.920] 99720 10.2720 | 11.2720 | 12.2720 |
| o]0.6007 | 0.4330 | 0.3397 | 0.2796 | 0.2376 | 0.2066 | 0.1827 | 0.1600 | 0.1482 | 0.1354 |

2.7 Observations

Some observations we can make from these results are

e The collision probability for the non-iterated version of the function with (i.e. f*) is consis-
tently of the order of 2-27" = 2. (|Domain|)~!, which means that on an average every point
in the range has two preimages. Thus, the size of the range of the function is of the order
O(|Domainl), which is good enough for effective utilization of the function (in cryptographic
schemes).

e The shrinkage in size of the domain (for the values of n for which we could perform exhaustive
search) reduces in value with increase in the number of iterations, as one would expect to
happen.

3 Comparisons between Inversion Time and Expansion

In this section we will discuss the behaviour of the function with respect to the inversion algorithm
given in [1] and make observations about the relation between the running time of this algorithm
and the expansion of the collection used by the function. The time complexity of the algorithm is
lower bounded by a quantity exponential in the expansion of the collection and our purpose here
is to determine the seperation of the actual running time from this bound.

We stress that when we refer to expansion of a collection, C' = {S;|S; C [n];|S;| = d;1 <i <n},
we mean the following quantity (defined in [1]) -

(B2 Al e S =8)
which is somewhat different from the notion of expansion expressed in [2] and [3]. We use the
properties of expander graphs to bound the above quantity i.e. using the fact that the collection
has been generated from an expander graph, we can derive a lower bound on the expansion (as
defined above) in terms of certain parameters of the graph. These parameters are the size of the
graph, n, which is the same as the size of C, the degree of each vertex, d, which is the same as the
size of each set in C' and the seperation between the first and second eigenvalues of the normalised
adjacency matrix of the graph [2].

3.1 Computing the lower bound on expansion

We use the bipartile construction of expander graphs for generating C. The construction is given
in [1]. For deriving the lower bound on the expansion we will make use of Tanner’s Theorem [2].

Let G be a bipartile graph with classes of vertices U and V', where |U| = |V| = n and the degree
of every vertex in U and V is d. Let A be the adjacency matrix of G (A is of dimension n x n).
Let A; and Ay be the two largest eigenvalues of AAT such that A\; > Ag. (A1 is known to be always
equal to d?). Then, Tanner’s Theorem states that for any set of vertices, X C U, if N(X) denotes
the set of all neighbors of X in G, then

S A1) X|
T (A=) X n 4 A
4’| X|
(d2 —)\2>|X|/TL-I-)\2

[N (X)]

For the normalised adjacency matrix, A,m-m, of G, the largest eigenvalue is 1 and if we denote
its second largest eigenvalue by A, then the following relation can be seen to hold

Ay = d*\? (4)
Using the above two equations, we get the following
d*| X]|
N(X)| >
INCOT 2 d?(1 — X2)|X|/n + d? X2
| X]
(1 = X2)|X|/n+ A2
RY

1-(1-2)[1- Bl

n

The above relation suggests that the further A, and, thus A%, is from 1, the largest eigenvalue
of Anorm, the larger is the neighboring set for every subset in U and thus, the better expander G
is. Indeed, we can obtain a relationship between the expansion co-efficient of G and the seperation
between the two largest eigenvalues of Ao (or even of AAT) using Tanner’s theorem. This even
gives us an algebraic definition of an expander graph.!

We will use the above obtained relation for deriving the expansion bound in terms of the second
largest eigenvalue of the normalised adjacency matrix. Let ¢ = A2, Let G(U,V) be the expander
graph from which the collection, C, is derived. Then the expansion of C, say E(C), can be written
as

E(©C) = max omin {INO)| - [X])

= max X:XénUl;I\lX|:z|N(X)|}_x}
xz

> -z

- ;nez[ﬁ{(l—c)x/n-i-c e}

= max{——— g}

zeln] (1 —c)z +cn

Assuming the expression being maximized to be a continuous function of x and the expansion to
be continuosly related to x as well, we get that £(C) is maximum for = 2(;4,) Where

'x(maw) o \/E —C

n 1—-c
_ A—\2
1=)2

and the lower bound on E(C') can be obtained by substituting this value in the expression for z in
E(C) as follows

A — A2 1 A — A2
> _
= (1—>\2)(>\—)\2+)\2) (1—>\2)
A1+ 2%) — 222
A1 — A2)

E(C)

It is important to note that we don’t obtain an exact expression for the expansion but only a
lower bound on it. This is because Tanner’s Theorem itself provides only a bound and indeed this
bound is quite loose. Thus, even our bound for expansion is very loose and experiments reveal
that the actual expansion (in the cases we could manage to compute it) is much greater than this
bound.

!The advantage of using eigenvalues to obtain a lower bound on the expansion of a graph, as is usually done, is
that they are much easier to compute than the co-efficient of expansion. They give us an easy-to-prepare certificate
for an expander, which is a lower bound on the expansion co-efficient. It is for the same reason that we make use of
the expansion bound in our analysis. But the utility derived is not much since the bound on expansion we get using
them is way too loose.

10

3.2 Experimental results

In the table given below, we illustrate the results of our experiments with the above mentioned
inversion algorithm and compare its running time with the actual expansion (for low values of n)
and the expansion bound (for higher values of n). The entries in the column labelled Running
Time are the powers to the base 2 which equal the length of the list of maximum length during
the course of the attack for that particular case. For each case (i.e. for each choice of parameter
values), we performed the inversion on five differnt strings and the value of running time tabulated
is the median of the values obtained for all the runs. We have listed the values of A for each case
and the correspondingly derived lower bound on expansion (Ezpansion Bound), too. For the cases
in which we could compute the expansion directly (by exhaustively computing |[N(X)| — |X| for
every possible subset, X C [n| and then applying equation (2)), we have also listed the respective
values, F(C). The predicate used in all the cases was random.

Parameters | Expander Used A | Expansion Bound | E(G) | Running Time(?)
n=20,d =28 Random 0.51 6.49 10 15.03
n=25d=28 Random 0.53 7.70 12 18.02
n=25,d=10 Random 0.41 10.71 14 17.96
n=30,d =8 Random 0.54 9.00 —* 22.07
n=31,d=06 Alon’s 0.37 14.25 —* 23.62
n=31,d=06 Random 0.64 6.80 —* 18.20

* - Could not compute

It is important to see that the actual value of expansion is greatly seperated from the computed
lower bound in all of the cases where we could compute the former. Also, the running time has
value much more that what even the exact expansion takes. The latter difference in values could
be reduced greatly by implementing an improved attack on the function and we’ll move in this
direction in the following section.

At this point it is important to highlight the fact that in the above mentioned experiments and
in the ones we’ll talk about in the next section, the collection and the predicate for a particular
pair of values of n and d were kept constant. For example, wherever we talk of an instance of the
function that uses n = 20 and d = 8, we refer to the same instance (the one which we’ve used in the
first case above). The observations could be very different for instances with the same parameters
and we don’t claim that the instances we have used are representative of the typical behaviour of
the function for the respective values. This was done only for the sake of consistency and ease of
comparison.

11

4 Further Cryptanalysis of the One-Way Function

In this section we discuss some attacks that we tried out on the one-way function and it’s variations.
Most of our experiments revolved around the version of the function which uses the predicate, m;,
defined by m;,(21, 22, ..., 2q) = (Zfﬁ Zi Zi+d/2) mod 2, where 2 - 2; is the product of the 2 bit values
zr and z;. It appears that the usage of this predicate renders the function easier to invert and
we were indeed able to obtain an inverting algorithm that runs in time exponential in a quantity
significantly less than the expansion of the collection of sets used by the function. Our results
further establish the fact that the choice of the predicate is indeed important in the behaviour of
the function.

4.1 The original attack revisited

We first look at the algorithm suggested in [1] for inversion of the function and discuss an im-
provement on this algorithm that uses a good choice of the order in which we examine the bits in
the output string. Consider a string y € {0,1}" that we are trying to invert for a version of the
function, f :{0,1}" — {0,1}". Let C = {S;|S; C [n];|Si| = d;1 < i < n} be the collection of sets
and 7 : {0,1}% — {0,1} the predicate used by f. For any set S = {iy,is,..,ix} C [n] of size k and
z € {0,1}" let P(z,S) o Zi, %iy--%i, denote the projection function that projects z onto S. Our

attack proceeds in the following manner.

Attack Invert_in_good_order(y, C, n, d)

1. Pick a random bit position, i; € [n], and make a list, Ly, of strings in {0, 1, *} such that for
every z € Ly it holds that 7(P(z,S;,)) = y;, and z; = * if and only if j ¢ S;,.

2. Put U; < S;. Put Rem « [n]\ {i1}.
3. For k in {2,3,..,n} do the following -

e Choose i, € Rem such that |S;, N Ug_1| = maxjcrem{|S; N Uk_1]}.
e Put Uy « Up_1 US;,. Initialize list Ly.

e Forevery z € Lj_1, consider all possible strings 2’ € {0, 1, *}" for which (a) P(z',Ux_1) =
P(2,Ux1), (b) z; = x iff j ¢ Uy. Append 2’ to Ly if n(P (%', S;,)) = yi,-
e Put Rem «— Rem \ {i}.

4. Output all strings in L,,.

The only difference between this algorithm and the one desribed in [1] is that the current algorithm
looks for a specific order in which the bits in the output string are examined depending on the
nature of C'. In contrast, the previous one chose the given order for inversion oblivious of C
(i.e. ip = 1,49 = 2,..,i, = n). It was shown in [1] that the length of the list at step k is lower
bounded by a quantity exponential in the expansion of the set {i1,..,ir}, i.e. |Ui<j<k Si;| — k.
But experimentation (see section 4.1.1) shows that the algorithm actually behaves much worse
that that. Thus, an obvious choice for the bit position at the kth step would be one that keeps the
expansion smallest, which is what the above algorithin does. Indeed, the running time of the attack
is still lower bounded by a quantity exponential in the quantity max;<x<p min1:|1|:k{| Uier Si| — k},
which is O(n) for an expanding collection.

12

4.1.1 Evaluation of the improved version

Our results show that the introduction of the idea of ordering of bit positions improves the actual
running time quite significantly. The following table enumerates a few cases of comparison between
the two versions of the attack. In all the cases the predicate used was random.

The entries in the last two columns (tpgsic_Attack and tlnvert_in_good_order) are the powers to
the base 2 which equal the length of the list, ngmw), of maximum length during the course of the
respective attack on a particular string. Each pair of entries in the third and fourth columns is such
that for every row (i.e. every set of parameters) the difference between these entries is the median
of the differences between five pairs of such values, each obtained for the same set of parameters
(i.e. the same collection and the same predicate) but a different output string being inverted.

Parameters | Type of Expander | Expansion of C' | tBasic_Attack | tInvert_in_good_order
n=20,d=38 Random 10 15.03 10.90
n=25d=38 Random 12 18.02 12.90
n=31,d=26 Alon’s 14.25* 23.62 17.35
n=31,d=26 Random 6.8% 18.20 13.70

x - These entries are not the actual values of the expansion but the bounds on the expansion (section 3.1).

4.2 The predicate 7;, seems to be weaker than a random predicate

We now turn our attention to the m;,-version of the function and focus entirely on tests with this
version. Our ultimate aim is to establish the fact that using m;,the function’s inversion can be
attained in time significantly less than that for the ordinary version. Our conjecture is that the
mip-version of the function is a weaker version and, thus, should not be used in practice.

Intuitively speaking, m;,, even though not perfectly linear, is very close to being a linear pred-
icate. To see this, observe that if the values of all the input bits in one half of the positions in a
particular set are known to be either 0 or 1, then the corresponding output bit is linearly related
to the remaining input bits. Thus, a natural suggestion to invert the m;,-version would be to fix
values at bit positions (in the input string to the function) one by one and at some stage (after
having fixed around n/2 bits) every bit in the output would become a linear combination of the
remaining bits. Thus, the problem would then reduce to checking for all possible combinations of
the fixed bits and solving a linear system for every fixation.

Another crucial observation is that the predicate, m;,, is more biased than any random predicate
would be expected to be. The fraction of inputs for which the output is 1 is always less than that
for which it is 0 (Specifically, for every m;,: {0,1}% — {0,1} exactly 2471 + € inputs yield a 0 and
29=1 _ ¢ yield a 1 where ¢ = 2d/2_1). Thus, if f uses m;pas its predicate, then the distribution
of f(X(™) where X(™ is uniformly distributed over {0,1}™ will have lower entropy than what we
would expect for any random predicate (that is, a predicate for which the 27 possible output values
are each chosen uniformly at random from the set {0,1}).

Also, experimentation reveals that in most cases and using the same inversion algorithm, In-
vert_in_good_order and a particular string = € {0,1}", an instance of the function fyear : {0,1}" —
{0,1}™ that uses a given collection of sets and m;,as its parameters can be inverted faster (when
inverting fuyeqr(2)) than an instance, frormar : {0,1}" — {0,1}"™ which uses the same collection but
a random predicate (when inverting f,ormai()). We obtained such a result in almost all the cases
that we tried and this greatly supports our conjecture that m;,is a weaker predicate than a truely
random one.

13

4.3 An attack that breaks the expansion bound for the 7;,-version

We now present the main result of this section, namely an inversion algorithm on the 7;,-version
of our function which defeats the lower bound in terms of expansion as given in [1]. Our result also
helps us in establishing the significance of the predicate in the overall structure of the function.
The attack we present here has been tried and tested for various parameters of the function (and
also for various input strings) and in all the cases drastic differences between the expansion bound
and the running time of the attack were observed. In the discussion that follows we refer to the
Tip-version of the function (rather any instance of the function which uses m;,) as fip.

4.3.1 Capitalization on the simple structure of 7;,: Motivating Discussion

To begin with, let us see and analyze what happens when our original attack trying to invert f;,on
a string fixes a few of the bits in the input string being attempted to find. We refer to the bits
in the input string which have been guessed (whether correctly or incorrectly) by the attack as
the known bits and those that are yet to be guessed as the undiscovered bits. The list of strings
that it maintains are referred to as candidate inputs (for the given output) and each candidate
input has some known bits, with the rest being undiscovered. Specifically, consider the case for
a particular set, S;, in C' for which some (but not all) of its elements (say a subset S]) are bit
positions corresponding to known bits. Even though there may be quite a few bit positions in S;
for which the values are undiscovered, we can obtain vital information about these values using S;.
Our aim here is to capitalize on this vital information.

The structure of m;,0ordains some restrictions on the values that the undiscovered bits’ positions
in S; can have if the known values are from a particular class. The restrictions on theses values are
there for any general predicate but what’s important is that for some cases the values are much
easier to discover with m;,than with other predicates. For example, if all the bit positions in the first
half of S; (i.e. the positions with indices 1,2,..,d/2 in the vector that S; represents) have values
0 in a particular candidate string then the output bit position, y;, corresponding to 5;, must have
value 0. If such is not the case, the candidate string can be ruled out immediately.

Let’s put things more formally now. For any candidate input, z, and with S; = {41, 19, ..,i4},
/2

j=17%ij °
zij+d/2)m0d2. We use variables, i.e. z; ’s for the undiscovered bits’ positions and substitute values
for the known bits’ positions. The expression, e;, we equate to the bit value y; which corresponds
to S; in the output string being inverted. We may end up in either of the following four classes by

doing this

we try to evaluate the predicate on the bit positions in S; i.e. we try and find e¢; = (3

1. e; may turn out to be a constant, with this constant not being equal to y;. In such a case,
our candidate gets disqualified.

2. e; may turn out to be linear in exactly one variable, z;,, in which case the resulting equation
will be something like z;, = ¢ where c is a constant. The vital information we get here is that
if our candidate has to remain a candidate then z;, must have value c. Thus, we benifit by
discovering exactly one additional bit in the candidate.

3. e; may be quadratic in exactly two variables, z;, and z; and the resulting equation is of the
form z;, - z; = 1. This can only happen if both the variables have values 1 and, thus, we can
obtain a benifit of discovering 2 additional bits here.

4. Any other form that the equation takes will not give us immediately utilizable benifit and we
don’t look at such forms.

14

It is important to observe that we can derive such benifits owing only to the oversimplified structure
of m;,. This is because m;,is essentially a sum over d/2 pairs of values and if all but one of these
pairs get zeroed out or some of them yield a 1, we are in good luck. Furthermore, our luck greatly
improves with an increase in the number of known bits.

What increases the utility of the benifits spoken of above is the fact that the discovered values of
a few undiscovered bits can, in turn, cause other undiscovered bits to be discovered. In other words,
once we know the values at some bit positions over and above the ones for which the values were
already known, cases 1, 2 and 3 above may become applicable to sets in the collection for which
they weren’t applicable before knowing these values. Intuitively speaking, this triggers a chain
process of discovering bits and eliminating candidates and in some suitably triggered cases, we
may end up discovering all the bits in the input. A good triggering set of known bits would be one
which is (a) reasonably large and (b) has a sufficiently large fraction of 0’s. It is not clear how we
could quantify reasonably/sufficiently large here - these are just intuitions which come to the mind.
It is not even clear what the fixpoint of the chain process would be and whether it can be expressed
directly in terms of the fraction of 1’s in the known bits, the collection, C, and the output string,
y. Indeed, the analysis of this chain process is quite difficult because it is likely to behave very
differently for even a small variation in the values of the known bits or the output string.

4.3.2 Some definitions and notations

We will make some preliminary definitions with respect to our attack before we actually present
it. Let f;p, mip, C and P be as defined earlier in this section. Specifically, from now on we consider
fipand mipto be fixed instances with respect to some given values of n and d. Let y € {0,1}" be the
string being attempted to invert. We’ll use z € {0,1,*}" to denote candidate inputs with every x
representing an undiscovered bit. Define -

e S. as the set of bit positions in z corresponding to discovered bits i.e. S, % {ili € [n]; 2z # *}.

e discoverable(z,y) as the string 2/,,, € {0,1,+}™ which is the string with the maximum
possible value of S,/ that can be obtained by applying the chain process spoken of above i.e.
by repeatedly applying cases 2 and 3 as long as they are applicable. discoverable(z,y) is null
if at any stage of this repeated application, the string gets disqualified (case 1).

4.3.3 The inversion algorithm Invert_f;,

We are now set to present the entire algorithm with implementation details. We hope that the
idea is clear to the reader by now and that we can skip detailed explanation of the algorithm. An
important difference between the candidates in this attack and those in the original one is that here
at every stage the known bits in the candidates are different for all of them and thus need to be
derived seperately for each candidate (Recall that for the previous case, the known bits at stage k
were only the ones in the positions of Ujcy;, 5,15;7). This makes one part of the algorithm a bit
more intensive than the previous one but the advantage we get from discovering undiscovered bits
using the known bits makes up for more than this loss.

Attack Invert_fi,(y, C, n, d)

1. Choose a random bit position, i1, in the output sequence to invert on. (Alternatively, we can
begin with the first bit in y).

15

2. Form a list L; of candidate inputs as in Invert_in_good_order.
3. For every z € L -

(a) Put 2’ « discover(z,y,C,n,d).
(b) If 2" = null, delete z from L;.
(c) If 2" # null, replace z with 2’ in L;.

4. For k in {2,3,..,n} do the following -

(a) Initialize list L.
(b) For every z € Ly 1 do the following -
i. Put Known « known_bits(z,n). Compute Known_sets = [n] \ {l{|Vj € Si,z; €
Known}.
(* Known is the set of bit positions for which the values are known in
the current candidate *)
(x Known_sets is the set of sets for which the values at bit positions
corresponding to all their elements are known *)
ii. Put Rem « [n] \ Known_sets.
iii. Choose z',(:) such that |Si1(cz) N Known| = max;jcrem |5 N Known)|.
iv. Put Known_new «— Known U Si(z).
k
v. Consider all possible strings 2" € {0, 1, x}" for which (a) P(z’, Known) = P(z, Known),
(b) 2 = * iff j ¢ Known new.
vi. If Wip(P(z’, Sii(j)» = yz.l(j) then
Put 2" « discover(z',y,C,n,d).
If 2" = null then
Discard 2.
Else if known_bits(z"”,n) = n then
Output 2.
Else

Append 2" to Ly.
5. Output all strings, if any, in L,,.
The above presented algorithm uses, as subroutines two important procedures, namely

e discover(z,y,C,n,d) - This procedure returns discoverable(z,y), as defined previously. The
idea is to keep performing iterations over all the sets in the collection and checking if any of
the cases 1, 2 or 3 (section 4.3.1) hold for any of the collections at every iteration. If case 1
is found to hold, we return null. If cases 2 or 3 hold we modify z as the case demands and
carry on iterating. We keep performing iterations till a stage is reached where z cannot be
modified any further. This is the desired fixpoint of the procedure.

Procedure discover(z, y, C, n, d)

1. Putt « z.
2. Do the following -

16

(a) Put extrabit «— 0.
(b) For all k € {1,2,..,n} do the following -
1. Let Sk = {jl, ..,jd}
ii. ep « (fol Zj, * tj+d/2) mod 2.
(x er will be in terms of constants and variables *)
iii. Comnsider equation e = y; and see if it satisfies any of the conditions in cases 1,
2, or 3.
iv. If case 1 holds then
- Return null.
v. If cases 2 or 3 hold then
- Modify ¢ as the respective case demands.
- Put extrabit — 1

3. Repeat until extrabit is 0
4. Return t.

e known_bits(z,n) - This procedure returns S,. We simply iterate over all the bits in z and
maintain a counter to count the bits which are not *.

Procedure known_bits(z, n)

1. Put counter « 0.
2. For k € {1,..,n} do the following -

(a) If z # * then
counter «— counter + 1

3. Return counter

We repeat that the number and nature of known bits could be drastically different for different
candidates even during the same stage of the attack (i.e. when k£ has a fixed value in the loop
beginning in step 4 of Invert_f;,). This is because the success of the procedure discover depends
largely on the specific values of the bits (i.e. the known bits) in z and y, besides depending on the
nature of C. Indeed, the procedure discover is the core of the entire algorithm and without it the
algorithm is absolutely the same as Invert_in_good_order.

It should be noted that we need to carry on running Invert_f;, till the very end and that we
cannot afford to stop it the moment we discover the first candidate string, z;, with S,; = n. This
is because our function is not a permutation and as already established in section 2, typically every
output string would have more than one preimages.

4.3.4 Experimental results and comparison with the original attack

Our results reveal that the running time of Invert_f;, is less than that of Invert_in_good_order by
a factor which is exponential in 35% of what the logarithm to the base 2 of the running time of
Invert_in_good_order is. Since the actual expansion of the collection (we refer to the definition in
Section 3) is very close to the latter quantity (for the cases where we could compute expansion),
this means that the algorithm is defeating the originally defined lower bound on inversion time (in
[1]) by a significant quantity.

The following table illustrates a comparison between the two attacks for various choices of pa-
rameters. (In the discussion that follows, when we refer to running time of either of the inversion

17

algorithms being considered, we mean the logarithms to the base 2 of the maximum list sizes main-
tained in the respective algorithm). The values presented in the columns labelled ¢ 1pyert_in_good_order
and trnvert_f;,» a8 before, are such that for every choice of parameters (i.e. every row in the table)
the difference between the running times for the listed pairs is the median of the differences between
the running times for five different pairs corresponding to runs of the attacks with five different
output strings but the same choice of parameters. We also tabulate (in the last column) the value
of k£ (as used in the listing of the algorithm i.e. k is the variable on which the for loop in step 4
iterates), kcompiete, at which Invert_f;, manages to complete outputting all the preimages of the
given output and the listed value is again the median of the values obtained in five different runs
of the attack.

Parameters | Expander Used | Expansion Bound | ¢7,vert_in_good_order trnvert_f;, kcomplete
n=20,d =8 Random 6.49* 10.90 4.91 2
n=25d=38 Random 7.70* 12.90 7.71 3
n=30,d =8 Random 9.0 14.96 9.03 4
n=40,d =8 Random 10.00 18.32 11.99 4
n=46,d =8 Random 12.73 21.72 14.06)
n=31,d=26 Alon’s 14.25 15.56 7.55 4
n=31,d=26 Random 6.80 12.48 6.44)
n=>57,d=28 Alon’s 22.71 cn.c.™ 20.53 4
n=>57d=38 Random 12.48 c.n.c.** 17.53 8

* For these cases we could actually compute the expansion and it was found to be 10 and 12 for n = 20 and
n = 25 respectively, which is much greater (for both cases) than what the bound gives us and is almost equal
to the running time of Invert_in_good_order. Based on these observations, we could hope that even for the
rest of the cases the running time of Invert_in_good_order is a close approrimation to the erpansion.

x x c.n.c =Could not compute (due to memory limitations)

A crucial observation to make from the table is that the value of k.ompiese is extremely small
(compared to n) in all the cases. This means that we were able to determine the complete input
string much early on than one would typically expect to, which further implies that our chain
process works extremely fast in practice. Also, we could observe that after running the for loop (in
step 4 of the attack) only twice we were able to obtain at least one preimage in almost all the cases
(even for some cases using n = 57).

Another important point is that the difference between the actual running times of the two
algorithms is less than the difference between the maximum list sizes for them. This is because
Invert_f;, is relatively more intensive in execution and also because we did not try to optimize on
the implementation of the algorithm. Omne could, however, come up with an implementation for
which the actual running times are of the order of close powers, to the base 2, of the quantities
we’ve tabulated above.

It should be kept in mind that the values tabulated for a particular choice of parameters do
not represent the average performance of the function for that choice. They just represent the
performance of the instance of the function we used. Of course, for the case of Alon’s expanders
there can be only one instance of the function with the same choice of parameters but this does
not hold for the random expanders.

18

4.3.5 Dependance of the attack on the value of d

As one would expect, the performance of Invert_f;, deteriorates with increase in the value of d used
by the function. With larger values of d, we would expect fewer candidates in every stage of the
attack to be such that for a sufficient number of sets in the collection, C, we can apply either case
1, 2 or 3 of Section 4.3.1. To put it in another way, our function becomes more secure against this
attack when the value of d is increased and thus, we could (rather should) use larger values for d
when using m;,to trade off the insecurity introduced by it. Increasing the value of d does not affect
the complexity of the function (in terms of the substance of information hard-wired into it) since
using m;requires no lookup table to be maintained inside the function. In the case of a random
predicate we are forced to maintain a lookup table and the size of this table is exponential in the
value of d used. Thus, for a random predicate, we would prefer to keep d small (of the order of
logn) so that the internally maintained information is of space complexity O(n).

The following table illustrates results of a few tests carried out to distinguish between the cases
of d = 8 and d = 12. We have also tabulated results obtained for the same cases (i.e. the same choice
of parameters) when working with a random predicate (7, qndom) and using Invert_in_good_order as
the inversion algorithm. The purpose is to illustrate the tradoff between the insecurity introduced
by mppand the complexity introduced by a random predicate. As before, the entries are running
times in terms of the maximum list length and the values enterred in every row correspond to the
median observation with five different strings for the same choice of parameters. ¢, denotes
the running time of Invert_in_good_order on the m,q4ndom-version of the function and trip denotes
the running time of Invert_f;, on the m;,-version.

Value of n U amdom Tip
d= d=12 | d = d=12
25 1298 | 17.01 | 7.71 | 10.61
31 15.06 | 19.03 | 11.59 | 14.06
40 18.19 | 23.03 | 14.46 | 17.28

Points worth observing are

e The increase in value of d improves the security of the m,qndom-version of the function much
more than of the m;,-version (the gap between the running times for d = 8 and d = 12 is
much less for the m;,-version than for the 7, qpgdom-version).

e The running times for d = 8 in the m,.qndom-version are close to the corresponding running
times for d = 12 (in the m;,-version). Thus, by increasing d for the m;,-version, we could reach
the security attained by lower values of d in the m,.4,d0m-version.

4.3.6 An alternate implementation

We have presented Invert_f;, in a form that closely resembles Invert_in_good_order for the sake of
consistency. In general, there can be many more tricks one could try using the ideas presented in
4.3.1. One specific variation would be to begin by guessing a particular number, say n/k, of bits
in the input string and then invoking discover on the resulting string. In case we still end up with
some undiscovered bits, we continue (a) by guessing more bits or (b) by reverting to examining
bits in the output string and following the course of Invert_f;, after that. We carry this on till the
stage where we know the input completely. The time complexity of such an attack would depend
largely on the number of bits guessed initially (if k£ is small enough) and would be lower bounded

19

by 0(2”/k) since we would need to try all possible guesses on the input bits previously guessed.

We tried this version of the attack (for subversions (a) and (b) and & = 3,4) but it didn’t
provide us any improvement over Invert_f;,. The running time of both versions were roughly the
same in almost all the cases (that is, while making comparisons with a fixed output string and a
fixed collection) and in most cases Invert_f;, worked better than the current version.

4.3.7 Candidates for improvement on Invert_f;,

In section 4.2, we gave an intuition for why m;,could be weaker than any random predicate and that
it is almost linear in some sense. Based upon this intuition one improvement on Invert_f;, that
appears natural is to check every candidate input for not only the possibility of any one set causing
an easy-to-capitalize-upon situation with it (i.e. giving us either of cases 1, 2 or 3 spoken of before)
but also for the possibility of a set of sets causing some other similarly-easy-to-capitalize-upon situ-
ation. What we mean here is that for every candidate input we could check (after invoking discover
and discovering as many undiscovered bits as possible) if the set of equations (each equation being
of the form e; = y;) we obtain by applying the predicate for some subset of C' and equating these
values to the corresponding output bits turns out to be a linear system of equations in |Rem| vari-
ables, where Rem is the set of undiscovered bits in the candidate being considered. If this linear
system has enough number of equations (specifically, if the number of equations is greater than or
equal to |Rem)| itself) then we have a chance of solving it and obtaining a unique solution (if there
exists one) or otherwise declaring the candidate invalid (if the system turns out to be unsolvable).
It is of no use to look at a case where the number of equations is less that |[Rem| because even if in
such a case the system is solvable, it’ll have more than one solutions.

In terms of the listing of the algorithm, what we could do is to introduce a new procedure
checklinear(z,y,C,n,d) which checks if the system of equations obtained by applying the predi-
cate for all the sets in C' over the candidate, z, is linear in the |Rem| variables representing the
undiscovered bits with the required minimum number of equations and if so returns the unique
solution, if there exists one and null if there exist none. The procedure would return nonlinear
otherwise. It would be invoked right at the beginning of the for loop at line number 4(b) in the
listing.

Experiments reveal that this candidate for improving the attack, though pretty attractive, gives
us absolutely no benifit with the reason being that at no stage do we get a candidate for which
the set of equations (spoken of above) is linear and has size greater than or equal to |[Rem|. Fur-
thermore, the number of such candidates is too small to be of any great use. We experimented
with various strings and different parameters to the function but in all the cases we saw exactly
the same behaviour. Intuitively, we could explain this as occurring because we don’t get too many
linear equations, each being linear in more than one variable resulting from this procedure. The
clause ”being linear in more than one variable” is important - when looking for a linear system we
will be able to find only such equations. Any equation linear in only one variable is equivalent to
case 2 of section 4.3.1 and, thus, would be taken care of by invoking discover itself. It is in keeping
with all this that we do not illustrate results with this inclusion.

In general, one could come up with more sophisticated ideas to take advantage of the partial
linearity of m;,(in the intuitive sense as we’ve spoken of it before) but we feel that they can be
defeated by increasing the value for d substantially.

20

5 Conclusion and Acknowledgements

The experimental analysis of the function seems to suggest that it is indeed a good candidate for
a one-way function. The fact that it appears to become more vulnerable to attacks for one partic-
ular version does not make us loose hope in it’s utility because for the more generalise description
(that using the random predicate and a lookup table) there seems to be no efficient way to invert
it. We stress that besides using a good collection (i.e. one with a sufficiently large expansion) it
is also important to make sure that the predicate is not too weakly designed. In particular, the
more unrelated the output of the predicate is to it’s input bits, the better it is, for we could (in a
few cases, like the m;,-version) capitalize upon such relations and improve the original attack. An
absolutely random predicate seems to be the best choice.

We are grateful to Oded Goldreich for useful guidance and fruitful discussions offered during
this work. We would also like to thank Adi Shamir for suggestions and pointers on the cryptanalysis
of the function.

References

[1] O. GOLDREICH. Candidate One-Way Functions Based on Expander Graphs.

[2] N. ALoN. Eigenvalues, Geometric Expanders, Sorting in Rounds, and Ramsey Theory.
Combinatorica, Vol. 6, pages 207-219, 1986.

[3] N. ALON AND V.D. MILMAN. A;, Isoperimetric Inequalities for Graphs and Supercon-
centrators, J. Combinatorial Theory, Ser. B, Vol. 38, pages 73-88, 1985.

21

