
ON THE POWER OF TWO-POINTS BASED SAMPLINGBenny Chor � Oded Goldreich ��MIT � Laboratory for Computer ScienceCambridge, Massachusetts 02139Abstract | The purpose of this note is to present a new sampling technique and to demonstratesome of its properties. The new technique consists of picking two elements at random, and de-terministically generating (from them) a long sequence of pairwise independent elements. Thesequence is guarantees to intersect, with high probability, any set of non-negligible density.1. IntroductionIn recent years the role of randomness in computation has become more and more dominant.Randomness was used to speed up sequential computations (e.g. primality testing, testing polyno-mial identities etc.), but its e�ect on parallel and distributed computation is even more impressive.In either cases the solutions are typically presented such that they are guarateed to produce thedesired result with some non-negligible probability. It is implicitly suggested that if a higher degreeof con�dence is required the algorithm should be run several times, each time using di�erent cointosses. Since the coin tosses for the distinct runs are independent random variables, the probabilitythat no run yield the desired result goes exponentially down with the number of runs. This meansthat we can buy higher degree of con�dence in the cost of more coin tosses.Karp and Pippenger [14] have raised the problem of a time-randomness tradeo� in this setting.In particular, can one increase the degree of con�dence without increasing the number of cointosses. They demonstrated an a�rmative answer to this question by using an explicitly constructedexpander. In this note we present a simpler solution. Our solution uses a deterministic constructionof an arbitrarily long sequence of pairwise independent sample points from two independent randomsample points. Our solution is suitable for practical applications.Both solutions (i.e. [14] and ours) are base on viewing a randomized algorithm as a deterministicalgorithm with two inputs: the \true input" (denoted x) and a \random input" (denoted y). Thelength of the \random input" is polynomial in the length of x. The deterministic algorithm is� Research supported in part by an IBM Graduate Fellowship and a Bantrell PostdoctoralFellowship.�� Research supported in part by a Weizmann Postdoctoral Fellowship. On leave from the Com-puter Science Dept., Technion, Israel.



{ 2 {almost identical to the random algorithm, the only di�erence is that instead of tossing a coin thedeterministic algorithm uses the next bit of the \random input". Without loss of generality wemay assume that for each x, all \random inputs" y given to the algorithm with x, are of the samelength (denoted lr(x) ). Let us now �x a \true input" x. We say that a \random input" y is good(for x) if the algorithm running on the inputs x and y produces the required result. We knowthat a non-negligible fraction of the strings of length lr(x) are good for x. But we know very littleabout the structure of the subset of good strings. Nevertheless, all we need is to sample the set oflr(x)-bit strings in a search for a string which is good for x.Thus, the question reduces to that of sampling a large population in order to �nd a good element.Note that we have a fast procedure (trivially induced by the random algorithm) to check whetheran element is good. Our solution to the sampling problem consists of generating a long sequenceof pairwise independent random elements which will be used as the sample points. The sequenceis generated deterministically out of two independent randomly chosen elements. The probabilitythat no element in the sequence is good goes down linearly with the length of the sequence.2. Formal FrameworkConsider a large universe U , containing a �xed subset S of substantial density � = jSj=jU j (forexample � = 12 ). Suppose one wishes to �nd an element of S, while having no information aboutthe structure of S (except for its density). An exhaustive search through U would do the job, butis too expensive if U is large. In fact, any deterministic algorithm could be defeated by certainchoices of S. This calls for the use of random sampling.By independently choosing k sampling elements out of U , an element of S can be found withvery high probability (i.e. 1� (1� �)k). The underlying structure of this solution consists of twoprimitives. Picking an element at random out of the space U (with uniform probability distribu-tion), and checking whether a given element is in S. We introduce a third primitive: deterministicoperations on elements of U . The sampling technique presented in this note makes extensive useof the two deterministic primitives, allowing to use the randomizing primitive only twice.For simplicity, we assume that U = Zp, the set of residues modulo a prime p, and S � Zp :3. The New Technique: Two-Points Based SamplingConstruction:Choose two random independent elements (x and y) in Zp (with uniform probability).Compute the residues ri def= x+ iy mod p, for 1 � i � L.We now demonsrate a lower bound on the probability that at least one ri 2 S. This is done by �rstshowing that the ri's are pairwise-independent random variables and next by applying a stadardprobabilistic argument.



{ 3 {Lemma: Let 2 � L < p. Then the ri's are pairwise-independent random variables, each uniformlydistributed in Zp.proof:Note that x and y are independent random variables with uniform probability distribution overZp : Thus, for every a; b 2 Zp, Pr(x � a) = 1p , Pr(y � b) = 1p and Pr(x � a ^ y � b) = 1p2 :First we show that each ri is a random variable with uniform probability distribution over Zp. Thisis the case since Pr (ri � c) = Pr (x+ iy � c)= Xb2Zp Pr (y � b) � Pr (x+ iy � cj y � b)= Xb2Zp Pr (y � b) � Pr (x � c� ib) = p � 1p � 1p = 1pWe next show that the two random variables ri and rj are statistically independent (for 1 � i 6=j � L). For every a; b 2 Zp, the equations x+ iy � a (mod p) and x+ jy � b (mod p) have aunique solution in terms of x; y 2 Zp. In other words, the mapping� xy �! � 1 i1 j �� xy � = � x+ iyx+ jy� � � rirj �is a bijection of Zp � Zp onto itself. Thus, for every a; b 2 Zp, Pr(ri � a ^ rj � b) = 1p2 = Pr(ri �a) � Pr(rj � b) : So ri, rj are independent. utTheorem: Let 2 � L < p. Then with probability 1� 1���L , at least one of the ri's is in S.proof: For 1 � i � L, let �i = ( 1 if ri 2 S0 otherwiseBy the Lemma, each ri is uniformly distributed in Zp. ThusExp(�i) = Pr(�i = 1) = �and V ar(�i) = Exp�(�i � Exp(�i))2� = �(1� �) :By the Lemma, for any i 6= j, ri and rj are independent random variables. Therefore �i and �jare also independent random variables, i 6= j. (Whenever the same function is applied to twoindependent random variables, the two results are independent random variables).We calculate the probability that no ri is in S.Pr LXi=1 �i = 0! � Pr ����� 1L LXi=1 �i � Exp(�i)����� � �!



{ 4 {Applying Chebyshev's inequality (see Feller [11, p. 233]), we getPr ����� 1L LXi=1 �i �Exp(�i)����� � �! � V ar( 1LPLi=1 �i)�2Let �i = �i � Exp(�i), then Exp(�i) = 0. By pairwise independence Exp(�i � �j) = Exp(�i) �Exp(�j). Hence, V ar 1L LXi=1 �i! = 1L2 LXi=1 LXj=1Exp ��i � �j�= 1L2 0@ LXi=1 Exp��i2� + X1�i6=j�LExp ��i�Exp ��j�1A= 1L2 � L �Exp��12� = �(1� �)LThus, Pr�PLi=1 �i = 0� � 1���L . The probability that PLi=1 �i = 0 is exactly the probability thatnone of the ri's is in S. utRemark: The Theorem can be easily extended to deal with approximate counting, using a sequenceof pairwise independent random sample points. Let � be the desired degree of accuracy of theapproximation, that is one would like to approximate the density of the subset (�) up to an additiveerror of �. Then we get Pr ����� 1L LXi=1 �i � Exp(�i)����� � �! � �(1� �)�2L :4. Comparison with Independent SamplingIn order to compare our two-points based sampling technique to the \traditional" independentsampling, we consider two complexity measures: the number of random choices of elements in U ,and the number of elements for which we test membership in S. The comparison is done withrespect to the con�dence parameter �, which is the probability of �nding an element in the targetset S. We consider only the case � > �. (The case � � � is trivial.)For the independent sampling the following holds: The number of independently chosen ele-ments, k, equals the number of elements whose membership in S is tested. With k independentsampling, the probability of �nding an element in S is � = 1� (1� �)k. Thus k = log 1��log 1�� :*For the two-points based sampling the number of independently chosen elements is always two.Let L denote the number of elements whose membership in S is tested. The probability of �ndingan element in S is � = 1� 1���L . Thus L = 1���(1��) .* All logarithms are to base 2.



{ 5 {The e�ect of k independent samplings is achieved by a two-points based sampling on L =1�(1��)k�1 elements. This is an exponential tradeo� between randomness (represented by k - thenumber of independent random choices) and deterministic computation (represented by L). Noticethat the tradeo� does not depend on the desired degree of con�dence (�), and is more favourablefor small values of � (sparse sets S).5. Comparison with an expander based techniqueKarp and Pippenger [14] have previously suggested an alternative method for trading-o� ran-domness and computation. Using an (explicitly constructed) expander, they cover the sample spaceU by jU j subsets, each of size L. Every �jU j subsets cover at least (1� �)jU j elements. Once thisexpander is constructed, k subsets are chosen at random, and all their members are tested. Theprobability that one of these k � L elements is in S, is at least 1� �k. Currently known expandersyield � = O � log2 L�L� �, where � = log 3log(1+2p3+p2) = 0:6202 : : :6. Extensions and GeneralizationsSo far we have shown how to generate a large sequence of pairwise independent elements inthe �eld Zp. This method can be extended to any �nite �eld, and to rings which satisfy certainconditions. Another generalization will be generating sequences of k-wise independent elements,starting with k independently chosen elements.In its most general form, our construction proceeds as follows. Let U be an arbitrary universe,and k a �xed integer. Let ffigLi=1 be a sequence of functions, fi : Uk 7! U , such that the mapping(x1; : : : ; xk)T 7! (fi1(x1; : : : ; xk); : : : ; fik(x1; : : : ; xk))Tis a bijection of Uk onto itself (for all distinct 1 � i1; : : : ; ik � L). Choosing the elementsx1; : : : ; xk 2 U independently (with uniform probability distribution), the sequenceff1(x1; : : : ; xk); : : : ; fL(x1; : : : ; xk)gconsists of L k-wise independent sampling elements, each uniformly distributed in U .Using the generalized Chebyshev's inequality [11, p. 242], one can show that the probabilityof having at least one S element in this sequence exceeds 1 � �1 + 1L�� 1���L �bk=2c (for L � 1� ).Notice that the performence guarantee of the L long sequence with k-wise independent elements isabout the same as that of k=2 independent sequences, each consisting of L pairwise independentelements. However, k-wise independence may be useful for other purposes.We conclude this section by presenting an implementation (suggested to us by Noga Alon [3]) ofthe general construction. (The same implemetation was discovered independently by Anderson [5]and Beame [6].) First note that U can be embedded in a �nite �eld whose size is not signi�cantly



{ 6 {larger than jU j. Thus, without loss of generality, U is a �nite �eld. Let fa1; : : : ; aLg be a set ofdistinct elements in U . De�nefi(x1; : : : ; xk) = kXj=1 aj�1i xj (for 1 � i � L) ;where the arithmetic operations are in the �eld U . The desired properties of this family of functionsfollows from the non-singularity of the Vandermond matrix0BBBB@ 11��1 ai1ai2��aik � � �� � �� � �� � �� � � ak�1i1ak�1i2��ak�1ik 1CCCCAIn fact, this construction can be carried out if U is any commutative ring, provided that none ofthe ai � aj (1 � i 6= j � L) is a zero divisor.7. Concluding RemarksOur method can be viewed as \expanding randomness" for sampling purposes, without using anyunproven assumptions. A much more general method for \expanding randomness" was presentedby Blum and Micali [7] and Yao [22]. Under the assumption that 1-1 one-way functions exist itis possible to expand n truly random coin tosses into poly(n) pseudo-random coin tosses that aregood with respect to any polynomial-time algorithm.Another possible perspective, is to view our construction as method for e�ciently generatinga long sequence of random k-wise independent events. This generation is e�cient in the sensethat only the �rst k elements in the sequence has to be randomly selected. The latter elementsare deterministically computed given the �rst k. This property has already been demonstrated auseful tool in many applications (e.g. [1,4,5,15,17,20]). Especially inspiring is Luby's methodologyof dispancing with randomness in special cases [17]. In Luby's setting the universe size is small butone needs many random elements in it. In case that pairwise independent random elements su�ce,one can deterministically generate a small set of sequences such that using one of these sequencesinstead of random coin tosses yields the desired result. This technique is extendable to any �xed k(see [4,5]), but does not extend to the case that k grows with the instance size (see [9]).An interesting property of our construction of pairwise independent integers modulo p, is thatthe sequence of bits obtained by taking the least signi�cant bit of each of the integers is muchless random then one may expect. Recall that ri � x + iy (mod p) and let bi denote the leastsigni�cant bit of ri, for 1 � i � L. Clearly there cannot be more than minf2L; p2g possible bisequences. (The 2L upper bound follows from the length of the bit sequence, while the p2 upperbound follows from the number of x; y pairs.) Suprisingly, as pointed out by A. Shamir, only L3bit sequences are possible. (The e�ect is best exampli�ed by considering L = 2 log p. In this case



{ 7 {there are only O(log3 p) sequences, while the obvious upper bound is p2.) Furthermore, as pointedout in [2], the sequence of bi's can be predicted with high probability (� 1� L��), when knowing(1 + 2�) � logL bits of x; y. (One needs only to know the least signi�cant bits of both x and y, the� � logL most signi�cant bits of x, and the (1 + �) � logL most signi�cant bits of y.) The fact thatthe bi's can be predicted with very high probability plays a central role in [2].Chronological RemarkThe construction presented in section 3 was �rst discoved by us in April 1984 [10]. Abouthalf a year later, we found out that the construction (but not the application) had been presentedby Jo�e [12] in 1971 to a Probability Theory conference*. Constructions of pairwise (or k-wise)independent random variables have been used implicitly before in Computer Science works (e.g.[8,18,19,21,16]).AcknowledgmentsWe would like to thank Noga Alon, Richard Karp, Nicholas Pippenger, and Adi Shamir forhelpful discussions.References[1] Ajtai, M., and A. Wigderson, \Deterministic Simulation of Probabilistic Constant Depth Cir-cuits", Proc. of the 26th IEEE Symp. on Foundation of Computer Science, (1985), pp. 11-19.[2] Alexi,W., Chor,B., Goldreich,O., and Schnorr,C.P., \RSA and Rabin Functions: Certain PartsAre As Hard As The Whole", To appear in SIAM Jour. on Computing. Preliminary version inProc. of the 25th IEEE Symp. on Foundation of Computer Science, (1984), pp. 449-457.[3] Alon, N., private communication, 1985.[4] Alon, N., Babai, L., and Itai, A., \A Fast and Simple Randomized Parallel Algorithm for theMaximal Independent Set Problem", to appear in Jour. of Algorithms.[5] Anderson, R., \Set Splitting", manuscript, 1985.[6] Beame, P., private communication, 1985.[7] Blum,M., and Micali, S., \How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits", SIAM Jour. on Computing, Vol. 13, No. 4, pp. 850-864, (Nov. 1984).[8] Carter, J., and M. Wegman, \Universal Classes of Hash Functions", Jour. of Comp. and Sys.Sc., Vol. 18, 1979, pp. 143-154.[9] Chor, B., Friedman, G., Goldreich, O., Hastad, J., Rudich, S., and Smolanski, R., \The BitExtraction Problem or t-Resilient Functions", Proc. of the 26th IEEE Symp. on Foundation ofComputer Science, (1985), pp. 396-407.* For a more extensive account of the events concerning restricted independence events, consultLuby [17]. We only note here that also the Vandermond construction (section 6) has been discoveredbefore by Jo�e [13].
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