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Abstract — We consider the following problem: Let r be a n-bead rosary with m white beads
and n — m black beads. Let ¢ be an integer, ¢ < n. Denote by M C\(r) the number of pairs, of
monochromatic beads which are within distance ¢ apart, in the rosary r. What is the minimum
value of MCy(-), when the minimum is taken over all n-bead rosaries which consists of m white
beads and n — m black beads?

We prove a (reasonably) tight lower bound for this combinatorial problem. Surprisingly, when

m = n/2, the answer is ~ (/2 — 1) - nt, rather than nt/2 that one might have expected.

1. INTRODUCTION

This article addresses the following problem: For integers n,m,t (n/2 < m < n,t < n) consider
cyclic strings of m ones and n — m zeros. Count the number of pairs of equal bits which are at
most ¢ places apart. What is the minimum of this count?

As one might have expected, the answer is essentially* v/ - nt, where v{ is a constant depending
only on ¢t and p def m/n (the fraction of ones in the string). However, the expression we get for v}

is somewhat surprising;:

t+1 41
t t

vfI\/(4+8p2—8p)-

In particular, v%ﬂ converges to v/2 — 1 ~ 0.414 (not to 1/2!), when ¢ grows.

The above combinatorial problem occured to us when trying to analyze the performence of
a special purpose oracle-sampling technique (for more details see our technical report [1]). An
alternative formulation of the problem was suggested by one of the referees. Let n, m,t be integers
as above. Let G, + be the graph with vertex set {1,2,...,n}, where ¢ and j are adjacent if |1 —j| < ¢
or n — |1 — j| <t. What is the largest cut in G, ; with m vertices on one side and n — m vertices

on the other side?

* Ignoring additive “error” terms of the form O(t* + n/t).
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2. DEFINITIONS AND CONVENTIONS
Let s = (so,S1,52,..,5,~1) be a binary string of length n def |s|. Following the description of

the introduction, we let ¢;(s) count the number of equal and close bits. Namely

cls) G, 0<i<j<nAsi=s; Ab(i,5) <1},
where 68(¢,7) is the cyclic distance between ¢ and j (i.e. 6(¢,7) = min{|j —i|,n — |j — ¢|}). An

alternative definition of ¢; follows (indices are computed modulo n)

t
c(s) =Y [{j: 0<j<nns;=s}l.
=1
Let n and m be integers such that 0.5n < m < n. Let p ef . We denote by 5f the set of n-bit
binary strings with m = pn ones (and n — m zeros). Denote by C(n,p,t) the minimum value of

the count ¢4(+) divided by nt, when minimized over all strings in S7. That is

1 .
C(nv P, t) = nt ’ mlnsESz{Ct(S)} :

Throughout the article, we assume that ¢ < n/2 and ¢ > p/(1 — p). The other cases are less
interesting and easily reducible to the case we consider. Further details can be found in our
technical report [1].

Proposition 1: Let sh;(s) = (Si, Sit1, Sit2, s Sitn—1). Then ¢,(s) = c;(shi(s)).

Prop. 1 follows directly from the definitions which consider strings as if they were cycles. From

this point on, we also take the liberty of doing so.

3. LOWER BOUND ON C(n,p,t)

We will analyze C'(n, p,t) as follows: first we will show that the minimum of ¢,(-) is acheived by
strings which belong to a restricted subset of 57; and next we will minimize ¢4(-) over this subset.
This will establish a lower bound on C'(n,p,1t).

When evaluating ¢,(s), it may be of use to consider “lines” which connect positions that contain
equal values and are less than ¢ bits apart in the string s. Since ¢ < 3 , there is only one way

to draw the lines. These lines are hereafter called overlines. Note that ¢;(s) is nothing but the

number of overlines in the string s.

3.1 Reduction into a restricted subset

In this subsection we will show that when analysing C'(n,p,t) it suffices to consider strings in 5%
which have the following two properties:

[a] The string contains no short 3-alternating substrings (see Definition 1 below).

[b] The string contains no long homogenous substrings (see Definition 2 below).
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Definition 1: A 3-alternating substringis a substring of the form o7t o 7% where o # 7 € {0,1}.
(Here, and throughout this article, o™ denotes a non-empty string of o’s.)

A 3-alternating substring is called short if it has length at most ¢ + 1.
Definition 2: A long homogenous substring is a substring of the form o'*t!, where o € {0,1}.

We first build up tools to prove that it suffices to consider strings with no short 3-alternating
substrings (Prop. 2 through 6, culminating in Lemma 1). Next we prove that with no loss of

generailty, also the second condition holds (Lemma 2).

3.1.1 Getting rid of short 3-alternating substrings

Proposition 2: Let o; € {0,1}, for 1 < j < 2t. Let a be an arbitrary binary string. Then
ci(0109 - 041004410149 - - 0200) — c4(0102 -+ - 040101410442 - - -0 a) = 2 - (07 — 03¢).
proof: The difference between the two counts is only due to the existence or non-existence of

overlines between oy and 1 and between 0 and o,, . Details are left to the reader. ad

Note that switching 11 and 7 in the string o109 - - - 04T T9 0141042 - - - T2, Tesults in the string
0103 + - O4TaT1 04410442 - - - 02¢. The latter string has more overlines (than the former one) only in

the case that 01 = 75 # 7 = 034.

Proposition 3: Let « be a binary string, o # 7 € {0,1} and let z,y, z, u be integers such that
x+y>1buty+ 2z <t Then:

7" lora) < ¢y(or¥0Vr0q).

[a] c/(oT%c?

[b] ci{oT¥cYor?a) < ¢y(oT%0YT?00).

proof: Part (a) follows by switching in o770¥7*0a the o on the Lh.s. of a with the 7 on the L.h.s.

of that o; and recalling Prop. 2. (Notice that the symbol in 67%¢Y7%0a which is ¢ bits to the left

of “the switched 77 is also a 7.) Part (b) follows by z sequential applications of part (a). 0
Prop. 3(;) will be used in order to get rid of short 3-alternating substrings. This will be done by

scanning the string from left to right. Suppose that the string has the form ay776Y7%00ay, where

the a; 70 part contains no short 3-alternating substrings and y 4+ z < ¢ (i.e. 70Y7%0 is a short

3-alternating substring). Applying Prop. 3(;), we transform the string to ay TPoYTr7q, (without

increasing the number of overlines). This is repeated untill the o+ 7T substring following ay7% has

length greater or equal to t.

Minor but crucial details which need to be considered are:

[1] The procedure is initiated with a; being the empty string. But how is one guaranteed to have
a substring of the form 7%¢¥ with x + y > t 7 The answer is given by Prop. 4.

[2] The procedure is terminated when «y is empty. At this point there may be two short 3-
alternating substrings. A better analysis shows that there may be only one (see Prop. 5).

Finally, we get rid of the possibly remaining short 3-alternating substring (see Prop. 6).
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Proposition 4: Let s € 5° be a binary string such that ¢¢(s) = nt - C'(n, p,t). Then there exist a
string, s’ € 52, such that both the following conditions hold:

[a] The string s’ contains a substring of the form 107170 the length of which is at least ¢ + 2.
[b] ci(s") < ci(s) + .

proof: W.lo.g., s is not of the form 0T1%. Consider an arbitrary substring, a, of length ¢ in s.
Let z denote the number of zeros in a. Replacing a by 0°1°~% in the string s results in a string s’,

which satisfies condition (a). It is easy to see that ci(s") < ¢i(s) +¢(t —1). 0

Proposition 5: Let s’ € 52 be a string, with the minimum number of overlines, which satisfies
Prop. 4. (Recall that ¢;(s") < nt - C(n,p,t)+ t*.) Then with no loss of generality, the string s’
contains at most one short 3-alternating substring.

proof’s sketch: By the hypothesis, s’ contains a substring of length at least ¢t + 2 which has
the form 1071%0. Using the procedure outlined above (after Prop. 3), we scan s’ and transform
it so that none of the scanned 3-alternating substrings is short. We stop before scanning the last
unscanned 017071 substring. The reader may easily verify that the above process does not increase

the number of overlines, since Prop. 3(;) is used in the substitutions. For more details, see [1]. O

Proposition 6: Let s’ € 5”2 be a string as in Prop. 5. Then there exist a string s € 57 satisfying
the following two conditions:

[a] The string s” contains no short 3-alternating substring.

[b] ci(s") < cu(s") + 12,

proof: By the hypothesis s’ contains at most one short 3-alternating substring. Assume that such a
unique 01¥0%1 substring of length less than ¢ +2 does exist (i.e. y+ 2z < t). Replacing this substring
in s' by the substring 0071¥1 results in a string s”. Note that s” satisfies (a). To conclude note

that ¢;(s") < ¢i(s") +t* — t. The proposition follows. 0

Definition: Let R’ be the set of strings which belong to 57 and do not have short 3-alternating
substrings. Cr(n, p,t) will denote min,cpe L - ¢y(r).

Lemma 1: C(n,p,t) > Cg(n,p,t)— 2.

proof: Immediate by Prop. 4, 5 and 6. O

3.1.2 Getting rid of long homogenous substrings

We now define even a more restricted subset of S%:

Definition: The set MR’ is the subset of strings which belong to Rf and do not have long

homogenous substrings. Carr(n,p,t) will denote min, ¢prre 37 - ce(r).

Next, we show that a string, 79 € R?, with minimum overlines can be transformed into a string
ro € MR!,, such that n’ =~ n, p’ = p and ¢4(r}) = ¢i(ro).

Proposition 7: Let ryp € R’ be a string with minimum number of overlines (i.e. ¢4(ry) =

nt - Cr(n,p,t) ). Then:
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[a] For o € {0,1}, if r¢ contains a substring of more than ¢ consecutive o’s then ry contains no
block of less than ¢ consecutive ¢’s. Futhermore, without loss of generality, rg contains at most
one substring of more than ¢ consecutive o’s.

[b] The string 7o has no substring of the form o*¢.

[c] There exist a k < t,ap’ > pandar|e MRZ:I_k such that ¢,(rg) > ¢4(ry) — kt.

proof:

Part (a): Omitting one o from a substring that contains more than ¢ o’s decreases the number of

overlines by exactly ¢t. Adding one ¢ to a block of k ¢’s increases the number of overlines by ¢ if

k > t, and by less than t if k& < ¢. Part (a) of the proposition follows easily.

Part (b): Assume on the contrary that ry contains a 02! substring, and let 7 # o € {0,1}. We

first note that in both cases (o € {0,1}), the string 7o contains a 77 substring. We omit a single 7

from the 77 substring and insert it in the middle of the olc? substring, decreasing the number of

overlines and yielding a contradiction.

Part (¢): By part (a), 7o contain at most one 0°0F [1¥17] block. Also, if ro contains a 0'*7 substring

then it contains also a 1'T/ substring. Let [ denote the length of the longest 17 substring in ry. By

part (b), [ < 2t. In case | < ¢, we are done. The interesting case is when ¢ <[ < 2f. Set k =2t —{
and 7{ to be the string which results from r¢ by the following procedure:

step 1: add k ones to the longest 17 block (yielding a 1%* block);

step 2: if ro contains a 0'™* block (when u > 0) then omit u zeros from the 0'** block and insert

them in the middle of the 12! block.

step 3 (Recall that ry contains a 00 substring): if ro does not contain a 0'*! block then omit a

single 0 from a 00 substring and insert it in the middle of the 12! block.

Note that p' = £2tE is the fraction of ones in r} (i.e. 7} € MRZl_I_k). It is easy to see that

n+k
1—p)k

ci(rg) < ey(ro) + kt and that p’ = p + ==5= > p. Part (c) of the proposition follows. 0

Proposition 8: There exist 0 < k < ¢ and p’ > p such that
p t
CR(nvpvt) > CMR(n +k,p 7t) - E :

proof: By Prop. 7(y) , Cr(n,p, ) = 17 - ci(ro) > 77 - (ealrg) = 1*) > Cyrr(n + ko' 1) — 1. D

Lemma 2: Let v(p,t) be a function which increases monotonely with p (when p > 1/2).

t
If Carr(n, p,t) > v(p,t) then Cr(n,p,t) > v(p,t)— o

proof: Immediate by Prop. 8. O



3.2 Lower bound for Cjrgr(n,p,t)
Recall that each of the strings in M R/ C S/ has the following properties:
[a] The string contains no short 3-alternating substrings.

[b] The string contains no long homogenous substrings.

3.2.1 Introducing localized counting

We will relay on the above properties of the strings in M R’ in order to bound Casr(n,p,t).
Given a string » € M R? we will introduce an expression, for ¢/(r), which depends only on the
numbers of bits in each maximal substring of consecutive equal bits. In other words, we will

introduce a localized counting of ¢;(r).

Definition: We say that b is a block (an all-o-block) of the string r if it is a maximal substring of

equal bits. That is b = o¥ and r = 7bra, where 7 # ¢ and « is an arbitrary string.

Notations: Let ¢ denote the number of all-zero [all-one] blocks in r. Beginning from an arbitrary

position between an all-one block and an all-zero block and going cyclically from left to right;

number the blocks of consecutive zeros [ones] by 0,1,2,....(¢ — 1) . Denote by z; the number of

zeros in the i-th all-zero-block and by y; the number of ones in the i-th all-one-block. That is,

r = 0%1%(0*11%10%21%2...0%-11Y%-1,

Proposition 9: Let » € M R?. Overlines occur (in r) only either within a block or between two

consecutive blocks (of the same bit).

proof: Immediate from the fact that » does not contain short 3-alternating substrings. O
The above suggests evaluating the number of overlines (in r) by counting the “contribution” of

each block to it. This counting proceeds as follows:

Block-Localized Counting (with respect to a block of length [ in r):

[a] The number of overlines within the block, denoted I;.

[b] The number of overlines between bits of the blocks neighbouring this block (i.e the first block
on its left and the first block on its right), denoted B;.

Notations: Let f(!/) denote the total “contribution” of a [-bit long block. That is

f(l) o 1)+ B

Proposition 10: Let r € M R”.

[a] er(r) = 2020 flys) + 2920 f(2), where = 070190071191 .. .0%—1]%—1,

[b] Forl < t, I} = (21) and B; = Ef;i i. Forl=1t,1; = (}) and B, = 0.

[c] T 1 <1<tthen f(I)=1>—(t+ 1)l + 5L,

proof: Part (a) follows by Prop. 9. One can easily verify the validity of Parts (b). Part (c) follows
immediately from Part (b). 0



3.2.2 Finding the minimum

Notations: Let

o

ef
9(90079017--7%—1) = f(ﬂﬁz)

Proposition 11: For fixed ¢, t and k, the minimum value of the function g(zo,..,24-1), subject

to the constraints 0 < zg,...,z4,—1 <t and 23:_01 x; = k, is obtained at g = --- =241 = §
proof: By Prop. 10(.), 9(%0, 21, ..., 74—1) = 23:_01 2P —(t+1)-k+ %t(t +1)-q (Use 0 < z; <t).
The function g(-,-,---,+) is a quadratic form in the 2;’s. O
Notation:

def pn

hi(q) = q- (f(7) + f(

Proposition 12: Let () be the set of integers ¢, satisfying Z* < ¢ < n — pn. Then

1

C t) >
MR(nvpv )— ni

-{Jrgg{hﬁ(q)}

proof: Immediate by combining Prop. 10,y and 11, using the fact that r € M R{, contains no long

homogeneous substrings. O

Proposition 13:

t+1 14202 —2pn 1 t+1
Mg = Dot LE2E 22 2L

The minimum of the function A2 (-), over ¢ € @, is obtained at:

e [1+2p% =2
PRUEE CON k. i L
tHt+1)

e t
vfd:f\/<4+8p2—8p>-———

The minimum value, h2(Gmin ), is:

Combining Prop. 12 and 13, we get
Lemma 3:  Cygr(n,p,t) > v).

3.3 The Lower Bound Theorem
Combining Lemmas 1, 2 and 3, we get

Theorem 1: C'(n,p,t)is at least

(s ty Btk ¥

n



4. UPPER BOUND ON ((n,p,1)

In this section we demonstrate the tightness of the lower bound presented above. Namely,

Theorem 2: C'(n,p,t)is at most

1 t+1 41 t+1 1
— 2y2y. — -

proof: The Theorem follows from observing that the proof of the lower bound specifies the struc-
ture of a string which achieves minimum ¢(-) among all strings in M R”. The only problem in
constructing such a string is that non-integer numbers, of blocks and block sizes, may appear. The
reader can easily verify that the “overline” added by rounding-up the number of blocks and their

41 1

sizes is less than == and 57, respectively. For more details, see our technical report [1]. O

5. CONCLUSIONS

The reader may easily verify that the gap between the lower and upper bounds is O(% + %)
Let us approximate the expressions given by the Theorems, ignoring these additive error terms.
We get
[a] C(n, 3, 1)~ v2—1~0.414
[b] C'(n,0.676,1) <
[c] C(n,0.677,1) >
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