
On the Number of Monochromatic Close Pairs of Beads in a RosarySeptember 1984(revised May 1986)Oded GoldreichMIT � Laboratory for Computer ScienceCambridge, Massachusetts 02139Abstract | We consider the following problem: Let r be a n-bead rosary with m white beadsand n � m black beads. Let t be an integer, t � n. Denote by MCt(r) the number of pairs, ofmonochromatic beads which are within distance t apart, in the rosary r. What is the minimumvalue of MCt(�), when the minimum is taken over all n-bead rosaries which consists of m whitebeads and n �m black beads?We prove a (reasonably) tight lower bound for this combinatorial problem. Surprisingly, whenm = n=2, the answer is � (p2� 1) � nt, rather than nt=2 that one might have expected.1. INTRODUCTIONThis article addresses the following problem: For integers n;m; t (n=2 � m < n, t� n) considercyclic strings of m ones and n � m zeros. Count the number of pairs of equal bits which are atmost t places apart. What is the minimum of this count?As one might have expected, the answer is essentially� v�t �nt, where v�t is a constant dependingonly on t and � def= m=n (the fraction of ones in the string). However, the expression we get for v�tis somewhat surprising: v�t =r(4 + 8�2 � 8�) � t+ 1t � t + 1tIn particular, v1=2t converges to p2� 1 � 0:414 (not to 1=2 !), when t grows.The above combinatorial problem occured to us when trying to analyze the performence ofa special purpose oracle-sampling technique (for more details see our technical report [1]). Analternative formulation of the problem was suggested by one of the referees. Let n;m; t be integersas above. Let Gn;t be the graph with vertex set f1; 2; :::; ng, where i and j are adjacent if ji� jj � tor n � ji� jj � t. What is the largest cut in Gn;t with m vertices on one side and n �m verticeson the other side?� Ignoring additive \error" terms of the form O(t2 + n=t).



{ 2 {2. DEFINITIONS AND CONVENTIONSLet s = (s0; s1; s2; ::; sn�1) be a binary string of length n def= jsj. Following the description ofthe introduction, we let ct(s) count the number of equal and close bits. Namelyct(s) def= jf(i; j) : 0 � i < j < n ^ si = sj ^ �(i; j)� tgj ;where �(i; j) is the cyclic distance between i and j (i.e. �(i; j) = minfjj � ij; n � jj � ijg). Analternative de�nition of ct follows (indices are computed modulo n)ct(s) = tXi=1 jfj : 0 � j < n ^ sj = sj+igj :Let n and m be integers such that 0:5n � m < n. Let � def= mn . We denote by S�n the set of n-bitbinary strings with m = �n ones (and n � m zeros). Denote by C(n; �; t) the minimum value ofthe count ct(�) divided by nt, when minimized over all strings in S�n. That isC(n; �; t) = 1nt �mins2S�nfct(s)g :Throughout the article, we assume that t < n=2 and t > �=(1 � �). The other cases are lessinteresting and easily reducible to the case we consider. Further details can be found in ourtechnical report [1].Proposition 1: Let shi(s) = (si; si+1; si+2; :::; si+n�1). Then ct(s) = ct(shi(s)).Prop. 1 follows directly from the de�nitions which consider strings as if they were cycles. Fromthis point on, we also take the liberty of doing so.3. LOWER BOUND ON C(n; �; t)We will analyze C(n; �; t) as follows: �rst we will show that the minimum of ct(�) is acheived bystrings which belong to a restricted subset of S�n; and next we will minimize ct(�) over this subset.This will establish a lower bound on C(n; �; t).When evaluating ct(s), it may be of use to consider \lines" which connect positions that containequal values and are less than t bits apart in the string s. Since t < n2 , there is only one wayto draw the lines. These lines are hereafter called overlines. Note that ct(s) is nothing but thenumber of overlines in the string s.3.1 Reduction into a restricted subsetIn this subsection we will show that when analysing C(n; �; t) it su�ces to consider strings in S�nwhich have the following two properties:[a] The string contains no short 3-alternating substrings (see De�nition 1 below).[b] The string contains no long homogenous substrings (see De�nition 2 below).



{ 3 {De�nition 1: A 3-alternating substring is a substring of the form �+�+�+�+, where � 6= � 2 f0; 1g.(Here, and throughout this article, �+ denotes a non-empty string of �'s.)A 3-alternating substring is called short if it has length at most t + 1.De�nition 2: A long homogenous substring is a substring of the form �t+1, where � 2 f0; 1g.We �rst build up tools to prove that it su�ces to consider strings with no short 3-alternatingsubstrings (Prop. 2 through 6, culminating in Lemma 1). Next we prove that with no loss ofgenerailty, also the second condition holds (Lemma 2).3.1.1 Getting rid of short 3-alternating substringsProposition 2: Let �j 2 f0; 1g, for 1 � j � 2t. Let � be an arbitrary binary string. Thenct(�1�2 � � ��t10�t+1�t+2 � � ��2t�)� ct(�1�2 � � ��t01�t+1�t+2 � � ��2t�) = 2 � (�1 � �2t).proof: The di�erence between the two counts is only due to the existence or non-existence ofoverlines between �1 and 1 and between 0 and �2n . Details are left to the reader. utNote that switching �1 and �2 in the string �1�2 � � ��t�1�2�t+1�t+2 � � ��2t� results in the string�1�2 � � ��t�2�1�t+1�t+2 � � ��2t�. The latter string has more overlines (than the former one) only inthe case that �1 = �2 6= �1 = �2n.Proposition 3: Let � be a binary string, � 6= � 2 f0; 1g and let x; y; z; u be integers such thatx+ y � t but y + z < t. Then:[a] ct(��x�y�z�1���) � ct(��x�y�z��).[b] ct(��x�y��z�) � ct(��x�y�z��).proof: Part (a) follows by switching in ��x�y�z�� the � on the l.h.s. of � with the � on the l.h.s.of that �; and recalling Prop. 2. (Notice that the symbol in ��x�y�z�� which is t bits to the leftof \the switched �" is also a � .) Part (b) follows by z sequential applications of part (a). utProp. 3(b) will be used in order to get rid of short 3-alternating substrings. This will be done byscanning the string from left to right. Suppose that the string has the form �1�x�y�z��2, wherethe �1�x�y part contains no short 3-alternating substrings and y + z < t (i.e. ��y�z� is a short3-alternating substring). Applying Prop. 3(b), we transform the string to �1�x�y+1�z�2 (withoutincreasing the number of overlines). This is repeated untill the �+�+ substring following �1�x haslength greater or equal to t.Minor but crucial details which need to be considered are:[1] The procedure is initiated with �1 being the empty string. But how is one guaranteed to havea substring of the form �x�y with x+ y � t ? The answer is given by Prop. 4.[2] The procedure is terminated when �2 is empty. At this point there may be two short 3-alternating substrings. A better analysis shows that there may be only one (see Prop. 5).Finally, we get rid of the possibly remaining short 3-alternating substring (see Prop. 6).



{ 4 {Proposition 4: Let s 2 S�n be a binary string such that ct(s) = nt � C(n; �; t). Then there exist astring, s0 2 S�n, such that both the following conditions hold:[a] The string s0 contains a substring of the form 10+1+0 the length of which is at least t + 2.[b] ct(s0) < ct(s) + t2.proof: W.l.o.g., s is not of the form 0+1+. Consider an arbitrary substring, �, of length t in s.Let z denote the number of zeros in �. Replacing � by 0z1t�z in the string s results in a string s0,which satis�es condition (a). It is easy to see that ct(s0) � ct(s) + t(t � 1). utProposition 5: Let s0 2 S�n be a string, with the minimum number of overlines, which satis�esProp. 4. (Recall that ct(s0) < nt � C(n; �; t) + t2.) Then with no loss of generality, the string s0contains at most one short 3-alternating substring.proof's sketch: By the hypothesis, s0 contains a substring of length at least t + 2 which hasthe form 10+1+0. Using the procedure outlined above (after Prop. 3), we scan s0 and transformit so that none of the scanned 3-alternating substrings is short. We stop before scanning the lastunscanned 01+0+1 substring. The reader may easily verify that the above process does not increasethe number of overlines, since Prop. 3(b) is used in the substitutions. For more details, see [1]. utProposition 6: Let s0 2 S�n be a string as in Prop. 5. Then there exist a string s00 2 S�n satisfyingthe following two conditions:[a] The string s00 contains no short 3-alternating substring.[b] ct(s00) < ct(s0) + t2.proof: By the hypothesis s0 contains at most one short 3-alternating substring. Assume that such aunique 01y0z1 substring of length less than t+2 does exist (i.e. y+z < t). Replacing this substringin s0 by the substring 00z1y1 results in a string s00 . Note that s00 satis�es (a). To conclude notethat ct(s00) < ct(s0) + t2 � t. The proposition follows. utDe�nition: Let R�n be the set of strings which belong to S�n and do not have short 3-alternatingsubstrings. CR(n; �; t) will denote minr2R�n 1nt � ct(r).Lemma 1: C(n; �; t) > CR(n; �; t)� 2tn .proof: Immediate by Prop. 4, 5 and 6. ut3.1.2 Getting rid of long homogenous substringsWe now de�ne even a more restricted subset of S�n:De�nition: The set MR�n is the subset of strings which belong to R�n and do not have longhomogenous substrings. CMR(n; �; t) will denote minr2MR�n 1nt � ct(r).Next, we show that a string, r0 2 R�n, with minimum overlines can be transformed into a stringr00 2MR�0n0 , such that n0 � n, �0 � � and ct(r00) � ct(r0).Proposition 7: Let r0 2 R�n be a string with minimum number of overlines (i.e. ct(r0) =nt � CR(n; �; t) ). Then:



{ 5 {[a] For � 2 f0; 1g, if r0 contains a substring of more than t consecutive �'s then r0 contains noblock of less than t consecutive �'s. Futhermore, without loss of generality, r0 contains at mostone substring of more than t consecutive �'s.[b] The string r0 has no substring of the form �2t.[c] There exist a k < t, a �0 � � and a r00 2MR�0n+k such that ct(r0) � ct(r00)� kt.proof:Part (a): Omitting one � from a substring that contains more than t �'s decreases the number ofoverlines by exactly t. Adding one � to a block of k �'s increases the number of overlines by t ifk � t, and by less than t if k < t. Part (a) of the proposition follows easily.Part (b): Assume on the contrary that r0 contains a �2t substring, and let � 6= � 2 f0; 1g. We�rst note that in both cases (� 2 f0; 1g), the string r0 contains a �� substring. We omit a single �from the �� substring and insert it in the middle of the �t�t substring, decreasing the number ofoverlines and yielding a contradiction.Part (c): By part (a), r0 contain at most one 0t0+ [1t1+] block. Also, if r0 contains a 0t+j substringthen it contains also a 1t+j substring. Let l denote the length of the longest 1+ substring in r0. Bypart (b), l < 2t. In case l � t, we are done. The interesting case is when t < l < 2t. Set k = 2t� land r00 to be the string which results from r0 by the following procedure:step 1: add k ones to the longest 1+ block (yielding a 12t block);step 2: if r0 contains a 0t+u block (when u > 0) then omit u zeros from the 0t+u block and insertthem in the middle of the 12t block.step 3 (Recall that r0 contains a 00 substring): if r0 does not contain a 0t+1 block then omit asingle 0 from a 00 substring and insert it in the middle of the 12t block.Note that �0 = �n+kn+k is the fraction of ones in r00 (i.e. r00 2 MR�0n+k). It is easy to see thatct(r00) < ct(r0) + kt and that �0 = �+ (1��)kn+k > �. Part (c) of the proposition follows. utProposition 8: There exist 0 � k < t and �0 � � such thatCR(n; �; t) > CMR(n+ k; �0; t)� tn :proof: By Prop. 7(c) , CR(n; �; t) = 1nt � ct(r0) > 1nt � (ct(r00)� t2) � CMR(n+ k; �0; t)� tn . utLemma 2: Let v(�; t) be a function which increases monotonely with � (when � � 1=2).If CMR(n; �; t)� v(�; t) then CR(n; �; t) � v(�; t)� tn :proof: Immediate by Prop. 8. ut



{ 6 {3.2 Lower bound for CMR(n; �; t)Recall that each of the strings in MR�n � S�n has the following properties:[a] The string contains no short 3-alternating substrings.[b] The string contains no long homogenous substrings.3.2.1 Introducing localized countingWe will relay on the above properties of the strings in MR�n in order to bound CMR(n; �; t).Given a string r 2 MR�n we will introduce an expression, for ct(r), which depends only on thenumbers of bits in each maximal substring of consecutive equal bits. In other words, we willintroduce a localized counting of ct(r).De�nition: We say that b is a block (an all-�-block) of the string r if it is a maximal substring ofequal bits. That is b = �+ and r = �b��, where � 6= � and � is an arbitrary string.Notations: Let q denote the number of all-zero [all-one] blocks in r. Beginning from an arbitraryposition between an all-one block and an all-zero block and going cyclically from left to right;number the blocks of consecutive zeros [ones] by 0,1,2,...,(q � 1) . Denote by zi the number ofzeros in the i-th all-zero-block and by yi the number of ones in the i-th all-one-block. That is,r = 0z01y00z11y10z21y2 � � �0zq�11yq�1 .Proposition 9: Let r 2MR�n. Overlines occur (in r) only either within a block or between twoconsecutive blocks (of the same bit).proof: Immediate from the fact that r does not contain short 3-alternating substrings. utThe above suggests evaluating the number of overlines (in r) by counting the \contribution" ofeach block to it. This counting proceeds as follows:Block-Localized Counting (with respect to a block of length l in r):[a] The number of overlines within the block, denoted Il.[b] The number of overlines between bits of the blocks neighbouring this block (i.e the �rst blockon its left and the �rst block on its right), denoted Bl .Notations: Let f(l) denote the total \contribution" of a l-bit long block. That isf(l) def= Il + BlProposition 10: Let r 2MR�n.[a] ct(r) =Pq�1i=0 f(yi) +Pq�1i=0 f(zi), where r = 0z01y00z11y1 � � �0zq�11yq�1 .[b] For l < t, Il = �l2� and Bl =Pt�li=1 i. For l = t, Il = �t2� and Bl = 0.[c] If 1 � l � t then f(l) = l2 � (t+ 1)l+ t2+t2 .proof: Part (a) follows by Prop. 9. One can easily verify the validity of Parts (b). Part (c) followsimmediately from Part (b). ut



{ 7 {3.2.2 Finding the minimumNotations: Let g(x0; x1; ::; xq�1) def= q�1Xi=0 f(xi)Proposition 11: For �xed q, t and k, the minimum value of the function g(x0; ::; xq�1), subjectto the constraints 0 < x0; :::; xq�1 � t and Pq�1i=0 xi = k, is obtained at x0 = � � �= xq�1 = kq .proof: By Prop. 10(c), g(x0; x1; :::; xq�1) =Pq�1i=0 x2i � (t + 1) � k + 12 t(t + 1) � q (Use 0 < xi � t).The function g(�; �; � � � ; �) is a quadratic form in the xi's. utNotation: h�n(q) def= q � (f(�nq ) + f(n � �nq ))Proposition 12: Let Q be the set of integers q, satisfying �nt � q � n� �n. ThenCMR(n; �; t) � 1nt �minq2Qfh�n(q)gproof: Immediate by combining Prop. 10(a) and 11, using the fact that r 2MR�n contains no longhomogeneous substrings. utProposition 13: h�n(q) = t+ 1n � q + (1 + 2�2 � 2�)nt � 1q � t + 1t :The minimum of the function h�n(�), over q 2 Q, is obtained at:qmin def= s1 + 2�2 � 2�t(t + 1) � nThe minimum value, h�n(qmin), is:v�t def= r(4 + 8�2 � 8�) � t + 1t � t + 1tCombining Prop. 12 and 13, we getLemma 3: CMR(n; �; t) � v�t .3.3 The Lower Bound TheoremCombining Lemmas 1, 2 and 3, we getTheorem 1: C(n; �; t) is at least(r(2 + 8(�� 12)2) � t+ 1t � t+ 1t )� 3tn



{ 8 {4. UPPER BOUND ON C(n; �; t)In this section we demonstrate the tightness of the lower bound presented above. Namely,Theorem 2: C(n; �; t) is at most(r(2 + 8(�� 12)2) � t + 1t � t + 1t ) + t + 1n + 12t2proof: The Theorem follows from observing that the proof of the lower bound speci�es the struc-ture of a string which achieves minimum ct(�) among all strings in MR�n. The only problem inconstructing such a string is that non-integer numbers, of blocks and block sizes, may appear. Thereader can easily verify that the \overline" added by rounding-up the number of blocks and theirsizes is less than t+1n and 12t2 , respectively. For more details, see our technical report [1]. ut5. CONCLUSIONSThe reader may easily verify that the gap between the lower and upper bounds is O(1t + tn ).Let us approximate the expressions given by the Theorems, ignoring these additive error terms.We get[a] C(n; 12 ; t) � p2� 1 � 0:414[b] C(n; 0:676; t)< 12 .[c] C(n; 0:677; t)> 12 .ACKNOWLEDGMENTSI am indebted to Tom Leighton for teaching me how to count (overlaps). It is my pleasure to thankMichael Ben-Or, Benny Chor, Sha� Goldwasser, Hans Heller, Silvio Micali, Gary Miller, Ron Rivestand Avi Wigderson for very helpful discussions, useful ideas and consistent encouragement. I wouldalso like to thank the referees for their suggestions.REFERENCES[1] Goldreich, O., \On the Number of Close-and-Equal Pairs of Bits in a String (with Implicationson the Security of RSA's L.S.B)", MIT/LCS/TM-256, March 1984.


