
Session-Key Generation using Human PasswordsOnlyOded Goldreich? and Yehuda LindellDepartment of Computer Science and Applied Math,Weizmann Institute of Science, Rehovot, Israel.foded,lindellg@wisdom.weizmann.ac.ilAbstract. We present session-key generation protocols in a model wherethe legitimate parties share only a human-memorizable password. Thesecurity guarantee holds with respect to probabilistic polynomial-timeadversaries that control the communication channel (between the par-ties), and may omit, insert and modify messages at their choice. Looselyspeaking, the e�ect of such an adversary that attacks an execution of ourprotocol is comparable to an attack in which an adversary is only allowedto make a constant number of queries of the form \is w the password ofParty A". We stress that the result holds also in case the passwords areselected at random from a small dictionary so that it is feasible (for theadversary) to scan the entire directory. We note that prior to our result,it was not clear whether or not such protocols were attainable withoutthe use of random oracles or additional setup assumptions.1 IntroductionThis work deals with the oldest and probably most important problem of cryp-tography: enabling private and reliable communication among parties that usea public communication channel. Loosely speaking, privacy means that nobodybesides the legitimate communicators may learn the data communicated, andreliability means that nobody may modify the contents of the data communi-cated (without the receiver detecting this fact). Needless to say, a vast amount ofresearch has been invested in this problem. Our contribution refers to a di�cultand yet natural setting of two parameters of the problem: the adversaries andthe initial set-up.We consider only probabilistic polynomial-time adversaries. Still even withinthis framework, an important distinction refers to the type of adversaries onewishes to protect against: passive adversaries only eavesdrop the channel, whereasactive adversaries may also omit, insert and modify messages sent over the chan-nel. Clearly, reliability is a problem only with respect to active adversaries (andholds by de�nition w.r.t passive adversaries). We focus on active adversaries.The second parameter mentioned above is the initial set-up assumptions.Some assumption of this form must exist or else there is no di�erence between? Supported by the MINERVA Foundation, Germany.



the legitimate communicators, called Alice and Bob, and the adversary (whichmay otherwise initiate a conversation with Alice pretending to be Bob). We listsome popular initial set-up assumptions and briey discuss what is known aboutthem.Public-key infrastructure: Here one assumes that each party has generateda secret-key and deposited a corresponding public-key with some trustedserver(s). The latter server(s) may be accessed at any time by any user.It is easy to establish private and reliable communication in this model(cf. [15, 33]). (However, even in this case, one may want to establish \ses-sion keys" as discussed below.)Shared (high-quality) secret keys: By high-quality keys we mean stringscoming from distributions of high min-entropy (e.g., uniformly chosen 56-bit (or rather 192-bit) long strings, uniformly chosen 1024-bit primes, etc).Furthermore, these keys are selected by a suitable program, and cannot bememorized by humans.In case a pair of parties shares such a key, they can conduct private andreliable communication (cf., [9, 36, 19, 4]).Shared (low-quality) secret passwords: In contrast to high-quality keys,passwords are strings that may be easily selected, memorized and typed-inby humans. An illustrating (and simpli�ed) example is the case in which thepassword is selected uniformly from a relatively small dictionary; that is, thepassword is uniformly distributed in D � f0; 1gn, where jDj = poly(n).Note that using such a password in the role of a cryptographic key (in schemesas mentioned above) will yield a totally insecure scheme. A more signi�cantobservation is that the adversarymay try to guess the password, and initiate aconversation with Alice pretending to be Bob and using the guessed password.So nothing can prevent the adversary from successfully impersonating Bobwith probability 1=jDj. But can we limit the adversary's success to about thismuch?The latter question is the focus of this paper.Session-keys: The problem of establishing private and reliable communicationis commonly reduced to the problem of generating a secure session-key (a.k.a\authenticated key exchange"). Loosely speaking, one seeks a protocol by whichAlice and Bob may agree on a key (to be used throughout the rest of the currentcommunication session) so that this key will remain unknown to the adversary.1Of course, the adversary may prevent such agreement (by simply blocking allcommunication), but this will be detected by either Alice or Bob.1 We stress that many famous key-exchange protocols, such as the one of Di�e andHellman [15], refer to a passive adversary. In contrast, this paper refers to activeadversaries.



1.1 What security may be achieved based on passwordsLet us consider the related (although seemingly easier) task of mutual authenti-cation. Here Alice and Bob merely want to establish that they are talking to oneanother. Repeating an observation made above, we note that if the adversaryinitiates m � jDj instances of the mutual authentication protocol, guessing a dif-ferent password in each of them, then with probability m=jDj it will succeed inimpersonating Alice to Bob (and furthermore �nd the password). The questionposed above is rephrased here as follows:Can one construct a password-based scheme in which the success probabil-ity of any probabilistic polynomial-time impersonation attack is boundedby O(m=jDj) + �(n), where m is the number of sessions initiated by theadversary, and �(n) is a negligible function in the security parameter n?We resolve the above question in the a�rmative. That is, assuming the existenceof trapdoor one-way permutations, we prove that schemes as above do exist(for any D and speci�cally for jDj = poly(n)). Our proof is constructive. Weactually provide a protocol of comparable security for the more demanding goalof authenticated session-key generation.Password-based authenticated session-key generation: Our de�nition for the taskof authenticated session-key generation is based on the simulation paradigm.That is, we require that a secure protocol emulates an ideal execution of asession-key generation protocol (cf. [1, 29, 12]). In such an ideal execution, atrusted third party hands identical, uniformly distributed session-keys to thehonest parties. The only power given to the adversary in this ideal model isto prevent the trusted party from handing keys to one of both parties. (Westress that, in this ideal model, the adversary learns nothing of the parties' jointpassword or output session-key).Next, we consider a real execution of a protocol (where there is no trustedparty and the adversary has full control over the communication channel betweenthe honest parties). In general, a protocol is said to be secure if real-model ad-versaries can be emulated in the ideal-model such that the output distributionsare computationally indistinguishable. Since in a password-only setting the ad-versary can always succeed with probability 1=jDj, it is impossible to achievecomputational indistinguishability between the real model and above-describedideal model (where the adversary has zero probability of success). Therefore, inthe context of a password-only setting, an authenticated session-key generationprotocol is said to be secure if the above-mentioned ideal-model emulation re-sults in an output distribution that can be distinguished from a real executionby (a gap of) at most O(1=jDj) + �(n).Main result (informally stated): Assuming the existence of trapdoor one-waypermutations, there exists a secure authenticated session-key generation protocolin the password-only setting.



The above (informal) de�nition implies the intuitive properties of authenticatedsession-key generation (e.g., security of the generated session-key and of the ini-tial password). In particular, the output session-key can be distinguished from arandom key by (a gap of) at most O(1=jDj)+�(n).2 Similarly, the distinguishinggap between the parties' joint password and a uniformly distributed element inD is at most O(1=jDj) + �(n). (As we have mentioned, the fact that the adver-sary can distinguish with gap O(1=jDj) is an inherent limitation of password-based security.) The parties are also guaranteed that, except with probabilityO(1=jDj) + �(n), they either end-up with the same session-key or detect thattheir communication has been tampered with. Our de�nition also implies addi-tional desirable properties of session-key protocols such as forward secrecy andsecurity in the case of session-key loss (or known-key attacks). Furthermore, ourprotocol provides improved (i.e., negligible gap) security in case the adversaryonly eavesdrops the communication (during the protocol execution).We mention that a suitable level of indistinguishability (of the real and idealexecutions) holds when m sessions (referring to the same password) are con-ducted sequentially: in this case the distinguishing gap is O(m=jDj)+�(n) ratherthan O(1=jDj) +�(n) (which again is optimal). This holds also when any (poly-nomial) number of other sessions w.r.t independently distributed passwords areconducted concurrently to the above m sessions.Caveat: Our protocol is proven secure only when assuming that the same pairof parties (using the same password) does not conduct several concurrent ex-ecutions of the protocol. We stress that concurrent sessions of other pairs ofparties (or of the same pair using a di�erent password), are allowed. See furtherdiscussion in Sections 1.4 and 2.5.1.2 Comparison to prior workThe design of secure mutual authentication and key-exchange protocols is a ma-jor e�ort of the applied cryptography community. In particular, much e�ort hasbeen directed towards the design of password-based schemes that should with-stand active attacks.3 An important restricted case of the mutual authentication2 This implies that when using the session-key as a key to a MAC, the probability thatthe adversary can generate a valid MAC-tag to a message not sent by the legitimateparty is small (i.e., O(1=jDj)). Likewise, when using the session-key for private-key encryption, the adversary learns very little about the encrypted messages: forevery partial-information function, the adversary can guess the value of the functionapplied to the messages with only small (i.e., O(1=jDj)) advantage over the a-prioriprobability.3 A speci�c focus of this research has been on preventing o�-line dictionary attacks. Insuch an o�-line attack, the adversary records its view from past protocol executionsand then scans the dictionary for a password consistent with this view. If checkingconsistency in this way is possible and the dictionary is small, then the adversarycan derive the correct password. Clearly, a secure session-key generation protocol(as imformally de�ned above) withstands any o�-line dictionary attack.



problem is the asymmetric case in which a human user authenticates himself toa server in order to access some service. The design of secure access controlmechanisms based only on passwords is widely recognized as a central problemof computer practice and as such has received much attention.The �rst protocol suggested for password-based session-key generation was byBellovin and Merritt [5]. This work was very inuential and became the basis formuch future work in this area [6, 34, 24, 27, 31, 35]. However, these protocols havenot been proven secure and their conjectured security is based on mere heuristicarguments. Despite the strong need for secure password-based protocols, theproblem was not treated rigorously until quite recently. For a survey of worksand techniques related to password authentication, see [28, 26] (a brief surveycan be found in [23]).A �rst rigorous treatment of the access control problem was provided byHalevi and Krawczyk [23]. They actually considered an asymmetric hybrid modelin which one party (the server) may hold a high-quality key and the other party(the human) may only hold a password. The human is also assumed to have se-cure access to a corresponding public-key of the server (either by reliable accessto a reliable server or by keeping a \digest" of that public-key, which they calla public-password). The Halevi{Krawczyk model capitalizes on the asymmetryof the access control setting, and is inapplicable to settings in which communi-cation has to be established between two humans (rather than a human and aserver). Furthermore, requiring the human to keep the unmemorizable public-password (although not secretly) is undesirable even in the access control setting.Finally, we stress that the Halevi{Krawczyk model is a hybrid of the \shared-keymodel" and the \shared-password model" (and so their results don't apply to the\shared-password model"). Thus, it is of both theoretical and practical interestto answer the original question as posed above (i.e., without the public-passwordrelaxation): Is it possible to implement a secure access control mechanism (andauthenticated key-exchange) based only on passwords?Positive answers to the original problem have been provided in the randomoracle model. In this model, all parties are assumed to have oracle access to atotally random (universal) function [3]. Secure (password-based) access controlschemes in the random oracle model were presented in [2, 11]. The commoninterpretation of such results is that security is LIKELY to hold even if therandom oracle is replaced by a (\reasonable") concrete function known explicitlyto all parties. We warn that this interpretation is not supported by any soundreasoning. Furthermore, as pointed out in [14], there exist protocols that aresecure in the random oracle model but become insecure if the random functionis replaced by any speci�c function (or even a function uniformly selected fromany family of functions).To summarize, this paper is the �rst to present session-key generation (aswell as mutual authentication) protocols based only on passwords (i.e., in theshared-password model), using only standard cryptographic assumptions (e.g.,the existence of trapdoor one-way permutations, which in turn follows from theintractability assumption regarding integer factorization). We stress that prior



to this work it was not clear whether such protocols exist at all (i.e., outside ofthe random oracle model).Necessary conditions for mutual authentication: Halevi and Krawczyk [23] provedthat mutual-authentication in the shared-password model implies (unauthenti-cated) secret-key exchange, which in turn implies one-way functions. Conse-quently, Boyarsky [10] pointed out that, in the shared-password model, mutual-authentication implies Oblivious Transfer.1.3 TechniquesOne central idea underlying our protocol is due to Naor and Pinkas [30]. Theysuggested the following protocol for the case of passive adversaries, using a secureprotocol for polynomial evaluation.4 In order to generate a session-key, party A�rst chooses a random linear polynomial Q(�) over a large �eld (which containsthe dictionary of passwords). Next, A and B execute a secure polynomial evalu-ation in which B obtains Q(w), where w is their joint password. The session-keyis then set to equal Q(w).In [10] it was suggested to make the above protocol secure against active ad-versaries, by using non-malleable commitments. This suggestion was re-iteratedto us by Moni Naor, and in fact our work grew out of his suggestion. In order toobtain a protocol secure against active adversaries, we augment the abovemen-tioned protocol of [30] by several additional mechanisms. Indeed, we use non-malleable commitments [16], but in addition we also use a speci�c zero-knowledgeproof [32], ordinary commitment schemes [7], a speci�c pseudorandom generator(of [9, 36, 8]), and message authentication schemes (MACs). The analysis of theresulting protocol is very complicated, even when the adversary initiates a singlesession. As explained below, we believe that these complications are unavoidablegiven the current state-of-art regarding concurrent execution of protocols.Although not explicit in the problem statement, the problem we deal withactually concerns concurrent executions of a protocol. Even in case the adver-sary attacks a single session among two legitimate parties, its ability to modifymessages means that it may actually conduct two concurrent executions of theprotocol (one with each party).5 Concurrent executions of some protocols wereanalyzed in the past, but these were relatively simple protocols. Although thehigh-level structure of our protocol can be simply stated in terms of a smallnumber of modules, the currently known implementations of some of these mod-ules are quite complex. Furthermore, these implementations are not known tobe secure when two copies are executed concurrently. Thus, at the current state4 In the polynomial evaluation functionality, party A has a polynomial Q(�) over some�nite �eld and Party B has an element x of the �eld. The evaluation is such thatA learns nothing, and B learns Q(x); i.e., the functionality is de�ned by (Q; x) 7!(�;Q(x)).5 Speci�cally, the adversary may execute the protocol with Alice while claiming to beBob, concurrently to executing the protocol with Bob while claiming to be Alice,where these two executions refer to the same joint Alice{Bob password.



of a�airs, the analysis cannot proceed by applying some composition theoremsto (two-party) protocols satisfying some concurrent-security properties (becausesuitable concurrently-secure protocols and composition theorems are currentlyunknown). Instead, we have to analyze our protocol directly. We do so by reduc-ing the analysis of (two concurrent executions of) our protocol to the analysisof non-concurrent executions of related protocols. Speci�cally, we show how asuccessful adversary in the concurrent setting contradicts the security require-ments in the non-concurrent setting. Such \reductions" are performed severaltimes, each time establishing some property of the original protocol. Typically,the property refers to one of the two concurrent executions, and it is shownto hold even if the adversary is given some secrets of the legitimate party inthe second execution. This is done by giving these secrets to the adversary, en-abling him to e�ectively emulate the second execution internally. Thus, only the�rst execution remains and the relevant property is proven (in this standardnon-concurrent setting). See Section 4 for an illustration of some of these prooftechniques.1.4 DiscussionWe view our work as a theoretical study of the very possibility of achievingprivate and reliable communication among parties that share only a secret (low-quality) password and communicate over a channel that is controlled by an activeadversary. Our main result is a demonstration of the feasibility of this task. Thatis, we demonstrate the feasibility of performing session-key generation based onlyon (low-quality) passwords. Doing so, this work is merely the �rst (rigorous) stepin a research project directed towards providing a good solution to this practicalproblem. We discuss two aspects of this project that require further study.Concurrent executions: Our protocol is proven secure only when the same pairof parties (using the same password) does not conduct several concurrent exe-cutions of the protocol. (We do allow concurrent executions that use di�erentpasswords.) Thus, actual use of our protocol requires a mechanism for ensuringthat the same password is never used in concurrent executions. A simple mech-anism enforcing the above is to disallow a party to enter an execution with aparticular password if less than � units of time have passed since a previous ex-ecution with the same password. Furthermore, an execution must be completedwithin � units of time; that is, if � time units have elapsed then the executionis suspended. See Section 2.5 for further details. Indeed, it is desirable not toemploy such a timing mechanism, and to prove that security holds also whenmany executions are conducted concurrently using the same password.E�ciency: It is indeed desirable to have more e�cient protocols than the onepresented here. Some of our techniques may be useful towards this goal.



1.5 Independent workIndependently of our work, Katz, Ostrovsky and Yung [25] presented a protocolfor session-key generation based on passwords. Their protocol is incomparableto ours. On one hand, their protocol uses a stronger set-up assumption (i.e.,public parameters selected by a trusted party), and a seemingly stronger in-tractability assumption (i.e., the Decisional Di�e-Hellman). On the other hand,their protocol seems practical and is secure in an unrestricted concurrent setting.Recall that the thrust of our work is in demonstrating the feasibility of perform-ing session-key generation based on passwords only (i.e., without any additionalset-up assumptions).2 Formal SettingIn this section we present notation and de�nitions that are speci�c to our set-ting, culminating in a de�nition of Authenticated Session-Key Generation. Giventhese, we state our main result.2.1 Basic NotationsTypically, C denotes the channel (probabilistic polynomial-time adversary) viawhich parties A and B communicate. We adopt the notation of Bellare andRogaway [4] and model the communication by giving C oracle access to A andB. We stress that, as in [4], these oracles have memory and model parties whoparticipate in a session-key generation protocol. Unlike in [4], when A and Bshare a single password, C has oracle access to only a single copy of each party.We denote by CA(x);B(y)(�), an execution of C (with auxiliary input �) whenit communicates with A and B, holding respective inputs x and y. Channel C'soutput from this execution is denoted by output�CA(x);B(y)(�)�.The password dictionary is denoted by D � f0; 1gn, and is �xed for the entirediscussion. We let � = 1jDj . We denote by Un the uniform distribution over stringsof length n. For a set S, we denote x 2R S when x is chosen uniformly fromS. We use \ppt" as shorthand for probabilistic polynomial time. We denotean unspeci�ed negligible function by �(n). That is, for every polynomial p(�)and for all su�ciently large n's, �(n) < 1p(n) . For functions f and g (de�nedover the integers), we denote f � g if jf(n) � g(n)j < �(n). Finally, we denotecomputational indistinguishability by c�.A security parameter n is often implicit in our notation and discussions. Thus,for example, by the notation D for the dictionary, our intention is actually Dn(where Dn � f0; 1gn). Recall that we make no assumptions regarding the sizeof Dn, and in particular it may by polynomial in n.2.2 (1� �)-indistinguishability and pseudorandomnessExtending the standard de�nition of computational indistinguishability [22, 36],we de�ne the concept of (1� �)-indistinguishability. Two ensembles are (1� �)-



indistinguishable if for every ppt machine, the probability of distinguishing be-tween them (via a single sample) is at most negligibly greater than �. (Notethat (1� �)-indistinguishability is not preserved under multiple samples, but fore�ciently constructible ensembles (1� �)-indistinguishability implies (1 �m�)-indistinguishability of sequences of m samples.) Thus, computational indistin-guishability coincides with 1-indistinguishability. The formal de�nition is as fol-lows.De�nition 1 ((1� �)-indistinguishability): Let � : N! [0; 1] be a function, andlet fXngn2N and fYngn2N be probability ensembles, so that for any n the distri-bution Xn (resp., Yn) ranges over strings of length polynomial in n. We say thatthe ensembles are (1 � �)-indistinguishable, denoted fXngn2N �� fYngn2N, if forevery probabilistic polynomial time distinguisher D, and all auxiliary informationz 2 f0; 1gpoly(n)jPr[D(Xn; 1n; z) = 1]� Pr[D(Yn; 1n; z) = 1]j < �+ �(n)We say that fXngn2N is (1��)-pseudorandom if it is (1��)-indistinguishable fromfUngn2N. The de�nition of pseudorandom functions [19] is similarly extended to(1� �)-pseudorandom functions.2.3 Authenticated Session-Key Generation: De�nition andDiscussionThe problem of password-based authenticated session-key generation can be castas a three-party functionality involving honest parties A and B, and an adversaryC. Parties A and B should input their joint password and receive identical,uniformly distributed session-keys. On the other hand, the adversary C shouldhave no output (and speci�cally should not obtain information on the passwordor output session-key). Furthermore, C should have no power to maliciouslyinuence the outcome of the protocol (and thus, for example, cannot a�ect thechoice of the key or cause the parties to receive di�erent keys). However, recallthat in a real execution, C controls the communication line between the (honest)parties. Thus, it can block all communication between A and B, and causeany protocol to fail. This (unavoidable) adversarial capability is modeled in thefunctionality by letting C input a single bit b indicating whether or not theexecution is to be successful. Speci�cally, if b = 1 (i.e., success) then both A andB receive the above-described session-key. On the other hand, if b = 0 then Areceives a session-key, whereas B receives a special abort symbol ? instead.6 Westress that C is given no ability to inuence the outcome beyond determiningthis single bit (i.e., b). In conclusion, the problem of password-based session-key6 This lack of symmetry in the de�nition is inherent as it is not possible to guaran-tee that A and B both terminate with the same \success/failure bit". For sake ofsimplicity, we (arbitrarily) choose to have A always receive a uniformly distributedsession-key and to have B always output ? when b = 0.



generation is cast as the following three-party functionality:(wA; wB ; b) 7! � (Un; Un; �) if b = 1 and wA = wB ;(Un;?; �) otherwise:where wA and wB are A and B's respective passwords.Our de�nition for password-based authenticated session-key generation isbased on the \simulation paradigm" (cf. [1, 29, 12]). That is, we require a secureprotocol to emulate an ideal execution of the above session-key generation func-tionality. In such an ideal execution, communication is via a trusted third partywho receives the parties inputs and (honestly) returns to each party its output,as designated by the functionality.An important observation in the context of password-based security is that,in a real execution, an adversary can always attempt impersonation by simplyguessing the secret password and participating in the protocol, claiming to beone of the parties. If the adversary's guess is correct, then impersonation alwayssucceeds (and, for example, the adversary knows the generated session-key).Furthermore, by executing the protocol with one of the parties, the adversarycan verify whether or not its guess is correct, and thus can learn informationabout the password (e.g., it can rule out an incorrect guess from the list ofpossible passwords). Since the dictionary may be small, this information learnedby the adversary in a protocol execution may not be negligible at all. Thus,we cannot hope to obtain a protocol that emulates an ideal-model execution(in which C learns nothing) up to computational indistinguishability. Rather,the inherent limitation of password-based security is accounted for by (only)requiring that a real execution can be simulated in the ideal model such that theoutput distributions (in the ideal and real models) are (1�O(�))-indistinguishable(rather than 1-indistinguishable), where (as de�ned above) � = 1=jDj.We note that the above limitation applies only to active adversaries whocontrol the communication channel. Therefore, in the case of a passive (eaves-dropping) adversary, we demand that the ideal and real model distributions becomputationally indistinguishable (and not just (1 � O(�))-indistinguishable).We now de�ne the ideal and real models and present the formal de�nition ofsecurity.The ideal model: Let Â and B̂ be honest parties and let Ĉ be any ppt ideal-model adversary (with arbitrary auxiliary input �). An ideal-model executionproceeds in the following phases:Initialization: A password w 2R D is uniformly chosen from the dictionary andgiven to both Â and B̂.Sending inputs to trusted party: Â and B̂ both send the trusted party the pass-word they have received in the initialization stage. The adversary Ĉ sendseither 1 (denoting a successful protocol execution) or 0 (denoting a failedprotocol execution).The trusted party answers all parties: In the case Ĉ sends 1, the trusted partychooses a uniformly distributed string k 2R f0; 1gn and sends k to both Â



and B̂. In the case Ĉ sends 0, the trusted party sends k 2R f0; 1gn to Â and? to B̂. In both cases, Ĉ receives no output.7The ideal distribution is de�ned as follows:idealĈ(D; �) def= (w; output(Â); output(B̂); output(Ĉ(�)))where w 2R D is the input given to Â and B̂ in the initialization phase. Thus,idealĈ(D; �) = � (w;Un; Un; output(Ĉ(�))) if send(Ĉ(�)) = 1;(w;Un;?; output(Ĉ(�))) otherwise:where send(Ĉ(�)) denotes the value sent by Ĉ (to the trusted party), on auxiliaryinput �.The real model: Let A and B be honest parties and let C be any ppt real-model adversary with arbitrary auxiliary input �. As in the ideal model, thereal model begins with an initialization stage in which both A and B receivean identical, uniformly distributed password w 2R D. Then, the protocol is ex-ecuted with A and B communicating via C.8 The execution of this protocol isdenoted CA(w);B(w)(�) and we augment C's view with the accept/reject decisionbits of A and B (this decision bit denotes whether a party's private output isa session-key or ?). This formal requirement is necessary, since in practice thisinformation can be implicitly understood from whether or not the parties con-tinue communication after the session-key generation protocol has terminated.(We note that in our speci�c formulation, A always accepts and thus it is onlynecessary to provide C with the decision-bit output by B.) The real distributionis de�ned as follows:realC(D; �) def= (w; output(A); output(B); output(CA(w);B(w)(�)))where w 2R D is the input given to A and B in the initialization phase.The de�nition of security: Loosely speaking, the de�nition requires that a secureprotocol (in the real model) emulates the ideal model (in which a trusted partyparticipates). This is formulated by saying that adversaries in the ideal model areable to simulate the execution of a real protocol, so that the input/output distri-bution of the simulation is (1�O(�))-indistinguishable from in a real execution.We further require that passive adversaries can be simulated in the ideal-model7 Since Â and B̂ are always honest, we need not deal with the case that they handthe trusted third party di�erent passwords.8 We stress that there is a fundamental di�erence between the real model as de�nedhere and as de�ned in standard multi-party computation. Here, the parties A andB do not have the capability of communicating directly with each other. Rather, Acan only communicate with C and likewise for B. This is in contrast to standardmulti-party computation where all parties have direct communication links or wherea broadcast channel is used.



so that the output distributions are computationally indistinguishable (and notjust (1� O(�))-indistinguishable).9De�nition 2 (password-based authenticated session-key generation): A proto-col for password-based authenticated session-key generation is secure if the follow-ing two requirements hold:1. Passive adversaries: For every ppt real-model passive adversary C there existsa ppt ideal-model adversary Ĉ such that for every dictionary D � f0; 1gn andevery auxiliary input � 2 f0; 1gpoly(n)�idealĈ(D; �)	D;� c� frealC(D; �)gD;�2. Arbitrary (active) adversaries: For every ppt real-model adversary C thereexists a ppt ideal-model adversary Ĉ such that for every dictionary D �f0; 1gn and every auxiliary input � 2 f0; 1gpoly(n)�idealĈ(D; �)	D;� O(�)� frealC(D; �)gD;�where � def= 1jDj . We stress that the constant in O(�) is a universal one.Properties of De�nition 2: De�nition 2 asserts that the joint input/output dis-tribution from a real execution is at most \O(�)-far" from an ideal execution inwhich the adversary learns nothing (and has no inuence on the output exceptto cause B to reject). This immediately implies that the output session-key is(1 � O(�))-pseudorandom (which, as we have mentioned, is the best possiblefor password-based key generation). Thus, if such a key is used for encryptionthen for any (partial information) predicate P , the probability that an adver-sary learns P (m) given the ciphertext E(m) is at most O(�)+�(n) greater thanthe a-priori probability (when the adversary is not given E(m)). Likewise, if thekey is used for a message authentication code (MAC), then the probability thatan adversary can generate a correct MAC-tag on a message not sent by A orB is at most negligibly greater than O(�). We stress that the security of theoutput session-key does not deteriorate with its usage; that is, it can be used forpolynomially-many encryptions or MACs and the security remainsO(�). Anotherimportant property of De�nition 2 is that, except with probability O(�), (eitherone party detects failure or) both parties terminate with the same session-key.De�nition 2 also implies that the password used remains (1�O(�))-indisting-uishable from a randomly chosen (new) password ~w 2R D. (This can be seen fromthe fact that in the ideal model, the adversary learns nothing of the password w,which is part of the ideal distribution.) In particular, this implies that a secure9 A passive adversary is one that does not modify, omit or insert any messages sentbetween A or B. That is, it can only eavesdrop and thus is limited to analyzing thetranscript of a protocol execution between two honest parties. Passive adversariesare also referred to as semi-honest in the literature (e.g., in [21]).



protocol is resistant to o�ine dictionary attacks (whereby an adversary scansthe dictionary in search of a password that is \consistent" with its view of aprotocol execution).Other desirable properties of session-key protocols are also guaranteed byDe�nition 2. Speci�cally, we mention forward secrecy and security in the faceof loss of session-keys (also known as known-key attacks). Forward secrecy statesthat the session-key remains secure even if the password is revealed after theprotocol execution. Analogously, security in the face of loss of session-keys meansthat the password and the current session-key maintain their security even ifprior session-keys are revealed. These properties are immediately implied by thefact that, in the ideal-model, there is no dependence between the session-key andthe password and between session-keys from di�erent sessions. Thus, learning thepassword does not compromise the security of the session-key and visa versa.10An additional property that is desirable is that of intrusion detection. Thatis, if the adversary modi�es any message sent in a session, then with probabilityat least (1�O(�)) this is detected and at least one party rejects. This propertyis not guaranteed by De�nition 2 itself; however, it does hold for our protocol.Combining this with Item 1 of De�nition 2 (i.e., the requirement regarding pas-sive adversaries), we conclude that in order for C to take advantage of its abilityto learn \O(�)-information" C must expose itself to the danger of being detectedwith probability 1�O(�).Finally, we observe that the above de�nition also enables mutual-authentication.This is because A's output session-key is always (1�O(�))-pseudorandom to theadversary. As this key is secret, it can be used for explicit authentication viaa (mutual) challenge/response protocol.11 By adding such a step to any securesession-key protocol, we obtain explicit mutual-authentication.Augmenting the de�nition: Although De�nition 2 seems to capture all that isdesired from authenticated session-key generation, there is a subtlety that it failsto address (as pointed out by Racko� to the authors of [4]). The issue is thatthe two parties do not necesssarily terminate the session-key generation protocolsimultaneously, and so one party may terminate the protocol and start using thesession-key while the other party is still executing instructions of the session-keygeneration protocol (i.e., determining its last message). In this extended abstract,we note only that De�nition 2 can be augmented to deal with this issue, andthat our protocol is secure also with respect to the augmented de�nition. A fulltreatment of this issue is provided in the full version of the paper.10 The independence of session-keys from di�erent sessions relates to the multi-sessioncase, which is discussed in Section 2.5. For now, it is enough to note that the protocolbehaves as expected in that after t executions of the real protocol, the password alongwith the outputs from all t sessions are (1 � O(t�))-indistinguishable from t idealexecutions.11 It is easy to show that such a key can be used directly to obtain a (1 � O(�))-pseudorandom function, which can then be used in a standard challenge/responseprotocol.



2.4 Our Main ResultGiven De�nition 2, we can now formally state our main result.Theorem 3 Assuming the existence of trapdoor permutations, there exist secureprotocols for password-based authenticated session-key generation.2.5 Multi-Session SecurityThe de�nition above relates to two parties executing a session-key generationprotocol once. Clearly, we are interested in the more general case where manydi�erent parties run the protocol any number of times. It turns out that anyprotocol that is secure for a single invocation between two parties (i.e., as inDe�nition 2), is secure in the multi-party and sequential invocation case.Many Invocations by Two Parties Let A and B be parties who invoke t se-quential executions of a session-key generation protocol. Given that we wish thatan adversary gains no more than O(1) password guesses upon each invocation,the security upon the t'th invocation should be O(t�). That is, we consider idealand real distributions consisting of the outputs from all t executions. Then, werequire that these distributions be (1�O(t�))-indistinguishable. It can be shownthat any secure protocol for password-based authenticated session-key genera-tion maintains O(t�) security after t sequential invocations. Details are given inthe full version of this work.Sequential vs Concurrent Executions for Two Parties: Our solution is provensecure only if A and B do not invoke concurrent executions of the session-keygeneration protocol (with the same password). We stress that a scenario wherebythe adversary invokes B twice or more (sequentially) during a single executionwith A is not allowed. Therefore, in order to actually use our protocol, somemechanism must be used to ensure that such concurrent executions do not takeplace. This can be achieved by having A and B wait � units of time betweenprotocol executions (where � is greater than the time taken to run a single exe-cution). Note that parties do not usually need to initiate session-key generationprotocols immediately one after the other. Therefore, this delay mechanism needonly be employed when an attempted session-key generation execution fails. Thismeans that parties not \under attack" by an adversary are not inconveniencedin any way.We note that this limitation does not prevent the parties from opening anumber of di�erent (independently-keyed) communication lines. They may dothis by running the session-key protocol sequentially, once for each desired com-munication line. However, in this case, they incur a delay of � units of timebetween each execution. Alternatively, they may run the protocol once and ob-tain a (1 � O(�))-pseudorandom session-key. This key may then be used as ashared, high-quality key for (concurrently) generating any polynomial numberof (1�O(�))-pseudorandom session-keys; one for each communication line (sim-ple and e�cient protocols exist for this task, see [4]).



Many Parties In the case where many parties execute the session-key pro-tocol simultaneously, we claim that for m invocations of the protocol (whichmust be sequential for the same pair of parties and may be concurrent other-wise), the security is O(m�). We assume that di�erent pairs of parties (executingconcurrently) have independently distributed passwords. Then, the security isderived from the single-session case by noting that sessions with independentlydistributed passwords can be perfectly simulated by an adversary.3 Our Session-Key Generation ProtocolAll arithmetic below is over the �nite �eld GF(2n) which is identi�ed withf0; 1gn. In our protocol, we use a secure protocol for evaluating non-constant,linear polynomials (actually, we could use any 1{1 Universal2 family of hash func-tions). This protocol involves two parties A and B; party A has a non-constant,linear polynomial Q(�) 2 f0; 1g2n and party B has a string x 2 f0; 1gn. Thefunctionality is (Q; x) 7! (�;Q(x)); that is, A receives nothing and B receivesthe value Q(x) (and nothing else). The fact that A is supposed to input a non-constant, linear polynomial can be enforced by simply mapping all possible inputstrings to the set of such polynomials (this convention is used for all referencesto polynomials from here on). We actually augment this functionality by havingA also input a commitment to the polynomial Q (i.e., cA 2 Commit(Q)) andits corresponding decommitment r (i.e., cA = C(Q; r)). Furthermore, B alsoinputs a commitment value cB . The augmentation is such that if cA 6= cB , thenB receives a special failure symbol. This is needed in order to tie the polyno-mial evaluation to a value previously committed to in the main (higher level)protocol. The functionality is de�ned as follows:De�nition 4 (augmented polynomial evaluation):� Input: Party A inputs a commitment cA and its corresponding decommit-ment r, and a linear, non-constant polynomial Q. Party B inputs a commit-ment cB and a value x.� Output:1. Correct Input Case: If cA = cB and cA = C(Q; r), then B receives Q(x)and A receives nothing.2. Incorrect Input Case: If cA 6= cB or cA 6= C(Q; r), then B receives aspecial failure symbol, denoted ?, and A receives nothing.We note that by [37, 21], this functionality can be securely computed (observethat the input conditions can be checked in polynomial time because A alsoprovides the decommitment r).3.1 The ProtocolLet f be a one-way permutation and b a hard-core of f .



Protocol 5 (password-based authenticated session-key generation)� Input: Parties A and B begin with a joint password w, which is supposedto be uniformly distributed in D.� Output: A and B each output an accept/reject bit as well as session-keyskA and kB respectively (where kA \should" equal kB).� The Protocol:1. Stage 1: (Non-Malleable) Commit(a) A chooses a random, linear, non-constant polynomial Q over GF(2n).(b) A and B engage in a non-malleable (perfectly binding) commitmentprotocol in which A commits to the string (Q;w) 2 f0; 1g3n. Denotethe random coins used by B in the commitment protocol by rB anddenote B's view of the execution of the commitment protocol byNMC(Q;w).12Following the commitment protocol, B sends his random coins rB toA. (This has no e�ect on the security, since the commitment schemeis perfectly binding and the commitment protocol has already termi-nated.)2. Stage 2: Pre-Key Exchange { In this stage the parties \exchange"strings �A and �B , from which the output session-keys (as well as valida-tion checks) are derived. Thus, �A and �B are called pre-keys.(a) A sends B a commitment c = C(Q; r), for a randomly chosen r.(b) A and B engage in an augmented polynomial evaluation protocol. Ainputs Q and (c; r); B inputs w and c.(c) We denote B's output by �B . (Note that �B is supposed to equalQ(w).)(d) A internally computes �A = Q(w).3. Stage 3: Validation(a) A sends the string y = f2n(�A) to B.(b) A proves to B in zero-knowledge that she input the same polynomialin both the non-malleable commitment (performed in Stage 1) andthe ordinary commitment (performed in Stage 2(a)), and that thevalue y is \consistent" with the non-malleable commitment. Formally,A proves the following statement:There exists a string (X1; x2) 2 f0; 1g3n and random coins rA;1; rA;2(where rA;1 and rA;2 are A's random coins in the non-malleable andordinary commitments, respectively) such thati. B's view of the non-malleable commitment, NMC(Q;w), is iden-tical to the receiver's view of a non-malleable commitment to12 Recall that B's view consists of his random coins and all messages received duringthe commitment protocol execution.



(X1; x2), where the sender and receiver's respective random coinsare rA;1 and rB . (Recall that rB denotes B's random coins in thenon-malleable commitment.)13ii. c = C(X1; rA;2), andiii. y = f2n(X1(x2)).The zero-knowledge proof used here is the speci�c zero-knowledgeproof of Richardson and Kilian [32], with a speci�c setting of param-eters.14(c) Let tA be the entire session transcript as seen by A (i.e., the sequenceof all messages sent and received by A) and let MACk be a mes-sage authentication code, keyed by k. Then, A computes k1(�A) def=b(�A) � � � b(fn�1(�A)), and sends m =MACk1(�A)(tA) to B.4. Decision Stage(a) A always accepts and outputs k2(�A) def= b(fn(�A)) � � � b(f2n�1(�A)).(b) B accepts if and only if all the following conditions are ful�lled:� y = f2n(�B), where y is the string sent by A to B in Step 3(a)above and �B is B's output from the polynomial evaluation.(Note that if �B = ? then no y ful�lls this equality, and B alwaysrejects.)� B accepts the zero-knowledge proof in Step 3(b) above, and� Verifyk1(�B)(tB ;m) = 1, where tB is the session-transcript as seenby B, the string m is the alleged MAC-tag that B receives, andveri�cation is with respect to the MAC-key de�ned by k1(�B) =b(�B) � � � b(fn�1(�B)).If B accepts, then he outputs k2(�B) = b(fn(�B)) � � � b(f2n�1(�B)),otherwise he outputs ?. (Recall that the accept/reject decision bit isconsidered a public output.)We stress that A and B always accept or reject based solely on thesecriteria, and that they do not halt (before this stage) even if they detectmalicious behavior.See Figure 1 below for a schematic diagram of Protocol 5.13 The view of a protocol execution is a function of the parties' respective inputsand random strings. Therefore, (X1; x2), rA;1 and rB de�ne a single possible view.Furthermore, recall that B sent rB to A following the commitment protocol. ThusA has NMC(Q;w) (which includes rB), the committed-to value (Q;w) and rA;1,enabling her to e�ciently prove the statement.14 The setting of parameters referred to relates to the number of iterations m in the�rst part of the Richardson-Kilian proof. We set m to equal the number of roundsin all other parts of our protocol plus any non-constant function of the securityparameter.



---
-HHHj ����HHHj

? ?Party BNM-Commit(Q;w)Secure PolynomialEvaluationf2n(Q(w))ZK-proof of consistencyMAC of transcript

w
Q(w)

QQ 2R f0; 1g2nParty A

DecisionIf accept, output key:Output key: k2(Q(w))k2(Q(w))

ww

Fig. 1. Schematic Diagram of the Protocol.In our description of the protocol, we have referred only to parties A and B.That is, we have ignored the existence (and possible impact) of the channel C.That is, when A sends a string z to B, we \pretend" that B actually received zand not something else. In a real execution, this may not be the case at all. Inthe actual analysis we will subscript every value by its owner, as we have donefor �A and �B in the protocol. For example, we shall say that in Step 3(a), Asends a string yA and the string received by B is yB .3.2 Motivation for the security of the protocolThe central module of Protocol 5 is the secure polynomial evaluation. This, initself, is enough for achieving security against passive channels only. Speci�cally,consider the following protocol. Party A chooses a random, linear polynomialQ and inputs it into a secure polynomial evaluation with party B who inputsthe joint password w. By the de�nition of the polynomial evaluation, B receivesQ(w) and A receives nothing. Next, A internally computes Q(w) (she can do this



as she knows both Q and w), and both parties use this value as the session-key.The key is uniformly distributed (since Q is random and linear) and due to thesecrecy requirements of the polynomial evaluation, the protocol reveals nothingof w or Q(w) to a passive eavesdropper C (since otherwise this would also berevealed to party A who should learn nothing from the evaluation).One key problem in extending the above argument to our setting (where Cmay be active) is that the security de�nitions of two-party computation guar-antee nothing about the simulatability of C's view in this concurrent setting.We now provide some intuition into how simulation of our protocol is neverthe-less achieved. First, assume that the MAC-value sent by A at the conclusion ofthe protocol is such that unless C behaved passively (and relayed all messagewithout modi�cation), then B rejects (with some high probability). Now, if Cbehaves passively, then B clearly accepts (as in the case of honest parties A andB that execute the protocol without any interference). On the other hand, ifC does not behave passively, then (by our assumption regarding the security ofthe MAC) B rejects. However, C itself knows whether or not it behaved pas-sively and therefore can predict whether or not B will reject. In other words,the accept/reject bit output by B is simulatable (by C itself). We proceed byobserving that this bit is the only meaningful message sent by B during theprotocol: apart from in the polynomial evaluation, the only messages sent byB are as the receiver in a non-malleable commitment protocol and the veri�erin a zero-knowledge proof (clearly, no knowledge of the password w is used byB in these protocols). Furthermore, the polynomial evaluation is such that onlyB receives output. Therefore, intuitively, the input used by B is not revealedby the execution; equivalently, the view of C is (computationally) independentof B's input w (this can be shown to hold even in our concurrent setting). Weconclude that all messages sent by B during the execution can be simulatedwithout knowledge of w. Therefore, by indeed simulating B, we can reduce theconcurrent scenario involving A, C and B to a (standard) two-party setting be-tween A and C. In this setting, we can then apply standard tools and techniquesfor simulating C's view in its interaction with A, and conclude that the entirereal execution is simulatable in the ideal model.Thus, the basis for simulating C's view lies in the security of the MAC in ourscenario. Indeed, the MAC is secure when the parties using it (a priori) share arandom MAC-key; but in our case the parties establish the MAC-key during theprotocol, and it is not clear that this key is random nor the same in the viewof both parties. In order to justify the security of the MAC (in our setting), weshow that two properties hold. Firstly, we must show that with high probabilityeither A and B hold the same MAC key or B is going to reject anyhow (and Cknows this). Secondly, we need to show that this (identical) MAC-key held by Aand B has \su�cient pseudorandomness" to prevent C from successfully forginga MAC. The proof of these properties (especially the �rst one) is very involvedand makes up a major part of the proof, which is presented in the full versionof this work.



3.3 Properties of Protocol 5The main properties of Protocol 5 are captured by the following theorem.Theorem 6 Protocol 5 constitutes a secure protocol for password-based authen-ticated session-key generation (as de�ned in De�nition 2).All the cryptographic tools used in Protocol 5 can be securely implementedassuming the existence of trapdoor permutations. Thus, at the very least, The-orem 6 implies the feasibility result captured by Theorem 3.Unfortunately, due to lack of space in this abstract, we do not provide a proofof Theorem 6. However, a demonstration of some of the proof techniques usedto prove Theorem 6 is provided in Section 4.4 An Illustration of Our Proof TechniquesIn this section, we illustrate our proof techniques for a simpli�ed scenario inwhich A and B execute a secure polynomial evaluation only, while communicat-ing via an adversarial channel C. Recall that the polynomial evaluation func-tionality is de�ned (in the stand-alone setting) by (Q; x) 7! (�;Q(x)). That is,A has a polynomial Q(�) over some �nite �eld and B has an element x in that�eld. The evaluation is such that A learns nothing while B obtains Q(x). In thescenario that we are considering, A's input is a random, linear polynomial andB's input is a random password w 2R D (as is the case in Protocol 5).Recall that in this setting C may omit, insert and modify any messagesent between A and B. Thus, in a sense C conducts two separate executionsof the polynomial evaluation: one with A in which C impersonates B (calledthe (A;C)-execution), and one with B in which C impersonates A (called the(C;B)-execution). These two executions are carried out concurrently (by C),and there is no explicit execution between A and B.We remind the reader that the de�nition of (stand-alone) secure two-partycomputation does not apply to the concurrent setting that we consider here.Furthermore, there are currently no tools for dealing with (general) concurrentcomputation in the two-party case. Therefore, our analysis of these executionsuses speci�c properties of the protocol to remove the concurrency and obtain areduction to the stand-alone setting. That is, we show how an adversarial successin the concurrent setting can be translated into a related adversarial success inthe stand-alone setting. This enables us to analyze the adversary's capability inthe concurrent setting, based on the security of two-party stand-alone protocols.In order to demonstrate our proof techniques, we show that C learns \little"of w and Q(w) from the above concurrent execution. Our formal statement ofthis has an ideal-model/real-model avor. Speci�cally, we show that for every pptadversaryC interacting with A and B, there exists a non-interactive ppt machineĈ (who receives no input or output), such that fw;Q(w); output(CA(Q);B(w)g



is (1 � �)-indistinguishable from fw;Un; output(Ĉ)g.15 (Recall that CA(Q);B(w)denotes an execution of C with A and B holding respective inputs Q and w.) Onecan think of C as being a real-model adversary and Ĉ an ideal-model adversary,where in this ideal model Ĉ sends no input to the trusted third party and likewisereceives no output. We note that such a view is rather simplistic as we claimnothing here regarding the outputs of A and B from the execution (as is usuallyrequired in secure computation). In other words, here we prove a statementregarding privacy, but make no claims to correctness; for example, there is noguarantee that C does not maul or skew the parties' outputs in some undesiredway. Formally, we prove the following:Theorem 7 (illustration): For every ppt adversarial channel C interacting withA and B, there exists a ppt machine Ĉ (interacting with nobody) such that forevery dictionary D � f0; 1gn,nw;Q(w); output(CA(Q);B(w))o �� nw;Un; output(Ĉ)owhere w 2R D, Q is a random linear polynomial, and � = 1jDj .Proof: We prove the theorem by �rst showing how the (C;B) execution canbe simulated so that C's view in the simulation is negligibly close to in a realinteraction. Then, we remain with a stand-alone execution between A and Conly. In this scenario, we apply the standard de�nition of secure two-party com-putation to conclude that C learns at most \�-information" about w and Q(w).The fact that the (C;B) execution can be simulated is formally stated as follows(in the statement of the lemma below, C 0A(Q) denotes a stand-alone executionof C with A upon input Q):Lemma 8 (simulating the (C;B) execution): For every ppt adversary C inter-acting with both A and B, there exists a ppt adversary C 0 interacting with Aonly, such that for every dictionary D � f0; 1gn,nw;Q(w); output(CA(Q);B(w))o c� nw;Q(w); output(C 0A(Q))owhere w 2R D and Q is a random linear polynomial.Proof: Loosely speaking, we prove this lemma by showing that B's role inthe (C;B) execution can be simulated without any knowledge of w. Thus, C 0 isable to simulate B's role for C and we obtain the lemma. We begin by showingthat C learns nothing of B's input w from the (C;B) polynomial evaluation.This is trivial in a stand-alone setting by the de�nition of the functionality; herewe claim that it also holds in our concurrent setting. Formally, we show that15 As in De�nition 2, this implies that following the execution, with respect to C's view,the password w is (1� �)-indistinguishable from a (new) randomly chosen password~w. It also implies that the value Q(w) (used in Protocol 5 to derive the MAC andsession keys) is (1� �)-pseudorandom with respect to C's view.



if B were to use some �xed w0 2 D instead of the password w, then this isindistinguishable to C (when also interacting concurrently with A). That is,nw;Q(w); output(CA(Q);B(w))o c� nw;Q(w); output(CA(Q);B(w0))o (1)where w 2R D is a random password and w0 2 D is �xed. Later, we will useEq. (1) in order to show how C 0 simulates the (C;B) execution for C. First, weprove Eq. (1) by reducing C's concurrent execution with A and B to a stand-alone two-party setting between C and B only. This reduction is obtained bygiving the adversary C the polynomial Q. Now, C has A's entire input andcan perfectly emulate the (A;C) execution by itself. Formally, there exists anadversary C 00, given auxiliary input Q, and interacting with B only, such thatthe following two equations hold:nw;Q(w); output(CA(Q);B(w))o � nw;Q(w); output(C 00B(w)(Q))o (2)nw;Q(w); output(CA(Q);B(w0))o � nw;Q(w); output(C 00B(w0)(Q))o (3)where C 00B(w)(Q) denotes a stand-alone execution of C 00 (given input Q) with B(who has input w). Machine C 00 works by playing A's role in the (A;C)-executionand forwarding all messages belonging to the (C;B)-execution between C and B(notice that C 00 can play A's role because it knows Q). We therefore remain witha stand-alone setting between C 00 (given auxiliary input Q) and B, in which Binputs either w or w0 into the polynomial evaluation. In this stand-alone setting,the security of the polynomial evaluation guarantees that C 00 can distinguish theinput cases with at most negligible probability. That is, for every ppt adversaryC 00, it holds thatnw;Q(w); output(C 00B(w)(Q))o c� nw;Q(w); output(C 00B(w0)(Q))o (4)Eq. (1) then follows by combining Equations (2), (3) and (4). In summary, wehave shown that even in our concurrent setting where C interacts with both Aand B, the adversary C cannot distinguish the cases that B inputs w or w0.We are now ready to show how C 0 works (recall that C 0 interacts with Aonly and its aim is to simulate a concurrent execution with A and B for C).Machine C 0 begins by selecting an arbitrary w0 2 D. Then, C 0 perfectly emulatesan execution of CA(Q);B(w0) by playing B's role in the (C;B) execution andforwarding all messages belonging to the (A;C) execution between A and C(C 0 can play B's role here because w0 is known to it). By Eq. (1) we concludethat this emulation is computationally indistinguishable from a real executionof CA(Q);B(w). This completes the proof of the lemma.(We remark that the proof of Lemma 8 is typical of many of our proofs. Our goalis to obtain a reduction from the concurrent setting to the stand-alone settingbetween A and C, and we obtain this reduction by simulating B. However,in order to show that this simulation is \good" we �rst reduce the concurrentsetting to a stand-alone setting between C and B by simulating A.)



It remains to show that C 0's view of its (stand-alone) interaction with A can besimulated and that in this interaction, C 0 learn at most \�-information" aboutw and Q(w). Formally,Lemma 9 (simulating the (A;C 0) stand-alone execution): For every ppt ad-versary C 0 interacting with A, there exists a ppt machine Ĉ (interacting withnobody) such that for every dictionary D � f0; 1gn,nw;Q(w); output(C 0A(Q))o �� nw;Un; output(Ĉ)owhere w 2R D, Q is a random linear polynomial and � = 1jDj .Proof: The setting of this lemma is already that of standard two-party com-putation. Therefore, the security de�nition of two-party computation can beapplied directly in order to prove the lemma. We sketch this more standardproof for the sake of completeness. We begin by showing thatnw;Q(w); output(C 0A(Q))o �� nw;Un; output(C 0A(Q))o (5)In order to prove Eq. (5), recall that the security of the polynomial evaluationimplies that the receiver (here played by C 0) can learn nothing beyond the valueof Q(�) at a single point selected by C 0. We denote this point by wC . Then, in thecase that wC 6= w, the values Q(w) and Un are identically distributed (by thepairwise independence of random linear polynomials). That is, unless wC = w,machine C 0 learns nothing of the value Q(w). However, since w is uniformlydistributed in D, the probability that wC = w is at most �. This means that,given C 0's view, Q(w) can be distinguished from Un with probability at most �.We are now ready to de�ne the (non-interactive) machine Ĉ . Machine Ĉworks by �rst choosing a random linear polynomial Q̂. Next, Ĉ perfectly emulatesC 0A(Q̂) by playing A's role in the execution with C (Ĉ uses the polynomial Q̂ asA's input). Finally Ĉ outputs whatever C 0 does. Since w and Un are independentof the polynomials Q and Q̂, it follows thatnw;Un; output(C 0A(Q))o � nw;Un; output(Ĉ)o (6)The lemma follows by combining Equations (5) and (6).Combining Lemmas 8 and 9, we obtain Theorem 7.We reiterate that Theorem 7 relates only to the secrecy of the password w andvalue Q(w). Unlike De�nition 2, it does not say anything about the outputs ofthe parties A and B. Furthermore, the model is signi�cantly simpli�ed by thefact that there is no public accept/reject bit output by the parties (as discussedin Section 3.2, simulating this bit is the most involved part of our proof). Thus,unfortunately, the above proof is merely an illustration of some of our techniquesused in proving Theorem 6.



AcknowledgementsWe would like to thank Moni Naor for suggesting this problem to us and for hisvaluable input in the initial stages of our research. We are also grateful to AlonRosen for much discussion and feedback throughout the development of thiswork. We also thank Jonathan Katz for helpful discussion. Finally, we wouldlike to thank Ran Canetti, Shai Halevi and Tal Rabin for discussion that led toa signi�cant simpli�cation of the protocol.References1. D. Beaver. Secure Multi-party Protocols and Zero-Knowledge Proof SystemsTolerating a Fault Minority. Journal of Cryptology, Vol. 4, pages 75{122, 1991.2. M. Bellare, D. Pointcheval and P. Rogaway. Authenticated Key Exchange Se-cure Against Dictionary Attacks. In EuroCrypt 2000, Springer-Verlag (LNCS1807), pages 139{155, 2000.3. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm forDesigning E�cient Protocols. In 1st Conf. on Computer and CommunicationsSecurity, ACM, pages 62{73, 1993.4. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. InCRYPTO'93, Springer-Verlag (LNCS 773), pages 232{249, 1994.5. S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-basedprotocols secure against dictionary attacks. In Proceedings of the ACM/IEEESymposium on Research in Security and Privacy, pages 72{84, 1992.6. S. M. Bellovin and M. Merritt. Augmented encrypted key exchange: Apassword-based protocol secure against dictionary attacks and password �lecompromise. In Proceedings of the 1st ACM Conference on Computer andCommunication Security, pages 244{250, 1993.7. M. Blum. Coin Flipping by Phone. IEEE Spring COMPCOM, pages 133{137,February 1982.8. M. Blum and S. Goldwasser. An E�cient Probabilistic Public-Key EncryptionScheme which hides all partial information. In CRYPTO'84, Springer-Verlag(LNCS 196), pages 289{302.9. M. Blum and S. Micali. How to Generate Cryptographically Strong Sequencesof Pseudo-Random Bits. SICOMP, Vol. 13, pages 850{864, 1984. Preliminaryversion in 23rd FOCS, 1982.10. M. Boyarsky. Public-key Cryptography and Password Protocols: The Multi-User Case. In Proceedings of the 6th ACM Conference on Computer andCommunication Security, 1999.11. V. Boyko, P. MacKenzie and S. Patel. Provably Secure Password-Authenticated Key Exchange Using Di�e-Hellman. In EuroCrypt 2000,Springer-Verlag (LNCS 1807), pages 156{171, 2000.12. R. Canetti. Security and Composition of Multi-party Cryptographic Protocols.Journal of Cryptology, Vol. 13, No. 1, pages 143{202, 2000.13. R. Canetti. A uni�ed framework for analyzing security of protocols.Cryptology ePrint Archive, Report No. 2000/067, 2000. Available fromhttp://eprint.iacr.org.14. R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology,Revisited. In Proc. of the 30th STOC, pages 209{218, 1998.



15. W. Di�e, and M.E. Hellman. New Directions in Cryptography. IEEE Trans.on Info. Theory, IT-22 (Nov. 1976), pages 644{654.16. D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAMJournal on Computing, January 2000.17. U. Feige and A. Shamir. Witness Indistinguishability and Witness HidingProtocols. In 22nd STOC, pages 416{426, 1990.18. O. Goldreich. Secure Multi-Party Computation.Manuscript. Preliminary version, 1998. Available fromhttp://www.wisdom.weizmann.ac.il/�oded/pp.html.19. O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Func-tions. JACM, Vol. 33, No. 4, pages 792{807, 1986.20. O. Goldreich and A. Kahan. How To Construct Constant-Round Zero-Knowledge Proof Systems for NP. Journal of Cryptology, Vol. 9, pages 167{189, 1996.21. O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game {A Completeness Theorem for Protocols with Honest Majority. In 19th STOC,pages 218{229, 1987. For details see [18].22. S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No. 2,pages 270{299, 1984.23. S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Proto-cols. In ACM Conference on Computer and Communications Security, 1998.24. D. P. Jablon. Strong password-only authenticated key exchange. SIGCOMMComput. Commun. Rev., Vol 26, No. 5, pages 5{26, 1996.25. J. Katz, R. Ostrovsky and M. Yung. Practical Password-Authenticated KeyExchange Provably Secure under Standard Assumptions. In Eurocrypt 2001.26. C. Kaufman, R. Perlman and M. Speciner. Network Security. Prentice Hall,1997.27. S. Lucks. Open key exchange: How to defeat dictionary attacks without en-crypting public keys. In Proceedings of the Workshop on Security Protocols,Ecole Normale Superieure, 1997.28. A. Menezes, P. Van Oorschot and S. Vanstone. Handbook of Applied Cryptog-raphy. CRC Press, 1997.29. S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript,1992. Preliminary version in Crypto'91, Springer-Verlag (LNCS 576), 1991.30. M. Naor and B. Pinkas. Oblivious Transfer and Polynomial Evaluation. In31st STOC, pages 245-254, 1999.31. S. Patel. Number theoretic attacks on secure password schemes. In Proceedingsof the 1997 IEEE Symposium on Security and Privacy, pages 236{247, 1997.32. R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge Proofs. In EuroCrypt99, pages 415{431.33. R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Sig-natures and Public Key Cryptosystems. CACM, Vol. 21, Feb. 1978, pages120{126.34. M. Steiner, G. Tsudi and M. Waidner. Re�nement and extension of encryptedkey exchange. ACM SIGOPS Oper. Syst. Rev., Vol. 29, 3, pages 22{30, 1995.35. T. Wu. The secure remote password protocol. In 1998 Internet Society Sym-posium on Network and Distributed System Security, pages 97{111, 1998.36. A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS,pages 80{91, 1982.37. A.C. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages162{167, 1986.


