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1 IntroductionThis work deals with the oldest and probably most important problem of cryptography: en-abling private and reliable communication among parties that use a public communication channel.Loosely speaking, privacy means that nobody besides the legitimate communicators may learn thedata communicated, and reliability means that nobody may modify the contents of the data com-municated (without the receiver detecting this fact). Needless to say, a vast amount of researchhas been invested in this problem. Our contribution refers to a di�cult and yet natural setting oftwo parameters of the problem: the adversaries and the initial set-up.We consider only probabilistic polynomial-time adversaries. Still, even within this framework,an important distinction refers to the type of adversaries one wishes to protect against: passiveadversaries only eavesdrop the channel, whereas active adversaries may also omit, insert and mod-ify messages sent over the channel. Clearly, reliability is a problem only with respect to activeadversaries (and holds by de�nition w.r.t passive adversaries). We focus on active adversaries.The second parameter mentioned above is the initial set-up assumptions. Some assumption ofthis form must exist or else there is no di�erence between the legitimate communicators, called Aliceand Bob, and the adversary (which may otherwise initiate a conversation with Alice pretending tobe Bob). We list some popular initial set-up assumptions and brie
y discuss what is known aboutthem.Public-key infrastructure: Here one assumes that each party has generated a secret-key anddeposited a corresponding public-key with some trusted server(s). The latter server(s) may beaccessed at any time by any user.It is easy to establish private and reliable communication in this model (cf. [16, 42]). (However,even in this case, one may want to establish \session keys" as discussed below.)Shared (high-quality) secret keys: By high-quality keys we mean strings coming from distri-butions of high min-entropy (e.g., uniformly chosen 56-bit (or rather 192-bit) long strings, uni-formly chosen 1024-bit primes, etc). Furthermore, these keys are selected by a suitable program,and cannot be memorized by humans.In case a pair of parties shares such a key, they can conduct private and reliable communication(cf., [9, 45, 23, 4]).Shared (low-quality) secret passwords: In contrast to high-quality keys, passwords are stringsthat may be easily selected, memorized and typed-in by humans. An illustrating (and simpli�ed)example is the case in which the password is selected uniformly from a relatively small dictionary;that is, the password is uniformly distributed in D � f0; 1gn, where jDj = poly(n).Note that using such a password in the role of a cryptographic key (in schemes as mentionedabove) will yield a totally insecure scheme. A more signi�cant observation is that the adversarymay try to guess the password, and initiate a conversation with Alice pretending to be Boband using the guessed password. So nothing can prevent the adversary from successfully im-personating Bob with probability 1=jDj. But can we limit the adversary's success to about thismuch?The latter question is the focus of this paper.Session-keys: The problem of establishing private and reliable communication is commonly re-duced to the problem of generating a secure session-key (a.k.a \authenticated key exchange").Loosely speaking, one seeks a protocol by which Alice and Bob may agree on a key (to be used3



throughout the rest of the current communication session) so that this key will remain unknownto the adversary.1 Of course, the adversary may prevent such agreement (by simply blocking allcommunication), but this will be detected by either Alice or Bob.1.1 What security may be achieved based on passwordsLet us consider the related (although seemingly easier) task of mutual authentication. Here Aliceand Bob merely want to establish that they are talking to one another. Repeating an observationmade above, we note that if the adversary initiates t � jDj instances of the mutual authenticationprotocol, guessing a di�erent password in each of them, then with probability t=jDj it will succeedin impersonating Alice to Bob (and furthermore �nd the password). The question posed above isrephrased here as follows:Can one construct a password-based scheme in which the success probability of anyprobabilistic polynomial-time impersonation attack is bounded by O(t=jDj)+�(n), wheret is the number of sessions initiated by the adversary, and �(n) is a negligible functionin the security parameter n?We resolve the above question in the a�rmative. That is, assuming the existence of trapdoorone-way permutations, we prove that schemes as above do exist (for any D and speci�cally forjDj = poly(n)). Our proof is constructive. We actually provide a protocol of comparable securityfor the more demanding goal of authenticated session-key generation.Password-based authenticated session-key generation: Our de�nition for the task of au-thenticated session-key generation is based on the simulation paradigm. That is, we require that asecure protocol emulates an ideal execution of a session-key generation protocol (cf. [1, 37, 12]). Insuch an ideal execution, a trusted third party hands identical, uniformly distributed session-keysto the honest parties. The only power given to the adversary in this ideal model is to prevent thetrusted party from handing keys to one of the parties. (We stress that, in this ideal model, theadversary learns nothing of the parties' joint password or output session-key).Next, we consider a real execution of a protocol (where there is no trusted party and the ad-versary has full control over the communication channel between the honest parties). In general, aprotocol is said to be secure if real-model adversaries can be emulated in the ideal-model such thatthe output distributions are computationally indistinguishable. Since in a password-only settingthe adversary can always succeed with probability 1=jDj, it is impossible to achieve computationalindistinguishability between the real model and above-described ideal model (where the adversaryhas zero probability of success). Therefore, in the context of a password-only setting, an authen-ticated session-key generation protocol is said to be secure if the above-mentioned ideal-modelemulation results in an output distribution that can be distinguished from a real execution by (agap of) at most O(1=jDj) + �(n).Main result (informally stated): Assuming the existence of trapdoor one-way permutations,there exists a secure authenticated session-key generation protocol in the password-only setting.We stress that the above (informal) de�nition implies the intuitive properties of authenticatedsession-key generation (e.g., security of the generated session-key and of the initial password). In1We stress that many famous key-exchange protocols, such as the one of Di�e and Hellman [16], refer to a passiveadversary. In contrast, this paper refers to active adversaries.4



particular, the output session-key can be distinguished from a random key by (a gap of) at mostO(1=jDj) + �(n).2 Similarly, the distinguishing gap between the parties' joint password and auniformly distributed element in D is at most O(1=jDj) + �(n). (As we have mentioned, the factthat the adversary can distinguish with gap O(1=jDj) is an inherent limitation of password-basedsecurity.) The parties are also guaranteed that, except with probability O(1=jDj) + �(n), theyeither end-up with the same session-key or detect that their communication has been tamperedwith. Our de�nition also implies additional desirable properties of session-key protocols such asforward secrecy and security in the case of session-key loss (or known-key attacks). Furthermore,our protocol provides improved (i.e., negligible gap) security in case the adversary only eavesdropsthe communication (during the protocol execution).We mention that a suitable level of indistinguishability (of the real and ideal executions) holdswhen t sessions (referring to the same password) are conducted sequentially: in this case thedistinguishing gap is O(t=jDj) + �(n) rather than O(1=jDj) + �(n) (which again is optimal). Thisholds also when any (polynomial) number of other sessions w.r.t independently distributed passwordsare conducted concurrently to the above t sessions.Caveat: Our protocol is proven secure only when assuming that the same pair of parties (usingthe same password) does not conduct several concurrent executions of the protocol. We stress thatconcurrent sessions of other pairs of parties (or of the same pair using a di�erent password), areallowed. See further discussion in Sections 1.4 and 2.5.1.2 Comparison to prior workThe design of secure mutual authentication and key-exchange protocols is a major e�ort of theapplied cryptography community. In particular, much e�ort has been directed towards the designof password-based schemes that should withstand active attacks.3 An important restricted case ofthe mutual authentication problem is the asymmetric case in which a human user authenticateshimself to a server in order to access some service. The design of secure access control mechanismsbased only on passwords is widely recognized as a central problem of computer practice and as suchhas received much attention.The �rst protocol suggested for password-based session-key generation was by Bellovin andMerritt [5]. This work was very in
uential and became the basis for much future work in thisarea [6, 43, 30, 35, 40, 44]. However, these protocols have not been proven secure and theirconjectured security is based on mere heuristic arguments. Despite the strong need for securepassword-based protocols, the problem was not treated rigorously until quite recently. For a surveyof works and techniques related to password authentication, see [36, 32] (a brief survey can befound in [29]).A �rst rigorous treatment of the access control problem was provided by Halevi and Krawczyk [29].They actually considered an asymmetric hybrid model in which one party (the server) may hold a2This implies that when using the session-key as a key to a MAC, the probability that the adversary can generatea valid MAC-tag to a message not sent by the legitimate party is small (i.e., O(1=jDj)). Likewise, when usingthe session-key for private-key encryption, the adversary learns very little about the encrypted messages: for everypartial-information function, the adversary can guess the value of the function applied to the messages with onlysmall (i.e., O(1=jDj)) advantage over the a-priori probability.3A speci�c focus of this research has been on preventing o�-line dictionary attacks. In such an o�-line attack, theadversary records its view from past protocol executions and then scans the dictionary for a password consistent withthis view. If checking consistency in this way is possible and the dictionary is small, then the adversary can derivethe correct password. Clearly, a secure session-key generation protocol (as informally de�ned above) withstands anyo�-line dictionary attack. 5



high-quality key and the other party (the human) may only hold a password. The human is alsoassumed to have secure access to a corresponding public-key of the server (either by reliable accessto a reliable server or by keeping a \digest" of that public-key, which they call a public-password).4The Halevi{Krawczyk model capitalizes on the asymmetry of the access control setting, and isinapplicable to settings in which communication has to be established between two humans (ratherthan a human and a server). Furthermore, requiring the human to keep the unmemorizable public-password (although not secretly) is undesirable even in the access control setting. Finally, we stressthat the Halevi{Krawczyk model is a hybrid of the \shared-key model" and the \shared-passwordmodel" (and so their results don't apply to the \shared-password model"). Thus, it is of boththeoretical and practical interest to answer the original question as posed above (i.e., without thepublic-password relaxation): Is it possible to implement a secure access control mechanism (andauthenticated key-exchange) based only on passwords?Positive answers to the original problem have been provided in the random oracle model. In thismodel, all parties are assumed to have oracle access to a totally random (universal) function [3].Secure (password-based) access control schemes in the random oracle model were presented in [2,11]. The common interpretation of such results is that security is LIKELY to hold even if therandom oracle is replaced by a (\reasonable") concrete function known explicitly to all parties.5We warn that this interpretation is not supported by any sound reasoning. Furthermore, as pointedout in [14], there exist protocols that are secure in the random oracle model but become insecureif the random function is replaced by any speci�c function (or even a function uniformly selectedfrom any family of functions).To summarize, this paper is the �rst to present session-key generation (as well as mutual au-thentication) protocols based only on passwords (i.e., in the shared-password model), using onlystandard cryptographic assumptions (e.g., the existence of trapdoor one-way permutations, whichin turn follows from the intractability assumption regarding integer factorization). We stress thatprior to this work it was not clear whether such protocols exist at all (i.e., outside of the randomoracle model).Necessary conditions for mutual authentication: Halevi and Krawczyk [29] proved thatmutual-authentication in the shared-password model implies (unauthenticated) secret-key exchange,which in turn implies one-way functions. Consequently, Boyarsky [10] pointed out that, in theshared-password model, mutual-authentication implies Oblivious Transfer.61.3 TechniquesOne central idea underlying our protocol is due to Naor and Pinkas [39]. They suggested the follow-ing protocol for the case of passive adversaries, using a secure protocol for polynomial evaluation.74The public-password is not memorizable by humans, and the human is supposed to carry a record of it. Thegood point is that this record need not be kept secret (but rather merely needs to be kept reliably). Furthermore,in the Halevi{Krawczyk protocol, the human is never asked to type the public-password; it is only asked to comparethis password to a string sent by the server during the protocol.5An alternative interpretation is to view the random oracle model literally. That is, assume that such oracleaccess is available to all parties via some trusted third party. However, in such a case, we are no longer in the \trustnobody" model in which the question was posed.6Oblivious Transfer is known to imply (unauthenticated) secret-key exchange [33]. On the other hand, Gertneret al. [20] have shown that secret-key exchange does not imply oblivious transfer under black-box reductions.7In the polynomial evaluation functionality, party A has a polynomial Q(�) over some �nite �eld and Party B hasan element x of the �eld. The evaluation is such that A learns nothing, and B learns Q(x); i.e., the functionality isde�ned by (Q; x) 7! (�;Q(x)). 6



In order to generate a session-key, party A �rst chooses a random linear polynomial Q(�) over alarge �eld (which contains the dictionary of passwords). Next, A and B execute a secure polynomialevaluation in which B obtains Q(w), where w is their joint password. The session-key is then setto equal Q(w).In [10] it was suggested to make the above protocol secure against active adversaries, by usingnon-malleable commitments. This suggestion was re-iterated to us by Moni Naor, and in fact ourwork grew out of his suggestion. In order to obtain a protocol secure against active adversaries, weaugment the above-mentioned protocol of [39] by several additional mechanisms. Indeed, we usenon-malleable commitments [17], but in addition we also use a speci�c zero-knowledge proof [41],ordinary commitment schemes [7], a speci�c pseudorandom generator (of [9, 45, 8]), and a messageauthentication scheme (MAC). The analysis of the resulting protocol is very complicated, even whenthe adversary initiates a single session. As explained below, we believe that these complicationsare unavoidable given the current state-of-art regarding concurrent execution of protocols.Although not explicit in the problem statement, the problem we deal with actually concernsconcurrent executions of a protocol. Even in case the adversary attacks a single session amongtwo legitimate parties, its ability to modify messages means that it may actually conduct twoconcurrent executions of the protocol (one with each party).8 Concurrent executions of someprotocols were analyzed in the past, but these were relatively simple protocols. Although thehigh-level structure of our protocol can be simply stated in terms of a small number of modules,the currently known implementations of some of these modules are quite complex. Furthermore,these implementations are not known to be secure when two copies are executed concurrently.Thus, at the current state of a�airs, the analysis cannot proceed by applying some compositiontheorems to (two-party) protocols satisfying some concurrent-security properties (because suitableconcurrently-secure protocols and composition theorems are currently unknown). Instead, we haveto analyze our protocol directly. We do so by reducing the analysis of (two concurrent executionsof) our protocol to the analysis of non-concurrent executions of related protocols. Speci�cally, weshow how a successful adversary in the concurrent setting contradicts the security requirements inthe non-concurrent setting. Such \reductions" are performed several times, each time establishingsome property of the original protocol. Typically, the property refers to one of the two concurrentexecutions, and it is shown to hold even if the adversary is given some secrets of the legitimate partyin the second execution. This is shown by giving these secrets to the adversary, enabling him toe�ectively emulate the second execution internally. Thus, only the �rst execution remains and therelevant property is proven (in this standard non-concurrent setting). We stress that this procedureis not applied \generically", but is rather applied to the speci�c protocol we analyze while takingadvantage of its speci�c structure (where some of this structure was designed so to facilitate ourproof). Thus, our analysis is ad-hoc in nature, but still we believe that it can eventually lead to amethodology of analyzing concurrent executions of (two-party) protocols.1.4 DiscussionWe view our work as a theoretical study of the very possibility of achieving private and reliablecommunication among parties that share only a secret (low-quality) password and communicateover a channel that is controlled by an active adversary. Our main result is a demonstration of thefeasibility of this task. That is, we demonstrate the feasibility of performing session-key generation8Speci�cally, the adversary may execute the protocol with Alice while claiming to be Bob, concurrently to executingthe protocol with Bob while claiming to be Alice, where these two executions refer to the same joint Alice{Bobpassword. 7



based only on (low-quality) passwords. Doing so, this work is merely the �rst (rigorous) step in aresearch project directed towards providing a good solution to this practical problem. We discusstwo aspects of this project that require further study.Concurrent executions: Our protocol is proven secure only when the same pair of parties(using the same password) does not conduct several concurrent executions of the protocol. (We doallow concurrent executions that use di�erent passwords.) Thus, actual use of our protocol requiresa mechanism for ensuring that the same password is never used in concurrent executions. Asimple mechanism enforcing the above is to disallow a party to enter an execution with a particularpassword if less than � units of time have passed since a previous execution with the same password.Furthermore, an execution must be completed within � units of time; that is, if � time units haveelapsed then the execution is terminated (see Section 2.5 for further details). Indeed, it is desirablenot to employ such a timing mechanism, and to prove that security holds also when many executionsare conducted concurrently using the same password.E�ciency: It is indeed desirable to have more e�cient protocols than the one presented here.Some of our techniques may be useful towards this goal.1.5 Related Independent WorkIndependently of our work, Katz, Ostrovsky and Yung [31] presented a protocol for the task ofsession-key generation based on passwords. Their protocol is incomparable to ours: it uses astronger set-up assumption and a stronger intractability assumption, but yields a seemingly prac-tical protocol that is secure in a stronger concurrent sense. Speci�cally:� Katz et al. [31] use a stronger set-up assumption than us. In addition to joint passwords,they require that all parties have access to a set of public parameters, chosen by some trustedthird party. Although this is a stronger assumption than that of our password-only model, itis still signi�cantly weaker than other models that have been studied (like, for example, theHalevi{Krawczyk model).� Their protocol is proven secure under a speci�c assumption. Speci�cally, they use the DecisionalDi�e-Hellman assumption, which seems stronger than more standard assumptions such as theintractability of factoring and of extracting discrete logarithms. In contrast, we use a generalcomplexity assumption (i.e., the existence of trapdoor permutations).� Their protocol is highly e�cient and could even be used in a practical setting. In contrast,our protocol is unsuitable for practical use, although it may eventually lead to practical conse-quences.� Their protocol is secure in an unrestricted concurrent setting, whereas our protocol is shownto be secure only when concurrent executions are not allowed to use the same password (seeSection 2.5).1.6 OrganizationIn Section 2 we present the formal setting and state our results. Our protocol for password-basedsession-key generation is presented in Section 3. In Section 4 we present proof sketches of the mainclaims used in the analysis of our protocol, and derive our main result based on these claims. Thefull proofs of these claims are given in Sections 5 to 8. We note that, except in one case, the8



proof sketches (presented in Section 4) are rather detailed, and demonstrate our main techniques.Thus, we believe that a reading of the paper until the end of Section 4 su�ces for obtaining a goodunderstanding of the results presented and the proof techniques involved. The exceptional case,mentioned above, is the proof of Lemma 4.6, which is given in Section 6.1 and is far more complexthan the corresponding proof sketch. Thus, we also recommend to read Section 6.1.In Appendix A we recall the de�nitions of secure two-party computation as well as the variouscryptographic tools used in our protocol.2 Formal SettingIn this section we present notation and de�nitions that are speci�c to our setting, culminating ina de�nition of Authenticated Session-Key Generation. Given these, we state our main result.2.1 Basic notations� Typically, C denotes the channel (i.e., a probabilistic polynomial-time adversary) through whichparties A and B communicate. We adopt the notation of Bellare and Rogaway [4] and modelthe communication by giving C oracle access to A and B. We stress that, as in [4], these oracleshave memory and model parties who participate in a session-key generation protocol. Unlikein [4], when A and B share a single password, C has oracle access to only a single copy of eachparty.We denote by CA(x);B(y)(�), an execution of C (with auxiliary input �) when it communicateswith A and B, holding respective inputs x and y. Channel C's output from this execution isdenoted by output�CA(x);B(y)(�)�.� The password dictionary is denoted by D � f0; 1gn, and is �xed throughout the entire discussion.We denote � = 1jDj .� We denote by Un the uniform distribution over strings of length n.� For a set S, we denote x 2R S when x is chosen uniformly from S.� We use \ppt" as shorthand for probabilistic polynomial time.� An unspeci�ed negligible function is denoted by �(n). That is, for every polynomial p(�) andfor all su�ciently large n's, �(n) < 1p(n) . For functions f and g (from the integers to the reals),we denote f � g if jf(n)� g(n)j < �(n).� Finally, we denote computational indistinguishability by c�.A security parameter n is often implicit in our notations and discussions. Thus, for example, bythe notation D for the dictionary, our intention is really Dn (where Dn � f0; 1gn). Recall that wemake no assumptions regarding the size of Dn, and in particular it may by polynomial in n.Uniform or non-uniform model of computation. Some of the de�nitions in Appendix A arepresented in the non-uniform model of computation. Furthermore, a number of our proofs appearto be in the non-uniform complexity model, but can actually be carried out in the uniform model.Thus, a straightforward reading of our proofs makes our main result hold assuming the existenceof trapdoor permutations that cannot be inverted by polynomial-size circuits. However, realizingthat the analogous uniform-complexity de�nitions and proofs hold, it follows that our main resultcan be achieved under the analogous uniform assumption.9



2.2 (1� �)-indistinguishability and pseudorandomnessExtending the standard de�nition of computational indistinguishability [27, 45], we de�ne theconcept of (1��)-indistinguishability. Loosely speaking, two ensembles are (1��)-indistinguishableif for every ppt machine, the probability of distinguishing between them (via a single sample) is atmost negligibly greater than �.De�nition 2.1 ((1 � �)-indistinguishability): Let � : N ! [0; 1] be a function, and let fXngn2Nand fYngn2N be probability ensembles, so that for any n the distribution Xn (resp., Yn) ranges overstrings of length polynomial in n. We say that the ensembles are (1 � �)-indistinguishable, denotedfXngn2N �� fYngn2N, if for every probabilistic polynomial time distinguisher D, and all auxiliaryinformation z 2 f0; 1gpoly(n)jPr[D(Xn; 1n; z) = 1]� Pr[D(Yn; 1n; z) = 1]j < �(n) + �(n)The standard notion of computational indistinguishability coincides with 1-indistinguishability.Note that (1 � �)-indistinguishability is not preserved under multiple samples (even for e�cientlyconstructible ensembles); however (for e�ciently constructible ensembles), (1��)-indistinguishabilityimplies (1�m�)-indistinguishability of sequences of m samples.De�nition 2.2 ((1 � �)-pseudorandomness): We say that fXngn2N is (1 � �)-pseudorandom if itis (1� �)-indistinguishable from fUngn2N.Similarly, extending the de�nition of pseudorandom functions [23], we de�ne (1� �)-pseudorandomfunctions as follows.De�nition 2.3 ((1 � �)-pseudorandom function ensembles): Let F = fFngn2N be a function en-semble where for every n, the random variable Fn assumes values in the set of functions mappingn-bit long strings to n-bit long strings. Let H = fHngn2N be the uniform function ensemble inwhich Hn is uniformly distributed over the set of all functions mapping n-bit long strings to n-bitlong strings. Then, a function ensemble F = fFngn2N is called (1 � �)-pseudorandom if for everyprobabilistic polynomial-time oracle machine D, and all auxiliary information z 2 f0; 1gpoly(n)���Pr[DFn(1n; z) = 1]� Pr[DHn(1n; z) = 1]��� < �(n) + �(n)2.3 Authenticated Session-Key Generation: De�nition and DiscussionThe main de�nition is presented in Subsection 2.3.2 and augmented in Subsection 2.3.4. In Sub-section 2.3.3 we show that the main de�nition implies all natural security concerns discussed in theliterature (with one notable exception that is addressed by the augmented de�nition). In Subsec-tion 2.3.5 we relate our de�nitions to the framework of general secure multi-party computation.2.3.1 Motivation to the de�nitionThe problem of password-based authenticated session-key generation can be cast as a three-partyfunctionality involving honest parties A and B, and an adversary C.9 Parties A and B should9We stress that unlike in most works regarding secure multi-party computation, here the identity of the adver-sary is �xed beforehand. What makes the problem non-trivial is that the honest parties communicate only via acommunication line controlled by the adversary. 10



input their joint password and receive identical, uniformly distributed session-keys. On the otherhand, the adversary C should have no output (and speci�cally should not obtain information onthe password or output session-key). Furthermore, C should have no power to maliciously in
uencethe outcome of the protocol (and thus, for example, cannot a�ect the choice of the key or causethe parties to receive di�erent keys). However, recall that in a real execution, C controls thecommunication line between the (honest) parties. Thus, it can block all communication betweenA and B, and cause any protocol to fail. This (unavoidable) adversarial capability is modeledin the (modi�ed) functionality by letting C input a single bit b indicating whether or not theexecution is to be successful. Speci�cally, if b = 1 (i.e., success) then both A and B receive theabove-described session-key. On the other hand, if b = 0 then A receives a session-key, whereas Breceives a special abort symbol ? instead.10 We stress that C is given no ability to in
uence theoutcome beyond determining this single bit (i.e., b). In conclusion, the problem of password-basedsession-key generation is cast as the following three-party functionality:(wA; wB ; b) 7! ( (Un; Un; �) if b = 1 and wA = wB ;(Un;?; �) otherwise:where wA and wB are A and B's respective passwords.Our de�nition for password-based authenticated session-key generation is based on the \simu-lation paradigm" (cf. [27, 28, 1, 37, 12]). That is, we require a secure protocol to emulate an idealexecution of the above session-key generation functionality. In such an ideal execution, communi-cation is via a trusted party who receives the parties inputs and (honestly) returns to each partyits output, as designated by the functionality.An important observation in the context of password-based security is that, in a real execution,an adversary can always attempt impersonation by simply guessing the secret password and par-ticipating in the protocol, claiming to be one of the parties. If the adversary's guess is correct, thenimpersonation always succeeds (and, for example, the adversary knows the generated session-key).Furthermore, by executing the protocol with one of the parties, the adversary can verify whether ornot its guess is correct, and thus can learn information about the password (e.g., it can rule out anincorrect guess from the list of possible passwords). Since the dictionary may be small, this informa-tion learned by the adversary in a protocol execution may not be negligible at all. Thus, we cannothope to obtain a protocol that emulates an ideal-model execution (in which C learns nothing) upto computational indistinguishability. Rather, the inherent limitation of password-based securityis accounted for by (only) requiring that a real execution can be simulated in the ideal model suchthat the output distributions (in the ideal and real models) are (1�O(�))-indistinguishable (ratherthan 1-indistinguishable), where (as de�ned above) � = 1=jDj.11We note that the above limitation applies only to active adversaries who control the communi-cation channel. Therefore, in the case of a passive (eavesdropping) adversary, we demand that theideal and real model distributions be computationally indistinguishable (and not just (1 � O(�))-indistinguishable).10This lack of symmetry in the de�nition is inherent as it is not possible to guarantee that A and B both terminatewith the same \success/failure bit". For sake of simplicity, we (arbitrarily) choose to have A always receive a uniformlydistributed session-key and to have B always output ? when b = 0.11Another way of dealing with this limitation of password-based security is to allow the adversary a constantnumber of password guesses to the trusted party per ideal execution (if the adversary correctly guesses the passwordthen it obtains full control over the honest parties' outputs; otherwise it learns nothing other than the fact that itsguess was wrong). Security is guaranteed by requiring that a real protocol execution can be simulated in this idealmodel so that the output in the ideal model is computationally indistinguishable from that in a real execution. Thisis the approach taken by [11]; however we do not know how to achieve such a de�nition.11



2.3.2 The actual de�nitionFollowing the simulation paradigm, we now de�ne the ideal and real models (mentioned above),and present the actual de�nition of security.The ideal model: Let Â and B̂ be honest parties and let Ĉ be any ppt ideal-model adversary(with arbitrary auxiliary input �). An ideal-model execution proceeds in the following phases:Initialization: A password w 2R D is uniformly chosen from the dictionary and given to both Â andB̂.Sending inputs to trusted party: Â and B̂ both send the trusted party the password they have re-ceived in the initialization stage. The adversary Ĉ sends either 1 (denoting a successfulprotocol execution) or 0 (denoting a failed protocol execution).The trusted party answers all parties: In the case Ĉ sends 1, the trusted party chooses a uniformlydistributed string k 2R f0; 1gn and sends k to both Â and B̂. In the case Ĉ sends 0, thetrusted party sends k 2R f0; 1gn to Â and ? to B̂. In both cases, Ĉ receives no output.12The ideal distribution is de�ned as follows:idealĈ(D; �) def= (w; output(Â); output(B̂); output(Ĉ(�)))where w 2R D is the input given to Â and B̂ in the initialization phase. Thus,idealĈ(D; �) = ( (w;Un; Un; output(Ĉ(�))) if send(Ĉ(�)) = 1;(w;Un;?; output(Ĉ(�))) otherwise:where send(Ĉ(�)) denotes the value sent by Ĉ (to the trusted party), on auxiliary input �.The real model: Let A and B be honest parties and let C be any ppt real-model adversarywith arbitrary auxiliary input �. As in the ideal model, the real model begins with an initializationstage in which both A and B receive an identical, uniformly distributed password w 2R D. Then,the protocol is executed with A and B communicating via C.13 The execution of this protocol isdenoted CA(w);B(w)(�), where C's view is augmented with the accept/reject decision bits of A and B(this decision bit denotes whether a party's private output is a session-key or ?). This augmentationis necessary, since in practice the decisions of both parties can be implicitly understood from theirsubsequent actions (e.g., whether or not the parties continue the communication after the session-key generation protocol has terminated). (We note that in our speci�c formulation, A always12 Since Â and B̂ are always honest, we need not deal with the case that they hand the trusted party di�erentpasswords. In fact, we can modify the de�nition so that there is no initialization stage or password received by thehonest parties. The \send inputs" stage then involves Ĉ only, who sends a single success/fail bit to the trusted party.This de�nition is equivalent because the session-key chosen by the trusted party is independent of the password andthe honest parties always send the same password anyway.13We stress that there is a fundamental di�erence between the real model as de�ned here and as de�ned in standardmulti-party computation. Here, the parties A and B do not have the capability of communicating directly with eachother. Rather, A can only communicate with C and likewise for B. This is in contrast to standard multi-partycomputation where all parties have direct communication links or where a broadcast channel is used.
12



accepts and thus it is only necessary to provide C with the decision-bit output by B.) With someabuse of notation,14 the real distribution is de�ned as follows:realC(D; �) def= (w; output(A); output(B); output(CA(w);B(w)(�)))where w 2R D is the input given to A and B in the initialization phase, and output(CA(w);B(w)(�))includes an indication of whether or not output(B) = ?.The de�nition of security: Loosely speaking, the de�nition requires that a secure protocol (inthe real model) emulates the ideal model (in which a trusted party participates). This is formulatedby saying that adversaries in the ideal model are able to simulate the execution of a real protocol,so that the input/output distribution of the simulation is (1 � O(�))-indistinguishable from in areal execution. We further require that passive adversaries can be simulated in the ideal-modelso that the output distributions are computationally indistinguishable (and not just (1 � O(�))-indistinguishable).15De�nition 2.4 (password-based authenticated session-key generation): A protocol for password-based authenticated session-key generation is secure if the following two requirements hold:1. Passive adversaries: For every ppt real-model passive adversary C there exists a ppt ideal-model adversary Ĉ that always sends 1 to the trusted party such that for every dictionaryD � f0; 1gn and every auxiliary input � 2 f0; 1gpoly(n)�idealĈ(D; �)	D;� c� frealC(D; �)gD;�2. Arbitrary (active) adversaries: For every ppt real-model adversary C there exists a ppt ideal-model adversary Ĉ such that for every dictionary D � f0; 1gn and every auxiliary input� 2 f0; 1gpoly(n) �idealĈ(D; �)	D;� O(�)� frealC(D; �)gD;�where � def= 1jDj. We stress that the constant in O(�) is a universal one.We note that the ideal-model as de�ned here re
ects exactly what one would expect from a session-key generation protocol for which the honest parties hold joint high-entropy cryptographic keys(as in [4]). The fact that in the real execution the honest parties only hold low-entropy passwordsis re
ected in the relaxed notion of simulation that requires only (1 � O(�))-indistinguishability(rather than computational indistinguishability) between the real and ideal models.2.3.3 Properties of De�nition 2.4De�nition 2.4 asserts that the joint input{output distribution from a real execution is at most\O(�)-far" from an ideal execution in which the adversary learns nothing (and has no in
uence onthe output except from the possibility of causing B to reject). This immediately implies that the14Here and in the sequel, output(A) (resp., output(B)) denote the output of A (resp., B) in the executionCA(w);B(w)(�), whereas output(CA(w);B(w)(�)) denotes C's output in this execution.15A passive adversary is one that does not modify, omit or insert any messages sent between A or B. That is, itcan only eavesdrop and thus is limited to analyzing the transcript of a protocol execution between two honest parties.Passive adversaries are also referred to as semi-honest in the literature (e.g., in [26]).13



output session-key is (1 �O(�))-pseudorandom (which, as we have mentioned, is the best possiblefor password-based key generation). Thus, if such a session-key K is used for encryption then forany (partial information) predicate P and any distribution on the plaintext m, the probability thatan adversary learns P (m) given the ciphertext EK(m) is at most O(�) + �(n) greater than thea-priori probability (when the adversary is not given the ciphertext). Likewise, if the key K is usedfor a message authentication code (MAC), then the probability that an adversary can generate acorrect MAC-tag on a message not sent by A or B is at most negligibly greater than O(�). Westress that the security of the output session-key does not deteriorate with its usage; that is, itcan be used for polynomially-many encryptions or MACs and the gain of the adversary remainsO(�) + �(n). Another important property of De�nition 2.4 is that, except with probability O(�),(either one party detects failure or) both parties terminate with the same session-key.De�nition 2.4 also implies that the password used remains (1 � O(�))-indistinguishable froma randomly chosen (new) password ~w 2R D: This can be seen from the fact that in the idealmodel, the adversary learns nothing of the password w, which is part of the ideal distribution.This implies, in particular, that a secure protocol is resistant to o�ine dictionary attacks (wherebyan adversary scans the dictionary in search of a password that is \consistent" with its view of aprotocol execution).Other desirable properties of session-key protocols are also guaranteed by De�nition 2.4. Specif-ically, we mention forward secrecy and security in the face of loss of session-keys (also known asknown-key attacks). Forward secrecy states that the session-key remains secure even if the passwordis revealed after the protocol execution. Analogously, security in the face of loss of session-keys meansthat the password and the current session-key maintain their security even if prior session-keys arerevealed. These properties are immediately implied by the fact that, in the ideal-model, there isno dependence between the session-key and the password and between session-keys from di�erentsessions. Thus, learning the password does not compromise the security of the session-key and viceversa.16An additional property that is desirable is that of intrusion detection. That is, if the adversarymodi�es any message sent in a session, then with probability at least (1 � O(�)) this is detectedand at least one party rejects. This property is not guaranteed by De�nition 2.4 itself. However,it does hold for our protocol (as shown in Proposition 4.13, see Section 4.6). Combining this withPart 1 of De�nition 2.4 (i.e., the requirement regarding passive adversaries), we conclude that inorder for C to take advantage of its ability to learn \O(�)-information", C must take the chance ofbeing detected with probability 1�O(�).Finally, we observe that the above de�nition also enables mutual-authentication. This is becauseA's output session-key is always (1 � O(�))-pseudorandom to the adversary. As this key is secret,it can be used for explicit authentication via a (mutual) challenge{response protocol.17 By addingsuch a step to any secure session-key protocol, we obtain explicit mutual-authentication.2.3.4 Augmenting the de�nitionAlthough De�nition 2.4 seems to capture all that is desired from authenticated session-key gener-ation, there is a subtlety that it fails to address (as pointed out by Racko� in a personal commu-16The independence of session-keys from di�erent sessions relates to the multi-session case, which is discussed inSection 2.5. For now, it is enough to note that the protocol behaves as expected in that after t executions of thereal protocol, the password along with the outputs from all t sessions are (1� O(t�))-indistinguishable from t idealexecutions. The fact that security is maintained in the face of session-key loss is explicitly shown in Section 2.5.17It is easy to show that such a key can be used directly to obtain a (1�O(�))-pseudorandom function, which canthen be used in a standard challenge{response protocol. 14



nication to the authors of [4]). The issue is that the two parties do not necessarily terminate thesession-key generation protocol simultaneously, and so one party may terminate the protocol andstart using the session-key while the other party is still executing instructions of the session-keygeneration protocol (i.e., determining its last message). This situation is problematic because theuse of a session-key inevitably leaks information. Thus, the adversary may be able to use thisinformation in order to attack the protocol execution that is still in progress from the point of viewof the other party.This issue is highlighted by the following attack devised by Racko�. Consider any protocol thatis secure by De�nition 2.4 and assume that in this protocol A concludes �rst. Now, modify B sothat if the last message received by B equals fk(0), where k is the output session-key and ffsgs is apseudorandom function ensemble, then B publicly outputs the password w. The modi�ed protocolis still secure by De�nition 2.4, because in the original protocol, the value fk(0) is pseudorandomwith respect to the adversary's view (otherwise this would amount to the adversary being ableto distinguish the session-key from a random key). However, consider a scenario in which uponcompleting the session-key generation protocol, A sends a message that contains the value fk(0)(such use of the session-key is not only legitimate, but also quite reasonable). In this case, theadversary can easily obtain the password by passing fk(0) (as sent by A) to B, who has notyet completed the session-key protocol. In summary, De�nition 2.4 should be modi�ed in orderto ensure that any use of the session-key after one of the parties has completed the session-keyprotocol cannot help the adversary in its attack on this protocol.In order to address this issue, De�nition 2.4 is augmented so that the adversary receives asession-key challenge after the �rst party concludes its execution of the session-key protocol. Thesession-key challenge is chosen so that with probability 1=2 it equals the actual session-key (asoutput by the party that has �nished) and with probability 1=2 it is a uniformly distributed string.The augmentation requires that the adversary be unable to distinguish between these challengecases. Intuitively, this solves the above-described problem because the adversary can use thesession-key challenge it receives in order to simulate any messages that may be sent by A followingthe session-key protocol execution.The augmented ideal model. Let Â, B̂, Ĉ and � be as in the above de�nition of the idealmodel. Then, the augmented ideal model proceeds in the following phases:Initialization: Â and B̂ receive w 2R D.Honest parties send inputs to the trusted party: Â and B̂ both send w.Trusted party answers Â: The trusted party chooses k 2R f0; 1gn and sends it to Â.Trusted party chooses session-key challenge for Ĉ: The trusted party chooses � 2R f0; 1g and givesĈ the string k�, where k1 def= k and k0 2R f0; 1gn.Adversary Ĉ sends input to the trusted party: Ĉ sends either 1 (denoting a successful protocol exe-cution) or 0 (denoting a failed protocol execution).Trusted party answers B̂: If Ĉ sent 1 in the previous phase, then the trusted party gives the key kto B̂. Otherwise, it gives B̂ an abort symbol ?.The augmented ideal distribution is de�ned by:ideal-augĈ(D; �) def= (w; output(Â); output(B̂); output(Ĉ(�; k�)); �)where w 2R D. 15



The augmented real model. The real model execution is the same as above except for thefollowing modi�cation. Recall that the scheduling of a protocol execution is controlled by C.Therefore, C controls which party (A or B) concludes �rst. If the �rst party concluding outputsan abort symbol ?, then the adversary is simply given ?. (Since the accept/reject bit is anywaypublic, this is meaningless.) On the other, if the �rst party to terminate the execution locally-outputs a session-key, then a bit � 2R f0; 1g is chosen, and C is given a corresponding challenge:If � = 0, then C is given a uniformly distributed string r 2R f0; 1gn, else (i.e., � = 1) C is giventhe session-key as output by the terminating party. The augmented real distribution is de�ned asfollows: real-augC(D; �) def= (w; output(A); output(B); output(CA(w);B(w)(�)); �)where CA(w);B(w)(�) denotes the above described (augmented) execution.Finally, the de�nition of security is analogous to De�nition 2.4:De�nition 2.5 (augmented password-based authenticated session-key generation): We say that aprotocol for augmented password-based authenticated session-key generation is secure if the followingtwo requirements hold:1. Passive adversaries: For every ppt real-model passive adversary C there exists a ppt ideal-model adversary Ĉ that always sends 1 to the trusted party such that for every dictionaryD � f0; 1gn and every auxiliary input � 2 f0; 1gpoly(n)�ideal-augĈ(D; �)	D;� c� freal-augC(D; �)gD;�2. Arbitrary adversaries: For every ppt real-model adversary C there exists a ppt ideal-modeladversary Ĉ such that for every dictionary D � f0; 1gn and every auxiliary input � 2f0; 1gpoly(n) �ideal-augĈ(D; �)	D;� O(�)� freal-augC(D; �)gD;�We �rst explain how this augmentation addresses the problem discussed above (i.e., prevents theattack of Racko�). In the augmented ideal model, Ĉ learns nothing about the value of �. Therefore,by De�nition 2.5, it follows that in the augmented real model, C can distinguish the case that � = 0from the case that � = 1 with probability at most O(�). Now, consider the case that the session-keychallenge given to C is a uniformly distributed string (i.e., � = 0). Then, since C can generatethe challenge itself, it clearly cannot help C in any way in its attack on the protocol. On theother hand, we are interested in analyzing the probability that the session-key itself can help Cin its attack on the protocol. The point is that if C could utilize knowledge of this key, then thisadditional knowledge could be used to distinguish the case that � = 0 from the case that � = 1.We conclude that the information that C can obtain about the session-key in a real setting doesnot help it in attacking the session-key generation protocol (except with probability O(�)).As we have seen the above augmentation resolves the problem outlined by Racko�. However,in contrast to De�nition 2.4, it is not clear that De�nition 2.5 implies all the desired properties ofsecure session-key generation protocols.18 We therefore show that all the properties of De�nition 2.4are indeed preserved in De�nition 2.5. In fact:18Clearly, if C were always given the session-key, then the de�nition guarantees no security with respect to thesession-key. So, we must show that in De�nition 2.5, where C is given the key with probability 1=2, security (as perDe�nition 2.4) is maintained. 16



Proposition 2.6 Any protocol that is secure by De�nition 2.5 is secure by De�nition 2.4.Proof: Intuitively, the proposition holds because in the case that � = 0, the adversary in theaugmented model has no additional advantage over the adversary for the basic model, where werefer to the model of Def. 2.4 as the basic or unaugmented model. (Recall that when � = 0, theadversary merely receives a uniformly distributed string.) Therefore, any success by an adversaryfor the basic model can be translated into an adversarial success in the augmented model, providedthat � = 0 (in the augmented model). Since � = 0 with probability 1=2, a protocol proven securefor the augmented model must also be secure in the basic model. Details follow.Assume that there exists a protocol that is secure by De�nition 2.5 (the rest of this proof refersimplicitly to this protocol). First, notice that for any real-model adversary C (as in De�nition 2.4),there exists an augmented real-model adversary C 0 such thatfrealC(D; �)g � freal-augC0(D; �) j � = 0g (1)In order to see this, consider an adversary C 0 who simply invokes the basic-model adversaryC in the augmented model and ignores the additional session-key challenge provided, which inthe case that � = 0 provides no information anyway. (In fact, it holds that frealC(D; �)g �freal-augC0(D; �)g, but for this proof we only need to consider the conditional space where� = 0).Next, by De�nition 2.5, we have that for any augmented real-model adversary C 0, there existsan augmented ideal-model adversary Ĉ 0 such thatfreal-augC0(D; �)gD;� ���� �ideal-augĈ0(D; �)	D;� (2)where � is a constant. This implies thatfreal-augC0(D; �) j � = 0g 2���� �ideal-augĈ0(D; �) j � = 0	 (3)Eq. (3) holds because � = 0 with probability 1=2, and thus any distinguishing gap greater than2� �� can be translated into a distinguishing gap of greater than � �� for the distributions in Eq. (2).Finally, we claim that for any augmented ideal-model adversary Ĉ 0, their exists an ideal-modeladversary Ĉ 00 (as in De�nition 2.4) such that�ideal-augĈ0(D; �) j � = 0	 � �idealĈ00(D; �)	 (4)Eq. (4) holds because when � = 0, adversary Ĉ 0 receives a uniformly distributed string in the idealexecution. Thus, Ĉ 00 can invoke Ĉ 0 (while in the basic, unaugmented model) and pass it a uniformlydistributed string for its session-key challenge.Combining Equations 1, 3 and 4 we obtain the proposition.2.3.5 Session-key generation as secure multiparty computationWe have cast the problem of password-based session-key generation in the framework of securemultiparty computation. However, there are a number of essential di�erences between our modelhere and the standard model of multiparty computation.� Real-model communication: In the standard model, all parties can communicate directly witheach other. However, in our context, the honest parties A and B may only communicate withthe adversary C. This di�erence models the fact that A and B communicate over an \open"communication channel that is vulnerable to active man-in-the-middle attacks.17



� Adversarial parties: In the standard model, any party may be corrupted by the adversary.However, here we assume that A and B are always honest and that only C can be adversarial.� Quanti�cation over the inputs: In the standard model, security is guaranteed for all inputs. Inparticular, this means that an adversary cannot succeed in a�ecting the output distribution evenif it knows the honest parties' inputs. This is in contrast to our setting where the honest parties'joint password must be kept secret from the adversary. Thus, we quantify over all dictionariesand all auxiliary inputs to the adversary, rather than over speci�c inputs (to the honest parties).Another way of viewing the di�erence is that, considering the inputs of the honest parties, wequantify over input distributions (of certain min-entropy), whereas in the standard model thequanti�cation is over input values.� The \level" of indistinguishability: Finally, in the standard model, the real and ideal outputdistributions are required to be computationally indistinguishable (and thus \essentially" thesame). On the other hand, due to the inherent limitation resulting from the use of low-entropypasswords, we only require these distributions to be (1�O(�))-indistinguishable.2.4 Our Main ResultGiven De�nition 2.5, we can now formally state our main result.Theorem 2.7 Assuming the existence of trapdoor permutations, there exist secure protocols for(augmented) password-based authenticated session-key generation.Non-uniform distributions over D: For simplicity, we have assumed above that the partiesshare a uniformly chosen password w 2R D. However, our proofs extend to any distribution (overany dictionary) so that no element occurs (in this distribution) with probability greater than �.2.5 Multi-Session SecurityThe de�nition above relates to two parties executing a session-key generation protocol once. Clearly,we are interested in the more general case where many di�erent parties run the protocol any numberof times. It turns out that any protocol that is secure for a single invocation between two parties(i.e., as in De�nitions 2.4 and 2.5), is secure in the multi-party and sequential invocation case.2.5.1 Many invocations by two partiesLet A and B be parties who invoke t sequential executions of a session-key generation protocol.Given that an adversary may gain a password guess per each invocation, the \security loss" for t in-vocations should be O(t�). That is, we consider ideal and real distributions consisting of the outputsfrom all t executions. Then, we require that these distributions be (1 � O(t�))-indistinguishable.Below, we prove that any secure protocol for password-based authenticated session-key generationmaintains O(t�) security after t sequential invocations.Sequential vs concurrent executions for two parties: Our solution is proven secure only ifA and B do not invoke concurrent executions of the session-key generation protocol (with the samepassword). We stress that a scenario whereby the adversary invokes B twice or more (sequentially)during a single execution with A is not allowed. Therefore, in order to actually use our protocol,some mechanism must be used to ensure that such concurrent executions do not take place. This18



can be achieved by having A and B wait � units of time between protocol executions, where �is greater than the time taken to run a single execution. Note that parties do not usually needto initiate session-key generation protocols immediately one after the other. Therefore, this delaymechanism need only be employed when an attempted session-key generation execution fails. Thismeans that parties not \under attack" by an adversary are not inconvenienced in any way.We note that this limitation does not prevent the parties from opening a number of di�erent(independently-keyed) communication lines. They may do this by running the session-key protocolsequentially, once for each desired communication line. However, in this case, they incur a delay of� units of time between each execution. Alternatively, they may run the protocol once and obtaina (1 � O(�))-pseudorandom session-key. By applying a pseudorandom generator to this key, anypolynomial number of computationally independent (1� O(�))-pseudorandom session-keys can bederived.Proof of security for sequential executions: We prove the sequential composition of securepassword-based session-key protocols for the basic de�nition (De�nition 2.4). The proof for theaugmented de�nition (De�nition 2.5) is almost identical. We begin with the following notation. LetRC(w; �) def= (output(A); output(B); output(CA(w);B(w)(�))). That is, RC(w; �) equals the outputsof A, B and C from a real execution when the joint password equals w (and thus realC(D; �) =(w;RC(w; �)) for w 2R D). Next, we present the equivalent notation IĈ(�) for the ideal-model asfollows: IĈ(�) = ( (Un; Un; output(Ĉ(�))) if send(Ĉ(�)) = 1;(Un;?; output(Ĉ(�))) otherwise:Thus, idealĈ(D; �) = (w; IĈ (�)) for w 2R D. (Recall that send(Ĉ(�)) denotes the input-bit sentby Ĉ to the trusted party upon auxiliary input �, and output(Ĉ(�)) denotes its �nal output.) Westress that IĈ(�) is independent of the dictionary D and the password w (and for this reason D doesnot appear in the notation). This is equivalent to the de�nition of idealĈ(D; �) above becausethe password plays no role in the choice of the session-key or in Ĉ's decision to send 0 or 1 to thetrusted party. Furthermore, as mentioned in Footnote 12, since Â and B̂ are always honest, thereis no need to have them receive any password for input or send any message whatsoever to thetrusted party.We now de�ne the distribution realtC(D; �0), representing t sequential executions, as follows:realtC(D; �0) def= (w; �1 = RC(w; �0); �2 = RC(w; �1); � � � ; �t = RC(w; �t�1))where �0 is some arbitrary auxiliary input to C and w 2R D. Likewise, the distribution idealt̂C(D; �0)is de�ned by: idealtC(D; �0) def= (w; �1 = IĈ(�0); �2 = IĈ(�1); � � � ; �t = IĈ(�t�1))where �0 is some arbitrary auxiliary input to C and w 2R D.Notice that in the i'th session, C receives all the parties' outputs from the previous session (i.e.,including previous session-keys), rather than just its own output (or state information) as one mayexpect. However, this strengthening of the adversary simpli�es the notation. Furthermore, in thisway, we explicitly show that security holds even if the session-keys from previous executions arerevealed to the adversary.By the above notation, real1C(D; �0) = realC(D; �0) and ideal1̂C = idealĈ(D; �0) and thusby the de�nition it holds that real1C(D; �0) and ideal1̂C(D; �0) are (1 � O(�))-indistinguishable.19



We now show that for any t, the distributions idealt̂C(D; �0) and realtC(D; �0) are (1 � O(t�))-indistinguishable.Proposition 2.8 Consider a secure protocol for password-based authenticated session-key genera-tion. Then, for every ppt real-model adversary C there exists a ppt ideal-model adversary Ĉ suchthat for every dictionary D � f0; 1gn, every auxiliary input �0 2 f0; 1gpoly(n) and every tnidealt̂C(D; �0)o O(t�)� nrealtC(D; �0)oProof: We prove the proposition by induction (the base case is given by the assumption that theprotocol is secure as in De�nition 2.4). Now, by the de�nition of realt+1C (D; �0) and RC(w; �) wehave that nrealt+1C (D; �0)o � n(realtC(D; �0); RC(w; �t))owhere w and �t are the �rst and last items in realtC(D; �0), respectively. Next notice that thereexists a ppt machine that takes as input dist 2 frealtC(D; �0); idealt̂C(D; �0)g and generates(dist; RC(w; �t)), where w and �t are the �rst and last items in dist, respectively. This machineworks by (perfectly) emulating a real execution of CA(w);B(w)(�t) and then de�ning RC(w; �t) tobe the parties' outputs from this emulation. Thus, appending RC(w; �t) to the ideal and realdistributions does not change the probability of distinguishing between them. By the inductivehypothesis it then follows thatn(realtC(D; �0); RC(w; �t))o O(t�)� n(idealt̂C(D; �0); RC(w; �t))oNow, a crucial point to notice here is that in the distribution (idealt̂C(D; �0); RC(w; �t)), the value�t is generated by idealt̂C(D; �0) and is thus independent of the password w. Therefore, it holdsthat n(idealt̂C(D; �0); RC(w; �t))o O(�)� n(idealt̂C(D; �0); IĈ(�t))o � nidealt+1Ĉ (D; �0)oCombining the above equations, we have that nrealt+1C (D; �0)o is (1�O((t+1)�))-indistinguishablefrom nidealt+1Ĉ (D; �0)o and this completes the proof.2.5.2 Many partiesWe now brie
y discuss a generalization to the case where many di�erent parties execute the session-key protocol simultaneously. This includes the case that the adversarial channel controls anynumber of the legitimate parties.19 Speci�cally, we claim that for m invocations of the protocol(which must be sequential for the same pair of parties and may be concurrent otherwise), thesecurity loss is O(m�).We show this in the case ofm di�erent pairs, each pair executing a single invocation (the generalcase is similar). Consider m pairs of parties (A1; B1); : : : ; (Am; Bm) such that each pair shares asecret password wi 2R D. (We do not assume that the A's and B's are distinct, yet do assumethat for each i 6= j, the passwords wi and wj are independently chosen.) We �rst focus on thesecurity of a pair of parties (Ai; Bi) when i is �xed. It is clear that the O(�) security holds becauseC can internally simulate all other executions by choosing wj 2R D for every j 6= i, and we obtain19The importance of this extension was pointed out by Boyarsky [10].20



a reduction to the single-pair case. The same argument holds regarding the security of a randompair (Ai; Bi), where i 2R f1; : : : ;mg is chosen randomly before the execution begins.In the general case, we wish to analyze the security where i is not �xed or chosen at randomahead of time. Now, assume that there exists an adversary C such that C succeeds with respectto some (Aj ; Bj) with probability greater than O(m�). Then, C can be used to contradict theO(�) security loss in the case that i is randomly chosen. This is because with probability 1=m wehave that i = j and therefore C succeeds, with probability greater than O( 1m �m�) = O(�), on thisrandom session. We conclude that the security loss with respect to all the m executions is O(m�).3 Our Session-Key Generation ProtocolPreliminaries: All arithmetic below is over the �nite �eld GF(2n) which is identi�ed with f0; 1gn.For a review of cryptographic tools used and some relevant notations, see Appendix A.In our protocol, we use a secure protocol for evaluating non-constant, linear polynomials (actu-ally, we could use any family of 1{1 Universal2 hash functions). This protocol involves two partiesA and B; party A has a non-constant, linear polynomial Q(�) 2 f0; 1g2n and party B has a stringx 2 f0; 1gn. The functionality is de�ned by (Q;x) 7! (�;Q(x)); that is, A receives nothing andB receives the value Q(x) (and nothing else). The postulate that A is supposed to input a non-constant, linear polynomial can be enforced by simply mapping all possible input strings to the setof such polynomials (this convention is used for all references to polynomials from here on). Weactually augment this functionality by having A also input a commitment to the polynomial Q (i.e.,cA 2 Commit(Q)) and its corresponding decommitment r (i.e., cA = C(Q; r)). Furthermore, B alsoinputs a commitment value cB . The augmentation is such that if cA 6= cB (or cA =2 Commit(Q)),then B receives a special failure symbol. This is needed in order to tie the polynomial evaluationto a value previously committed to in the main (higher level) protocol. The functionality is de�nedas follows:De�nition 3.1 (augmented polynomial evaluation):� Inputs: The input of Party A consists of and a linear, non-constant polynomial Q over GF(2n),a commitment cA to this Q, and a corresponding decommitment r. The input of Party B consistsof a commitment cB and a value x 2 GF(2n).� Outputs:1. Correct Input Case: If cA = cB and cA = C(Q; r), then B receives Q(x).2. Incorrect Input Case: If cA 6= cB or cA 6= C(Q; r), then B receives a special failure symbol,denoted ?.In both cases, A receives nothing.Recall that by [46, 26], the augmented polynomial evaluation functionality can be securely com-puted. (We stress that the relevant input case can be determined in polynomial time, because Aprovides both Q and r.)3.1 The ProtocolLet f be a one-way permutation and b a hard-core of f . A schematic diagram of Protocol 3.2, isprovided in Figure 1 (below). 21



Protocol 3.2 (password-based authenticated session-key generation)Inputs: Parties A and B start with a joint password w, which is supposed to be uniformly dis-tributed in D.Outputs: A and B each output an accept/reject bit as well as session-key, denoted kA and kBrespectively. The accept/reject bit is a public output, whereas the session-key is a local output.(In normal operation kA = kB and both parties accept. As can be seen below, the public outputbit of A will always be accept. We will show that in case kA 6= kB the public output bit of B isunlikely to be accept.)Operation: The protocol proceeds in four stages.1. Stage 1: (Non-Malleable) Commit(a) A chooses a random, linear, non-constant polynomial Q over GF(2n).(b) A and B engage in a non-malleable (perfectly binding) commitment protocol in whichA commits to the string (Q;w) 2 f0; 1g3n. Denote the random coins used by B in thecommitment protocol (where he plays the role of the receiver) by rB , and denote B'sview of the execution of the commitment protocol by NMC(Q;w).20After the commitment protocol terminates, B sends (the receiver's coins) rB to A.(This has no e�ect on neither the hiding property (which refers to what B can learn)nor to the binding property (because the commitment phase is perfectly binding andits execution has already terminated).)2. Stage 2: Pre-Key Exchange { In this stage the parties generates strings �A and �B, fromwhich the output session-keys (as well as validation checks performed below) are derived.Thus, �A and �B are called pre-keys, and the process of generating them is re�ered to as\pre-key exchange".(a) A sends B a commitment c = C(Q; r), for a randomly chosen r.(b) A and B engage in an augmented polynomial evaluation protocol. A inputs the poly-nomial Q as well as (c; r); whereas B inputs the password w (viewed as an element ofGF(2n)) as well as c.(If indeed both parties input the same commitment value c = C(Q; r) (as well as (Q; r)and w respectively) then B gets the output Q(w).)(c) We denote B's output by �B . (Note that �B is supposed to equal Q(w).)(d) A internally computes �A = Q(w).3. Stage 3: Validation(a) A sends the string y = f2n(�A) to B.(b) A proves to B in zero-knowledge that she has input the same polynomial in the non-malleable commitment (performed in Stage 1) and in the ordinary commitment (per-formed in Stage 2(a)), and that the value y is \consistent" with the non-malleablecommitment. Formally, A proves the following NP-statement:There exists a pair (X1; x2) 2 f0; 1g2n�f0; 1gn (where supposedly X1 = Q andx2 = w) and random coins rA;1; rA;2 (where supposedly rA;1 and rA;2 are A'srandom coins in the non-malleable and ordinary commitments, respectively)such that the following three conditions hold20Recall that B's view consists of his random coins and all messages received during the commitment protocolexecution. 22



i. B's view of the non-malleable commitment stage (denoted above byNMC(Q;w))is identical to the receiver's view of a non-malleable commitment to (X1; x2),where the sender and receiver's respective random coins are rA;1 and rB .(Recall that rB denotes B's random coins in the non-malleable commitment,and that it has been sent to A at the very end of Stage 1(b).)21ii. c = C(X1; rA;2).iii. y = f2n(X1(x2)).The zero-knowledge proof used here is the speci�c zero-knowledge proof of Richardsonand Kilian [41], with a speci�c setting of parameters. Speci�cally, we refer to thesetting of the number of iterations, denoted m, in the �rst part of the Richardson-Kilian proof system. We set m to equal the number of rounds in Stages 1 and 2 of ourprotocol plus any non-constant function of the security parameter. For further details,see Appendix A.4.(c) Let tA be the session transcript so far as seen by A (i.e., the sequence of all messagessent and received by A so far), and let MACk be a message authentication code,keyed by k. Then, A computes k1(�A) def= b(�A) � � � b(fn�1(�A)), and sends the valuem =MACk1(�A)(tA) to B.4. Decision Stage(a) A always accepts and outputs k2(�A) def= b(fn(�A)) � � � b(f2n�1(�A)).(b) B accepts if and only if the following three conditions are satis�ed:i. y = f2n(�B), where y is the string sent by A to B in Step 3(a), and �B is B'soutput from the polynomial evaluation (as de�ned in Stage 2(c)).(We stress that if �B = ? then no y ful�lls this equality, and B always rejects.)ii. B accepts the zero-knowledge proof in Step 3(b).iii. The MAC value received in Stage 3(c) passes as valid authentication tage for thesession-transcript as seen byB, with respect to the MAC-key k1(�B) = b(�B) � � � b(fn�1(�B)).That is, Verifyk1(�B)(tB;m) = 1, where tB is the transcript of Stages 1 through 3(b)as seen by B, the stringm is the alleged MAC-tag that B received in Stage 3(c), andMAC-veri�cation is with respect to the MAC-key k1(�B) = b(�B) � � � b(fn�1(�B)).In case B accepts, he outputs the session-key k2(�B) = b(fn(�B)) � � � b(f2n�1(�B)),otherwise he outputs ?. (Recall that the accept/reject decision bit is considered apublic output.)We stress that A and B always accept or reject based solely on these criteria, and thatthey do not halt (before this stage) even if they detect malicious behavior.In our description of the protocol, we have referred only to parties A and B. That is, we haveignored the existence (and possible impact) of the channel C. That is, when A sends a string z toB, we \pretend" that B actually received z and not something else. In a real execution, this maynot be the case at all. In the actual analysis we will subscript every value by its owner, as we havedone for �A and �B in the protocol. For example, we shall say that in Step 3(a), A sends a stringyA and the string received by B is yB.21The view of a protocol execution is a function of the parties' respective inputs and random strings. Therefore,the sender's input (X1; x2), and the party's coins rA;1 and rB determine a unique possible view. Recall that B sentrB to A following the commitment protocol. Thus, A has NMC(Q;w) (which includes rB), the committed-to value(Q;w) and her own coins rA;1, enabling her to e�ciently prove the above statement.23
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Figure 1: Schematic Diagram of the Protocol.3.2 Motivation for the ProtocolWe suggest to the reader to start by considering the schematic diagram of Protocol 3.2, as providedin Figure 1.3.2.1 On the general structure of the protocolThe central module of Protocol 3.2 is the secure polynomial evaluation. As suggested by Naorand Pinkas [39], this module (by itself) su�ces for achieving security against passive channels (butnot against active ones). Speci�cally, consider the following protocol. Party A chooses a random,linear polynomial Q and inputs it into a secure polynomial evaluation with party B who inputs thejoint password w. By the de�nition of the polynomial evaluation, B receives Q(w) and A receivesnothing. Next, A internally computes Q(w) (she can do this as she knows both Q and w), andboth parties use this value as the session-key. The key is uniformly distributed (since Q is randomand linear) and due to the secrecy requirements of the polynomial evaluation, the protocol revealsnothing of w or Q(w) to a passive eavesdropper C (since otherwise this would also be revealed toparty A who should learn nothing from the evaluation).One key problem in extending the above argument to the active channel setting is that thestandard security de�nitions of two-party computation (which refer to the stand-alone setting)guarantee nothing about what happens in the concurrent setting. In fact, one can show thatthe simpli�ed protocol (as outlined in the previous paragraph) is not secure against an active24



adversary. We now provide some intuition as to why our protocol, which is derived via signi�cantaugmentations of the simpli�ed protocol, is nevertheless secure.First, assume that the MAC-value sent by A at the conclusion of the protocol is such that unlessC \behaved passively" (i.e., relayed all message without modi�cation), then B rejects (with somehigh probability). Now, if C behaves passively, then B clearly accepts (as in the case of honestparties A and B that execute the protocol without any interference). On the other hand, if Cdoes not behave passively, then (by our assumption regarding the MAC-value) B rejects. However,C itself knows whether or not it behaved passively and therefore can predict whether or not Bwill reject. In other words, the accept/reject bit output by B is simulatable (by C itself). Weproceed by observing that this bit is the only meaningful message sent by B during the protocol:apart from in the polynomial evaluation, the only messages sent by B are as the receiver in a non-malleable commitment protocol and the veri�er in a zero-knowledge proof (clearly, no knowledgeof the password w is used by B in these protocols). Furthermore, the polynomial evaluation is suchthat only B receives output. Therefore, intuitively, the input used by B is not revealed by theexecution; equivalently, the view of C is (computationally) independent of B's input w (this can beshown to hold even in our concurrent setting). We conclude that all messages sent by B during theexecution can be simulated without knowledge of w. Therefore, by indeed simulating B, we canreduce the concurrent scenario involving A, C and B to a (standard) two-party setting between Aand C. In this (standard) setting, we can apply standard tools and techniques for simulating C'sview in its interaction with A, and conclude that the entire real execution is simulatable in theideal model. Hence, assuming that the MAC-value is accepted if and only if C \behaves passively",the protocol is secure.Thus, the basis for simulating C's view (which means security of our protocol) lies in the securityof the MAC in our scenario. Indeed, the MAC is secure when the parties using it (a priori) sharea random MAC-key; but in our case the parties establish the MAC-key during the protocol itself,and it is not clear that this key is random nor the same in the view of both parties. In order tojustify the security of the MAC (in our setting), two properties must be shown to hold. Firstly,we must show that with high probability either A and B hold the same MAC key or B is going toreject anyhow (and C knows this). Secondly, we need to show that this (identical) MAC-key heldby A and B has \su�cient pseudorandomness" to prevent C from successfully forging a MAC.In some sense, we are back to the original problem (of generating a shared secret key). How-ever, given the above discussion, it su�ces to show that the generated MAC-key satis�es the twospeci�c requirements described above (rather that satisfy De�nition 2.4).22 Unfortunately, evensatisfying these speci�c requirements (in the active channel setting) seems quite di�cult, and thevarious augmentations of the simpli�ed protocol are introduced in our protocol towards this pur-pose. Speci�cally, the non-mallable commitment stage and the validation and decision stages areintroduced in order to create a protocol that is non-mallable in some restricted sense, and thusallow us to reduce its analysis to the analysis of some related stand-alone executions. Indeed, thispart of the protocol and its analysis is complicated because we currently lack tools for the designof such protocols.3.2.2 On some speci�c choicesUsing a pseudorandom generator. In the protocol, we implicitly use a pseudorandom generator22Note, however, that since we later establish that the entire protocol satis�es De�nition 2.4, it follows in particularthat the MAC-key generation almost satis�es De�nition 2.4: It satis�es a corresponding simulation requirement thatrefers only to adversaries that are not given B's decision of whether or not to accept the key.25



de�ned by G(s) = b(s) � � � b(f2n�1(s)) � f2n(s). As discussed in Appendix A.5, this is a \seed-committing" pseudorandom generator (i.e., f2n(s) uniquely determines s). To see why this type ofa pseudorandom generator is relevant to us, recall that as part of the validation stage, some functionF of �B is sent by A to B, whereas another function k1 (of �B) is used to derive the MAC-key andanother function (i.e., k2) is used to derive the output session-key. The properties required from Fare that �rstly it be 1{1 (so that F (�B) uniquely determines �B), and secondly that the MAC-keyand the output session-key (also derived from �B) be pseudorandom, even though the adversary isgiven F (�B). Viewed in this light, using a seed-committed pseudorandom generator (while settingF (�) = f2n(�) and G(�) = k1(�)k2(�)f2n(�)) is a natural choice.On the use of linear polynomials. The pre-keys are generated by applying a random, linear,non-constant polynomial on the password. Such a polynomial is used for the following reasons.Firstly, we need \random 1{1 functions" that map each dictionary entry to a uniformly distributedn-bit string. The 1{1 property is used in saying that Q and � uniquely determine w such thatQ(w) = �.23 Secondly, we desire that for w0 6= w, the values Q(w0) and Q(w) be (almost) in-dependent. This ensures that if C guesses the wrong password and obtains Q(w0), he will gainno information on the actual key Q(w). (Essentially, any family of 1{1 Universal2 hash functionswould be appropriate.)3.3 Properties of Protocol 3.2The main properties of Protocol 3.2 are captured by the following theorem.Theorem 3.3 Suppose that all the cryptographic tools used in Protocol 3.2 satisfy their statedproperties. Then Protocol 3.2 constitutes a secure protocol for (augmented) password-based authen-ticated session-key generation (as de�ned in De�nition 2.5).As we have mentioned above, Protocol 3.2 also ful�lls the additional property of intrusion detection.Protocol 3.2 as a feasibility result: All the cryptographic tools used in Protocol 3.2 can besecurely implemented assuming the existence of trapdoor permutations. Thus, at the very least,Theorem 3.3 implies the feasibility result captured by Theorem 2.7.Protocol 3.2 as a basis for e�cient solutions: We now brie
y discuss the e�ciency of ourprotocol. From this perspective, the most problematic modules of the protocol are the non-malleablecommitment, the secure (augmented) polynomial evaluation, and the zero-knowledge proof of [41].Focusing on round complexity, we make the following observations: First, by a recent generalresult of Lindell [34] (building on [46, 26]), the secure (augmented) polynomial evaluation can beimplemented in a constant number of rounds. Second, the number of rounds of communicationrequired for the zero-knowledge proof of [41] is m + O(1), where m equals the number of roundsin all other parts of our protocol plus some non-constant function in the security parameter (saylog log n). In fact, as discussed in Section 6.1.1, this can be reduced to a single additional round,provided that expected polynomial-time (rather than strict polynomial-time) simulation is su�cient.23In particular, if a constant polynomial is allowed then C could choose a constant Q0 and run the entire protocolwith B using Q0. Since Q0 is constant, �B = Q0(w) is a �xed value and is thus known to C. Furthermore, Ccan execute the zero-knowledge proof in the validation stage correctly, because y = f2n(Q0(w)) = f2n(Q0(w0)) isconsistent with NMC(Q0; w0) for every w0 (rather than only for w0 = w). We conclude that (under such a 
awedmodi�cation) B accepts with a session-key known to C, in contradiction to the session-key secrecy requirement.26



We thus conclude that the main bottleneck with respect to the number of rounds of communicationis due to the non-malleable commitment.24Turning to the bandwidth (i.e., length of messages) and the computational complexity of ourprotocol, we admit that both are large, but this is due to the corresponding complexities of the prob-lematic modules mentioned above. Any improvement in the e�ciency of these modules (which is,fortunately, an important open problem) would yield a corresponding improvement in the e�ciencyof our protocol.We comment that under a stronger set-up assumption that postulates that all parties (includingthe adversary) have access to some common \random string" (or parameter), each of the abovemodules can be implemented in a constant number of rounds (based on standard intractabilityassumptions).25 This yields a constant-round session-key generation protocol (based on passwprdsand common parameters). Recall that this is exactly the model used in [31], and so a brief com-parison is due: On one hand, their protocol is more e�cient, but on the other hand they rely on aspeci�c and quite non-standard intractability assumption.4 Analysis of Protocol 3.2: Proof SketchesRegrettably, due to reasons mentioned in the introduction and further discussed below, the analysisof Protocol prot:session-key is quite involved. In order to focus on the main ideas of this analysis,we provide its essence in the current section, while deferring some details to subsequent sections.4.1 PreliminariesRecall that the (adversarial) channel (or adversary) C may omit, insert and modify any messagesent between A and B. Thus, in a sense C conducts two separate executions: one with A in whichC impersonates B (called the (A;C) execution), and one with B in which C impersonates A (calledthe (C;B) execution). These two executions are carried out concurrently (by C), and there is noexplicit execution between A and B. Furthermore, C has full control of the scheduling of the (A;C)and (C;B) executions (i.e., C may maliciously decide when to pause one execution and continuethe other). For this reason, throughout the proof we make statements to the e�ect of: \when Aexecutes X in her protocol with C then...". This re
ects the fact that the separate (A;C) and(C;B) executions may be at very di�erent stages.We note that there are currently no tools for dealing with (general) concurrent computationin the two-party case.26 Our solution is therefore based on an ad-hoc analysis of (two) concurrent24We recall that the current implementation for non-malleable commitment [17] requires n rounds of communi-cation. (It is however remarked in [17] that the non-malleable commitment protocol can be improved to only log nrounds.) Therefore, any improvement in the e�ciency of this primitive would result in greater e�ciency for ourprotocol.25Speci�cally, in the common parameter model, the zero-knowledge proof could be replaced by a non-interactivezero-knowledge proof, and a non-interactive non-malleable commitment scheme can be constructed using a non-malleable public-key encryption scheme (by letting the common parameter be an encryption-key generated by atrusted party as allowed in the common-parameter model). We note that the encryption scheme of [17], simpli�edby removing the non-interactive zero-knowledge component, is non-malleable (when disallowing a chosen ciphertextattack). (We comment that the e�cient non-malleable commitment schemes presented in [15, 19] (for the public-parameter model) satisfy a weaker non-malleability condition than the one de�ned in [17] and required here. In theweaker de�nition non-malleability is guaranteed only if the adversary is also required to decommit after seeing thedecommitment of the original commitment (cf. [19]), whereas here the commitments are never opened.)26There is work relating to concurrently-secure honest-majority computation (cf. [13]). However, this does notapply to the two-party case. 27



executions of speci�c two-party protocols that are secure as stand-alone (i.e., when only two partiesare involved and they conduct a single execution over a direct communication line). Our analysisof these executions proceeds by using speci�c properties to remove the concurrency and obtain areduction to the stand-alone setting. That is, we show how an adversarial success in the concurrentsetting can be translated into a related adversarial success in the stand-alone setting. This enablesus to analyze the adversary's capability in the concurrent setting, based on the security of two-partystand-alone protocols.We stress that we make no attempt to minimize the constants (in O(�) terms) in our proofs. Infact, some of our proofs are clearly wasteful in this sense and the results we obtain are not tight.Our main objective is to make our (regrettably complex) proofs as modular and simple as possible.Channel's output and view: We will assume, without loss of generality, that the adversary'soutput always includes its view of the execution (because the adversary can be always modi�ed sothat this holds). In fact, the reader may assume (also without loss of generality) that the adversary'soutput always equals its view (because the output is always e�ciently computable from the view).Reliable channels: For the proof, we de�ne the concept of a reliable channel. We say that achannel C is reliable in a given protocol execution if C runs the (A;C) and (C;B) executions in asynchronized manner and does not modify any message sent by A or B. That is, any message sent byA is immediately forwarded to B (without modi�cation), and vice versa. This property is purelysyntactic and relates only to the bits of the messages sent in a given execution of the protocol.In essence, an execution for which C is reliable looks like an execution via a passive adversary.However, C may decide at any time during the protocol execution to cease being reliable (thisdecision is possibly based on its current view and may be probabilitic). This is in contrast to apassive adversary who, by de�nition, only eavesdrops on the communication.Notation: We present some notation that is used throughout the proof. As we have seen,CA(w);B(w) denotes an execution of C with A and B, where the parties' joint password is w.Likewise, denote by CA(Q;w);B(w) an execution of C with A and B, where A is modi�ed so that shereceives a random (non-constant, linear) polynomial Q as additional input (recall that A's inputin the protocol is de�ned to be the password w only). We note that such a modi�cation makesno di�erence to the outcome since in the protocol de�nition, party A begins by choosing such arandom polynomial Q. This modi�cation is made for the sake of the analysis and enables us torefer explicitly to Q when, for example, relating to the session-key output by A, which is de�nedas k2(Q(w)) in the protocol. Sometimes in the proof, we refer to stand-alone executions of an ad-versary with A or B. In such a case, we denote by CA(Q;w) (resp., CB(w)) a stand-alone executionof the protocol with A (resp., B).We note that, for the sake of simplicity, we often omit explicit reference to C's auxiliary input�, and therefore write CA(Q;w);B(w) rather than CA(Q;w);B(w)(�). All our proofs do, however, holdwith respect to such an auxiliary input.Throughout our proof, it is often important to consider the accept/reject decision-bit outputby B (recall that this bit is public and therefore known to C). We denote by \decB = acc" thecase that B outputs accept and likewise \decB = rej" denotes the case that B outputs reject. Wealso often refer to the event that C is reliable or not. Thus, we denote \reliableC = true" if C wasreliable in the given execution, and \reliableC = false" otherwise.28



The basic and augmented de�nitions of security: We prove that Protocol 3.2 is a securepassword-based authenticated session-key generation protocol with respect to the basic de�nition(i.e., De�nition 2.4). The proof of security with respect to the augmented de�nition (i.e., Def-inition 2.5) is obtained by minor modi�cations, which are noted where relevant. Our choice ofpresenting the proof with respect to De�nition 2.4 is due to the desire to avoid the more cumber-some formalism of De�nition 2.5, while realizing that the main issues of security arise already inDe�nition 2.4.4.2 Organization and an outline of the proofDue to the length and complexity of our proof, we leave the full proofs of the central lemmas tolater sections. Instead, intuitive proof sketches are provided in-place. Unless otherwise stated, thesketches are quite precise and the full proofs are derived from them in a straightforward manner.The cases of passive and active adversaries (i.e., Parts 1 and 2 of De�nition 2.4) are dealtwith separately. The proof of security against passive adversaries can be found in Section 4.3 (withfurther details in Section 5). On the other hand, the proof sketches for the case of active adversariesspan Sections 4.4 to 4.7, with the full proofs presented in Sections 6 to 8.We now outline the high-level structure of the proof of security against active adversaries.Conceptually, our proof works by �rst simulating B's role in the (C;B)-execution, and thus reducingthe entire analysis to one of a stand-alone (A;C)-execution. However, in order to do this simulation,we need to show how B's accept/reject bit can be simulated (see the motivating discussion inSection 3.2.1). The main property needed for this task is what we call key-match. This propertystates that the probability that B accepts and yet the pre-keys are di�erent (i.e., �B 6= �A) is atmost O(�) + �(n). (Recall that the pre-key �B is B's output from the polynomial evaluation and�A = Q(w).) Then, given the key-match property, we are able to show the simulatability of B'saccept/reject bit, and thus the simulatability of the entire (C;B) execution. Speci�cally, we showthat for every C interacting with A and B, there exists an adversary C 0 interacting with A only,such that fw; k2(Q(w)); output(CA(Q;w);B(w))g O(�)� fw; k2(Q(w)); output(C 0A(Q;w))g (5)Then, we continue by proving that C 0's view in this two-party (stand-alone) setting with A only,can also be simulated. Speci�cally, we show that for every C 0 interacting with A only, there existsa non-interactive machine C 00 such thatfw; k2(Q(w)); output(C 0A(Q;w))g O(�)� fw;Un; output(C 00)g (6)Combining Equations (5) and (6) brings us quite close to proving that the ideal and real dis-tributions are (1 � O(�))-indistinguishable. To see this, recall that in the real-model A alwaysoutputs k2(Q(w)), and in the ideal-model Â always outputs Un. Thus, the above equations implythe existence of a non-interactive machine Ĉ (similar to the ideal-model machine) for whichfw; output(A); output(CA(w);B(w))g O(�)� fw; output(Â); output(Ĉ)g (7)However, this is not enough since the ideal and real distributions also include B's output. There-fore, Eq. (7) must be \extended" to include B's output as well. This is achieved by using (aconsequence of) the key-match property described above.The key-match property is proven in Sections 4.4 and Section 6. Next, the proof of Eq. (6) ispresented (in Sections 4.5 and 7). (Conceptually, this proof should come after the proof of Eq. (5);29



however, signi�cant parts of it are used in order to prove Eq. (5) and thus the order is reversed.)Finally, Eq. (5) is proven in Sections 4.6 and 8, and the \extension" of Eq. (7) to complete theproof is shown in Section 4.7. These dependencies are shown in Figure 2.
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                  and B accepts is O(ε)

Figure 2: The structure of the proof of security for active adversaries. Solid arrows show directapplications of results, whereas dashed arrows show adaptation of proof techniques.We remark that while proving the key-match property, we show how (and under what circum-stances) A's zero-knowledge proof can be simulated in our concurrent setting (Section 6.1.1). We donot know how to show this using any zero-knowledge proof; rather our simulation utilizes propertiesof the speci�c proof system of Richardson and Kilian. Furthermore, the \zero-knowledge property"of the proof system in our setting is not derived merely from the fact that the Richardson andKilian system proof is concurrent zero-knowledge, but rather from its speci�c structure (which isthe key to its being concurrent zero-knowledge). Note that concurrent zero-knowledge only refersto a setting where many instances of the same proof system are run concurrently, but says nothingabout a setting (such as ours) in which the proof system is run concurrently with other protocols.4.3 The Security of Protocol 3.2 for Passive AdversariesIn this section, we consider the case of a passive adversarial channel. In this case, the ideal andreal distributions are required to be computationally indistinguishable (rather than being just(1�O(�))-indistinguishable).Notice that in the case that the channel C is passive, the setting is actually that of standardtwo-party computation, in which both parties are honest and the adversary can only eavesdrop ontheir communication. Despite this, the de�nitions of multi-party computation do not immediatelyimply that C cannot learn anything in this context. This is because the de�nitions relate to anadversary C who \corrupts" one or more parties. However, here we are dealing with the case thatC corrupts zero parties and we must show that in this case, C learns nothing about any party'sinputs or outputs.Theorem 4.1 (passive executions): Protocol 3.2 satis�es Condition 1 in De�nition 2.4. That is,30



for every ppt real-model passive adversary C there exists a ppt ideal-model adversary Ĉ that alwayssends 1 to the trusted party such that for every dictionary D � f0; 1gn and every auxiliary input� 2 f0; 1gpoly(n) �idealĈ(D; �)	D;� c� frealC(D; �)gD;�Proof: We �rst note that in this case parties A and B both output the same session-key, k2(Q(w)),and they both accept. Thus, it is enough to prove the following lemma:Lemma 4.2 For every passive ppt channel C,nw; k2(Q(w)); output(CA(Q;w);B(w)(�))o c� nw;Un; output(CA(Q; ~w);B( ~w)(�))owhere Q is a random non-constant linear polynomial, and w and ~w are independently and uniformlydistributed in D.This lemma implies the theorem because the ideal-model adversary Ĉ can simulate an executionfor the real-model adversary C by choosing Q and ~w and invoking CA(Q; ~w);B( ~w)(�). Furthermore,since C is passive, A and B's outputs are always identical, and equal to k2(Q(w)) in the real modeland Un in the ideal model. The full real and ideal distributions can thus be derived from thedistributions in the lemma by simply repeating the second element twice. The theorem thereforefollows directly from Lemma 4.2.The proof of Lemma 4.2 can be found in Section 5. Since C is a passive adversary (in this case),the proof is relatively straightforward and is based on the security of two-party protocols.Security for executions in which C is reliable: We now strengthen the \passive adversary"requirement to include executions in which C is reliable. Loosely speaking, we show that in realexecutions for which C is reliable, the output distribution is computationally distinguishable fromin the ideal model. This is a stronger result because a passive channel is always reliable, but theopposite is not true. Furthermore, an active channel may dynamically decide to be reliable or not,possibly depending on what occurs during the protocol execution. Despite this, we show that in agiven execution for which the channel is reliable, it can learn no more than if it was passive.Proposition 4.3 For every ppt real-model adversary C there exists an ideal adversary Ĉ such thatfor every ppt distinguisher D, for every polynomial p(�), all su�ciently large n's and all auxiliaryinput � 2 f0; 1gpoly(n),��Pr[D(idealĈ(D; �)) = 1 & reliableC = true]�Pr[D(realC(D; �)) = 1 & reliableC = true]j < 1p(n)where, in the �rst probability, reliableC refers to whether or not the execution view of the channelC as included in the output of Ĉ indicates that C is reliable in the said execution.2727Recall that the output of C, included in realC , contains the view of C. Thus, it is natural to assume that theoutput of Ĉ, included in idealĈ , also contains such a view. Formally, we may use a parsing rule that applied to Ĉ'soutput (included in idealĈ), always yields some legal view of C. Alternatively, if Ĉ's output (included in idealĈ)does not contain such a legal view, we de�ne reliableC to be false.31



Proof: As in Theorem 4.1, in executions for which C is reliable, both A and B output k2(Q(w))and both accept. Thus it is enough to show an equivalent of Lemma 4.2 for a reliable channel(rather than a passive channel). This is shown using the following claim:Claim 4.4 For every ppt active channel C there exists a passive channel C 0 such that for everyppt distinguisher D and every randomized process z = Z(Q;w)Pr[D0(z; output(C 0A(Q;w);B(w))) = 1] = Pr[D(z; output(CA(Q;w);B(w))) = 1 & reliableC = true]where D0(z; 0) def= 0 and D0(z; 
) def= D(z; 
) otherwise (i.e., for any 
 6= 0).Proof Sketch: The proof is based on having C 0 emulate an execution for C. Since C 0 is passive, itreceives a message transcript of messages sent between A and B. Channel C 0's emulation involvespassing the messages of the transcript (in order) to C, and checking whether or not C is reliable(i.e., forwards all messages immediately and unchanged to their intended receiver). If C is notreliable (and thus C 0 cannot continue the emulation), then C 0 halts and outputs 0. On the otherhand, if C is reliable througout the entire execution, then C 0 outputs whatever C does from theexperiment. The equality is obtained by considering the following two cases: In case C is reliable,C 0's emulation is perfect and the output of D0 equals the output of D (because the output of C 0,which equals the output of a reliable C, is de�nitely not 0). On the other hand, in case C isunreliable, C 0 outputs 0 and so does D0.Using Claim 4.4, we obtain the analogous result of Lemma 4.2 for reliable channels. That is, weprove that for every ppt distinguisher D�����Pr " D(w; k2(Q(w)); out(CA(Q;w);B(w))) = 1& reliableC = true #� Pr " D(w;Un; out(CA(Q; ~w);B( ~w))) = 1& reliableC = true #����� = �(n)(8)where out(�) is shorthand for output(�). Eq. (8) follows by applying Claim 4.4 to each of the twoprobabilities on the l.h.s (once setting z = (w; k2(Q(w))) and once setting z = (w;Un) (whileswitching the roles of w and ~w)), and applying Lemma 4.2 to the result. Using Eq. (8), theproposition follows (analogously to the way Theorem 4.1 follows from Lemma 4.2).Security for the augmented de�nition: In the case that C is passive (or reliable), the session-key challenge received (in the augmented setting) after the �rst party terminates is of no conse-quence. This is because C (being passive or just reliable) makes no use of this message (it simplybecomes a part of its view). Therefore, the distinguisher (in the basic setting), who always receivesthe session-key (since it is part of the output distribution), can generate the output distribution ofthe augmented setting. Thus, in case C is passive, the basic de�nition implies the augmented one.4.4 The Key-Match PropertyWe now prove the key-match property, which states that the probability that A and B both acceptbut have di�erent pre-keys is at most O(�). This speci�c property will be used to establish thesecurity of the entire protocol. Recall that the pre-keys are �A def= Q(w) and �B, where �B is B'soutput from the polynomial evaluation (conducted in Stage 2).32



Theorem 4.5 (key-match): For every ppt adversarial channel C, every polynomial p(�) and allsu�ciently large n's Pr[decB = acc & �A 6= �B ] < 3�+ 1p(n)Proof Outline and Roungh Sketch: The analysis is partitioned into two complementarysubcases related to the scheduling of the two executions (i.e., C's execution with A and C's executionwith B). The scheduling of these two executions may be crucial with respect to the non-malleablecommitments. This is because the de�nition of non-malleability (only) states that a commitmentis non-malleable when executed concurrently with another commitment.28 In an execution ofour protocol, the commitment from C to B may be executed concurrently with the polynomialevaluation and/or validation stage of the (A;C) execution. In this case, it is not clear whether ornot the non-malleable property holds.We therefore prove the theorem by considering two possible strategies for C with respect tothe scheduling of the (A;C) and (C;B) executions. In the �rst case, hereafter referred to asthe unsynchronized case, we consider what happens if C completes the polynomial evaluationwith A before completing the non-malleable commitment with B. In this case, the entire (A;C)execution may be interleaved with the (C;B) non-malleable commitment. However, according tothis scheduling, we are ensured that the (A;C) and (C;B) polynomial evaluation stages are run atdi�erent times (with no overlap). Loosely speaking, this means that the polynomial QC input by Cinto the (C;B) evaluation is su�ciently independent of the polynomial Q input by A in the (A;C)evaluation. Recall that in the (A;C) execution, C only learns the value of Q(�) at a single point,which we denote wC . Therefore, for every w0 6= wC , the values QC(w0) and Q(w0) are independentlydistributed. In particular, unless wC = w (which occurs with probability at most �), the randomvariables Q(w) and QC(w) are independently distributed, and so C has no clue regarding the valueof QC(w) (even if its view is augmented by the value Q(w)). Therefore, the probability that the\y value" sent by C to B will match f2n(QC(w)) is at most �. We conclude that B will reject withprobability at least 1�O(�).In the other possible scheduling, C completes the polynomial evaluation withA after completingthe non-malleable commitment with B. In this case, hereafter referred to as the synchronized case,only the �rst two stages of the (A;C) execution may be run concurrently with the non-malleablecommitment of the (C;B) execution (and so these executions are more synchronized than in theprevious case). In this case we show how the (A;C) pre-key exchange can be simulated, and wethus remain with a concurrent execution containing two non-malleable commitments only. Non-malleability now holds and this prevents C from modifying the commitment sent by A, if B is toaccept. This yields the key-match property. 2Further details on the proof of Theorem 4.5: We prove that for each of the two schedulingcases, the probability that this case holds and the event referred to in Theorem 4.5 occurs (i.e., Baccepts and there is a key mismatch) is at most O(�). A schematic description of the two cases isgiven in Figure 3. Using the Union Bound, Theorem 4.5 follows. That is, Theorem 4.5 is obtainedby combining the following Lemmas 4.6 and Lemma 4.7, which refer to the two correspondingscheduling cases.28In fact, by the de�nition, non-malleability is only guaranteed if the commitments are of the same scheme. Twodi�erent non-malleable commitment schemes are not guaranteed to be non-malleable if executed concurrently.33
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Figure 3: The two scheduling cases. NMC stands for non-malleable commitment, and PE standsfor polynomial evaluation.4.4.1 Case (1) { The Unsynchronized CaseIn this case, C completes the polynomial evaluation with A before completing the non-malleablecommitment with B. We actually prove a stronger claim here. We prove that according to thisscheduling, B accepts with probability less than 2�+ 1poly(n) irrelevant of the values of �A and �B .This is enough becausePr[decB = acc & �A 6= �B & Case 1] � Pr[decB = acc & Case 1]Lemma 4.6 (Case 1 { unsynchronized): Let C be a ppt channel and de�ne Case 1 to be a schedulingof the protocol execution by which C completes the polynomial evaluation with A before concludingthe non-malleable commitment with B. Then for every polynomial p(�) and all su�ciently large n'sPr[decB = acc & Case 1] < 2�+ 1p(n)Proof Sketch: In this case, the (C;B) polynomial evaluation stage is run strictly after the (A;C)polynomial evaluation stage, and the executions are thus \independent" of each other. That is, thepolynomial evaluations are executed sequentially and not concurrently. For the sake of simplicity,assume that the entire protocol consists of a single polynomial evaluation between A and C and asingle polynomial evaluation between C and B. Then, since the evaluations are run sequentially,a party P can interact with C and play A's role in the (A;C) execution and B's role in the (C;B)execution. Thus, we can reduce our concurrent setting to a two-party setting between C andP . In this setting, C and P run two sequential polynomial evaluations: in the �rst polynomialevaluation P , playing A's role, inputs a polynomial Q, and C inputs some wC , whereas in thesecond polynomial evaluation C inputs a polynomial QC and P , playing B's role, inputs w. Inthe �rst polynomial evaluation C is supposed to obtain the output Q(wC), whereas in the second34



polynomial evaluation C is supposed to get nothing and B is supposed to get QC(w). The channelC \succeeds" if it can guess QC(w) (this is \comparable" to C successfully causing B to acceptby sending the correct value for y = f2n(QC(w))). In this (simpli�ed) two party setting, it canbe shown that P can only succeed with probability � (since C learns nothing about w from theexecution).The actual reduction is more involved, since the (A;C) and (C;B) protocols involve othersteps beyond polynomial evaluation. Furthermore, some of these steps may be run concurrently(unlike the polynomial evaluations which are executed sequentially according to this scheduling).Therefore, the main di�culty in the proof is in de�ning a two-party protocol between C and P thatcorrectly emulates the concurrent execution of our entire protocol (subject to the two polynomialevaluations remaining sequential). Among other things, our proof utilizes properties of the speci�czero-knowledge proof of Richardson and Kilian [41]. We note that the way we solve this problem inthe full proof also handles the issues arising in connection with the augmented de�nition of security(Def. 2.5).The full proof of Lemma 4.6 is presented in Section 6.1, and (as hinted above) is far more complexthan the above proof sketch.4.4.2 Case (2) { The Synchronized CaseWe now show that the probability that C completes the polynomial evaluation with A aftercompleting the non-malleable commitment with B and the bad event referred to in Theorem 4.5occurs (i.e., B accepts and there is a pre-key mismatch) is less than �+ 1poly(n) .Lemma 4.7 (Case 2 { synchronized): Let C be a ppt channel and de�ne Case 2 to be a schedulingof the protocol by which C completes the polynomial evaluation with A after completing the non-malleable commitment with B. Then for every polynomial p(�) and for all su�ciently large n's,Pr[decB = acc & �A 6= �B & Case 2] < �+ 1p(n)Proof Sketch: As we have mentioned, in this scheduling case we can show that the non-malleability property holds with respect to A's commitment to the pair (Q;w). Loosely speaking,this means that A's commitment does not help C in generating a commitment to a related pair.(This holds unless C simply copies A's commitment unmodi�ed; however, then we can show that Brejects unless �A = �B, in which case key-match holds). We denote C's non-malleable commitmentby (Q0; w0).We �rst consider the probability that w0 = w (i.e., that the second element in the pair committedto by C equals the shared secret password of A and B), and Q0 6= Q.29 Since A's commitment doesnot help C in generating this commitment, and since w is uniformly distributed in D with respectto C's view, the probability that C generates such a commitment (i.e., that w0 = w) is at mostnegligibly more than �. (Indeed, if C indeed generates a commitment with w0 = w, then it maycause B to accept, even when �A 6= �B .)29As we have mentioned, in case (Q0; w0) = (Q;w), we can show that party B rejects with overwhelming probability,unless �A = �B . This is because the validation stage essentially enforces that �B = Q0(w0), and therefore in case(Q0; w0) = (Q;w) it follows that �B = Q0(w0) = Q(w) = �A. Thus, in this proof sketch, we only consider the casethat (Q0; w0) 6= (Q;w). 35



On the other hand, if B receives a non-malleable commitment to (Q0; w0) where w0 6= w, then thevalidation stage ensures that B will reject. Essentially, this is because the (C;B) validation stageenforces that B's output from the polynomial evaluation be consistent with the non-malleablecommitment he received. That is, it ensures that B will reject unless he receives Q0(w0) fromthe (C;B)-polynomial evaluation (i.e., �B = Q0(w0)). On the other hand, the validation stage alsoenforces that the polynomial input by C into the (C;B)-polynomial evaluation is Q0 (i.e., QC = Q0).Thus, the respective inputs of C and B into the (C;B)-polynomial evaluation are Q0 and w, andso B receives Q0(w) as the output of this evaluation (by the evaluation's correctness).30 Therefore,if B accepts, it must be the case that Q0(w0) = Q0(w), which implies that w0 = w (because Q0 is anon-constant linear polynomial). Letting bad denote the event in the lemma's claim, we getPr[bad] = Pr[bad & w0=w] + Pr[bad & w0 6=w]� Pr[bad & (Q0; w0)=(Q;w)] + Pr[Case 2 & w0=w & Q0 6=Q] + Pr[decB=acc & w0 6=w]� �(n) + (�+ �(n)) + �(n)Referring to the augmented de�nition of security, we note that in this synchronization case,the session-key challenge received by C in the augmented setting is of no consequence. This isbecause C completes its non-malleable commitment to B before A terminates, and so the value ofits commitment is determined before C receives the session-key challenge. Therefore, C's successin generating a related commitment is independent of the session-key challenge. Furthermore, asis shown in the full proof, if C has failed in generating a related commitment, then B rejects withoverwhelming probability even if C is later given both Q and w (and not merely the session-keyk2(Q(w))).The full proof of Lemma 4.7, which amounts to a careful implementation of the above proof sketch,can be found in Section 6.2.4.5 Simulating the Stand-Alone (A;C) ExecutionIn this section, we show that C's view, when interacting with A only, can be simulated by a machinethat interacts with bobody.31 Actually, we show that the joint distribution of C's simulated viewalong with the password and a random string is (1 � O(�))-indistinguishable from C's real viewalong with the password and output session-key.Theorem 4.8 For every ppt channel C 0 interacting with A only, there exists a non-interactivemachine C 00, such that for every dictionary D � f0; 1gn and every auxiliary input � 2 f0; 1gpoly(n),nw; k2(Q(w)); output(C 0A(Q;w)(�))o 2�� �w;Un; output(C 00(�))	where Q is a random non-constant linear polynomial, w 2R D, and � = 1jDj.30Correctness, even in the concurrent setting, is implied by security in the stand-alone setting, because the latterholds even when the adversary knows the private input of the honest party, which in turn allows it to emulate theconcurrent execution.31Recall that in the next subsection, we show that the (C;B)-execution can be simulated by C itself, while interac-tive with A. Thus put together, these two simulations provide the core of the proof of security of the entire protocol(for active adversaries). Our choice of the current order of the two simulations is due to the fact that we use elementsin the analysis of the current simulation in the analysis of the next simulation.36



Proof Sketch: First, notice that it is enough to prove that for every ppt channel C 0,nw; k2(Q(w)); output(C 0A(Q;w)(�))o 2��nw;Un; output(C 0A(Q; ~w)(�))o (9)where w; ~w 2R D are independently chosen passwords from D. In order to see that Eq. (9) impliesTheorem 4.8, de�ne the following non-interactive machine C 00. Machine C 00 chooses a random (lin-ear, non-constant) polynomial Q and a \password" ~w 2R D. Then, C 00 perfectly emulates an execu-tion of C 0A(Q; ~w)(�) by playing A's role (C 00 can do this because it knows Q and ~w). Finally, C 00 out-puts whatever C does. The resulting output of C 00 is distributed exactly like output(C 0A(Q; ~w)(�)).Thus, it is enough to prove Eq. (9). Now, notice that the distributions fw;Un; output(C 0A(Q; ~w)(�))gand f ~w;Un; output(C 0A(Q;w)(�))g are equivalent. We therefore proceed by proving thatnw; k2(Q(w)); output(C 0A(Q;w)(�))o 2��n ~w;Un; output(C 0A(Q;w)(�))o (10)First we show that at the conclusion of the polynomial evaluation, with respect to C 0's view, thepair (w;Q(w)) is (1��)-indistinguishable from ( ~w;Un). The fact that w is indistinguishable from ~wfollows from the fact that in the �rst two stages of the protocol, A uses w only in the non-malleablecommitment. Thus, by the hiding property of the non-malleable commitment scheme, w remainsindistinguishable from ~w. It is therefore enough to show that after the polynomial evaluation thevalue of Q(w) is (1� �)-pseudorandom, with respect to C 0's view.Consider what C 0 can learn about Q(w) from the �rst two stages of the protocol (i.e., until theend of the polynomial evaluation). Due to the hiding property of the two commitment schemes inuse, the two commitment transcripts reveal nothing of Q or w, and so the only place that C 0 canlearn something is from the polynomial evaluation itself. The security of the polynomial evaluationimplies that the receiver (here played by C 0) can learn nothing beyond the value of Q(�) at asingle point selected by C 0. We denote this point by wC . Thus, in the case that wC 6= w, givenQ(wC), the values Q(w) and Un are statistically close (recall that Q is a random, non-constant,linear polynomial and so we have \almost" pairwise independence). However, since w is uniformlydistributed in D (and C 0 learned nothing about it so far), the probability that wC = w is at most�. This means that at the conclusion of the polynomial evaluation, with respect to C 0's view, Q(w)can be distinguished from Un with probability at most negligibly greater than �.We have shown that after the �rst two stages, with respect to C 0's view, (w;Q(w)) is (1 � �)-indistinguishable from ( ~w;Un). We now consider the messages set by A in the remaining two stages.Recall that A sends nothing at last (i.e., fourth) stage, whereas the only messages sent by A inthe third stage are the value y = f2n(Q(w)), messages it sends as prover in the zero-knowledgeproof, and a MAC of the entire message transcript keyed by k1(Q(w)). The zero-knowledge proofreveals nothing because it can be simulated by C 0 itself (in the standard manner, since here we areconsidering a stand-alone setting between A and C 0). Thus, it remains to deal with the MAC value.We do so by showing that, even when given the MAC key k1(Q(w)), the value y = f2n(Q(w)) andthe view of C 0 at the end of Stage 2, the value (w;Q(w)) is (1� 2�)-indistinguishable from ( ~w;Un).The latter implies Eq. (10), and is proven by relying on the following two facts: (1) as establishedabove, fw;Q(w)g is (1� �)-indistinguishable from f ~w;Ung, with respect to C 0's view at the end ofStage 2 of the protocol, and (2) the string y = f2n(Q(w)) along with the MAC-key k1(Q(w)) andthe session-key k2(Q(w)) constitutes a pseudorandom generator. This concludes the proof of thetheorem.The full proof of Theorem 4.8, which amounts to a careful implementation of the above proofsketch, can be found in Section 7. 37



We note that since in this theorem we consider a stand-alone execution between A and C 0, theanalogous claim for the augmented de�nition of security holds as well. This is because the session-key challenge is only given to C 0 after the entire execution has terminated. Therefore, it is equivalentto giving the session-key to the distinguisher. However, the distinguisher receives the actual session-key anyway, and can thus generate the challenge by itself.4.6 Simulating the (C;B) ExecutionIn this section, we show how the entire (C;B) execution can be simulated (by C while interactingwith A). That is, we consider the concurrent setting in which C interacts with both A and B. Weclaim that a channel interacting only with A can simulate C's view in the concurrent setting withA and B, so that C's simulated view is (1 �O(�))-indistinguishable from its view in an executionwith A and B. In fact, (1 � O(�))-indistinguishable holds also for C's view combined with thepassword and the session-key. That is,Theorem 4.9 (simulating the (C;B) execution): For every ppt channel C interacting with A andB, there exists a ppt channel C 0 interacting only with A, such that for every dictionary D � f0; 1gnand every auxiliary input � 2 f0; 1gpoly(n),nw; k2(Q(w)); output(C 0A(Q;w)(�))o 5��nw; k2(Q(w)); output(CA(Q;w);B(w)(�))owhere Q is a random non-constant linear polynomial, w 2R D, and � = 1jDj.Proof Outline: The theorem is proved in two steps. Conceptually, simulation of the (C;B)execution is demonstrated by separately showing how the �rst three stages of the (C;B) execution(i.e., everything except for B's accept/reject bit) can be simulated, and then showing how B'saccept/reject bit itself can also be simulated. In order to implement this two-step process, weconsider a modi�ed party B6dec that behaves exactly as B, except that it does not output anaccept/reject bit. Theorem 4.9 is obtained by combining the following Lemmas 4.10 and 4.11,which refer to the �rst and second steps, respectively. 2Further details on the proof of Theorem 4.9: As outlined above, Theorem 4.9 is obtainedby combining Lemmas 4.10 and 4.11, which are stated in the following Subsections 4.6.1 and 4.6.2,respectively. In these subsections we also provide sketches for the proofs of these lemmas. The fullproofs, to be found in Section 8, are merely careful implementations of the corresponding proofsketches.4.6.1 Step 1: Simulating the (C;B 6dec) executionWe start by showing that C's interaction with A and the modi�ed B (i.e., B 6dec, which has no publicaccept/reject output), can be simulated by a machine that only interacts with A.Lemma 4.10 Let ~C be a ppt channel interacting with A and a modi�ed party B 6dec who does notoutput an accept/reject bit. Then, there exists a ppt channel C 0 interacting with A only, such thatnw; k2(Q(w)); output(C 0A(Q;w))o c� nw; k2(Q(w)); output( ~CA(Q;w);B 6dec(w))o
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Proof Sketch: First notice that the only messages sent by B6dec in the validation stage are asan honest veri�er in the zero-knowledge proof. These can therefore be easily simulated. Next,observe that in the remaining �rst two stages, the only place that B 6dec uses w is in the ( ~C;B 6dec)polynomial-evaluation. However, by the de�nition of the polynomial evaluation functionality, ~Creceives no output from this evaluation and thus nothing is revealed about w. This is trivial in astand-alone setting; here we claim that it also holds in our concurrent setting. Formally, we showthat if B 6dec were to use some �xed w0 2 D instead of the password w, then this is indistinguishableto ~C (when also interacting concurrently with A). That is, we show that for every ppt ~C,nw; k2(Q(w)); output( ~CA(Q;w);B 6dec(w))o c� nw; k2(Q(w)); output( ~CA(Q;w);B 6dec(w0))o (11)where w 2R D is a random password and w0 2 D is �xed. This is shown by reducing ~C's concurrentexecution with A and B 6dec to a stand-alone two-party setting between ~C and B6dec only.32 Thereduction is obtained by providing ~C with the password w and the polynomial Q, which enables~C to perfectly emulate the entire (A; ~C) execution. As a result of this emulation, we are left witha stand-alone setting between ~C and B 6dec in which B 6dec inputs either w or w0 into the polynomialevaluation (and ~C knows both w and w0). In this stand-alone setting, the security of the polynomialevaluation guarantees that ~C can distinguish the input cases with at most negligible probability,even when given both w and w0 (as well as Q). Eq. (11) follows.We have established that ~C cannot distinguish the case that B6dec uses w from the case thatB 6dec uses w0. This suggests to de�ne the channel C 0 as follows: C 0 chooses an arbitrary w0 2 Dand emulates the ~CA(Q;w);B 6dec(w0) setting for ~C, while interacting with A(Q;w) (and using w0 inthe emulation of B 6dec(w0)). At the end of the interaction, C 0 outputs whatever ~C does. Channel~C's view in this simulation is indistinguishable from in a real execution with A and B6dec, and thelemma follows.We note that the above argument is unchanged when considering the augmented de�nition ofsecurity. This is true because Eq. (11) holds even if ~C is explicitly given both Q and w (in whichcase ~C can generate the session-key challenge by itself).4.6.2 Step 2: Simulating B's Decision BitWe now show how the accept/reject bit of B can be simulated (while interacting with A and B6dec).Lemma 4.11 Let B 6dec be a party who does not output an accept/reject bit. Then, for every pptchannel C interacting with A and B, there exists a ppt channel ~C interacting with A and B6dec,such that nw; k2(Q(w)); output( ~CA(Q;w);B6dec(w))o 5��nw; k2(Q(w)); output(CA(Q;w);B(w))oProof Sketch: The proof of this claim relies heavily on the security of the MAC-value sent in thevalidation stage of the protocol. Recall that A sends a MAC of her entire session-transcript usingk1(�A) = k1(Q(w)) as the key. Furthermore, B veri�es the MAC value that it receives using the32Indeed, the reader may consider this reduction (i.e., getting rid of A) odd, given that our �nal goal here is to getrid of B 6dec (i.e., reduce ~C's concurrent execution with A and B 6dec to a stand-alone two-party setting between ~C andA). Still, this is what we do in order to establish Eq. (11), and once Eq. (11) is established we proceed to get rid ofB 6dec. 39



key k1(�B), where �B is B's output from the polynomial evaluation. Intuitively, the MAC ensuresthat, except with probability O(�), if C was not reliable, then B will detect its interference and willtherefore reject. On the other hand, if C was reliable then B will surely accept. Loosely speaking,this means that C can learn \at most a O(�) fraction of a bit of information" from B's accept/rejectbit.We begin by proving the security of the MAC value when keyed by k1(�A). This is an importantstep in proving Lemma 4.11. We note that we need to show that the MAC is secure only beforeB outputs its accept/reject bit. Thus, we consider a scenario in which C interacts with A andthe modi�ed party B6dec. The security of the MAC is formally stated in the following claim. (Forsimplicity, we consider an implementation of a MAC by a pseudorandom function. However, ourproof can be extended to any secure implementation of a MAC.)Claim 4.12 Let C be an arbitrary ppt channel interacting with A and a modi�ed party B 6dec as inLemma 4.11. Then, for every string t that di�ers from the (A;C)-message-transcript, the valueMACk1(�A)(t) is (1� 2�)-pseudorandom with respect to C's view.Proof Sketch: We �rst observe that we can ignore the entire (C;B6dec) execution in provingthe claim. A similar claim has already been shown in Lemma 4.10 (above). Loosely speaking,Lemma 4.10 states that C's view is essentially the same when interacting with A and B6dec or wheninteracting with A alone. Actually, Lemma 4.10 asserts that these two views are indistinguishablealso when considered in conjunction with (w; k2(Q(w)). However, an analogous argument yieldsthese two views are indistinguishable also when considered in conjunction with (w; k1(Q(w)), wherek1(Q(w)) is the MAC-key.We now analyze the security of the MAC-key in a stand-alone setting between A and C. Thisproof is very similar to the proof of Theorem 4.8 (there k2(Q(w)) is shown to be (1 � O(�))-pseudorandom; here a similar result is needed with respect to k1(Q(w))). As in Theorem 4.8, we�rst establish that at the conclusion of the polynomial evaluation, the value Q(w) is (1 � O(�))-pseudorandom to C. Next, recall that the only messages sent by A in the third stage of theprotocol are y = f2n(Q(w)), messages from a zero-knowledge proof and a MAC of the messagetranscript. The zero-knowledge proof can be simulated and so it reveals nothing. Then, sinceG(s) = (f2n(s); k1(s)) is a pseudorandom generator and Q(w) is (1 � O(�))-pseudorandom at theend of Stage 2, it holds that the MAC-key k1(Q(w)) remains (1�O(�))-pseudorandom even giveny = f2n(Q(w)).Having established that the MAC-key is (1 �O(�))-pseudorandom (with respect to C's view),we conclude by showing that this implies that the probability that C successfully forges the MACis at most O(�)+�(n). Now, since k1(Q(w)) is (1�O(�))-pseudorandom, a pseudorandom functionkeyed by k1(Q(w)) is also (1 � O(�))-pseudorandom. Recall that the last message sent by A isMACk1(Q(w))(tA) where tA is A's message transcript. Therefore, by the properties of a (1�O(�))-pseudorandom function, for every t 6= tA, the value MACk1(Q(w))(t) is (1 � O(�))-pseudorandomgiven C's view. This concludes the proof of the claim.We note that the above also holds for the augmented de�nition of security. This is becausethe MAC-key k1(Q(w)) remains (1�O(�))-pseudorandom even given both y = f2n(Q(w)) and thesession-key k2(Q(w)). Therefore, even if the session-key challenge equals k2(Q(w)), this cannothelp C generate a correct MAC. Given that this is the case, the rest of the proof also follows forthe augmented de�nition.We now use Claim 4.12 and Theorem 4.5 (the key-match requirement) to show that the probabilitythat B accepts in executions for which C is not reliable is at most O(�). (Recall that C is reliablein a particular execution if it acts like a passive (eavesdropping) adversary in that execution.)40



Proposition 4.13 For every ppt channel C,Pr[decB = acc & reliableC = false] < 5�+ 1poly(n)Proof Sketch: We show this proposition by combining the following facts:� Theorem 4.5 states that the probability that B accepts and �A 6= �B is at most negligiblygreater than 3�.� Let tA and tB be the (A;C) and (C;B) message-transcripts, respectively. Then, Claim 4.12states that if tA 6= tB , then MACk1(�A)(tB) is (1� 2�)-pseudorandom with respect to C's view.� B only accepts if he receives MACk1(�B)(tB) (i.e., a MAC value keyed by k1(�B)) in the laststep of the protocol.Now, consider the case that C is not reliable and thus by de�nition tA 6= tB. Then, if �A = �B wehave that, by the security of the MAC, party B rejects with probability at least 1 � 2�. On theother hand, if �A 6= �B, then by the key-match property, party B rejects with probability at least1� 3� (irrespective of the MAC). Therefore, the probability that B accepts and tA 6= tB is at mostnegligibly greater than 5�.Given Proposition 4.13, we can complete the proof of Lemma 4.11. First, we describe the adversary~C (who interacts with A and B 6dec). Channel ~C emulates an execution of CA(Q;w);B(w), whileinteracting with A and B6dec. This emulation is \easy" for ~C, except for the accept/reject decisionbit of B (since this is the only di�erence between its execution with A and B 6dec, and an executionwith A and B). Therefore, at the conclusion of the (C;B 6dec) execution, ~C attempts to guess B'saccept/reject decision-bit (which is not given to ~C but which C does expect to see) and outputswhatever C does. Channel ~C's guess for B's decision-bit is according to the natural rule (suggestedby the above discussion): B accepts if and only if C was reliable. We stress that ~C can easilydetermine whether or not C was reliable (in the current execution). To establish the approximate-correctness of the above rule, observe that, on one hand, if C is reliable then B always accepts(and so, in this case, ~C's guess is always correct). On the other hand, if C was not reliable, thenB accepted with probability at most 5�+�(n). Therefore, ~C is wrong in its guess with probabilityat most 5�+ �(n), and the di�erence in C's view in the case that it really receives B's output bitand the case it receives ~C's guess, is at most negligibly greater than 5�.4.7 The Security of Protocol 3.2 for Arbitrary AdversariesThe fact that Protocol 3.2 satis�es De�nition 2.4 (i.e., Theorem 3.3) follows by combining thepassive adversary case (i.e., Theorem 4.1) and the active adversary case (i.e., Theorem 4.14, below).Theorem 4.14 (active executions): Protocol 3.2 satis�es Condition 2 in De�nition 2.4. That is,for every ppt real-model channel C, there exists a ppt ideal-model channel Ĉ, such that for everydictionary D � f0; 1gn and every auxiliary input � 2 f0; 1gpoly(n),�idealĈ(D; �)	D;� 12�� frealC(D; �)gD;�where � = 1jDj. 41



In this section, we present a full proof of Theorem 4.14. Our main tools are the simulations providedby Theorems 4.8 and 4.9 (presented in Sections 4.5 and 4.6, respectively). In addition, we make anessential use of Proposition 4.13 (of Section 4.6), and a marginal use (i.e., in order to save an O(�)term) of Proposition 4.3 (of Section 4.3).Proof: We begin by describing the ideal-model channel Ĉ. Adversary Ĉ is derived from thetransformations of Theorems 4.8 and 4.9. That is, combining these theorems together, we havethat for every ppt real-model channel, there exists a non-interactive machine C 00 such that�w;Un; output(C 00(�))	 7��nw; k2(Q(w)); output(CA(Q;w);B(w)(�))o (12)Next, we de�ne the ideal-model channel Ĉ as follows: Ĉ �rst invokes the non-interactive machineC 00 guaranteed by Eq. (12). When Ĉ receives the output of C 00 (which contains C's view and inparticular B's accept/reject bit), Ĉ set the value of b (the bit sent by it to the trusted party) asfollows:� If B accepted in the view output by C 00, then Ĉ sends b = 1 to the trusted party.� If B rejected in this view, then Ĉ sends b = 0 to the trusted party.(Recall that upon receiving b = 1, the trusted party hands the same uniformly distributed key to Aand B. On the other hand, upon receiving b = 0, the trusted party hands a uniformly distributedkey to A and B receives ?.) Finally, Ĉ halts and outputs the output of C 00.We now show that the combined input/output distributions in the real and ideal models are atmost negligibly greater than 12� apart. By Eq. (12) and the de�nition of Ĉ, we have thatnw;Un; output(Ĉ)o 7��nw; k2(Q(w)); output(CA(Q;w);B(w))o (13)This seems very close to proving the theorem (the �rst distribution is \almost" the real-modeldistribution and the second distribution is \almost" the ideal-model distribution), where in bothcases the only thing missing is B's local output (which may or may not equal A's local output). Itremains to show that the distributions are still (1�O(�))-indistinguishable even when B's outputis included. Loosely speaking, this is shown by separately considering the cases that C acts reliablyand unreliably. When C is reliable, then the ideal and real distributions are computationallyindistinguishable (by Proposition 4.3). On the other hand, when C is not reliable, then B rejectswith probability at least 1�O(�), in which case B's output is de�ned as ?.Formally, let D be any ppt distinguisher who attempts to distinguish between the ideal andreal distributions. We separately analyze the distance between the distributions when B acceptsand when B rejects. When re�ering to B's decision (i.e., decB), within the context of idealĈ , wemean B's decision as included in the emulated view of C (which is part of the output of Ĉ). (Notethat by the construction of Ĉ, it holds that B's decision in the emulated view matches the outputof B in the ideal-model; i.e., decB = rej i� the output of B in the ideal-model is ?.) We begin withthe case that B rejects:��Pr[D(idealĈ(D; �)) = 1 & decB = rej]� Pr[D(realC(D; �)) = 1 & decB = rej]��= ���Prw hD �w;Un;?; output(Ĉ)� = 1 & decB = reji� PrQ;w hD �w; k2(Q(w));?; output(CA(Q;w);B(w))� = 1 & decB = reji���The above follows from the protocol de�nition that states that when B rejects it outputs ?, andfrom the construction of the ideal-model adversary Ĉ who sends b = 0 to the trusted party (causing42



B's output to be ?) in the case that B rejects in the view output by C 00. Noting that C's viewincludes B's accept/reject decision bit (and thus implicitly B's output of ? in the case that Brejects), by Eq. (13) we have that��Pr[D(idealĈ(D; �)) = 1 & decB = rej]�Pr[D(realC(D; �)) = 1 & decB = rej]j < 7�+ 1poly(n) (14)We now analyze the case that B accepts. Here, we further break down the events and separatelyconsider the case that C is reliable and C is not reliable. (Recall that in the ideal distribution, theevent of C being reliable or not refers to its behavior as implicit in the view output by C 00 for Ĉ.)Starting with the subcase in which C is reliable, we have:��Pr[D(idealĈ(D; �)) = 1 & decB = acc & reliableC = true]� Pr[D(realC(D; �)) = 1 & decB = acc & reliableC = true]j= ���Prw hD �w;Un; Un; output(Ĉ)� = 1 & decB = acc & reliableC = truei� PrQ;w hD �w; k2(Q(w)); k2(Q(w)); output(CA(Q;w);B(w))� = 1 & decB = acc & reliableC = truei���Noting that when C is reliable, B always accepts (and so its real-model and ideal-model outputsare always k2(Q(w)) and Un respectively), we have that the above di�erence equals��Pr[D(realC(D; �)) = 1 & reliableC = true]� Pr[D(idealĈ(D; �)) = 1 & reliableC = true]��By Proposition 4.3 this di�erence is at most negligible. We now consider the case in which Baccepts and C is not reliable.��Pr[D(idealĈ(D; �)) = 1 & decB = acc & reliableC = false]� Pr[D(realC(D; �)) = 1 & decB = acc & reliableC = false]jBy Proposition 4.13 we have that Pr[decB = acc & reliableC = false] < 5� + 1poly(n) (this appliesboth to a real execution and to an execution emulated by Ĉ). Therefore, we have that the abovedi�erence is at most negligibly greater than 5�. Putting these together, we have that��Pr[D(idealĈ(D; �)) = 1 & decB = acc]�Pr[D(realC(D; �)) = 1 & decB = acc]j < 5�+ 1poly(n) (15)Combining Equations (14) and (15) we conclude that,��Pr[D(idealĈ(D; �)) = 1]� Pr[D(realC(D; �)) = 1]�� < 12�+ 1poly(n)and the theorem follows.5 Full Proof of Security for Passive AdversariesIn this section, we present the proof of Lemma 4.2, used for proving the \passive adversaries"requirement of De�nition 2.4. Recall that this lemma relates to a passive channel C who can onlyeavesdrop on protocol executions between honest parties A and B. This means that C receives thetranscript of messages sent by A and B and tries to \learn something" based on this transcriptalone. 43



Lemma 5.1 (Lemma 4.2 { restated): For every passive ppt channel C,nw; k2(Q(w); output(CA(Q;w);B(w))o c� nw;Un; output(CA(Q; ~w);B( ~w))owhere Q is a random non-constant linear polynomial, and w and ~w are independently and uniformlydistributed in D.Proof: As we have mentioned, since C is passive, it merely receives a message transcript of atwo-party protocol. We stress that there are no concurrent adversarial executions in this case, butrather merely a transcript of a standard stand-alone protocol execution between two honest parties.The issue is merely what can a third party (i.e., C) learn from such a transcript. We answer thisquestion by relying on the (stand-alone) security of the di�erent modules in our protocol. We startby presenting notation for transcripts of executions of our protocol.The message-transcript of an execution of our protocol is a function of the inputs Q and w, andthe respective random coins of A and B, denoted rA and rB. We denote the message transcriptof the �rst two stages of the protocol by t2(Q;w; rA; rB). Furthermore, we denote by T2(Q;w) def=ft2(Q;w; rA; rB)grA;rB the uniform distribution over all possible transcripts for a given Q and w.(Note that the security parameter n, and thus the lengths of Q,w,rA and rB are implicit in all thesenotations.)We begin by showing that the distribution ensembles induced by the probability distributionsfQ1; w1; T2(Q1; w1)gQ1;w1 and fQ1; w1; T2(Q2; w2)gQ1;Q2;w1;w2 are computationally indistinguishable.33This is proved in the following claim, which is then used to establish the lemma (which refers tothe entire protocol execution, rather than just to the �rst two stages as shown in the claim).Claim 5.2 The distribution ensemble ffQ1; w1; T2(Q1; w1)gQ1;w1gn2N is computationally indistin-guishable from ffQ1; w1; T2(Q2; w2)gQ1;Q2;w1;w2gn2N. That is, for every ppt distinguisher D, everypolynomial p(�) and all su�ciently large n'sjPr[D(Q1; w1; t2(Q1; w1; rA; rB)) = 1]� Pr[D(Q1; w1; t2(Q2; w2; rA; rB)) = 1]j < 1p(n)where Q1 and Q2 are random non-constant, linear polynomials over GF (2n), w1; w2 2R D and rAand rB are uniform random strings.Proof: The proof is based on the security of the di�erent modules in the protocol. We actualprove something stronger in that the distributions are indistinguishable for every pair of polynomials(Q1; Q2) and every pair of passwords (w1; w2), rather than for randomly chosen pairs.The Commitments: Due to the hiding property of string commitments, a non-malleable commit-ment to (Q1; w1) is indistinguishable from one to (Q2; w2), and likewise an ordinary commitmentto Q1 is indistinguishable from one to Q2.The Polynomial Evaluation: The inputs to the polynomial evaluation are Q;w and Commit(Q).Denote by TP (Q;w), the distribution of transcripts for this evaluation. We claim that for everyQ1; Q2; w1; w2, we have that fQ1; w1; TP (Q1; w1)g and fQ1; w1; TP (Q2; w2)g are indistinguishable.This can be derived from the following two facts (and is based on the security of the polynomialevaluation that states that A learns nothing and that B learns only Q(w)):33Notice that it is not true that the distributions fQ1; w1; T (Q1; w1)gQ1;w1 and fQ1; w1; T (Q2; w2)gQ1;Q2;w1;w2 areindistinguishable, where T (Q;w) denotes the distribution of message transcripts for the entire protocol (includingthe validation stage). This is because the string y = f2n(Q(w)) is sent during the validation stage. Thus, given(Qi; wi), a distinguisher may compare f2n(Qi(wi)) to the y-value of the transcript, and determine whether or notthe transcript is based on (Qi; wi). 44



1. For every non-constant, linear polynomial Q, password w 2 D and string x 2 f0; 1gn, we havethat fQ;w; x; TP (Q;w)g c� fQ;w; x; TP (Q;x)g (16)This is based directly on the fact that A learns nothing of B's input (which is either w orx) from the evaluation. Therefore, A must not be able to distinguish w from x given hermessage transcript, and Eq. (16) follows.2. For every two non-constant, linear polynomials Q1; Q2 and string x 2 f0; 1gn such thatQ1(x) = Q2(x), it holds thatfQ1; Q2; x; TP (Q1; x)g c� fQ1; Q2; x; TP (Q2; x)g (17)This is because B obtains only Q(x) from the evaluation, where A inputs Q 2 fQ1; Q2g.Since Q1(x) = Q2(x), party B cannot distinguish the case that A inputs Q1 or Q2 into theevaluation (otherwise he learns more than just Q(x)). Eq. (17) follows.Now, for every two non-constant polynomials Q1 and Q2, there exists a value x such that Q1(x) =Q2(x). Therefore, we have that for every two non-constant linear polynomials Q1; Q2 and everytwo passwords w1; w2 2 DfQ1; Q2; w1; w2; x; TP (Q1; w1)g c� fQ1; Q2; w1; w2; x; TP (Q1; x)gc� fQ1; Q2; w1; w2; x; TP (Q2; x)gc� fQ1; Q2; w1; w2; x; TP (Q2; w2)gwhere x is such that Q1(x) = Q2(x), and where the �rst and third \ c�" are due to Eq. (16) andthe second is from Eq. (17). We therefore have that fQ1; w1; TP (Q1; w1)g c� fQ1; w1; TP (Q2; w2)g.Combining this with what we have shown regarding the commitments, the claim follows.Loosely speaking, the above claim shows that the transcript of the �rst two stages of the protocolreveals nothing signi�cant about the polynomial or password used in the execution. Recalling thatno messages are sent in the last (fourth) stage, it remains to analyze the additional messages sentin the third stage of the protocol. Recall that the third stage (validation) consists of A sendingy = f2n(Q(w)), a zero-knowledge proof, and a MAC of the session-transcript keyed by k1(Q(w)). Tosimplify the exposition, we will assume that A sends the MAC-key itself, rather than the MAC-value(which can be computed by C from the MAC-key and the visible session-transcript). Intuitively, thezero-knowledge proof reveals nothing, and the session-key k2(Q(w)) remains pseudorandom evengiven f2n(Q(w)) and k1(Q(w)) because G(Q(w)) def= �f2n(Q(w)); k1(Q(w)); k2(Q(w))� constitutesa pseudorandom generator. Furthermore, the password w is \masked" by Q, and therefore remainssecret, even given Q(w) itself. Details follow.By the de�nition of zero-knowledge, there exists a simulator that generates proof-transcriptsindistinguishable from real proofs. Thus, we may ignore this part of the validation stage for the restof the proof (because, using the simulator, C may generate this part by itself). Thus, we may assumethat the entire session-transcript consists of T2(Q;w) along with the pair �f2n(Q(w)); k1(Q(w))�.In order to complete the proof of the lemma, it remains to show thatfT2(Q1; w1); f2n(Q1(w1)); k1(Q1(w1)); k2(Q1(w1)); w1gc� fT2(Q2; w2); f2n(Q2(w2)); k1(Q2(w2)); Un; w1g (18)45



Now, using Claim 5.2 and the fact that for a random Q1, the value Q1(w1) is uniformly distributedin f0; 1gn (for every w1), we havefT2(Q1; w1); Q1(w1); w1g c� fT2(Q2; w2); Q1(w1); w1g c� fT2(Q2; w2); Un; w1g (19)(Notice that Q1 is independent of T2(Q2; w2).) This then implies thatfT2(Q1; w1); f2n(Q1(w1)); k1(Q1(w1)); k2(Q1(w1)); w1gc� fT2(Q2; w2); f2n(Un); k1(Un); k2(Un); w1gc� fT2(Q2; w2); f2n(U (1)n ); k1(U (1)n ); U (2)n ; w1g (20)where the last \ c�" is by pseudorandomness of the generator G(s) = �f2n(s); k1(s); k2(s)�, and U (1)nand U (2)n denote independent uniform distributions over n-bit strings. Using Eq. (19), we havefT2(Q2; w2); Ung c� fT2(Q1; w1); Q1(w1)g � fT2(Q2; w2); Q2(w2)gand since w1 2R D independently of (Q2; w2), it holds thatfT2(Q2; w2); U (1)n ; w1g c� fT2(Q2; w2); Q2(w2); w1gThis, in turn, implies thatfT2(Q2; w2); f2n(U (1)n ); k1(U (1)n ); U (2)n ; w1g c� fT2(Q2; w2); f2n(Q2(w2)); k1(Q2(w2)); U (2)n ; w1g (21)Combining Equations (20) and (21), we obtain Eq. (18) completing the proof of the lemma.6 Full Proof of the Key-Match PropertyThe key-match property captured in Theorem 4.5 states that the probability that A and B bothaccept, yet have di�erent pre-keys (i.e., �A 6= �B) is at most O(�). Recall that �A def= Q(w) andthat �B is B's output from the polynomial evaluation. We prove this theorem by considering twocomplementary schedulings of the concurrent executions. We show that for each scheduling, theprobability that B accepts and �A 6= �B is at most O(�). (In fact, in the �rst scheduling, B acceptswith probability at most O(�), irrespective of whether or not �A = �B .)6.1 Proof of Lemma 4.6 (The Unsynchronized Case)The proof of Lemma 4.6 will involve considering a variety of di�erent settings. Speci�cally, we willconsider the probability that B accepts when interacting with C, which in turn interacts with apair of machines that are not necessarily A and B. For sake of clarity, we introduce the notationdec(CA0;B0) that means the decision of B0 (which is public and known to C) when interacting withC that interacts concurrently also with A0.Lemma 6.1 (Lemma 4.6 { restated; Case 1 { unsynchronized): Let C be a ppt channel and de�neCase 1 to be a scheduling of the protocol execution by which C completes the polynomial evaluationwith A before concluding the non-malleable commitment with B. Then, for every polynomial p(�)and all su�ciently large n'sPr[dec(CA;B) = acc & Case 1] < 2�+ 1p(n)46



Proof: The proof of this lemma is the most complex proof in this paper. It proceeds by reducing theconcurrent setting to a two-party stand-alone setting. However, before performing this reduction,we \remove" the zero-knowledge proofs from the protocol. This is done in two steps: a smallstep in which the zero-knowledge proof in which B plays the veri�er is removed (from the (C;B)interaction), and a big step in which the zero-knowledge proof in which A plays the prover isremoved (from the (A;C) interaction).We start with the small step. We consider a modi�ed party, denoted B0, that accepts or rejectsbased solely on the y-value received in the validation stage. That is, B0 does not play the veri�er inthe zero-knowledge proof given by C, and also ignores the MAC sent by C. Since we only omittedchecks that may make B reject, we have thatPr[dec(CA;B) = acc & Case 1] � Pr[dec(CA;B0) = acc & Case 1] (22)The proof of the lemma proceeds by showing that the r.h.s is upper-bounded by 2� + �(n). Westress that (by considering B0 rather than B) we have removed the zero-knowledge proof given byC to B, but the zero-knowledge proof given by A to C still remains. The next subsection is devotedto getting rid of the latter proof, which is the big step (mentioned above). Once this is achieved,we turn (in Subsection 6.1.2) to analyzing the residual protocol, by reducing the analysis of itsexecution in the concurrent three-part setting to an analysis of an auxiliary two-party protocol inthe standard stand-alone setting.6.1.1 Simulating A's Zero-Knowledge ProofWe begin by showing that when C interacts with A and B0, the zero-knowledge proof given by A toC can be simulated. Since the proof (given by A to C) is zero-knowledge, it seems that the channelC (who plays the veri�er in the proof) should be able to simulate it himself. This is true (byde�nition) if the zero-knowledge proof is executed as stand-alone. However, the de�nitions of zero-knowledge guarantee nothing in our setting, where the proof is run concurrently with other relatedprotocols (belonging to the (C;B0)-execution). Technically speaking, the zero-knowledge simulationof A typically requires rewinding C. However, messages belonging to the (C;B0)-execution may beinterleaved with the proof. For example, C's queries to A in the proof may depend on messagesreceived from B0. Rewinding C would thus also require rewinding B0. However, since B0 is anexternal party, he cannot be rewound.We remark that concurrent zero-knowledge does not solve this problem either, since it relatesto concurrent executions of a (zero-knowledge) protocol with itself, and not concurrently witharbitrary protocols. Still, we use the ideas underlying the concurrent zero-knowledge proof systemof Richardson and Kilian [41] in order to address the problem that arises in our application.We refer the reader to Appendix A.4 for a description of the Richardson and Kilian (RK) proofsystem. Recall that we set the parameter m (the number of iterations in the �rst part of the RKproof) to equal r + t(n), where r is the total number of rounds in the rest of our protocol (i.e.,excluding the zero-knowledge proof itself), and t(n) is any non-constant function of the securityparameter n (e.g., t(n) = log log n).We now motivate how the proof simulation is done in our scenario, where C interacts with Aand B0. In such a case (when B0 rather than B is involved), the total number of rounds in the(C;B0) execution equals r = m� t (since B0 does not participate in the zero-knowledge proof givenby C in the validation stage). On the other hand, the number of iterations in the �rst part of theRK-proof given by A to C equals m. Therefore there are t complete iterations in the �rst partof this proof in which C receives no messages from B0. In these iterations it is possible to rewind47



C without rewinding B0. This is enough to establish zero-knowledge, since the Richardson-Kilianconstruction is such that as soon as rewinding is possible in one iteration, the entire proof may besimulated. The crucial point is that we rewind C at a place that does not require the rewinding ofB0 (which is not possible, since B0 is an outside party). With this motivation in mind, we move toour actual results.The modi�cation of A into A 6zk. In our above description, when we say that A's proof can besimulated by C himself, this means that A can be modi�ed to a party A6zk, whose protocol de�nitiondoes not include providing a zero-knowledge proof in the validation stage. Before continuing, weformally de�ne what we mean by this modi�cation of A to A6zk. This needs to be done carefullybecause the transcript (and not just the result) of the zero-knowledge proof a�ects other parts ofour protocol. Speci�cally, in the validation stage, A sends a MAC of her entire message-transcriptto C. This message-transcript includes also the messages of the zero-knowledge proof. Therefore,the protocol of A 6zk must be appropriately rede�ned to take this issue into account.In the zero-knowledge proof with C, party A plays the prover. The essence of the modi�cationof A to A 6zk is in replacing A's actions as prover in the (A;C)-proof by C simlating the resultingmessages by itself. This modi�cation works only if C's view in the protocol execution with A6zk isindistinguishable from its view in an execution with A. As mentioned, the MAC sent by A in thevalidation stage refers to the entire message transcript, including messages from the zero-knowledgeproof. Therefore, the MAC value sent by A6zk must also include messages from the simulated proof.However, A 6zk does not see these messages as the simulation is internal in C; therefore the messagetranscript of the proof must be explicitly given to her.In light of this discussion, we de�ne the modi�ed A 6zk to be exactly the same as A, exceptthat she does not provide a zero-knowledge proof (in her validation stage). Instead, at the pointin which A's zero-knowledge proof takes place, she receives a string s that she appends to hermessage transcript. This means that the only di�erence between A and A6zk's message transcriptsis that A's transcript includes messages from a zero-knowledge proof and A6zk's transcript includess instead. Intuitively, if s is the transcript of the simulated proof, then A and A6zk's messagetranscripts are indistinguishable. This ensures that the MACs sent by A and A6zk, respectively, areindistinguishable.The simulation. We now show that for every channel C interacting with A and B0, there existsa channel C 0 interacting with A6zk and B0 such that the channels' views in the two cases areindistinguishable. Since B's accept/reject bit is part of C's view (which is included in C's output),it follows that the probability that B0 accepts (in an execution with C 0 and A6zk) is negligibly closeto the probability that B0 accepts (in an execution with C and A). This enables us to continueproving Lemma 6.1 by considering the setting where C interacts with A6zk and B0 (rather than withA and B0).Lemma 6.2 Let A 6zk and B0 be as above. Then, for every ppt channel C there exists a ppt channelC 0 such that, noutput(C 0A 6zk(Q;w);B0(w))o c� noutput(CA(Q;w);B0(w))oProof: Following the above motivating discussion, we focus on how C 0 simulates the RK-proofgiven by A to C. The key observation is that the number of iterations in the �rst part of theRK-proof is m, whereas the number of messages sent between C and B0 is m� t. Therefore, thereare t iterations for which no message is sent between C and B0 (these iterations may not be �xed48



but rather can be determined by C during the execution). In these iterations, since B0 is not active,C 0 is able to rewind C. The RK-proof is such that if the veri�er can be rewound for any iterationduring the �rst part, then a successful simulation of the entire proof is achieved.To see why the above holds, we recall the RK-proof system (or actually a simpli�cation of itwhich su�ces for our purposes). This proof system (for NP-statements) consists of two parts.The �rst part consists of m iterations, where in iteration i the veri�er (who is played by C in ourcase) sends the prover a commitment to a random string, denoted vi. The prover then sends acommitment to a random string, denoted pi, and the veri�er decommits. The commitments usedare perfectly binding, and so given the commitment we can refer to the unique value committed toby it. (Indeed, we shall make extensive use of this fact.) In the second part of the proof, the proverproves (using a witness-indistinguishable proof [18]) that either there exists an i such that pi = vior that the original NP-statement (i.e., the one on which the proof system is invoked) is correct.In a real proof, the prover will not be able to set pi = vi, except with negligible probability, whichimplies that the proof system is sound (i.e., false statements can be proved only with negligibleprobability). On the other hand, if there is one iteration of the �rst part in which the simulator canrewind the veri�er, then it can set pi = vi (because it rewinds after obtaining the decommitmentvalue vi and can thus set its commitment pi to equal vi). In this case, it can successfully execute thewitness-indistinguishable proof (by using this pi = vi and without knowing a proof of the originalstatement).Now, in our case there are t iterations in which no messages are sent to B0. In these iterationsit is possible to rewind C. The only problem remaining is that C may refuse to decommit (ordecommit improperly, which is e�ectively the same). If during the execution of a real proof, Crefuses to decommit, then the prover halts. During the simulation, however, we must ensure thatthe probability that we halt due to C's refusal to decommit is negligibly close to this probabilityin a real execution. This prevents us from simply halting if, after a rewind, C refuses to decommit(since this may skew the probability).Before we continue, we de�ne the concepts of promising and successful iterations, which are usedin describing our simulation strategy. Loosely speaking, a promising iteration is one that enablesthe simulator to rewind C (i.e., C properly decomits before sending any message to B0), with thehope of obtaining a successful simulation. (Recall that once C has been rewound, the simulatorcan send a commitment to the value pi satisfying pi = vi.) However, even if C can be rewound atsome point, a successful simulation is not necessarily obtained. This is because after rewinding, itis possible that C refuses to decommit (or sends a message to B0). Thus, a successful iteration isone in which, after C receives a commitment to pi such that pi = vi, it (i.e., C) properly decommits(before sending any messages to B0). That is:� An iteration i is called promising if when C receives a commitment to a random pi, the iterationis such that no messages are sent to B0 and C decommits properly. (This refers to the situationbefore any rewinding of iteration i.)� An iteration i is called successful if when C receives a commitment to pi such that pi = vi, theiteration is such that no messages are sent to B0 and C decommits properly. (This typicallyoccurs after rewinding when pi can be set to vi.)Now, notice that when any iteration is successful, we can complete a full simulation of the proof.This is because the �rst part of the proof is such that there exists an i for which pi = vi. Thereforethe simulator (having an adequate NP-witness) can execute the necessary witness-indistinguishableproof. Another important point is that the probability that an iteration is successful is very close tothe probability that it is promising (by the hiding property of the commitment used on pi). Finally,49



we note that unless there exists an iteration in which C refuses to decommit when it receives acommitment to a random pi, there must be at least t promising iterations. Retrying to rewind eachpromising iteration polynomially many times, with overwhelming probability, at least one of theserewinding tries is successful, allowing us to complete the simulation.The Actual Simulator: We now show how C 0 runs the simulation for C. The channel C 0 plays theprover to C; in each iteration i it receives a commitment to vi from C and replies with a commitmentto a random string pi. If an iteration is not promising, then there are two possible reasons why: (1)C refused to decommit { in this case C 0 halts the simulation (successfuly); (2) C sent a message toB0 during the iteration { in this case C 0 simply continues to the next iteration. We call this (�rst)execution of the ith iteration the initial execution, and call the subsequent executions of the ithiteration rewinding attempts. Note that rewinding attempts for iteration i take place only if theinitial execution of iteration i is promising.If iteration i is promising, then C 0 obtains the decommitted value vi, rewinds C and commitsto pi = vi. That is, C 0 attempts to obtain a successful iteration. If the rewinded iteration issuccessful, then (as we have shown) C 0 can complete the entire simulation successfully. However,the iteration may not be successful after the rewinding. That is, C may refuse to decommit or maysend messages to B0. As long as the rewinded iteration is not successful, C 0 continues to rewind upto N times (where N = O(n2)). If none of the rewinds were successful then C 0 resends its originalcommitment to a random pi (i.e., the very same commitment sent in the initial execution), andcontinues to the next iteration. We stress that each rewinding attempt is independent of the othersin the sense that C 0 sends an independent random commitment to pi = vi each time.We stress that, during a rewinding attempt, C 0 must block any message sent by C to B0. Thisis because C cannot be rewound beyond a point in which it sent a message to B0 (because B0 is anoutside party and its message receipt event cannot be rewound). Furthermore, since C may refuseto decommit, further rewindings (or a replay of the initial execution) may be necessary. Thus,in case that C sends a message to B0 during a rewinding attempt, C 0 halts the attempt (withoutforwarding the message), and rewinds again (up to N times).The Output of the Simulator: We will show below that, with overwhelmingly high probability, eitherthe initial executions of all iterations are non-promising or one of the rewinding attempts succeeds.In both cases C 0 completes the simulation, and outputs a transcript of a (simulated) proof. Weclaim that this transcript is indistinguishable from transcripts of real executions of the RK-proof.Consider �rst the simulation of the �rst part of the RK-proof. For each iteration, considerthe initial execution of this iteration by the simulator, and note that this execution is distributedidentically to the real execution. In case the initial execution is non-promising the simulator justappends it to the simulation transcript (and truncates the simulation if the veri�er has decommittedimproperly). Thus, this case is identical to the real execution. If, on the other hand, the initialexecution is promising then the simulator tries to rewind it. If none of the rewinding attemptssucceeds then the simulator appends the initial execution to the simulation transcript, which againmeans that the appended part is distributed identically to the real execution. On the other hand, ifone of the rewinds is successful then the simulator appends its (i.e., the rewinding's) transcript tothe simulation transcript. By the hiding property of the commitment scheme, the appended partis computationally indistinguishable from the corresponding part in the real execution (althoughthese distributions are statistically far apart). We conclude that the simulation of the �rst part ofthe RK-proof is computationally indistinguishable from the �rst part of a real RK-proof.Assuming that the simulator has succeeded in generating a successful rewinding, it has obtainedan NP-witness to the claim that pi = vi. Playing the role of the prover while using this witness,50



allows the simulator to produce a transcript of the second part of the RK-proof. By the witness-indistinguishability of the proof system used in the second part, it follows that the simulatedtranscript is computational indistinghuishable from the real one. (Actually, we rely on the fact thatthe latter proof system has a strong witness-indistinguishability property; that is, if two claims arecomputational indistinghuishable the so are the real proof transcripts regardless of which witness isused by the prover [22, Sec. 4.6].) Thus, it remains to show that the probability that the simulatorfails to generate a successful rewind (in case some iteration is promising) is negligible.Analysis of the simulator's failure probability: Recall that the simulator fails only if it has completedan untruncated simulation of the �rst part of the RK-proof without generating any successfulrewinding. Note that for this to happen, each of the simulated iterations must include a proper de-commitment, or else the simulation terminates successfully while outputting a truncated transcript(as the prover would do in a real proof). Since there at least t iterations for which C does not sendany messages to B0 (recall that there are m iterations and only m � t messages are sent from Cto B0), it follows that an untruncated transcript must contain at least t promising iterations. Thesimulation fails only if all N rewinding attempts for these promising iterations are not successful;we show that for an adequate choice of N (the number of rewindings of a promising iteration), thisoccurs with at most negligible probability.The above statement is easy to establish in case the identities of the promising iterations are�xed. If iteration i is always promising then a corresponding rewinding attempt must be successfulwith overwheling probability (or else a contradiction to the hiding property of the commitment isreached). What makes the analysis more complicated is that the identities of the promising itera-tions may be random variables (which may even depend on the transcript of previous iterations).Our aim is to show that the simulation fails with negligible probability. That is, for every positivepolynomial p, we show that (for all but �nitely many n's) the simulation fails with probabilitysmaller than 1=p(n). In the rest of the analysis we assume that m < pn (this is easy to enforce,possibly, by arti�cially increasing the original security parameter n to a polynomial in n). We usethe following notation:� Let X1; : : : ;Xm be random variables such that Xi = 1 if and only if C sends no messages to B0during the initial execution of iteration i (i.e., when a random commitment to a random pi issent, before any rewinding of iteration i).� Let Y1; : : : ; Ym be random variables such that Yi = 1 if and only if C agrees to decommit duringthe initial execution of iteration i.Thus, an iteration i is promising if and only if Xi = Yi = 1.We now introduce similar notations for rewinding attempts of iterations:� Let X 01; : : : ;X 0m be random variables such that X 0i = 1 if and only if C sends no messages to B0during a rewinding attempt for iteration i, when a random commitment to pi = vi is sent.� Let Y 01 ; : : : ; Y 0m be random variables such that Y 0i = 1 if and only if C agrees to decommit duringa rewinding attempt for iteration i, when a random commitment to pi = vi is sent.Thus, a rewinding attempt for iteration i is successful if and only if X 0i = Y 0i = 1.We note that some of the above random variables may be unde�ned, in which case we just de�nethem arbitrarily. Speci�cally, the random variables of iteration i are not de�ned (above) if thesimulation halted in some iteration j < i (which happens if and only if Yj = 0).We start by showing that the success event X 0i = Y 0i = 1 occurs essentially as often as thepromising event Xi = Yi = 1. We wish to establish this not only for the a-priori probabilities but51



also when conditioned on any past event that occurs with noticeable probability. Speci�cally, weprove the following.Claim 6.3 For every polynomial q, every i �m, and every � 2 f0; 1gi�1 eitherPr[Y1 � � � Yi�1 = 1i�1&X1 � � �Xi�1 = �] < 1q(n) (23)or if Pr[Xi = Yi = 1 jY1 � � � Yi�1 = 1i�1&X1 � � �Xi�1 = �] � 1nthen Pr[X 0i = Y 0i = 1 jY1 � � � Yi�1 = 1i�1&X1 � � �Xi�1 = �] > 12n (24)Proof: The claim follows by the hiding property of the commitment scheme. Speci�cally, analgorithm violating the hiding property is derived by emulating the �rst i�1 iterations (of the realexecution) with the hope that Y1 � � � Yi�1 = 1i�1&X1 � � �Xi�1 = � holds, which indeed occurs withnoticeable probability. Given that this event occurs, the algorithm can distinguish a commitmentto a random value from a commitment to a given vi. More precisely, contradiction to the hidingproperty is derived by presenting two algorithms. The �rst algorithm emulates the real interactionfor i iterations, and obtains vi from the veri�er decommitment in the ith iteration, in case suchan event has occured. The second algorithm is given the view of the �rst algorithm along with achallenge commitment and distinguishes the case in which this commitment is to a random valuefrom the case this commitment is to the value vi.Using Claim 6.3, we show that the simulation fails with at most negligible probability. That is,Claim 6.4 Let fail denote the event in which the simulation fails. Then, for every polynomialp(�) and all su�ciently large n's Pr[fail] < 1p(n)Proof: Our aim is to upper bound the probability that the simulation fails, by considering allpossible values that X = X1 � � �Xm can obtain in such a case. We have:Pr[fail] = X�2f0;1gm Pr[fail&X = �]= X�2S Pr[fail&X1 � � �Xj�j = �] (25)where S is any maximal pre�x-free subset of U def= [mi=1f0; 1gi, and Eq. (25) is justi�ed below. Recallthat a set S is pre�x-free if for every �; � 2 S it holds that � is not a pre�x of �. By maximalitywe mean that adding any string in U to S violates the pre�x-free condition. It follows that every� 2 f0; 1gm has a (unique) pre�x in S. To justify Eq. (25) observe that the strings in f0; 1gm canbe partitioned into subsets such that all the strings in each subset have a unique pre�x in the set S,and so we can consider events corresponding to these pre�ces rather than events that correspondto all possible m-bit long strings.For a constant k < t to be determined later (i.e., k = 1 + 2 limn!1 logn p(n)), we de�ne Hkto be the set of all strings having length at most m � 1 and hamming weight exactly k. LetS1 def= f�01 : �0 2 Hkg (i.e., strings of length at most m and hamming weight k + 1 that have nostrict pre�x satisfying this condition), and S2 be the set of all m-bit long strings having hamming52



weight at most k. Observe that S1 [ S2 is a maximal pre�x-free subset of f0; 1gm. (Pre�x-freenessholds becuase all strings in S1 have hamming weight k + 1 and so cannot be pre�ces of string inS2, nor can any m-bit string be a pre�x of another m-bit string.) Applying Eq. (25) we have:Pr[fail] = X�2S1[S2 Pr[fail&X1 � � �Xj�j = �]= X�02Hk Pr[fail&X1 � � �Xj�0j+1 = �01]where the last equality follows because S1 = f�01 : �0 2 Hkg and Pr[fail&X 2 S2] = 0, where thelatter fact is justi�ed as follows. Recall that the simulator may fail only if C properly decommitsin all the �rst m� 1 iterations, which implies that all Xi's are properly de�ned (i.e., re
ect whatactually happens the these iterations, rather than are �cticiously de�ned in an arbitrary manner).This implies that there must be at least t � k + 1 iterations/indices i such that Xi = 1 holds (i.e.,no message was sent to B0), and so X =2 S2. Now, using jHkj < mk+1, we havePr[fail] < mk+1 � max�02HkfPr[fail&X1 � � �Xj�0j+1 = �01]g� mk+1 � max�02HkfPr[fail&X1 � � �Xj�0j = �0]gWe will show that, for every �0 2 Hk, it holds thatPr[fail&X1 � � �Xj�0j = �0] < 1mk+1 � p(n) (26)which establishes our claim that the simulation fails with probability smaller than 1=p(n). In orderto establish Eq. (26), we �x an arbitrary �0 2 Hk, let i = j�0j+ 1, and we consider two cases:Case 1: Pr[Y1 � � � Yi�1 = 1i�1&X1 � � �Xi�1 = �0] < 1mk+1�p(n) . In this case, using the fact that thesimulation never fails if any of the Yj's equals 0 (i.e., the fail event implies that all the Yj'sequal 1), it follows that Pr[fail&X1 � � �Xi�1 = �0] < 1mk+1�p(n) as desired.Case 2: Pr[Y1 � � � Yi�1 = 1i�1&X1 � � �Xi�1 = �0] � 1mk+1�p(n) . In this case, setting q(n) = mk+1 �p(n), we conclude that Eq. (24) holds. Furthermore, for every j � i, it holds that Pr[Y1 � � � Yj�1 =1j�1&X1 � � �Xj�1 = �00] � 1mk+1�p(n) holds, where �00 is the (j�1)-bit long pre�x of �0. Thus,Eq. (24) holds for �00 too. We are particularly interested in pre�ces �00 such that �001 is apre�x of �0. We know that there are k such pre�ces �001 and we denote the set of their lengthsby J (i.e., j 2 J if the j-bit long pre�x of �0 ends with a one). We consider two subcases:1. If for some j 2 J , it holds that Pr[Xj = Yj = 1 jY1 � � � Yj�1 = 1j�1&X1 � � �Xj�1 = �00] �1n then (by Eq. (24)) it holds that Pr[X 0j = Y 0j = 1 jY1 � � � Yj�1 = 1j�1&X1 � � �Xj�1 =�00] > 12n . This means that a rewinding attempt at iteration j succeeds with probabilitygreater than 1=2n, and the probability that we fail in O(n2) attempts is exponentiallyvanishing. Thus, in this subcase Pr[fail&X1 � � �Xi�1 = �0] < 2�n < 1mk+1�p(n) asdesired. 53



2. The other subcase is that for every j 2 J , it holds that Pr[Xj = Yj = 1 jY1 � � � Yj�1 =1j�1&X1 � � �Xj�1 = �00] < 1n . Recalling that failure may occur only if all Yj 's equalone, and letting �0 = �1 � � � �i�1, we get (using �j = 1 for j 2 J)Pr[fail&X1 � � �Xi�1 = �0]� Pr[Y1 � � � Yi�1 = 1i�1&X1 � � �Xi�1 = �0]= i�1Yj=1Pr[Xj = �j &Yj = 1 jY1 � � � Yj�1 = 1j�1&X1 � � �Xj�1 = �1 � � � �j�1]� Yj2J Pr[Xj = 1&Yj = 1 jY1 � � � Yj�1 = 1j�1&X1 � � �Xj�1 = �1 � � � �j�1]< (1=n)kBy a suitable choice of k (e.g., k = 1 + 2 limn!1 logn p(n)) and recalling that m < pn,we have 1nk = 1pnk+1 � 1n k�12 < 1mk+1�p(n) as desired.Thus, we have established the desired bound of Eq. (26) in all possible cases. The claim follows.Completing the (A;C) Simulation: So far we have focused on the simulation of the RK-proof (con-currently to interacting with B0), but actually our goal is to simulate (A;C) by (A6zk; C 0), whileinteracting concurrently with B0. Clearly, whatever happens in the (A;C) execution before theRK-proof is emulated trivially by the (A6zk; C 0) execution (which is identical at this stage). Theissue is what happens after the (simulated) RK-proof. Recall that by the construction of A6zk,party A6zk expects to receive a string s in place of the zero-knowledge proof. This string is thenconcatenated to A 6zk's session-transcript before she (applies the MAC and) sends the MAC value.In order to ensure that C's view of the protocol in this simulation is indistinguishable from in a realexecution (where A proves the zero-knowledge proof), the channel C 0 must ensure that C receivesa MAC value that is indistinguishable from the MAC value that it would have received from A.Channel C 0 does this by de�ning s to be the transcript of the zero-knowledge simulation. Thismeans that resulting session-transcript of A 6zk is identical to the transcript held by C. Further-more, this transcript is indistinguishable from a transcript that C would hold after a real executionwith A (rather than in this simulated interaction). This implies that the MAC value sent by A6zk isindistinguishable from one that A would have sent. This completes the proof of Lemma 6.2.Combining Eq. (22) and Lemma 6.2 (while noting that both the scheduling case and B's decisionare visiable by the channel), we getCorollary 6.5 For every ppt C there exists a ppt Ĉ such thatPr[dec(CA;B) = acc & Case 1] < Pr[dec(ĈA 6zk;B0) = acc & Case 1] + �(n)A note on the number of rounds: Our simulator works given that the number of iterationsin the �rst part of the RK-proof is greater than the total number of the rest of the rounds inthe protocol by any non-constant function of the security parameter n (say log log n). We notethat if only an expected (rather than strictly) polynomial-time simulator is desired, then a singleadditional round su�ces. This can be shown using the techniques of [24].54



6.1.2 Proof of a Modi�ed Lemma 4.6 (when C interacts with A6zk and B0)In view of Corollary 6.5, we now proceed to show that when C interacts with A6zk and B0, theprobability that B0 accepts in the synchronization of Case 1 is at most negligibly greater than 2�.That is, we provedLemma 6.6 For every ppt CPr[dec(CA 6zk;B0) = acc & Case 1] < 2�+ �(n)Proof: Our �rst step is to reduce the concurrent setting to a two-party stand-alone setting.The key point in this reduction is in noticing that according to the scheduling of Case 1, thetwo polynomial evaluations are run sequentially without any overlap. Speci�cally, the (A 6zk; C)-evaluation terminates before the (C;B0)-evaluation begins. As a warm-up, consider a simpli�edsetting in which the entire (A6zk; C)-protocol consists only of a single polynomial evaluation; likewisefor the (C;B0)-protocol. Then, when the scheduling is as mentioned, a party P , can execute twosequential polynomial evaluations with C; in the �rst P plays A6zk's role and in the second P playsB0's role. That is, when this scheduling occurs the above two-party setting perfectly simulates theconcurrent setting.The actual reduction is, however, more complex since the (A6zk; C) and (C;B0) protocols involveother steps beyond the polynomial evaluation. The protocol that we de�ne between P and C mustcorrectly simulate these other steps as well. As we shall see, some of the additional steps can beinternally simulated by C, and some are emulated by an interaction of C with P . Speci�cally, apartfrom playing in both polynomial evaluations, P plays A6zk's role in the (A6zk; C)-commitment stageand B0's role in the (C;B0)-validation stage. What remains is B0's role in the (C;B0)-commitmentstage and A6zk's role in the (A 6zk; C)-validation stage; these are internally simulated by C. Table 1shows which party (P or C) simulates A6zk and B0's respective roles. Note that when we say thatC plays a role, this means internal simulation of the corresponding stage by C (who plays bothparties); whereas when we say that P plays a role this means that the corresponding stage isemulated by C interacting with P (who plays the other party).RolesStage A6zk B01. Commitment P C2. Pre-Key Exchange P P3. Validation C PTable 1: The assignment of \simulation roles" to P and C.In order to play the corresponding roles, both parties get suitable inputs. Speci�cally, Party P isgiven the input (Q;w), which enables it to play the roles of A 6zk and B0 (in any stage). Party C isgiven Q(w) as an auxiliary input (which, as we show, enables it to internally simulate the remainingparts of the execution). Thus, we actually prove that Lemma 6.6 holds even when C gets Q(w) anauxiliary input.The following protocol makes sense whenever the scheduling of Case 1 occurs (in the emulatedexecution of CA 6zk(Q;w);B0(w)). We will show that for every channel C, the (two-session concurrent)execution of CA 6zk(Q;w);B0(w) in the scheduling Case 1 is \simulated" (in some adequate sense) by55



an adversary C 0 to a single-session execution of the following (mental experiment) protocol (whereC 0 may also internally emulate additional steps).Protocol 6.7 (Mental Experiment Protocol (P;C):)Inputs: � P gets (Q;w), where Q is a linear (non-constant) polynomial and w 2 D.� C receives the string Q(w), where (Q;w) is the input of P .Operation:1. Emulation of Stage 1 of the (A 6zk; C)-execution (commitment stage):� P sends C a non-malleable commitment to (Q;w).2. Emulation of Stage 2 of the (A 6zk; C)-execution (pre-key exchange):� P sends C a commitment c1 = Commit(Q) = C(Q; r1) for a random r1.� P and C invoke an augmented polynomial evaluation, where P inputs the polynomial Qand (c1; r1) and C inputs c1 and some value wC (of its choice). Party C then receivesthe output value Q(wC) (or ? in the case of incorrect inputs).3. Emulation of Stage 2 of the (C;B0)-execution (pre-key exchange):� C sends P a commitment c2 = C(QC ; r2), for some polynomial QC and r2 (of itschoice).� C and P invoke another augmented polynomial evaluation (in the other direction), whereC inputs the polynomial QC and (c2; r2) and P inputs c2 and w. Party P receives �,which equals either QC(w) or ?, from the evaluation.4. Emulation of Stage 3 of the (C;B0)-execution (validation stage):� C sends a string y to P , and P outputs accept if and only if y = f2n(�).We say that C succeeds if P outputs accept at the conclusion of the protocol execution. We nowshow that any C succeeding in having B0 accept in the concurrent protocol with the scheduling ofCase 1, can be used by a party C 0 to succeed with the same probability in the above protocol withP .Claim 6.8 Let C be a ppt channel interacting with A 6zk and B0. Then there exists a ppt party C 0interacting with P in Protocol-(P;C 0) such thatPrQ;w[P (Q;w) accepts when interacting with C 0(Q(w))] = Pr[dec(CA6zk;B0) = acc & Case 1]Recall that CA6zk;B0 is actually a shorthand for CA 6zk(Q;w);B0(w), where (Q;w) are random as in thel.h.s above.Proof: The party C 0 incorporates C internally and perfectly simulates the concurrent setting withA 6zk and B0 for C (i.e., CA 6zk(Q;w);B0(w)). First notice that Step (4) of the (P;C 0) protocol constitutesthe full validation stage of the (C;B0)-protocol (recall that the validation stage for B0 consists onlyof checking that y = f2n(�B)). This means that the (P;C 0) protocol contains all stages of the(A 6zk; C) and (C;B0) protocols, except for the �rst stage of the (C;B0)-protocol and the third stageof the (A 6zk; C)-protocol. As mentioned above, these stages are internally simulated by C 0.56



The C 0 simulation: We now describe how C 0 runs the simulation. Party C 0 invokes C andemulates the CA 6zk(Q;w);B0(w) setting for him, while interacting with P . This involves separatelysimulating the (A6zk; C) and (C;B0) executions and is done as follows (recall that C fully controlsthe scheduling):� The (A 6zk; C) Execution:1. Stages 1 and 2: All messages from these stages of the execution are passed between C andP (without any change). That is, C 0 forwards any messages sent from C (to A6zk) to P andlikewise, messages from P are forwarded to C.2. Stage 3: C 0 internally emulates A6zk's role here, and thus P is not involved at all. In thisstage C expects to receive the string y = f2n(Q(w)) and a MAC of the (A 6zk; C) session-transcript keyed by k1(Q(w)). Party C 0 can determine and send these messages since itgets Q(w) as input, and can therefore compute both the y-string and the MAC-key (andso the MAC value).� The (C;B0) Execution:1. Stage 1: C 0 internally emulates B0's role here, and thus P is not involved at all. Recallthat B0's role in this stage is as the receiver of a non-malleable commitment; therefore nosecret information is needed by C 0 to emulate this part (by using C).2. Stages 2 and 3: When C sends the �rst message belonging to Stage 2 of the (C;B0)-execution, party C 0 acts as follows:� Scheduling Violation Case: If this �rst message was sent before the completion ofStage 2 of the (A 6zk; C) execution (i.e., the scheduling Case 1 does not hold), then C 0halts (the simulation fails).� Scheduling Conforming Case: If this �rst message was sent after the completion ofStage 2 of the (A 6zk; C) execution (i.e., the scheduling conforms with Case 1), then C 0continues the simulation by forwarding this and all consequent messages belonging tothese stages to P (and returning messages from P to C).This completes the simulation. Note that, when the simulation succeeds, C's view is identical toa real execution with A6zk and B0. Recall that the (P;C)-protocol emulates Stages 1 and 2 of the(A 6zk; C) protocol before Stages 2 and 3 of the (C;B0) protocol. Therefore, the simulation succeedsas long as C's scheduling is such that Stage 2 of the (A6zk; C) execution is completed before Stage 2of the (C;B0) execution begins. However this is exactly the de�nition of the scheduling of Case 1.In other words, the simulation is successful if and only if the scheduling is according to Case 1.Now, if the simulation is successful, then P accepts with the same probability as B0 would have.On the other hand, if the simulation is not successful (i.e., Case 1 did not occur), then P neveraccepts. We conclude that the probability that P accepts is exactly equal to the probability thatthe scheduling is according to Case 1 and B0 accepts.We note that since C 0 is given the value Q(w), it can also simulate this scenario for C whenthe augmented de�nition of security is considered. The rest of the proof of this lemma thereforefollows also for the augmented de�nition.It remains to bound the probability that P accepts in Protocol 6.7.Claim 6.9 For every ppt party C 0 interacting with P in Protocol 6.7 it holds thatPrQ;w[P (Q;w) accepts when interacting with C 0(Q(w))] < 2�+ �(n)57



Proof: We analyze the probability that P accepts in the two-party protocol for P and C 0 de�nedabove. This is an ordinary two-party setting, and as such it can be analyzed by directly consideringthe security of the di�erent modules.We �rst modify the protocol so that in Step 1, party P sends a random commitment, insteadof a commitment to (Q;w). Due to the hiding property of the commitment, this can make at mosta negligible di�erence. (We stress that this replacement has no impact because this commitmentis not used anywhere in the rest of the protocol.)34 Therefore, C 0 can internally emulate thiscommitment and this stage can be removed from the protocol. We thus remain with a protocolconsisting of the following stages:� (Emulation of Stage 2 of (A 6zk; C)): P sends C 0 a commitment to Q and then P and C 0 executean augmented polynomial evaluation in which C 0 receives either Q(wC) for some wC (chosenby C 0), or ?. By the security of the polynomial evaluation, C 0 receives either Q(wC) or ? andnothing else.� (Emulation of Stage 2 of (C;B0)): C 0 sends P a commitment to some polynomial QC and thenC 0 and P execute an augmented polynomial evaluation in which P receives QC(w) or ?. Bythe security of the polynomial evaluation, C 0 receives nothing in this stage.� (Emulation of Stage 3 of (C;B0)): C 0 sends a string y to P and P accepts if y = f2n(QC(w)).The intuition behind showing that P accepts with probability at most negligibly greater than 2� isas follows: C 0 must send the \correct" y based solely on the value Q(wC) that it (possibly) receivedfrom the �rst evaluation and its auxiliary input Q(w). Now, if wC 6= w, then the only thing thatparty C 0 learns about w (from Q(w) and Q(wC)) is that it does not equal wC . This is due tothe \pairwise independence" property of the random polynomial Q. Therefore, C must guess thecorrect value for y from jDj � 1 possibilities (i.e., f2n(QC(w0)) for every w0 6= wC). On the otherhand, the probability that wC = w is at most �, because at the time that C 0 selects wC it knowsnothing about w (although it knows Q(w) for a random Q). A detailed analysis follows.The above argument is based on the security of the polynomial evaluations. We therefore proceed byanalyzing the probability that P accepts in an ideal execution where the two polynomial evaluationsare replaced by ideal evaluations. We denote the ideal-model parties by P̂ and Ĉ 0. By the sequentialcomposition theorem of multi-party computation [12], we have that the accepting probabilities ofP (in a real execution) and P̂ (in an ideal execution) are at most negligibly di�erent.We now upper bound the probability that P̂ accepts in an ideal execution. Party Ĉ 0 is givenQ(w) for auxiliary input and in the �rst polynomial evaluation Ĉ 0 inputs a value wC (of its choice).We di�erentiate between the case that wC = w and wC 6= w, and separately upper bound thefollowing probabilities:1. Pr[P̂ = acc & wC = w]2. Pr[P̂ = acc & wC 6= w]Bounding the probability that P̂ = acc and wC = w: We actually show that Pr[wC = w] ��+� for some negligible function �. The only message received by Ĉ 0 prior to its sending wC is an(ordinary) commitment to the polynomial Q. That is, Ĉ 0's entire view at this point consists of itsauxiliary input Q(w) and Commit(Q). Due to the hiding property of the commitment, Commit(Q)can be replaced by Commit(02n) and this makes at most a negligible di�erence. We therefore remove34This fact is due to the fact that Stage 3 of (A 6zk; C) is not explicitly emulated by Protocol 6.7 (but is ratherinternally simulated by C0). 58



the commitment and bound the probability that wC = w, where Ĉ 0 is only given Q(w). Since Qis a random linear polynomial, we have that for every w, the string Q(w) is uniformly distributed.That is, Q(w) reveals no information about w. Therefore, we have that Pr[wC = w] � � (withequality in case wC 2 D). This implies that when Ĉ 0 is given a commitment to Q (rather than to02n), we have that Pr[wC = w] � �+ �(n). Therefore,Pr[P̂ = acc & wC = w] � Pr[wC = w] � �+ �(n) (27)Bounding the probability that P̂ = acc and wC 6= w: We actually analyze the followingconditional probability: Pr[P̂ = acc j wC 6= w]. Recall that Ĉ 0's view (after the �rst polynomialevaluation) consists of its random tape, auxiliary input Q(w) and the following messages:1. A commitment to a polynomial Q sent by P̂ .As before, the commitment to Q can be replaced with a commitment to 02n with at most anegligible di�erence. We therefore ignore this part of Ĉ 0's view from now on.2. An input{output pair (wC ; Q(wC)) (or (wC ;?) in the case of incorrect inputs) from the �rstpolynomial evaluation, where wC 6= w.We are going to ignore the output case (wC ;?), because C 0 knows a-priori which of the twoinput/output cases will occur, and we may give it Q(wC) for free in the incorrect inputs case.The continuation of the protocol involves Ĉ 0 selecting and inputting a polynomialQC into the secondpolynomial evaluation and sending a string y, where P̂ accepts if and only if y = f2n(QC(w)). Re-stated, the probability that P̂ accepts equals the probability that Ĉ 0, given its view (Q(w); wC ; Q(wC)),generates a pair (QC ; y) such that y = f2n(QC(w)).Now, the polynomial Q is random and linear, and we are considering the case that wC 6= w.Therefore, by pairwise independence we have that Q(w) is almost uniformly distributed, even giventhe value of Q at wC . (Since Q cannot be a constant polynomial, Q(w) is only statistically closeto uniform; this is however enough.) This means that given Ĉ 0's view, the password w is almostuniformly distributed in D � fwCg. Since both f2n and QC are 1{1 functions, we have that theprobability that Ĉ 0 generates a pair (QC ; f2n(QC(w))) equals the probability that it guesses w,which equals 1jDj�1 = �1�� . Replacing the commitment to 02n with a commitment to Q, we havethat for some negligible function �,Pr[P̂ = acc j wC 6= w] � �1� � + �(n) (28)Combining the bounds: Using Eq. (27) and Eq. (28), we conclude that in an ideal execution:Pr[P̂ = acc] = Pr[P̂ = acc j wC = w] � Pr[wC = w] + Pr[P̂ = acc j wC 6= w] � Pr[wC 6= w]� 1 � Pr[wC = w] + �1� � � (1� Pr[wC = w]) + �(n)= �1� � + 1� 2�1� � � Pr[wC = w] + �(n)� �1 + (1� 2�)� � �1� � + �(n) = 2�+ �(n)where the last inequality is due to Pr[wC = w] � �+ �. This implies that in a real execution, theprobability that P accepts is at most negligibly greater than 2�. The claim follows.Lemma 6.6 follows by combining Claims 6.8 and 6.9.Lemma 6.1 follows by combining Corollary 6.5 and Lemma 6.6.59



6.2 Proof of Lemma 4.7 (The Synchronized Case)Lemma 6.10 (Lemma 4.7 { restated; Case 2 - Synchronized): Let C be a ppt channel and de�neCase 2 to be a scheduling of the protocol by which C completes the polynomial evaluation with Aafter completing the non-malleable commitment with B. ThenPr[B = acc & �A 6= �B & Case 2] < �+ �(n)Proof: The proof of this lemma relies on the non-malleability of the commitment sent in thecommitment stage of the protocol. As was explained in the proof sketch, in the case that �A 6= �B ,the validation stage ensures that B only accepts if the non-malleable commitment he received wasto (Q0; w), where Q0 6= Q and w is A and B's shared password. (Recall that in the case that(Q0; w0) = (Q;w), party B rejects with overwhelming probability, unless �A = �B.)35 Furthermore,the probability that C succeeds in generating such a commitment (in which Q0 6= Q and yet wis the second element) is at most negligibly greater than �. We now formally prove both thesestatements.In order to use the non-malleability property (of the commitment sent in Stage 1), we de�nethe following relation R. Recall that the non-malleable commitment value sent by A is (Q;w),and denote the one corresponding to the commitment received by B by (Q0; w0). De�ne R �f0; 1g3n � f0; 1g3n such that((Q;w); (Q0; w0)) 2 R if and only if (Q0; w0) 6= (Q;w) and w0 = w. (29)That is, C \succeeds" with respect to R (and thus B may accept) if C does not copy A's commitment(or rather does not commit to the same pair) and yet the second element of the commited pair isthe correct password.We consider the probability that B accepts in Case 2 and �A 6= �B in two complementarysubcases. In the �rst subcase, channel C succeeds with respect to the relation R and in the secondsubcase, C fails. We prove claims showing the following:1. (Success Case): Pr[B = acc & Case 2 & �A 6= �B & ((Q;w); (Q0; w0)) 2 R] < �+ �(n)2. (Fail Case): Pr[B = acc & Case 2 & �A 6= �B & ((Q;w); (Q0; w0)) 62 R] < �(n)The lemma follows by summing up B's accepting probability in the above two sub-cases. We beginby upper bounding the success case. Speci�cally, we show that the probability that C succeeds ingenerating a correct (related) commitment is at most negligibly greater than �.Claim 6.11 (Success w.r.t R): Let C be a ppt channel and denote by (Q0; w0) the value committedto by C in the non-malleable commitment received by B (if the commitment is not valid, then(Q0; w0) is taken as some �xed value). ThenPr[Case 2 & ((Q;w); (Q0; w0)) 2 R] < �+ �(n)Proof: The de�nition of non-malleability states that a commitment is non-malleable when run con-currently with another commitment only. Therefore, in a simpler scenario in which the (A;C) and(C;B) non-malleable commitments are run in isolation, we can directly apply the non-malleabilityproperty to the relation R that we have de�ned above. However, in our scenario, other parts of the35This is because the validation stage essentially enforces that �B = Q0(w0) (see Fact 6.14), and by the casehypothesis Q0(w0) = Q(w) = �A. 60



(A;C) protocol can also be run concurrently to the (C;B) non-malleable commitment. Speci�cally,by the scheduling of Case 2, (part of) the (A;C) pre-key exchange may run concurrently to the(B;C) commitment (but Stage 3 of the (A;C) execution starts only after the (B;C) commitmentends). The crux of the proof is in showing that the (A;C) pre-key exchange can be simulated. Givensuch a simulation, we have a scenario in which the (A;C) and (C;B) non-malleable commitmentsare run in isolation, and thus non-malleability holds.Recall that A's input to the pre-key exchange stage depends only on the polynomial Q (and isindependent of the password w). Therefore, if C has Q, then it can perfectly emulate this stageby himself (this is true irrespective of the security of the modules making up the pre-key exchangestage of the protocol). Fortunately, even if C is explicitly given Q, the probability that C cangenerate a commitment to (Q0; w0) for which (Q0; w0) 6= (Q;w) and w0 = w is at most negligiblygreater than � (recall that C's sole aim here is to generate such a commitment). Thus, we provethat for every ppt channel C given auxiliary input Q, it holds thatPr[Case 2 & ((Q;w); (Q0; w0)) 2 R] < �+ �(n)As we have described, C has Q and thus can perfectly emulate the (A;C) pre-key exchange. By thescheduling of Case 2, we have that the (C;B) commit stage concludes before the completion of the(A;C) pre-key exchange. Therefore, the probability that C succeeds with respect to R is the sameas when the (A;C) and (C;B) non-malleable commitments are run in isolation.36 We thereforeproceed by upper-bounding the probability that a ppt adversary C (given a commitment to (Q;w)and auxiliary inputQ) successfully generates a commitment to (Q0; w0) where ((Q;w); (Q0; w0)) 2 R.Intuitively, A's commitment to (Q;w) does not help C in generating a related commitment.Therefore, the probability of generating a commitment to (Q0; w) is the same as the probability ofguessing w. Formally, by the de�nition of non-malleability, for every C there exists a simulator Ĉwho generates a commitment to (Q̂0; ŵ0) without seeing the commitment to (Q;w) such that���Pr[((Q;w); (Q0; w0)) 2 R]� Pr[((Q;w); (Q̂0; ŵ0)) 2 R]��� < �(n)Since w is uniformly distributed in D and Ĉ is given no information about w, the probability thatĈ generates a commitment to (Q̂0; w) is at most �. Therefore, the probability that C generates acommitment to (Q0; w) where Q0 6= Q is less than �+ �(n) as required.We note that the above holds also for the augmented de�nition of security. This is because inCase 2, channel C concludes its non-malleable commitment before A terminates. Therefore, it mayreceive a session-key challenge only after (Q0; w0) are determined.We now show that whenC fails with respect to R, thenB accepts with at most negligible probability.Claim 6.12 (Failure w.r.t R): For every ppt channel C,Pr[B = acc & �A 6= �B & ((Q;w); (Q0; w0)) 62 R] < �(n)Proof: In proving this claim, we rely solely on the fact that C \fails" with respect to the relationR, in order to show that B rejects. As described in the proof sketch, intuitively B rejects in thiscase because the validation stage enforces consistency between the non-malleable commitment, the36Formally, an adversary attacking a non-malleable commitment protocol (and given Q as auxiliary input) can useC in order to generate a related commitment with the same probability as C succeeds in our session-key protocolwhen the scheduling is according to Case 2. 61



polynomial input by C into the polynomial evaluation and B's output from the polynomial eval-uation. That is, with overwhelming probability, B rejects unless C inputs Q0 into the polynomialevaluation and B's output from the evaluation equals Q0(w0). However, B's input into the polyno-mial evaluation is w, and thus (by the correctness condition of secure protocols) B's output mustequal Q0(w). Thus, with overwhelming probability B rejects unless Q0(w0) = Q0(w). As we willshow, this implies that �A = �B, in contradiction to the claim hypothesis. In the following fact, weformally show that with overwhelming probability, when B accepts, its output from the polynomialevaluation equals Q0(w) (recall that Q0 is the polynomial committed to by C in the non-malleablecommitment).Fact 6.13 For every ppt channel C,Pr[B = acc & �B 6= Q0(w)] < �(n)Proof: This fact is derived from the correctness condition of the secure polynomial evaluationand the soundness of the zero-knowledge proof. Loosely speaking, the correctness condition of asecure two-party protocol states that an adversary cannot cause the output of an honest party tosigni�cantly deviate from its output in an ideal execution (where the output is exactly accordingto the functionality de�nition). We stress that this has nothing to do with privacy and holds evenif the adversary knows the honest party's input.Now, let QC be the ordinary commitment sent by C to B before the polynomial evaluation.Then, by the de�nition of the augmented polynomial evaluation, B's output �B is either QC(w)(in the case of correct inputs) or ? (in the case of incorrect inputs). Therefore, in a stand-alonetwo-party setting, we have that with overwhelming probability �B 2 fQC(w);?g.We now show that this also holds in our concurrent setting. As we have mentioned, the cor-rectness requirement holds even if the adversary knows the honest party's input. That is, it holdseven if C knows w (and Q), in which case C can perfectly emulate the entire (A;C) execution,and we remain with a non-concurrent execution with B. The correctness condition thus holds andwe conclude that with overwhelming probability �B 2 fQC(w);?g. However, since B accepts onlyif y = f2n(�B) and this never holds when �B = ?, we have �B = QC(w) (with overwhelmingprobability). Getting back to our original concurrent setting, we have:Pr[B = acc & �B 6= QC(w)] < �(n)The proof is completed by noticing that the statement proved in the zero-knowledge proof implies(among other things) that QC = Q0. Thus, by the soundness of the zero-knowledge proof (whichalso holds in our setting), we conclude thatPr[B = acc & �B 6= Q0(w)] < �(n)On the other hand, we now show that when B accepts, with overwhelming probability it holds that�B = Q0(w0).Fact 6.14 For every ppt channel C,Pr[B = acc & �B 6= Q0(w0)] < �(n)62



Proof: In the �rst step of the validation stage, B receives a string y. The statement provedby C (in zero-knowledge) includes the condition y = f2n(Q0(w0)). Furthermore, by another checkmade by B, it rejects unless y = f2n(�B). Since f2n is a 1{1 function, we conclude that withoverwhelming probability, B rejects unless �B = Q0(w0).We now use the above two facts to show that when ((Q;w); (Q0; w0)) 62 R, party B rejects withoverwhelming probability. There are two possible cases for which ((Q;w); (Q0; w0)) 62 R: either(Q0; w0) = (Q;w) or w0 6= w.� Case (Q0; w0) = (Q;w): By Fact 6.13 (or equivalently by Fact 6.14), we have that with over-whelming probability, B rejects unless �A = Q(w) = Q0(w0) = �B , in contradiction to thehypothesis that �A 6= �B.� Case w0 6= w: By Facts 6.13 and 6.14 that with overwhelming probability whenever B acceptsit holds that Q0(w0) = �B = Q0(w). However, Q0 is a non-constant linear polynomial and is thus1{1. This implies that w0 = w, in contradiction to the case hypothesis.This completes the proof of Claim 6.12. We note that the above proof also holds for the augmentedde�nition of security. This can be seen by noticing that B rejects with overwhelming probabilityeven if C knows Q and w. Therefore, C can generate the session-key challenge itself.Lemma 6.10 is obtained by combining Claims 6.11 and 6.12.7 Simulating the Stand-Alone (A;C) ExecutionIn this section we show that C's view of its execution with A can be simulated by a non-interactivemachine C 00. That is,Theorem 7.1 (Theorem 4.8 restated): For every ppt channel C 0 interacting with A only, thereexists a non-interactive machine C 00, such that for every dictionary D � f0; 1gn and every auxiliaryinput � 2 f0; 1gpoly(n),nw; k2(Q(w)); output(C 0A(Q;w)(�))o 2�� �w;Un; output(C 00(�))	where Q is a random non-constant linear polynomial, w 2R D, and � = 1jDj.Proof: As we described in the proof sketch, it is enough to prove that for every ppt channel C 0,nw; k2(Q(w)); output(C 0A(Q;w)(�))o 2��nw;Un; output(C 0A(Q; ~w)(�))owhere w; ~w 2R D are independently chosen passwords from D. This implies the theorem becauseC 00 can simulate C 0's view by choosing Q and ~w and invoking an execution of C 0A(Q; ~w)(�). See theproof sketch for details on how C 00 works.Notice that the distributions fw;Un; output(C 0A(Q; ~w))g and f ~w;Un; output(C 0A(Q;w))g are equiv-alent. We therefore continue by showing that,nw; k2(Q(w)); output(C 0A(Q;w))o 2��n ~w;Un; output(C 0A(Q;w))o (30)We begin by showing that the pair (w;Q(w)) is (1 � �)-indistinguishable from ( ~w;Un) at the endof the polynomial evaluation. For this aim, we consider a modi�ed party A2 who halts at theconclusion of Stage 2 of the protocol (i.e., after the polynomial evaluation). Then, we show thatafter an execution of C with A2, the pre-key Q(w) is (1 � �)-pseudorandom with respect to C'sview (even when this view is augmented by w). That is,63



Lemma 7.2 For every ppt channel C 0 interacting with a party A2 who halts after the polynomialevaluation, nw;Q(w); output(C 0A2(Q;w))o ��n ~w;Un; output(C 0A2(Q;w))owhere Q is a random non-constant linear polynomial, and w; ~w 2R D.Proof: First note that the non-malleable commitment sent by A2 in this setting plays no role in thecontinuation of the protocol (the commitment is referred to only in the validation stage, which A2does not reach). Due to the hiding property of the commitment, if A2 commits to all-zeros insteadof to the pair (Q;w), this makes at most a negligible di�erence to C 0's success. This enables us toremove the non-malleable commitment entirely, because C 0 can internally simulate receiving such acommitment. From here on, we consider the modi�ed party A2 to be a party whose non-malleablecommitment is to zeros and who halts after the polynomial evaluation.What remains is thus the (A2; C 0) pre-key exchange, consisting of A2 sending Commit(Q) to C 0followed by a single polynomial evaluation. Since the polynomial evaluation is secure, C can learnat most a single point of Q(�), but otherwise gains no other knowledge of the random polynomialQ (as with the non-malleable commitment, Commit(Q) also reveals nothing of Q). As describedin the proof sketch, this implies that C can distinguish Q(w) from Un with probability at mostnegligibly greater than � (where the � advantage comes from the case that w turns out to equal theinput fed by C 0 into the polynomial evaluation). We now formally show how the limitation on C 0'sdistinguishing capability is derived from the security of the polynomial evaluation.The security of the polynomial evaluation states that C 0 can learn no more in a real executionthan in an ideal scenario where the polynomial evaluation is replaced by an ideal module computedby a trusted third party (the other messages sent by the parties in the protocol remain unmodi�ed inthe ideal model). Denote the ideal model parties by Â2 and Ĉ 0 and an ideal execution by Ĉ 0Â2(Q;w)(in this execution, Ĉ 0 is adversarial). By the de�nition of secure two-party computation, for everyreal adversary C 0 interacting with A2, there exists an ideal adversary Ĉ 0 interacting with Â2 suchthat the output distributions of C 0 and Ĉ 0 are computationally indistinguishable. However, by thede�nition of secure computation, the above output distributions should be indistinguishable alsowhen given parties' respective inputs, and speci�cally A's input (Q;w). That is,n((Q;w); output(C 0A2(Q;w)))o c� �((Q;w); output(Ĉ 0Â2(Q;w)))�In particular it follows thatn(w;Q(w); output(C 0A2(Q;w)))o c� �(w;Q(w); output(Ĉ 0Â2(Q;w)))� (31)n( ~w;Un; output(C 0A2(Q;w)))o c� �( ~w;Un; output(Ĉ 0Â2(Q;w)))� (32)Thus, it su�ces to show that for every ppt party Ĉ 0 interacting with Â2 in an ideal execution, itholds that �w;Q(w); output(Ĉ 0Â2(Q;w))� ��� ~w;Un; output(Ĉ 0Â2(Q;w))� (33)We thus consider an ideal execution of the pre-key exchange consisting of Â2 sending Ĉ 0 a com-mitment to Q followed by an ideal augmented polynomial evaluation. The view of Ĉ 0 in such anexecution consists only of a commitment to Q and the result of the polynomial evaluation. (Theexact de�nition of the augmented polynomial evaluation can be found in Section 3.)64



Notice that the distributions f ~w;Un; output(Ĉ 0Â2(Q;w))g and fw;Un; output(Ĉ 0Â2(Q;w))g areequivalent. This is because Â2 uses w nowhere in the execution (recall that the non-malleablecommitment sent by Â2 is to all-zeros). Therefore, we should actually show that,�w;Q(w); output(Ĉ 0Â2(Q;w))� ���w;Un; output(Ĉ 0Â2(Q;w))� (34)Assume for now that the execution of the polynomial evaluation is such that Ĉ 0 always re-ceives Q(wC) for some wC input by it into the evaluation (and not ? as in the case of incorrectinputs). Then, Ĉ 0's view is exactly (r;Commit(Q); Q(wC)), where r is the string of its randomcoin tosses and wC is determined by Ĉ 0 based on r and Commit(Q). For the sake of clar-ity, we augment the view by wC itself (i.e., we write Ĉ 0's view as (r;Commit(Q); wC ; Q(wC))).Assuming without loss of generality that Ĉ 0 always outputs its entire view, we conclude thatour aim is to show that fw;Q(w); (r;Commit(Q); wC ; Q(wC))g is (1 � �)-indistinguishable fromfw;Un; (r;Commit(Q); wC ; Q(wC))g. We now show that if wC 6= w, then the above two tuples arecomputationally indistinguishable. That is, we show thatfw;Q(w); (r;Commit(Q); wC ; Q(wC)) j wC 6= wgc� fw;Un; (r;Commit(Q); wC ; Q(wC)) j wC 6= wg (35)where Q is a random non-constant linear polynomial. First, by the hiding property of the commit-ment scheme, we can replace the commitment to Q in the above distributions with a commitmentto 02n. (If this makes a non-negligible di�erence, then Ĉ 0 can be used to distinguish a commitmentto Q from a commitment to 02n.) Next, notice that the following distributions are statistically close:fw;Q(w); (r;Commit(02n); wC ; Q(wC)) j wC 6= wg and fw;Un; (r;Commit(02n); wC ; Q(wC)) j wC 6=wg.37 Then, by returning the commitment to Q in place of the commitment to 02n, we obtainEq. (35).Since w 2R D do not appear anywhere in the Ĉ 0A2(Q;w) execution (recall that the non-malleablecommitment has been replaced with a commitment to zeros), we have that Pr[wC = w] � � (withequality when wC is chosen from D). Therefore, by separately considering the case that wC 6= w(where the distributions cannot be distinguished) and the case that wC = w (which occurs withprobability at most �), Eq. (34) follows.This completes the analysis of the simpli�ed case in which the the output from the polynomialevaluation is always Q(wC) for some wC (and never ?). However, Ĉ 0 may cause the result of theevaluation to be ? and we must show that this cannot help him. Intuitively, if Ĉ 0 were to receive ?then it would learn nothing about Q and this would thus be a \bad" strategy. However, it must beshown that Ĉ 0 cannot learn anything by the mere fact that it received ? and not Q(wC). However,Ĉ 0 learns nothing from the latter event, because it can determine it a-priori (i.e., the output is ?if and only if Ĉ 0 does not supply the commitment explicitly sent to it in the previous step by thehonest A (which will always input the corresponding decommit information)). This completes theproof of Lemma 7.2.37If Q was randomly chosen from all linear polynomials (rather than only from those that are non-constant),then due to pairwise independence the distributions would be identical. However, because Q cannot be constant,wC 6= w implies that Q(wC) 6= Q(w) always. On the other hand, Q(wC) = Un with probability 2�n. Therefore, withprobability 2�n the two distributions can be distinguished by seeing if the last two elements are equal or not. Thisis the only di�erence between the distributions and they are therefore statistically close.65



We now continue by showing that Lemma 7.2 implies Eq. (30) (and thus the current theorem);that is, nw;Q(w); output(C 0A2(Q;w))o ��n ~w;Un; output(C 0A2(Q;w))oimplies that nw; k2(Q(w)); output(C 0A(Q;w))o 2��n ~w;Un; output(C 0A(Q;w))oNotice that in the second equation, C 0 executes a complete execution of the protocol with A,rather than a truncated execution with A2. Therefore, the additional messages sent by A in thevalidation stage must be taken into account. Recall that in the validation stage A sends the stringy = f2n(Q(w)), proves a statement in zero-knowledge and sends a MAC (keyed by k1(Q(w))) ofthe entire message transcript. In order to simplify the proof, we assume that A sends the MAC-keyk1(Q(w)) itself during the validation stage. Given the MAC-key (i.e., k1(Q(w))), the channel C 0can always compute the MAC value by itself. Therefore, this only gives C 0 more information. Westart by ignoring the zero-knowledge proof (which, as we show below, is easily justi�ed in thiscontext).The proof is based on the fact that since G(s) = (f2n(s); k1(s); k2(s)) is a pseudorandom gen-erator, the output key k2(Q(w)) is (1�O(�))-pseudorandom, even given f2n(Q(w)) and k1(Q(w)).This must be justi�ed, since in our case the generator is seeded by Q(w) that is only (1 � �)-pseudorandom, whereas a generator is usually seeded by a truely random string. In the followingclaim we show that if given some information the string Q(w) is (1 � �)-pseudorandom (as pre-viously shown), then given the same information along with f2n(Q(w)) and k1(Q(w)), the stringk2(Q(w)) is (1 � 2�)-pseudorandom. (By \given" we mean that a ppt distinguishing machine isgiven these strings, along with the challenge string which is either k2(Q(w)) or Un.) Applied to theanalysis of our protocol, this means that even after A sends the string f2n(Q(w)) and the MAC inthe validation stage, the output session-key k2(Q(w)) is (1� 2�)-pseudorandom with respect to theview of C 0.Claim 7.3 Let I(�) be a random process, and assume that fw;Q(w); I(Q;w)g is (1��)-indistinguishablefrom f ~w;Un; I(Q;w)g. Then fw; k2(Q(w)); I(Q;w); f2n(Q(w)); k1(Q(w))g is (1�2�)-indistinguishablefrom f ~w;Un; I(Q;w); f2n(Q(w)); k1(Q(w))g.Indeed, the claim will be applied with I(Q;w) = output(C 0A2(Q;w)).Proof: We prove the claim in three steps:1. fw; I(Q;w); f2n(Q(w)); k1(Q(w)); k2(Q(w))g �� f ~w; I(Q;w); f2n(Un); k1(Un); k2(Un)g.This is due to the hypothesis fw; I(Q;w); Q(w)g �� f ~w; I(Q;w); Ung.2. f ~w; I(Q;w); f2n(Un); k1(Un); k2(Un)g c� f ~w; I(Q;w); f2n(U (1)n ); k1(U (1)n ); U (2)n g, where U (1)n andU (2)n are two independent uniform distributions.This is derived directly from the fact that (f2n(Un); k1(Un); k2(Un)) is pseudorandom.3. f ~w; I(Q;w); f2n(U (1)n ); k1(U (1)n ); U (2)n g �� f ~w; I(Q;w); f2n(Q(w)); k1(Q(w)); U (2)n gThis is because the hypothesis implies that fI(Q;w); Ung �� fI(Q;w); Q(w)g.Combining the above, we have thatfw; I(Q;w); f2n(Q(w)); k1(Q(w)); k2(Q(w))g 2�� f ~w; I(Q;w); f2n(Q(w)); k1(Q(w)); Ung66



and this completes the proof of the claim.Combining Lemma 7.2 and Claim 7.3, we now establish Eq. (30). We use the following facts:1. In Stage 3 the modi�ed A sends the string y = f2n(Q(w)), proves a statement in zero-knowledge and sends the MAC-key k1(Q(w)) (rather than the MAC-value).2. C 0 can simulate the zero-knowledge proof given by A in Stage 3, because here we are consider-ing a stand-alone execution here between A and C. Thus, the view of C 0 from the entire inter-action with A can be generated out of its view of the �rst two stages (i.e., output(C 0A2(Q;w))),the string y = f2n(Q(w)) and the MAC-key k1(Q(w)).Using I(Q;w) def= output(C 0A2(Q;w)), Lemma 7.2 asserts that the corresponding hypothesis ofClaim 7.3 holds. The corresponding conclusion (of Claim 7.3) implies that Eq. (30) holds (be-cause output(C 0A(Q;w)) is easily computed from output(C 0A2(Q;w)), y = f2n(Q(w)) and k1(Q(w))).The theorem follows.As we have mentioned in the proof sketch, the above proof remains unchanged when proving thesecurity of Protocol 3.2 with respect to the augmented de�nition of security (Def. 2.5). This isbecause in a stand-alone execution between A and C 0, the channel C 0 is given the session-keychallenge only after the entire execution has been completed. Therefore, the session-key challengecan be generated from the input/output distribution as a post-processing step.8 Simulating the (C;B) ExecutionIn this section show how the entire (C;B) execution can be simulated. The simulation is such thatthe joint distribution of C's view in the simulation along with the password and session-key is atmost (1�5�)-indistinguishable from the joint distribution of its view in a real execution along withthe password and session-key.Theorem 8.1 (Theorem 4.9 restated { simulating the (C;B) execution): For every ppt channelC interacting with A and B, there exists a ppt channel C 0 interacting only with A, such that forevery dictionary D � f0; 1gn and every auxiliary input � 2 f0; 1gpoly(n),nw; k2(Q(w)); output(C 0A(Q;w)(�))o 5��nw; k2(Q(w)); output(CA(Q;w);B(w)(�))owhere Q is a random non-constant linear polynomial, w 2R D, and � = 1jDj.Proof: As we have described in the proof sketch, this lemma is proved in two stages. First, inLemma 8.2, we show that when C interacts with A and a modi�ed party B6dec who does not outputany accept/reject bit, then the (C;B 6dec) execution can be simulated. Next, in Lemma 8.3, we showthat B's accept/reject bit can also be simulated. Combining these two lemmas together, we havethat the entire (C;B) execution can be simulated.8.1 Simulating the (C;B 6dec) executionLemma 8.2 (Lemma 4.10 restated): Let ~C be a ppt channel interacting with A and a modi�edparty B 6dec who does not output an accept/reject bit. Then, there exists a ppt channel C 0 interactingwith A only, such thatnw; k2(Q(w)); output(C 0A(Q;w))o c� nw; k2(Q(w)); output( ~CA(Q;w);B 6dec(w))o67



Proof: Intuitively, B 6dec's role can be simulated without any knowledge of w. Loosely speaking,this is because B 6dec only uses w in the ( ~C;B 6dec) polynomial evaluation, and in this evaluation ~Creceives no output. Formally, this is shown by proving that if B6dec were to input an arbitrary,�xed w0 2R D (into the polynomial evaluation), instead of w, then ~C would not be able to tell thedi�erence. That is, for every ppt channel ~C,nw; k2(Q(w)); output( ~CA(Q;w);B 6dec(w))o c� nw; k2(Q(w)); output( ~CA(Q;w);B 6dec(w0))o (36)(Observe that in the second distribution, B 6dec's input is w0.) We prove Eq. (36) even when ~C isgiven Q and w as auxiliary input. Now, since Q and w constitute all of A's input, the channel~C(Q;w) can perfectly simulate the entire (A;C) execution. That is, for every ppt channel ~C thereexists a ppt channel Ĉ such that the following two equations hold:fw; k2(Q(w)); output(ĈB 6dec(w)(Q;w))g � fw; k2(Q(w)); output( ~CA(Q;w);B 6dec(w)(Q;w))gfw; k2(Q(w)); output(ĈB 6dec(w0)(Q;w))g � fw; k2(Q(w)); output( ~CA(Q;w);B 6dec(w0)(Q;w))gIt thus remains to show thatnw; k2(Q(w)); output(ĈB6dec(w)(Q;w))o c� nw; k2(Q(w)); output(ĈB 6dec(w0)(Q;w))o (37)The latter is derived from the security of the polynomial evaluation. Intuitively, Ĉ obtains nooutput from the polynomial evaluation, whereas the polynomial evaluation is the only part of theentire protocol in which B6dec uses his input (of w or w0). Formally, we may consider a ppt Ĉ 0that emulates the entire (Ĉ; B 6dec) execution except for the polynomial evaluation that it actuallyperforms with B̂0 that uses input w or w0. That is, B̂0 is merely playing receiver in the polynomialevaluation protocol, whereas Ĉ 0 is some (fancy) adversary for that protocol. Still, the security ofthe latter protocol (as stand-alone) implies that Ĉ 0 cannot distinguish the case B̂0 has input w fromthe case it has input w0 (because the ideal-model adversary cannot do so). We conclude that Ĉcan distinguish the cases that B 6dec has input w or w0 with at most negligible probability. Eq. (37)follows, and so does Eq. (36).We are now ready to show how C 0 works (recall that C 0 interacts with A only and its aimis to emulate an execution of ~C with A and B6dec). Machine C 0 begins by selecting an arbitraryw0 2 D. Then, C 0 perfectly emulates an execution of ~CA(Q;w);B 6dec(w0) by playing B6dec's role in thethe (C;B 6dec) execution (C 0 can play B 6dec(w0)'s role because w0 is known to it), and relaying allmessages belonging to the (A;C) execution (i.e., passing each message sent by A to ~C, and eachmessage sent by ~C to A). Finally, C 0 outputs whatever ~C does. By the de�nition of C 0, we havenw; k2(Q(w)); output( ~CA(Q;w);B 6dec(w0))o � nw; k2(Q(w)); output(C 0A(Q;w))o (38)The lemma follows from Equations (36) and (38).8.2 Simulating B's accept/reject decision bitLemma 8.3 (Lemma 4.11 restated): Let B 6dec be the modi�ed party that does not output an ac-cept/reject bit. Then, for every ppt channel C interacting with A and B, there exists a ppt channel~C interacting with A and B 6dec, such thatnw; k2(Q(w)); output( ~CA(Q;w);B6dec(w))o 5��nw; k2(Q(w)); output(CA(Q;w);B(w))o68



Proof: We prove this lemma by showing how the accept/reject bit of B can be predicted by C.Speci�cally, we show that the MAC sent in the validation stage is such that if C was not reliable,then B rejects with probability 1�5�. This enables ~C to \predict" B's output-bit based on whetheror not C was reliable. We thus start by proving the security of the MAC when keyed by k1(�A)(recall that �A def= Q(w)). As we have mentioned in the proof sketch, we need to show that theMAC is secure only before B outputs its accept/reject bit. Thus, we consider a scenario in whichC interacts with A and the modi�ed party B6dec. In the following claim, we formally state thesecurity of the MAC. (Recall that for simplicity, we consider an implementation of a MAC by apseudorandom function. However, our proof can be extended to any secure implementation of aMAC.)Claim 8.4 (Claim 4.12 restated): Let C be an arbitrary ppt channel interacting with A and amodi�ed party B 6dec as in Lemma 8.3. Then, for every string t that di�ers from the (A;C)-message-transcript (and is polynomial-time computable by C), the value MACk1(�A)(t) is (1� 2�)-pseudorandom with respect to C's view.Proof: We prove this claim by �rst showing that the MAC-key k1(�A) is (1�O(�))-pseudorandombefore A sends the MAC in the validation stage. Formally, consider a modi�ed party A6mac who isexactly the same as A excepts that it does not send the MAC message. Then, we show that forevery ppt C, nk1(Q(w)); CA6mac(Q;w);B 6dec(w)o 2��nUn; CA 6mac(Q;w);B 6dec(w)o (39)where Q is a random non-constant linear polynomial and w 2R D. First, we claim that for everyppt channel C interacting with A 6mac and B 6dec, there exists a ppt channel C 0 interacting only withA 6mac, such that nk1(Q(w)); C 0A 6mac(Q;w)o c� nk1(Q(w)); CA 6mac(Q;w);B 6dec(w)oand nUn; C 0A 6mac(Q;w)o c� nUn; CA6mac(Q;w);B 6dec(w)oThe above two equations can be shown in the same way as Lemma 8.2 above. Therefore, in order toobtain Eq. (39), it is enough to show that for every ppt channel C 0 interacting only with A6mac(Q;w)nk1(Q(w)); C 0A6mac(Q;w)o 2��nUn; C 0A6mac(Q;w)oNow, by Lemma 7.2, we have that after the conclusion of the polynomial evaluation between A6macand C 0, it holds that Q(w) is (1��)-pseudorandom to C 0. We claim that this implies that k1(Q(w))is (1 � 2�)-pseudorandom to C 0 at the conclusion of the complete protocol between A6mac and C.This can be shown using an almost identical proof as in Claim 7.3. (We note that here we arein a standard stand-alone setting, and so the zero-knowledge proof can be simulated, and revealsnothing about k1(Q(w)).) This completes the proof of Eq. (39).We have so far established that the MAC-key k1(Q(w)) used by A is (1 � 2�)-pseudorandom.It thus remains to show that using a (1 � 2�)-pseudorandom string as a key to a pseudorandomfunction (for the MAC) yields a (1� 2�)-pseudorandom function. This then implies that the valueMACk1(�A)(t) is (1�2�)-pseudorandom with respect to C's view, for every t 6= tA where tA denotesthe (A;C) message-transcript, as required by the claim. (Recall that A sends MACk1(�A)(tA) inthe protocol execution and thus this value itself is not (1� 2�)-pseudorandom. However, since theMAC used is a (1 � 2�)-pseudorandom function, the claim holds for any t 6= tA). In the following69



claim, we prove thatMACk1(�A)(�) is a (1�2�)-pseudorandom function. As in Claim 7.3, we modelany information C may have learned about Q and w during the protocol with A6mac by a randomprocess I(�) (i.e., I(Q;w) denotes output(CA6mac(Q;w))).Claim 8.5 Assume that fk1(Q(w)); I(Q;w)g is (1�2�)-indistinguishable from fUn; I(Q;w)g. Fur-thermore, let fr(�) be a pseudorandom function when r is uniformly distributed. Then, givenI(Q;w), the function fk1(Q(w))(�) is (1� 2�)-pseudorandom.Proof: The proof is based on the idea that a string distinguisher that needs to distinguish k1(Q(w))from Un can simulate oracle queries to fk1(Q(w))(�) or fUn(�) depending on its input. Since we knowthat fUn(�) is indistinguishable from a random function (by de�nition), distinguishing fk1(Q(w))(�)from a random function essentially means distinguishing k1(Q(w)) from Un. Details follow.Let D be a ppt oracle machine that receives the output of the random process I(Q;w) as wellas oracle access to either fk1(Q(w)) or a random function f . Then,���Pr[Dfk1(Q(w))(I(Q;w); 1n) = 1]� Pr[Df (I(Q;w); 1n) = 1]���� ���Pr[Dfk1(Q(w))(I(Q;w); 1n) = 1]� Pr[DfUn (I(Q;w); 1n) = 1]��� (40)+ ���Pr[DfUn (I(Q;w); 1n) = 1]� Pr[Df (I(Q;w); 1n) = 1]��� (41)Eq. (41) is negligible by the de�nition of a pseudorandom function. On the other hand, Eq. (40) isbounded above by 2� + �(n), because otherwise a ppt machine D0 that, given I(Q;w) and tryingto distinguish k1(Q(w)) from Un, can invoke D on input (I(Q;w); 1n) and answer all oracle queriesby using fx, where x denotes its input string (which is either k1(Q(w)) or Un).This completes the proof of Claim 8.4.We are now ready to show how ~C works. Channel ~C runs the protocol (with A and B 6dec) by passingall messages, unmodi�ed, via C. Furthermore, ~C checks whether or not C was reliable during theexecution. Recall that C is reliable if the (A;C) and (C;B) executions are run in a synchronizedmanner, and C does not modify any of the messages sent by A or B. This is a syntactic feature,which is easily checked by ~C (since it views the entire interaction). If C was reliable then ~C outputsaccept for B, otherwise he outputs reject for B. This completes the simulation of C's interactionwith A and B. Let � ~C denote the simulated accept/reject bit output by ~C.Now, when ~C predicts B's output bit correctly, we have that C's view in this simulation isidentical to a real execution with A and B. This means that the di�erence in the experimentsreferred to in the lemma's conclusion equals the probability that ~C's prediction is wrong (i.e., theprobability that decB = acc and � ~C = rej or vice versa). Noticing that � ~C = acc if and only if Cis reliable, we have that for every ppt distinguisher D,���PrQ;whD�w; k2(Q(w)); ~CA(Q;w);B 6dec(w)� = 1i� PrQ;whD�w; k2(Q(w)); CA(Q;w);B(w)� = 1i���� Pr[decB = acc & reliableC = false] + Pr[decB = rej & reliableC = true]First, notice that when C is reliable, B always accepts. That is, Pr[decB = rej & reliableC = true]equals zero. We now show that Pr[decB = acc & reliableC = false] is at most negligibly more than5�, and this completes the proof of Lemma 8.3.Proposition 8.6 (Proposition 4.13 { restated): For every ppt channel C,Pr[decB = acc & reliableC = false] < 5�+ 1poly(n)70



Proof: The proof of this proposition is based on the security of the MAC sent in the validationstage. Intuitively, sending a MAC on the entire session transcript ensures that if any messageswere modi�ed (as in the case of an unreliable C), then this will be noticed by B. However, inour protocol, A and B may have di�erent MAC-keys (in which case nothing can be said aboutdetecting C's malicious behavior). Fortunately, the key-match property ensures that this happens(undetectably by B) with probability at most O(�).The security of the MAC, shown above in Claim 8.4 states the following. Let tA be A's messagetranscript. Then for every t 6= tA, the stringMACk1(�A)(t) is (1�2�)-pseudorandom with respect toC's view. By the de�nition of reliability, if C is not reliable then B's message transcript (denoted tB)is not equal to tA. That is, if C is not reliable we have thatMACk1(�A)(tB) is (1�2�)-pseudorandomwith respect to C's view.Now, party B's protocol de�nition is such that he rejects unless the last message he receivesequalsMACk1(�B)(tB), where k1(�B) is the MAC-key used by B. We stress that the key used by Bfor the MAC is k1(�B), whereas Claim 8.4 refers to a MAC keyed by k1(�A). However, if �A = �Bthen k1(�A) = k1(�B). Therefore, if �A = �B then the claim holds and the probability that Cgenerates the correct MAC-value is at most negligibly greater than 2�. That is,Pr[B = acc & reliableC = false & �A = �B ] < 2�+ 1poly(n)On the other hand, if �A 6= �B then irrespective of the MAC, the probability that B accepts is atmost negligibly more than 3�. This is due to the key-match property proven in Theorem 4.5. Weconclude that Pr[decB = acc & reliableC = false]= Pr[decB = acc & reliableC = false & �A 6= �B ]+Pr[decB = acc & reliableC = false & �A = �B]< 3�+ 2�+ 1poly(n)and the proposition follows.As stated above, this completes the proof of Lemma 8.3.8.3 ConclusionTheorem 8.1 is obtained by combining Lemmas 8.2 and 8.3.We note that when considering the augmented de�nition of security (Def. 2.5), the proof ofLemma 8.2 remains unchanged. This is because the lemma holds even in the case that ~C isgiven Q and w and can thus generate the session-key challenge itself. On the other hand, thereare some minor di�erences in the proof of Lemma 8.3. In particular, one must justify the cor-rectness of Claim 8.4 even when C may also be given k2(Q(w)). That is, we must show thatthe MAC-key k1(Q(w)) remains (1 � 2�)-pseudorandom to C, even if it is given the session-keyk2(Q(w)) as well. However, this is derived from the property of the pseudorandom generatorG(s) = (k1(s); k2(s); f2n(s)). The actual proof of this is very similar to that of Claim 7.3. The restof the proof remains almost the same.
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A Cryptographic ToolsIn this section we brie
y describe the tools used in our construction. That is, we describe securetwo-party computation, string commitment and non-malleable string commitment, the Richardson-Kilian zero-knowledge proof system, seed-committed pseudorandom generators and message au-thentication codes. We present comprehensive and formal de�nitions for secure two-party compu-tation as this forms the basis for the majority of our proofs.A.1 Secure Two-Party ComputationIn this section we present de�nitions for secure two-party computation. The following descriptionand de�nition is taken from [21].A two-party protocol problem is casted by specifying a random process which maps pairs ofinputs (one input per each party) to pairs of outputs (one per each party). We refer to such aprocess as the desired functionality, denoted f : f0; 1g� � f0; 1g� 7! f0; 1g� � f0; 1g�. That is, forevery pair of inputs (x; y), the desired output-pair is a random variable, f(x; y), ranging over pairsof strings. The �rst party, holding input x, wishes to obtain the �rst element in f(x; y); whereasthe second party, holding input y, wishes to obtain the second element in f(x; y).Whenever we consider a protocol for securely computing f , it is implicitly assumed that theprotocol is correct provided that both parties follow the prescribed program. That is, the jointoutput distribution of the protocol, played by honest parties, on input pair (x; y), equals thedistribution of f(x; y).We consider arbitrary feasible deviation of parties from a speci�ed two-party protocol. A fewpreliminary comments are in place. Firstly, there is no way to force parties to participate in theprotocol. That is, possible malicious behavior may consist of not starting the execution at all, or,more generally, suspending (or aborting) the execution at any desired point in time. In particular, aparty can abort at the �rst moment when it obtains the desired result of the computed functionality.We stress that our model of communication does not allow us to condition the receipt of a messageby one party on the concurrent sending of a proper message by this party. Thus, no two-partyprotocol can prevent one of the parties from aborting when obtaining the desired result and beforeits counterpart also obtains the desired result. In other words, it can be shown that perfectfairness { in the sense of both parties obtaining the outcome of the computation concurrently { isnot achievable in two-party computation. We thus give up on such fairness altogether.Another point to notice is that there is no way to talk of the correct input to the protocol. Thatis, a party can alway modify its local input, and there is no way for a protocol to prevent this.To summarize, there are three things we cannot hope to avoid.1. Parties refusing to participate in the protocol (when the protocol is �rst invoked).2. Parties substituting their local input (and entering the protocol with an input other than theone provided to them).3. Parties aborting the protocol prematurely (e.g., before sending their last message).The ideal model. We now translate the above discussion into a de�nition of an ideal model. Thatis, we will allow in the ideal model whatever cannot be possibly prevented in any real execution. Analternative way of looking at things is that we assume that the two parties have at their disposal atrusted third party, but even such a party cannot prevent speci�c malicious behavior. Speci�cally,76



we allow a malicious party in the ideal model to refuse to participate in the protocol or to substituteits local input. (Clearly, neither can be prevent by a trusted third party.) In addition, we postulatethat the �rst party has the option of \stopping" the trusted party just after obtaining its part ofthe output, and before the trusted party sends the other output-part to the second party. Such anoption is not given to the second party.38 Thus, an execution in the ideal model proceeds as follows(where all actions of the both honest and malicious party must be feasible to implement).Inputs: Each party obtains an input, denoted z.Send inputs to trusted party: An honest party always sends z to the trusted party. A maliciousparty may, depending on z, either abort or sends some z0 2 f0; 1gjzj to the trusted party.Trusted party answers �rst party: In case it has obtained an input pair, (x; y), the trustedparty (for computing f), �rst replies to the �rst party with f1(x; y). Otherwise (i.e., in caseit receives only one input), the trusted party replies to both parties with a special symbol, ?.Trusted party answers second party: In case the �rst party is malicious it may, depending onits input and the trusted party answer, decide to stop the trusted party. In this case thetrusted party sends ? to the second party. Otherwise (i.e., if not stopped), the trusted partysends f2(x; y) to the second party.Outputs: An honest party always outputs the message it has obtained from the trusted party. Amalicious party may output an arbitrary (polynomial-time computable) function of its initialinput and the message it has obtained from the trusted party.The ideal model computation is captured in the following de�nition.39De�nition A.1 (malicious adversaries, the ideal model): Let f : f0; 1g� � f0; 1g� 7! f0; 1g� �f0; 1g� be a functionality, where f1(x; y) (resp., f2(x; y)) denotes the �rst (resp., second) element off(x; y). Let C = (C1; C2) be a pair of polynomial-size circuit families representing adversaries inthe ideal model. Such a pair is admissible (in the ideal malicious model) if for at least one i 2 f1; 2gwe have Ci(I) = I and Ci(I;O) = O. The joint execution under C in the ideal model (on input pair(x; y)), denoted idealf;C(x; y), is de�ned as follows� In case C2(I) = I and C2(I;O) = O (i.e., Party 2 is honest),(C1(x;?) ; ?) if C1(x) = ? (42)(C1(x; f1(C1(x); y);?) ; ?) if C1(x) 6= ? and C1(x; f1(C1(x); y)) = ? (43)(C1(x; f1(C1(x); y)) ; f2(C1(x); y)) otherwise (44)� In case C1(I) = I and C1(I;O) = O (i.e., Party 1 is honest),(? ; C2(y;?)) if C2(y) = ? (45)(f1(x; y) ; C2(y; f2(x;C2(y))) otherwise (46)38This asymmetry is due to the non-concurrent nature of communication in the model. Since we postulate that thetrusted party sends the answer �rst to the �rst party, the �rst party (but not the second) has the option to stop thethird party after obtaining its part of the output. The second party, can only stop the third party before obtainingits output, but this is the same as refusing to participate.39In the de�nition, the circuits C1 and C2 represent all possible actions in the model. In particular, C1(x) = ?represents a decision of Party 1 not to enter the protocol at all. In this case C1(x;?) represents its local-output.The case C1(x) 6= ?, represents a decision to hand an input, denoted C1(x), to the trusted party. Likewise, C1(x; z)and C1(x; z;?), where z is the answer supplied by the trusted party, represents the actions taken by Party 1 afterreceiving the trusted party answer. 77



Equation (42) represents the case where Party 1 aborts before invoking the trusted party (andoutputs a string which only depends on its input; i.e., x). Equation (43) represents the case whereParty 1 invokes the trusted party with a possibly substituted input, denoted C1(x), and abortswhile stopping the trusted party right after obtaining the output, f1(C1(x); y). In this case theoutput of Party 1 depends on both its input and the output it has obtained from the trusted party.In both these cases, Party 2 obtains no output (from the trusted party). Equation (44) representsthe case where Party 1 invokes the trusted party with a possibly substituted input, and allows thetrusted party to answer to both parties (i.e., 1 and 2). In this case, the trusted party computesf(C1(x); y), and Party 1 outputs a string which depends on both x and f1(C(x); y). Likewise,Equation (45) and Equation (46) represent malicious behavior of Party 2; however, in accordanceto the above discussion, the trusted party �rst supplies output to Party 1 and so Party 2 does nothave an option analogous to Equation (43).Execution in the real model. We next consider the real model in which a real (two-party)protocol is executed (and there exist no trusted third parties). In this case, a malicious partymay follow an arbitrary feasible strategy; that is, any strategy implementable by polynomial-sizecircuits. In particular, the malicious party may abort the execution at any point in time, and whenthis happens prematurely, the other party is left with no output. In analogy to the ideal case, weuse circuits to de�ne strategies in a protocol.De�nition A.2 (malicious adversaries, the real model): Let f be as in De�nition A.1, and � bea two-party protocol for computing f . Let C = (C1; C2) be a pair of polynomial-size circuit familiesrepresenting adversaries in the real model. Such a pair is admissible (w.r.t �) (for the real maliciousmodel) if at least one Ci coincides with the strategy speci�ed by �. The joint execution of � under Cin the real model (on input pair (x; y)), denoted real�;C(x; y), is de�ned as the output pair resultingof the interaction between C1(x) and C2(y).We assume that the circuit representing the real-model adversary (i.e., the Ci which does not follow�) is deterministic. This is justi�ed by standard techniques.Security as emulation of real execution in the ideal model. Having de�ned the ideal andreal models, we obtain the corresponding de�nition of security. Loosely speaking, the de�nitionasserts that a secure two-party protocol (in the real model) emulates the ideal model (in which atrusted party exists). This is formulated by saying that admissible adversaries in the ideal-model areable to simulate (in the ideal-model) the execution of a secure real-model protocol (with admissibleadversaries).De�nition A.3 (security in the malicious model): Let f and � be as in De�nition A.2, Protocol �is said to securely compute f (in the malicious model) if there exists a polynomial-time computabletransformation of pairs of admissible polynomial-size circuit families A = (A1; A2) for the realmodel (of De�nition A.2) into pairs of admissible polynomial-size circuit families B = (B1; B2) forthe ideal model (of De�nition A.1) so thatfidealf;B(x; y)gx;y s.t. jxj=jyj c� freal�;A(x; y)gx;y s.t. jxj=jyjImplicit in De�nition A.3 is a requirement that in a non-aborting (real) execution of a secureprotocol, each party \knows" the value of the corresponding input on which the output is obtained.This is implied by the equivalence to the ideal model, in which the party explicitly hands the78



(possibly modi�ed) input to the trusted party. For example, say Party 1 uses the malicious strategyA1 and that real�;A(x; y) is non-aborting. Then the output values correspond to the input pair(B1(x); y), where B1 is the ideal-model adversary derived from the real-model adversarial strategyA1.Secrecy and correctness: By the above de�nition, the output of both parties together mustbe indistinguishable in the real and ideal models. The fact that the adversarial party's output isindistinguishable in both models formalizes the secrecy requirement of secure computation. Thatis, an adversary cannot learn more than what can be learned from his private input and output.On the other hand, the indistinguishability requirement on the honest party's output relates tothe issue of correctness. Loosely speaking, the correctness requirement states that if a party iscomputing f(x; y), then the adversary cannot cause him to receive f 0(x; y) for some f 0 6= f . This isof course true in the ideal model as a trusted party computes f . Therefore the indistinguishabilityof the outputs means that it also holds in the real model (this is not to be confused with theadversary changing his own private input which is always possible). It is furthermore crucial thatthe secrecy and correctness requirements be intertwined, see [12, 21] for further discussion.General plausibility results: Assuming the existence of trapdoor permutations, one may pro-vide secure protocols for any two-party computation (allowing abort) [46], as well as for anymulti-party computations with honest majority [26]. Thus, a host of cryptographic problems aresolvable assuming the existence of trapdoor permutations. Speci�cally, any desired (input{output)functionality can be enforced, provided we are either willing to tolerate \early abort" (as de�nedabove) or can rely on a majority of the parties to follow the protocol.A.2 String CommitmentCommitment schemes are a basic ingredient in many cryptographic protocols. They are used toenable a party to commit itself to a value while keeping it secret. In a latter stage the commitmentis \opened" and it is guaranteed that the \opening" can yield only a single value determined in thecommitting phase.Loosely speaking, a commitment scheme is an e�cient two-phase two-party protocol through whichone party, called the sender, can commit itself to a value so that the following two con
ictingrequirements are satis�ed.1. Secrecy (or hiding): At the end of the �rst phase, the other party, called the receiver, does notgain any knowledge of the sender's value (this can be formalized analogously to the de�nitionof indistinguishability of encryptions). This requirement has to be satis�ed even if the receivertries to cheat.2. Unambiguity (or binding): Given the transcript of the interaction in the �rst phase, thereexists at most one value that the receiver may later (i.e., in the second phase) accept as alegal \opening" of the commitment. This requirement has to be satis�ed even if the sendertries to cheat.The �rst phase is called the commit phase, and the second phase is called the reveal phase. Withoutloss of generality, the reveal phase may consist of merely letting the sender send, to the receiver,the original value and the sequence of random coin tosses that it has used during the commit phase.79



The receiver will accept the value if and only if the supplied information matches its transcript ofthe interaction in the commit phase.Our informal de�nition above describes a perfectly binding commitment scheme. That is, thereexists only a single value that the receiver will accept as a decommitment. Therefore, even if thesender is computationally unlimited, he cannot cheat.We now present a construction of a non-interactive, perfectly binding bit commitment usingone-way permutations. Speci�cally, we use a one-way permutation, denoted f , and a hard-corepredicate for it, denoted b. In fact, we may use any 1{1 one-way function.1. Commit Phase: To commit to a bit � 2 f0; 1g, the sender uniformly selects r 2 f0; 1gn andsends the pair (f(r); b(r)� �).2. Reveal Phase: The sender reveals the bit � and the string r used in the commit phase. Thereceiver accepts � if f(r) = � and b(r) � � = � where (�; �) is the receiver's view of thecommit phase.It is easy to see that this construction is a secure commitment scheme.In order to commit to a string of n bits, � = �1 � � � �n, the sender simply commits to each �iseparately as above. We denote the commitment by Commit(�) = C(�; r) where the randomnessused by the sender is r = r1; : : : ; rn (8i ri 2R f0; 1gn).A.3 Non-Malleable String CommitmentLoosely speaking, a non-malleable string commitment scheme is a commitment scheme with theadditional requirement that given a commitment, it is infeasible to generate a commitment to arelated value. We note that the commitment scheme presented in Section A.2 is easily malleable.40The concept of non-malleability was introduced by Dolev et. al. in [17], where they also provide aperfectly binding, (interactive) non-malleable commitment scheme based on any one-way function.We now present an informal de�nition of a non-malleable commitment scheme. Let A be anadversary who plays the receiver in a commitment protocol with a sender S. Furthermore, Aconcurrently plays the sender in a commitment protocol with a receiver T (one can look at Sand T as executing a commitment protocol, with A playing a man-in-the-middle attack). To bemore exact, consider the following experiment. Let D be some distribution of strings from whichthe values being committed to are chosen. In the experiment, the sender S chooses � 2R D andcommits to � in an execution of the commitment protocol with A as the receiver. Concurrently, theadversary A plays the sender in a commitment protocol with T as the receiver. We denote by � thevalue committed to by A in the execution between A and T . The adversary A's aim is to succeed inhaving its committed value � be related to � (A is not considered to have succeeded if � = �; thatis, copying is not ruled out). Thus, for a given polynomial-time computable relation R, we denoteby �(A; R), the probability that A's commitment is to a string � such that (�; �) 2 R. That is,�(A; R) denotes the probability that A succeeds in generating a commitment that is related (bythe relation R) to the commitment sent by S.On the other hand, we consider another experiment involving an adversarial simulator A0 whodoes not participate as the receiver in a commitment protocol with S. Rather, A0 sends T a40The malleability of the commitment scheme of Section A.2 can be seen as follows. Let (y; b) be a commitment tosome bit � (i.e., y = f(r) for some string r, and b(r)� b = � ). Then, given this commitment, it is easy to generate acommitment to � by de�ning C(� ) = (y; 1� b). We stress that this can be done without any knowledge whatsoeverof the value of � itself. 80



commitment to � and we denote by �0(A0; R) the probability that (�; �) 2 R for � 2R D. That is,�(A0; R) denotes the a priori probability that a related commitment can be generated. We stressthat A0 must generate a \related" commitment without seeing any commitment to �.We say that a string commitment scheme is non-malleable if for every distribution D, everypolynomial-time relation R and every adversary A, there exists an adversarial simulator A0 suchthat j�(A; R)��0(A0; R)j is negligible. Intuitively, this implies that the fact that A receives acommitment to � does not noticeably help it in generating a commitment to a related �. Thisformalization is conceptually similar to that of semantic security for encryptions (that states thatthe ciphertext itself does not help in learning any function of the plaintext).A.4 The Zero-Knowledge Proof of Richardson and KilianWe �rst review the notion of zero-knowledge. Loosely speaking, zero-knowledge proofs are proofswhich yield nothing beyond the validity of the assertion. That is, a veri�er obtaining such a proofonly gains conviction in the validity of the assertion. Using the simulation paradigm this require-ment is stated by postulating that anything that is feasibly computable from a zero-knowledgeproof is also feasibly computable from the valid assertion alone.The above informal paragraph refers to proofs as to interactive and randomized processes. Thatis, here a proof is a (multi-round) protocol for two parties, call verifer and prover, in which theprover wishes to convince the veri�er of the validity of a given assertion. Such an interactiveproof should allow the prover to convince the veri�er of the validity of any true assertion, whereasno prover strategy may fool the veri�er to accept false assertions. Both the above completenessand soundness conditions should hold with high probability (i.e., a negligible error probability isallowed). The prescribed veri�er strategy is required to be e�cient. Zero-knowledge is a property ofsome prover strategies. More generally, we consider interactive machines which yield no knowledgewhile interacting with an arbitrary feasible (i.e., probabilistic polynomial-time) adversary on acommon input taken from a predetermined set (in our case the set of valid assertions).De�nition A.4 (zero-knowledge [28]): A strategy P is zero-knowledge on inputs from S if, forevery feasible strategy V �, there exists a feasible computationM� so that the following two probabilityensembles are computationally indistinguishable:1. f(P; V �)(x)gx2S def= the output of V � when interacting with P on common input x 2 S; and2. fM�(x)gx2S def= the output of M� on input x 2 S.Note that whereas P and V � above are interactive strategies, M� is a non-interactive computation.The above de�nition does not account for auxiliary information which an adversary may haveprior to entering the interaction. Accounting for such auxiliary information is essential for usingzero-knowledge proofs as subprotocols inside larger protocols.A general plausibility result [25]: Assuming the existence of commitment schemes, there existzero-knowledge proofs for membership in any NP-language. Furthermore, the prescribed proverstrategy is e�cient provided it is given an NP-witness to the assertion that is proven.The protocol of Richardson and Kilian [41]We actually simplify their presentation in a way that su�ces for our own purposes. In essence, theprotocol consists of two parts. In the �rst part, which is independent of the actual common input,81



m instances of coin tossing into the well [7] are sequentially executed where m is a parameter (tobe discussed below). Speci�cally, the �rst part consists of m iterations, where the ith iterationproceeds as follows: The veri�er uniformly selects vi 2 f0; 1gn, and commits to it using a perfectlyhiding commitment scheme. Next, the prover selects pi 2R f0; 1gn, and sends a perfectly bindingcommitment to it. Finally, the veri�er decommits to vi. (The result of the ith coin-toss is de�nedas vi � pi and is known only to the prover.)In the second part, the prover provides a witness indistinguishable (WI) proof [18] that eitherthe common input is in the language or one of the outcomes of the m coin-tosses is the all-zerostring (i.e., vi = pi for some i). Intuitively, since the latter case is unlikely to happen in an actualexecution of the protocol, the protocol constitutes a proof system for the language. However, thelatter case is the key to the simulation of the protocol in the concurrent zero-knowledge model.We utilize this in our setting as well, when setting m to be equal to the total number of rounds inour own protocol (not including this subprotocol) plus any non-constant function of the securityparameter n. The underlying idea is that whenever the simulator may cause vi = pi to happenfor some i, it can simulate the rest of the protocol (and speci�cally Part 2) by merely runningthe WI proof system with vi (and the prover's coins) as a witness. (By the WI property, such anexecution will be indistinguishable from an execution in which an NP-witness for the membershipof the common input (in the language) is used.)A.5 Seed-Committed Pseudorandom GeneratorsA seed-committed pseudorandom generator is an e�ciently computable deterministic function Gmapping a seed to a (commitment,sequence) pair that ful�lls the following conditions:� The sequence is pseudorandom, even given the commitment.� The partial mapping of the seed to the commitment is 1{1.We use the following implementation ([9, 8]) of a seed-committed generator. Let f be a 1{1 one-wayfunction and b a hard-core of f . Then de�neG(s) = hf2n(s); b(s)b(f(s)) � � � b(f2n�1(s))iThis generator clearly ful�lls the requirements: f2n(s) is the commitment and b(s) � � � b(f2n�1(s))is the sequence.We note that the following naive implementation does not work. Let G be any pseudorandomgenerator and consider the seed as a pair (s; r). Then de�ne the mapping (s; r) 7! (C(s; r); G(s))where C(s; r) is a commitment to s using randomness r. It is true that the sequence is pseudorandomgiven the commitment. Furthermore, for every s 6= s0 and for every r; r0 we have that C(s; r) 6=C(s0; r0). However, there may be an s and r 6= r0 for which C(s; r) = C(s; r0) and therefore themapping of the seed to the commitment is not necessarily 1{1.A.6 Message Authentication Codes (MACs)A Message Authentication Code, or MAC, enables parties A and B who share a joint secret keyto achieve data integrity. That is, if B receives a message which is purportedly from A, then byverifying the MAC, B can be sure that A indeed sent the message and that it was not modi�edby any adversary on the way. A Message Authentication Scheme is comprised of the followingalgorithms:1. A Key Generation algorithm that returns a secret key k.82



2. A Tagging algorithm that given a key k and a message m, returns a tag t =MACk(m).3. A Veri�cation algorithm that given a key k, a message m and a candidate tag t, returns a bitb = Verifyk(m; t).We now brie
y, and informally, describe the security requirements of a MAC. Let AMACk(�) be appt adversary with oracle access to the tagging algorithm and let m1; : : : ;mq be the list of A'soracle queries during her execution. Upon termination, A outputs a pair (m; t). We say that Asucceeds if for every i, m 6= mi and furthermore Verifyk(m; t) = 1 (i.e., A generates a valid tag fora previously unseen message). Then, a MAC is secure if for every ppt machine A, the probabilitythat A succeeds is negligible.This ensures integrity, because if an adversary modi�es a message sent from A to B to onenot previously seen, then B's veri�cation will surely fail (there is an issue of replay attacks whichwe ignore here). The property that A cannot �nd an appropriate tag t for a \new" m, is calledunpredictability.It is easy to see that any pseudorandom function is a secure implementation of a MAC. This isbecause any random function is unpredictable and any non-negligible success in generating t suchthat f(m) = t (for an \unseen" m), must mean that f is not random.

83


