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1 IntroductionConsider a user that makes a query to a database. A lot of research was devoted to methods thatprotect the database against a \curious" user. For example, there are methods that enable a userto ask queries to a statistical database in a way that prevents him from reconstructing the value ofparticular entities (e.g., [2, 9, 13, 14, 26] and [27, Section 10.5]).It may seem surprising at �rst glance that there are no methods to protect the privacy of theuser. For example, an investor that queries the stock-market database for the value of a certainstock, may wish to keep private the identity of the stock he is interested in. However, it is notdi�cult to prove (see Section 5.1) that if the user wants to keep its privacy (in the informationtheoretic sense), then essentially the only thing he can do is to ask for a copy of the whole database.Clearly, this is too much communication overhead, which makes it practically unacceptable.The rapid development of distributed databases (see [8]) and fast communication networksresults in many scenarios in which the same database is replicated at several sites. This raises hopeto get around the di�culty of achieving privacy in the single server scenario. It may be possible tomake queries to several servers such that from the answers the desired information can be obtained,while each server (by observing only the query sent to him) gets no information on the identity ofthe item the user is interested in.Before going any further let us make the problem more concrete. We view the database as abinary string x = x1 � � �xn of length n. Identical copies of this string are stored by k � 2 servers.The user has some index i, and he is interested in obtaining the value of the bit xi. To achievethis goal, the user queries each of the servers and gets replies from which the desired bit xi canbe computed. The query to each server is distributed independently of i and therefore each servergains no information about i. A scheme with these properties is called a Private Information Retrieval(PIR) scheme.We present various PIR schemes with signi�cantly smaller communication complexity thanthe obvious n-bit solution (i.e., asking for a copy of x). In particular, we obtain a two-serverscheme with communication complexity O(n1=3). Our schemes are based on exclusive-or (linearsummations, or sum) queries; this type of queries is very common and is actually implemented inseveral \real-world" databases (see [9, 14, 27]).1.1 Omitted from this VersionOur original work [12] contained a full description of� Schemes for a constant number, k, of servers with communication complexity O(n1=k).� A scheme for 13 log2 n + 1 servers with total communication complexity 13(1 + o(1)) � log22 n �log2 log2(2n).These constructions are based on polynomial interpolation. They are similar to (but more e�cientthan) schemes presented in [5, 6] for the related (but di�erent) context of instance hiding (seediscussion below). Furthermore, these schemes have been subsumed by subsequent work of Am-bainis [3]. Following a recommendation by an anonymous referee, the description of these schemeswas omitted from the current version.Also omitted with the abovementioned schemes are their modi�cations to a setting in whichprivacy is maintained with respect to coalitions of t > 1 servers. In particular, for integer function1



t and integer constant c > 1, a t(n)-private information retrieval scheme for c � t(n) servers, withcommunication complexity O(t(n) � cpn), was given.1.2 Related WorkFor the case k = 2 (i.e., two servers), the question whether replication of databases can help wasexplicitly asked, but not answered, by Fortnow and Szegedy [15]. A �rst indication that somethingbetter than the user asking for a copy of x can be done is given by a result of Pudl�ak and R�odl[22]. With a complexity-theory motivation in mind they studied the following question. There arethree players: player S1 that holds a string x and an index j, player S2 that holds the same stringx and an index `, and player U that knows both j and `. The goal is for S1 and S2 to send a singlemessage each to U so that he will be able to compute the bit xj+`modn. Pudl�ak and R�odl showthat this can be done using o(n) bits (more precisely, O(n log logn= logn)). Using their protocol, atwo-server PIR scheme can be constructed as follows: The user chooses uniformly at random a pairof indices j; ` such that j+` = i mod n. He sends j to the �rst server, ` to the second and the threeof them execute the [22] protocol. This yields a two-server PIR with communication complexityo(n).Independently of our work, Babai, Kimmel, and Lokam [4] studied the following problem,related to the one studied in [22] (where, again, the motivation comes from complexity theory).There are k + 1 players S1; : : : ; Sk and U . The player U holds k indices i1; : : : ; ik (each is an ` bitstring). Each player Sj holds an n = 2` bit string x (common to all of them) and all the indicesbut ij. The goal is for each Sj to send a single message to U so that U will know the value ofthe bit xi1�i2�����ik , where � here denotes bitwise exclusive-or. A protocol for this problem can betransformed into a private information retrieval scheme with an additional cost of k(k � 1) log2 nbits as follows: The user chooses uniformly at random k indices (log2 n bit strings) i1; : : : ; ik suchthat i1 � � � � � ik = i. He then sends to the j-th server all the indices but ij, and the serversexecute the protocol. Babai et al. [4] obtain the following results: for 2 � k < log2 n playersthe total communication is O(knH2(1=(k+1))) (where H2(�) is the Binary Entropy function), and fork � log2 n the total communication is 2 log2 n. For example, for k = 2 their protocol (and hencethe private information retrieval scheme) uses O(nH2(1=3)) � O(n0:92) bits. For k = c log2 n thecommunication is polylogarithmic (note however, that the transformation into a private informationretrieval scheme will cost additional c2 log32 n bits in this case). To conclude, using the results of[4] one can get much better private information retrieval schemes than those that can be obtainedusing [22], but still not as good as the schemes constructed in our paper.In [25, 1, 24, 5, 6] the instance hiding problem is introduced and studied. In this problem, acomputationally bounded player U that holds an input (instance) i wishes to compute a knownfunction f on input i. The function f may be hard to compute, so U can query k computationallyunbounded oracles to achieve this task (each oracle can compute f(j) for any j). Still, the playerwants to keep its input i hidden from the oracles. In a sense, this problem can be viewed as if theoracles have a string f(1)f(2) : : :f(n) and U wants to obtain the ith bit of this string, which is thevalue f(i), while keeping i private. In this sense the instance hiding model is related to the modelof private information retrieval. Some of the techniques used in [5, 6] are relevant to our problem,especially the use of low degree polynomials, introduced by Beaver and Feigenbaum [5], and furtherdeveloped by Beaver, Feigenbaum, Kilian and Rogaway [6]. We remark that the results of [5, 6]cannot be directly applied to the important case of two servers. For details see [12].2



It should be emphasized that despite these similarities, there are substantial di�erences betweenthe models and between the quality of the results. In our model the value n is considered a feasiblequantity, while in the instance hiding model n is exponential in the length of the instance, so itis an infeasible quantity. Consequently, the instance-hiding model is aimed towards poly(jij)-timecomputations for U , allowing only solutions in which the communication between the user and theservers is poly-logarithmic in n. In contrast, the main thrust of our work is the case with smallnumber, k, of servers (speci�cally, a constant like 2). We do allow the user to perform n" timecomputation (where " > 0 is a constant), and in particular send and receive messages longer thanpolylog(n).1.3 Subsequent WorkFollowing the conference presentation of this work, Ambainis [3] constructed more e�cient PrivateInformation Retrieval (PIR) schemes for k > 2 servers. His k-server scheme achieves communicationcomplexity O(n1=(2k�1)). The construction is recursive: A k+1-server scheme is built from a givenk-server scheme (with certain properties). The basis of the recursion (i.e., k = 2) is our two-serversscheme.Ostrovsky and Shoup have extended the PIR scope, and invented schemes for private informa-tion storage [21]. These are schemes which, in the same distributed scenario as PIR, enable usersboth to read and to write into the database in a private manner (where privacy in this case is onlywith respect to the servers and not against other users). Interestingly, Ostrovsky and Shoup achievethis with an addition of one server and a poly-logarithmic communication overhead (compared tothe retrieval only schemes). They use and adapt techniques of Oblivious RAM [18], and inheritsome properties of this construction. In particular, the protocols are multi-round and the data isstored in coded form (in particular, di�erent servers do not hold replications of the same data). Westress that [21] is the only work to date which utilizes multi-round protocols.Chor and Gilboa [10] have relaxed the privacy requirement by considering computationally-bounded servers. This weaker but natural notion of privacy opens the door to improvements incommunication complexity over what is known for information theoretic privacy. In particular,assuming the existence of one-way functions, they present a two-server computational PIR schemewhose communication complexity is O(n"), for every " > 0.Kushilevitz and Ostrovsky [20] observed that the linear lower bound on communication complex-ity (see Section 5.1) ceases to hold for computational privacy. Indeed, assuming the intractabilityof the Quadratic Residuosity problem, they presented a single-server computational PIR schemewhose communication complexity is O(n"), for every " > 0.Gertner et. al. [17] have extended the privacy requirement so that the database's privacy isprotected too. Speci�cally, they consider information retrieval protocols where the only informationabout the database contents revealed in one invocation is a single physical bit. They present generaltransformations of PIR schemes satisfying certain properties into PIR schemes that guarantee thedatabase privacy as well, with a logarithmic overhead in the communication complexity. Thesetransformations are applicable to all known k-server PIR schemes, for k � 2.1.4 OrganizationIn Section 2 we introduce the model and discuss its attributes. In Section 3 we present the mainresults of this paper { a number of PIR schemes. Section 4 extends the problem to the case where3



we are interested in retrieving a block of bits (and not only a single bit). Section 5 provides somesimple lower bounds for private retrieval schemes with a single server and for schemes with moreservers but very restricted types of queries.2 Model, De�nitions, and DiscussionIn this section we de�ne a special case of private information retrieval schemes, where the interactionis carried out in one round. We also discuss the motivation underlying the de�nition and possibleextensions thereof.2.1 De�nitionsFollowing the discussion in the introduction, we consider a randomized strategy for the user, whichon input an index i 2 [n] 4= f1; : : : ; ng and random input r (of length `rnd), produces k queries (oflength `q each), Q1(i; r); : : : ; Qk(i; r), one per server. The servers respond according to strategiesA1; : : : ; Ak, with replies (of length `a) that depend on the contents of the database, denoted x, andthe corresponding query. The user reconstructs the desired bit xi from these k replies, togetherwith i and r. The privacy requirement is that each individual query is distributed independentlyof i and thus the server gains no information about the identity of the desired item.De�nition 1 (Private Information Retrieval { one-round schemes): A k-server Private InformationRetrieval (PIR) scheme for database length n consists ofk query functions, Q1; : : : ; Qk : [n]� f0; 1g`rnd 7! f0; 1g`q;k answer functions, A1; : : : ; Ak : f0; 1gn � f0; 1g`q 7! f0; 1g`a;a reconstruction function, R : [n]� f0; 1g`rnd � (f0; 1g`a)k 7! f0; 1g.These functions should satisfyCorrectness: For every x 2 f0; 1gn, i 2 [n], and r 2 f0; 1g`rndR(i; r; A1(x;Q1(i; r)); : : : ; Ak(x;Qk(i; r))) = xi :Privacy: For every i; j 2 [n], s 2 [k], and q 2 f0; 1g`q,Pr(Qs(i; r) = q) = Pr(Qs(j; r) = q)where the probabilities are taken over uniformly chosen r 2 f0; 1g`rnd.This de�nition can be extended to multi-round protocols, but since all our schemes are just one-round schemes, such an extension is not needed in the present work. Actually, in our schemes allservers have the same answer function (i.e., A1 = : : : = Ak), and the k query functions are verysimilar.2.2 DiscussionWe now spell out some of the attributes of the above de�nition.4



Perfect Privacy: The privacy requirement stated as equality of the two probability distributionsis an information theoretic notion. It means that even a (possibly malicious) computationally-unbounded server cannot get any indication on the identity of the desired item. Relaxations suchas requiring statistical proximity or even just computational indistinguishability may su�ce incertain contexts (cf., [10]).Memoryless protocol: Both the user and server strategies are history independent. Thus,correctness and privacy are maintained even when di�erent users (some of them possibly malicious)execute the protocols sequentially and/or concurrently.Deterministic server strategies: Randomized server strategies do not o�er any advantageover deterministic ones in our context (where the concerns are correctness and privacy of the user).However, randomized server strategies are essential for database privacy as considered in [17].Non-collusion: We assume that the servers do not collude in trying to violate the user's privacy.This does not necessarily mean that they are forbidden from communicating. Such communicationmay be necessary for other reasons such as updating the contents of the database. We viewthe servers as providers of private access to the database. A detected violation of the privacyguarantees will result in severe damage to the server. It is as if a bank was caught in fraud. Thus,collusion is way too risky from the server's point of view. In the rare case where the user valuesits potential loss as more substantial than the server's risk, the user should not use a PIR schemein which privacy depends on a non-collusion assumption. The single-server computational PIRscheme of [20] addresses this concern.Coalitions: Information-theoretic PIR schemes which tolerate collusions of up to a certain num-ber of servers provide an alternative answer to the above concerns. Speci�cally, the privacy re-quirement in De�nition 1 can be generalized to coalitions of up to t < k servers by requiring that,for every s1; :::; st 2 [k], the joint distribution of (Qs1(i; r); :::;Qst(i; r)), where r is uniformly dis-tributed over r 2 f0; 1g`rnd, is independent of i. Such schemes have been presented in [12] (seeSubsection 1.1).2.3 ExtensionsPIR of Blocks: In a more realistic model of private information retrieval, the data is organizedin records (or blocks) rather than single bits. Clearly, a block may be retrieved by retrieving eachof its bits, but signi�cant saving is possible by taking advantage of the block structure (i.e., thefact that we only need to hide the identity of the block). Such schemes are presented in Section 4.Search by Keywords: Throughout this work, we assume that the user knows the physicallocation of the information that it is interested in. A more realistic model allows the user toretrieve information based on keywords. Such schemes are presented in [11].5



2.4 Complexity MeasuresThe main complexity measures we are interested in is the number of servers, k, and the commu-nication complexity of the protocols, considered as a function of n and k. In addition, we requirethat all computations (of the user and the servers) be polynomial-time in n. Actually, in all ourschemes, the server's action can be implemented in time linear in n, and the user's actions can beimplemented in time linear in the communication complexity (which is typically sublinear in n).In some applications, the (servers') computational overhead may be considered too high. Insuch cases, trade-o�s between privacy and computational overhead may be considered. Speci�cally,the database may be partitioned (possibly at random) into several portions. The user wishing toretrieve an item will disclose the identity of the relevant portion, and invoke the PIR scheme toobtain the speci�c item from this portion. Clearly, the identity of the item within the portion willremain unknown to each individual server; yet the server's computation will now be linear in theportion length.3 Single Bit PIR SchemesAll PIR schemes presented in this section are of the \linear summation" type. In these schemes, theuser sends queries in the form of sequences of subsets S1; :::; St � f1; : : : ; ng, and each server replieswith a corresponding sequence of bits, �j2S1xj; :::;�j2Stxj . We start by describing a very simple 2-server scheme which is the basis of all the schemes in this section. In Subsection 3.2, we generalizethe scheme to 2d servers and in Subsection 3.3 we present an additional idea which allows toreduce the number of servers to about 2d=d while maintaining about the same communication costs.Subsection 3.4 contains a generic transformation which may be applied to reduce the communicationcomplexity of schemes in which the user's queries are longer than the servers' responses. Thistransformation is applicable to the schemes of Subsections 3.1 and 3.2, however the custom-madetransformation in Subsection 3.3 yields superior results.Notation: We use the following notations throughout the paper:� U { a (generic) user.� SRV1; : : : ;SRVk { the servers.� x = x1 � � �xn { a string in f0; 1gn, known to each server, representing the database.� i { the index in x in which U is interested.� [m] 4= f1; 2; :::;mg.For a set S and an element a, let S � a 4= ( S [ fag if a =2 SS n fag if a 2 S6



3.1 A Basic Two-Server SchemeWe start by describing a very simple PIR scheme that allows U to privately obtain the bit xi byreceiving a single bit from each of two servers. The user uniformly selects a random set S � [n](i.e., each index j 2 [n] is selected with probability 1=2). The user sends S to SRV1 and S � ito SRV2. Each server, upon receipt of the message I � [n], replies with a single bit which is theexclusive-or of the bits with indices in I (i.e., SRV1 replies with �j2Sxj whereas SRV2 replies with�j2S�ixj). The user exclusive-ors the answers it has received, thus retrieving the desired bit xi.Clearly, none of the servers has obtained any information regarding which index was desired by theuser (as each of the servers obtains a uniformly distributed subset of [n]).Although the above scheme is less obvious than a solution in which one server sends all n bitsto the user, it is not superior as far as the total amount of communication goes. Indeed each serversent only a single bit, but the messages sent by the user (specifying arbitrary subsets of [n]) are nbits long. Yet, this simple scheme serves as a basis for more e�cient ones.3.2 A Multi-Server SchemeIn this subsection, we present a scheme for any number k � 2 of servers. The scheme presentedhere, is combined with the covering codes method that we present in the next subsection to yieldimproved results.The scheme presented in this subsection allows the user to obtain the desired bit by askingqueries to k = 2d servers, for any d � 1, and requires total communication of 2d � (d � n1=d +1). The key idea is to associate [n] with the d-dimensional cube [`]d and generalize the simplescheme of Subsection 3.1, which may be viewed as the 1-dimensional case (i.e., d = 1). In thegeneralization, each of the 2d servers is queried for the exclusive-or of the bits in a uniformlydistributed (generalized) subcube. As in the basic scheme, the di�erent subcubes are related, andthis allows to retrieve the desired bit. The saving in communication comes from the fact thatsubcubes can be described more succinctly than general subsets.We assume, without loss of generality that n = `d. We embed x in a d-dimensional cube,associating each position j 2 [n] with a d-tuple (j1; :::; jd) 2 [`]d, in a natural manner. In particular,the index i of the desired bit is associated with a d-tuple (i1; : : : ; id) 2 [`]d. It will also be convenientto associate the k = 2d servers with strings in f0; 1gd. The scheme works as follows.1. U chooses uniformly and independently d random subsets S01 ; S02; : : : ; S0d � [`]. Based on thesesubsets it de�nes another d subsets of [`] by S11 = S01 � i1; S12 = S02 � i2; : : : ; S1d = S0d � id.These 2d subsets are paired in a natural way; namely, (S01 ; S11); : : : ; (S0d; S1d). To each of thek = 2d servers U sends a single subset per each pair, corresponding to the name of the server.Namely, for every � = �1 � � ��d 2 f0; 1gd, the user sends the subsets S�11 ; S�22 ; : : : ; S�dd toSRV�.2. Upon receiving the d subsets S�11 ; S�22 ; : : : ; S�dd , the corresponding server (i.e., SRV�1����d)replies with the exclusive-or of the bits in the subcube de�ned by these subsets. Namely,SRV�1����d replies with the bit Mj12S�11 ;:::;jd2S�dd xj1;:::;jd :3. The user exclusive-ors the k = 2d bits it has received.7



The correctness of the above scheme can be proved in several ways. For example, this can bedone by induction on d. Alternatively, one may consider the contribution of each bit xj1;:::;jd of thedatabase to the sum computed by the user (in Step 3). This contribution depends on the numberof subcubes (corresponding to the queries directed to the 2d servers) which contain the position(j1; :::; jd). It is not hard to see that (i1; :::; id) is the only position which is contained in an oddnumber of subcubes. Actually position (i1; :::; id) appears in a single subcube. This is because, forevery t 2 [d], the value it appears in exactly one of the sets S0t ; S1t . Each of the other positions(j1; :::; jd) (i.e., those 6= (i1; :::; id)) appears in an even number of subcubes: Suppose jt 6= it, thenfor every �1; :::; �d, (j1; :::; jd) 2 S�11 � � � � � S�t�1t�1 � S0t � S�t+1t+1 � � � � � S�ddif and only if(j1; :::; jd) 2 S�11 � � � � � S�t�1t�1 � S1t � S�t+1t+1 � � � � � S�dd :Therefore, in the sum modulo 2 computed by the user (in Step 3), the contribution of these positionsis cancelled and the only value that remains is that of position (i1; :::; id).The privacy of the above scheme follows by observing that not only each of the subsetsS01 ; S02; : : : ; S0d is a random subset of [`] but also each of the subsets S11 ; S12; : : : ; S1d (since eachS1t is obtained by 
ipping the membership of one element in the random set S0t ). Therefore, fromthe point of view of each server, it receives a sequence of d uniformly and independently chosensubsets of [`]. Thus, the queries to each server are distributed in the same way, for each possiblevalue of i = (i1; : : : ; id).The communication involved in the above scheme consists of sending a sequence of d subsetsin [`] to each server, and receiving a single bit back. Hence the total communication complexityis k � (d � ` + 1) = 2d � (d � dpn + 1). We note that the communication in the present scheme isnot \balanced" { The user sends d � n1=d bits to each server, and receives a single bit from eachin response. Interestingly, the improvement in Section 3.3 results by balancing the communication(in a way speci�c to the above scheme). A generic balancing technique is presented in Section 3.4.3.3 The Covering Codes SchemeIn this subsection we describe a method based on covering codes. This method (essentially) main-tains the total communication complexity of the schemes described in the previous subsection butreduces the number of participating servers. It is especially useful when the number of servers (i.e.,k) is small (e.g., k = 2 and k = 4).We start with an example. For d = 3, the scheme of the previous subsection consists of auser and 2d = 8 servers whose names are associated with the binary strings of length d = 3.The user sends a subcube de�ned by the sets (S�11 ; S�22 ; S�33 ) to SRV�1�2�3 which replies with theexclusive-or of the bits residing in this subcube. Thus, 3 3pn bits are sent from the user to eachserver, which replies with a single bit. The key idea in the improvement is that SRV000, whichgets the query (S01; S02 ; S03), can produce a relatively short string which contains the answer to thequery (S01 ; S02; S13), sent to SRV001. Speci�cally, it knows S01 and S02 and it also knows that S13 isof the form S03 � j, for some j 2 f1; 2; :::; 3png. Thus, SRV000 can emulate SRV001 by sendingthe 3pn bits corresponding to the 3pn possible queries which could have been sent to SRV001. Inthe same fashion, SRV000 can also emulate both SRV010 and SRV100. Thus, by letting SRV000emulate SRV100, SRV010 and SRV001, and letting SRV111 emulate SRV011, SRV101 and SRV110,8



we get a scheme for two servers with total communication complexity O( 3pn). We note that it istoo expensive to let SRV000 emulate SRV011 as this will require considering all ( 3pn)2 possibilitiesfor (S12; S13).In general, the above \emulation" method depends on the ability to cover the strings in f0; 1gdby few d-bit long string, where each string may cover itself and all strings at Hamming distance1 from it. In other words, we consider the problem of covering f0; 1gd by balls of radius 1 (in theHamming geometry). This is a well known problem in coding theory. A covering code, Cd, withradius 1 for f0; 1gd is a collection Cd = fc1; c2; : : : ; ckg � f0; 1gd, such that the balls of radius 1around the codewords cover the space; namely,f0; 1gd � [cj2CdB(cj; 1)where B(c; 1) is the set of all d-bit long strings which di�er from c in at most one position.Given a (radius 1) covering code, Cd = fc1; c2; : : : ; ckg (for f0; 1gd), we use the emulationmethod to derive a k-database protocol of communication complexity O(d � k � n1=d). The user,being interested in position i = (i1; :::; id), picks uniformly S01 ; S02 ; : : : ; S0d � [n1=d], and sets S11 =S01� i1; S12 = S02� i2; : : : ; S1d = S0d� id. The user sends to SRVc (c 2 Cd) the subcube correspondingto codeword c (i.e., (S�11 ; :::; S�dd ) where c = �1 � � ��d). Each server SRVc replies by emulating itself(i.e., one bit) and the servers corresponding to the words covered by the codeword c (i.e., n1=dbits per each such server). All these answers allow the user to compute the answer it would havereceived in the protocol for 2d servers, and consequently retrieve the desired bit. The privacy ofthe original 2d-server scheme is clearly preserved (since the queries to each SRVc are chosen in thesame way as in the 2d-server scheme; it is only the answer function that is di�erent). As for thecommunication complexity of the new protocol, we note that d � n1=d bits are sent from U to eachserver and that the total number of bits sent back is k+(2d�k) �n1=d (note that only the emulationof servers corresponding to non-codewords requires n1=d bits and that it su�ces to emulate/covereach such server once1). Thus, the total communication equals (kd+ 2d � k) � n1=d + k, and we getTheorem 1: Let d and k be integers so that there is a k-word covering code (of radius 1) for f0; 1gd.Then there exists a private information retrieval schemes for k servers, each holding n bits of data, sothat the communication complexity of the scheme is k + (2d + (d� 1)�k) � n1=d.Clearly, k in the above theorem need not be greater than 2d. On the other hand, since every radius 1ball contains exactly d+1 points in f0; 1gd, the number of codewords k satis�es k � 2dd+1 (this is thevolume bound, cf., [16]). This lower bound is not always attainable. The construction given above,for d = 3, uses the fact that f(0; 0; 0); (1; 1; 1)g is a covering code with radius 1 of f0; 1g3. For d = 4there exist covering codes with four codewords (e.g., f(0; 0; 0; 0); (1; 1; 1; 1); (1; 0; 0; 0); (0; 1; 1; 1)g)but not with fewer codewords (due to the volume bound). In Figure 1 we list the best knowncovering codes for d up to 8, the corresponding volume bounds, and the communication complexityof the resulting protocol (i.e., (2d + (d� 1)k) �n1=d, ignoring the additive term of k). We note thatall these covering codes are optimal (minimum size) [19]. For d = 3 and d = 7, these are HammingCodes which are perfect codes (all balls are disjoint).As one can see from this table, the improvement derived by the emulation method (over thesimpler method of Section 3.2 which requires 2d servers) is quite meaningful for small values of d.Covering codes with larger radii (say 2 or 3) are also applicable in principle. For example, a k word1Formally, we consider a �xed exact cover of f0; 1gd by sets S(cj)'s so that S(cj) � B(cj; 1), for every j = 1; :::; k.9



dimension # codewords volume total communication(# servers) (lower)(i.e., d) 2d (i.e., k) bound asymptotic n = 220 n = 230 n = 2403 8 2 2 12n1=3 1,224 12,300 123,8644 16 4 4 28n1=4 924 5,096 28,7005 32 7 6 60n1=5 1,020 3,900 15,4206 64 12 10 124n1=6 1,249 3,968 12,5987 128 16 16 224n1=7 1,792 4,480 11,8728 256 32 29 480n1=8 2,715 6,458 15,360Figure 1: Covering Codes and PIR complexityradius 2 covering code of f0; 1gd would yield communication complexity k � d � n1=d + k � �d2� � n2=d.Reviewing the parameters of the best codes [19], they turn out to be inferior for our purposes thanthe radius 1 codes.The results using the covering codes methods are most appealing for the cases of 2 and 4 servers.These cases are summarized in the next corollary to Theorem 1.Corollary 2: There are private information retrieval schemes for n bits data, with the followingparameters:� For two servers (i.e., k = 2), the communication complexity is 12 3pn + 2.� For four servers (i.e., k = 4), the communication complexity is 28 4pn+ 4.As noted above, for d dimensional space the communication complexity of these schemes is (2d +(d� 1)k) � n1=d. As k � 2d=(d+ 1), this is 
(k log kn1=(log k+log log k)).Remark: Note that the user's computation in the above PIR schemes can be done in time linearin the communication complexity. In addition, for each of the servers the computation time is onlylinear in n. To see this, note that SRVc (for c 2 Cd) needs to compute the exclusive-or of thebits residing in the subcube corresponding to codeword c. In addition, for each of the words c0in Hamming distance 1 from c, the server SRVc needs to compute the exclusive-or of the bits inn1=d subcubes. However, by the structure of these subcubes each such exclusive-or can be obtainedfrom the bit computed for the subcube corresponding to c and the examination of n(d�1)=d bits. Alltogether (d+ 1) � n bits are xored during the server's computation.3.4 A Generic TransformationConsider an arbitrary PIR scheme in which the communication is carried out in one round (i.e., theuser simultaneously queries each server and receives answers from which it computes the desiredbit). Given such a scheme for databases containing n bits, one can derive a scheme for databasescontaining m � n bits by repeating the scheme in parallel as follows. The user views the m � n bitsas a m-by-n matrix of bits. To retrieve the (j; i)-th bit in the matrix, U executes the n-bit schemewith i being the desired bit (ignoring, for the time being, the value of j). That is, the user sendsthe same query as it would have send in the n-bit scheme when being interested in the ith bit. Now,10



each server sends m responses to the single query it has received. These answers correspond to mdi�erent executions of the n-bit scheme, each one with a di�erent row (an n-bit string). Speci�cally,in the j-th execution (j = 1; :::; m), the server computes its response with respect to the j-th row.Thus, the user privately retrieves the entire i-th column of the matrix, from which it �nds thedesired (j; i)-th bit. Let us compare the communication complexity of the original n bits schemewith the resulting m � n bits scheme. The communication from the user to each server remainsunchanged, while the communication in the server-to-user direction increases by a factor of m.In case the original PIR is such that the user sends longer messages than it receives, the abovetransformation allows to reduce the total communication complexity. Speci�cally, applying theabove transformation to the Basic Scheme (of Subsection 3.1), we obtain a 2-server PIR withcommunication complexity 2 � (n+m) for a database of m � n bits. Thus,Corollary 3: There is a 2-server private information retrieval scheme, for n bits data, with communi-cation complexity 4pn.We comment that the above transformation has been applied in [12, Sec. 4] to improve the commu-nication complexity of the k-server PIR schemes (based on polynomial interpolation and omittedfrom this version) from O( k�1pn) to O( kpn).4 Private Block RetrievalIn this section we consider a more realistic model of private information retrieval in which thedata is partitioned into blocks (or records) rather than single bits. For simplicity, we assume thateach block/record contains the same number of bits, `. We denote by PIRk(n; `) the problemof retrieving privately an (`-bit long) information block from k servers, each holding the same nblocks (notice that the overall contents is n � ` bits). Previous sections have dealt with PIRk(n; 1).Clearly PIRk(n; `) can be solved by ` invocations of PIRk(n; 1) (i.e., by considering in the j-thinvocation only the j-th bit of each of the n blocks), but there are much more e�cient reductionsof PIRk(�; `) to PIRk(�; 1).4.1 TransformationsWe start by noting that the generic transformation of Subsection 3.4 actually provides such areduction. Speci�cally,Proposition 4: Suppose that PIRk(n; 1) can be solved by a one-round protocol in which the usersends �k(n) bits to each server and receives �k(n) bits in return (from each server). Then, for every` > 1, PIRk(n; `) can be solved by a one-round protocol in which the user sends �k(n) bits to eachserver and receives ` � �k(n) bits in return (from each server).In Section 3.4 we emphasized the asymmetric e�ect that the above transformation has on thecommunication complexity { increasing the communication from the servers to the user whilemaintaining the communication complexity in the other direction. We now present an \asymmetric"transformation in the opposite direction.Proposition 5: Suppose that PIRk(n; 1) can be solved by a one-round protocol in which the usersends �k(n) bits to each server and receives one bit in return (from each server). Furthermore, suppose11



that the user reconstructs the desired information bit by computing Pkp=1 �p (modulo 2), where �p isthe message obtained from SRVp. Then, for every m > 1, PIRk(m � (n� 1); 1) can be solved by aone-round protocol in which the user sends m � �k(n) bits to each server and receives one bit in return(from each server).We note that the schemes presented in Subsections 3.1{3.2 (but not those derived in Subsections 3.3{3.4) meet the hypothesis of the proposition. Furthermore, the proposition can be generalized toPIRk(�; `) schemes (in which each bit in the block is computed as conditioned above).Proof: Partition the N 4= m �(n�1) bits in the database, into m strings. Each string holds n�1original bits and is augmented by a dummy bit at the nth position that is set to zero. Bit positionsin [N ] are represented as pairs in [m]� [n� 1] in a natural manner. The user, wishing to retrievei = [i1; i2] 2 [m]� [n� 1], employs the PIRk(n; 1) scheme in parallel m times. In the jth instanceU behaves as when asking for position i2 if j = i1, and as asking for position n (the dummy bit)otherwise. Each server adds together (modulo 2) the answers it would have sent in each of the minvocations of PIRk(n; 1) and sends this sum as its only message. The user just adds all answersit has obtained and this is the retrieved bit. We emphasize that each server sends only a single bitrather than m such bits. The new scheme clearly satis�es the privacy requirement. Correctnessfollows from associativity of addition, and the fact that the dummy position (i.e., position n) is setto 0. That is, let � jp be the designated answer of SRVp in the jth invocation. The answer bit sentby SRVp in the above scheme is just Pmj=1 � jp . We also know (by the correctness of the PIRk(n; 1)scheme) that Pp � jp equals xi if j = i1, and 0 otherwise. Thus,kXp=1 mXj=1 � jp = mXj=1 kXp=1 � jp = xi ;as needed.The requirements from the schemes in Proposition 5 seem quite restrictive. One may want toconsider the following more general scenario. Suppose that PIRk(n; 1) can be solved by a one-round protocol in which the user sends �k(n) bits to each server and receives �k(n) bits in return(from each server). Furthermore, suppose that the user reconstructs the desired information bitby computing g(Pkp=1 fp(
p)), where 
p is the message obtained from SRVp, the fp's are arbitrary�xed functions mapping binary strings into elements of some �nite Abelian group (of cardinalityat most 2�k(n)), summation is done over this group and g is a homomorphism of the group ontoZ2. Then we claim that, for every m > 1, PIRk(m � (n� 1); 1) can be solved by a one-roundprotocol in which the user sends m � �k(n) bits to each server and receives a single bit in return(from each server). (We stress that both g and the fp's may not depend on the desired bit noron the randomness used by U .) To see this, simply observe that any such PIRk(n; 1) scheme canbe transformed into a PIRk(n; 1) scheme of the form required by Proposition 5. This is done byletting each server compute the value of g(fp(
p)) (a single bit) and sending it to the user. Clearly,this does not violate the privacy of the scheme. Moreover, since g is a homomorphism, it followsthat kXp=1 g(fp(
p)) = g kXp=1 fp(
jp)! ;and so by computing the sum of the answers the user retrieves the desired bit.Combining the above two propositions, we obtain:12



Corollary 6: Let PIRk(n; 1) be as in Proposition 5 and `;m > 1. Then, PIRk(m � (n� 1); `) canbe solved by a one-round protocol in which the user sends m � �k(n) bits to each server and receives `bits in return (from each server). In particular, PIRk(n; `) can be solved within ` times the complexityof PIRk( ǹ + 1; 1).The above should be contrasted with ` times the complexity of PIRk(n; 1), obtained in the straight-forward manner.4.2 CorollariesIn some settings the number of records is not substantially bigger than the length of individualrecords. In these settings the overhead introduced by private information retrieval is quite small,compared to non-private information retrieval. We exemplify two such cases { one with n � `,the other with n � `2=4. We exhibit simple linear schemes for these two cases, with constantmultiplicative overhead, using k = 2 and k = 4 servers, respectively. The �rst example, with n � `,employs the basic two-servers scheme (of Section 3.1), and the total communication overhead isjust a factor of 4.Corollary 7: Let n � `, then PIR2(n; `) can be solved by a one-round protocol of total communi-cation complexity 4 � `.The above is to be compared to ` + log n bits required in \non-private" retrieval of an `-bit longblock (from a database holding n such blocks).Proof: We use the PIR2(n; 1) scheme (of Section 3.1) in which U sends �2(n) = n bits toeach server (indicating a subset of the bits in the database), and receives �2(n) = 1 bit fromeach (the exclusive-or of these bits). Using Proposition 4, we get a PIR2(n; `) scheme with totalcommunication 2(�2(n) + `�2(n)) = 2n + 2` � 4`Corollary 8: Let n � `2=4, then PIR4(n; `) can be solved by a one-round protocol of totalcommunication complexity 8 � `.Proof: We use the PIR4(n; 1) scheme (of Section 3.2, d = 2) in which U sends �4(n) = 2pn bitsto each server (indicating a \two dimensional subcube" of the bits in the database), and receives�4(n) = 1 bit from each (the exclusive-or of these bits). Using Proposition 4, we get a PIR4(n; `)scheme with total communication 4(�4(n) + `�4(n)) = 8pn+ 4` � 8`.Of course larger values of d may be used to yield constant overhead schemes with n = O(`d) andk = 2d servers. However, we believe the two schemes presented above are the ones of interest forrealistic size databases. For example, the two server scheme is applicable to records of sizes 215 and220 for databases containing 230 and 240 bits, respectively. The four server scheme is applicable torecords of sizes 210 and 213 for databases containing 230 and 240 bits, respectively.Note that unlike the PIR2(n; 1) scheme (of Section 3.1), the obvious PIR2(n; 1) (or actuallyPIR1(n; 1)) in which each database sends its contents to the user who then reconstructs thedesired bit, does not satisfy the hypothesis of Proposition 4 (since the reconstruction depends oni). 13



5 Lower BoundsThe question of proving lower bounds on private information retrieval schemes remains one ofthe most intriguing open problems of this paper. The only obvious lower bound is logn bitswhich holds for any number of servers (this follows from communication complexity considerationswithout using any privacy argument). In Subsection 5.2 we prove lower bounds for schemes of veryrestricted form. We start, however, with a simple lower bound on the communication complexityin single-server (information theoretic) PIR schemes.5.1 The Single Server CaseWe prove that if there is only one copy of the database available then n bits must be exchanged andhence the trivial solution is optimal in this case. The lower bound holds even if the communicationbetween the user and the database allows interaction (i.e., not only a single query and an answer toit). The bound is clearly due to the (information-theoretic) privacy constraint; otherwise, log2 n+1bits are enough (U sends i and gets back xi).We say that a communication C is possible for (x; i) if when the database content is x and theuser is interested in the i-th bit there is a positive probability for C to be the communication. Wesay that a communication C is possible for i if it is possible for some pair (x; i). Now, �x a valuei and assume towards a contradiction that the number of possible communications for i is smallerthan 2n. This implies that there exist x 6= y and C such that C is possible for both (x; i) and(y; i) (otherwise, if the sets of possible communications for (x; i) on the various x's are disjoint thenthere must be at least 2n such communications). By the privacy requirement, for every j 2 [n], Cmust also be possible for (x; j), (or else SRV distinguishes the item identities i from j on databasecontents x). Similarly, C is possible for (y; j), for every j 2 [n]. Thus, in particular, C is possiblefor both (x; j) and (y; j), where j is an index for which xj 6= yj . This yields contradiction since onthe same communication, C, the user must output the same bit, and so this output cannot equalboth xj and yj .5.2 Linear Summation Queries with a single-bit AnswersIn an attempt to develop lower bounds for the problem, we consider the very simple case in whichthere are two servers and the user makes a single linear summation query to each of them. Inthis simple case we were able to show that privacy requires the user to send long messages (i.e.,of length linear in the length of the database). This lower bound is very restricted with respect towhat we want, but on the other hand it provides yet another demonstration of the strength of theprivacy condition.We consider the case of k = 2 servers. We restrict our attention to schemes in which each ofthe two servers is asked a query and answers with a single bit. Moreover, we insist that the schemeis of the \linear summation" type. That is, each query is just a name of a vector (set) q and theanswer is �i:qi=1xi. The user takes the two bits b1; b2 received from SRV1;SRV2 (respectively)and computes b1� b2. Recall that in Section 3.1 we proved the existence of such a scheme in whicheach of the queries sent by the user is n-bit long. We now show that this is essentially optimal.We say that a query, q, is possible for (i; 1) (resp., (i; 2)) if on input i there exists some sequenceof coins which makes U send query q to SRV1 (resp., SRV2).14



Claim: Suppose that q is possible for (i; 1). Then each query at even (resp., odd) Hammingdistance from q is possible for (i; 1) (resp., (i; 2)).This claim implies that the set of possible queries for each server has cardinality at least 2n�1,requiring a query description length of at least n� 1 bits, which establishes the lower bound.Proof: The proof is based on two observations.1. By the privacy of the scheme, we have that for every j; h 2 [n], if the vector v is possible for(j; 1) then the vector v is also possible for (h; 1). (Otherwise, SRV1 distinguishes the itemidentities j from h.)2. Let eh denote the hth unit vector (i.e., eh = 0h�110n�h). Then, by de�nition of the summation-type scheme, if, on input h, the user U makes query v to SRV1 and query w to SRV2 thenit holds that v � w = eh. (Otherwise, we cannot have xh = (�j0:vj0=1xj0)� (�j0:wj0=1xj0).)Thus, if v is possible for (j; 1) (resp., (j; 2)) then, for every h 2 [n], the vector v is possible for(h; 1) (resp., (h; 2)) and therefore v� eh is possible for (h; 2) (resp., (h; 1)) and also for (j; 2) (resp.,(j; 1)). Thus, each query at Hamming distance 1 from v is possible for (j; 2) (resp., (j; 1)). Theclaim follows.We note that, in fact, the upper bound of Section 3.1 can be improved so that n � 1 bits (insteadof n) are sent to each server. This is done by choosing a random subset S of even cardinality withuniform distribution among these subsets. Send S to SRV1, and S � i to SRV2. The subset S � iis uniformly distributed among odd cardinality subsets. To specify even (or odd) sets, n � 1 bitssu�ce.AcknowledgmentWe wish to thank Muli Safra, Sha� Goldwasser, Don Coppersmith and Joe Kilian for helpfuldiscussions regarding related issues, and Amos Beimel and Ehud Hausman for their comments onearlier drafts of this paper. We also thank Tuvi Etzion for pointers to the coding theory literature,and to Oded Shmueli for pointers to the database literature.References[1] Abadi M., J. Feigenbaum, and J. Kilian. On Hiding Information from an Oracle. JCSS,39:1, pp. 21{50, 1989.[2] N. Adam, and J. Wortmann. Security Control Methods for Statistical Databases: A Com-parative Study. ACM Computing Surveys, 21:4, pp. 515{555, 1989.[3] A. Ambainis. An Upper Bound on the Communication Complexity of Private InformationRetrieval. Proc. of 24th ICALP, Springer, Lecture Notes in Computer Science, Vol. 1256, pages401{407, 1997.[4] L. Babai, P. Kimmel, and S. V. Lokam. Simultaneous Messages vs. Communication.STACS, pp. 361{372, 1995. 15
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