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Abstract. We present anew proposal for a trapdoor one-way function, from which
we derive public-key encryption and digital signatures. The security of the new con-
struction is based on the conjectured computational difficulty of lattice-reduction
problems, providing a possible aternative to existing public-key encryption algo-
rithms and digital signatures such as RSA and DSS.
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1 Introduction

The need for public-key encryption and digital signatures is spreading rapidly today as
more peopl e use computer networks to exchange confidential documents, buy products and
access sensitive data. In fact, several of these tasks are impossible to achieve without the
availability of secure and efficient public-key cryptography.

In light of the importance of public key cryptography, it is surprising that there are
relatively few proposals of public key cryptosystems which have received any attention.
Moreover, the source of security of these proposals almost always relies on the (appar-
ent) computational intractability of problems in finite integer rings, specifically integer
factorization (e.g., [20, 19, etc.]) and discrete logarithm computations (e.g.,[8, 9, 7, €tc]).

In this paper we propose anew trapdoor one-way function relying on the computational
difficulty of lattice reduction problems, in particular the problem of finding closest vectors
inalatticeto agiven point (CVP). From thistrapdoor function, we then derive a public-key
encryption and digital signature methods.

These methods are asymptotically more efficient than the RSA and EIGamal encryption
schemes, in that the computation time for encryption, decryption, signing, and verifying
are all quadratic in the natural security parameter. The size of the public key, however, is
longer than for these systems. Specifically, for security parameter £, the new system has
public key of size O(k?) and computation time of O(k?), compared to public key of size
O(k) and computation time of O(k?) for the RSA and ElGamal systems. We believe that,
given today’s technologies, the increase in size of the keys is more than compensated by
the decrease in computation time.

* This research was done while visiting in the Laboratory for Computer Science, MIT.
** This research was supported by DARPA grant DABT63-96-C-0018.



Our trapdoor function. The idea underling our construction is that, given any basis for a
lattice, it is easy to generate a vector which is close to a lattice point (i.e., by taking a
lattice point and adding a small error vector to it). However it seems hard to return from
this “close-to-lattice” vector to the original lattice point (given an arbitrary lattice basis).
Thus, the operation of adding a small error vector to alattice point can be thought of as a
one-way computation.

To introduce atrapdoor mechanism into this one-way computation, we use the fact that
different bases of the same lattice seemsto yield a difference in the ability to find close
lattice pointsto arbitrary vectorsin R™. Therefore the trapdoor information may be a basis
of alatticewhich allowsvery good approximation of the closest lattice point problem. Thus,
we use two different bases of the samelattice. One basisis chosen to allows computing the
function but not inverting it, while the other basis is chosen to allow computing the inverse
function by permitting good approximation to the closet | attice vector problem (CVP). For
the sake of the introduction, we simply call such abasis areduced basis. Below we give an
informal description of our trapdoor one-way function which uses the above ideas.

The parameters of the systemincludesthe security parameter n (whichisthe dimension
of the lattices that we work with) and a“threshold” parameter ¢ which determinesthe size
of the error-vectors which we add to the lattice points.

A particular function and its trapdoor information are specified by a pair of bases of
the same (full rank) lattice in R™: A “non-reduced” basis B which is used to compute
the function and a reduced basis R which serves as the trapdoor information and is used
for inversion. The “reduced” basisis selected “uniformly” and the “non-reduced” basisis
derived from it using a randomized unimaodular transformati on.

The input to the function is a lattice point (which is specified by an integral linear
combination of the columns of B) and an error vector whose size is bounded by o. The
value of the function on this input is just the vector sum of the two points. To invert
the function, we use a reduced basis R in one of Babai’'s nearest-vector approximation
algorithms [4] to find alattice point which is at most ¢ away from the given vector.

The cryptanalytic problem underlying our schemeis to approximate the closest vector
problem (CVP) in alattice, given a“non-reduced” basisfor that lattice. A related problem
is the problem of reducing the given public basis (since one obvious attack is to reduce
the given basis and then use the result for inverting the function). See Section 2.1 for a
description of these computational problemsin lattices.

Fromtrapdoor function to encryption scheme. In order to use the above trapdoor function
for public-key encryption, we need a way to embed the message in the arguments to this
function, in such a way that no “partial information” about the message is |eaked by the
ciphertext (cf., [13]).

Thereareseveral waysto dothat, and we discusssomeof themin Section 4. Onegeneric
way isto use hard core bits of the trapdoor function to embed the bits of the message (e.g.,
[22]). This approach has the advantage of ensuring that the encryption schemeis as secure
as the underlying trapdoor function, but it isinefficient in terms of message expansion.

Another plausible way, which may be more efficient, isto map the messageto alattice
point by taking the integer combinations of the public basis vectors which is“ specified” by
the message bits, and then add to the lattice point a“small error vector” chosen at random.
To decrypt, we look for alattice point which is closeto the ciphertext. By using the private



basis, which is areduced basis, the correct decryption is obtained with high probability. We
remark that our encryption algorithm is similar in its algorithmic nature to a scheme based
on algebraic coding that was suggested by McEliece’'sin [18].

A signature scheme. It is also possible to construct a signature scheme along similar lines:
Regard the message as a n-dimensional vector over the reals. Then, a signature of such
vector, is alattice point which is “close” to it (where closenessis defined by a published
threshold). The private basisis reduced so that finding “close” pointsis possible. Verifying
correctness amounts to checking that a signature is indeed a lattice point and that the
messageis close to the signature.

It is important to remark at the outset, that messages which are close to each other
will have the same signature. When applying the method in a setting where this property is
desirable(e.g., signing anal og signalswhich may changealittle intime), thisfeature may be
of great benefit. However, to get secure signaturesin the sense of [14], this property pause
asignificant problem. When applying the method to a message space where such property
is undesirable, we propose to first hash the message and only then sign it. This is good
practice also in case that the scheme is subject to a chosen message attack, as otherwise
being able to obtain different signatures of two messages which are close to each other
when viewed as pointsin R” will imply the ability to compute a small basis for the lattice
whichin turn will enable the attacker to find close vectorsin alattice and break the scheme.
(Interestingly, a family of collision-free hash functions can be constructed assuming that
Lattice-Reduction is hard on the worst-case, see [10]). Due to lack of space, we do not
discussthat construction in this extended abstract.

1.1 Discussion

Our work wasinspired by aremarkable result of Ajtai [1] who i ntroduced afunction which
is provably a one-way function if approximating the shortest non-zero vector (SVP) in a
lattice is hard on the worst case. Ajtai’s work may be viewed as exhibiting a samplable
distribution onlatticesand proving that approximating the shortest non-zero vector inlattices
chosen according to this distribution is as hard as the worst case instance of approximating
the shortest non-zero vector in alattice. Ajtai’s construction, however, does not provide a
trapdoor function and thus does not provide a way of doing public-key encryption based
on lattice problems. Constructing such a trapdoor function is the novelty and focus of our
work.

Independently of our work, Ajtai and Dwork [2] suggested a public-key encryption
scheme whose security is reducible to a variant of SVP. Although exhibiting a trapdoor
Boolean predicate (whichissufficient for public-key encryption—see[13]), the Ajtai-Dwork
construction does not provide atrapdoor function. That is, given the trapdoor information
it is possible to decide whether the predicate evaluatesto 0 or 1 but not known how to find
an inverse. Also, the variant of SVP used in the security proof of [2], called the “poly(n)-
unique shortest vector problem” seems to be considerably easier than the general SVP.
Finally, we note that the Ajtai-Dwork construction is less efficient than ours, both in terms
of the key-sizeandin terms of encryptiontime (O(n*) vs. O(n?) for both measures). Thus,
it seemsthat their current constructionis not really practical.



In retrospect, our encryption scheme bears much similarity to McEliece's scheme [18].
His schemeutilizesapair of matricesover GF(2), which correspondsto two representations
of the same linear code. The encryption method is probabilistic: one multiplies the public
matrix by the message vector and adds a random noise vector to the resulting codeword.
Thus in both McEliece and our encryption scheme, encryption amounts to a matrix-by-
vector multiplication and the addition of a suitable random vector to the result. However,
the domains in which these operations take place are vastly different and so is the algebra.
Another difference is in the way the private-key is generated. In McEliece's scheme the
private-key is arandom Goppa code and has structure essential for legitimate decoding. In
our schemethe private-key can be chosenuniformly and thusis* structure-less” —legitimate
decoding merely depends on aproperty of such random choices. In both schemesthe public-
key is obtained by a suitable random linear transformation of the private-key; however, in
our scheme the choice of this transformation seems richer. In general, we believe that
McEliece's suggestion as well as ours deserve further investigation, especially due to the
difference in computational complexity required from the legal sender and receiver inthese
schemes as compared with the factoring/DL P based schemes.

1.2 Evaluation of Security

To provide some feeling for the security of our construction, we analyzed a few plausible
attacks against it and evaluated their effectiveness. Our analysis, combined with extensive
testing, indicate that the work-load of these attacks grows exponentially with the dimension
of thelattice. In particular, according to our estimates these attacks should beintractable in
practice for dimension 300 or so.

1.3 Organization

In Section 2 we review necessary material about lattices and lattice problems. In Section 3
we describe our construction of a trapdoor function and discuss various parameters and
attacks, and in Section 4 we describes our encryption scheme. In Section 5 we describe our
experimental results.

2 Latticesand L attice Reduction Problems

In the sequel we use thefollowing conventions: We denotethe set of real numbersby R and
the set of integers by Z. We denote real numbers by small Greek letters (e.g., 3, p, T €tc.)
and integers by one of the letters ¢, 3, k, [, m, n. We denote vectors by bold-face lowercase
letters (e.g., b, c, r etc.). We use capital letters (e.q., B, C, R, etc.) to denote matrices or
sets of vectors. If 3 is areal number, we denote the integer closest to 3 by [3] and the
smallest integer whichis > 3 by [4]. If b isavector in R", then [b| denotes the vector
in Z™ which is obtained by rounding each entry in b to the nearest integer. In this paper
we only care about lattices of full rank, so the definitions below only deal with those.

Definition 1. Given a set of n linearly independent vectorsin R™, B = {by,---,b,},

we define the lattice spanned by B as the set of all possible linear combinations of the b;’s

with integral coefficients, namely ~ L(B) = {3, kib; : k; € Z for all i}



Wecall B abasisof thelattice L(B). If the vector v belongs to the lattice L, then we say
that v is a lattice-vector (or a lattice point). In the sequel we view a basis for alattice in
R™ asann x n non-singular matrix B whose columns are the basis vectors. Viewed this
way, the lattice spanned by B isthe set L(B) = { Bv : v isanintegral vector}. Below we
briefly mention afew well-known facts about lattices. We note that there are many different
bases for any lattice L. In fact, if the set B = {b,---, b,,} spans some lattice then by
taking any vector b; € B and adding to it any integral linear combination of the other
vectors we obtain a different basis for the same lattice. An important fact about latticesis
that all the bases of a given lattice have the same determinant (up to the sign). This fact
follows since there is an integer matrix 7" such that BT = (' and another integer matrix
T—! suchthat CT~' = B. The notion of of the orthogonality defect of abasis, which was
introduced by Schnorr in [21], plays acrucial role in the security of our schemes.

Definition2. Let B be area non-singular n x n matrix. The orthogonality defect of B

is defined as orth-defect(B) = E[%(lg’)lll, where ||b;]| is the Euclidean norm of the i'th
columnin B.

Clearly, orth-defect(B) = 1 if and only if the columnsof B are orthogonal to oneanother,
and orth-defect(B) > 1 otherwise. When comparing different basesof the samelatticein
R™, wereally only care about the product of the ||b;||’s, since det(B) is the same for all
of them (and serves just as a normalization factor).

Another important notion in our scheme is the dua lattice. If B = by,---, b, isa
basis for somelatticein R™ (where wethink of B asann x n matrix whose columns are
the b;’s) then the dual lattice of L(B) is the lattice which is spanned by the rows of the
matrix B~1. In Section 3.4 we show that when we use a basis B for alattice L = L(B)
for our trapdoor function, the work-load which is associated with some natural attacks on
the scheme is proportional to the orthogonality defect of the corresponding basis for the
dual lattice. It would therefore be convenient for usto define the dual orthogonality defect
for amatrix.

Definition 3. Let B beareal non-singular n x n matrix. The dual orthogonality defect of B
is defined as orth-defect*(B) %' [T, ||bill/|det(B=1]) = |det(B)] - ], |/b:l, where
b, isthei’th row in B~1.

2.1 Hard problemsin lattices

The security of our constructions is related to the (conjectured) intractability of a few
computational problemsin lattices.

The Closest Veector Problem (CVP). In this problem we are given abasis B for alatticein
R™ and another vector v € R", and our task is to find the vector in L(B) whichis closest
to v (in some norm). The CVP was shown by van Emde Boas [6] to be A"P-hard for any
I, norm. Also, Aroraet al. [3] proved that approximating the CV P to within any constant
factor is also NP-hard.

No polynomial-time agorithm is known for approximating the CVPin R"™ to within a
polynomial factor in n. The best polynomial time algorithms for approximating CVP are



based on the LLL algorithm [17] and its variants. Babai [4] proved that the CVPin R"™ can
be approximated in polynomial time to within afactor of 2”/2. This was later improved by
Schnorr [21] to afactor of (1 + ¢)™ for any ¢ > 0. We note, however, that these bounds
refer to worst-case instances, and these algorithms “typically” perform much better than
the above upper-bounds.

Aswe explain in Section 3, an attack against our trapdoor function amounts to finding
an exact solution for some random instance of CVP.

The Smallest Basis Problem (SBP). In this problem, we are given a basis B for a lattice
inR"™ and our goal isto find the “smallest” basis B’ for the same lattice. There are many
variants of this problem, depending on the exact meaning of “smallest”. In the context
of this paper, we care about bases with small orthogonality defect. Thus, we consider
the version in which we look for the basis B’ of L(B) which has smallest orthogonality
defect. For this problem too there are no known polynomial-time algorithms, and the best
polynomial-time approximation algorithmsfor it are variants of the LLL agorithms, which
achieve an approximation ratio of 20(n*) in the worst case for SBPinstancesin R”.

In our public key constructions, finding the private-key from the public-key requires
solving some random SBP instances.

3 A Candidate Trapdoor Function

In this section we define our candidate trapdoor function and analyze a few possible
attacks against it. Informally, a collection of trapdoor functions consists of four algorithms,
GENERATE, SAMPLE, EVALUATE and INVERT, where GENERATE outputs a description of a
function and the associatetrapdoor information, SAMPLE picks an element in the domain of
the function, EVALUATE eval uatesthe function on that element and INVERT usesthetrapdoor
information to inverts the function. Below we describe our construction.

GENERATE. On input 1™, we generate two bases B and R of the same full-rank lattice
in Z” and a positive real number o. We generate these bases so that R has a low dual-
orthogonality-defect and B hasahigh dual-orthogonality-defect. We describethegeneration
processin detailsin Section 3.2. The bases B, R are represented by n x n matrices where
the basis-vectors are the columns of these matrices. In the sequel we call B the “public
basis” and R the “private basis’. We view (B, o) as the description of a function fz
and R asthe trapdoor information. The domain of fp , consists of some pairs of vectors
v,e € R" (seebelow).

SAMPLE. Given (B, o), weoutput vectors v,e € R" asfollows: The vector v is chosen
at random from a “large enough” cube in Z”. For example, we can pick each entry in v
uniformly at random?® from the range {—n, ..., +n}. The vector e is chosen by setting
each entry in it to either +o or —¢, each with probability % (Alternatively, if we want
e to have integral entries we can pick each entry as equal to + [o] each with probability
Dy = ﬁ and 0 with probability 1 — 2p,.)

EVALUATE. Given B, o, v,e,wecomputec = fg ,(v,e) = Bv +e.

® We do not know if the size of this range has any influence on the security of the construction. The
value n is rather arbitrary, and was only chosen to get integers of about 8 bits for the parameters
which we work with.



INVERT. Given R and c, we use Babai’s Round-off algorithm [4] to invert the function.
Namely, we represent ¢ as a linear combination on the columns of R and then round the
coefficients in this linear combination to the nearest integers to get a lattice point. The
representation of thislattice point asalinear combination on the columns of B isthe vector

v. Oncewe have v we can compute e. More precisely, denote T’ def B~ R, sowecompute
v—T {R_ch ande — ¢ — Bv.

3.1 Thelnversion Algorithm

In this section we show how ¢ can be chosen so that the inversion algorithm is successful
with high probability. Recall that theinversion algorithm succeedsin inverting the function
onc if usingthe private basis R in Babai’s Round-off algorithm resultsin finding the closest
lattice-point to c¢. Below we suggest two different ways to bound the value of &, based on
the Z; norm and L., norm of rowsin R~*. Both bounds uses the following lemma.

Lemmad4. Let R betheprivatebasisusedintheinversionof g (v, e). Thenaninversion
error occursif and only if [R~'e| # 0.

Proof. Let 7" be the unimodular transformation matrix 7' = B~ ! R. Then the inversion
dgorithmisv = 7' [R™'¢] and e = ¢ — Bv. Obviously, if v is computed correctly then
so is e. Thus, let us examine the conditions under which this algorithm finds the correct
vector v. Recall that ¢ wascomputed asc = Bv + e, SO

T[R'¢c| = T[R™'(Bv +e)]
= T[R'Bv+R'te] = T[(BT)"'Bv+Rle] = T[T 'v+R e

Butsince 7 isaunimodular matrix (andtherefore, soit 7~ 1) and since v isanintegral vector,
then7~'visalsoanintegral vector. Hencewehave [T~'v + R~'e| = T~ 'v+[R™'e],
and therefore

T[R e =T(T'v+[R e )=v+T[R 'e|
Thusthe inversion algorithm succeedsif and only if [ R~'e| = 0. u!

Theoremb5. Let R be the private basis used in the inversion of fz ., and denote the
maximum L; norm of the rowsin R=! by p. Then aslongas o < 1/(2p), no inversion
errorscan occur.

Proof omitted.

Although Theorem 5 gives a sufficient condition to get the error-probability down to 0, we
may choose to set a higher value for ¢ in order to get better security. The next theorem
assertsa different bound on ¢, which guarantee alow error probability.

Theorem6. Let R be the private basis used in the inversion of fz ,, and denote the
maximum L., normof therowsin R~' by % Then the probability of inversion errorsis
bounded by

1
Pr[inversionerror using R ] < 2n - exp <——80272) @



Proof. We first introduce a few notations. We denote d def R~le and denote the i’th

entry in d and e by &; and ¢; respectively. Also, we denote the ;’th row in R~! by #; and
the i, j’th element in R~* by p;;. Wefix some i and evaluate Pr[|6;| > 1]. Recall that
b; = t0oe = Z]' pij€;. Sinceforal j, |pi;| < v/+/nande; = to, eachwith probability
%, then all the random variables p; ; ¢; have zero mean and they areall limited to the interval

[— % ,+ %] . Therefore we can use Hoeffding bound to conclude that

1 1 1
Pr [|6i|>§]:Pr |;pij€j|>§ < 2exp <_W)

Using the union bound to bound the probability that any such 2 exists completes the proof.
a

Remark. Thelast theorem impliesthat to get the error probability below ¢ it is sufficient to
-1
choose & < (7 8111(271/6)) . In fact, the above bound is overly pessimistic in that it

only looksat thelargest entry in 2~1. A more refined bound can be obtained by considering
the few largest entries in each row separately and applying the above argument to the rest
of the entries.

Alternatively, we can get an estimate (rather that a bound) of the error probability by
using Equation 1 asif all the entriesin each row of R~ have the same absolute value. In
this case y isthe maximum Euclidean norm of therowsin R~! sowe get an estimate of the
error-probability in terms of the Euclidean norm of therows in R~. This estimate is about
the same as the one which we get by viewing each of the é;’s as a zero-mean Gaussian
random variablewith variance (o ||&;||)? (where||#;|| isthe Euclidean norm of the i'th row
inR~1).

To get a feeling for the size of the parameters involved, consider the parameters
n = 120, e = 107°. For a certain setting of the parameters which we tested (in
which the entries in R were chosen from the range +4), the maximal Euclidean norm
of the rowsin R~! isabout 1/30. Evaluating the expression above for v = 1/30 yields

-1
o< (/8 (38))  ~ 25~ 25

10-5 11.9

3.2 The GENERATE Algorithm

In this section we discuss various aspects of the GENERATE algorithm. We described in
Section 3.1 how the value of & can be computed once we have the private basis £. Now
we suggest a few waysto pick R and B. Recall that R, B are two bases for some lattice
in Z", where R has small dual orthogonality defect and B has a large dual orthogonality
defect. Our high-level approach for generating the private and public bases is to choose at
random n vectorsin Z™ to get the private basis and then to “mix” them so as to get the
public one. There are two distributions to consider in this process

— The choice of the private basis R induces a distribution on the latticesin Z™.
— For any private basis R, the process of “mixing” R to get the public basis B induces
some distribution on the bases of L(R).



To guide usthrough the choi cesof the various parameters, we relied on experimental results.
Below we briefly discussthe various parameters which are involved in this process.

Lattice dimension. The first parameter we need to set is the dimension of the lattice (the
value of n). Clearly, the larger n is, we expect that our schemes will be more secure. On
the other hand, both the space needed for the key pair and the running-time of function-
evaluation and function-inversion grow (at least) as 2(n?).

Thelattice-reduction algorithm which we used for our experimentsis capabl e of finding
abasiswith very small orthogonality defect aslong asthe lattice dimension isno more than
60-80 (depending on other parameters). Beyond this point, the quality of the bases we get
from this|attice reduction algorithm degrades rapidly with the dimensions. In particular, we
found that in dimension 100, the baseswe obtained had a high dial-orthogonality-defect. At
the present time, the best “ practical lattice-reduction algorithm” which we are aware of is
Schnorr’s block-reduction scheme (which was used to attack the Chor-Rivest cryptosystem,
see[22]). We speculate that working in dimensions about 250-300 should be good enough
with respect to this algorithm.

Distribution of the private bases. We considered two possible distributions for choosing
the private basis.

Choosing a “random lattice” : We choose a matrix & which is uniformly distributed in
{=1, -, +1}**" for someinteger bound /. In our experiments, the value of [ had almost
no effect on the quality of the bases which we got. Therefore we chose to work with small
integers (e.qg., between +4).

Choosing an “ almost rectangular lattice” : We start from the box & - I in R" (for some
number k), and add “noise” to each of the box vectors. Namely, we pick amatrix R’ which
isuniformly distributed in {—{, - - -, +-{}"™*", and then compute R — R’ + kI. Thelarger
the value of £ is, this process generates a basis with smaller dual orthogonality factor, so
it may be possible to choose a larger value of . On the other hand, it may also allow
an attacker to obtain a basis with smaller dual orthogonality factor by reducing the public
basis. Our experiments show that we get the best parameters when k is about /n - [.

Generating the public basis. Once we have the private basis R, we should pick the public
basis B according to some distribution on the bases of the lattice L(R). We tested two
methods for generating B from R:

In thefirst method, wetransform R into B viaasequenceof many “mixing steps’, inwhich
we take one basis vector and add to it a random integer linear combination of the other
vectors.

In our experiments, we went through the basis vectors one at a time, to make sure
that we replace them all. The coefficients in the linear combination were chose at random
from {—1,0, 1} with a bias towards 0 (specifically, we used Pr[1] = Pr[—1] = 1/7).
This was done so that the size of the numbers in the public basis will not grow too fast.
Our experiments indicate that using 2n mixing steps was sufficient to prevent LLL from
recovering the original basis.

In the second method we multiply R by a few “random” unimodular matrices to get B,
namely B = R -1} - 15 - - -. Each of these unimodular transformation matrices is chosen



as aproduct of and upper- and lower-triangular matrices, 7; = L;U;, where the diagonal
entriesin L;, U; are 1. In our experiments, we chose the other non-zero entriesin L;, R;
from {—1,0,1}. We found that we need to multiply R by at least four transformation
matrices to prevent LLL from recovering the original basis. Also, our experiments show
that this process generates public matrices with larger entries than using 2n mixing steps
according to the previous method. Thus, we chose to use the first method for most of our
experiments.

3.3 Basesrepresentation.

To make evaluating and inverting the function more efficient, we chose the following
representation for the private and public bases. The public basesisrepresented by theinteger
matrix B whose columnsare the basis-vectors, so that evaluating fz »(v,e) = Bv+e can
be done in quadratic time. To invert fg , efficiently, however, we do not store the private
basis R itself. Instead, we store the matrix E~' and the unimodular matrix 7' = B~ R.
Then, to compute f (c) wesetv = T'[R™'c| ande = ¢ — Bv, both of which can be
donein quadratic time.

Representing B, T is easy since they are integral matrices, but R~! is not an integral
matrix, so we need to consider how it should be represented. Although it is possible to
store the exact values for R, the entriesin R~' may have hundreds of bits of precision,
which makes working with them rather inefficient. A different approach isto only keep a
few bitsof each entry in R~!. This, of course, may introduces errors. If weonly keep ¢ bits
per entry then we get an error of at most 2~ in each entry of R~'.

Clearly, this has no effect on the security of the system (since it only effects the
operations done using the private basis), but it may increase the probability of inversion
errors. Since we only perform linear operations on R~!, it is rather straightforward to
evaluate the effect of adding small errors to its entries. Denote the “error matrix” by
E = (e;). Thatis, ¢;; is the difference between the value which is stored for (R™1);;

and the real value of that entry. Then we have |¢;;| < 2=¢ for al i, j. When inverting the

function, we apply the same procedure as above, but uses the matrix R’ 4 -1 + F

instead of the matrix R~ itself.
Recall that the value of the functionis ¢ = Bv + e, where v is an integer vector and
e isthe “error vector”. Thus the vector v/ computed by the (modified) inversion routine is

vV =T[Re¢|=T[(R'+E)Bv+e)|=v+T|[R e+ E(Bv +e)]

wherethelast equality followssince R~! Bv isanintegral vector sowecan takeit out of the
rounding operation and then wehave TR~ Bv = v. Therefore, we invert correctly if and
onlyif [R~te + E(Bv +e)| = 0,whichmeansthat all theentriesin R~'e+ E(Bv+e)
are lessthan a % in absolute value. The size of the entries in the vector R~ 'e is analyzed
in Section 3.1, so here we only consider the vector £(Bv + e).

Recall that all the entriesin £ are lessthan 2~* in absolute value, and that the entries
of error vector e are al o (for our choice of parameters, we have ¢ ~ 3). Thus the
contribution of the vector F'e can be ignored. To evaluate the entriesin ' Bv, assumethat
we represent each entry in the matrix B using & bits, and each entry in the vector v using



m bits. Then, each entry in the vector E Bv must be smaller than n - 28+™~* in absolute
value.

For example, if we work in dimension 200, use 16 bits for each entry in B and 8 bits
for each entry in v, and keep only the 64 most significant bits of each entry in R~ then the
entries in £ Bv will be bounded by 200 - 216+8-64 ~ 9-32 Thus, a sufficient condition
for correct inversion isthat each entry in R~ e islessthan 5 — 273 in absolute value (as
opposed to lessthan % which we get when we store the exact valuesfor R~1). Clearly, this
has almost no effect on the probability of inversion errors.

3.4 Security Analysis

In this section we provide some initial analysis for the security of the suggested trapdoor
function by considering several possible attacks and trying to analyze their work-load. An
obvious pre-processing step in just about every attack on our construction is to reduce the
public basis B to get a better basis B’ which can then be used for the attack. For the sake
of simplicity, we therefore assumethat the public basisitself is aready reduced viaa“good
lattice-reduction algorithm”.

Our numerical estimates for the work-load of the various attacks are based on experi-
ments reported in Section 5. In these experiments we used the implementation of the LLL
lattice-reduction algorithm from the LiDIA project [16]. Thebottom line of our experiments
is that all the attacks below become infeasible in dimensions above 150. We do not have
data about the performance of these attack using better lattice-reduction algorithms (such
as the ones described in [22]. We speculate that when using these better algorithms, the
attacks will become infeasible in dimensions about 250-300.

The Round-off Attack The most obvious attack on our scheme (other than a brute-force
search for the error vector e) isto try and use the public basis B for inverting the function
in the same manner as we usethe private basis k. Namely, given the output of the function

¢ = Bv + e, wecompute B~1¢ = v + B~'e. Then we can do an exhaustive search for

the vector d % B-Te. Below we give an approximate analysis for the size of the search

space that the attacker needs to go through before it finds the correct vector d.

Denote the #'th entry in d and e by 6; and ¢; respectively, the i’th row of B~! by b;
andthe (¢, j)'th elementin B=! by 3;;. Using these notations we can write §; = bioe=
> Bije;, andtherefore £[8;] = 0 and Var[8;] = Y2, 82 E[e?] = (o|[bs]|)?, where||b,]|
is the Euclidean norm of the ¢’th row of B~!.

To evaluate the size of this search space for d, we make the simplifying assumptions
that each entry é; in d is Gaussian, and that the entries are independent. Based on these
simplifying assumptions, the size of the effective search spaceis exponentia in the differ-
ential entropy of the Gaussian random vector d. Recall that the differential entropy of a
Gaussian random variable z with variance o2 is h(z) = 3 log(wes?). Since we assume
that the é;’s areindependent, then the differential entropy of the vector d equals the sum of
the differential entropies of the entries, so we get

1 N n .
h(d) = 5 > log(mea?||bi||?) = o) log(mea®) + > log ||by|]



so the size of the search spaceis

. th-defect™(B)
gh(d) — nf2 gn. b,|| = n/2 oo OMHTACIECh \D)
(e " TLUBil = (=)o - =50
Note that the term det( B) in the | ast expression dependsonly on the lattice and is indepen-
dent of the actual basis B.

Typical numeric values. In Subsection 5.2 we describe experiments which we performed
in dimension 80 through 160. Upto dimension 80, the LLL algorithm is capable of recon-
structing a “good” basis, so that the work-load of this attack is essentially 1. In higher
dimensions, however, LLL fails to provide a good basis, and consequently the work load
of the Round-off attack grows by a factor of about 8000 per dimension. Thus, aready in
dimension 100 this attack is worsethan thetrivial brute-force search for the error vector e.

The Nearest-plane Attack Onerather obvious improvement to the Round-off attack from
above is to use a better approximation algorithm for the CVP. In particular, instead of
using Babai’s Round-off algorithm we can use the Nearest-plane algorithm which was also
described in [4]. On a high-level, the difference between the Round-off and the Nearest-
plane algorithms is that in the Nearest-plane, the rounding in the different entries are done
adaptively (rather that all at once). More precisely, the Nearest-plane algorithm works as
follows: It is given apoint ¢ and an LLL reduced basis B = {by,...,b,} (in the order
induced by the LLL reduction). It then considers all the affine spaces

n—1
Hy = {k‘bn + Zalbl Loy ER}
i=1

for dl £ € Z, finds the hyperplane H; which is closest to the point ¢, and projects the
point ¢ — kb,, onto the (n — 1)-dimensional spacewhichisspanned by {by,...,b,_1}.
This yields anew point ¢’ and anew basis B’ = {by, ..., b, _1}, and the algorithm now
proceeds recursively to find apoint p’ in this (n — 1)-dimensional lattice whichiscloseto
¢’ . Finally, thealgorithm setsp = p’ + kb,,.

It was pointed to us by Don Coppersmith that the Nearest-plane attack can beimproved
in practice in several different ways:

— Instead of picking the vectors by the order which was induced by LLL, we can pick
them by the size of the Euclidean norm in the corresponding rows of B~1. An analysis
similar to Subsection 3.1 shows that this choice locally maximizes the probability
that the hyperplane H}, is the correct one (this analysisis omitted from this extended
abstract).

— We can “peel off” more than one vector in each level of the recursion, if there are
several vectors for which the corresponding rows of B~1 have small norm.

— We can apply alattice-reduction procedure to the remaining basis vectorsin each level
of the recursion. Thisimprovement is particularly useful since the performance of the
lattice-reduction algorithm improves rapidly as the dimension decreases.

— If al therowsin B~ have alarge Euclidean norm, we can apply an exhaustive search
to the few entries which has the smallest Euclidean norm. That is, instead of just trying
the closest H ., we can also try the second closest one, etc.



The work-load of the Nearest-plane attack can be analyzed and tested in a similar manner to
that of the Round-off attack: We can describe this attack as consisting of an off-line phase,
in which we construct from the public basis B another matrix B, and an on-line phase in
which B used in a manner similar to the way B~! is used in the Round-off attack. An
estimate for the work-load of this attack can be computed from the Euclidean norm of the
rowsin B. Dueto lack of space, the analysisis omitted from this extended abstract.
Experiments reported in Subsection 5.3 indicate that the Nearest-plane attack has a
much lower work-load than the Round-off attack. Nonetheless, its work-load also grows
exponentially with the dimension of the lattice. Our experiments show that when using
LLL as our lattice-reduction algorithm, some amount of search is needed starting from
dimensions 110-120, and the attack becomesinfeasible in dimensions 140-150.

The Embedding Attack Finally, another heuristic which is often used to approximate
CVP (and which was brought to our attention by Clause Schnorr and Don Coppersmith) is
to embed the n basis-vectors and the point ¢ for which we want to find a closelattice point
inan (n + 1)-dimensional lattice like so

I |
Cb1b2~~~bn

100 0

B' =

Then we use a lattice reduction algorithm to search for the shortest non-zero vector in
L(B'’), in the hope that the first »n entries in this vector will be the closest point to c. As
opposedto the other attacks, we do not know how to usethe output of thisattack asastarting
point for an exhaustive search (in the case where the output is not the “right lattice point™).
Thus the only thing that we can measure about this attack is whether it works or not. Some
experiments which we made with this attack (using LLL as our tool for finding shortest
vectors) indicate that this heuristic works up to dimensions about 110-120. Recall that the
Round-off attack becomes worse than the simple exhaustive search already in dimension
100.

4 Encryption Scheme

Our public-key Encryption scheme is based on our candidate one-way trapdoor function
in the usual way. That is, to encrypt a message we embed it inside the argument to the
function, compute the function and the result is the ciphertext. To decrypt, we use the
trapdoor information to invert the function and extract the message from the argument.

Recall from Section 3 that our one-way trapdoor function takes a lattice vector and
addsto it asmall error vector. In the context of an encryption scheme, we can think of this
processas ' encrypting alattice vector’ by adding to it asmall error vector, and we can think
of the resulting vector in R" as the ciphertext. To encrypt arbitrary messages, we must
specify an (easily invertible) encoding which maps messages into lattice vectors which are
then encrypted as above. Describing such an encoding is the focus of this section.

To obtain a semantically secure encryption scheme [13], we need an encoding scheme
such that seeing the ciphertext does not help a polynomial time adversary in getting “any



information” about the message. Other parameters which need to be considered (besides
security) are the efficiency of encoding and decoding, and the message expansion. Below
we describe two possible encoding methods.

4.1 A Generic Encoding

Thefirst method isageneric one. Sincewe have acandidatefor atrapdoor one-way function,
we may use hard-core bits of this function as the message hits. In particular, we can use the
general construction of Goldreich-Levin, [12]) which shows how and where to hide hard
core bits in a pre-image of any one-way function. (This construction enables hiding log n
bits in one function evaluation.)

This approach has the advantage of being able to prove that it is impossible to even
distinguish in polynomial time between any two messages, under the assumption that
we started with a trapdoor function. The major drawback of this scheme is the message
expansion, sincewecan only sendlog n bitsat atimefor onefunction evaluation. M oreover,
since this approach is generic, it doesn’t provide us with any insight which we may exploit
to increase the bandwidth.

4.2 Encoding viathe low-order bitsin v

Another approach is to embed the bits of the message directly in an integer vector v, and
then compute the ciphertext as ¢ = Bv + e, where B isthe public basisand e is an error
vector.

The main problem with this approach isthat the adversary can in fact use ¢ to obtain an
estimate on each entry in v. To seethat, noticethat B~'¢ = v + B~ 'e, and so each entry
in B~1¢ is equal to the corresponding entry in v plus some “noise” from B~ 'e. Below

wedenoted % B-le. Also, thei’th entry in d is denoted by é; and the i"th entry of v is
denoted v;.

Wesaw in Section 3.1 that if the Euclidean norm of the row f)i in B~! issmall, then the
variance of ; will also be small (notice that the dual-orthogonality-defect of B may still be
large because of other rowsin B~ that have much larger Euclidean norm). In particular,
if o - ||b;|| < 1 then there is a reasonable probability that |6;] < 1/2, in which case v;
can be obtained simply by rounding the i'th entry in B~ !¢ to the nearest integer. Thus, an
attacker could focus on the rows of B~! which have low Euclidean norm, and compute the
corresponding entriesin v. More generally, the adversary may view the ¢'th entry of B~ 1¢
as an estimate for v; (which is probably accurate up to a||f)i||).

Remark. Somewhat surprisingly, for the purpose of this attack - reducing the basis B does
not seem to help (of course, aslong as the resulting basisis not “reduced enough” to break
the underlying trapdoor function). To see why, consider the unimodular transformation
T" between the original basis B and the reduced basis B’ (1" = (B')~!B). Since ¢ is
computed using the original matrix B, then when trying to extract partial information using
B’ we compute

v = (B/)_lc = (B/)_l(Bv +e)= (B/)_le + (B/)_le =T'v+ (B/)_le



If (B")~! has rows with small Euclidean norm, then the attacker may be able to learn the
corresponding entries in T”v, but this still does not seem to yield an estimate about any
entry in v. This suggeststhat in this encryption scheme, it may be useful to publish public
basiswhichisnot LLL reduced.

Embedding the message in the vector v. From the above discussion, it is clear that if we
are to embed the message in the vector v itself, then it should be embedded in the least
significant bits of v's entries. Also, we should not put any bits of the message in entries
of v which correspond to rows with small Euclidean norm in B~1. We start by examining
the simple case in which we only use the least-significant-bit of each entry (except for the
“weak entries”), and pick all the other bits at random. Then, given an estimate 7; = v; + 6;
for the entry v;, the attacker should decide whether the number in that entry was even or
odd (that is, whether the messagebitisa0 or 1).

If we assumethat each entry in ; can be approximated by a Gaussian random variable
withmean v; and variance o2 || b,||? (which s reasonablesince ; isasum of n independent
random variable which are al “more or less the same”), then given the experimental value
;, thestatistical advantage|Pr[v; iseven | ;] — Pr[v; isodd | ;]| isexponentially small
ing||by||. If the Euclidean norm of b; islarge enough, then the attacker, who knows 7, gets
only a small statistical advantage in guessing the corresponding bit of the message. If we
havearow of B~! with very high Euclidean norm, wemay be ableto usethe corresponding
entry of v for £ message-bits. It can be shown that the statistical advantagein guessing any
of these bitsis exponentially small in o||b;|| /2. If the Euclidean norm of each individual
row in B~ istoo small, we can represent each bit of s using several entries by making that
bit the XOR of the least significant bit in all those entries. The statistical advantage then is
exponentially small in o - 3, ||b;|| (where the sum is taken over the XOR' ed entries).

4.3 Additional Properties

Detecting decryption errors. One property of the above decryption procedure is that al-
though there is a probability of error, it is still possible to verify when the message is
decrypted correctly. This enables the legitimate user to identify decryption errors, so that
it can take measuresto correct them. Recall that we encrypt the lattice point p by adding
to it asmall error vector e, thus obtaining the ciphertext ¢ = p + e. When we decrypt ¢
and find a lattice point p’ (which we hope is the same as p), we can verify that thisis the
right lattice point by checking that all the entriesin the error vector €’ = ¢ — p’ are £o.
Thus aslong as the lattice does not contain a point in which all the entries are exactly 20,
decryption errors can always be detected.

Plaintext Awareness. It seems that our scheme enjoys some weak notion of “plaintext
awareness’ in that there is no obvious way to generate from scratch a valid ciphertext
(i.e., one which the decryption algorithm can decrypt) without knowing the corresponding
lattice point. Still this plaintext awarenessis limited, since after seeing one valid ciphertext
¢, it is possible to generate other valid ciphertexts without knowing the corresponding
lattice-points (simply by adding any lattice point to ¢).



5 Experimental Results

Throughout thiswork, we used experimental datato guide usthrough the choices of various
parameters in our construction, and to help us evaluate the effectiveness of some of the
attacks. In this section we describe our testing methods and sketch afew of the main results.
A full report on these tests will be available in the full version of this paper. For these
experiments we used the implementation of the LLL lattice-reduction algorithm from the
LiDIA project [16].

5.1 Choosing Parametersfor the Key-Generation

The tests which we performed to determine the parameters of the key-generation process
are omitted from this extended abstract. These tests are described in the TR version of this
work [11].

5.2 Evaluation of the Round-Off Attack

We used the analysis from Subsection 3.4, in conjunction with our tests, to evaluate the
performance of the Round-off attack in dimensions 80 through 160 (in increments of 10).
We performed the following experiments:

1. In each dimension n we generated five private bases. Each basis was chosen as R; =
4[\/n] - I + rand(+4), where I is the identity matrix and rand(=+4) is a square matrix
whose entries are selected uniformly from therange {—4, ..., +4}.

For each basis R2; we computed the value o; (which is used for the error vector in our

construction) as o; = (7;1/81n(2n/c))~*, wherev; isthe Euclidean norm of the largest
row in R;l, andz = 10~°. (By the Remark at the end of Subsection 3.1, we estimate that
the probability of decryption errors using the private basis R; and this value of o; is about
1075)
2. For each private basis F2; we generated five public bases. Each public basis B;; was
generated by first applying 2n “mixing steps’ to R; and then LLL-reducing the resulting
basis. As explained in Subsection 3.4, we evaluated the work-load of the Round-off attack
using the public basis B;; as

w2 gn orth-defect™(B;;)
' |det(Bi;)]

work-load;; = (7e)

3. We evaluated the work-load of the Round-off attack against the private basis R; by
the minimum of the work-loads for the corresponding private bases B;,. Namely we set
work-load; = min;work-load;;.

4. We evaluated the “typical work-load” in dimension n, by the median of the work-loads
for the five private basesin this dimension.

The results of these tests in dimensions 80-160 are summarized in Figure 1. It can be
seen in the figure that this attack falls apart once the dimension grows above 90, where the
work-load increases by an amazing multiplicative factor of about 8000 per dimension (1!).
Clearly, in dimensions 100 and above it is already easier to perform an exhaustive search
for the value of the error vector e than to use the Round-off attack.
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Fig. 1. Evaluation of the work-load of a Round-off attack in dimensions 80-160.

5.3 Evaluation of the Nearest-plane Attack

To evaluate the Nearest-plane attack, we used the same private bases R; and public bases
B;; asfor the Round-off attack. For each of the public bases 5;; , we carried out the off-line
phase in the Nearest-plane attack, thereby generating the transformed matrices Bij. We
then used the BZ» ;'S to evaluate the work-load of the attack.

R As before, the work-load for a private basis R; is the minimum work-load for all the
B;;'s, and the “typical” work-load for dimension n is the median work-load of the private
basesin this dimension.

Theresults of our testsin dimensions 100-170 are summarized in Figure 2. Asthefigure
clearly demonstrates, this attack is far better than the Round-off attack. Nonetheless, once
the dimension grows above 110, the work-load monotonically increasesby amultiplicative
factor of about 4 per dimension. In dimensions 140-150 this attack is aready infeasible.
Extrapolating from this line, we estimate that in dimensions higher than 200, it would be
easier to perform an exhaustive search for the value of the error vector e than to use the
Nearest-plane attack.
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Fig. 2. Evaluation of the work-load of a Nearest-plane attack in dimensions 100-170.

5.4 Evaluation of the Embedding Attack

Aswe said in Subsection 3.4, we do not know how to turn afailed run of the Embedding
attack into a starting point for some exhaustive search, and so we cannot talk about the
“work-load” of thisattack. Instead, we only measured what i s the maximum value of ¢ (the
bound on the error vector) for which this attack works.

For these experiments we used the same private bases 12; and public bases B;; as for
the previous two attacks. We then used each public basis to evaluate the function on afew
points using a few different values of ¢, and tested whether the Embedding attack recovers
the encrypted message.

In our experiments we tested several values of o between 1 and 3. For each setting of
o, we encrypted five messages and declared the attack successful if it recovered at least
one of them. For each private basis R; we computed the highest value of ¢ for which one
of the B;; was successful. For any dimension » we then computed the median among the
o values of the private basesin this dimension.

InFigure 3wedraw thesevaluesof ¢ for dimensions80-130. These value are compared
to the values of o which we suggest to use in our construction to obtain a probability of
10~" for decryption errors. It can be seen from this figure that for this choice of o, the
Embedding attack stops working around dimensions 110-120.
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Fig. 3. Performance of the Embedding attack in dimensions 100-130
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