
On Probabilistic versus Deterministic Proversin the De�nition of Proofs Of KnowledgeMihir BellareDepartment Computer Science & EngineeringUniversity of California at San Diego9500 Gilman Drive, La Jolla, CA92093, USA.mihir@cs.ucsd.edu. Oded Goldreich�Department of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded.goldreich@weizmann.ac.ilOctober 22, 2006AbstractThis note points out a gap between two natural formulations of the concept of a proof ofknowledge, and shows that in all natural cases (e.g., NP-statements) this gap can be closed.The aforementioned formulations di�er by whether they refer to (all possible) probabilistic ordeterministic prover strategies. Unlike in the rest of cryptography, in the current context, theobvious transformation of probabilistic strategies to deterministic strategies does not seem tosu�ce per se.

Keywords: Proof of Knowledge, Probabilistic Proof Systems, Probabilism versus Determinism,Expected Running Time.�Partially supported by the Israel Science Foundation (grant No. 460/05).

1 IntroductionThe concept of a \proof of knowledge" was informally introduced by Goldwasser, Micali and Rack-o� [4], and plays an important role in the design of cryptographic schemes and protocols (see,e.g., [2, 3]). This note refers to the common formulation of the aforementioned concept, which wasgiven in [1].Loosely speaking, the de�nition of a proof of knowledge requires the existence of a \knowledgeextractor" that, when given access to any strategy, outputs the relevant information within (ex-pected) time that inversely proportional to the probability that the given strategy convinces theknowledge veri�er. Schematically, the de�nition of a proof of knowledge requires something withrespect to any strategy.The issue addressed in this note is the following. Usually, in de�nitions of the aforementionedtype, it does not matter whether one quanti�es over all probabilistic strategies or over all determin-istic strategies. The reason is that, usually, satisfying the more restricted de�nition (which refersonly to all deterministic strategies) immediately implies satisfying the general de�nition (whichrefers to all probabilistic strategies). Unfortunately, this does not seem to be the case in thecurrent setting (of the de�nition of proofs of knowledge).1.1 The source of troubleIn this subsection we provide a high-level description of the technical problem addressed in this work.We re-iterate this explanation, using more precise style after presenting the relevant de�nitions (inSection 2).To clarify the source of trouble, let us �rst consider one of the usual settings (in which theproblem does not arise): speci�cally, we consider the setting of zero-knowledge. In this case, theability to simulate (in a black-box manner) any deterministic veri�er strategy, implies the abilityto simulate any probabilistic veri�er strategy. The same holds also when we restrict attentionto strategies that can be implemented by polynomial-size circuits. The reason is that given anyprobabilistic strategy, we may consider all residual deterministic strategies (obtained by all possible�xing of the strategy's coins), and obtain the desired simulation (for the probabilistic strategy) bycombining all the corresponding simulations (i.e., of the residual deterministic strategies).This simple argument (per se) fails when applied in the current context (of proofs of knowl-edge). Indeed, we can consider all residual deterministic prover strategies that emerge from a givenprobabilistic prover strategy, and we can combine the corresponding extraction procedures, but thecombined procedure does not necessarily run in time that is inversely proportional to the probabil-ity that this prover convinces the veri�er. For example, suppose that on input x, with probability12 (over the choice of the prover's coins), the residual prover convinces the veri�er with probability2�jxj (where the probability here is over the veri�er's moves), and otherwise the residual proverconvinces the veri�er with probability 1. Then, in the �rst case extraction may run in (expected)time related to 2jxj, whereas in the second case it runs for polynomial-time. It follows that theextraction for the original probabilistic prover strategy runs in (expected) time that is related to12 � 2jxj. But this probabilistic prover strategy convinces the veri�er with probability exceeding 12 .(Thus, this extractor does not run in time that is inversely proportional to the success probabilityof the probabilistic prover strategy.)
1

1.2 On the importance of relating the two de�nitionsNeedless to say, when faced with two natural de�nitions we wish to know whether they are equiv-alent. Furthermore, we note that the two di�erent de�nitions have appeared in the literature: Forexample, the de�nition in [1] refers to any probabilistic prover strategy, while the de�nition in [2,Sec. 4.7] only refers to (arbitrary) deterministic strategies (see further discussion in Section 2).Thus, equating the two de�nitions (which appear in two central texts on this subject) becomeseven more important (as it aims at eliminating a source of confusion in the current literature).In addition to the foregoing abstract motivation, there is also a concrete motivation to ourstudy. It is typically easier to deal with deterministic strategies than with probabilistic ones, andthus relating the two de�nitions yields a useful methodology (i.e., demonstrating the \proof ofknowledge" property with respect to deterministic strategies and deriving it for free with respectto probabilistic strategies). For example, we note that in [1, Apdx E] the \proof of knowledge"property (of the Graph Isomorphism protocol) is only demonstrated with respect to deterministicstrategies, and this demonstration does not seem to extend to probabilistic strategies.1Let us stress that in many applications the relevant prover strategies are in fact probabilistic.This is the case whenever proof-of-knowledge are the end goal (or close to it as in identi�cationschemes), because in these cases the prover strategy represents an arbitrary adversarial behavior.22 Formal SettingLet us start by recalling the de�nitional schema that underlies the two de�nitions that we study.Generalizing the treatment in [1] and [2, Sec. 4.7.1], we shall refer to an arbitrary class of potential(prover) strategies, denoted S. Indeed, the treatment of [1] is obtained by letting S be the class ofall (probabilistic) strategies, whereas the treatment of [2, Sec. 4.7.1] is obtained by letting S be theclass of all deterministic strategies.2.1 PreliminariesLoosely speaking, deterministic strategies are functions that specify the next message to be sent bya party, based on its private input (which is hardwired in them) and as a function of the messagesit has received so far. General (probabilistic) strategies are similar, except that the next messagemay also depend on a random input that is presented to these strategies. Formally, a (probabilistic)strategy � is a function from f0; 1g��f0; 1g� to f0; 1g� such that �(!;) denotes the message to besent by the corresponding party given that its random input equals !, and the sequence of messagesreceived so far equals . Note that the strategy depends also on private inputs of the correspondingparty, to which the outside world has no direct access. (These private inputs are hardwired in �and do not appear explicitly in our notation.)For a probabilistic strategy �, we often consider residual deterministic strategies of the form�! = �(!) obtained by �xing the value of the random input to ! (i.e., �!() = �(!;)).1It seems that the authors of [1] overlooked this point. They either did not notice that the argument is restrictedto deterministic strategies or assumed that the demonstration can be easily extended to probabilistic strategies. Wenote that the argument presented in [1, Apdx E] applies to any three-move Arthur-Merlin protocol for NP that hasthe following strong soundness property: given any two accepting transcripts (for the same input) that start with thesame Merlin message but di�er on Arthur's message, one can e�ciently �nd a corresponding NP-witness.2In contrast, in other applications, where proofs-of-knowledge are used as a tool (and the corresponding knowledge-extractor is used by some simulator), it su�ces to consider deterministic prover strategies (because these are derivedfrom residual deterministic strategies that are derived in the course of the security analysis).2

Strategies will be used both as oracles and as specifying the actions of interactive machines.Speci�cally, we mean the following:� When we discuss the interaction between parties on a common input, we incorporate thiscommon input in each of the two strategies. The interaction of a strategy � with a strategy�0 is the sequence of messages exchanged between the residual deterministic strategies �! and�0!0 , where ! and !0 are uniformly distributed. This sequence equals �1; �1; �2; �2; ::: suchthat �i+1 = �(!; (�1; :::; �i)) and �i = �0(!0; (�1; :::; �i)).� When using � as an oracle, the oracle machine may issue arbitrary queries, which need notbe consistent with the way that � interact with any interactive machine. In particular, thesequeries may relate to di�erent values of random input !, all chosen at the discretion of theoracle machine.The second item represents a relaxation of the common interpretation of the de�nition of usinga probabilistic strategy as an oracle oracle, and thus a short discussion is in place. The commoninterpretation of this notion is that the user (i.e., the oracle machines) is given oracle access toa (single) residual deterministic strategy (i.e., �!) that is obtained from � by �xing a uniformlydistributed !. In fact, all prior constructions of knowledge extractors used this interpretation. Webelieve, however, that the more liberal interpration suggested above (i.e., by which the user is givenoracle access to � itself) is consistent with the simulation paradigm and is adequate in all reasonableapplications. Actually, the knowledge extractor constructed in this work refers to an intermediateinterpretation (of using a probabilistic strategy � as an oracle). By this interpretation the oraclemachine may is given access to several residual deterministic strategies (i.e., several �!'s), whichare derived from the same probabilistic strategy by the selection of independently and uniformlydistributed values of the random input !.The relevant knoweledge. We capture the relevant knowledge by a binary relation R �f0; 1g� � f0; 1g� such that, on common input x, the \claimed knowledge" refers to knowledgeof a string in R(x) def= fy : (x; y)2Rg. The archetypical case is of NP-relations; that is, relationsR that are polynomially bounded (i.e., (x; y)2R implies jyj � poly(jxj)) and are polynomial timerecognizable (i.e., there exists a polynomial-time algorithm A such that A(x; y) = 1 if and only if(x; y) 2R). We denote by LR the set of strings for which a \claim of knowledge" is not bluntlywrong; that is, LR def= fx : R(x) 6= ;g.2.2 The actual de�nitionsOur focus will be on the validity condition of the following de�nition, but for sake of completenesswe state also the non-triviality condition.De�nition 1 (schema for de�ning proofs of knowledge): Let R be a binary relation, and � :f0; 1g� ! [0; 1]. We say that an interactive machine V is a knowledge veri�er for the relation R withrespect to a class of strategies S (and knowledge error �) if the following two conditions hold.Non-triviality: For every x 2 LR, there exists a strategy � 2 S such that the veri�er V alwaysaccepts when interacting with � on common input x.Validity (with error �): There exists a probabilistic oracle machine K and a polynomial q such that,for every strategy � 2 S and every x, machine K satis�es the following condition:3

If when interacting with �, on common input x, the veri�er V accepts with proba-bility px > �(x), then on input x when given oracle access to � machine K outputsa string in R(x) within an expected number of steps upper-bounded byq(jxj)px � �(x) : (1)Note that the probability px depends on V , the strategy �, and the common inputx. The corresponding probability space is of all possible coin tosses of the strategiesV and �. Likewise, the probability space underlying Eq. (1) consists of all possiblecoin tosses of the machine K and the strategy �.The oracle machine K is called a (universal) knowledge extractor, and � is called the knowledgeerror function.In particular, it follows that x 62 LR implies px � �(x). We stress that, on input x and when givenoracle access to a strategy � that convinces V to accept x with probability exceeding �(x), theknowledge extractor always outputs a string in R(x); that is, in this case, Pr[K�(x) 62 R(x)] = 0.However, when the said probability does not exceed �(x), all bets are o�. Nevertheless, if R is anNP-relation then we may assume, without loss of generality, that for every x and every � it holdsthat Pr[K�(x) 62 R(x) [f?g] = 0, where ? indicates halting without output. We now turn to thede�nitions studied in this note.De�nition 2 (the two de�nitions):Following De�nition 3.1 in [1]: We say that V is a knowledge veri�er for the relation R with knowl-edge error � if De�nition 1 holds with S being the set of all possible (probabilistic) strategies.Following De�nition 4.7.2 in [2]: We say that V is a restricted knowledge veri�er for the relation Rwith knowledge error � if De�nition 1 holds with S being the set of all possible deterministicstrategies.The two de�nitions di�er only in the scope of strategies considered: [1, Def. 3.1] refers to all possible(probabilistic) strategies, whereas [2, Def. 4.7.2] refers only to all possible deterministic strategies.3Nevertheless, we show that in all natural cases (e.g., NP-relations) the restricted de�nition impliesthe general one.2.3 Our resultBefore stating this result formally, let us point out why it is not as obvious as analogous resultsregarding related de�nitions.4 Suppose that V is a restricted knowledge-veri�er (with knowledgeerror � = 0) and let K be the corresponding knowledge extractor. Given a probabilistic strategy�, the straightforward attempt to extract knowledge from � consists of invoking K while giving it3Unfortunately, these facts are not perfectly clear in the original texts: The formulation of [1, Def. 3.1] refers toall possible \interactive functions", yet the latter are de�ned in [1, Def. 2.1] as arbitrary probabilistic strategies. Theformulation of [2, Def. 4.7.2] refers to all residual deterministic strategies that can be obtained by �xing the randominput of some probabilistic strategy, but in retrospect the latter condition is a red herring (and does not help inextending this de�nition to the general case of [1, Def. 3.1]).4Recall that simulation-security with respect to arbitrary (polynomial-size) deterministic adversaries typicallyimplies simulation-security with respect to arbitrary probabilistic (polynomial-time) adversaries.4

with oracle access to the residual deterministic strategy �!, where ! is uniformly distributed. Theproblem is that the probability that �! convinces V , denoted p(!), may deviate arbitrarily fromthe probability that � convinces V , denoted p. That is, the non-negative random variable p(!)may behave arbitrarily subject (only) to the condition p = E![p(!)]. This, in turn, implies that theexpected running-time of K�! (taken also over the random choice of !) is not necessarily inverselyproportional to p. For example, it may be that Pr[p(!) = 2�n] = 1=2 and Pr![p(!) = 1] = 1=2,and in this case the expected running-time of K�! may be 2n while E![p(!)] > 1=2.Theorem 3 Let V be a restricted knowledge veri�er for R with knowledge error �, where the lengthof the binary expansion of �(x) is polynomial in jxj. Suppose that the corresponding knowledgeextractor, K, never outputs a wrong answer; that is, for every x and �, it holds that Pr[K�(x) 62R(x) [f?g] = 0, where ? indicates halting without output. Then V is a knowledge veri�er for Rwith knowledge error �.Theorem 3 asserts that, under the additional assumptions regarding � and K, the restricted de�-nition (i.e., [2, Def. 4.7.2]) implies the general de�nition (i.e., [1, Def. 3.1]). As illustrated by theforgoing discussion, the corresponding knowledge extractor (for [1, Def. 3.1]) is not K (or the minormodi�cation of K discussed above). We note that the two additional assumptions (regarding � andK) can be easily met in case that R is an NP-relation. Details follows.Recall that if R is an NP-relation then we can ckeck the output of K, and thus (on inputx) we can always avoid outputting a string that is not in R(x). This eliminates the additionalassumption regarding K. As for the additional condition regarding �, it can always be enforcedby possiblly increasing � a little; that is, by resetting �(x) to d2q(jxj) � �(x)e=2q(jxj), where q is anarbitrary polynomial. Furthermore, in the case that R is an NP-relation, we may reset �(x) to�0(x) def= b2q(jxj) � �(x)c=2q(jxj), for a su�ciently large polynomial q (by taking advantage of the factthat, for any x 2 LR, a string in R(x) can be found in time exp(q(jxj))).53 Proof of Theorem 3Recall that the source of trouble is that for a uniformly distributed value of the random input, thesuccess probability of the corresponding residual deterministic strategy (w.r.t convincing V) maybe very di�erent from the success probability of the original probabilistic strategy. This may lead tooverwhelmingly long runs of the knowledge extractor (i.e., runs that contribute to the total expectedrunning-time more than we can allow). The basic idea is to truncate such overwhelmingly long runs,and rely on the existence (in su�cient probability measure) of runs that are not overwhelminglylong.Let us illustrate this idea by referring to the foregoing example, where Pr[p(!) = 2�n] = 1=2and Pr[p(!) = 1] = 1=2 (and � = 0).6 In this case, p = E![p(!)] > 1=2, and so our extractionprocedure should run in expected polynomial-time. Thus, we invoke K providing it with oracle5This fact allows for handing the case that the probability that � convinces V to accept x (i.e., px) is very close to�(x) in the sense that px��0(x) is signi�cantly larger than px��(x). We �rst note that in this case px < �(x)+2�q(jxj)(as otherwise px � �(x) � 2�q(jxj) and px � �0(x) < px � �(x) + 2�q(jxj) � 2 � (px � �(x))). Thus, in this case (where(px � �(x))�1 < 2q(jxj)), we can a�ord running the standard search algorithm (which runs in time 2q(jxj)) in parallelto the given knowledge extractor. (We also use the fact that px > �0(x) implies px > �(x), which follows by thefact that (without loss of generality) the probability space underlying px is f0; 1gq(jxj) (and thus px > �0(x) impliespx � �0(x)+2�q(jxj) > �(x)).) On the other hand, if px��0(x) = O(px��(x)) then (px��(x))�1 = O((px��0(x))�1).Thus, given an knowledge extractor of error �, we obtain a knowledge extractor of error �0.6Throughout the text, n denotes the length of the common input x, which we often omit from the notation.5

access to �!, where ! is uniformly distributed among all possible random inputs, and truncatethe execution after a polynomial number of steps has elapsed. If an output was obtained in thisexecution attempt then we output it, otherwise we repeat the experiment again. Note that, withprobability 1=2, the residual strategy �! satis�es p(!) = 1, in which case K�! is expected to halt inpolynomial-time with the desired output. Otherwise (i.e., p(!) = 2�n), the (truncated) executionof K�! may be useless, but it will not cause much harm (since it is suspended after a polynomialnumber of steps).In the foregoing example we relied on a good a priori knowledge of the distribution of p(!),which may not be available in general. Thus, in general, we shall employ a somewhat more sophis-ticated argument. Following is a rough sketch of the general argument, where we still assume forsimplicity that � = 0. One key observation is that there exists an index i such that Pr![p(!) � 2�i]is linearly related to 2i � p (where p = E![p(!)]). We do not know this i and so we run, in parallel,numerous processes one per each of the relevant values of i. In the ith process (i.e., the one relatedto the value i), we repeatedly attempt extraction with deterministic residual provers (derived byrandom �xings of !), but truncate each attempt after poly(n) �2i steps. Thus, for the correct valueof i, the ith relevant process will succeed in extraction within the allowed expected number of steps(i.e., it is expected to make poly(n)=(2i � p) attempts, each running for poly(n) � 2i steps, and thusthe total expected running time is poly(n)=p).We now turn to a rigorous description of the actual knowledge extractor for probabilistic strate-gies. We �x an arbitrary x 2 LR, but omit it from most subsequent notations. Fixing an arbitraryrandomized strategy �, we consider an arbitrary choice of the strategy's coins, !, and denote theresidual strategy by �!. In the rest, we will refer to selecting such !'s and providing oracle accessto the corresponding �!, but we need not select these !'s ourselves; it su�ces to have the ability ofproviding oracle access to numerous random and independent \incarnations" of � that correspondto such choices of !'s.Let p(!) denote the probability that veri�er accepts when interacting with �!, on common inputx. By the hypothesis, if p(!) > �(x) then the knowledge extractor K, given oracle to �!, outputsa string in R(x) in expected time q(jxj)=(p(!) � �(x)), where q is a �xed (universal) polynomial.As before, we let p = E![p(!)], and assume, without loss of generality, that p > �(x) (becauseotherwise noting is required). In addition, let � = �(x) and let ` = poly(jxj) denote an upper-bound on the length of the random input used by V on common input x. It follows that for everychoice of ! (which determines a residual strategy �!) it holds that 2` � p(!) is an integer (becausethe relevant probability space is uniformly distributed over 2` possibilities). Recalling that � hasa binary expansion of length poly(jxj), we assume, without loss of generality, that 2` � � is also aninteger. It follows that if p(!) � �+ 2�`�1 then p(!) � �.We consider a partition of (� + 2�`�1; � + 1] into ` + 1 intervals such that the ith interval isIi = (�+ 2�i; �+ 2�i+1]. We claim that there exists i 2 [`+ 1] such thatPr![p(!) 2 Ii] � 2i � (p� �)4(`+ 1) : (2)This claim follows, because otherwise we derive a contradiction as follows (where in the �rst in-equality we use the fact that p(!) � �+ 2�`�1 implies p(!) � �):E![p(!)] � Pr![p(!) � �+ 2�`�1] � �+ `+1Xi=1Pr![p(!) 2 Ii] � (�+ 2�i+1)= �+ `+1Xi=1Pr![p(!) 2 Ii] � 2�i+16

< �+ `+1Xi=1 2i � (p� �)4(`+ 1) � 2�i+1= �+ p� �2which, combined with the de�nition p (i.e., p = E![p(!)]) contradicts the hypothesis p > �.The new extraction procedure consists of running ` + 1 processes in parallel. The ith processsuccessively invokes time-bounded executions of the knowledge extractor K, providing each suchinvocation with oracle access to a random and independent incarnation of � (i.e., residual strategies�! for uniformly and independently ditrsibuted values of !). The time-bound used in the ith processis 2 � q(jxj) � 2i, where the q is the polynomial guaranteed for K. Thus, if p(!) � �+ 2i then, withprobability at least 1=2, it holds that K�!(x) halts in 2 � q(jxj) � 2i steps (because the expectednumber of steps is q(jxj) � 2i). Once any of these `+ 1 processes outputs some string y, the entireparallel-process terminates and y is used as output.Recall that by the theorem's hypothesis, whenever K outputs a string y it is the case thaty 2 R(x). Thus, we con�ne ourselves to analyzing the expected running-time of the foregoingextraction process. Considering an arbitrary value i that satis�es Eq. (2), we observe that the ithprocess succeed after making an expected number of 2 � �2i�(p��)4(`+1) ��1 trials. Thus, the overall timespent by the new extractor has expectation(`+ 1) � 2 � 4(`+ 1)2i � (p� �) � (2 � q(jxj) � 2i) = O(`2 � q(jxj))p� � = poly(jxj)p� �and the theorem follows.4 Concluding RemarksWe have established the equivalence of [1, Def. 3.1] and [2, Def. 4.7.2] while relying on the followingthree (reasonable) conventions (or assumptions):1. We assumed that the pharse \given oracle access to a probabilistic strategy �" means abilityto query several (rather than one) residual deterministic strategies of the form �!, where the!'s are uniformly and independently distributed.2. We assumed that the knowledge-extractor never outputs a wrong string (i.e., a string not inR(x)), regardless of which input x and which strategy � it is given access to.3. We assumed that the knowledge error function � is nice in the sense that, for every x, thebinary expansion of �(x) has length polynomial in jxj.We believe that these assumptions do not impair the applicability of our result. Still we wonderwhether (some of) these assumptions can be eliminated.References[1] M. Bellare and O. Goldreich. On De�ning Proofs of Knowledge. In Crypto92, Springer-Verlag Lecture Notes in Computer Science (Vol. 740), pages 390{420.7

[2] O. Goldreich. Foundation of Cryptography { Basic Tools. Cambridge University Press,2001.[3] O. Goldreich. Foundation of Cryptography { Basic Applications. Cambridge UniversityPress, 2004.[4] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive ProofSystems. SIAM Journal on Computing, Vol. 18, pages 186{208, 1989. Preliminary versionin 17th STOC, 1985.

8

