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1 Introdu
tionIn the last de
ade, the area of property testing has attra
ted mu
h attention (see, the surveys [12, 26℄as well as the more re
ent ones [27, 28℄). Loosely speaking, property testing typi
ally refers tosub-linear time probabilisti
 algorithms for de
iding whether a given obje
t has a predeterminedproperty or is far from any obje
t having this property. Su
h algorithms, 
alled testers, obtain lo
alviews of the obje
t by performing queries; that is, the obje
t is seen as a fun
tion and the testersget ora
le a

ess to this fun
tion (and thus may be expe
ted to work in time that is sub-linear inthe length of the obje
t).The foregoing des
ription refers to the notion of \far away" obje
ts, whi
h in turn presumesa notion of distan
e between obje
ts as well as a parameter determining when two obje
ts are
onsidered to be far from one another. The latter parameter is 
alled the proximity parameter, andis often denoted �; that is, one typi
ally requires the tester to reje
t with high probability anyobje
t that is �-far from the property.Needless to say, in order to satisfy the aforementioned requirement, any tester (of a reasonableproperty) must obtain the proximity parameter as auxiliary input (and determine its a
tions a
-
ordingly). The question, addressed in this work, is what does the tester do with this parameter(or how does the parameter a�e
t the a
tions of the tester). A very minimal e�e
t is exhibited bytesters that, based on the value of the proximity parameter, determine the number of times that abasi
 test is invoked, where the basi
 test is oblivious of the proximity parameter. For example, the
elebrated linearity tester of [10℄ repeats a basi
 test that 
onsists of sele
ting two random points,x and y, and probing the value of the fun
tion at the points x; y, and x + y. This basi
 test isrepeated for a number of times that is inversely proportional to the proximity parameter.Our fo
us is on su
h basi
 tests (i.e., basi
 tests that are oblivious of the proximity parameter).We 
all su
h tests proximity oblivious, and note that they are impli
it in prior works; most notablyin the 
ontext of testing algebrai
 properties (see, e.g., [29℄ and [22℄) and testing monotoni
ity(e.g., [15℄). In this work we initiate a general study of proximity oblivious testers, and 
onsider avariety of questions regarding them, while fo
using on testing graph properties (in two standardmodels). Spe
i�
ally, we ask:� Whi
h properties have proximity oblivious tests (of small query 
omplexity)?� How does the dete
tion probability of su
h tests grow as a fun
tion of the distan
e of the obje
tfrom the property, and how does this relate to the query 
omplexity of the best (standard)tester for the 
orresponding property.For a pre
ise formulation of proximity-oblivious testers and a summary of our results, see Se
tions 2and 3, respe
tively.Motivation: Property testing 
an be thought of as relating lo
al views to global properties, wherethe lo
al view is provided by the queries and the global property is the distan
e to a predeter-mined set. Proximity-oblivious testing takes this relation to an extreme by making the lo
al viewindependent of the distan
e. In other words, it refers to the smallest lo
al view that may provideinformation about the global property (i.e., the distan
e to a predetermined set). A major moti-vation for our study is that understanding a natural sub
lass of testers (i.e., proximity-obliviousones) may shed light on property testing at large.
1



2 De�nitional TreatmentIn 
ontinuation to the introdu
tion, we 
onsider proximity-oblivious testers, and note that standardtesters (whi
h err with probability at most 1=3)1 may be obtained by repeating these proximity-oblivious testers for an appropriate number of times.De�nition 2.1 (vanilla version): Let � be a set of fun
tions over a �nite set 
. A proximity-oblivious tester for � is a probabilisti
 ora
le ma
hine T that satis�es the following two 
onditions:1. The tester a

epts ea
h fun
tion in � with probability 1; that is, for every f 2 � it holds thatPr[T f=1℄ = 1.2. For some monotone fun
tion � : (0; 1℄ ! (0; 1℄, ea
h fun
tion f 62 � is reje
ted by T withprobability at least �(Æ�(f)), whereÆ�(f) def= ming2�fÆ(f; g)g and Æ(f; g) def= Prx2
[f(x) 6= g(x)℄. (1)The fun
tion � is 
alled the dete
tion probability of the tester T .Indeed, we require that �(�) > 0 for every � > 0, whereas extending Item 2 to f 2 � (whileavoiding 
ontradi
tion with Item 1) mandates extending � so that �(0) = 0. The requirement that� is monotone (i.e., monotoni
ally in
reasing) does not rule out 
ases where the tight lower-boundis non-monotone (e.g., [7℄), be
ause � is not required to be tight.2 Also, we may assume, withoutloss of generality, that �(�) � �.We note that (as outlined in the introdu
tion), using a proximity-oblivious tester T (as inDe�nition 2.1), we 
an obtain a standard (one-sided error) tester (of error probability at most 1/3).Spe
i�
ally, given the proximity parameter �, the standard tester invokes T for �(1=�(�)) times,and a

epts if and only if all these invo
ations a

ept.Note that it is natural to require one-sided error in (Item 1 of) De�nition 2.1, be
ause otherwisefun
tions in � may be a

epted with probability that is lower than the a

eptan
e probability ofsome fun
tions that are not in � (but are 
lose to �). This presupposes that Item 2 of De�nition 2.1remains inta
t. For a dis
ussion of an alternative formulation, whi
h allows two-sided error, seeSe
tion 6.3.De�nition 2.1 does not spe
ify the query 
omplexity of the (proximity-oblivious) tester, andindeed an ora
le ma
hine that queries the entire domain of the fun
tion quali�es as a (proximity-oblivious) tester (with dete
tion probability �(�) = 1 for every � > 0). Needless to say, we areinterested in (proximity-oblivious) testers that have signi�
antly lower query 
omplexity. To fa
ili-tate an asymptoti
 treatment, we refer to in�nite families of �nite fun
tions, and provide the testerwith the size of the fun
tion's domain.1Analogously to De�nition 2.1, a standard tester for a property � is a probabilisti
 ora
le ma
hine T that satis�esthe following 
onditions:1. The tester a

epts ea
h f 2 � with probability at least 2=3; that is, for every f 2 � and every � > 0, it holdsthat Pr[T f (�)=1℄ � 2=3.2. Given any � > 0 and ora
le a

ess to any f that is �-far from � (i.e., Æ�(f) > �), the tester reje
ts withprobability at least 2=3 (i.e., Pr[T f (�)=0℄ � 2=3).We say that the tester has one-sided error if it a

epts ea
h f 2 � with probability 1 (i.e., for every f 2 � and every� > 0, it holds that Pr[T f (�)=1℄ = 1).2In fa
t, it suÆ
es to require that for every x > 0 it holds that �0(x) def= infy�xf�(y)g > 0. Indeed, in su
h a 
ase,�0 is a monotoni
ally non-de
reasing lower-bound (of �). Furthermore, we may obtain a monotoni
ally in
reasinglower-bound (of �) by de�ning �00(x) def= (1 + x) � �0(x)=2. 2



De�nition 2.2 (main version): Let � = Sn2N �n, where �n 
ontains fun
tions de�ned over thedomain [n℄ def= f1; :::; ng, and let � : (0; 1℄ ! (0; 1℄ be monotone. A proximity-oblivious tester withdete
tion probability � for � is a probabilisti
 ora
le ma
hine T that satis�es the following two
onditions:1. For every n 2 N and f 2 �n, it holds that Pr[T f (n)=1℄ = 1.2. For every n 2 N and f : [n℄ ! f0; 1g� not in �n, it holds that Pr[T f (n) = 0℄ � �(Æ�n(f)),where Æ�n(f) = ming2�nfÆ(f; g)g (as in Eq. (1)).De�nition 2.2 
an be further extended so to 
over also (proximity-oblivious) testers that obtainother parameters of the fun
tion being tested (e.g., a degree bound in the 
ase of testing low-degreepolynomials). Note that De�nition 2.2 mandates that the dete
tion probability is only a fun
tionof the relative distan
e to the property; indeed, one may relax this requirement but one should stayaway from the trivial lower-bound (whi
h 
orresponds to only requiring that for every f 62 � thereexists a 
omputation of T f that reje
ts).3 Summary of our ResultsRe
all that the (three-query) linearity test of [10℄ is a
tually a proximity-oblivious tester, and thatits dete
tion probability is linear (i.e., �(�) = 
(�)). The same holds also for several known low-degree tests (see, e.g., [29℄), testers of monotoni
ity (e.g., [15℄), and some of the results regardinglo
ally testable 
odes (see [19℄ and the end of Se
tion 6). In this work, we study the existen
e andquality (i.e., �) of eÆ
ient proximity-oblivious testers in other domains, most importantly in thedomain of testing graph properties.3.1 In the dense graphs modelWe start (in Se
tion 4) with the setting of testing properties of graphs in the adja
en
y matrix model(introdu
ed in [16℄). We 
onsider several natural properties and show 
onstant-query proximity-oblivious testers of optimal (up to a 
onstant fa
tor) dete
tion probability. For example, we showthat:1. The set of graphs ea
h 
onsisting of a 
olle
tion of isolated 
liques has a three-query proximity-oblivious tester of quadrati
 dete
tion probability (i.e., �(�) = 
(�2)), whereas no 
onstant-query proximity-oblivious tester of this property 
an do better (i.e., have dete
tion probability�(�) = !(�2)). We note that this property has a standard (adaptive) tester of eO(1=�)-query
omplexity [18, Se
. 3℄.2. For every integer 
 � 2, the set of graphs 
onsisting of up to 
 isolated 
liques has a 
2-queryproximity-oblivious tester, and the optimal dete
tion probability is �(�) = �(�
=2). We notethat these properties have a standard (non-adaptive) tester of eO(1=�)-query 
omplexity [18,Se
. 6℄.In 
ontrast to the aforementioned positive results, we show that the set of bipartite graphs hasno 
onstant-query proximity-oblivious tester, although it does have a standard tester of poly(1=�)-query 
omplexity [16, 5℄.Summarizing the lessons from the foregoing examples, we note that they provide negativeexamples to both resear
h proje
ts advo
ated in the introdu
tion. That is:3



� There exist easily testable properties that do not have 
onstant-query proximity oblivioustests. Indeed, this is demonstrated by the result for bipartiteness.� For properties that do have 
onstant-query proximity oblivious tests, the standard testerderived from the best possible proximity oblivious test is signi�
antly inferior to some other(standard) tester. Indeed, this is demonstrated by the result for the property of being a
olle
tion of 
 isolated graphs, sin
e the derived standard tester has query 
omplexity 
(��
=2)(whereas this property has a standard eO(��1)-query tester).Addressing the �rst foregoing resear
h proje
t, we 
hara
terize the 
lass of graph properties having
onstant-query proximity-oblivious testers.Theorem 3.1 (loosely stated, 
f. Theorem 4.7): A graph property has 
onstant-query proximity-oblivious testers (in the dense graph model) if and only if it expressible as an indu
ed subgraphfreeness property.3Indeed, this 
lass is rather restri
ted when 
ompared to the 
lass of graph properties having astandard tester of 
omplexity that only depends on � (as 
hara
terized in [4℄).We also provide a method for determining the optimal (up to a 
onstant fa
tor) dete
tionprobability fun
tion of any property that has a 
onstant-query proximity-oblivious tester (
f. The-orem 4.8). This method refers to the 
orresponding family of forbidden (indu
ed) subgraphs, andthe aforementioned tight quantitative results are obtained using it.3.2 In the bounded-degree graphs modelNext (in Se
tion 5), we turn to testing graph properties in the bounded-degree model (introdu
edin [17℄). In this model, we also 
hara
terize the 
lass of graph properties having 
onstant-queryproximity-oblivious testers. Interestingly, this 
lass is a stri
t superset of the 
lass of propertieshaving su
h testers in the adja
en
y matrix model. We note that, also in the 
urrent model,the 
lass of properties having 
onstant-query proximity-oblivious testers is rather restri
ted when
ompared to the 
lass of graph properties having a standard tester of 
omplexity that only dependson � (as explored in [17, 9℄).The 
hara
terization of the 
lass of graph properties having 
onstant-query proximity-oblivioustesters in the bounded-degree model gives rise to a generalized notion of subgraph freeness, whi
hmay be of independent interest (see De�nition 5.1). This notion generalizes both the notions ofnon-indu
ed and indu
ed subgraph freeness, and is more expressive than the latter. For example,the generalized notion allows to 
apture non-hereditary properties su
h as (degree) regularity. Our
hara
terization refers to an auxiliary 
ondition, whi
h we term non-propagating (see De�nition 5.3).Theorem 3.2 (loosely stated, 
f. Theorem 5.5): A graph property has 
onstant-query proximity-oblivious testers (in the bounded-degree graph model) if and only if it expressible as an generalsubgraph freeness property that satis�es the non-propagation 
ondition. This 
lass stri
tly 
ontainsall indu
ed subgraph freeness properties.Indeed, we do not know whether every general subgraph freeness property satis�es the non-propagation 
ondition (see Open Problem 5.8).3Loosely speaking, an indu
ed subgraph freeness property is a set of graphs that does not 
ontain 
ertain graphs asindu
ed subgraphs. That is, su
h a property is determined by a �nite set of �nite graphs, denoted F , and it 
onsistsof all graphs G su
h that no indu
ed subgraph of G is in F .4



Fo
using on indu
ed subgraph freeness properties (whi
h do have 
onstant-query proximity-oblivious testers in both models), we note that the dete
tion probability in the bounded-degree modelis a polynomial that depends on the number of 
onne
ted 
omponents in the individual graphs ofthe forbidden family (i.e., �(�) = 
(�
), where 
 is the maximum number of 
onne
ted 
omponentsin any forbidden graph). This is very di�erent from the behavior in the dense graphs model, whereeven for 
 = 1 (i.e., 
onne
ted forbidden subgraphs) the dete
tion probability varies from linear toquadrati
 and to super-polynomial (i.e., �(�) = � versus �(�) = �(�2) versus �(�) < �
(log(1=�))).The te
hni
al angle. We 
omment that the te
hniques establishing the 
hara
terizations inthe two di�erent graph testing models are quite di�erent (as one should expe
t given the di�erentnature of the two models). In parti
ular, as hinted above, the analysis of the bounded-degree modelseems more novel.3.3 Generi
 observations and dis
ussionsFinally (in Se
tion 6), we present a few generi
 observations. Spe
i�
ally, we relate the existen
e of
onstant-query proximity-oblivious testers to the existen
e of 
onstant-size refutations of member-ship (or proofs of non-membership) and 
ertain testers that reje
t based on su
h refutations. Wealso shortly dis
uss the possibility of allowing proximity-oblivious testers two have two-sided errorprobability.We note that, in the 
ontext of lo
ally testable 
odes (LTCs), proximity-oblivious (
odeword)testers are related to strong 
odeword tests (as in [19, Def. 2.2℄), whereas standard (
odeword)testers are related to the standard de�nition of 
odeword tests (termed weak in [19, Def. 2.1℄).4 Testing Graph Properties in the Adja
en
y Matrix ModelIn the adja
en
y matrix model, an N -vertex graph G = ([N ℄; E) is represented by the Booleanfun
tion g : [N ℄� [N ℄! f0; 1g su
h that g(u; v) = 1 if and only if u and v are adja
ent in G (i.e.,fu; vg 2 E). Distan
e between graphs is measured in terms of their aforementioned representation(i.e., as the fra
tion of (the number of) di�erent matrix entries (over N2)), but o

asionally weshall use the more intuitive notion of the fra
tion of (the number of) edges over �N2 �.Notation. For a �xed graph G = ([N ℄; E), we denote the set of neighbors of vertex v 2 [N ℄ by�(v); that is, �(v) def= fu : fu; vg 2 Eg.4.1 A few illustrative resultsWe start with the simple 
ase of testing whether a graph is a 
lique.Proposition 4.1 Clique has a single-query proximity-oblivious tester with dete
tion probability�(�) = �, where Clique is the set of all graphs 
onsisting of a single 
lique.Proof: The 
laim follows by 
onsidering the straightforward tester that uniformly sele
ts tworandom verti
es, and a

epts if and only if there is an edge between them.Proposition 4.2 BiClique has a three-query proximity-oblivious tester with dete
tion probability�(�) = �, where BiClique is the set of all graphs 
onsisting of a single bi-
lique (i.e., a 
ompletebipartite graph). 5



The following proof may serve as a very simple demonstration of the \enfor
e and test" te
hnique(see [28, Se
. 4℄), whi
h underlies the design and analysis of many testers in the dense graph model(e.g., the ones of [16℄).Proof: Consider a tester that sets s 2 [N ℄ as an arbitrary vertex, sele
ts v; u 2 [N ℄ uniformly, anda

epts if and only if the subgraph indu
ed by fs; u; vg has an even number of edges.4Clearly, if G is a bi-
lique then this test always a

epts, be
ause either all verti
es reside on thesame side (and so (s; u), (s; v), and (u; v) are all non-edges) or a single vertex is in solitude (and isthus adja
ent to the other two verti
es, whi
h in turn are non-adja
ent).To analyze what happens when G = ([N ℄; E) is �-far from being a bi-
lique, observe that sindu
es a partition of the graph to its neighbors and non-neighbors (i.e., the 2-partition (�(s); [N ℄n�(s))). Note that if G were a bi-
lique then every vertex w 2 �(s) (resp., w 2 [N ℄n�(s)) would havesatis�ed �(w) = [N ℄ n �(s) (resp., �(w) = �(s)). However, sin
e G is �-far from being a bi-
lique,the sum of the number of edges in (�(s) � �(s)) [ (([N ℄ n �(s)) � ([N ℄ n �(s))) and the numberof non-edges in �(s)� ([N ℄ n �(s)) must ex
eed � �N2, and we 
all the 
orresponding vertex pairsbad. Thus, the probability that a pair (u; v) is bad is greater than �, whereas ea
h bad pair 
ausesour tester to reje
t (be
ause in the sub
ase that (u; v) 2 E \ (�(s) � �(s)) the indu
ed subgraphhas three edges and in the other two sub
ases (i.e., (u; v) 2 E \ (([N ℄ n �(s)) � ([N ℄ n �(s))) and(u; v) 2 (�(s)� ([N ℄ n �(s))) n E) the indu
ed subgraph has a single edge).Proximity-oblivious testers with �(�) = o(�). So far, we 
onsidered proximity-oblivious testerswith a linear dete
tion probability (i.e., �(�) = 
(�)). We now turn to 
ases where � is polynomialbut not linear. Su
h a natural 
ase is provided by the graph property that 
orresponds to graphsthat 
onsist of a �xed number of isolated 
liques. Spe
i�
ally, for any �xed integer 
 � 1, 
onsiderthe set of graphs, denoted CC�
, that 
onsist of at most 
 isolated 
liques. Note that Proposition 4.1refers to CC�1, whereas Proposition 4.2 refers to graphs that are 
losely related to CC�2 (i.e., agraph is in CC�2 if and only if its 
omplement graph is a bi-
lique). The following result refers tothe 
ase of 
 � 3.Proposition 4.3 For every 
onstant 
 � 3, the property CC�
 has a �
+12 �-query proximity-oblivious tester with dete
tion probability �(�) > �
+1+o(1). On the other hand, CC�
 has no
onstant-query proximity-oblivious tester with dete
tion probability �(�) = !(�
=2).We note that Se
tion 6.2 of the 
ompanion paper [18℄ provides a standard (non-adaptive) testerfor CC�
 having query 
omplexity eO(1=�) and 
onstant error probability. This standard tester issuperior to the one obtained by repeating any proximity-oblivious tester for an adequate numberof times (sin
e for any 
 � 3 the number of repetitions must be 
(��
=2)). We mention that thelower-bound on �(�) provided by Proposition 4.3 
an be improved (see Proposition 4.11).Proof: The lower-bound on � follows from the analysis of the CC�
-tester that is provided in[18, Se
. 6.2℄. Spe
i�
ally, we refer to the fa
t that the analysis in [18℄ establishes that (with highprobability) a sample of eO(1=�) verti
es (from any graph that is �-far from CC�
) indu
es a subgraphnot in CC�
. (The said analysis a
tually establishes something mu
h stronger, but the foregoingsuÆ
es here.)5 Note that any graph G0 that is not in CC�
 
ontains an indu
ed subgraph of atmost 
+ 1 verti
es that is not in CC�
, be
ause G0 either has at least 
+ 1 
onne
ted 
omponents(whi
h yields an independent set of size 
 + 1) or has a 
onne
ted 
omponent that is not a 
lique4We mention that in Se
tion 6.1 of the 
ompanion paper [18℄ we 
onsidered a standard tester that sele
ts O(1=�)random pairs of verti
es (in addition to an arbitrary s as above).5Details are omitted in light of the fa
t that Proposition 4.11 establishes a stronger lower-bound.6



(whi
h yields three verti
es that miss some edge among them). It follows that the said eO(1=�)-vertex sample 
ontains su
h 
 + 1 verti
es. Thus, the proximity-oblivious tester that sele
ts 
+ 1uniformly distributed verti
es and a

epts if and only if the indu
ed graph is in CC�
 has dete
tionprobability at least 
(1)=� eO(1=�))
+1 � > �
+1+o(1).For the impossibility 
laim (or rather the upper-bound on �), 
onsider a random graph 
onsistingof 
 small 
liques, ea
h of size p2� � N , and a large 
lique of size (1 � 
p2�) � N . This graph is�-far from CC�
, but the probability that any k verti
es indu
e a subgraph that is not in CC�
 isupper-bounded by �k
� � p2�
, be
ause only subsets that 
ontain representatives from ea
h of thesmall 
liques yield a subgraph not in CC�
. Re
alling that we refer to 
onstant-query proximity-oblivious testers (whi
h must a

ept if the indu
ed subgraph is in CC�
), the upper-bound follows(sin
e �k
� � p2�
 = O(�
=2) for 
onstant k).Proximity-oblivious testers with dete
tion probability that is even smaller are provided by [1℄.Proposition 4.4 (impli
it in [1℄): Triangle-Freeness has a three-query proximity-oblivioustester with dete
tion probability �(�) that is the re
ipro
al of a tower of poly(1=�)-many exponents.On the other hand, Triangle-Freeness has no 
onstant-query proximity-oblivious tester with de-te
tion probability �(�) = poly(�).We note that [1℄ a
tually established that every 
onstant-query proximity-oblivious tester forTriangle-Freeness must have dete
tion probability �(�) < �
(log(1=�)).Easily testable properties having no proximity-oblivious testers. While bipartiteness 
anbe tested with query-
omplexity that is polynomial in the re
ipro
al of the proximity parameter [16℄,this property has no 
onstant-query proximity-oblivious tester. That is:Proposition 4.5 Bipartiteness has no 
onstant-query proximity-oblivious tester.Proof: For every � > 0, 
onsider a graphG that 
onsists of t def= p1=2� sets, denoted V0; V1; :::; Vt�1,ea
h of size p2� �N su
h that there is an edge between a pair of verti
es if and only if these verti
esreside in \adja
ent" sets; that is, fu; vg is an edge if and only if for some i 2 f0; :::; t � 1g itholds that u 2 Vi and v 2 V(i+1) mod t. Clearly, for an odd t, the graph G is �-far from beingbipartite, but a proximity-oblivious tester of query 
omplexity less than t 
annot reje
t G (be
auseany non-bipartite subgraph of G must 
ontain at least t verti
es).4.2 Conne
tion to indu
ed subgraph freenessThe reader may have noti
ed that the proximity-oblivious testers presented so far worked by sear
h-ing for a small \forbidden subgraph" in the input graph (see, e.g., the proof of Propositions 4.1, 4.2and 4.3). In 
ontrast, the non-existen
e of 
onstant-query proximity-oblivious testers was demon-strated by proving the non-existen
e of 
onstant-size \forbidden subgraphs" in all no-instan
es (see,indeed, the proof of Proposition 4.5). We show that this is no 
oin
iden
e, sin
e there is a 
loserelationship between the two notions.De�nition 4.6 (indu
ed subgraph freeness): Let F be a set of graphs. A graph G is 
alled F -freeif it 
ontains no indu
ed subgraph that is isomorphi
 to some graph in F .Note that De�nition 4.6 refers to indu
ed subgraphs, whereas in many works the term F -freenessmeans having no subgraph (not ne
essarily an indu
ed one) that is in F .7



Theorem 4.7 (
hara
terization for the dense graphs model): Let � = SN2N �N be a graph prop-erty su
h that ea
h �N 
onsists of all N -vertex graphs that satisfy �. Then, � has a 
onstant-query proximity-oblivious tester if and only if there exists a 
onstant 
 and an in�nite sequen
eF = (FN )N2N of sets of graphs su
h that1. ea
h FN 
ontains graphs of size at most 
; and2. �N equals the set of N -vertex FN -free graphs.Furthermore, if membership in � is de
idable, then a 
omputable proximity-oblivious tester yieldsa 
omputable sequen
e of sets, and vi
e versa.Note that the spe
i�
 dete
tion probability fun
tion � is irrelevant for the \only if" dire
tion, whi
honly relies on the fa
t that �(�) > 0 for every � > 0.6 On the other hand, the opposite dire
tiona
tually provides a lower-bound on the dete
tion probability, albeit a very weak one (i.e., �(�) isthe re
ipro
al of a tower of poly(1=�)-many towers of exponents). Combining both dire
tions, we
on
lude that any graph property that has a 
onstant-query proximity-oblivious tester has su
ha tester with dete
tion probability fun
tion that is lower-bounded by a spe
i�
 fun
tion7 of theproximity parameter (albeit the re
ipro
al of a tower of towers of exponents).Proof: Suppose that � has a 
onstant-query proximity tester. By [20, Thm. 4.5℄ (see also [21℄),every one-sided error tester of query 
omplexity q for �N 
an be 
onverted into a one-sided error
anoni
al tester of query 
omplexity 2q2, where for some GN (whi
h depends only on �N and q),the 
anoni
al tester uniformly sele
ts a random set of 2q verti
es and a

epts the input graph i�the indu
ed subgraph is in GN . We stress that the proof provided in [20, Se
. 4℄ maintains the errorprobability of the tester, and thus applies also to generalized (one-sided error) testers of arbitraryerror probability. Thus, if � has a q-query proximity-oblivious tester then for every N there existsa set of 2q-vertex graphs GN su
h that a graph is in �N i� ea
h of its 2q-vertex indu
ed subgraphsis in GN . De�ning FN as the set of all 2q-vertex graphs that are not in GN , we 
on
lude that �Nequals the set of N -vertex graphs that are FN -free.Suppose, on the other hand, that for some 
onstant 
 and a sequen
e of sets (FN )N2N of graphsit holds that ea
h FN 
ontains graphs of size at most 
 and �N equals the set of N -vertex FN -freegraphs. Our goal is to derive a 
onstant-query proximity tester for �. The 
ase of identi
al sets(i.e., FN = FN+1 for every N) follows almost immediately from [3℄. Spe
i�
ally, [3, Thm. 6.1℄implies that for every set of 
-vertex graphs F and for every � > 0, there exist numbers s(�) andÆ(�) for whi
h the following holds: For every graph G that is �-far from being F -free and 
ontainsat least s(�) verti
es, with probability at least Æ(�) over the 
hoi
e of a sample of size s(�) thesample 
ontains an indu
ed 
opy of some graph in F . It follows that, with probability at least�s(�)
 ��1 � Æ(�), a random set of 
 verti
es (of su
h a graph G) indu
es a subgraph that is in F .The argument extends the general 
ase (of an arbitrary sequen
e of sets (FN )N2N), by partitioningall integers a

ording to the 
orresponding sets. This yields testers for ea
h of the �nitely manypossible sets, and so the �nal tester will in
orporate all these testers, and a
tivate the one that suitsthe size of the input graph. Lastly, we note that the fun
tions s and Æ provided by [3, Thm. 6.1℄satisfy s(�)=Æ(�) = TT(1=�), where TT(n) is a tower of poly(n)-many towers of exponents (withthe polynomial depending only on 
).6Indeed, this holds even if the dete
tion probability fun
tion is allowed to depend on N (as long as �(N; �) > 0for every � > 0 and N 2 N).7This lower-bounding fun
tion is determined based only on the aforementioned 
onstant (number of queries).8



A spe
ial 
ase and a quantitative version. A natural spe
ial 
ase of properties having 
onstant-query proximity-oblivious testers is properties that 
orrespond to sets of F -free graphs, for arbitrary�nite sets F . Indeed, this 
orresponds to the spe
ial 
ase of Theorem 4.7 in whi
h all the sets inthe sequen
e F are identi
al (i.e., FN = FN+1 for every N). In this 
ase, the dete
tion probabilityof any 
onstant-query proximity-oblivious tester is determined by the quantity �F de�ned next.� For a 
-vertex graph F , we denote by �F (G) the fra
tion of 
-vertex subsets that indu
e thesubgraph F in the graph G.� For a �nite set of graphs F , we denote by �F (�) the in�mum of the value of maxF2Ff�F (G)gtaken over all graphs G that are �-far from being F -free.8Re
all that by Theorem 4.7 (or rather by [3, Thm. 6.1℄), for every F , the fun
tion �F is well-de�ned.Furthermore, �F is lower-bounded by the re
ipro
al of a tower of towers of exponents. The followingresult asserts that the dete
tion probability of the best possible 
onstant-query proximity-obliviousfor F -freeness is determined by �F .Theorem 4.8 Let 
 be an integer and F be a �nite set 
ontaining graphs that ea
h has at most
 verti
es. Then, F-freeness has a �
2�-query proximity-oblivious tester of dete
tion probability�F , whereas any 
onstant-query proximity-oblivious tester for F-freeness has dete
tion probabilityO(�F ).Proof: First note that the straightforward proximity-oblivious tester for F -freeness (whi
h sele
tsa random set of 
 verti
es and a

epts if and only if it is F -free) has dete
tion probability �F .In order to justify the upper-bound (on the dete
tion probability of any 
onstant-queryproximity-oblivious testers) we re
all that, by [20, Thm. 4.5℄, it suÆ
es to 
onsider 
onstant-queryproximity-oblivious testers that sele
t a random set of 
0 = O(1) verti
es and a

ept the input N -vertex graph i� the indu
ed subgraph is in some adequate set GN . We stress that this GN need not
omplement the set F , and in parti
ular 
0 may be di�erent from 
. Still, without loss of generality,we may assume that 
0 � 
.Let us �rst assume that GN does not depend on N (i.e., GN = GN+1 for every N � 
0). In this
ase, GN = G
0 must equal the set of 
0-vertex graphs that are F -free. The reason being that a
0-vertex graph G has a unique indu
ed subgraph with 
0 verti
es, being the graph itself. Now, onthe one hand (by the a

eptan
e 
riterion of the tester), the input (
0-vertex) graph G is a

eptedby the tester if and only if G 2 G
0 , whereas on the other hand the tester is required to a

ept G ifand only if it is F -free.In the general 
ase, the sequen
e (GN )N2N may 
ontain a �nite number of possible sets (of
0-vertex graphs). For ea
h N � 
0, 
onsider the smallest integer n su
h that GN = Gn, and denotedit by n(GN ); that is, n(G) = minfn � 
0 : Gn = Gg. Note that n� = maxfn(GN ) : N � 
0g isa 
onstant, be
ause there are �nitely many di�erent sets GN . (Indeed, in the spe
ial 
ase (whereGN = GN+1), it holds that n� = 
0, sin
e n(GN ) = 
0 for every N � 
0.) Now, 
onsider a tester that,on input an N -vertex graph, a

epts if and only if the subgraph indu
ed by n(GN ) random verti
esis in G0N , where G0N 
onsists of the set of all n(GN )-vertex graphs G0 su
h that every 
0 verti
esin G0 indu
e a subgraph that is in GN . The dete
tion probability of this tester (on any graph)is lower-bounded by the dete
tion probability of the original tester, whereas the new tester neverreje
ts graphs that were never reje
ted by the original tester. Thus, we 
an apply the analysis8Indeed, in the 
ase that F 
onsists of 
-vertex graphs, an alternative de�nition 
an be based on de�ning �F (G)as the fra
tion of 
-vertex subsets that indu
e in G a subgraph that belong to F . Needless to say, these two de�nitionare related by a fa
tor of at most jFj. 9



of the spe
ial 
ase (of equal GN 's) here, and 
on
lude that G0N = G0n(GN ) must equal the set ofn(GN )-vertex graphs that are F -free.It follows that the aforementioned tester reje
ts an input N -vertex graph G if and only if it hassele
ted a random set of n(GN ) = O(1) verti
es su
h that the indu
ed subgraph is not F -free. Theprobability of the latter event is upper-bounded byPF2F �n(GN )jV (F )j� ��F (G), where V (F ) denotes thevertex set of the graph F . Re
alling that F is �nite and n(GN ) � n� = O(1), it follows that thistester has dete
tion probability O(�F ).In light of Theorem 4.8, the study of the dete
tion probability of 
onstant-query proximity-testersfor natural properties that have su
h testers (i.e., F -freeness), redu
es to the study of the 
orre-sponding quantities �F for various F . A few examples follow.1. The property Clique (see Proposition 4.1) 
orresponds to the set of fI2g-free graphs, whereI2 denotes an independent set of two verti
es. Needless to say, �fI2g(�) = �.Similarly �fP2g(�) = �, where P2 denotes a single edge (whi
h may be viewed as a path of twoverti
es).2. Denoting by CC (standing for Clique Colle
tion) the set of graphs 
onsisting of a 
olle
tion of(any number of) isolated 
liques, we note that CC equals the set of fP3g-free graphs, whereP3 denotes a three-vertex graph with exa
tly two edges (i.e., a path of three verti
es). Weshow (in Proposition 4.10) that �fP3g(�) = �(�2).3. Re
all that CC�
 is the set of graphs 
onsisting of a 
olle
tion of at most 
 isolated 
liques(see Proposition 4.3). Note that CC�
 equals the set of fP3; I
+1g-free graphs, where I
+1denotes an independent set of 
+ 1 verti
es. Combining Theorem 4.8 and Proposition 4.3,9it follows that �fP3;I
+1g(�) = O(�
=2) for every 
 � 3. We show (in Proposition 4.11) that�fP3;I
+1g(�) = 
(�
=2).Note that Proposition 4.2 implies that �fP3;I3g(�) = 
(�), be
ause BiClique 
onsists of graphswhose 
omplement graph is in CC�2. Clearly, �fP3;I3g(�) = O(�).4. Re
all that Proposition 4.4 refers to Triangle-Freeness, whi
h 
orresponds to fC3g-freenesswhere C3 is the three-vertex 
y
le. Re
all that [1℄ established that �fC3g is a super-polynomialfun
tion, whereas �fC3g was known to be lower-bounded by the re
ipro
al of a tower ofexponents.We mention that the work of [6℄ provides a 
hara
terization of the 
lass of graphs F for whi
h �Fis lower-bounded by a polynomial (i.e., �F (�) � poly(�)). In parti
ular, their results imply that�F is lower-bounded by a polynomial only for at most seven graphs (i.e., the graphs P2; P3; P4; C4and their 
omplements). The foregoing dis
ussion begs to try to extend their study to �nite setsof graphs; that is, for every �nite set of graphs F , determine the behavior of �F . In parti
ular:Open Problem 4.9 Determine the 
lass of sets of graphs F for whi
h �F is lower-bounded by apolynomial.9A
tually, the proof of Proposition 4.3 dire
tly implies upper (and lower) bounds on �fP3;I
+1g.
10



4.3 The dete
tion probability of Clique Colle
tion (i.e., �fP3g(�) = �(�2))Re
all that (by Theorem 4.7) CC has a 
onstant-query proximity-oblivious tester, sin
e CC 
or-responds to fP3g-freeness. Furthermore, by Theorem 4.8, the dete
tion probability of the bestpossible 
onstant-query proximity-oblivious for CC equals �(�fP3g).Proposition 4.10 (the best dete
tion probability for CC): �fP3g(�) = �(�2).Proposition 4.10 follows from Se
tion 4 in the 
ompanion paper [18℄; spe
i�
ally, the upper bound(on �fP3g) uses the graphs of [18, Se
. 4.1℄ (whi
h are �-far from CC), whereas the lower boundfollows from the basi
 parts of Claims 4.3.1 and 4.3.2 in [18, Se
. 4.2℄. For sake of self-
ontainment,we provide a full proof below (where the aforementioned basi
 parts appear as Claims 4.10.1and 4.10.2, respe
tively). We note that the following proof is signi�
antly simpler than the analysisin [18, Se
. 4℄.We mention that the 
onstant-query proximity-oblivious tester resulting from Proposition 4.10yields a standard (non-adaptive) tester of query 
omplexity O(��2), whi
h improves over the eO(��2)bound of [6, Thm. 2℄ (whi
h, in turn, is based on inspe
ting the subgraph indu
ed by a randomset of O(��1 log(1=�)) verti
es). However, in [18, Se
. 4.2℄ we present an alternative (non-adaptive)tester of query 
omplexity eO(��4=3), and in [18, Se
. 3℄ we present an adaptive tester of query
omplexity eO(��1).Proof: The proof adapts ideas from the study of non-adaptive testers for CC, 
ondu
ted in the
ompanion paper [18℄. For the upper-bound 
onsider an N -vertex graph G 
onsisting of (6�)�1
onne
ted 
omponents, ea
h being a bi-
lique with 3�N verti
es on ea
h side. The graph G is�-far from CC, but �fP3g(G) � (6�)2, be
ause a 
opy of P3 must 
ontain three verti
es in the same
onne
ted 
omponent.For the lower-bound we 
onsider an arbitrary graph G = ([N ℄; E) that is �-far from CC. LetG0 = ([N ℄; E0) be a graph in CC that is 
losest to G, and let (V1; :::; Vt) be its partition into 
liques.For the sake of simpli
ity, we shall refer to the Vi's as 
liques, even though they are not (ne
essarily)
liques in G, and we shall refer to the partition (V1; :::; Vt) as the best possible partition for G. Twomain observations regarding this partition follow.Observation 1: For every i 2 [t℄ and every S � Vi, it holds that jE\(S�(Vi nS))j � jS�(Vi nS)j=2,sin
e otherwise repla
ing the 
lique Vi by two 
liques, S and Vi n S, yields a better partitionfor G.Observation 2: For every i 6= j 2 [t℄, it holds that jE \ (Vi � Vj)j � jVi � Vj j=2, sin
e otherwiserepla
ing the two 
liques Vi and Vj by a single 
lique Vi [ Vj yields a better partition for G.Now, sin
e G is �-far from CC, either G misses at least �2 � �N2 � edges within these Vi's or G has atleast �2 � �N2 � super
uous edges between distin
t Vi's. We show that in either 
ase, with probabilityat least 
(�2), three uniformly sele
ted verti
es indu
e the subgraph P3. We 
all su
h a triplet awitness.The pivot of the analysis is relating the fra
tion of bad vertex pairs (i.e., either missing \internal"edges or super
uous \external" edges) to the fra
tion of witnesses. Spe
i�
ally, we shall showthat the existen
e of �2 � �N2 � missing internal edges (resp., �2 � �N2 � super
uous \external" edges)implies the existen
e of 
(�2N3) witnesses. The following notation will be useful: for every i 2 [t℄and v 2 [N ℄ (not ne
essarily in Vi), we denote by �i(v) the set of neighbors of v in Vi, and�i(v) def= Vi n (�i(v) [ fvg). 11



We �rst 
onsider the 
ase in whi
h at least �2 � �N2 � internal edges are missing (i.e.,Pi2[t℄Pv2Vi j�i(v)j > � � �N2 �). Note that every triple (v; u; w) su
h that u 2 �i(v), w 2 �i(v)and fu;wg 2 E is a witness. Using Observation 1, we have for ea
h v 2 Vi:1. j�i(v)j � j�i(v)j; and2. the density of edges between �i(v) and �i(v) is at least 1=2.Thus, for v 2 Vi, the number of witnesses that 
ontain v is at least j�i(v)j � j�i(v)j=2 � j�i(v)j2=2.It follows that the total number of witnesses is lower-bounded by12 �Xi2[t℄Xv2Vi j�i(v)j2 � 12 �N � Pi2[t℄Pv2Vi j�i(v)jN !2 (2)whi
h is lower-bounded by 
(�2N3) as desired. For sake of referen
e, we highlight the following
laim, whi
h was established above.Claim 4.10.1 For every v 2 Vi, the number of witnesses 
ontaining v is 
(j�i(v)j2).We now turn to the 
ase in whi
h there are at least �2 � �N2 � super
uous \external" edges; thatis, in this 
asePv2[N ℄ j�0(v)j > � ��N2 �, where for every v 2 Vi we de�ne �0(v) def= Sj 6=i �j(v). In this
ase, we shall show that the number of witnesses that 
ontain ea
h spe
i�
 v 2 [N ℄ is 
(j�0(v)j2),and the 
laim (regarding the total number of witnesses) will follow as in the previous 
ase. Thus,it is left to establish the following.Claim 4.10.2 The number of witnesses 
ontaining v is 
(j�0(v)j2).Proof: In addition to the notations �i(v) = �(v) \ Vi, �i(v) = Vi n (�(v) [ fvg), and �0(v) =Sj:v 62Vj �j(v), we shall use the notation E(V 0; V 00) def= f(v0; v00) 2 (V 0 � V 00) : fv0; v00g 2 Eg. Theproof will pro
eed via a 
ase analysis, whi
h refers to an arbitrary i 2 [t℄ and v 2 Vi.Case 1: Mu
h of �0(v) is 
ontained in a single Vj; that is, there exists an index j su
h that j�j(v)j >j�0(v)j=10. Fixing su
h an index j, we distinguish two sub
ases regarding the fra
tion of Vj that isnot 
overed by �0(v) (i.e., the relative density of �j(v) in Vj).Case 1.1: j�j(v)j � jVj j=10. In this 
ase the 
laim follows by 
onsidering most of the possible
hoi
es of u 2 �j(v) and w 2 �j(v). Spe
i�
ally, by Observation 1, jE(�j(v);�j(v))j islower-bounded by j�j(v)j � j�j(v)j=2, and so at least half of the triples in Tv def= f(v; u; w) :(u;w) 2 �j(v) � �j(v)g are witnesses (i.e., (u;w) 2 E and (v; u) 2 E, but (v; w) 62 E),whereas jTvj = j�j(v)j � j�j(v)j = 
(j�0(v)j2) (be
ause j�j(v)j � jVj j=10 � j�j(v)j=10 andj�j(v)j > j�0(v)j=10).Case 1.2: j�j(v)j � jVj j=10 (i.e., j�j(v)j � 0:9jVj j). We �rst note that jVij > j�0(v)j=20, be
auseotherwise we would obtain a better partition by moving the vertex v from Vi to Vj (sin
ej�i(v)j � jVij whereas j�j(v)j� j�j(v)j � 0:8jVj j and jVjj � j�j(v)j � j�0(v)j=10). We 
onsidertwo sub
ases regarding the 
ardinality of the set �i(v):
12



1. If j�i(v)j � 0:9 � jVij, then the 
laim follows by 
onsidering a 
onstant fra
tion of thepossible 
hoi
es of u 2 �j(v) and w 2 �i(v). Spe
i�
ally, using Observation 2, it holdsthat jE(�j(v);�i(v)j � jE(Vj ; Vi)j (3)� 12 � jVj j � jVij (4)� 12 � j�j(v)j0:9 � j�i(v)j0:9 (5)< 0:7 � j�j(v)j � j�i(v)j; (6)where the se
ond inequality uses j�j(v)j � 0:9jVj j and j�i(v)j � 0:9jVij. We obtain atleast (1 � 0:7) � j�j(v)j � j�i(v)j pairs (u;w) 2 (�j(v) � �i(v)) n E (and the 
orrespond-ing triples (v; u; w) are witnesses). Using j�j(v)j � j�0(v)j=10 and j�i(v)j � 0:9jVij =
(�0(v)j), we lower-bound the said number by 
(j�0(v)j2).2. If j�i(v)j � 0:9 � jVij, then we have many missing internal edges inside Vi with v as anendpoint (i.e., j�i(v)j = 
(�0(v)j)), and we invoke the 
orresponding analysis (as in the
ase ofPi2[t℄Pv2Vi j�i(v)j � � � �N2 �). Spe
i�
ally, we obtain 12 � j�i(v)j � j�i(v)j witnesses(
orresponding to edges fu;wg su
h that u 2 �i(v) and w 2 �i(v)), and using the sub
asehypothesis (and Observation 1) this number is lower-bounded by 12 �0:5jVij �0:1jVij, whi
his lower-bounded by 
(j�0(v)j2) (sin
e jVij > j�0(v)j=20 holds in Case 1.2).This 
ompletes the treatment of Case 1.2.Case 2: No single Vj 
ontains mu
h of �0(v); that is, for every j 2 [t℄ it holds that j�j(v)j � j�0(v)j=10.As in Case 1, we 
onsider two sub
ases regarding the relative part of Vj 
overed by �0(v), but inthe 
urrent 
ase we 
onsider a partition of the set J def= fj : j�j(v)j � 1g and distinguish 
asesregarding the interse
tion of �0(v) with the sets Vj in ea
h part. Spe
i�
ally, we let J 0 def= fj :j�j(v)j > 0:9jVj jg, and 
onsider the following two sub
ases.Case 2.1: Pj2J 0 j�j(v)j � 0:5 � j�0(v)j. In this 
ase J 0 has 
ardinality at least �ve (sin
e j�j(v)j �0:1 � j�0(v)j for every j). Let Cv = Sj2J 0 �j(v), and note that the verti
es in Cv belongto several 
liques Vj. We shall show that the 
ase hypothesis implies that there are manymissing edges between pairs of verti
es in Cv. Intuitively this holds be
ause Cv essentially
overs Sj2J 0 Vj , whereas (by Observation 2) for any j1 6= j2 there are many non-edges inVj1 � Vj2 . This ensures that we have many witnesses of the form (v; u; w), where u;w 2 Cvand fu;wg 62 E. Details follow.For every j1 6= j2 2 J 0, by Observation 2 (and sin
e j�j(v)j > 0:9jVj j for every j 2 J 0), itholds that jE(�j1(v);�j2(v))j � 12 � jVj1 j � jVj2 j < 0:7 � j�j1(v)j � j�j2(v)j : (7)Therefore the number of non-edges between pairs in Cv is lower-bounded byXj1 6=j22J 0(1� 0:7) � j�j1(v)j � j�j2(v)j (8)= 0:3 �0� Xj1;j22J 0 j�j1(v)j � j�j2(v)j �Xj2J 0 j�j(v)j21A (9)� 0:3 � �(0:5 � j�0(v)j)2 � 0:1 � j�0(v)j2� (10)13



where the last inequality is due to the 
ase hypotheses (i.e., Pj2J 0 j�j(v)j � 0:5 � j�0(v)j andj�j(v)j � 0:1 � j�0(v)j). Thus, j(Cv � Cv) n Ej > 0:04 � j�0(v)j2, and the 
laim follows.Case 2.2: Pj2JnJ 0 j�j(v)j � 0:5 � j�0(v)j. Let J 00 def= J n J 0 = fj : 1 � j�j(v)j � 0:9jVj jg, and notethat for j 2 J 00 (as 
onsidered in this 
ase) it may be that j�j(v)j � jVj j and 
onsequentlyfor j1 6= j2 2 J 00 it may hold that E(�j1(v);�j2(v)) � j�j1(v)j � j�j2(v)j. More generally,rede�ning Cv def= Sj2J 00 �j(v), it may be that jE(Cv ; Cv)j � �jCv j2 �, and so the approa
h ofCase 2.1 may not work in general (although it will work in the �rst sub
ase). Thus, lettingJ 000 def= fj 2 J 00 : jVj j � j�0(v)j=10g, we 
onsider two sub
ases:1. If Pj2J 000 j�j(v)j � 0:4 � j�0(v)j then we rede�ne Cv def= Sj2J 000 �j(v) and show thatjE(Cv ; Cv)j � 0:99 � �jCvj2 �. This is the 
ase be
ause otherwise we obtain a 
ontradi
tionto the optimality of the partition (by repla
ing the sub-partition (Vj)j2J 000 with (Cv; (Vj nCv)j2J 000)).Thus, we have rea
hed a situation as in Case 2.1, and we pro
eed as in that
ase.2. IfPj2J 00nJ 000 j�j(v)j � 0:1 � j�0(v)j then we pro
eed similarly to Case 1.1. Spe
i�
ally, forea
h j 2 J 00 n J 000, we note that the density of edges in �j(v)� �j(v) is at least one half,whereas j�j(v)j � 0:1jVj j � 0:1 � 0:1 � j�0(v)j (by j 2 J 00 and j 62 J 000, respe
tively). Thus,the number of witnesses (v; u; w) su
h that (u;w) 2 �j(v) � �j(v) (and fu;wg 2 E) isat least Xj2J 00nJ 000 j�j(v) � �j(v)j2 � Xj2J 00nJ 000 j�j(v)j � j�0(v)j200 (11)whi
h is 
(j�0(v)j2) by the sub
ase hypothesis.These 
ompletes the treatment of Case 2.2.Thus, a lower bound of 
(j�0(v)j2) was proved in all 
ases, and the 
laim follows.This 
ompletes the proof of the entire proposition.4.4 An improved result for CC�
 (i.e., �fP3;I
+1g(�) = 
(�
=2))Re
all that, for every 
onstant 
 � 3, Proposition 4.3 established that the property CC�
 hasa 
onstant-query proximity-oblivious tester with �(�) > �
+1+o(1) (whereas any 
onstant-queryproximity-oblivious tester for CC�
 must satisfy �(�) = O(�
=2)). In this se
tion we improve thelower-bound on �, and in fa
t obtain a tight result. By Theorem 4.8, it suÆ
es to prove that�fP3;I
+1g(�) = 
(�)
=2, sin
e CC�
 
orresponds to fP3; I
+1g-freeness.Proposition 4.11 (the best dete
tion probability for CC�
): For every integer 
 � 3, it holds that�fP3;I
+1g(�) = 
(�)
=2.The proof builds on the �rst part of the analysis of the CC�
-tester that is provided in [18, Se
. 6.2℄.A
tually, we shall modify also this part, and thus we provide a self-
ontained des
ription of theentire argument.Proof: Suppose that G = ([N ℄; E) is an N -vertex graph that is �-far from CC�
. As a mentalexperiment, we 
onsider a uniformly distributed set of �(��1=2) verti
es of G, denoted S. We shall14



show that, for a typi
al S (i.e., for most 
hoi
es of S) and for a uniformly sele
ted vertex v, withprobability 
(�), the subgraph indu
ed by S[fvg is not in CC�
. In su
h a 
ase, the said subgraph
ontains 
+1 verti
es that indu
e a subgraph not in CC�
. That is, for a typi
al S, with probabilityat least minfjSj�(
+1);
(�) � jSj�
g = 
(�)(
+2)=2 either a sample of 
+1 verti
es in S or a sample of
 verti
es in S and a single vertex v in [N ℄ yields an indu
ed subgraph that is not in CC�
 (i.e., is notfP3; I
+1g-free). Thus, �fP3;I
+1g(G) = 
(�)(
+2)=2, and it follows that �fP3;I
+1g(�) = 
(�)(
+2)=2.The proposition will follow by a somewhat more re�ned analysis.We think of S as being sele
ted in 
 + 1 phases, where in phase t, a new uniform sample St,of �(��1=2) verti
es, is sele
ted (re
all that 
 is a 
onstant). Intuitively, the obje
tive of the �rst
 phases is to yield a partition of all the graph verti
es into at most 
 + 1 subsets in a way thatfa
ilitates �nding eviden
e of the fa
t that the original graph is not in CC�
. For example, onemain part of the argument is showing that, with high (
onstant) probability, it is either the 
asethat the set of verti
es with no neighbors in S is of size O(�1=2 �N) or S 
ontains an independentset of size 
+ 1 (and we are done). Let us elaborate on the way this assertion is proved.Intuitively, with high (
onstant) probability, if the number of verti
es that do not have anyneighbor among the verti
es sele
ted so far is relatively big, then we obtain su
h a vertex in thenext phase. Indeed, if the set of verti
es with no neighbors in S is of size 
(�1=2 � N), then afterea
h of the �rst 
 phases it is the 
ase that the number of verti
es that do not have any neighboramong the verti
es sele
ted so far is relatively big. Thus, we should have been quite unlu
ky notto obtain su
h a vertex in ea
h of the following phases. Assuming that we are not unlu
ky, Sdoes 
ontain an independent set of size 
 + 1, and it follows that �fP3;I
+1g(G) = 
(jSj�(
+1)) =
(�)�(
+1)=2. However, a 
loser look at the situation reveals that we 
an sele
t su
h an independentset (in S) by sele
ting an arbitrary vertex in S1, and then sele
ting an adequate vertex in ea
hSt for ea
h t = 2; :::; 
 + 1 (i.e., a vertex of St that has no neighbors in St�1k=1 Sk). It follows that�fP3;I
+1g(G) = 
(Q
+1t=2 jStj�1) = 
(�)
=2. Note that the argument applies also if it only holds thatthe set of verti
es with no neighbors in S�
 def= S
k=1 Sk is of size 
(�1=2 �N). Let us generalize thisargument further.Claim 4.11.1 For s > 2
, suppose that a graph G0 = ([s℄; E0) is not in CC�
. Then, with probabilitygreater than s�
=2, a uniformly sele
ted set of 
 + 1 verti
es indu
es in G0 a subgraph that is notin CC�
.Proof: If G0 
ontains an indu
ed 
opy of P3, then three uniformly sele
ted verti
es hit it withprobability at least s�3 � s�
, sin
e 
 � 3. Otherwise (i.e., if G0 62 CC�
 
ontains no indu
ed 
opyof P3), it must be the 
ase that G0 is a 
olle
tion of at least 
 + 1 isolated 
liques. We arbitrarily
luster these 
liques into 
 + 1 sets, and 
onsider the probability that a sample of 
 + 1 verti
eshits a vertex in ea
h of these 
 + 1 sets. This probability is lower-bounded by Q
+1i=1 xi subje
t toP
+1i=1 xi = 1 and xi � 1=s for every i. The minimum is obtained at x1 = � � � = x
 = 1=s, and the
laim follows.We now turn to de�ning the (
 + 1)-partition (of the graph verti
es) that arises from the sampleS. For ea
h 1 � t � 
 + 1, let S�t = Stk=1 Sk. If for any 1 � t � 
, the subgraph indu
ed byS�t is not a 
olle
tion of at most 
 
liques, then we are done (by Claim 4.11.1). Otherwise, letCt1; :::; Ct
t denote the 
t � 
 
liques in the subgraph indu
ed by S�t. For ea
h 1 � t � 
, we de�nethe following partition of the set of all graph verti
es (i.e., [N ℄):V tj def= fv : �(v) \ S�t = Ctjg for 1 � j � 
t ; (12)Rt0 def= fv : �(v) \ S�t = ;g (13)15



Rt1 def= V n �Rt0 [ � [1�j�
t Vj�� : (14)That is, for 1 � j � 
t, the subset V tj 
onsists of the verti
es that neighbor all verti
es in Ctj andno other vertex in S�t, the subset Rt0 
onsists of all verti
es that have no neighbor in S�t, andRt1 
onsists of all verti
es that either neighbor only some of the verti
es in one of the 
liques Ctj ,but not all, or that have neighbors in more than one of the 
liques. Observe that V t+1j � V tj andRt+10 � Rt0 while Rt+11 � Rt1.Given the above notation, we make two observations. The �rst observation is that, for any1 � t � 
, if St+1 
ontains some vertex in Rt1, then the subgraph indu
ed by S�(t+1) is not a
olle
tion of (at most 
) 
liques, and so we are done (again, by Claim 4.11.1). It follows that ifjRt1j > 14�1=2N , for some t � 
, then we are done (be
ause with high probability St+1 will 
ontainsome vertex in Rt1). The se
ond observation is that if St+1 
ontains some vertex in Rt0, then
t+1 � 
t + 1. Note that as long as jRt0j > 14�1=2N , the probability that St+1 does not 
ontain anyvertex in Rt0 is at a small 
onstant. Therefore, either jR
0j � 14�1=2N , or we are done (be
ause withhigh probability St+1 will 
ontain a vertex from ea
h Rt0 (for t = 1; :::; 
), whi
h together with S1indu
e a subgraph that is not in CC�
).In light of the foregoing paragraph, from this point on, we assume that the subgraph indu
edby S�(
+1) is a 
olle
tion of at most 
 
liques, that jR
1j � 14�1=2N and that jR
0j � 14�1=2N . Tosimplify the notation, we use the shorthand R0 for R
0, and R1 for R
1, the shorthand 
0 for 

, andthe shorthand Vj for V 
j (resp., Cj for C
j ). We also denote R0 [R1 by R.Re
all that G = ([N ℄; E) is �-far from CC�
. This means that for every partition of the graphverti
es into at most 
 subsets, the total number of vertex pairs that \violate the partition" (i.e.,either both verti
es belong to the same subset but do not have an edge between them or they belongto di�erent subsets but do have an edge between them) is greater than �N2. In parti
ular, thisholds for the partition that we shall de�ne next. We 
onsider a partition, denoted (eVj)j2f0;1;:::;
0g,where for every j 2 [
0℄ it holds that Vj � eVj , while the verti
es in R are partitioned as follows.Ea
h vertex v 2 R1 is pla
ed in an arbitrary eVj su
h that v has some neighbor in Cj . If 
0 < 
 thenR0 is de�ned as eV0, and otherwise R0 is pla
ed in eV1 (i.e., in an arbitrary eVj).Note that the total number of vertex pairs in R � R is at most 14�N2, sin
e jRj � 12�1=2N .Re
alling that G is �-far from CC�
, it follows that (at least) one of the following three events musthold:1. There are at least 14�N2 missing edges between pairs of verti
es that belong to the same subseteVj su
h that these pairs have no element in R0 and at most one element in R1. That is, the
urrent 
ase refers to pairs (u; v) 2 S
0j=1(eVj � eVj) su
h that fu; vg 62 E and fu; vg \ R0 = ;and jfu; vg \R1j � 1.2. There are at least 14�N2 super
uous edges between pairs of verti
es that belong to di�erentsubsets eVj and eVk and have at most one element in R. That is, the 
urrent 
ase refers topairs (u; v) 2 Sj 6=k2f0;1;:::;
0g(eVj � eVk) su
h that jfu; vg \Rj � 1.3. There are at least 14�N2 missing edges between pairs of verti
es that belong to the same subseteVj but have exa
tly one endpoint in R0 and no endpoint in R1; that is, pairs in (R0\ eV1)�V1.(Re
all that R0 was pla
ed either in eV0 or in eV1, whereas V0 = ;; hen
e, S
0k=0((R0\ eVk)�Vk)equals (R0 \ eV1)� V1.) 16



We shall show that in ea
h of these three 
ases, with probability at least 
(�
=2), a uniformlysele
ted set of 
+ 1 verti
es indu
es a subgraph that is not in CC�
.Case 1. Re
all that this 
ase refers to missing edges within some eVj, where j 2 [
0℄, su
h that atleast one endpoint of su
h an edge is not in R (and none is in R0). In this 
ase, with probability atleast �=4, a uniformly distributed pair (u; v) 2 [N ℄� [N ℄ hits su
h a missing edge (i.e., in parti
ular,(u; v) 62 E and u; v 2 eVj for some j 2 [k℄). Assume, without loss of generality, that u 2 Vj (i.e.,u 62 R), and let w be an arbitrary neighbor of v 2 eVj in Cj (whi
h is guaranteed to exist sin
ev 2 eVj n R0, whereas v 2 R1 is pla
ed in eVj only if it has neighbors in Cj). Re
all that w is alsoa neighbor of u (sin
e u 2 Vj neighbors all verti
es in Cj). Hen
e, sele
ting uniformly a vertex inS, we hit this w with probability 1=jSj. It follows that if we sele
t uniformly and independentlythree verti
es in [N ℄, then, with probability �4 � 
(1)jSj = 
(�3=2), we obtain a triple (u; v; w) su
h that(u; v) 62 E whereas (u;w); (v; w) 2 E.Case 2. Re
all that this 
ase refers to super
uous edges between some eVj and eVk, where j 6=k 2 f0; 1; :::; 
0g, su
h that at least one endpoint of su
h an edge is not in R. In this 
ase, withprobability at least �=4, a uniformly distributed pair (u; v) 2 [N ℄� [N ℄ hits su
h a super
uous edge(i.e., in parti
ular, (u; v) 2 E and (u; v) 2 Sj 6=k(eVj � eVk)). Assume, without loss of generality, thatu 2 Vj and v 2 eVk, where v may be in R (and even in R0). If v 2 eVk n R0 then we let w be anarbitrary neighbor of v in Ck, and note that w is not a neighbor of u (sin
e u 2 Vj neighbors novertex in Ck). Otherwise (i.e., v 2 R0), let w 2 Cj be an arbitrary non-neighbor of v, and notethat w is a neighbor of u (sin
e u 2 Vj). Thus, either way, w is a neighbor of exa
tly one of the twoverti
es u and v, and sele
ting uniformly a vertex in S, we hit w with probability 1=jSj. It followsthat if we sele
t uniformly and independently three verti
es in [N ℄, then, with probability 
(�3=2),we obtain a triple (u; v; w) su
h that (u; v) 2 E whereas (u;w) 62 E if and only if (v; w) 2 E.Case 3. Re
all that this 
ase refers to missing edges between verti
es of R0 and verti
es of V1 (i.e.,the part Vj to whi
h R0 was added). It follows that 
0 = 
 and that jR0j > �N=4. Thus, we 
anobtain an independent set of size 
+ 1 by sele
ting one vertex from R0 and a vertex from ea
h ofthe sets C1; :::; C
. The probability that a uniformly sele
ted sample of 
+ 1 verti
es yields su
h aset is at least Pr[S is good℄ � �4 � 
Yk=1 jCkjjSj > �5 � minx1; :::; x
 � jSj�1P
k=1 xk = 1 ( 
Yk=1xk) (15)> �6 � jSj�(
�1) (16)whi
h yields the lower-bound of 
(�)(
+1)=2. To obtain a better bound, we modify the argument alittle.Suppose that for every j su
h that jVj j � �1=2N it holds that jCj jjSj � 12 � jVj jN . (This assumptionwill be justi�ed at the end of the proof.) Then, we modify the 
onstru
tion (of the partition (eVj))su
h that in the 
ase of 
 = 
0 the set R0 is pla
ed in the smallest set Vj (rather than in anarbitrary set Vj). Turning ba
k to Case 3, we re
all that in this 
ase there are �N2=4 missingedges between R0 and Vj , and it follows that jR0j � jVjj � �N2=4. Re
alling that jR0j � �1=2N=4,we have jVj j � �1=2N and it follows that jR0jN � jCj jjSj � �8 (be
ause jCj jjSj � jVj j2N ). Note that we 
anobtain an independent set of size 
 + 1 by sele
ting a pair from R0 � Cj and a vertex from ea
hof the other 
� 1 sets Ck's, and re
all that the largest Ck must have size at least jSj=3
 (be
ausejCkj=jSj � jVkj=2N � (1 � �1=2)=2
). The probability that a uniformly sele
ted sample of 
 + 117



verti
es yields su
h a set is at leastPr[S is good℄ � �8 � Yk2[
℄nfjg jCkjjSj > �9 � minx1; :::; x
�2 � jSj�1x
�1 � 1=3
 (
�1Yk=1xk) (17)> �27
 � jSj�(
�2) (18)whi
h yields the lower-bound of 
(�)
=2.It remains to deal with the assumption that jCj j=jSj � jVj j=2N for every j su
h that jVj j ��1=2N . To this end we add one more phase in the 
hoi
e of S (where we think of this phase astaking pla
e before phase 
 + 1 that was used in the foregoing dis
ussion to bound jRj). Let S0denote the verti
es sele
ted in the �rst 
 phases and let S00 be the verti
es sele
ted in the additionalphase, where jS00j = 4jS0j. Let C 01; : : : ; C 0
0 be the 
liques in the subgraph indu
ed by S0, and forea
h 1 � j � 
0 let V 0j be the verti
es that neighbor all verti
es in C 0j and no other verti
es in S0.In the sample S00, let C 00j = S00 \ V 0j . By a multipli
ative Cherno� bound, with high probabilityover the 
hoi
e of S00, it holds that jC 00j j=jS00j � (3=4)jV 0j j=N for every j su
h that jV 0j j � �1=2N .Assuming that this is in fa
t the 
ase, we de�ne Cj = C 0j[C 00j and Vj = fv : �(v)\(S0[S00) = Cjg.If there is any new 
lique in S00, then it 
orresponds to a small set of verti
es (sin
e the setof verti
es that do not belong to any V 0j is small).10 Using the fa
t that S is the union of S0,S00 and the sample sele
ted in phase 
 + 1, we have jSj < (3=2)jS00j (sin
e jS00j = 4jS0j andjS0j = 
 � (jSj � jS0j � jS00j)) and jCj j=jSj � (3=4)jC 00j j=jS00j � (3=4) � (3=4)jV 0j j=N . Using Vj � V 0j ,we get that jCj j=jSj > jVj j=2N for every jVj j � �1=2N .5 Testing Graph Properties in the Bounded-Degree ModelThe bounded-degree model refers to a �xed degree bound, denoted d � 2. An N -vertex graphG = ([N ℄; E) (of maximum degree d) is represented in this model by a fun
tion g : [N ℄ � [d℄ !f0; 1; :::; Ng su
h that g(v; i) = u 2 [N ℄ if u is the ith neighbor of v and g(v; i) = 0 if v has less than ineighbors.11 Distan
e between graphs is measured in terms of their aforementioned representation(i.e., as the fra
tion of (the number of) di�erent array entries (over dN)), but o

asionally we shalluse the more intuitive notion of the fra
tion of (the number of) edges over dN=2.It turns out that, in the 
urrent model, 
onstant-query proximity-oblivious testers exist for allgraph properties that have su
h testers in the adja
en
y matrix model. However, in the 
urrentmodel, the s
ope of 
onstant-query proximity-oblivious testers extends somewhat beyond the for-mer. Spe
i�
ally, while in the adja
en
y matrix model su
h testers exist for any \indu
ed subgraphfreeness" property, the 
urrent model also allows testing properties that 
orrespond to a general-ized notion of subgraph freeness, whi
h in
ludes properties that are not hereditary (e.g., the set ofgraphs in whi
h ea
h vertex has at least three neighbors).5.1 Generalized subgraph freenessThe generalized notion of subgraph freeness de�ned next is pivotal to proximity-oblivious testing inthe bounded-degree model. Intuitively, the de�nition refers to forbidden patterns that are 
aptured10Indeed, the sizes of the sets V 0j behave as the sizes of the sets Vj , whi
h were analyzed in the beginning of thisproof.11We assume here that the neighbors of v appear in arbitrary order in the sequen
e g(v; 1); :::; g(v;deg(v)), wheredeg(v) def= jfi : g(v; i) 6= 0gj. 18



by graphs that are augmented by a three-way marking of their verti
es (where the markings are\full", \semi-full', and \partial"). What is forbidden, is embeddings of these graphs in largergraphs (i.e., in the graphs to whi
h the property refers) that satisfy 
ertain 
onditions (dependingon the marking). Firstly, edges (regardless of the marking of their endpoints) in the marked graphshould be mapped (in su
h an embedding) to edges of the large graph. Se
ondly, pairs non-adja
entverti
es that are not both marked \partial" must be mapped to non-adja
ent verti
es (in the largegraph). Finally, any vertex marked \full" must be mapped to a vertex that has no neighborsoutside of the range of the mapping. Thus, while the \partial" and \semi-full" markings imposes
onditions regarding the range of the mapping, the \full" marking imposes 
onditions that extendbeyond that range. See illustration in Figure 1.
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Figure 1: The 4-vertex marked graph is embedded in the 6-vertex graph su
h that the full vertex ais mapped to 1, the semi-full vertex 
 is mapped to 3, and the partial verti
es b and d are mappedto 2 and 4, respe
tively.De�nition 5.1 (generalized subgraph freeness): A marked graph is a graph with ea
h vertex markedas either full or semi-full or partial. Su
h a marked graph F = ([n℄; EF ) 
an be embedded in a graphG = ([N ℄; EG) if there exists a 1-1 mapping f : [n℄! [N ℄ su
h that for every v 2 [n℄ the followingthree 
onditions hold:1. If v is marked full, then f yields a bije
tion between the set of neighbors of v in F and the setof neighbors of f(v) in G. That is, in this 
ase �G(f(v)) = f(�F (v)), where for H 2 fF;Ggwe denote �H(x) def= fw : fx;wg 2 EHg, and for S � [N ℄ we denote f(S) def= ff(u) : u 2 Sg.2. If v is marked semi-full, then f yields a bije
tion between the set of neighbors of v in F andthe set of neighbors of f(v) in the subgraph of G indu
ed by f([n℄). That is, in this 
ase�G(f(v)) \ f([n℄) = f(�F (v)).3. If v is marked partial, then f yields an inje
tion of the set of neighbors of v in F to the setof neighbors of f(v) in G. That is, in this 
ase �G(f(v)) � f(�F (v)).Su
h f is 
alled an embedding of F in G. The graph G is 
alled F -free if F 
annot be embedded inG (i.e., there is no embedding of F in G). For a set of marked graphs F , a graph G is 
alled F -freeif for every F 2 F the graph G is F -free. 19



Indeed, the standard notion of non-indu
ed subgraph freeness is a spe
ial 
ase of generalized sub-graph freeness, obtained by 
onsidering the 
orresponding marked graph in whi
h all verti
es aremarked partial. Similarly, the notion of indu
ed subgraph freeness (as in De�nition 4.6) is a spe
ial
ase of generalized subgraph freeness (as in De�nition 5.1), obtained by 
onsidering the 
orrespond-ing marked graph in whi
h all verti
es are marked semi-full. Introdu
ing verti
es that are markedfull adds a new type of 
onstraint; spe
i�
ally, this 
onstraint mandates the non-existen
e of neigh-bors that are outside the marked subgraph. For example, using verti
es that are marked full it ispossible to disallow 
ertain degrees in the graph. Thus, the generalized notion of subgraph freenessin
ludes properties that are not hereditary (e.g., regular graphs), whereas indu
ed and non-indu
edsubgraph freeness are hereditary.We mention that the notion of generalized subgraph freeness remains as expressive when disal-lowing either semi-full or partial markings (see appendix). When allowing the 
onsideration of adi�erent set of marked graphs (of a 
onstant size) for ea
h size of graphs in the property, we obtainthe following notion.De�nition 5.2 (lo
al properties): Let � = SN2N �N be a graph property su
h that ea
h �N
onsists of all N -vertex graphs that satisfy �. The property � is 
alled lo
al if there exists aninteger s and an in�nite sequen
e F = (FN )N2N su
h that for every N the following 
onditionshold:1. FN is a set of marked graphs, ea
h of size at most s;2. �N equals the set of N -vertex graphs that are FN -free.In su
h a 
ase we say that � is F-lo
al.We note that indu
ed subgraph freeness (in the sense of Theorem 4.7) implies lo
ality (in the senseof De�nition 5.2); that is, for every sequen
e F as in Theorem 4.7, the 
orresponding property �is lo
al.5.2 The non-propagating 
onditionAlthough it may seem that all lo
al properties have a 
onstant-query proximity-oblivious tester(in the 
urrent model), the 
laim only holds for lo
al properties that satisfy the following non-propagating 
ondition.De�nition 5.3 (the non-propagating 
ondition): Let F = (FN )N2N be a sequen
e of sets ofmarked graphs as in De�nition 5.2.� For a graph G = ([N ℄; E), we say that a subset B � [N ℄ 
overs FN in G if for every markedgraph F 2 FN and every embedding of F in G, at least one vertex of F is mapped to a vertexin B.(Re
all that, for F = ([n℄; E0), an embedding of F in G is a 1-1 mapping f : [n℄ ! [N ℄ thatsatis�es the three 
onditions in De�nition 5.1. The foregoing if-statement asserts that for anysu
h embedding f there exists v 2 [n℄ su
h that f(v) 2 B.)� We say that F is non-propagating if there exists a (monotoni
ally non-de
reasing) fun
tion� : (0; 1℄! (0; 1℄ su
h that the following two 
onditions hold.1. For every � > 0 there exists � > 0 su
h that �(�) < �.20



2. For every graph G = ([N ℄; E) and every B � [N ℄ su
h that B 
overs FN in G, either Gis �(jBj=N)-
lose to being FN -free or there are no N -vertex graphs that are FN -free.12A lo
al property � is non-propagating if there exists a non-propagating sequen
e F (as above) su
hthat � is F -lo
al.Intuitively, non-propagation means that the elimination of all possible embeddings of F in G, whi
hne
essarily use verti
es in B, does not require modifying G \mu
h beyond" B. For example, theset of graphs that have no isolated verti
es 
onstitutes a lo
al property that is non-propagating(see the proof of Part 3 of Proposition 5.4). Indeed, it is natural to 
onsider fun
tions � of theform �(�) = O(�), but De�nition 5.3 allows arbitrary fun
tions � (whi
h may depend arbitrarilyon F). In 
ontrast to what one might naturally 
onje
ture, as shown in Proposition 5.4, not allsequen
es of (sets of) marked graphs are non-propagating. On the other hand, the lo
al propertiesthat 
orrespond to indu
ed subgraph freeness (as in Theorem 4.7) are non-propagating. Indeed, thequestion of whether or not every lo
al property is non-propagating remains open (see Se
tion 5.4).We stress that a property may be lo
al with respe
t to several di�erent sequen
es of (sets of)marked graphs, where some of these sequen
es may be non-propagating and the other not. Wealso note that the issue of non-propagation arises in the (strong) lower bound for testing propertiesthat 
an be de�ned by 3CNF formula [8℄ as well as in the orientation model for testing (e.g., [14℄).Proposition 5.4 (on satisfying the non-propagating 
ondition):1. (negative): For every d � 3, there exists a sequen
e of sets of marked graphs F = (FN )N2Nas in De�nition 5.2 that does not satisfy the non-propagating 
ondition.2. (positive { indu
ed subgraph freeness): For every sequen
e of sets of graphs F = (FN )N2N as inTheorem 4.7, the property of being F-free13 is lo
al and non-propagating; that is, there existsa sequen
e of sets of marked graphs F 0 = (F 0N )N2N as in De�nition 5.2 su
h that (1) indu
edsubgraph freeness w.r.t F is equivalent to generalized subgraph freeness w.r.t F 0, and (2) F 0is non-propagating.3. (positive { non-hereditary properties): There exist non-hereditary properties that are lo
al andnon-propagating. For example, the set of regular graphs 
onstitutes su
h a property.Proof: We start by proving Part 1 (i.e., the negative 
laim). Consider a set F 
onsisting ofbd=2
+ 1 marked graphs that e�e
tively impose the following two 
onstraints (on F -free graphs):(1) either there are no isolated verti
es or all verti
es are isolated, and (2) ea
h non-isolated vertexhas an odd degree. Spe
i�
ally, the set F 
onsists of the following two types of marked graphs:(see Figure 2):1. A marked graph 
onsisting of three verti
es with a single edge 
onne
ting two verti
es thatare both marked partial, and an isolated vertex that is marked full. (This forbidden graphmandates that if the target graph 
ontains any isolated vertex then it 
annot 
ontain anyedges.)12Indeed, it is more natural to disallow the latter possibility in the de�nition, but this would have made ourexposition somewhat more 
umbersome.13That is, we refer to the set � = SN2N�N su
h that ea
h �N 
onsists of all N -vertex graphs that are FN -free,where here we refer to indu
ed subgraph freeness. 21



F1 F3F2 F4Figure 2: The forbidden marked graphs for the 
ase d = 7 in Part 1 of the proof of Proposition 5.4.The graph F1 is of the �rst type, and the graphs F2; F3; F4 are of the se
ond type.2. For every even i 2 f2; :::; dg, we have a graph with a single vertex marked full having ineighbors marked partial and having no other edges. (This set of forbidden graphs mandatesthat ea
h non-isolated vertex has an odd degree.)Note that if N is odd, then the only N -vertex graph that is F -free is a set of N isolated verti
es.14However (for odd N), 
onsider any graph G that 
onsists of a single isolated vertex and N � 1verti
es that have odd degrees (e.g., G may 
onsists of a single isolated vertex and a 3-regular(N � 1)-vertex graph). Then, G 
ontains only one vertex (i.e., the isolated vertex) that mustappear in the image of any embedding of some F 2 F in G. Thus, we obtain an in�nite sequen
eof graphs that are 
(1)-far from being F -free, whereas only one vertex (in ea
h of these graphs)must be 
ontained in any embedding of some F 2 F in this graph. Indeed, this proves that F (orrather F = (FN )N2N su
h that FN = F for every N 2 N) does not satisfy the non-propagating
ondition (be
ause we need �(1=N) = 
(1), whereas limN!1 �(1=N) must equal zero).Turning to Part 2 (i.e., the positive 
laim regarding indu
ed subgraph freeness), we 
onsideran arbitrary set of (unmarked) graphs F and the set of N -vertex graphs that are F -free (asper De�nition 4.6). As noted before, this property (or set) is lo
al, be
ause indu
ed subgraphfreeness 
an be emulated by generalized subgraph freeness. Spe
i�
ally, for ea
h F 2 F , weintrodu
e a 
orresponding marked graph F 0 2 F 0 su
h that the graph F 0 is obtained from F bymarking all verti
es as semi-full. It follows that, for every F = (FN )N2N as in the proposition'shypothesis, the 
orresponding indu
ed subgraph freeness property (i.e., F -freeness) is F 0-lo
al,where F 0 = (F 0N )N2N is su
h that F 0N is obtained from FN by the foregoing pro
edure.The main point of Part 2 is proving that the sequen
e F 0 = (F 0N )N2N is non-propagating. LetG = ([N ℄; E) and B � [N ℄ be as in De�nition 5.3 (i.e., B 
overs F 0N in G). It follows that thesubgraph of G indu
ed by [N ℄ n B, denoted Gj[N ℄nB , is FN -free (be
ause if Gj[N ℄nB 
ontains anindu
ed subgraph that is isomorphi
 to F 2 FN , then this isomorphism yields an embedding ofthe 
orresponding F 0 2 F 0N in G su
h that no vertex of F 0 is mapped to a vertex in B). We mayassume, without loss of generality, that jBj < N � 2ds, where s is the maximum size of a graphin FN (sin
e otherwise non-propagation holds trivially, assuming N > 4ds). Using the fa
t thatGj[N ℄nB is FN -free, we 
laim that the subgraph, denoted G0, that results from G by turning B into an14Note that, for odd N , this set of graphs (i.e., the set of graphs 
onsisting of isolated verti
es) is F 0-free withrespe
t to a non-propagating F 0 that 
ontains a single graph that forbids any edges (i.e., the graph 
onsists of asingle edge with both endpoints marked partial). Thus, the 
urrent diÆ
ulty 
an be bypassed by using the generalformalism, whi
h refers to a sequen
e of sets of forbidden graphs (i.e., we may 
onsider the sequen
e (FN )N2N, whereFN = F if N is even and FN = F 0 otherwise). 22



independent set is FN -free. This 
laim follows by 
onsidering an arbitrary s-vertex subset, S, andnoting that if S indu
es a subgraph of G0 that is in FN then S0 def= S nB 
ombined with r = s�jS0jadequate verti
es indu
e the same subgraph in Gj[N ℄nB : Pi
k r verti
es in [N ℄ n (B [ S0) su
h thatin G these verti
es 
onstitute an independent set that neighbors no vertex in S0.15 Thus, G is2(jBj=N)-
lose to being FN -free (whi
h is the same as being F 0N -free). It follows that F 0 satis�esthe non-propagating 
ondition (with �(�) = 2�).Finally, we turn to Part 3 (i.e., the positive 
laim regarding non-hereditary properties). Con-sider, for example, the set of graphs that 
ontain no isolated verti
es, whi
h 
oin
ides with the setof graphs that are I-free where I is the marked graph that 
onsists of a single (isolated) vertexthat is marked full. Clearly, this set is not hereditary. To see that fIg is non-propagating, 
onsiderany graph G = ([N ℄; E) and B � [N ℄ as in De�nition 5.3 (i.e., every embedding of I in G mapsthe single vertex of I to a vertex in B). It follows that [N ℄ n B 
ontains no isolated verti
es, andso G is (jBj=dN)-
lose to being I-free. Thus, fIg satis�es the non-propagating 
ondition (with�(�) = �=d).Lastly, we show that the set of regular graphs, whi
h is also non-hereditary, is lo
al and non-propagating. To see that this set 
onstitutes a lo
al property, 
onsider a set of marked graphs FNthat forbids two verti
es of di�erent degrees; a typi
al member of this set 
onsists of two verti
esmarked full that are 
onne
ted to a di�erent number of verti
es marked partial (in addition to,possibly, an edge between the two `full' verti
es). In addition, if N is odd then we also forbid odddegrees. To see that this sequen
e of sets F = (FN )N2N of marked graphs is non-propagating,
onsider any graph G = ([N ℄; E) and B � [N ℄ as in De�nition 5.3 (i.e., every embedding of someF 2 FN in G maps some vertex of F to a vertex in B). Letting C def= B [Sv2B �(v) be the set ofall verti
es that are either in B or neighbor it, we note that all verti
es in [N ℄ n C have the samedegree. Intuitively, G 
an be made regular by only modifying edges that are in
ident at C. Thisis easy to see if we allow multiple edges, and essentially holds also otherwise.16 It follows that Fsatis�es the non-propagating 
ondition (with �(�) = O(d�)).5.3 The 
hara
terizationWe now turn to the main result of the 
urrent se
tion.Theorem 5.5 (
hara
terization for the bounded-degree graphs model): A graph property � has a
onstant-query proximity-oblivious tester if and only if � is lo
al and non-propagating.Unlike in the 
ase of Theorem 4.7 (see Footnote 6), here we rely on the fa
t that the dete
tionprobability fun
tion depends only on the proximity parameter. We stress that the 
lass of propertieshaving 
onstant-query proximity-oblivious tester is a stri
t superset of the 
lass of properties thatrefer to indu
ed subgraph freeness.Proof: We start by showing that any non-propagating lo
al graph property � has a 
onstant-query proximity-oblivious tester. Suppose that � is F -lo
al, where F = (FN )N2N , and let 
 andr be upper bounds on the number of 
onne
ted 
omponents and the radius of ea
h 
onne
ted15Su
h r verti
es exist, be
ause [N ℄ n (B [S0) 
ontains at least (N �jBj)� (d+1)jS0j verti
es that do not neighborS0, and su
h a set 
ontains an independent set of size N�jBj�(d+1)jS0jd > r.16Repla
ing ea
h pair of edges in C � ([N ℄ nC) by a single edge between the endpoints in [N ℄ nC, we maintain thedegree of verti
es in [N ℄ n C while leaving at most one edge in C � ([N ℄ n C). Repla
ing the subgraph indu
ed by Cby an adequate subgraph, we obtain the desired regular graph. Finally, multiple edges 
an be eliminated as follows.Suppose that we wish to eliminate an edge that 
onne
ts u and v. Then, we sele
t an edge (u0; v0) su
h that (u; u0)and (v; v0) and not edges, and omit the edges (u; v) and (u0; v0) while adding the edges (u; u0) and (v; v0).23




omponent (in ea
h graph in FN ), respe
tively. We 
onsider the following tester T (for �):17 oninput an N -vertex graph G, the tester sele
ts at random 
 start verti
es v1; :::; v
 2 [N ℄, performsa BFS of depth r+ 1 starting at ea
h vi, and a

epts if and only if the subgraph explored in these
 exe
utions of BFS is FN -free. More pre
isely, T a

epts unless there is an embedding of someF 2 FN in the said subgraph su
h that ea
h vertex of F is mapped to a vertex of G that is atdistan
e at most r from some vi. (The extra level of the BFS is used in order to identify all edgesin
ident at verti
es that reside in level r).18Clearly, T always a

epts any N -vertex graph that is FN -free. In the analysis of T 's dete
tionprobability (of graphs that are not FN -free), we shall 
onsider a more relaxed reje
tion 
riterionthat 
he
ks, for every F 2 FN , whether the ith 
onne
ted 
omponent of F 
an be embedded in thesubgraph explored in the ith BFS su
h that some vertex of this 
omponent is mapped to vi (i.e.,the ith start vertex). Thus, we refer to an embedding that maps the ith 
onne
ted 
omponent of Fto the r-neighborhood of vi, where the r-neighborhood of a vertex v in G is de�ned as follows. It isthe graph that is isomorphi
 to the subgraph of G that 
ontains all the verti
es that are at distan
eat most r + 1 from v and all edges that are in
ident at verti
es that is at distan
e at most r fromv. The verti
es in this graph are unlabeled, and the vertex 
orresponding to v is the designated
enter of the graph. It will be instru
tive to 
onsider a fun
tion (depending on G) that assignsea
h vertex v 2 [N ℄ its r-neighborhood.Towards analyzing the dete
tion probability of T , let us 
onsider the following simpli�ed prop-erty testing problem referring to fun
tions from [N ℄ to [m℄. The property, denoted P, is de�nedby a �xed set of (forbidden) sequen
es F � [m℄
 su
h that a fun
tion f : [N ℄ ! [m℄ is in P if, forevery v1; :::; v
 2 [N ℄, it holds that (f(v1); :::; f(v
)) 62 F. We analyze the straightforward testerthat sele
ts uniformly v1; :::; v
 2 [N ℄ and a

epts if and only if (f(v1); :::; f(v
)) 62 F. Suppose thatf is �-far from P (and that �N > 
m), and let V def= fv : Prr2[N ℄[f(r) = f(v)℄ � �=mg denotethe set of (\typi
al") points that are assigned values that appear relatively frequently. Then, frestri
ted to V is not in P, be
ause otherwise we 
an modify f on [N ℄ n V (using arbitrary valuesin ff(v) : v 2 V g) and obtain a fun
tion in P that is �-
lose to f . It follows that there existv1; :::; v
 2 V su
h that (f(v1); :::; f(v
)) 2 F, and it follows thatPru1;:::;u
2[N ℄[(f(u1); :::; f(u
)) 2 F℄ � Pru1;:::;u
2[N ℄[(8i 2 [
℄) f(ui) = f(vi)℄ (19)� �minv2V �Prr2[N ℄[f(r) = f(v)℄	�
 (20)whi
h is lower-bounded by (�=m)
.The foregoing paragraph suggests to de�ne a fun
tion f su
h that f(v) des
ribes the r-neighborhood of vertex v in G. However, the 
urrent situation is more 
omplex be
ause the r-neighborhoods of the various verti
es in G are related, and thus modifying f at one vertex mayrequire modifying it in many other verti
es. This is where the non-propagating 
ondition 
omesinto play. Indeed, in the following analysis we shall refer to the fun
tion � provided by the non-propagating 
ondition. We shall also assume that �N 6= ; (and rely on the 
onvention that if�N = ; then T reje
ts without making any queries).Fixing any � > 0, let � > 0 be a relatively large number su
h that �(�) < � (e.g., � =sup�(x)<�fxg=2). The number of verti
es at distan
e at most r + 1 from any vertex in a graph17The foregoing des
ription refers to the 
ase that �N 6= ;; otherwise, T just reje
t without making any queries.18Needless to say, we need to identify edges that 
onne
t pairs of verti
es that reside at level r. Furthermore, wealso need to identify edges that 
onne
t verti
es at level r with verti
es at level r+1, or rather to verify that no su
hedges exist for 
ertain verti
es. This is important in 
ase the embedding maps a vertex marked full to level r.24



of maximum degree d is at most Pr+1i=0 di < 2dr+1. By the de�nition of the r-neighborhood of avertex, the number of values that the r-neighborhood 
an take is upper bounded by 2(2dr+12 ) � 2dr+1(where the �rst term in the produ
t 
orresponds to the number of (unlabeled) graphs over 2dr+1verti
es, and the se
ond term 
orrespond to the 
hoi
e of the 
enter vertex). This expression isupper bounded by 2d3r . Hen
e, for m def= 2d3r , in any graph and for every Æ � 0, at most a Æ fra
tionof the verti
es have an r-neighborhood that o

urs in less than a Æ=m fra
tion of the verti
es. Now,
onsider any N and any N -vertex graph G = ([N ℄; E) that is �-far from �, and let B denotethe set of verti
es that have an r-neighborhoods that o

urs in less than �N=m verti
es. By theaforementioned observation, jBj � �N . We 
laim that there exist 
 verti
es v1; :::; v
 2 ([N ℄ n B)and a marked graph F 2 FN that 
an be embedded in G su
h that the following holds. Forevery i � 
F some vertex of the ith 
onne
ted 
omponent of F is mapped to vi, where 
F � 
denotes the number of 
onne
ted 
omponents in F . This 
laim holds be
ause otherwise, for everyF 2 FN , every embedding of F in G must map some vertex of F to a vertex in B. By the non-propagating 
ondition this implies that the graph G is �(jBj=N)-
lose to �N , whereas �(jBj=N) < �(in 
ontradi
tion to G being �-far from �N ). Using the 
laim it follows that some F 2 FN 
anbe embedded in G so that for ea
h i the ith 
onne
ted 
omponent of F is mapped inside the r-neighborhood of some vi 2 ([N ℄ nB), and thus T reje
ts if it sele
ts this sequen
e (i.e., v1; :::; v
) ofstart verti
es. Re
alling that [N ℄ nB 
ontains only verti
es with an r-neighborhood that o

urs inmany (i.e., �N=m) verti
es, we pro
eed as in the foregoing warm-up (regarding generi
 fun
tionsfrom [N ℄ to [m℄). Spe
i�
ally, the probability that 
 uniformly sele
ted verti
es of G have thisspe
i�
 forbidden sequen
e of r-neighborhoods (as the aforementioned v1; :::; v
) is at least (�=m)
.Re
alling that T reje
ts when seeing this sequen
e of r-neighborhoods, we are done (i.e., we showedthat any graph that is �-far from � is reje
ted with probability at least (sup�(x)<�fxg=2m)
).We now turn to showing that any property that has a 
onstant-query proximity-oblivious testeris indeed lo
al and non-propagating. We start by providing 
anoni
al testers for the 
urrent model,where the 
anonization pro
ess resembles (but is di�erent from) the pro
ess applied in the adja
en
ymatrix model (see Theorem 4.7, whi
h uses [20, Thm. 4.5℄). Needless to say, unlike in the lattermodel, we have no hope to obtain non-adaptive testers (
f. [25℄). Still, we may obtain a relaxednotion of non-adaptivity (i.e., a notion of \indire
t non-adaptivity"), like the one impli
it in thefollowing de�nition.De�nition 5.5.1 (
anoni
al testers in the bounded-degree model): A probabilisti
 ora
le ma
hineM is 
alled 
anoni
al if, on input N and ora
le a

ess to g : [N ℄� [d℄! f0; 1; :::; Ng, the ma
hineM behaves as follows.1. For some predetermined fun
tion s : N ! N, the ma
hines sele
ts uniformly a set S of s(N)elements in [N ℄.2. For some predetermined fun
tion ` : N ! N, the ma
hine 
ondu
ts a `(N)-step BFS from ea
hvertex in S. That is, for every v 2 S, and every t = 1; :::; `(N) and i1; :::; it 2 [d℄, the ma
hineobtains the value g(v; i1; :::; it), where g(v; i1; :::; it) def= g(w; it) if w = g(v; i1; :::; it�1) 6= 0 andg(v; i1; :::; it) def= 0 otherwise. Indeed, if w = g(v; i1; :::; it�1) 6= 0, then the value g(v; i1; :::; it)is obtained by making the query (w; it).3. The ma
hine M de
ides a

ording to N and the subgraph of G explored by it. Spe
i�
ally,M 's de
ision depends on a �xed set of marked graphs, denoted FN , su
h that M a

epts ifand only if no F 2 FN appears in the explored subgraph of G. That is, G is a

epted if there25



is no embedding of any F 2 FN (in G) that maps ea
h vertex of F to a vertex that is atdistan
e at most `(N) from one of the s(N) start verti
es.Indeed, the tester T presented in the �rst part of the proof is 
anoni
al (with 
onstant s and`). Our point, however, is that any tester 
an be 
onverted into a 
anoni
al one. Unlike in theadja
en
y matrix model (
f. [20℄), the 
urrent transformation in
urs an exponential blow-up inthe query 
omplexity. Sin
e we aim to apply this 
anonization transformation to (
onstant-query)proximity-oblivious testers, we state the transformation for generalized testers allowing arbitraryreje
tion probabilities of arbitrary no-instan
es.Claim 5.5.2 Let T be a generalized one-sided error tester of query 
omplexity q for a property �of graphs of maximum degree d. Then, � has a 
anoni
al tester of query 
omplexity Q def= eO(dq)that always a

epts any graph in � and reje
ts any graph G not in � with probability that is lower-bounded by the probability that T reje
ts G.Proof: The 
ore of the desired transformation is obtained by an adequate adaptation of the trans-formation provided in [20, Se
. 4℄. Analogously to [20, Se
. 4.1℄, we �rst 
onvert T into a testerT 0 that makes all queries as postulated in Steps 1 and 2 of De�nition 5.5.1, while setting s and` to equal q. After a
ting as postulated in these two 
anoni
al steps, the tester T 0 emulates theexe
ution of T while answering its queries as follows. When T makes a query (v; i) su
h that vdid not appear in any prior query or answer, the tester T 0 allo
ates to v the next unused vertexu in the initial sample S, and otherwise T 0 just uses the allo
ation determined before; that is, if vdid not appear before then T 0 de�nes �(v) = u and otherwise T 0 just uses the value �(v) de�nedbefore. The answer provided by T 0 to the query (v; i) of T is ��1(g(�(v); i)) if the latter is de�ned,and otherwise the answer is de�ned as a new random value r (di�erent from all queries made byT and all answers given to T ) and �(r) is de�ned to equal g(�(v); i). If �(r) is in S then (in thefuture) it will be 
onsidered used.Note that all the values g(�; �) used by T 0 in the foregoing pro
ess are values that appear in oneof the BFS exe
utions (i.e., we use g(u; i) for either u 2 S or for some u that appeared as an answerto some prior query (w; j), i.e., u = g(w; j)). On the other hand, the exe
ution of T 0 on input G
orresponds to an exe
ution of T on a random isomorphi
 
opy of G (where the isomorphism isprovided by the permutation �, whi
h is sele
ted on-the-
y by T 0).Next, analogously to [20, Se
. 4.2℄, we note that, without loss of generality, the de
ision of T 0is sample-oblivious and label-oblivious; that is, the de
ision depends only on the edges (and non-edges) among the explored verti
es (i.e., the underlying subgraph explored by the BFS exe
utions),and not on the a
tual labels of these verti
es in G. This is proved by making T 0 a

ept withprobability that equals the average of all relevant probabilities (i.e., the a

eptan
e probabilitiesthat are asso
iated with ea
h of the possible relabellings of the subgraph), and observing that theprobability that the resulting T 0 a

epts G equals the probability that the original T 0 a

epted arandom isomorphi
 
opy of G. Note that the de
ision of the resulting T 0 may still depends onan identi�
ation of the s(N) initial verti
es (from whi
h the 
orresponding BFS exe
utions werestarted), but it does not depend on the labels of these (or any other) verti
es.19Finally, we use the fa
t that T 0 has one-sided error in order to make the �nal de
ision deter-ministi
 as well as invariant under the identi�
ation of the s(N) initial verti
es. Firstly, as in [20,19Indeed, the identity of the start vertex (of an exploration) need not be uniquely determined by the subgraphexplored in an `-step BFS, even when ` is known. Consider, for example, a 4-step BFS yielding the subgraphthat 
onsists of the edges f0; 1g; f1; 2g; f1; 3g; f2; 3g; f1; 4g; f4; 5g; f5; 6g. Note that the 
orresponding 4-step BFSexploration 
ould have been initiated at vertex 0 as well as either at vertex 2 (or 3) or at vertex 6.26



Se
. 4.2℄, we note that if T 0 reje
ts with non-zero probability when seeing a parti
ular subgraph ofG then it must be the 
ase that G is not in �, and hen
e we may modify T 0 su
h that it reje
tswith probability 1 in this 
ase. Similarly, we may extend the reje
tion 
riterion by omitting theidenti�
ation of the s(N) initial verti
es (but maintaining the distin
tion between verti
es whoseneighborhood was fully explored and those dis
overed in the last step of one of the BFS exe
utions).That is, if T 0 reje
ts with one identi�
ation of the initial verti
es then the resulting tester will re-je
t when seeing the same subgraph with any other possible identi�
ation of the initial verti
es.Thus, the �nal de
ision of the resulting tester only depends on the marked graph that it sees in itsexploration, where verti
es are marked partial if and only if they were dis
overed at the last stepof one of the BFS exe
utions (and are marked full otherwise). Indeed, this tester is 
anoni
al, andthe 
laim follows.Applying Claim 5.5.2 to any 
onstant-query proximity-oblivious tester for �, we obtain a 
anoni
altester of 
onstant query 
omplexity. Letting F = (FN )N2N be the sequen
e of sets of markedgraphs used by (Step 3 of) this tester, we 
laim that, for every N and every N -vertex graph G, itholds that G 2 � if and only if G is FN -free. The 
laim follows by noting that G 2 � if and only ifthe 
anoni
al tester a

epts it with probability 1, whi
h happens if and only if G is FN -free (by thedes
ription of the 
anoni
al tester and the de�nition of generalized subgraph freeness). It followsthat � is lo
al (and, in fa
t, it is F -lo
al).It is left to prove that F is non-propagating. We shall refer to the 
anoni
al tester derivedabove, and spe
i�
ally to its dete
tion probability fun
tion � (whi
h equals the dete
tion probabilityfun
tion of the 
onstant-query proximity-oblivious tester of the hypothesis). Let us denote the query
omplexity of the 
anoni
al tester by q. We de�ne � : (0; 1℄! (0; 1℄ so that �(�) equals a \relativelysmall" � 2 (0; 1℄ that satis�es �(�) > q� (e.g., �(�) = 2 inf�(x)>q�fxg if �(1=2) > q� and �(�) = 1otherwise). Note that, indeed, for every � > 0 there exists � > 0 su
h that �(�) < �. We shall showthat F satis�es the non-propagating 
ondition with respe
t to this fun
tion � . For any N , 
onsiderany graph G = ([N ℄; E) and any B � [N ℄ su
h that every embedding of any F 2 FN in G mapssome vertex of F to B. Assume, towards the 
ontradi
tion, that G is �(jBj=N)-far from �N (while�N 6= ;), where �N denotes the set of N -vertex graphs that are FN -free. Then, the 
anoni
altester must reje
t G with probability at least �(�(jBj=N)). On the other hand, the 
anoni
al testermay reje
t G only if one of the verti
es that it visits resides in B. Sin
e ea
h vertex is visited withprobability at most q=N , it holds that �(�(jBj=N)) � q � jBj=N , whi
h 
ontradi
ts the de�nition of� (i.e., �(�(�)) > q�).20A quantitative version. We note that the proof of Theorem 5.5 provides a rather tight relationbetween the optimal dete
tion probability of 
onstant-query proximity-oblivious testers and thefun
tion � used in the de�nition of the non-propagating 
ondition (
f., De�nition 5.3). Spe
i�-
ally, these two fun
tions are roughly inverses of one another; for example, polynomial dete
tionprobability (i.e., �(�) = �O(1)) 
orrespond to 
onstant-root fun
tions (i.e., �(�) = �
(1)), whereasexponential dete
tion probability (i.e., �(�) = 2�O(1=�)) 
orrespond to logarithmi
 fun
tions (i.e.,�(�) = O(1= log(1=�))). A 
loser look at the proof of Theorem 5.5 also yields the following 
orollary.Corollary 5.6 For every sequen
e of graphs F = (FN )N2N as in Theorem 4.7, the property of beingF-free has a 
onstant-query proximity-oblivious tester of polynomial dete
tion probability fun
tion(i.e., �(�) � poly(�)). Furthermore, the degree of this polynomial equals the maximum number of
onne
ted 
omponents in a graph in F .20Indeed, we assumed that � (�) < 1, and the 
laim hold va
uously otherwise.27



We note that the said dependen
y is optimal. Consider, for example, the graph F that 
onsistsof 
 < d 
onne
ted 
omponents su
h that the ith 
omponent 
onsists of a single vertex markedfull that is 
onne
ted to i verti
es marked partial. Then, the set of fFg-free graphs 
onsists ofgraphs whose degree distribution does not 
ontain the entire set [
℄ (i.e., for any fFg-free graph Gthere exists i 2 [
℄ su
h that no vertex in G has degree i). On the other hand, a 
onstant-queryproximity tester for this set has dete
tion probability �(�) = O(�)
, be
ause an N -vertex graph thatis �-far from this set may have �N verti
es of ea
h problemati
 degree (whereas we should see allproblemati
 degrees when reje
ting).Proof: As shown in the proof of Proposition 5.4, this property is lo
al and non-propagating with�(�) = O(�). Let 
 denote an upper bound on the number of 
onne
ted 
omponents in any graphin F , and let r denote a 
orresponding bound on the radius of su
h 
omponents. Then, the �rstpart of the proof of Theorem 5.5 implies that this property has a 2dr+1-query proximity-oblivioustester with dete
tion probability �(�) > (�= exp(d3(r+1)))
, where � = 
(�) satis�es �(�) < �. The
laim follows.Easily testable properties having no proximity-oblivious testers. While 
onne
tivity 
anbe tested with query-
omplexity that is inversely proportional to the proximity parameter [17℄, thisproperty has no 
onstant-query proximity-oblivious tester. That is:Proposition 5.7 Conne
tivity has no 
onstant-query proximity-oblivious tester. Furthermore,
onne
tivity is not a lo
al property.Proof: Let F be a set of marked graphs as in De�nition 5.1, and suppose that the largest graphin F has n verti
es. We shall show that, for every N � 2n + 4, the set of 
onne
ted N -vertexgraphs does not 
oin
ide with the set of N -vertex graphs that are F -free. Consider, towards the
ontradi
tion, a graph G that 
onsists of two isolated 
y
les, ea
h of size at least n + 2. If G isF -free then we are done (sin
e G is not 
onne
ted). On the other hand, if G is not F -free, then we
onsider an embedding of some F 2 F in G, and note that ea
h 
y
le 
ontains at least one pair ofadja
ent verti
es that are not in the image of this embedding (i.e., let (ui; vi) denote su
h a pair onthe ith 
y
le). Then, by swit
hing edges between the two 
y
les, we obtain an N -vertex 
y
le thatis still not F -free (i.e., repla
e the edges (u1; v1) and (u2; v2) by the edges (u1; u2) and (v1; v2)),and so we are done.5.4 Con
lusionWe end this se
tion by expli
itly stating the main problem left open.Open Problem 5.8 (are all lo
al properties non-propagating?) Let F = (FN )N2N be an arbitrarysequen
e of sets of marked graphs as in De�nition 5.2. Is it the 
ase that there exists another su
hsequen
e F 0 = (F 0N )N2N that is non-propagating and de�nes the same property (i.e., for every Nand any N -vertex graph G it holds that G is FN -free if and only if G is F 0N -free)?Note that F 0N must depend on N even if FN does not depend on N (i.e., FN = F for a �xed F andall N).21 Re
all that a property may be lo
al with respe
t to several di�erent sequen
es of (sets21Consider the set F used in the proof of Part 1 of Proposition 5.4, and let F 0 be an arbitrary set of marked graphssu
h that every graph is F 0-free if and only if it is F-free. Then, a graph G0 with an even number of verti
es that areea
h of odd degree is F 0-free. On the other hand, augmenting G0 with a single isolated vertex, we obtain a graph Gthat is 
(1)-far from being F 0-free and yet only one vertex (i.e., the isolated vertex) must be 
ontained in the imageof any embedding of any F 0 2 F 0 in the graph G. 28



of) marked graphs, where some of these sequen
es may be non-propagating and the other not (
f.the proof of Part 1 of Proposition 5.4).A related 
hallenge is to determine relatively tight bounds on the fun
tion � 
orresponding tovarious non-propagating lo
al properties. In parti
ular, 
an � always be linear?6 Con
luding CommentsIn this se
tion we present some generi
 observations and dis
uss a 
ouple of issues.6.1 Generi
 observationsAn obvious 
ondition for the existen
e of a 
onstant-query proximity-oblivious tester for a parti
ularproperty is the existen
e of 
onstant-size \refutations" for the property.De�nition 6.1 (refutations): For � = Sn2N �n as in De�nition 2.2, the sequen
e((x1; y1); :::; (xq ; yq)) is 
alled a refutations for membership in �n if for every f 2 �n there ex-ists j 2 [q℄ su
h that f(xj) 6= yj. For s : N ! N, we say that � has size-s refutations if for everyn 2 N and every f : [n℄ ! f0; 1g� that is not in � there exists a sequen
e x1; :::; xs(n) su
h that((x1; f(x1)); :::; (xs(n); f(xs(n))) is a refutations for membership in �n.Theorem 6.2 For s : N ! N, if a property � (as in De�nition 2.2) has an s-query proximity-oblivious tester, then it has size-s refutations.Like in the 
ase of Theorem 4.7 (see Footnote 6), we only rely on the fa
t that every fun
tionnot in � must be reje
ted with positive probability (and we don't require this probability to besolely a fun
tion of the distan
e of this fun
tion from �). We note that the proof of Proposition 4.5impli
itly used the statement in Theorem 6.2 (for 
onstant s and for the spe
ial 
ase of bipartitness),and Proposition 5.7 
ould have been proved using the theorem.Proof: Using �(�) > 0 for every � > 0, it follows that the proximity-oblivious tester must reje
tany f 62 � with positive probability. Fixing an arbitrary f : [n℄ ! f0; 1g� that is not in �n,let x1; :::; xq 2 [n℄ be a sequen
e of queries made by the tester when reje
ting f . Note that theone-sided error of the tester implies that ((x1; f(x1)); :::; (xq ; f(xq)) is a refutation for membershipin �n. The theorem follows.Dis
ussion. We stress that (unlike Theorem 4.7) Theorem 6.2 only establishes a ne
essary 
ondi-tion, and re
all that this 
ondition is not suÆ
ient (see a dramati
 demonstration in [8℄).22 Indeed,the existen
e of a 
onstant-query proximity-oblivious tester (for property �) depends not only onthe existen
e of refutations (for membership in �) but also on the ability to �nd su
h witnesseswith probability related to the distan
e of the fun
tion from the property (while making a 
onstantnumber of queries to the fun
tion). In the 
ontext of testing bounded-degree graphs (
f. Se
tion 5)these qualities were linked to the non-propagating 
ondition. This link was based on the existen
e ofa 
anoni
al testers in the latter 
ontext, whereas su
h testers may not exist in general. Still, in thegeneral setting, 
onstant-query proximity-oblivious testers are implied by standard non-adaptivetesters that rely on �nding 
onstant-size refutations.22Re
all that [8℄ presents a property that has 
onstant-size refutations but no (standard) testers of sub-linear query
omplexity (even when �xing a suÆ
iently small 
onstant value of the proximity parameter). It follows that thisproperty has no proximity-oblivious testers of sub-linear (let alone 
onstant) query 
omplexity.29



Theorem 6.3 A property � as in De�nition 2.2 has a 
onstant-query proximity-oblivious tester if� has a standard tester T (of error probability 1=3) that satis�es the following three 
onditions:1. T is non-adaptive;2. T has query 
omplexity, denoted q : (0; 1℄! N, that only depends on the proximity parameter;and3. For some �xed s 2 N, the tester T reje
ts if and only if it �nds size-s refutations.Furthermore, assuming that q is monotoni
ally non-in
reasing, the resulting proximity-oblivioustester makes s queries and has dete
tion probability at least �(�) = 
(q(�=2)�s � �).Indeed, an observation similar to Theorem 6.3 underlies the proof of the positive part of Propo-sition 4.3. (In the latter proof we use the fa
t that the standard tester is further restri
ted andderived a stronger bound on �.) We note that in the 
ase of properties of fun
tions with a 
onstantsize range (e.g., Boolean fun
tions), any adaptive tester 
an be transformed into a non-adaptivetester with an exponential blow-up in the query 
omplexity. Hen
e, a variant of Theorem 6.3 holdsfor adaptive testers as well.Proof: On input n and ora
le a

ess to f : [n℄ ! f0; 1g�, the proximity-oblivious tester, T 0,pro
eeds as follows. First, T 0 sele
ts i 2 f1; :::; dlog2 neg at random su
h that the value i is sele
tedwith probability 2�i, and invokes (the query-generating algorithm of) T with the proximity pa-rameter 2�i. Thus, T 0 obtains a random set of queries that T issues (non-adaptively, on proximityparameter 2�i). Denoting this set by Q = fx1; :::; xq(2�i)g � [n℄, the proximity-oblivious testersele
ts a random s-subset of Q, and queries f on these indi
es. Finally, T 0 reje
ts if and only if the
orresponding sequen
e of s queries and answers 
onstitutes a refutation for membership in �.Clearly, T 0 never reje
ts any f 2 �. Towards analyzing the dete
tion probability of T 0, let Ædenote the distan
e of f : [n℄! f0; 1g� from �n. Then, T 0 sele
ted i = dlog2(1=Æ)e with probability
(Æ), and 
onditioned on this event, with probability at least 2=3, the set of queries Q 
ombinedwith the 
orresponding answers (of f) 
ontains a size-s refutation. In this 
ase, a uniformly sele
tedset of s elements in Q yields a refutation with probability at least jQj�s = q(2�i)�s � q(Æ=2)�s.Dis
ussion. Needless to say, Theorem 6.3 is appli
able to many property testers, sin
e sear
hing(non-adaptively) for a refutation is a natural way in whi
h one-sided error testers pro
eed. Examplesin
lude testers for properties su
h as d-dimensional Eu
lidean metri
s [23℄, singletons [24℄, andjuntas [13℄, and various 
lustering problems (
f. [2℄). We note that Theorem 6.3 is appli
able alsoin 
ase the query 
omplexity of the original tester as well as the size of the refutation may depend onthe fun
tion's domain (i.e., [n℄), but in this 
ase we obtain a relaxed notion of proximity-oblivioustesting in whi
h the dete
tion probability may depend on the fun
tion's domain. That is, if theoriginal tester makes q(n; �) to any fun
tion over [n℄ and sear
hes for size-s(n) refutations, then weobtain a relaxed proximity-oblivious tester that makes s(n) queries and has dete
tion probabilityat least �(n; �) = 
(q(n; �=2)�s(n) � �).6.2 The 
ase of lo
ally testable 
odesThe notion of proximity-oblivious testing was dis
ussed in the 
ontext of lo
ally testable 
odes(LTCs), whi
h are error-
orre
ting 
odes augmented by eÆ
ient 
odeword testers (i.e., testers forthe property of being a 
odeword). Spe
i�
ally, proximity-oblivious (
odeword) testers (with linear30



dete
tion probability fun
tion) 
orrespond to the de�nition of strong 
odeword tests as in [19,Def. 2.2℄, whereas a restri
ted form of standard (
odeword) testers 
orrespond to the standardde�nition of 
odeword tests (
alled weak in [19, Def. 2.1℄). We mention that while the mainresults of [19℄ refer to strong 
odeword tests, most subsequent work (in
luding [11, Se
. 8℄) referto (weak) 
odeword tests. It is indeed an open problem whether the parameters of [11, Cor. 8.8℄(i.e., 
onstant query 
omplexity and one-over-polylogarithmi
 rate) 
an be obtained with respe
tto strong 
odeword testing. That is:Open Problem 6.4 Do some error-
orre
ting 
odes of 
onstant relative distan
e and one-over-polylogarithmi
 rate have 
onstant-query proximity-oblivious 
odeword testers?On the other hand, proximity-oblivious testers may provide a setting in whi
h one may establishinherent limitations on 
odeword testing. Spe
i�
ally, we 
onje
ture that error-
orre
ting 
odesof 
onstant relative distan
e that have 
onstant-query proximity-oblivious 
odeword testers musthave rate that is inferior to arbitrary error-
orre
ting 
odes of the same relative distan
e.6.3 Two-sided error probability POTThroughout this paper we 
onsidered proximity-oblivious testers (POTs) that always a

ept fun
-tions having the property. As 
ommented in Se
tion 2, it is easier to de�ne the notion of proximity-oblivious testers in this setting (i.e., the setting of one-sided error probability). Still, one 
an alsode�ne a meaningful notion of two-sided error probability proximity-oblivious testers (POTs) bygeneralizing De�nition 2.2 as follows:De�nition 6.5 (De�nition 2.2, generalized): Let � = Sn2N �n and � : (0; 1℄ ! (0; 1℄ be as inDe�nition 2.2. A two-sided error POT with dete
tion probability � for � is a probabilisti
 ora
lema
hine T that satis�es the following two 
onditions, with respe
t to a 
onstant 
 2 (0; 1℄:1. For every n 2 N and f 2 �n, it holds that Pr[T f (n)=1℄ � 
.2. For every n 2 N and f : [n℄! f0; 1g� not in �n, it holds that Pr[T f (n)=1℄ � 
� �(Æ�n(f)),where Æ�n(f) = ming2�nfÆ(f; g)g (as in Eq. (1)).The 
onstant 
 is 
alled the threshold probability.Indeed, De�nition 2.2 is obtained as a spe
ial 
ase by letting 
 = 1. Furthermore, for every 
 2 (0; 1℄,every property � having a one-sided error POT also has a two-sided error POT that a

epts everyfun
tion in � with threshold probability 
 (e.g., 
onsider a generalized POT that a
tivates thestandard POT with probability 
 and reje
ts otherwise).We note that two-sided error POTs exist also for properties that have no standard POT. Astraightforward example is the property of Boolean fun
tions that have at least a � fra
tion of1-values, for a 
onstant � 2 (0; 1). A more telling example refers to the set of Boolean fun
tionhaving a fra
tion of 1-values that is at least �1 but at most �2, for 0 < �1 < �2 < 1. Assuming,without loss of generality, that �1 + �2 � 1, this property has a two-sided error POT that sele
tsuniformly two samples in the fun
tion's domain, obtains the fun
tion values on them, and a

eptwith probability pi if the sum of the answers equals i, where p0 = 0, p1 = 1 and p2 = 2(�1 + �2 �1)=(�1 + �2).Additional results will be reported in a forth
oming work.31
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A Alternative De�nitions of Generalized Subgraph FreenessIn this appendix we show that the notion of generalized subgraph freeness (as in De�nition 5.1)remains as expressive when disallowing either semi-full or partial markings.The emulation of partial markings by semi-full markings is analogous to the emulation of non-indu
ed subgraph freeness by indu
ed subgraph freeness. That is, every graph F = ([n℄; EF ),
ontaining a vertex v that is marked partial 
an be repla
ed by a 
olle
tion of graphs F 0 = ([n℄; E0F )su
h that E0F 
ontains EF as well as some additional edges in
ident at v, and v is marked semi-full.On the other hand, the e�e
t of a marked graph 
ontaining semi-full verti
es 
an be emulatedby a set of marked graphs in whi
h the 
orresponding verti
es are marked full but are 
onne
tedto some auxiliary verti
es marked partial. Spe
i�
ally, ea
h marked graph F 2 F is repla
ed bya 
orresponding set of marked graphs su
h that ea
h F 0 in this set is as follows. (Note that bythe �rst emulation, we may assume without loss of generality that F 
ontains no verti
es markedpartial.) The vertex-set of F 0 
onsists of the verti
es of F , whi
h are all marked full, and a set ofauxiliary verti
es, whi
h are all marked partial. All edges of F are edges in F 0, and in additionF 0 
ontains some edges with at least one endpoint that is marked partial (representing a vertexoutside F ). Without loss of generality, we only add edges with exa
tly one endpoint marked partial(and the other endpoint marked full). Thus, F 0 
onsists of a 
opy of F augmented by an arbitrarybipartite graph with verti
es of F (marked full) on one side and auxiliary verti
es (marked partial)on the other side. Without loss of generality, we only in
lude a vertex that is marked partial if it isadja
ent to some vertex marked full. All marked graphs F 0 that 
an be obtained in the foregoingmanner are in
luded in the derived set of marked graphs F 0. Thus, bearing in mind that all graphshave maximum degree at most d, we repla
e ea
h marked graph in F by a �nite set of markedgraphs.
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