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1 IntroductionThe glory given to the creativity required to �nd proofs, makes us forget that it is the lessglori�ed procedure of veri�cation which gives proofs their value. Philosophically speaking,proofs are secondary to the veri�cation procedure; whereas technically speaking, proofsystems are de�ned in terms of their veri�cation procedures.The notion of a veri�cation procedure assumes the notion of computation and fur-thermore the notion of e�cient computation. This implicit assumption is made explicitin the de�nition of NP, in which e�cient computation is associated with (deterministic)polynomial-time algorithms.De�nition 1 (NP-proof systems): Let S � f0; 1g� and � : f0; 1g� � f0; 1g� 7! f0; 1g be afunction so that x 2 S if and only if there exists a w 2 f0; 1g� such that �(x;w) = 1. If �is computable in time bounded by a polynomial in the length of its �rst argument then wesay that S is an NP-set and � de�nes an NP-proof system.For example, in propositional calculus a proof is a sequence of assertions, each beinga form of an axiom or is obtained by applying an inference rule on previous assertions.Thus, the veri�cation procedure consists of checking the justi�cation of each assertion inthe sequence. Clearly, this procedure can be implemented by a very e�cient algorithm. Incontrast, it is widely believed that there exists no e�cient algorithm for �nding proofs togiven assertions in propositional calculus (since the task is NP-Hard { see below).Traditionally, NP is de�ned as the class of NP-sets (cf., [22]). Yet, each such NP-set canbe viewed as a proof system. For example, consider the set of satis�able Boolean formulae.Clearly, a satisfying assignment � for a formula � constitutes an NP-proof for the assertion\� is satis�able" (the veri�cation procedure consists of substituting the variables of � bythe values assigned by � and computing the value of the resulting Boolean expression).The formulation of NP-proofs restricts the \e�ective" length of proofs to be polyno-mial in length of the corresponding assertions (since the running-time of the veri�cationprocedure is restricted to be polynomial in the length of the assertion). However, longerproofs may be allowed by padding the assertion with su�ciently many blank symbols.So it seems that NP gives a satisfactory formulation of proof systems (with e�cient ver-i�cation procedures). This is indeed the case if one associates e�cient procedures withdeterministic polynomial-time algorithms. However, we can gain a lot if we are willing totake a somewhat non-traditional step and allow probabilistic veri�cation procedures. Inparticular,� Randomized and interactive veri�cation procedures, giving rize to interactive proofsystems, seem much more powerful (i.e., \expressive") than their deterministic coun-terparts.� Such randomized procedures allow the introduction of zero-knowledge proofs whichare of great theoretical and practical interest.1



� NP-proofs can be e�ciently transformed into a (redundant) form which o�ers a trade-o� between the number of locations examined in the NP-proof and the con�dence inits validity (see probabilistically checkable proofs).In all abovementioned types of probabilistic proof systems, explicit bounds are imposedon the computational complexity of the veri�cation procedure, which in turn is personi�edby the notion of a veri�er. Furthermore, in all these proof systems, the veri�er is allowed totoss coins and rule by statistical evidence. Thus, all these proof systems carry a probabilityof error; yet, this probability is explicitly bounded and, furthermore, can be reduced bysuccessive application of the proof system.Basic background from computational complexityThe following are standard complexity classes� P denotes the class of sets in which membership can be decided in (deterministic)polynomial-time. Namely, for every S 2 P there exists a (deterministic) polynomial-time algorithm A so that x 2 S i� A(x) = 1, for all x 2 f0; 1g�. Note that Pis a subset of NP consiting of these NP-sets for which proofs of membership (i.e.,NP-proofs) can be e�ciently found (rather than merely exist).� RP (resp., BPP) denotes the class of sets in which membership can be decidedin probabilistic polynomial-time with one-sided (resp., two-sided) error probability.Speci�cally,{ for every S 2 RP there exists a probabilistic polynomial-time algorithm A sothat for every x 2 S Prob(A(x)=1) � 12whereasfor every x 62 S Prob(A(x)=1) = 0where the probability is taken uniformly over all possible outcomes of the inter-nal coin tosses of algorithm A.{ for every S 2 BPP there exists a probabilistic polynomial-time algorithm A sothat for every x 2 S Prob(A(x)=1) � 23whereasfor every x 62 S Prob(A(x)=1) � 132



In both cases, the non-trivial probability bounds may be changed in various wayspreserving the complexity class.� NP denotes the class of NP-sets and coNP denotes the class of their complements(i.e., S 2 coNP i� S 2 NP, where S def= f0; 1g� � S).� A set S is polynomial-time reducible to a set T if there exists a polynomial-timecomputable function f so that x 2 S i� f(x) 2 T , for every x. A set is NP-hard ifevery NP-set is polynomial-time reducible to it. A set is NP-complete if it is bothNP-hard and in NP.� PSPACE denotes the class of sets in which membership can be decided in polynomial-space (i.e., the work-space taken by the decider is polynomial in length of the input).Obviously, P � RP � BPP � PSPACE. It is not hard to see that RP � NPand that NP � PSPACE. It is widely believed that P 6= NP and NP 6= PSPACE.Furthermore, it is also believed that NP 6= coNP. NP-hard sets (or tasks) are assumedto be infeasible, since if an NP-hard set is in P then NP = P (by virtue of the reductionsof all NP-sets to each NP-hard set).ConventionsWhen presenting a proof system, we state all complexity bounds in terms of the length ofthe assertion to be proven (which is viewed as an input to the veri�er). Namely, polynomial-time means time polynomial in the length of this assertion. Note that this convention isconsistent with our de�nition of NP-proofs.Denote by poly the set of all integer functions bounded by a polynomial and by logthe set of all integer functions bounded by a logarithmic function (i.e., f 2 log i� f(n) =O(log n)).Basic Background from combinatoricsA (simple) graph, G, is a pair (V;E) where E is a set of 2-subsets of V ; i.e., for everye 2 E it holds je \ V j = 2. The elements of V are called vertices and the elements of Eare called edges. In this exposition we consider only simple �nite graphs.Two graphs, G1=(V1; E1) and G2=(V2; E2), are called isomorphic if there exists a 1-1and onto mapping, �, from the vertex set V1 to the vertex set V2 so that fu; vg 2 E1 ifand only if f�(v); �(u)g 2 E2. The (\edge preserving") mapping �, if existing, is called anisomorphism between the graphs.A graph G= (V;E) is said to be 3-colorable if there exists a function � :V 7! f1; 2; 3gso that �(v) 6= �(u) for every fu; vg 2 E. Such a function, �, is called a 3-coloring of thegraph. 3



2 Interactive Proof SystemsIn light of the growing acceptability of randomized and distributed computations, it is onlynatural to associate the notion of e�cient computation with probabilistic and interactivepolynomial-time computations. This leads naturally to the notion of interactive proofsystems in which the veri�cation procedure is interactive and randomized, rather thanbeing non-interactive and deterministic. Thus, a \proof" in this context is not a �xed andstatic object but rather a randomized (dynamic) process in which the veri�er interactswith the prover. Intuitively, one may think of this interaction as consisting of \tricky"questions asked by the veri�er to which the prover has to reply \convincingly". The abovediscussion, as well as the following de�nition, makes explicit reference to a prover, whereasa prover is only implicit in the traditional de�nitions of proof systems (e.g., NP-proofs).2.1 De�nitionLoosely speaking, an interactive proof is a game between a computationally bounded ver-i�er and a computationally unbounded prover whose goal is to convince the veri�er of thevalidity of some assertion. Speci�cally, the veri�er is probabilistic polynomial-time. It isrequired that if the assertion holds then the veri�er always accepts (i.e., when interactingwith an appropriate prover strategy). On the other hand, if the assertion is false then theveri�er must reject with probability at least 12, no matter what strategy is being employedby the prover. A sketch of the formal de�nition is given in Item (1) below. Items (2) and(3) introduce additional complexity measures which can be ignored in �rst reading.De�nition 2 (Interactive Proofs { IP) [30]:1. An interactive proof system for a set S is a two-party game, between a veri�er executinga probabilistic polynomial-time strategy (denoted V ) and a prover which executes acomputationally unbounded strategy (denoted P ), satisfying� Completeness: For every x 2 S the veri�er V always accepts after interactingwith the prover P on common input x.� Soundness: For every x 62 S and every potential strategy P �, the veri�er Vrejects with probability at least 12, after interacting with P � on common input x.2. Let m and r be integer functions. The complexity class IP(m(�); r(�)) consists of setshaving an interactive proof system in which, on common input x, the veri�er makesat most r(jxj) coin tosses and the total number of messages exchanged between theparties is bounded by m(jxj).3. LetM and R be sets of integer functions. Then, IP(M;R) denotes [m2M;r2RIP(m(�); r(�)).Finally, IP(m(�)) def= IP(m(�); poly) and IP def= IP(poly).4



In Item (1), we have followed the standard de�nition which speci�es strategies for both theveri�er and the prover. An alternative presentation only speci�es the veri�er's strategywhile rephrasing the completeness condition as follows:there exists a prover strategy P so that, for every x 2 S, the veri�er V alwaysaccepts after interacting with P on common input x.Arthur-Merlin games1 introduced in [4] are a special case of interactive proofs; yet, asshown in [31], this restricted case has essentially2 the same power as the general casepreviously introduced in [30]. Also, in some sources interactive proofs are de�ned so thattwo-sided error probability is allowed; yet, this does not increase their power [21].2.2 The role of randomnessRandomness is essential to the formulation of interactive proofs; if randomness is notallowed (or if it is allowed but zero error is required in the soundness condition) theninteractive proof system collapse to NP-proof systems (i.e., IP(poly; 0) equals NP). Thereason being that the prover can predict the veri�er's part of the interaction and thus itsu�ces to let the prover send the full transcript of the interaction and let the veri�er checkthat the interaction is indeed valid. (In case the veri�er is not deterministic, the transcriptsent by the prover may not match the outcome of the veri�er coin tosses.) The moral isthat there is no point to interact with predictable parties which are also computationallyweaker3.2.3 The power of interactive proofsA simple example demonstrating the power of interactive proofs follows. Speci�cally, wepresent an interactive proof for proving that two graphs are not isomorphic. It is notknown whether such a statement can be proven via an NP-proof system.Construction 1 (Interactive proof system for Graph Non-Isomorphism) [24]:� Common Input: A pair of two graphs, G1 = (V1; E1) and G2 = (V2; E2). Suppose,without loss of generality, that V1 = f1; 2; :::; jV1jg, and similarly for V2.1In Arthur-Merlin games, the veri�er must send the outcome of any coin it tosses (and thus need notsend any other information).2Here and in the next sentence, not only IP remains invariant under the various de�nitions, but alsoIP(m(�)), for every integer function satisfying m(n) � 2 for every n. However, it is not known whetherIP(m(�); r(�)) is preserved as well.3This moral represents the prover's point of view. Certainly, from the veri�er's point of view it isbene�tial to interact with the prover, since it is computationally stronger.5



� Veri�er's �rst step (V1): The veri�er selects at random one of the two input graphs,and sends to the prover a random isomorphic copy of this graph. Namely, the veri�erselects uniformly � 2 f1; 2g, and a random permutation � from the set of permuta-tions over the vertex set V�. The veri�er constructs a graph with vertex set V� andedge set E def= ff�(u); �(v)g : fu; vg2E�gand sends (V�; E) to the prover.� Motivating Remark: If the input graphs are non-isomorphic, as the prover claims,then the prover should be able to distinguish (not necessarily by an e�cient algorithm)isomorphic copies of one graph from isomorphic copies of the other graph. However,if the input graphs are isomorphic then a random isomorphic copy of one graph isdistributed identically to a random isomorphic copy of the other graph.� Prover's step: Upon receiving a graph, G0 = (V 0; E0), from the veri�er, the prover�nds a � 2 f1; 2g so that the graph G0 is isomorphic to the input graph G� . (If both� = 1; 2 satisfy the condition then � is selected arbitrarily. In case no � 2 f1; 2gsatis�es the condition, � is set to 0). The prover sends � to the veri�er.� Veri�er's second step (V2): If the message, � , received from the prover equals �(chosen in Step V1) then the veri�er outputs 1 (i.e., accepts the common input).Otherwise the veri�er outputs 0 (i.e., rejects the common input).The veri�er's strategy presented above is easily implemented in probabilistic polynomial-time. We do not known of a probabilistic polynomial-time implementation of the prover'sstrategy, but this is not required. The motivating remark justi�es the claim that Con-struction 1 constitutes an interactive proof system for the set of pairs of non-isomorphicgraphs, which is a coNP-set (not known to be in NP).Interactive proofs are powerful enough to prove any coNP assertion (e.g., that a graph is not3-colorable) [36]. Furthermore, the class of sets having interactive proof systems coincideswith the class of sets that can be decided using a polynomial amount of work-space [43].Theorem 1 [43]: IP = PSPACE.Recall that it is widely believed that NP � PSPACE. Thus, under this conjecture,interactive proofs are more powerful than NP-proofs.Concerning the �ner structure of the IP hierarchy it is known that this hierarchy has a\linear speed-up" property [7]. Namely, for every integer function, f , so that f(n) � 2for all n, the class IP(O(f(�))) collapses to the class IP(f(�)). In particular, IP(O(1))collapses to IP(2). It is conjectured that coNP is not contained in IP(2), and conse-quently that interactive proofs with unbounded number of message exchanges are morepowerful than interactive proofs in which only a bounded (i.e., constant) number of mes-sages are exchanged. Yet, the class IP(2) contains sets not known to be in NP; e.g.,Graph Non-Isomorphism (as shown above). 6



2.4 How powerful should the prover be?Assume that a set S is in IP. This means that there is a veri�er V that can be convincedto accept any input in S but cannot be convinced to accept any input not in S (except withsmall probability). One may ask how powerful should a prover be so that it can convincethe veri�er V to accept any input in S. More interestingly, considering all possible veri�erswhich give rise to an interactive proof system for S, what is the minimum power requiredfrom a prover which satis�es the completeness requirement with respect to one of these ver-i�ers? We stress that, unlike the case of computationally-sound proof systems (see Sec. 5),we do not restrict the power of the prover in the soundness condition but rather considerthe minimum complexity of provers meeting the completeness condition. Speci�cally, weare interested in relatively e�cient provers which meet the completeness condition. Theterm `relatively e�cient prover' has been given three di�erent interpretations.1. A prover is considered relatively e�cient if, when given an auxiliary input (in additionto the common input in S), it works in (probabilistic) polynomial-time. Speci�cally,in case S 2 NP, the auxiliary input maybe an NP-proof that the common inputis in the set4. This interpretation is adequate and in fact crucial for applications inwhich such an auxiliary input is available to the otherwise-polynomial-time parties.Typically, such auxiliary input is available in cryptographic applications in whichparties wish to prove in (zero-knowledge) that they have conducted some compu-tation correctly resulting in some string x. In these cases the NP-proof is just thetranscript of the procedure by which x has been computed and thus the auxiliaryinput is available to the proving party. See [24].2. A prover is considered relatively e�cient if it can be implemented by a probabilisticpolynomial-time oracle machine with oracle access to the set S itself. (Note thatthe prover in Construction 1 has this property.) This interpretation generalizes thenotion of self-reducibility of NP-sets. (By self-reducibility of an NP-set we mean thatthe search problem of �nding an NP-witness is polynomial-time reducible to decidingmembership in the set.) See [10].3. A prover is considered relatively e�cient if it can be implemented by a probabilisticmachine which runs in time which is polynomial in the deterministic complexity ofthe set. This interpretation relates the di�culty of convincing a \lazy veri�er" to thecomplexity of �nding the truth alone. Hence, in contrast to the �rst interpretationwhich is adequate in settings where assertions are generated along with their NP-proofs, the current interpretation is adequate in settings in which the prover is givenonly the assertion and has to �nd a proof to it by itself (before trying to convince alazy veri�er of its validity). See [38].4Still, even in this case the interactive proof need not consist of the prover sending the auxiliary input tothe veri�er; e.g., an alternative procedure may allow the prover to be zero-knowledge (see Construction 2).7



3 Zero-Knowledge Proof SystemsZero-knowledge proofs, introduced in [30], are central to cryptography. Furthermore, zero-knowledge proofs are very intruiging from a conceptual point of view, since they exhibitan extreme contrast between being convinced of the validity of a statement and learninganything in addition while receiving such a convincing proof. Namely, zero-knowledgeproofs have the remarkable property of being both convincing while yielding nothing tothe veri�er, beyond the fact that the statement is valid. Formally, the fact that \nothing isgained by the interaction" is captured by stating that whatever the veri�er can e�cientlycompute after interacting with a zero-knowledge prover, can be e�ciently computed fromthe assertion itself without interacting with anyone.3.1 A sample de�nitionZero-knowledge is a property of some interactive proof systems, or more acurately of somespeci�ed prover strategies. The formulation of the zero-knowledge condition considers twoensembles of probability distributions, each ensemble associates a probability distributionto each valid assertion. The �rst ensemble respresents the output distribution of the veri�erafter interacting with the prover strategy P , where the veri�er is not necessarily employingthe speci�ed strategy (i.e., V ) { but rather any e�cient strategy. The second ensemblerepresents the output distribution of some probabilistic polynomial-time algorithm (whichdoes not interact with anyone). The basic paradigm of zero-knowledge asserts that for everyensemble of the �rst type there exist a \similar" ensemble of the second type. The speci�cvariants di�er by the interpretation given to `similarity'. The most strict interpretation,leading to perfect zero-knowledge, is that similarity means equality. Namely,De�nition 3 (perfect zero-knowledge) [30]: A prover strategy, P , is said to be perfectzero-knowledge over a set S if for every probabilistic polynomial-time veri�er strategy, V �,there exists a probabilistic polynomial-time algorithm, M�, such that(P; V �)(x) =M�(x) ; for every x 2 Swhere (P; V �)(x) is a random variable representing the output of veri�er V � after interact-ing with the prover P on common input x, and M�(x) is a random variable representingthe output of machine M� on input x.A somewhat more relaxed interpretation, leading to almost-perfect zero-knowledge, isthat similaritymeans statistical closeness (i.e., negligible di�erence between the ensembles).The most liberal interpretation, leading to the standard usage of the term zero-knowledge(and sometimes referred to as computational zero-knowledge), is that similarity meanscomputational indistinguishability (i.e., failure of any e�cient procedure to tell the twoensembles apart). Since the notion of computational indistinguishability is a fundamentalone, it is indeed in place to present a de�nition of it.8



De�nition 4 (computational indistinguishability) [29, 44]: An integer function, f , iscalled negligible if for every positive polynomial p and all su�ciently large n, it holds thatf(n) < 1p(n) . (Thus, multiplying a negligible function by any �xed polynomial yields anegiligible function.)Two probability ensembles, fAxgx2S and fBxgx2S, are indistinguishable by an algorithm Dif d(n) def= maxx2S\f0;1gnfjprob(D(Ax)=1)� Prob(D(Bx)=1)jgis a negligible function. The ensembles fAxgx2S and fBxgx2S are computationally indistin-guishable if they are indistinguishable by every probabilistic polynomial-time algorithm.The de�nitions presented above are a simpli�ed version of the actual de�nitions. Forexample, in order to guarantee that zero-knowledge is preserved under sequential compo-sition it is necessary to slightly augment the de�nitions. For details see [26].3.2 The power of zero-knowledgeA simple example, demonstrating the power of zero-knowledge proofs, follows. Speci�cally,we will present a simple zero-knowledge proof for proving that a graph is 3-colorable. Theinteractive proof will be described using \boxes" in which information can be hidden andlater revealed. Such \boxes" can be implemented using one-way functions (see below).Construction 2 (Zero-knowledge proof of 3-colorability) [24]:� Common Input: A simple graph G=(V;E).� Prover's �rst step: Let  be a 3-coloring of G. The prover selects a random per-mutation, �, over f1; 2; 3g, and sets �(v) def= �( (v)), for each v 2 V . Hence, theprover forms a random relabelling of the 3-coloring  . The prover sends the veri�era sequence of jV j locked and nontransparent boxes so that the vth box contains thevalue �(v);� Veri�er's �rst step: The veri�er uniformly selects an edge fu; vg 2 E, and sends itto the prover;� Motivating Remark: The veri�er asks to inspect the colors of vertices u and v;� Prover's second step: The prover sends to the veri�er the keys to boxes u and v;� Veri�er's second step: The veri�er opens boxes u and v, and accepts if and only ifthey contain two di�erent elements in f1; 2; 3g;9



The veri�er strategy presented above is easily implemented in probabilistic polynomail-time. The same holds with respect to the prover's strategy, provided it is given a 3-coloringof G as auxiliary input. Clearly, if the input graph is 3-colorable then the prover can causethe veri�er to accept always. On the other hand, if the input graph is not 3-colorablethen any contents put in the boxes must be invalid on at least one edge, and consequentlythe veri�er will reject with probability at least 1jEj . Hence, the above game exhibits anon-negligible gap in the accepting probabilities between the case of 3-colorable graphsand the case of non-3-colorable graphs. To increase the gap, the game may be repeatedsu�ciently many times (of course, using independent coin tosses in each repetition). Thezero-knowledge property follows easily, in this abstract setting, since one can simulate thereal interaction by placing a random pair of di�erent colors in the boxes indicated by theveri�er. This indeed demonstrates that the veri�er learns nothing from the interaction(since it expects to see a random pair of di�erent colors and indeed this is what it sees).We stress that this simple argument is not possible in the digital implementation sincethe boxes are not totally ine�ected by their contents (but are rather e�ected, yet in anindistinguishable manner).As stated above, the \boxes" need to be implemented digitally, and this is done using anadaquately de�ned \commitment scheme". Loosely speaking, such a scheme is a two phasegame beteen a sender and a receiver so that after the �rst phase the sender is \committed"to a value and yet, at this stage, it is infeasible for the receiver to �nd out the committedvalue. The committed value will be revealed to the receiver in the second phase and itis guaranteed that the sender cannot reveal a value other than the one committed. Suchcommitment schemes can be implemented assuming the existence of one-way functions(i.e., loosely speaking, functions that are easy to compute but hard to invert, such asmultiplication of two large primes) [39, 32].Using the fact that 3-colorability is NP-complete, one gets zero-knowledge proofs for anyNP-set.Theorem 2 [24]: Assuming the existence of one-way functions, any NP-proof can be ef-�ciently transformed into a (computational) zero-knowledge interactive proof.Thm. 2 has a dramatic e�ect on the design of cryptographic protocols (cf., [24, 25]).In a di�erent vein and for the sake of elegancy, we mention that, using further ideas andunder the same assumption, any interactive proof can be e�ciently transformed into azero-knowledge one [33, 11].The above results may be contrasted with the results regarding the complexity ofalmost-perfect zero-knowledge proof systems; namely, that almost-perfect zero-knowledgeproof systems exist only for sets in IP(2) \ coIP(2) [19, 1], and thus are unlikely to existfor all NP-sets. Also, a very recent result seems to indicate that one-way functions areessential for the existence of zero-knowledge proofs for \hard" sets (i.e., sets which cannotbe decided in average polynomial-time)[40].10



3.3 The role of randomnessAgain, randomness is essential to all the above mentioned (positive) results. Namely, ifeither veri�er or prover is required to be deterministic then only BPP-sets can be provenin a zero-knowledge manner [26]. However, BPP-sets have trivial zero-knowledge proofsin which the prover sends nothing and the veri�er just test the validity of the assertion byitself5. Thus, randomness is essential to the usefulness of zero-knowledge proofs.4 Probabilistically Checkable Proof SystemsWhen viewed in terms of an interactive proof system, the probabilistically checkable proofsetting consists of a prover which is memoryless. Namely, one can think of the proveras being an oracle and of the messages sent to it as being queries. A more appealinginterpretation is to view the probabilistically checkable proof setting as an alternative wayof generalizing NP. Instead of receiving the entire proof and conducting a deterministicpolynomial-time computation (as in the case of NP), the veri�er may toss coins and querythe proof only at location of its choice. Potentially, this allows the veri�er to utilize verylong proofs (i.e., of super-polynomial length) or alternatively examine very few bits of anNP-proof.4.1 De�nitionLoosely speaking, a probabilistically checkable proof system consists of a probabilisticpolynomial-time veri�er having access to an oracle which represents a proof in redundentform. Typically, the veri�er accesses only few of the oracle bits, and these bit positionsare determined by the outcome of the veri�er's coin tosses. Again, it is required that ifthe assertion holds then the veri�er always accepts (i.e., when given access to an adaquateoracle); whereas, if the assertion is false then the veri�er must reject with probability atleast 12, no matter which oracle is used. The basic de�nition of the PCP setting is given inItem (1) below. Yet, the complexity measures introduced in Items (2) and (3) are of keyimportance for the subsequent discussions, and should not be ignored.De�nition 5 (Probabilistic Checkable Proofs { PCP):1. A probabilistic checkable proof system (pcp) for a set S is a probabilistic polynomial-time oracle machine (called veri�er), denoted V , satisfying� Completeness: For every x 2 S there exists an oracle set �x so that V , on inputx and access to oracle �x, always accepts x.5Actually, this is slightly inaccurate since the resulting \interactive proof" may have two-sided error,whereas we have required interactive proofs to have only one-sided error. Yet, since the error can be madenegligible by successive repetitions this issue is insigni�cant. Alternatively, one can use ideas in [21] toeliminate the error by letting the prover send some random-looking help.11



� Soundness: For every x 62 S and every oracle set �, machine V , on input x andaccess to oracle �, rejects x with probability at least 12 .2. Let r and q be integer functions. The complexity class PCP(r(�); q(�)) consists of setshaving a probabilistic checkable proof system in which the veri�er, on any input oflength n, makes at most r(n) coin tosses and at most q(n) oracle queries. We stressthat here, as usual in complexity theory, the oracle answers are always binary (i.e.,either 0 or 1).3. Let R and Q be sets of functions. Then, PCP(R;Q) denotes [r2R;q2QPCP(r(�); q(�)).The above model was suggested in [20] and shown related to a multi-prover model intro-duced previously in [12]. The �ne complexity measures were introduced and motivatedin [17], and further advocated in [3]. A related model was presented in [6], stressing theapplicability to program checking.We stress that the oracle �x in a pcp system constitutes a proof in the standard math-ematical sense6. Yet, this oracle has the extra property of enabling a lazy veri�er, to tosscoins, take its chances and \assess" the validity of the proof without reading all of it (butrather by reading a tiny portion of it).4.2 The power of probabilistically checkable proofsClearly, PCP(poly; 0) equals coRP, whereas PCP(0; poly) equals NP. It is easy to provean upper bound on the non-deterministic time complexity of sets in the PCP hierarchy.In particular,Proposition 1 : PCP(log; poly) is contained in NP.These upper bounds turn out to be tight, but proving this is muchmore di�cult (to say theleast). The following result is a culmination of a sequence of great works [5, 6, 17, 3, 2].7Theorem 3 [2]: NP is contained in PCP(log; O(1)).Thus, probabilistically checkable proofs in which the veri�er tosses only logarithmi-cally many coins and makes only a constant number of queries exist for every set in thecomplexity class NP. It follows that NP-proofs can be transformed into NP-proofs which6Jumping ahead, the oracles in pcp systems characterizing NP have the property of being NP proofsthemselves.7The sequence has started with the characterization of PCP(poly; poly) as equal non-deterministicexponential-time [5], and continued with its scaled-down in [6, 17] which led to the NP �PCP(polylog; polylog) result of [17]. The �rst PCP-characterization of NP, by which NP =PCP(log; log), has appeared in [3] and the cited result was obtained in [2]. This sequence of works,directly related to the stated theorem, was built on and inspired by works from various settings such asinteractive proofs [36, 43, 18], program-checking [14, 23, 42], and private computation with oracles [8].12



o�er a trade-o� between the portion of the proof being read and the con�dence it o�ers.Speci�cally, if the veri�er is willing to tolerate an error probability of � then it su�ces tolet it examine O(log(1=�)) bits of the (transformed) NP-proof. These bit locations need tobe selected at random.The characterization of NP in terms of probabilistically checkable proofs plays acentral role in recent developments concerning the di�culty of approximation problems(cf., [17], [2] and [37]). To demonstrate this relationship, we �rst note that Theorem 3can be rephrased without mentioning the class PCP altogether. Instead, a new type ofpolynomial-time reductions, which we call amplifying, emerges.Theorem 4 (Theorem 3 | Rephrased): There exists a constant � > 0, and a polynomial-time computable function f , mapping the set of 3CNF formulae8 to itself so that� As usual, f maps satis�able 3CNF formulae to satis�able 3CNF formulae; and� f maps non-satis�able 3CNF formulae to (non-satis�able) 3CNF formulae for whichevery truth assignment satis�es at most a 1 � � fraction of the clauses.The function f is called an amplifying reduction.proof sketch (Thm. 3 ) Thm. 4): Start by considering the pcp for a satis�able 3CNF(guaranteed by Theorem 3). Use the fact that the pcp system used in the proof of Theo-rem 3 is non-adaptive9 (i.e., the queries are determined as a function of the input and therandom-tape { and do not depend on answers to previous queries). Next, associate thebits of the oracle with Boolean variables and introduce a (constant size) Boolean formulafor each possible outcome of the sequence of O(log n) coin tosses, describing whether theveri�er would have accepted given this outcome. Finally, using auxiliary variables, converteach of these formulae into a 3CNF formula and obtain (as the output of the reduction)the conjunction of all these polynomially many clauses. 2As an immediate corollary one gets results concerning the intractability of approximation.For example,Corollary 1 : There exists a constant � > 0, so that the following approximation problem(known as Max3Sat) is \NP-hard" (i.e., cannot be solved in polynomial-time unless P =NP) Given a satis�able 3CNF formulae, �nd a truth assignment which satis�es atleast a 1 � � fraction of its clauses.8A 3CNF formula is a Boolean formula consisting of a conjunction of clauses, where each clause is adisjunction of upto 3 literals. (A literal is variable or its negation.).9Actually, this assumption is not essential since one can easily convert an adaptive system into a non-adaptive one, while incurring an exponential blowup in the query complexity (which in our case is aconstant). 13



4.3 The role of randomnessNo trade-o� between the number of bits examined and the con�dence is possible if onerequires the veri�er to be deterministic. In particular, PCP(0; q(�)) contains only setsthat are decidable by a deterministic algorithms of running time 2q(n) � poly(n). It followsthat PCP(0; log) = P. Furthermore, since it is unlikely that all NP-sets can be decidedby (deterministic) algorithms of running time, say, 2n � poly(n), it follows that PCP(0; n)cannot contain NP.5 Other Probabilistic Proof SystemsIn this section, we shortly review some variants on the basic model of interactive proofs.This variants include models in which the prover is restricted in its choice of strategy,a model in which the prover-veri�er interaction is restricted, and a model in which oneproves \knowledge" rather than \facts".5.1 Restricting the prover's strategyWe stress that the restrictions discussed here refer to the strategies employed by the proverboth in case it tries to prove valid assertions (i.e., the completeness condition) and in caseit tries to fool the veri�er to believe false statements (i.e., the soundness condition). Thus,the validity of the veri�er decision (concerning false statements) depends on whether thisrestriction (concerning \cheating" prover strategies) really holds. The reason to considerthese restricted models is that they enable to achieve results which are not possible in thegeneral model of interactive proofs (cf., [12, 15, 34, 38]). We consider restrictions of twotypes: computational or physical.We start with a physical restriction. In the so-called multi-prover interactive proofmodel, denoted MIP (cf., [12]), the prover is split into several (say, two) entities and therestriction (or assumption) is that these entities cannot interact with each other. Actually,the formulation allows them to coordinate their strategies prior to interacting with theveri�er10 but it is crucial that they don't exchange messages among themselves whileinteracting with the veri�er. The multi-prover model is reminiscent of the common policeprocedure of isolating collaborating suspects and interrogating each of them separately.On the other hand, the multi-prover model is related to the pcp model [20]. Interestingly,the multi-prover model allows to present (perfect) zero-knowledge proofs for all NP-sets,without relying on any comutational assumptions [12]. Furthermore, these proofs can bemade very e�cient in terms of communication complexity [16].We now turn to computational restrictions. Since the e�ect of this restriction ismore noticable in the soundness condition, we refer to these proof systems as beingcomputationally-sound. Two variants have been suggested. In argument systems [15],10This is implicit in the universal quanti�er used in the soundness condition.14



the prover stategy is restricted to be probabilistic polynomial-time with auxiliary input(analogously to item (1) in Sec. 2.4). In CS-proofs [38], the prover stategy is restricted tobe probabilistic and run in time polynomial in the time required to validate the assertion(analogously to item (3) in Sec. 2.4). Interestigly, computationally-sound interactive proofscan be much more communication-e�cient than (regular) interactive proofs; cf. [34, 38].5.2 Non-interactive zero-knowledge proofsActualy the term \non-interactive" is somewhat misleading. The model, introduced in[13], consists of three entities: a prover, a veri�er and a uniformly selected sequence of bits(which can be thought of as being selected by a trusted third party). Both veri�er andprover can read the random sequence, and each can toss additional coins. The interactionconsists of a single message sent from the prover to the veri�er, who then is left with thedecision (whether to accept or not). Based on some reasonable complexity assumptions,one may construct non-interactive zero-knowledge proof systems for every NP-set (cf.,[13, 18, 35]).5.3 Proofs of knowledgeThe concept of a proof of knowledge, introduced in [30], is very appealing; yet, its preciseformulation is much more complex than one may expect (cf. [9]). Loosely speaking, aknowledge-veri�er for a relation R guarantees the existence of a \knowledge extractor"that on input x and access to any interactive machine P � outputs a y, so that (x; y)2R,within complexity related to the probability that the veri�er accepts x when interactingwith P �. By convincing such a knowledge-veri�er, on common input x, one proves that heknows a y so that (x; y) 2R. It can be shown that the protocol which results by successivelyapplying Construction 2 su�ently many time constitutes a \proof of knowledge" of a 3-coloring of the input graph.5.4 Knowledge complexityZero-knowledge is the lowest level of a knowledge-complexity hierarchy which quanti�es the\knowledge revealed in an interaction" [30]. Knowledge complexity may be de�ned as theminimumnumber of oracle-queries required in order to (e�ciently) simulate an interactionwith the prover [28]. Preliminary results concerning this measure have appeared in [27].AcknowledgementI am grateful to Sha� Goldwasser for suggesting the essential role of randomness as theunifying theme for this exposition. Thanks also for Dana Ron and Uri Zwick for pointingout some errors in earlier versions. 15
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