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Abstract

Various types of probabilistic proof systems have played a central role in the de-
velopment of computer science in the last decade. In this exposition, we concentrate
on three such proof systems — interactive proofs, zero-knowledge proofs, and prob-
abilistic checkable proofs — stressing the essential role of randomness in each of
them.

1 Introduction

The glory given to the creativity required to find proofs, makes us forget that it is the
less glorified procedure of verification which gives proofs their value. Philosophically
speaking, proofs are secondary to the verification procedure; whereas technically speaking,
proof systems are defined in terms of their verification procedures.

The notion of a verification procedure assumes the notion of computation and further-
more the notion of efficient computation. This implicit assumption is made explicit in
the definition of NP, in which efficient computation is associated with (deterministic)
polynomial-time algorithms.

Definition 1 (NP-proof systems): Let S � f0; 1g� and � : f0; 1g� � f0; 1g� 7! f0; 1g
be a function so that x 2 S if and only if there exists aw 2 f0; 1g� such that �(x;w) = 1.
If � is computable in time bounded by a polynomial in the length of its first argument then
we say that S is an NP-set and that � defines an NP-proof system.

Traditionally, NP is defined as the class of NP-sets. Yet, each such NP-set can be viewed
as a proof system. For example, consider the set of satisfiable Boolean formulae. Clearly,
a satisfying assignment � for a formula � constitutes an NP-proof for the assertion “� is�Parts of the material presented in this survey have appeared in the Proceedings of the International Congress
of Mathematicians 1994, Birkhäuser Verlag, Basel, 1995, pages 1395–1406.
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satisfiable” (the verification procedure consists of substituting the variables of � by the
values assigned by � and computing the value of the resulting Boolean expression).

The formulation of NP-proofs restricts the “effective” length of proofs to be polyno-
mial in length of the corresponding assertions (since the running-time of the verification
procedure is restricted to be polynomial in the length of the assertion). However, longer
proofs may be allowed by padding the assertion with sufficiently many blank symbols.
So it seems that NP gives a satisfactory formulation of proof systems (with efficient ver-
ification procedures). This is indeed the case if one associates efficient procedures with
deterministic polynomial-time algorithms. However, we can gain a lot if we are willing
to take a somewhat non-traditional step and allow probabilistic verification procedures. In
particular,� Randomized and interactive verification procedures, giving rize to interactive proof

systems, seem much more powerful (i.e., “expressive”) than their deterministic
counterparts.� Such randomized procedures allow the introduction of zero-knowledge proofs which
are of great theoretical and practical interest.� NP-proofs can be efficiently transformed into a (redundant) form which offers a
trade-off between the number of locations examined in the NP-proof and the confi-
dence in its validity (see probabilistically checkable proofs).

In all the abovementioned types of probabilistic proof systems, explicit bounds are imposed
on the computational complexity of the verification procedure, which in turn is personified
by the notion of a verifier. Furthermore, in all these proof systems, the verifier is allowed to
toss coins and rule by statistical evidence. Thus, all these proof systems carry a probability
of error; yet, this probability is explicitly bounded and, furthermore, can be reduced by
successive application of the proof system.

Notational Conventions

When presenting a proof system, we state all complexity bounds in terms of the length of
the assertion to be proven (which is viewed as an input to the verifier). Namely, polynomial-
time means time polynomial in the length of this assertion. Note that this convention is
consistent with the definition of NP-proofs.

Denote by poly the set of all integer functions bounded by a polynomial and by
log the set of all integer functions bounded by a logarithmic function (i.e., f 2 log ifff(n) = O(logn)).
2 Interactive Proof Systems

In light of the growing acceptability of randomized and distributed computations, it is only
natural to associate the notion of efficient computation with probabilistic and interactive
polynomial-time computations. This leads naturally to the notion of an interactive proof



system in which the verification procedure is interactive and randomized, rather than being
non-interactive and deterministic. Thus, a “proof” in this context is not a fixed and static
object but rather a randomized (dynamic) process in which the verifier interacts with the
prover. Intuitively, one may think of this interaction as consisting of “tricky” questions
asked by the verifier, to which the prover has to reply “convincingly”. The above discussion,
as well as the following definition, makes explicit reference to a prover, whereas a prover
is only implicit in the traditional definitions of proof systems (e.g., NP-proofs).

2.1 Definition

Loosely speaking, an interactive proof is a game between a computationally bounded
verifier and a computationally unbounded prover whose goal is to convince the verifier of
the validity of some assertion. Specifically, the verifier is probabilistic polynomial-time. It
is required that if the assertion holds then the verifier always accepts (i.e., when interacting
with an appropriate prover strategy). On the other hand, if the assertion is false then the
verifier must reject with probability at least 12 , no matter what strategy is being employed
by the prover. A sketch of the formal definition is given in Item (1) below. Item (2)
introduces additional complexity measures which can be ignored in first reading.

Definition 2 (Interactive Proofs – IP) [33]:

1. An interactive proof system for a set S is a two-party game, between a verifier executing
a probabilistic polynomial-time strategy (denoted V ) and a prover which executes a
computationally unbounded strategy (denoted P ), satisfying� Completeness: For everyx 2 S the verifierV always accepts after interacting

with the prover P on common input x.� Soundness: For every x 62 S and every potential strategy P �, the verifier V
rejects with probability at least 12 , after interacting with P � on common inputx.

2. For an integer functionm, the complexity class IP(m(�)) consists of sets having an
interactive proof system in which, on common input x, at mostm(jxj) messages are
exchanged1 between the parties. For a set of integer functions, M , we let IP(M )
equal [m2MIP(m(�)). Finally, IP def= IP(poly).

In Item (1), we have followed the standard definition which specifies strategies for both
the verifier and the prover. An alternative presentation only specifies the verifier’s strategy
while rephrasing the completeness condition as follows:

there exists a prover strategy P so that, for every x 2 S, the verifier V always
accepts after interacting with P on common input x.1We count the total number of messages exchanged regardless of the direction of communication. Thus,

an interactive proof in which the verifier sends a single message answered by a single message of the prover
corresponds to IP(2). Clearly,NP � IP(1), yet the inclusion may be strict since the verifier may toss coins
after receiving the prover’s single message.



Arthur-Merlin games2 introduced in [5] are a special case of interactive proofs; yet, as
shown in [34], this restricted case has essentially3 the same power as the general case
previously introduced in [33]. Also, in some sources interactive proofs are defined so that
two-sided error probability is allowed; yet, this does not increase their power [25].

2.2 The Role of Randomness

Randomness is essential to the formulation of interactive proofs; if randomness is not
allowed (or if it is allowed but zero error is required in the soundness condition) then
interactive proof systems collapse to NP-proof systems. The reason being that the prover
can predict the verifier’s part of the interaction and thus it suffices to let the prover send
the full transcript of the interaction and let the verifier check that the interaction is indeed
valid. (In case the verifier is not deterministic, the transcript sent by the prover may not
match the outcome of the verifier coin tosses.) The moral is that there is no point to interact
with predictable parties which are also computationally weaker4.

2.3 The Power of Interactive Proofs

A simple example demonstrating the power of interactive proofs follows. Specifically,
we present an interactive proof for proving that two graphs are not isomorphic5. It is not
known whether such a statement can be proven via an NP-proof system.

Construction 1 (Interactive proof system for Graph Non-Isomorphism) [28]:� Common Input: A pair of two graphs,G1=(V1; E1) andG2=(V2; E2). Suppose,
without loss of generality, that V1 = f1; 2; :::; jV1jg, and similarly for V2.� Verifier’s first step (V1): The verifier selects at random one of the two input graphs,
and sends to the prover a random isomorphic copy of this graph. Namely, the
verifier selects uniformly � 2 f1; 2g, and a random permutation � from the set of
permutations over the vertex set V� . The verifier constructs a graph with vertex setV� and edge set E def= ff�(u); �(v)g : fu; vg2E�g
and sends (V� ; E) to the prover.2In Arthur-Merlin games, the verifier must send the outcome of any coin it tosses (and thus need not send any

other information).3Here and in the next sentence, not only IP remains invariant under the various definitions, but alsoIP(m(�)), for every integer function satisfying m(n) � 2 for every n.4This moral represents the prover’s point of view. Certainly, from the verifier’s point of view it is benefitial to
interact with the prover, since it is computationally stronger.5Two graphs, G1 = (V1; E1) and G2 = (V2;E2), are called isomorphic if there exists a 1-1 and onto
mapping, �, from the vertex set V1 to the vertex set V2 so that fu; vg 2 E1 if and only if f�(v); �(u)g 2 E2.
The (“edge preserving”) mapping �, if existing, is called an isomorphism between the graphs.



� Motivating Remark: If the input graphs are non-isomorphic, as the prover claims,
then the prover should be able to distinguish (not necessarily by an efficient algo-
rithm) isomorphic copies of one graph from isomorphic copies of the other graph.
However, if the input graphs are isomorphic then a random isomorphic copy of one
graph is distributed identically to a random isomorphic copy of the other graph.� Prover’s step: Upon receiving a graph,G0 = (V 0; E0), from the verifier, the prover
finds a � 2 f1; 2g so that the graphG0 is isomorphic to the input graphG� . (If both� = 1; 2 satisfy the condition then � is selected arbitrarily. In case no � 2 f1; 2g
satisfies the condition, � is set to 0). The prover sends � to the verifier.� Verifier’s second step (V2): If the message, � , received from the prover equals �
(chosen in Step V1) then the verifier outputs 1 (i.e., accepts the common input).
Otherwise the verifier outputs 0 (i.e., rejects the common input).

The verifier’s strategy presented above is easily implemented in probabilistic polynomial-
time. We do not known of a probabilistic polynomial-time implementation of the prover’s
strategy, but this is not required. The motivating remark justifies the claim that Construc-
tion 1 constitutes an interactive proof system for the set of pairs of non-isomorphic graphs.
Recall that the latter is a coNP-set (not known to be in NP).

Interactive proofs are powerful enough to prove any coNP assertion (e.g., that a graph is not
3-colorable) [41]. Furthermore, the class of sets having interactive proof systems coincides
with the class of sets that can be decided using a polynomial amount of work-space [49].

Theorem 1 [41, 49]: IP = PSPACE .

Recall that it is widely believed that NP � PSPACE . Thus, under this conjecture,
interactive proofs are more powerful than NP-proofs.

Concerning the finer structure of the IP hierarchy it is known that this hierarchy has a “linear
speed-up” property [8]. Namely, for every integer function, f , so that f(n) � 2 for all n,
the classIP(O(f(�))) collapses to the classIP(f(�)). In particular, IP(O(1)) collapses
to IP(2). It is conjectured that coNP is not contained in IP(2), and consequently
that interactive proofs with unbounded number of message exchanges are more powerful
than interactive proofs in which only a bounded (i.e., constant) number of messages are
exchanged. Still, the class IP(2) contains sets not known to be in NP; e.g., Graph
Non-Isomorphism (as shown above).

2.4 How Powerful Should the Prover be?

Assume that a set S is in IP. This means that there is a verifier V that can be convinced
to accept any input in S but cannot be convinced to accept any input not in S (except with
small probability). One may ask how powerful should a prover be so that it can convince
the verifier V to accept any input in S. More interestingly, considering all possible verifiers
which give rise to interactive proof systems forS, what is the minimum power required from



a prover which satisfies the completeness requirement with respect to one of these verifiers?
We stress that, unlike the case of computationally-sound proof systems (see Sec. 5), we
do not restrict the power of the prover in the soundness condition but rather consider the
minimum complexity of provers meeting the completeness condition. Specifically, we are
interested in relatively efficient provers which meet the completeness condition. The term
‘relatively efficient prover’ has been given three different interpretations.

1. A prover is considered relatively efficient if, when given an auxiliary input (in
addition to the common input in S), it works in (probabilistic) polynomial-time.
Specifically, in case S 2 NP, the auxiliary input maybe an NP-proof that the
common input is in the set6. This interpretation is adequate and in fact crucial
for applications in which such an auxiliary input is available to the otherwise-
polynomial-time parties. Typically, such auxiliary input is available in cryptographic
applications in which parties wish to prove in (zero-knowledge) that they have
conducted some computation correctly resulting in some string x. In these cases the
NP-proof is just the transcript of the procedure by which x has been computed and
thus the auxiliary input is available to the proving party. See [28].

2. A prover is considered relatively efficient if it can be implemented by a probabilistic
polynomial-time oracle machine with oracle access to the set S itself. (Note that
the prover in Construction 1 has this property.) This interpretation generalizes the
notion of self-reducibility of NP-sets. (By self-reducibility of an NP-set we mean
that the search problem of finding an NP-witness is polynomial-time reducible to
deciding membership in the set.) See [12].

3. A prover is considered relatively efficient if it can be implemented by a probabilistic
machine which runs in time which is polynomial in the deterministic complexity of
the set. This interpretation relates the difficulty of convincing a “lazy verifier” to the
complexity of finding the truth alone. Hence, in contrast to the first interpretation
which is adequate in settings where assertions are generated along with their NP-
proofs, the current interpretation is adequate in settings in which the prover is given
only the assertion and has to find a proof to it by itself (before trying to convince a
lazy verifier of its validity). See [43].

3 Zero-Knowledge Proof Systems

Zero-knowledge proofs, introduced in [33], are central to cryptography. Furthermore, zero-
knowledge proofs are very intruiging from a conceptual point of view, since they exhibit
an extreme contrast between being convinced of the validity of a statement and learning
anything in addition while receiving such a convincing proof. Namely, zero-knowledge
proofs have the remarkable property of being both convincing while yielding nothing to
the verifier, beyond the fact that the statement is valid. Formally, the fact that “nothing is6Still, even in this case the interactive proof need not consist of the prover sending the auxiliary input to the
verifier; e.g., an alternative procedure may allow the prover to be zero-knowledge (see Construction 2).



gained by the interaction” is captured by stating that whatever the verifier can efficiently
compute after interacting with a zero-knowledge prover, can be efficiently computed from
the assertion itself without interacting with anyone.

3.1 A Sample Definition

Zero-knowledge is a property of some interactive proof systems, or more acurately of some
specified prover strategies. The formulation of the zero-knowledge condition considers two
ensembles of probability distributions, each ensemble associates a probability distribution
to each valid assertion. The first ensemble respresents the output distribution of the
verifier after interacting with the specified prover strategy P , where the verifier is not
necessarilyemploying the specified strategy (i.e., V ) – but rather any efficient strategy. The
second ensemble represents the output distribution of some probabilistic polynomial-time
algorithm (which does not interact with anyone). The basic paradigm of zero-knowledge
asserts that for every ensemble of the first type there exist a “similar” ensemble of the second
type. The specific variants differ by the interpretation given to ‘similarity’. The most strict
interpretation, leading to perfect zero-knowledge, is that similarity means equality. Namely,

Definition 3 (perfect zero-knowledge) [33]: A prover strategy, P , is said to be perfect

zero-knowledge over a set S if for every probabilistic polynomial-time verifier strategy, V �,
there exists a probabilistic polynomial-time algorithm, M�, such that(P; V �)(x) = M�(x) ; for every x 2 S
where (P; V �)(x) is a random variable representing the output of verifier V � after inter-
acting with the proverP on common inputx, andM�(x) is a random variable representing
the output of machine M� on input x.

A somewhat more relaxed interpretation, leading to almost-perfect zero-knowledge,
is that similarity means statistical closeness (i.e., negligible difference between the en-
sembles). The most liberal interpretation, leading to the standard usage of the term
zero-knowledge (and sometimes referred to as computational zero-knowledge), is that sim-
ilarity means computational indistinguishability (i.e., failure of any efficient procedure to
tell the two ensembles apart). Since the notion of computational indistinguishability is a
fundamental one, it is indeed in place to present a definition of it.

Definition 4 (computational indistinguishability) [32, 50]: An integer function,f , is called
negligible if for every positive polynomial p and all sufficiently large n, it holds thatf(n) < 1p(n) . (Thus, multiplying a negligible function by any fixed polynomial yields a
negiligible function.)
Two probability ensembles, fAxgx2S and fBxgx2S , are indistinguishable by an algorithmD if d(n) def= maxx2S\f0;1gnfjprob(D(Ax)=1)� Prob(D(Bx)=1)jg
is a negligible function. The ensembles fAxgx2S and fBxgx2S are computationally indis-

tinguishable if they are indistinguishable by every probabilistic polynomial-time algorithm.



The definitions presented above are a simplified version of the actual definitions.
For example, in order to guarantee that zero-knowledge is preserved under sequential
composition it is necessary to slightly augment the definitions. For details see [30].

3.2 The Power of Zero-Knowledge

A simple example, demonstrating the power of zero-knowledge proofs, follows. Specif-
ically, we will present a simple zero-knowledge proof for proving that a graph is 3-
colorable7. The interactive proof will be described using “boxes” in which information
can be hidden and later revealed. Such “boxes” can be implemented using one-way
functions (see below).

Construction 2 (Zero-knowledge proof of 3-colorability) [28]:� Common Input: A simple graph G=(V;E).� Prover’s first step: Let  be a 3-coloring of G. The prover selects a random

permutation, �, over f1; 2; 3g, and sets �(v) def= �( (v)), for each v 2 V . Hence,
the prover forms a random relabelling of the 3-coloring  . The prover sends the
verifier a sequence of jV j locked and nontransparent boxes so that the vth box
contains the value �(v);� Verifier’s first step: The verifier uniformly selects an edge fu; vg 2 E, and sends it
to the prover;� Motivating Remark: The verifier asks to inspect the colors of vertices u and v;� Prover’s second step: The prover sends to the verifier the keys to boxes u and v;� Verifier’s second step: The verifier opens boxes u and v, and accepts if and only if
they contain two different elements in f1; 2; 3g;

The verifier strategy presented above is easily implemented in probabilistic polynomail-
time. The same holds with respect to the prover’s strategy, provided it is given a 3-coloring
ofG as auxiliary input. Clearly, if the input graph is 3-colorable then the prover can cause
the verifier to accept always. On the other hand, if the input graph is not 3-colorable
then any contents put in the boxes must be invalid on at least one edge, and consequently
the verifier will reject with probability at least 1jEj . Hence, the above game exhibits a
non-negligible gap in the accepting probabilities between the case of 3-colorable graphs
and the case of non-3-colorable graphs. To increase the gap, the game may be repeated
sufficiently many times (of course, using independent coin tosses in each repetition). The
zero-knowledge property follows easily, in this abstract setting, since one can simulate
the real interaction by placing a random pair of different colors in the boxes indicated by
the verifier. This indeed demonstrates that the verifier learns nothing from the interaction7A graphG=(V;E) is said to be 3-colorable if there exists a function� :V 7!f1;2;3g so that�(v) 6= �(u)
for every fu; vg 2 E. Such a function, �, is called a 3-coloring of the graph.



(since it expects to see a random pair of different colors and indeed this is what it sees).
We stress that this simple argument is not possible in the digital implementation since
the boxes are not totally ineffected by their contents (but are rather effected, yet in an
indistinguishable manner).

As stated above, the “boxes” need to be implemented digitally, and this is done using an
adaquatelydefined “commitment scheme”. Loosely speaking, such a scheme is a two phase
game beteen a sender and a receiver so that after the first phase the sender is “committed”
to a value and yet, at this stage, it is infeasible for the receiver to find out the committed
value. The committed value will be revealed to the receiver in the second phase and it
is guaranteed that the sender cannot reveal a value other than the one committed. Such
commitment schemes can be implemented assuming the existence of one-way functions
(i.e., loosely speaking, functions that are easy to compute but hard to invert, such as the
multiplication of two large primes) [44, 37].

Using the fact that 3-colorability is NP-complete, one gets zero-knowledge proofs for any
NP-set.

Theorem 2 [28]: Assuming the existence of one-way functions, any NP-proof can be
efficiently transformed into a (computational) zero-knowledge interactive proof.

Theorem 2 has a dramatic effect on the design of cryptographic protocols (cf., [28, 29]).
In a different vein and for the sake of elegancy, we mention that, using further ideas and
under the same assumption, any interactive proof can be efficiently transformed into a
zero-knowledge one [38, 13].

The above results may be contrasted with the results regarding the complexity of almost-
perfect zero-knowledge proof systems; namely, that almost-perfect zero-knowledge proof
systems exist only for sets in IP(2) \ coIP(2) [23, 2], and thus are unlikely to exist for
all NP-sets. Also, a recent result seems to indicate that one-way functions are essential for
the existence of zero-knowledge proofs for “hard” sets (i.e., sets which cannot be decided
in average polynomial-time) [45].

3.3 The Role of Randomness

Again, randomness is essential to all the above mentioned (positive) results. Namely, if
either verifier or prover is required to be deterministic then only BPP-sets can be proven
in a zero-knowledge manner [30]. However, BPP-sets have trivial zero-knowledge proofs
in which the prover sends nothing and the verifier just test the validity of the assertion by
itself8. Thus, randomness is essential to the usefulness of zero-knowledge proofs.8Actually, this is slightly inaccurate since the resulting “interactive proof” may have two-sided error, whereas
we have required interactive proofs to have only one-sided error. Yet, since the error can be made negligible by
successive repetitions this issue is insignificant. Alternatively, one can use ideas in [25] to eliminate the error by
letting the prover send some random-looking help.



4 Probabilistically Checkable Proof Systems

When viewed in terms of an interactive proof system, the probabilistically checkable proof
setting consists of a prover which is memoryless. Namely, one can think of the prover
as being an oracle and of the messages sent to it as being queries. A more appealing
interpretation is to view the probabilistically checkable proof setting as an alternative way
of generalizing NP. Instead of receiving the entire proof and conducting a deterministic
polynomial-time computation (as in the case ofNP), the verifier may toss coins and query
the proof only at location of its choice. Potentially, this allows the verifier to utilize very
long proofs (i.e., of super-polynomial length) or alternatively examine very few bits of an
NP-proof.

4.1 Definition

Loosely speaking, a probabilistically checkable proof system consists of a probabilistic
polynomial-time verifier having access to an oracle which represents a proof in redundent
form. Typically, the verifier accesses only few of the oracle bits, and these bit positions
are determined by the outcome of the verifier’s coin tosses. Again, it is required that if
the assertion holds then the verifier always accepts (i.e., when given access to an adaquate
oracle); whereas, if the assertion is false then the verifier must reject with probability at
least 12 , no matter which oracle is used. The basic definition of the PCP setting is given in
Item (1) below. Yet, the complexity measures introduced in Item (2) are of key importance
for the subsequent discussions, and should not be ignored.

Definition 5 (Probabilistic Checkable Proofs – PCP):

1. A probabilistic checkable proof system (pcp) for a set S is a probabilistic polynomial-
time oracle machine (called verifier), denoted V , satisfying� Completeness: For every x 2 S there exists an oracle set �x so that V , on

input x and access to oracle �x, always accepts x.� Soundness: For every x 62 S and every oracle set �, machine V , on input x
and access to oracle �, rejects x with probability at least 12 .

2. Let r and q be integer functions. The complexity class PCP(r(�); q(�)) consists of
sets having a probabilistic checkable proof system in which the verifier, on any input
of length n, makes at most r(n) coin tosses and at most q(n) oracle queries. We
stress that here, as usual in complexity theory, the oracle answers are always binary
(i.e., either 0 or 1). For sets of integer functions,R andQ, we letPCP(R;Q) equal[r2R;q2QPCP(r(�); q(�)).

The above model was suggested in [24] and shown related to a multi-prover model intro-
duced previously in [14]. The fine complexity measures were introduced and motivated
in [20], and further advocated in [4]. A related model was presented in [7], stressing the
applicability to program checking.



We stress that the oracle �x in a pcp system constitutes a proof in the standard math-
ematical sense9. Yet, this oracle has the extra property of enabling a lazy verifier, to toss
coins, take its chances and “assess” the validity of the proof without reading all of it (but
rather by reading a tiny portion of it).

4.2 The Power of Probabilistically Checkable Proofs

Clearly, PCP(poly; 0) equals coRP, whereas PCP(0; poly) equals NP . It is easy
to prove an upper bound on the non-deterministic time complexity of sets in the PCP
hierarchy. In particular,

Proposition 1 : PCP(log; poly) is contained in NP.

These upper bounds turn out to be tight, but proving this is much more difficult (to say the
least). The following result is a culmination of a sequence of great works [6, 7, 20, 4, 3].10
Theorem 3 : NP is contained in PCP(log; O(1)).

Thus, probabilistically checkable proofs in which the verifier tosses only logarithmi-
cally many coins and makes only a constant number of queries exist for every set in the
complexity classNP. It follows that NP-proofs can be transformed into NP-proofs which
offer a trade-off between the portion of the proof being read and the confidence it offers.
Specifically, if the verifier is willing to tolerate an error probability of � then it suffices to
let it examine O(log(1=�)) bits of the (transformed) NP-proof. These bit locations need
to be selected at random.

The characterization of NP in terms of probabilistically checkable proofs plays a
central role in recent developments concerning the difficulty of approximation problems
(cf., [20, 3, 42, 11] and [35, 36]). To demonstrate this relationship, we first note that
Theorem 3 can be rephrased without mentioning the class PCP altogether. Instead, a new
type of polynomial-time reductions, which we call amplifying, emerges.

Theorem 4 (Theorem 3 — Rephrased): There exists a constant � > 0, and a polynomial-
time computable function f , mapping the set of 3CNF formulae11 to itself so that� As usual, f maps satisfiable 3CNF formulae to satisfiable 3CNF formulae; and9Jumping ahead, the oracles in pcp systems characterizing NP have the property of being NP proofs
themselves.10The sequence has started with the characterization of PCP(poly; poly) as equal non-deterministic
exponential-time [6], and continued with its scaled-down in [7, 20] which led to the NP �PCP(polylog; polylog) result of [20]. The first PCP-characterization of NP , by which NP =PCP(log;log), has appeared in [4] and the cited result was obtained in [3]. This sequence of works, di-
rectly related to the stated theorem, was built on and inspired by works from various settings such as interactive
proofs [41, 49, 22], program-checking [16, 26, 48], and private computation with oracles [9]. The constant
(number of queries) in Theorem 3 has been subsequently improved and is currently 9; cf., [36].11A 3CNF formula is a Boolean formula consisting of a conjunction of clauses, where each clause is a
disjunction of upto 3 literals. (A literal is variable or its negation.).



� f maps non-satisfiable 3CNF formulae to (non-satisfiable) 3CNF formulae for which
every truth assignment satisfies at most a 1� � fraction of the clauses.

The function f is called an amplifying reduction.

proof sketch (Thm. 3 ) Thm. 4): We start by considering a pcp system for 3SAT, and
use the fact that the pcp system given by the proof of Theorem 3 is non-adaptive (i.e., the
queries are determined as a function of the input and the random-tape – and do not depend
on answers to previous queries).12 Next, we associate the bits of the oracle with Boolean
variables and introduce a (constant size) Boolean formula for each possible outcome of
the sequence ofO(logn) coin tosses, describing whether the verifier would have accepted
given this outcome. Finally, using auxiliary variables, we convert each of these formulae
into a 3CNF formula and obtain (as the output of the reduction) the conjunction of all these
polynomially many clauses. 2
It is also easy to see that Theorem 4 implies Theorem 3: Given a reduction as in Thm. 4, we
construct a pcp system for 3SAT by letting the verifier select a clause uniformly among the
clauses of the reduced formula, and make three queries corresponding to the three variables
in it. This yields a proof system with soundness error bounded by 1 � �. Reducing the
error by O(1=�) successive applications of this proof system, we obtain Thm. 3.

As an immediate corollary to the formulation of Theorem 4 one concludes that it is NP-
Hard to distinguish satisfiable 3CNF formulae from 3CNF formulae for which no truth
assignment satisfies at least a 1�� fraction of the clauses (as otherwise, using the reduction,
one may decide membership in 3SAT). In general, probabilistic checkable proof systems forNP yield strong non-approximability results for various classical optimization problems.
In particular, quite tight non-approximability results have been shown for MaxClique (cf.,
[35]), Chromatic Number (cf., [21]), Set Cover (cf., [19]), and Max-Exact-3SAT (cf., [36]).

4.3 The Role of Randomness

No trade-off between the number of bits examined and the confidence is possible if one
requires the verifier to be deterministic. In particular, PCP(0; q(�)) contains only sets that
are decidable by a deterministic algorithms of running time 2q(n) �poly(n). It follows thatPCP(0; log) = P. Furthermore, since it is unlikely that all NP-sets can be decided by
(deterministic) algorithms of running time, say, 2n � poly(n), it follows that PCP(0; n)
is unlikely to containNP.

5 Other Probabilistic Proof Systems

In this section, we shortly review some variants on the basic model of interactive proofs.
These variants include models in which the prover is restricted in its choice of strategy,
a model in which the prover-verifier interaction is restricted, and a model in which one
proves “knowledge” of facts rather than their validity.12Actually, it is not essential to use this fact, since one can easily convert any adaptive system into a non-adaptive
one while incurring an exponential blowup in the query complexity (which in our case is a constant).



5.1 Restricting the Prover’s Strategy

We stress that the restrictions discussed here refer to the strategies employed by the prover
both in case it tries to prove valid assertions (i.e., the completeness condition) and in case
it tries to fool the verifier to believe false statements (i.e., the soundness condition). Thus,
the validity of the verifier decision (concerning false statements) depends on whether this
restriction (concerning “cheating” prover strategies) really holds. The reason to consider
these restricted models is that they enable to achieve results which are not possible in the
general model of interactive proofs (cf., [14, 17, 39, 43]). We consider restrictions of two
types: computational or physical.

We start with a physical restriction. In the so-called multi-prover interactive proof
model, denoted MIP (cf., [14]), the prover is split into several (say, two) entities and the
restriction (or assumption) is that these entities cannot interact with each other. Actually,
the formulation allows them to coordinate their strategies prior to interacting with the
verifier13 but it is crucial that they don’t exchange messages among themselves while
interacting with the verifier. The multi-prover model is reminiscent of the common police
procedure of isolating collaborating suspects and interrogating each of them separately.
On the other hand, the multi-prover model is related to the PCP model [24]. Interestingly,
the multi-prover model allows to present (perfect) zero-knowledge proofs for all NP-sets,
without relying on any comutational assumptions [14]. Furthermore, these proofs can be
made very efficient in terms of communication complexity [18].

We now turn to computational restrictions. Since the effect of this restriction is
more noticable in the soundness condition, we refer to these proof systems as being
computationally-sound. Two variants have been suggested. In argument systems [17],
the prover stategy is restricted to be probabilistic polynomial-time with auxiliary input
(analogously to item (1) in Sec. 2.4). In CS-proofs [43], the prover stategy is restricted to
be probabilistic and run in time polynomial in the time required to validate the assertion
(analogously to item (3) in Sec. 2.4). Interestigly, computationally-sound interactive proofs
can be much more communication-efficient than (regular) interactive proofs; cf. [39, 43,
27].

5.2 Non-Interactive Zero-Knowledge Proofs

Actualy the term “non-interactive” is somewhat misleading. The model, introduced in
[15], consists of three entities: a prover, a verifier and a uniformly selected sequence of
bits (which can be thought of as being selected by a trusted third party). Both verifier and
prover can read the random sequence, and each can toss additional coins. The interaction
consists of a single message sent from the prover to the verifier, who then is left with the
decision (whether to accept or not). Based on some reasonable complexity assumptions,
one may construct non-interactive zero-knowledge proof systems for every NP-set (cf.,
[15, 22, 40]).13This is implicit in the universal quantifier used in the soundness condition.



5.3 Proofs of Knowledge

The concept of a proof of knowledge, introduced in [33], is very appealing; yet, its precise
formulation is much more complex than one may expect (cf. [10]). Loosely speaking, a
knowledge-verifier for a relationR guarantees the existence of a “knowledge extractor” that
on input x and access to any interactive machine P � outputs a y, so that (x; y)2R, within
complexity related to the probability that the verifier accepts x when interacting with P �.
By convincing such a knowledge-verifier, on common input x, one proves that he knows
a y so that (x; y) 2R. It can be shown that the protocol which results by successively
applying Construction 2 suffiently many time constitutes a “proof of knowledge” of a
3-coloring of the input graph.

5.4 Knowledge Complexity

Zero-knowledge is the lowest level of a knowledge-complexity hierarchy which quantifies
the “knowledge revealed in an interaction” [33]. Knowledge complexity may be defined
as the minimum number of oracle-queries required in order to (efficiently) simulate an
interaction with the prover (cf. [31]). Results linking two different variants of this measure
to other complexity measures are given in [1, 47], respectively.
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[36] J. Håstad. Getting optimal in-approximability results. Unpublish manuscript, June
1996. (Revised October 1996.)
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