Pseudorandomness

Oded Goldreich Department of Computer Science and Applied Mathematics Weizmann Institute of Science, Rehovot, ISRAEL.

July 15, 1999

Abstract

We postulate that a distribution is pseudorandom if it cannot be told apart from the uniform distribution by an efficient procedure. This yields a robust definition of pseudorandom generators as efficient deterministic programs stretching short random seeds into longer pseudorandom sequences. Thus, pseudorandom generators can be used to reduce the randomness-complexity in any efficient procedure. We show that pseudorandom generators and computational difficulty are closely related: loosely speaking, each can be efficiently transformed into the other.

Orientation Remark: This essay considers finite objects, encoded by binary finite sequences called strings. When we talk of distributions we mean discrete probability distributions having a finite support that is a set of strings. Of special interest is the uniform distribution, which for a length parameter n (explicit or implicit in the discussion), assigns each n-bit string $x \in \{0,1\}^n$ equal probability (i.e., probability 2^{-n}). We will colloquially speak of "perfectly random strings" meaning strings selected according to such a uniform distribution.

1 Introduction

The second half of this century has witnessed the development of three theories of randomness, a notion which has been puzzling thinkers for ages. The first theory (cf., [5]), initiated by Shannon [22], is rooted in probability theory and is focused at distributions that are not perfectly random. Shannon's Information Theory characterizes perfect randomness as the extreme case in which the *information content* is maximized (and there is no redundancy at all).¹ Thus, perfect randomness is associated with a unique distribution – the uniform one. In particular, by definition, one cannot generate such perfect random strings from shorter random strings.

The second theory (cf., [17, 18]), due to Solomonov [23], Kolmogorov [16] and Chaitin [4], is rooted in computability theory and specifically in the notion of a universal language (equiv., universal machine or computing device). It measures the complexity of objects in terms of the shortest program (for a fixed universal machine) that generates the object.² Like Shannon's theory, Kolmogorov Complexity is quantitative and perfect random objects appear as an extreme case.

¹ In general, the amount of information in a distribution D is defined as $-\sum_{x} D(x) \log_2 D(x)$. Thus, the uniform distribution over strings of length n has information measure n, and any other distribution over n-bit strings has lower information measure. Also, for any function $f : \{0, 1\}^n \mapsto \{0, 1\}^m$ with n < m, the distribution obtained by applying f to a uniformly distributed n-bit string has information measure at most n, which is strictly lower than the length of the output.

² For example, the string 1^n has Kolmogorov Complexity $O(1) + \log_2 n$ (by virtue of the program "print n ones" which has length dominated by the encoding of n (say, in binary)). In contrast, a simple counting argument shows that most n-bit strings have Kolmogorov Complexity at least n.

Interestingly, in this approach one may say that a single object, rather than a distribution over objects, is perfectly random. Still, Kolmogorov's approach is inherently intractable (i.e., Kolmogorov Complexity is uncomputable), and – by definition – one cannot generate strings of high Kolmogorov Complexity from short random strings.

The third theory, initiated by Blum, Goldwasser, Micali and Yao [13, 2, 25], is rooted in complexity theory and is the focus of this essay. This approach is explicitly aimed at providing a notion of perfect randomness that nevertheless allows to efficiently generate perfect random strings from shorter random strings. The heart of this approach is the suggestion to view objects as equal if they cannot be told apart by any efficient procedure. Consequently a distribution that cannot be efficiently distinguished from the uniform distribution will be considered as being random (or rather called pseudorandom). Thus, randomness is not an "inherent" property of objects (or distributions) but rather relative to an observer (and its computational abilities). To demonstrate this approach, let us consider the following mental experiment.

Alice and Bob play HEAD OR TAIL in one of the following four ways. In all of them Alice flips a coin high in the air, and Bob is asked to guess its outcome *before* the coin hits the floor. The alternative ways differ by the knowledge Bob has before making his guess. In the first alternative, Bob has to announce his guess before Alice flips the coin. Clearly, in this case Bob wins with probability 1/2. In the second alternative, Bob has to announce his guess while the coin is spinning in the air. Although the outcome is *determined in principle* by the motion of the coin, Bob does not have accurate information on the motion and thus we believe that also in this case Bob wins with probability 1/2. The third alternative is similar to the second, except that Bob has at his disposal sophisticated equipment capable of providing accurate *information* on the coin's motion as well as on the environment effecting the outcome. However, Bob's recording equipment is directly connected to a *powerful computer* programmed to solve the motion equations and output a prediction. It is conceivable that in such a case Bob can improve substantially his guess of the outcome of the coin.

We conclude that the randomness of an event is relative to the information and computing resources at our disposal. Thus, a natural concept of pseudorandomness arises – a distribution is **pseudo-random** if no efficient procedure can distinguish it from the uniform distribution, where efficient procedures are associated with (probabilistic) polynomial-time algorithms.

An algorithm is called polynomial-time if there exists a polynomial p so that for any possible input x, the algorithm runs in time bounded by p(|x|), where |x| denotes the length of the string x. Thus, the running time of such algorithm grows moderately as a function of the length of its input. A probabilistic algorithm is one which can take random steps, where, without loss of generality, a random step consists of selecting which of two predetermined steps to take next so that each possible step is taken with probability 1/2. These choices are called the algorithm's internal coin tosses.

2 The Definition of Pseudorandom Generators

Loosely speaking, a pseudorandom generator is an *efficient* program (or algorithm) that *stretches* short random strings into long *pseudorandom* sequences. We emphasize three fundamental aspects in the notion of a pseudorandom generator:

1. Efficiency: The generator has to be efficient. As we associate efficient computations with polynomial-time ones, we postulate that the generator has to be implementable by a deterministic polynomial-time algorithm.

This algorithm takes as input a string, called its **seed**. The seed captures a bounded amount of randomness used by a device that "generates pseudorandom sequences." The formulation views any such device as consisting of a deterministic procedure applied to a random seed.

- 2. Stretching: The generator is required to stretch its input seed to a longer output sequence. Specifically, it stretches *n*-bit long seeds into $\ell(n)$ -bit long outputs, where $\ell(n) > n$. The function ℓ is called the stretching measure (or stretching function) of the generator.
- 3. Pseudorandomness: The generator's output has to look random to any efficient observer. That is, any efficient procedure should fail to distinguish the output of a generator (on a random seed) from a truly random sequence of the same length. The formulation of the last sentence refers to a general notion of computational indistinguishability which is the heart of the entire approach.

To demonstrate the above, consider the following suggestion for a pseudorandom generator. The seed consists of a pair of 32-bit integers, x and N, and the 100,000-bit output is obtained by repeatedly squaring the current x modulo N and emitting the least significant bit of each intermediate result (i.e., let $x_i \leftarrow x_{i-1}^2 \mod N$, for $i = 1, ..., 10^5$, and output $b_1, b_2, ..., b_{10^5}$, where $x_0 \stackrel{\text{def}}{=} x$ and b_i is the least significant bit of x_i). This process may be generalized to seeds of length n (here we used n = 64) and outputs of length $\ell(n)$ (here $l(n) = 10^5$). Such a process certainly satisfies Items (1) and (2) above, whereas the question whether Item (3) holds is debatable (once a rigorous definition is provided). Jumping ahead we mention that, under the assumption that it is difficult to factor large integers, a slight variant of the above process is indeed a pseudorandom generator.

Computational Indistinguishability: Intuitively, two objects are called computationally indistinguishable if no efficient procedure can tell them apart. As usual in complexity theory, an elegant formulation requires asymptotic analysis (or rather a functional treatment of the running time of algorithms in terms of the length of their input).³ Thus, the objects in question are infinite sequences of distributions, where each distribution has a finite support. Such a sequence will be called a distribution ensemble. Typically, we consider distribution ensembles of the form $\{D_n\}_{n\in\mathbb{N}}$, where for some function $\ell : \mathbb{N} \mapsto \mathbb{N}$, the support of each D_n is a subset of $\{0,1\}^{\ell(n)}$. Furthermore, typically ℓ will be a positive polynomial. For such D_n , we denote by $e \sim D_n$ the process of selecting e according to distribution D_n . Consequently, for a predicate P, we denote by $\Pr_{e \sim D_n}[P(e)]$ the probability that P(e) holds when e is distributed (or selected) according to D_n .

Definition 1 (Computational Indistinguishability [13, 25]): Two probability ensembles, $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$, are called computationally indistinguishable if for any probabilistic polynomial-time algorithm A, for any positive polynomial p, and for all sufficiently large n's

$$|\Pr_{x \sim X_n}[A(x) = 1] - \Pr_{y \sim Y_n}[A(y) = 1]| < \frac{1}{p(n)}$$

The probability is taken over X_n (resp., Y_n) as well as over the coin tosses of algorithm A.

³ We stress that the asymptotic (or functional) treatment is not essential to this approach. One may develop the entire approach in terms of inputs of fixed lengths and an adequate notion of complexity of algorithms. However, such an alternative treatment is more cumbersome.

A couple of comments are in place. Firstly, we have allowed algorithm A (called a distinguisher) to be probabilistic. This makes the requirement only stronger, and seems essential to several important aspects of our approach. Secondly, we view events occuring with probability that is upper bounded by the reciprocal of polynomials as negligible. This is well-coupled with our notion of efficiency (i.e., polynomial-time computations): An event that occurs with negligible probability (as a function of a parameter n), will also occur with negligible probability if the experiment is repeated for poly(n)-many times.

We note that computational indistinguishability is a strictly more liberal notion than statistical indistinguishability (cf., [25, 11]). An important case is the one of distributions generated by a pseudorandom generator as defined next.

Definition 2 (Pseudorandom Generators [2, 25]): A deterministic polynomial-time algorithm G is called a pseudorandom generator if there exists a stretching function, $\ell:\mathbb{N}\mapsto\mathbb{N}$, so that the following two probability ensembles, denoted $\{G_n\}_{n\in\mathbb{N}}$ and $\{R_n\}_{n\in\mathbb{N}}$, are computationally indistinguishable

- 1. Distribution G_n is defined as the output of G on a uniformly selected seed in $\{0,1\}^n$.
- 2. Distribution R_n is defined as the uniform distribution on $\{0,1\}^{\ell(n)}$.

That is, letting U_m denote the uniform distribution over $\{0, 1\}^m$, we require that for any probabilistic polynomial-time algorithm A, for any positive polynomial p, and for all sufficiently large n's

$$|\Pr_{s \sim U_n}[A(G(s)) = 1] - \Pr_{r \sim U_{\ell(n)}}[A(r) = 1]| < \frac{1}{p(n)}$$

Thus, pseudorandom generators are efficient (i.e., polynomial-time) deterministic programs that expand short randomly selected seeds into longer pseudorandom bit sequences, where the latter are defined as computationally indistinguishable from truly random sequences by efficient (i.e., polynomial-time) algorithms. It follows that any efficient randomized algorithm maintains its performance when its internal coin tosses are substituted by a sequence generated by a pseudorandom generator. That is,

Construction 3 (typical application of pseudorandom generators): Let A be a probabilistic polynomialtime algorithm, and $\rho(n)$ denote an upper bound on its randomness complexity. Let A(x, r) denote the output of A on input x and coin tosses sequence $r \in \{0, 1\}^{\rho(|x|)}$. Let G be a pseudorandom generator with stretching function $\ell: \mathbb{N} \mapsto \mathbb{N}$. Then A_G is a randomized algorithm that on input x, proceeds as follows. It sets k = k(|x|) to be the smallest integer such that $\ell(k) \ge \rho(|x|)$, uniformly selects $s \in \{0, 1\}^k$, and outputs A(x, r), where r is the $\rho(|x|)$ -bit long prefix of G(s).

It can be shown that it is infeasible to find long x's on which the *input-output behavior* of A_G is noticeably different from the one of A, although A_G may use much fewer coin tosses than A. This is formulated in the proposition below, where F represents an algorithm trying to find x's so that A(x) and $A_G(x)$ are distinguishable (by an algorithm D).

Proposition 4 Let A and G be as above. For any algorithm D, let $\Delta_{A,D}(x)$ denote the discrepency, as judged by D, in the behavior of A and A_G on input x. That is,

$$\Delta_{A,D}(x) \stackrel{\text{def}}{=} |\operatorname{Pr}_{r \sim U_{\rho(n)}}[D(x, A(x, r)) = 1] - \operatorname{Pr}_{s \sim U_{k(n)}}[D(x, A_G(x, s)) = 1]|$$

where the probabilities are taken over the U_m 's as well as over the coin tosses of D. Then for every pair of probabilistic polynomial-time algorithms, F and D, every positive polynomial p and all sufficiently long n's

$$\Pr\left[\Delta_{A,D}(F(1^n)) > \frac{1}{p(n)}\right] < \frac{1}{p(n)}$$

where the probability is taken over the coin tosses of F.

The proposition is proven by showing that a triplet (A, F, D) violating the claim can be converted into an algorithm D' that distinguishes the output of G from the uniform distribution, in contradiction to the hypothesis. Analogous arguments are applied whenever one wishes to prove that an efficient randomized process (be it an algorithm as above or a multi-party computation) preserves its behavior when one replaces true randomness by pseudorandomness as defined above. Thus, given pseudorandom generators with large stretching function, one can considerably reduce the randomness complexity in any efficient application.

Amplifying the stretch function. Pseudorandom generators as defined above are only required to stretch their input a bit; for example, stretching *n*-bit long inputs to (n+1)-bit long outputs will do. Clearly, generator of such moderate stretch function are of little use in practice. In contrast, we want to have pseudorandom generators with an arbitrary long stretch function. By the efficiency requirement, the stretch function can be at most polynomial. It turns out that pseudorandom generators with the smallest possible stretch function can be used to construct pseudorandom generators with any desirable polynomial stretch function. (Thus, when talking about the existence of pseudorandom generators, we may ignore the stretch function.)

Theorem 5 [10]: Let G be a pseudorandom generator with stretch function $\ell(n) = n + 1$, and ℓ' be any stretch function so that $\ell'(n)$ is computable in poly(n)-time from n. Let $G_1(x)$ denote the |x|-bit long prefix of G(x), and $G_2(x)$ denote the last bit of G(x) (i.e., $G(x) = G_1(x)G_2(x)$). Then

$$\begin{array}{ll} G'(s) & \stackrel{\text{def}}{=} & \sigma_1 \sigma_2 \cdots \sigma_{\ell'(|s|)}, \\ & & where \ x_0 = s, \ \sigma_i = G_2(x_{i-1}) \ and \ x_i = G_1(x_{i-1}), \ for \ i = 1, ..., \ell'(|s|) \end{array}$$

is a pseudorandom generator with stretch function ℓ' .

3 How to Construct Pseudorandom Generators

The known constructions transform computation difficulty, in the form of one-way functions (defined below), into pseudorandomness generators. Loosely speaking, a *polynomial-time computable* function is called one-way if any efficient algorithm can invert it only with negligible success probability. For simplicity, we consider only length-preserving one-way functions.

Definition 6 (one-way function): A one-way function, f, is a polynomial-time computable function such that for every probabilistic polynomial-time algorithm A', every positive polynomial $p(\cdot)$, and all sufficiently large n's

$$\Pr_{x \sim U_n} \left[A'(f(x)) \in f^{-1}(f(x)) \right] < \frac{1}{p(n)}$$

where U_n is the uniform distribution over $\{0,1\}^n$.

Popular candidates for one-way functions are based on the conjectured intractability of integer factorization (cf., [19] for state of the art), the discrete logarithm problem (cf., [20] analogously), and decoding of random linear code [12]. The infeasibility of inverting f yields a weak notion of unpredictability: Let $b_i(x)$ denotes the i^{th} bit of x. Then, for every probabilistic polynomial-time algorithm A (and sufficiently large n), it must be the case that $\Pr_{i,x}[A(i, f(x)) \neq b_i(x)] > 1/2n$, where the probability is taken uniformly over $i \in \{1, ..., n\}$ and $x \in \{0, 1\}^n$. A stronger (and in fact strongest possible) notion of unpredictability is that of a hard-core predicate. Loosely speaking, a polynomial-time computable predicate b is called a hard-core of a function f if all efficient algorithm, given f(x), can guess b(x) only with success probability that is negligible better than half.

Definition 7 (hard-core predicate [2]): A polynomial-time computable predicate $b : \{0,1\}^* \mapsto \{0,1\}$ is called a hard-core of a function f if for every probabilistic polynomial-time algorithm A', every positive polynomial $p(\cdot)$, and all sufficiently large n's

$$\Pr_{x \sim U_n}[A'(f(x)) = b(x)] < \frac{1}{2} + \frac{1}{p(n)}$$

Clearly, if b is a hard-core of a 1-1 polynomial-time computable function f then f must be one-way.⁴ It turns out that any one-way function can be slightly modified so that it has a hard-core predicate.

Theorem 8 (A generic hard-core [9]): Let f be an arbitrary one-way function, and let g be defined by $g(x,r) \stackrel{\text{def}}{=} (f(x),r)$, where |x| = |r|. Let b(x,r) denote the inner-product mod 2 of the binary vectors x and r. Then the predicate b is a hard-core of the function g.

See proof in [7, Apdx C.2]. Finally, we get to the construction of pseudorandom generators:

Proposition 9 (A simple construction of pseudorandom generators): Let b be a hard-core predicate of a polynomial-time computable 1-1 function f. Then, $G(s) \stackrel{\text{def}}{=} f(s) b(s)$ (i.e., f(s) followed by b(s)) is a pseudorandom generator.

In a sense, the key point in the proof of the above proposition is showing that the (obvious by definition) unpredictability of the output of G implies its pseudorandomness. The fact that (next bit) unpredictability and pseudorandomness are equivalent in general is proven explicitly in the alternative presentation below.

An alternative presentation. Our presentation of the construction of pseudorandom generators, via Theorem 5 and Proposition 9, is different but analogous to the original construction of pseudorandom generators suggested by by Blum and Micali [2]: Given an arbitrary stretch function $\ell: \mathbb{N} \mapsto \mathbb{N}$, a 1-1 one-way function f with a hard-core b, one defines

$$G(s) \stackrel{\text{def}}{=} b(x_0)b(x_1)\cdots b(x_{\ell(|s|)-1}),$$

where $x_0 = s$ and $x_i = f(x_{i-1})$ for $i = 1, ..., \ell(|s|) - 1$. A concrete instantiation, based on the assumption that it is difficult to factor large integers, is depicted in Figure 1. The pseudorandomness of G is established in two steps, using the notion of (next bit) unpredictability. An ensemble $\{Z_n\}_{n \in \mathbb{N}}$ is called unpredictable if any probabilistic polynomial-time machine obtaining a prefix of Z_n fails to predict the next bit of Z_n with probability non-negligibly higher than 1/2.

⁴ Functions that are not 1-1 may have hard-core predicates of information-theoretic nature; but these are of no use to us here. For example, functions of the form $f(\sigma, x) = 0f'(x)$ (for $\sigma \in \{0, 1\}$) have an "information theoretic" hard-core predicate $b(\sigma, x) = \sigma$.

Step 1: One first proves that the ensemble $\{G(U_n)\}_{n\in\mathbb{N}}$, where U_n is uniform over $\{0,1\}^n$, is (next-bit) unpredictable (from right to left) [2]. Loosely speaking, if one can predict $b(x_i)$ from $b(x_{i+1})\cdots b(x_{\ell(|s|)-1})$ then one can predict

 $b(x_i)$ given $f(x_i)$ (i.e., by computing $x_{i+1}, ..., x_{\ell(|s|)-1}$, and so obtaining $b(x_{i+1}) \cdots b(x_{\ell(|s|)})$). But this contradicts the hard-core hypothesis.

Step 2: Next, one uses Yao's observation by which a (polynomial-time constructible) ensemble is pseudorandom if and only if it is (next-bit) unpredictable (cf., [6, Sec. 3.3.4]).

Clearly, if one can predict the next bit in an ensemble then one can distinguish this ensemble from the uniform ensemble (which in unpredictable regardless of computing power). However, here we need the other direction which is less obvious. Still, one can show that (next bit) unpredictability implies indistinguishability from the uniform ensemble. Specifically, consider the following "hybrid" distributions, where the i^{th} hybrid takes the first ibits from the questionable ensemble and the rest from the uniform one. Thus, distinguishing the extreme hybrids implies distinguishing some neighboring hybrids, which in turn implies next-bit predictability (of the questionable ensemble).

We assume that it is infeasible to factor integers that are the product of two large primes (each congruent to 3 mod 4). Under this assumption, squaring modulo such integers is a one-way function. Furthermore, squaring modulo such N is 1-1 over the quadratic residues mod N, and the least significant bit of the argument is a corresponding hard-core [1]. Using a probabilistic polynomial-time algorithm for generating random primes, we obtain the following pseudorandom generator:

Input: An *n*-bit seed s = abc, where |a| = |b| = 4n/10. Initialization Steps: (1) Use *a* to produce an *n*/10-bit prime $p \equiv 3 \pmod{4}$. (2) Similarly, use *b* to produce $q \equiv 3 \pmod{4}$. (3) Multiply *p* and *q*, obtaining *N*. (4) Let $x_0 \leftarrow c^2 \mod N$. Iterations: For $i = 0, ..., \ell(n) - 1$ (5) Let b_i be the least significant bit of x_i . (6) Let $x_{i+1} \leftarrow x_i^2 \mod N$. Output: $b_0, b_1, ..., b_{\ell(n)-1}$

Figure 1: A pseudorandom generator based on the intractability of factoring.

A general condition for the existence of pseudorandom generators. Recall that given any one-way 1-1 function, we can easily construct a pseudorandom generator. Actually, the 1-1 requirement may be dropped, but the currently known construction – for the general case – is quite complex. Still we do have.

Theorem 10 (On the existence of pseudorandom generators [14]): Pseudorandom generators exist if and only if one-way functions exist. To show that the existence of pseudorandom generators imply the existence of one-way functions, consider a pseudorandom generator G with stretch function $\ell(n) = 2n$. For $x, y \in \{0, 1\}^n$, define $f(x, y) \stackrel{\text{def}}{=} G(x)$, and so f is polynomial-time computable (and length-preserving). It must be that f is one-way, or else one can distinguish $G(U_n)$ from U_{2n} by trying to invert and checking the result: Inverting f on its range distribution refers to the distribution $G(U_n)$, whereas the probability that U_{2n} has inverse under f is negligible.

The interesting direction is the construction of pseudorandom generators based on any one-way function. In general (when f may not be 1-1) the ensemble $f(U_n)$ may not be pseudorandom, and so Construction 9 (i.e., G(s) = f(s)b(s), where b is a hard-core of f) cannot be used *directly*. One idea of [14] is to hash $f(U_n)$ to an almost uniform string of length related to its entropy, using Universal Hash Functions [3]. (This is done after guaranteeing, that the logarithm of the probability mass of a value of $f(U_n)$ is typically close to the entropy of $f(U_n)$.)⁵ But "hashing $f(U_n)$ down to length comparable to the entropy" means shrinking the length of the output to, say, n' < n. This foils the entire point of stretching the *n*-bit seed. Thus, a second idea of [14] is to compensate for the n - n' loss by extracting these many bits from the seed U_n itself. This is done by hashing U_n , and the point is that the (n - n' + 1)-bit long hash value does not make the inverting task any easier. Implementing these ideas turns out to be more difficult than it seems, and indeed an alternative construction would be most appreciated.

4 Pseudorandom Functions

Pseudorandom generators allow to efficiently generate long pseudorandom sequences from short random seeds. Pseudorandom functions (defined below) are even more powerful: They allow efficient direct access to a huge pseudorandom sequence (which is infeasible to scan bit-by-bit). Put in other words, pseudorandom functions can replace truly random functions in any efficient application (e.g., most notably in cryptography). That is, pseudorandom functions are indistinguishable from random functions by efficient machines which may obtain the function values at arguments of their choice. (Such machines are called oracle machines, and if M is such machine and f is a function, then $M^f(x)$ denotes the computation of M on input x when M's queries are answered by the function f.)

Definition 11 (pseudorandom functions [8]): A pseudorandom function (ensemble), with length parameters $\ell_{\rm D}, \ell_{\rm R} : \mathbb{N} \mapsto \mathbb{N}$, is a collection of functions $F \stackrel{\text{def}}{=} \{f_s : \{0,1\}^{\ell_{\rm D}(|s|)} \mapsto \{0,1\}^{\ell_{\rm R}(|s|)}\}_{s \in \{0,1\}^*}$ satisfying

• (efficient evaluation): There exists an efficient (deterministic) algorithm that given a seed, s, and an $\ell_{\rm D}(|s|)$ -bit argument, x, returns the $\ell_{\rm R}(|s|)$ -bit long value $f_s(x)$.

(Thus, the seed s is an "effective description" of the function f_{s} .)

• (pseudorandomness): For every probabilistic polynomial-time oracle machine, M, for every positive polynomial p and all sufficiently large n's

$$\left| \Pr_{f \sim F_n}[M^f(1^n) = 1] - \Pr_{\rho \sim R_n}[M^{\rho}(1^n) = 1] \right| < \frac{1}{p(n)}$$

where F_n denotes the distribution on $f_s \in F$ obtained by selecting s uniformly in $\{0, 1\}^n$, and R_n denotes the uniform distribution over all functions mapping $\{0, 1\}^{\ell_{\mathrm{D}}(n)}$ to $\{0, 1\}^{\ell_{\mathrm{R}}(n)}$.

⁵ Specifically, given an arbitrary one way function f', one first constructs f by taking a "direct product" of sufficiently many copies of f'. For example, for $x_1, ..., x_{n^2} \in \{0, 1\}^n$, we let $f(x_1, ..., x_{n^2}) \stackrel{\text{def}}{=} f'(x_1), ..., f'(x_{n^2})$.

Suppose, for simplicity, that $\ell_{\rm D}(n) = n$ and $\ell_{\rm R}(n) = 1$. Then a function uniformly selected among 2^n functions (of a pseudorandom ensemble) presents an input-output behavior which is indistinguishable in poly(n)-time from the one of a function selected at random among all the 2^{2^n} Boolean functions. Contrast this with the 2^n pseudorandom sequences, produced by a pseudorandom generator, which are computationally indistinguishable from a sequence selected uniformly among all the $2^{\text{poly}(n)}$ many sequences. Still pseudorandom functions can be constructed from any pseudorandom generator.

Theorem 12 (How to construct pseudorandom functions [8]): Let G be a pseudorandom generator with stretching function $\ell(n) = 2n$. Let $G_0(s)$ (resp., $G_1(s)$) denote the first (resp., last) |s| bits in G(s), and

$$G_{\sigma_{|s|}\cdots\sigma_2\sigma_1}(s) \stackrel{\text{def}}{=} G_{\sigma_{|s|}}(\cdots G_{\sigma_2}(G_{\sigma_1}(s))\cdots)$$

Then, the function ensemble $\{f_s: \{0,1\}^{|s|} \mapsto \{0,1\}^{|s|}\}_{s \in \{0,1\}^*}$, where $f_s(x) \stackrel{\text{def}}{=} G_x(s)$, is pseudorandom with length parameters $\ell_D(n) = \ell_R(n) = n$.

The above construction can be easily adapted to any (polynomially-bounded) length parameters $\ell_{\rm D}, \ell_{\rm R}: \mathbb{N} \mapsto \mathbb{N}$. We mention that pseudorandom functions have been used to derive negative results in computational learning theory [24] and in complexity theory (cf., Natural Proofs [21]).

5 The Applicability of Pseudorandom Generators

Randomness is playing an increasingly important role in computation: It is frequently used in the design of sequential, parallel and distributed algorithms, and is of course central to cryptography. Whereas it is convenient to design such algorithms making free use of randomness, it is also desirable to minimize the usage of randomness in real implementations (since generating perfectly random bits via special hardware is quite expensive). Thus, pseudorandom generators (as defined above) are a key ingredient in an "algorithmic tool-box" – they provide an automatic compiler of programs written with free usage of randomness into programs which make an economical use of randomness.

Indeed, "pseudo-random number generators" have appeared with the first computers. However, typical implementations use generators which are not pseudorandom according to the above definition. Instead, at best, these generators are shown to pass SOME ad-hoc statistical test (cf., [15]). However, the fact that a "pseudo-random number generator" passes some statistical tests, does not mean that it will pass a new test and that it is good for a future (untested) application. Furthermore, the approach of subjecting the generator to some ad-hoc tests fails to provide general results of the type stated above (i.e., of the form "for ALL practical purposes using the output of the generator is as good as using truly unbiased coin tosses"). In contrast, the approach encompassed in Definition 2 aims at such generality, and in fact is tailored to obtain it: The notion of computational indistinguishability, which underlines Definition 2, covers all possible efficient applications postulating that for all of them pseudorandom sequences are as good as truly random ones.

Pseudorandom generators and functions are of key importance in Cryptography. They are typically used to establish private-key encryption and authentication schemes (cf., [7, Sec. 1.5.2 & 1.6.2]). For example, suppose that two parties share a random *n*-bit string, *s*, specifying a pseudorandom function (as in Definition 11), and that *s* is unknown to the adversary. Then, these parties may send encrypted messages to one another by XORing the message with the value of f_s at a random point. That is, to encrypt $m \in \{0,1\}^{\ell_{\rm R}(n)}$, the sender uniformly selects $r \in \{0,1\}^{\ell_{\rm D}(n)}$, and sends $(r, m \oplus f_s(r))$ to the receiver. Note that the security of this encryption scheme relies on the fact that for *every* computationally-feasible adversary (not only to adversary strategies which were envisioned and tested) the values of the function f_s on such r's look random.

6 The Intellectual Contents of Pseudorandom Generators

We shortly discuss some intellectual aspects of pseudorandom generators as defined above.

Behavioristic versus Ontological. Our definition of pseudorandom generators is based on the notion of computational indistinguishability. The behavioristic nature of the latter notion is best demonstrated by confronting it with the Kolmogorov-Chaitin approach to randomness. Loosely speaking, a string is *Kolmogorov-random* if its length equals the length of the shortest program producing it. This shortest program may be considered the "true explanation" to the phenomenon described by the string. A Kolmogorov-random string is thus a string that does not have a substantially simpler (i.e., shorter) explanation than itself. Considering the simplest explanation of a phenomenon may be viewed as an ontological approach. In contrast, considering the effect of phenomena (on an observer), as underlying the definition of pseudorandomness, is a behavioristic approach. Furthermore, there exist probability distributions which are not uniform (and are not even statistically close to a uniform distribution) that nevertheless are indistinguishable from a uniform distribution by any efficient procedure [25, 11]. Thus, distributions which are ontologically very different, are considered equivalent by the behavioristic point of view taken in the definitions above.

A relativistic view of randomness. Pseudorandomness is defined above in terms of its observer. It is a distribution that cannot be told apart from a uniform distribution by any efficient (i.e. polynomial-time) observer. However, pseudorandom sequences may be distinguished from random ones by infinitely powerful computers (not at our disposal!). Specifically, an exponentialtime machine can easily distinguish the output of a pseudorandom generator from a uniformly selected string of the same length (e.g., just by trying all possible seeds). Thus, pseudorandomness is subjective to the abilities of the observer.

Randomness and Computational Difficulty. Pseudorandomness and computational difficulty play dual roles: The definition of pseudorandomness relies on the fact that putting computational restrictions on the observer gives rise to distributions which are not uniform and still cannot be distinguished from uniform. Furthermore, the construction of pseudorandom generators rely on conjectures regarding computational difficulty (i.e., the existence of one-way functions), and this is inevitable: given a pseudorandom generator, we can construct one-way functions. Thus, (non-trivial) pseudorandomness and computational difficulty can be converted back and forth.

7 Generalization

Pseudorandomness as surveyed above can be viewed as an important special case of a general paradigm (cf., [7]).

A generic formulation of pseudorandom generators consists of specifying three fundamental aspects – the *stretching measure* of the generators; the class of distinguishers that the generators are supposed to fool (i.e., the algorithms with respect to which the *computational indistinguishability* requirement should hold); and the resources that the generators are allowed to use (i.e., their own

computational complexity). In the above presentation we focused on polynomial-time generators (thus having polynomial stretching measure) that fool any probabilistic polynomial-time observers. A variety of other cases are of interest too, and we briefly discuss some of them.

Weaker notions of computational indistinguishability. Whenever the aim is to replace random sequences utilized by an algorithm with pseudorandom ones, one may try to capitalize on knowledge of the target algorithm. Above we have merely used the fact that the target algorithm runs in polynomial-time. However, for example, if we know that the algorithm uses very little workspace then we may able to do better. Similarly, if we know that the analysis of the algorithm only depends on some specific properties of the random sequence it uses (e.g., pairwise independence of its elements). In general, weaker notions of computational indistinguishability such as fooling space-bounded algorithms, constant-depth circuits, and even specific tests (e.g., testing pairwise independence of the sequence), arise naturally: Generators producing sequences which fool such tests are useful in a variety of applications – if the application utilizes randomness in a restricted way then feeding it with sequences of low randomness-quality may do. Needless to say that the author advocates a rigorous formulation of the characteristics of such applications and rigorous constructions of generators that fool the type of tests which emerge.

Alternative notions of generator efficiency. The above discussion has focused on one aspect of the pseudorandomness question – the resources or type of the observer (or potential distinguisher). Another important question is whether such pseudorandom sequences can be generated from much shorter ones, and at what cost (or complexity). Throughout this essay we've required the generation process to be at least as efficient as the efficiency limitations of the distinguisher.⁶ This seems indeed "fair" and natural. Allowing the generator to be more complex (i.e., use more time or space resources) than the distinguisher seems unfair, but still yields interesting consequences in the context of trying to "de-randomize" randomized complexity classes. For example, one may consider generators working in time exponential in the length of the seed. In some cases we lose nothing by being more liberal (i.e., allowing exponential-time generators). To see why, we consider a typical derandomization argument, proceeding in two steps: First one replaces the true randomness of the algorithm by pseudorandom sequences generated from much shorter seeds, and next one goes deterministically over all possible seeds and looks for the most frequent behavior of the modified algorithm. Thus, in such a case the deterministic complexity is anyhow exponential in the seed length. The benefit is that constructing exponential-time generators may be easier than constructing polynomial-time ones.

Acknowledgments

We are grateful to Toni Knapp and Susan Landau for their many useful comments.

⁶ If fact, we have required the generator to be more efficient than the distinguisher: The former was required to be a fixed polynomial-time algorithm, whereas the latter was allowed to be any algorithm with polynomial running time.

References

- [1] W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr. RSA/Rabin Functions: Certain Parts are As Hard As the Whole. *SIAM Journal on Computing*, Vol. 17, April 1988, pages 194–209.
- [2] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13, pages 850-864, 1984. Preliminary version in 23rd IEEE Symposium on Foundations of Computer Science, 1982.
- [3] L. Carter and M. Wegman. Universal Hash Functions. Journal of Computer and System Science, Vol. 18, 1979, pages 143–154.
- G.J. Chaitin. On the Length of Programs for Computing Finite Binary Sequences. Journal of the ACM, Vol. 13, pages 547-570, 1966.
- [5] T.M. Cover and G.A. Thomas. *Elements of Information Theory*. John Wiley & Sons, Inc., New-York, 1991.
- [6] O. Goldreich. Foundation of Cryptography Fragments of a Book. February 1995. Available from http://theory.lcs.mit.edu/~oded/frag.html.
- [7] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithms and Combinatorics series (Vol. 17), Springer, 1998.
- [8] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journal of the ACM, Vol. 33, No. 4, pages 792–807, 1986.
- [9] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st ACM Symposium on the Theory of Computing, pages 25-32, 1989.
- [10] O. Goldreich and S. Micali. Increasing the Expansion of Pseudorandom Generators. Manuscript, 1984. Available from http://theory.lcs.mit.edu/~oded/papers.html
- [11] O. Goldreich, and H. Krawczyk, On Sparse Pseudorandom Ensembles. Random Structures and Algorithms, Vol. 3, No. 2, (1992), pages 163–174.
- [12] O. Goldreich, H. Krawcyzk and M. Luby. On the Existence of Pseudorandom Generators. SIAM Journal on Computing, Vol. 22-6, pages 1163–1175, 1993.
- [13] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Science, Vol. 28, No. 2, pages 270–299, 1984. Preliminary version in 14th ACM Symposium on the Theory of Computing, 1982.
- [14] J. Håstad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom Generator from any One-Way Function. To appear in SIAM Journal on Computing. Preliminary versions by Impagliazzo et. al. in 21st ACM Symposium on the Theory of Computing (1989) and Håstad in 22nd ACM Symposium on the Theory of Computing (1990).
- [15] D.E. Knuth. The Art of Computer Programming, Vol. 2 (Seminumerical Algorithms). Addison-Wesley Publishing Company, Inc., 1969 (first edition) and 1981 (second edition).
- [16] A. Kolmogorov. Three Approaches to the Concept of "The Amount Of Information". Probl. of Inform. Transm., Vol. 1/1, 1965.

- [17] L.A. Levin. Randomness Conservation Inequalities: Information and Independence in Mathematical Theories. Inform. and Control, Vol. 61, pages 15–37, 1984.
- [18] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and its Applications. Springer Verlag, August 1993.
- [19] A.M. Odlyzko. The future of integer factorization. CryptoBytes (The technical newsletter of RSA Laboratories), Vol. 1 (No. 2), pages 5-12, 1995. Available from http://www.research.att.com/~amo
- [20] A.M. Odlyzko. Discrete logarithms and smooth polynomials. In Finite Fields: Theory, Applications and Algorithms, G. L. Mullen and P. Shiue, eds., Amer. Math. Soc., Contemporary Math. Vol. 168, pages 269-278, 1994. Available from http://www.research.att.com/~amo
- [21] A.R. Razborov and S. Rudich. Natural proofs. Journal of Computer and System Science, Vol. 55 (1), pages 24–35, 1997.
- [22] C.E. Shannon. A mathematical theory of communication. Bell Sys. Tech. Jour., Vol. 27, pages 623-656, 1948.
- [23] R.J. Solomonoff. A Formal Theory of Inductive Inference. Inform. and Control, Vol. 7/1, pages 1-22, 1964.
- [24] L. Valiant. A theory of the learnable. Communications of the ACM, Vol. 27/11, pages 1134-1142, 1984.
- [25] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Symposium on Foundations of Computer Science, pages 80-91, 1982.