
PseudorandomnessOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.July 15, 1999AbstractWe postulate that a distribution is pseudorandom if it cannot be told apart from the uniformdistribution by an e�cient procedure. This yields a robust de�nition of pseudorandom genera-tors as e�cient deterministic programs stretching short random seeds into longer pseudorandomsequences. Thus, pseudorandom generators can be used to reduce the randomness-complexityin any e�cient procedure. We show that pseudorandom generators and computational di�cultyare closely related: loosely speaking, each can be e�ciently transformed into the other.Orientation Remark: This essay considers �nite objects, encoded by binary �nite sequencescalled strings. When we talk of distributions we mean discrete probability distributions having a�nite support that is a set of strings. Of special interest is the uniform distribution, which for alength parameter n (explicit or implicit in the discussion), assigns each n-bit string x 2 f0; 1gnequal probability (i.e., probability 2�n). We will colloquially speak of \perfectly random strings"meaning strings selected according to such a uniform distribution.1 IntroductionThe second half of this century has witnessed the development of three theories of randomness,a notion which has been puzzling thinkers for ages. The �rst theory (cf., [5]), initiated by Shan-non [22], is rooted in probability theory and is focused at distributions that are not perfectlyrandom. Shannon's Information Theory characterizes perfect randomness as the extreme case inwhich the information content is maximized (and there is no redundancy at all).1 Thus, perfectrandomness is associated with a unique distribution { the uniform one. In particular, by de�nition,one cannot generate such perfect random strings from shorter random strings.The second theory (cf., [17, 18]), due to Solomonov [23], Kolmogorov [16] and Chaitin [4],is rooted in computability theory and speci�cally in the notion of a universal language (equiv.,universal machine or computing device). It measures the complexity of objects in terms of theshortest program (for a �xed universal machine) that generates the object.2 Like Shannon's the-ory, Kolmogorov Complexity is quantitative and perfect random objects appear as an extreme case.1 In general, the amount of information in a distribution D is de�ned as �PxD(x) log2D(x). Thus, the uniformdistribution over strings of length n has information measure n, and any other distribution over n-bit strings haslower information measure. Also, for any function f : f0; 1gn 7! f0; 1gm with n < m, the distribution obtained byapplying f to a uniformly distributed n-bit string has information measure at most n, which is strictly lower thanthe length of the output.2 For example, the string 1n has Kolmogorov Complexity O(1) + log2 n (by virtue of the program \print n ones"which has length dominated by the encoding of n (say, in binary)). In contrast, a simple counting argument showsthat most n-bit strings have Kolmogorov Complexity at least n.1



Interestingly, in this approach one may say that a single object, rather than a distribution over ob-jects, is perfectly random. Still, Kolmogorov's approach is inherently intractable (i.e., KolmogorovComplexity is uncomputable), and { by de�nition { one cannot generate strings of high KolmogorovComplexity from short random strings.The third theory, initiated by Blum, Goldwasser, Micali and Yao [13, 2, 25], is rooted in com-plexity theory and is the focus of this essay. This approach is explicitly aimed at providing a notionof perfect randomness that nevertheless allows to e�ciently generate perfect random strings fromshorter random strings. The heart of this approach is the suggestion to view objects as equal ifthey cannot be told apart by any e�cient procedure. Consequently a distribution that cannot bee�ciently distinguished from the uniform distribution will be considered as being random (or rathercalled pseudorandom). Thus, randomness is not an \inherent" property of objects (or distributions)but rather relative to an observer (and its computational abilities). To demonstrate this approach,let us consider the following mental experiment.Alice and Bob play head or tail in one of the following four ways. In all of themAlice 
ips a coin high in the air, and Bob is asked to guess its outcome before the coinhits the 
oor. The alternative ways di�er by the knowledge Bob has before makinghis guess. In the �rst alternative, Bob has to announce his guess before Alice 
ips thecoin. Clearly, in this case Bob wins with probability 1=2. In the second alternative,Bob has to announce his guess while the coin is spinning in the air. Although theoutcome is determined in principle by the motion of the coin, Bob does not have accurateinformation on the motion and thus we believe that also in this case Bob wins withprobability 1=2. The third alternative is similar to the second, except that Bob hasat his disposal sophisticated equipment capable of providing accurate information onthe coin's motion as well as on the environment e�ecting the outcome. However, Bobcannot process this information in time to improve his guess. In the fourth alternative,Bob's recording equipment is directly connected to a powerful computer programmedto solve the motion equations and output a prediction. It is conceivable that in such acase Bob can improve substantially his guess of the outcome of the coin.We conclude that the randomness of an event is relative to the information and computing resourcesat our disposal. Thus, a natural concept of pseudorandomness arises { a distribution is pseudo-random if no e�cient procedure can distinguish it from the uniform distribution, where e�cientprocedures are associated with (probabilistic) polynomial-time algorithms.An algorithm is called polynomial-time if there exists a polynomial p so that for any possibleinput x, the algorithm runs in time bounded by p(jxj), where jxj denotes the length of the string x.Thus, the running time of such algorithm grows moderately as a function of the length of its input.A probabilistic algorithm is one which can take random steps, where, without loss of generality,a random step consists of selecting which of two predetermined steps to take next so that eachpossible step is taken with probability 1=2. These choices are called the algorithm's internal cointosses.2 The De�nition of Pseudorandom GeneratorsLoosely speaking, a pseudorandom generator is an e�cient program (or algorithm) that stretchesshort random strings into long pseudorandom sequences. We emphasize three fundamental aspectsin the notion of a pseudorandom generator: 2



1. E�ciency: The generator has to be e�cient. As we associate e�cient computations withpolynomial-time ones, we postulate that the generator has to be implementable by a deter-ministic polynomial-time algorithm.This algorithm takes as input a string, called its seed. The seed captures a bounded amountof randomness used by a device that \generates pseudorandom sequences." The formulationviews any such device as consisting of a deterministic procedure applied to a random seed.2. Stretching: The generator is required to stretch its input seed to a longer output sequence.Speci�cally, it stretches n-bit long seeds into `(n)-bit long outputs, where `(n) > n. Thefunction ` is called the stretching measure (or stretching function) of the generator.3. Pseudorandomness: The generator's output has to look random to any e�cient observer. Thatis, any e�cient procedure should fail to distinguish the output of a generator (on a randomseed) from a truly random sequence of the same length. The formulation of the last sentencerefers to a general notion of computational indistinguishability which is the heart of the entireapproach.To demonstrate the above, consider the following suggestion for a pseudorandom generator. Theseed consists of a pair of 32-bit integers, x and N , and the 100,000-bit output is obtained by repeat-edly squaring the current x modulo N and emitting the least signi�cant bit of each intermediateresult (i.e., let xi  x2i�1 mod N , for i = 1; :::; 105 , and output b1; b2; :::; b105 , where x0 def= x and biis the least signi�cant bit of xi). This process may be generalized to seeds of length n (here we usedn = 64) and outputs of length `(n) (here l(n) = 105). Such a process certainly satis�es Items (1)and (2) above, whereas the question whether Item (3) holds is debatable (once a rigorous de�nitionis provided). Jumping ahead we mention that, under the assumption that it is di�cult to factorlarge integers, a slight variant of the above process is indeed a pseudorandom generator.Computational Indistinguishability: Intuitively, two objects are called computationally in-distinguishable if no e�cient procedure can tell them apart. As usual in complexity theory, anelegant formulation requires asymptotic analysis (or rather a functional treatment of the runningtime of algorithms in terms of the length of their input).3 Thus, the objects in question are in�nitesequences of distributions, where each distribution has a �nite support. Such a sequence will becalled a distribution ensemble. Typically, we consider distribution ensembles of the form fDngn2N,where for some function ` : N 7!N , the support of each Dn is a subset of f0; 1g`(n). Furthermore,typically ` will be a positive polynomial. For such Dn, we denote by e�Dn the process of selectinge according to distribution Dn. Consequently, for a predicate P , we denote by Pre�Dn [P (e)] theprobability that P (e) holds when e is distributed (or selected) according to Dn.De�nition 1 (Computational Indistinguishability [13, 25]): Two probability ensembles, fXngn2Nand fYngn2N, are called computationally indistinguishable if for any probabilistic polynomial-timealgorithm A, for any positive polynomial p, and for all su�ciently large n'sjPrx�Xn [A(x) = 1] � Pry�Yn [A(y) = 1] j < 1p(n)The probability is taken over Xn (resp., Yn) as well as over the coin tosses of algorithm A.3 We stress that the asymptotic (or functional) treatment is not essential to this approach. One may develop theentire approach in terms of inputs of �xed lengths and an adequate notion of complexity of algorithms. However,such an alternative treatment is more cumbersome. 3



A couple of comments are in place. Firstly, we have allowed algorithm A (called a distinguisher)to be probabilistic. This makes the requirement only stronger, and seems essential to severalimportant aspects of our approach. Secondly, we view events occuring with probability that isupper bounded by the reciprocal of polynomials as negligible. This is well-coupled with our notionof e�ciency (i.e., polynomial-time computations): An event that occurs with negligible probability(as a function of a parameter n), will also occur with negligible probability if the experiment isrepeated for poly(n)-many times.We note that computational indistinguishability is a strictly more liberal notion than statisticalindistinguishability (cf., [25, 11]). An important case is the one of distributions generated by apseudorandom generator as de�ned next.De�nition 2 (Pseudorandom Generators [2, 25]): A deterministic polynomial-time algorithm G iscalled a pseudorandom generator if there exists a stretching function, ` :N 7!N , so that the followingtwo probability ensembles, denoted fGngn2N and fRngn2N, are computationally indistinguishable1. Distribution Gn is de�ned as the output of G on a uniformly selected seed in f0; 1gn.2. Distribution Rn is de�ned as the uniform distribution on f0; 1g`(n).That is, letting Um denote the uniform distribution over f0; 1gm, we require that for any probabilisticpolynomial-time algorithm A, for any positive polynomial p, and for all su�ciently large n'sjPrs�Un [A(G(s)) = 1] � Prr�U`(n) [A(r) = 1] j < 1p(n)Thus, pseudorandom generators are e�cient (i.e., polynomial-time) deterministic programs thatexpand short randomly selected seeds into longer pseudorandom bit sequences, where the latterare de�ned as computationally indistinguishable from truly random sequences by e�cient (i.e.,polynomial-time) algorithms. It follows that any e�cient randomized algorithm maintains its per-formance when its internal coin tosses are substituted by a sequence generated by a pseudorandomgenerator. That is,Construction 3 (typical application of pseudorandom generators): Let A be a probabilistic polynomial-time algorithm, and �(n) denote an upper bound on its randomness complexity. Let A(x; r) denotethe output of A on input x and coin tosses sequence r 2 f0; 1g�(jxj). Let G be a pseudorandomgenerator with stretching function ` :N 7!N . Then AG is a randomized algorithm that on input x,proceeds as follows. It sets k = k(jxj) to be the smallest integer such that `(k) � �(jxj), uniformlyselects s 2 f0; 1gk, and outputs A(x; r), where r is the �(jxj)-bit long pre�x of G(s).It can be shown that it is infeasible to �nd long x's on which the input-output behavior of AG isnoticeably di�erent from the one of A, although AG may use much fewer coin tosses than A. Thisis formulated in the proposition below, where F represents an algorithm trying to �nd x's so thatA(x) and AG(x) are distinguishable (by an algorithm D).Proposition 4 Let A and G be as above. For any algorithm D, let �A;D(x) denote the discrepency,as judged by D, in the behavior of A and AG on input x. That is,�A;D(x) def= jPrr�U�(n) [D(x;A(x; r)) = 1] � Prs�Uk(n) [D(x;AG(x; s)) = 1] j4



where the probabilities are taken over the Um's as well as over the coin tosses of D. Then forevery pair of probabilistic polynomial-time algorithms, F and D, every positive polynomial p andall su�ciently long n's Pr ��A;D(F (1n)) > 1p(n)� < 1p(n)where the probability is taken over the coin tosses of F .The proposition is proven by showing that a triplet (A;F;D) violating the claim can be convertedinto an algorithm D0 that distinguishes the output of G from the uniform distribution, in contra-diction to the hypothesis. Analogous arguments are applied whenever one wishes to prove thatan e�cient randomized process (be it an algorithm as above or a multi-party computation) pre-serves its behavior when one replaces true randomness by pseudorandomness as de�ned above.Thus, given pseudorandom generators with large stretching function, one can considerably reducethe randomness complexity in any e�cient application.Amplifying the stretch function. Pseudorandom generators as de�ned above are only requiredto stretch their input a bit; for example, stretching n-bit long inputs to (n+1)-bit long outputs willdo. Clearly, generator of such moderate stretch function are of little use in practice. In contrast, wewant to have pseudorandom generators with an arbitrary long stretch function. By the e�ciencyrequirement, the stretch function can be at most polynomial. It turns out that pseudorandomgenerators with the smallest possible stretch function can be used to construct pseudorandomgenerators with any desirable polynomial stretch function. (Thus, when talking about the existenceof pseudorandom generators, we may ignore the stretch function.)Theorem 5 [10]: Let G be a pseudorandom generator with stretch function `(n) = n + 1, and `0be any stretch function so that `0(n) is computable in poly(n)-time from n. Let G1(x) denote thejxj-bit long pre�x of G(x), and G2(x) denote the last bit of G(x) (i.e., G(x) = G1(x)G2(x)). ThenG0(s) def= �1�2 � � � �`0(jsj) ;where x0 = s, �i = G2(xi�1) and xi = G1(xi�1), for i = 1; :::; `0(jsj)is a pseudorandom generator with stretch function `0.3 How to Construct Pseudorandom GeneratorsThe known constructions transform computation di�culty, in the form of one-way functions (de-�ned below), into pseudorandomness generators. Loosely speaking, a polynomial-time computablefunction is called one-way if any e�cient algorithm can invert it only with negligible success prob-ability. For simplicity, we consider only length-preserving one-way functions.De�nition 6 (one-way function): A one-way function, f , is a polynomial-time computable functionsuch that for every probabilistic polynomial-time algorithm A0, every positive polynomial p(�), andall su�ciently large n's Prx�Un hA0(f(x))2f�1(f(x))i < 1p(n)where Un is the uniform distribution over f0; 1gn.5



Popular candidates for one-way functions are based on the conjectured intractability of integerfactorization (cf., [19] for state of the art), the discrete logarithm problem (cf., [20] analogously),and decoding of random linear code [12]. The infeasibility of inverting f yields a weak notion ofunpredictability: Let bi(x) denotes the ith bit of x. Then, for every probabilistic polynomial-timealgorithm A (and su�ciently large n), it must be the case that Pri;x[A(i; f(x)) 6= bi(x)] > 1=2n,where the probability is taken uniformly over i 2 f1; :::; ng and x 2 f0; 1gn. A stronger (and in factstrongest possible) notion of unpredictability is that of a hard-core predicate. Loosely speaking, apolynomial-time computable predicate b is called a hard-core of a function f if all e�cient algorithm,given f(x), can guess b(x) only with success probability that is negligible better than half.De�nition 7 (hard-core predicate [2]): A polynomial-time computable predicate b : f0; 1g� 7!f0; 1g is called a hard-core of a function f if for every probabilistic polynomial-time algorithm A0,every positive polynomial p(�), and all su�ciently large n'sPrx�Un [A0(f(x))=b(x)] < 12 + 1p(n)Clearly, if b is a hard-core of a 1-1 polynomial-time computable function f then f must be one-way.4It turns out that any one-way function can be slightly modi�ed so that it has a hard-core predicate.Theorem 8 (A generic hard-core [9]): Let f be an arbitrary one-way function, and let g be de�nedby g(x; r) def= (f(x); r), where jxj = jrj. Let b(x; r) denote the inner-product mod 2 of the binaryvectors x and r. Then the predicate b is a hard-core of the function g.See proof in [7, Apdx C.2]. Finally, we get to the construction of pseudorandom generators:Proposition 9 (A simple construction of pseudorandom generators): Let b be a hard-core predicateof a polynomial-time computable 1-1 function f . Then, G(s) def= f(s) b(s) (i.e., f(s) followed byb(s)) is a pseudorandom generator.In a sense, the key point in the proof of the above proposition is showing that the (obvious byde�nition) unpredictability of the output of G implies its pseudorandomness. The fact that (nextbit) unpredictability and pseudorandomness are equivalent in general is proven explicitly in thealternative presentation below.An alternative presentation. Our presentation of the construction of pseudorandom genera-tors, via Theorem 5 and Proposition 9, is di�erent but analogous to the original construction ofpseudorandom generators suggested by by Blum and Micali [2]: Given an arbitrary stretch function` :N 7!N , a 1-1 one-way function f with a hard-core b, one de�nesG(s) def= b(x0)b(x1) � � � b(x`(jsj)�1) ;where x0 = s and xi = f(xi�1) for i = 1; :::; `(jsj) � 1. A concrete instantiation, based on theassumption that it is di�cult to factor large integers, is depicted in Figure 1. The pseudorandomnessof G is established in two steps, using the notion of (next bit) unpredictability. An ensemblefZngn2N is called unpredictable if any probabilistic polynomial-time machine obtaining a pre�x ofZn fails to predict the next bit of Zn with probability non-negligibly higher than 1=2.4 Functions that are not 1-1 may have hard-core predicates of information-theoretic nature; but these are of nouse to us here. For example, functions of the form f(�; x) = 0f 0(x) (for � 2 f0; 1g) have an \information theoretic"hard-core predicate b(�; x) = �. 6



Step 1: One �rst proves that the ensemble fG(Un)gn2N, where Un is uniform over f0; 1gn, is(next-bit) unpredictable (from right to left) [2].Loosely speaking, if one can predict b(xi) from b(xi+1) � � � b(x`(jsj)�1) then one can predictb(xi) given f(xi) (i.e., by computing xi+1; :::; x`(jsj)�1, and so obtaining b(xi+1) � � � b(x`(jsj))).But this contradicts the hard-core hypothesis.Step 2: Next, one uses Yao's observation by which a (polynomial-time constructible) ensemble ispseudorandom if and only if it is (next-bit) unpredictable (cf., [6, Sec. 3.3.4]).Clearly, if one can predict the next bit in an ensemble then one can distinguish this en-semble from the uniform ensemble (which in unpredictable regardless of computing power).However, here we need the other direction which is less obvious. Still, one can show that(next bit) unpredictability implies indistinguishability from the uniform ensemble. Specif-ically, consider the following \hybrid" distributions, where the ith hybrid takes the �rst ibits from the questionable ensemble and the rest from the uniform one. Thus, distinguishingthe extreme hybrids implies distinguishing some neighboring hybrids, which in turn impliesnext-bit predictability (of the questionable ensemble).We assume that it is infeasible to factor integers that are the product of two large primes(each congruent to 3 mod 4). Under this assumption, squaring modulo such integers is aone-way function. Furthermore, squaring modulo such N is 1-1 over the quadratic residuesmod N , and the least signi�cant bit of the argument is a corresponding hard-core [1]. Us-ing a probabilistic polynomial-time algorithm for generating random primes, we obtain thefollowing pseudorandom generator:Input: An n-bit seed s = abc, where jaj = jbj = 4n=10.Initialization Steps:(1) Use a to produce an n=10-bit prime p � 3 (mod 4).(2) Similarly, use b to produce q � 3 (mod 4).(3) Multiply p and q, obtaining N .(4) Let x0  c2 mod N .Iterations: For i = 0; ::; `(n) � 1(5) Let bi be the least signi�cant bit of xi.(6) Let xi+1  x2i mod N .Output: b0; b1; ::; b`(n)�1Figure 1: A pseudorandom generator based on the intractability of factoring.A general condition for the existence of pseudorandom generators. Recall that givenany one-way 1-1 function, we can easily construct a pseudorandom generator. Actually, the 1-1requirement may be dropped, but the currently known construction { for the general case { is quitecomplex. Still we do have.Theorem 10 (On the existence of pseudorandom generators [14]):Pseudorandom generators exist if and only if one-way functions exist.7



To show that the existence of pseudorandom generators imply the existence of one-way functions,consider a pseudorandom generator G with stretch function `(n) = 2n. For x; y 2 f0; 1gn, de�nef(x; y) def= G(x), and so f is polynomial-time computable (and length-preserving). It must be thatf is one-way, or else one can distinguish G(Un) from U2n by trying to invert and checking the result:Inverting f on its range distribution refers to the distribution G(Un), whereas the probability thatU2n has inverse under f is negligible.The interesting direction is the construction of pseudorandom generators based on any one-wayfunction. In general (when f may not be 1-1) the ensemble f(Un) may not be pseudorandom, and soConstruction 9 (i.e., G(s) = f(s)b(s), where b is a hard-core of f) cannot be used directly. One ideaof [14] is to hash f(Un) to an almost uniform string of length related to its entropy, using UniversalHash Functions [3]. (This is done after guaranteeing, that the logarithm of the probability mass ofa value of f(Un) is typically close to the entropy of f(Un).)5 But \hashing f(Un) down to lengthcomparable to the entropy" means shrinking the length of the output to, say, n0 < n. This foilsthe entire point of stretching the n-bit seed. Thus, a second idea of [14] is to compensate for then� n0 loss by extracting these many bits from the seed Un itself. This is done by hashing Un, andthe point is that the (n� n0 + 1)-bit long hash value does not make the inverting task any easier.Implementing these ideas turns out to be more di�cult than it seems, and indeed an alternativeconstruction would be most appreciated.4 Pseudorandom FunctionsPseudorandom generators allow to e�ciently generate long pseudorandom sequences from shortrandom seeds. Pseudorandom functions (de�ned below) are even more powerful: They allow e�-cient direct access to a huge pseudorandom sequence (which is infeasible to scan bit-by-bit). Put inother words, pseudorandom functions can replace truly random functions in any e�cient applica-tion (e.g., most notably in cryptography). That is, pseudorandom functions are indistinguishablefrom random functions by e�cient machines which may obtain the function values at argumentsof their choice. (Such machines are called oracle machines, and if M is such machine and f is afunction, then Mf (x) denotes the computation of M on input x when M 's queries are answeredby the function f .)De�nition 11 (pseudorandom functions [8]): A pseudorandom function (ensemble), with lengthparameters `D; `R :N 7!N , is a collection of functions F def= ffs : f0; 1g`D(jsj) 7! f0; 1g`R(jsj)gs2f0;1g�satisfying� (e�cient evaluation): There exists an e�cient (deterministic) algorithm that given a seed, s,and an `D(jsj)-bit argument, x, returns the `R(jsj)-bit long value fs(x).(Thus, the seed s is an \e�ective description" of the function fs.)� (pseudorandomness): For every probabilistic polynomial-time oracle machine, M , for everypositive polynomial p and all su�ciently large n's���Prf�Fn [Mf (1n) = 1]� Pr��Rn [M�(1n) = 1] ��� < 1p(n)where Fn denotes the distribution on fs 2 F obtained by selecting s uniformly in f0; 1gn, andRn denotes the uniform distribution over all functions mapping f0; 1g`D(n) to f0; 1g`R(n).5 Speci�cally, given an arbitrary one way function f 0, one �rst constructs f by taking a \direct product" ofsu�ciently many copies of f 0. For example, for x1; :::; xn2 2 f0; 1gn, we let f(x1; :::; xn2) def= f 0(x1); :::; f 0(xn2).8



Suppose, for simplicity, that `D(n) = n and `R(n) = 1. Then a function uniformly selected among2n functions (of a pseudorandom ensemble) presents an input-output behavior which is indistin-guishable in poly(n)-time from the one of a function selected at random among all the 22n Booleanfunctions. Contrast this with the 2n pseudorandom sequences, produced by a pseudorandom gener-ator, which are computationally indistinguishable from a sequence selected uniformly among all the2poly(n) many sequences. Still pseudorandom functions can be constructed from any pseudorandomgenerator.Theorem 12 (How to construct pseudorandom functions [8]): Let G be a pseudorandom generatorwith stretching function `(n) = 2n. Let G0(s) (resp., G1(s)) denote the �rst (resp., last) jsj bits inG(s), and G�jsj����2�1(s) def= G�jsj(� � �G�2(G�1(s)) � � �)Then, the function ensemble ffs : f0; 1gjsj 7! f0; 1gjsjgs2f0;1g� , where fs(x) def= Gx(s), is pseudoran-dom with length parameters `D(n) = `R(n) = n.The above construction can be easily adapted to any (polynomially-bounded) length parameters`D; `R :N 7!N . We mention that pseudorandom functions have been used to derive negative resultsin computational learning theory [24] and in complexity theory (cf., Natural Proofs [21]).5 The Applicability of Pseudorandom GeneratorsRandomness is playing an increasingly important role in computation: It is frequently used in thedesign of sequential, parallel and distributed algorithms, and is of course central to cryptography.Whereas it is convenient to design such algorithms making free use of randomness, it is also desirableto minimize the usage of randomness in real implementations (since generating perfectly randombits via special hardware is quite expensive). Thus, pseudorandom generators (as de�ned above)are a key ingredient in an \algorithmic tool-box" { they provide an automatic compiler of programswritten with free usage of randomness into programs which make an economical use of randomness.Indeed, \pseudo-random number generators" have appeared with the �rst computers. However,typical implementations use generators which are not pseudorandom according to the above de�-nition. Instead, at best, these generators are shown to pass some ad-hoc statistical test (cf., [15]).However, the fact that a \pseudo-random number generator" passes some statistical tests, doesnot mean that it will pass a new test and that it is good for a future (untested) application. Fur-thermore, the approach of subjecting the generator to some ad-hoc tests fails to provide generalresults of the type stated above (i.e., of the form \for all practical purposes using the output of thegenerator is as good as using truly unbiased coin tosses"). In contrast, the approach encompassedin De�nition 2 aims at such generality, and in fact is tailored to obtain it: The notion of compu-tational indistinguishability, which underlines De�nition 2, covers all possible e�cient applicationspostulating that for all of them pseudorandom sequences are as good as truly random ones.Pseudorandom generators and functions are of key importance in Cryptography. They aretypically used to establish private-key encryption and authentication schemes (cf., [7, Sec. 1.5.2& 1.6.2]). For example, suppose that two parties share a random n-bit string, s, specifying apseudorandom function (as in De�nition 11), and that s is unknown to the adversary. Then, theseparties may send encrypted messages to one another by XORing the message with the value of fsat a random point. That is, to encrypt m 2 f0; 1g`R(n), the sender uniformly selects r 2 f0; 1g`D(n),and sends (r;m� fs(r)) to the receiver. Note that the security of this encryption scheme relies on9



the fact that for every computationally-feasible adversary (not only to adversary strategies whichwere envisioned and tested) the values of the function fs on such r's look random.6 The Intellectual Contents of Pseudorandom GeneratorsWe shortly discuss some intellectual aspects of pseudorandom generators as de�ned above.Behavioristic versus Ontological. Our de�nition of pseudorandom generators is based onthe notion of computational indistinguishability. The behavioristic nature of the latter notionis best demonstrated by confronting it with the Kolmogorov-Chaitin approach to randomness.Loosely speaking, a string is Kolmogorov-random if its length equals the length of the shortestprogram producing it. This shortest program may be considered the \true explanation" to thephenomenon described by the string. A Kolmogorov-random string is thus a string that doesnot have a substantially simpler (i.e., shorter) explanation than itself. Considering the simplestexplanation of a phenomenon may be viewed as an ontological approach. In contrast, consideringthe e�ect of phenomena (on an observer), as underlying the de�nition of pseudorandomness, is abehavioristic approach. Furthermore, there exist probability distributions which are not uniform(and are not even statistically close to a uniform distribution) that nevertheless are indistinguishablefrom a uniform distribution by any e�cient procedure [25, 11]. Thus, distributions which areontologically very di�erent, are considered equivalent by the behavioristic point of view taken inthe de�nitions above.A relativistic view of randomness. Pseudorandomness is de�ned above in terms of its ob-server. It is a distribution that cannot be told apart from a uniform distribution by any e�cient(i.e. polynomial-time) observer. However, pseudorandom sequences may be distinguished fromrandom ones by in�nitely powerful computers (not at our disposal!). Speci�cally, an exponential-time machine can easily distinguish the output of a pseudorandom generator from a uniformlyselected string of the same length (e.g., just by trying all possible seeds). Thus, pseudorandomnessis subjective to the abilities of the observer.Randomness and Computational Di�culty. Pseudorandomness and computational di�-culty play dual roles: The de�nition of pseudorandomness relies on the fact that putting com-putational restrictions on the observer gives rise to distributions which are not uniform and stillcannot be distinguished from uniform. Furthermore, the construction of pseudorandom generatorsrely on conjectures regarding computational di�culty (i.e., the existence of one-way functions),and this is inevitable: given a pseudorandom generator, we can construct one-way functions. Thus,(non-trivial) pseudorandomness and computational di�culty can be converted back and forth.7 GeneralizationPseudorandomness as surveyed above can be viewed as an important special case of a generalparadigm (cf., [7]).A generic formulation of pseudorandom generators consists of specifying three fundamentalaspects { the stretching measure of the generators; the class of distinguishers that the generatorsare supposed to fool (i.e., the algorithms with respect to which the computational indistinguishabilityrequirement should hold); and the resources that the generators are allowed to use (i.e., their own10



computational complexity). In the above presentation we focused on polynomial-time generators(thus having polynomial stretching measure) that fool any probabilistic polynomial-time observers.A variety of other cases are of interest too, and we brie
y discuss some of them.Weaker notions of computational indistinguishability. Whenever the aim is to replacerandom sequences utilized by an algorithm with pseudorandom ones, one may try to capitalize onknowledge of the target algorithm. Above we have merely used the fact that the target algorithmruns in polynomial-time. However, for example, if we know that the algorithm uses very little work-space then we may able to do better. Similarly, if we know that the analysis of the algorithm onlydepends on some speci�c properties of the random sequence it uses (e.g., pairwise independenceof its elements). In general, weaker notions of computational indistinguishability such as foolingspace-bounded algorithms, constant-depth circuits, and even speci�c tests (e.g., testing pairwiseindependence of the sequence), arise naturally: Generators producing sequences which fool suchtests are useful in a variety of applications { if the application utilizes randomness in a restrictedway then feeding it with sequences of low randomness-quality may do. Needless to say that theauthor advocates a rigorous formulation of the characteristics of such applications and rigorousconstructions of generators that fool the type of tests which emerge.Alternative notions of generator e�ciency. The above discussion has focused on one aspectof the pseudorandomness question { the resources or type of the observer (or potential distin-guisher). Another important question is whether such pseudorandom sequences can be generatedfrom much shorter ones, and at what cost (or complexity). Throughout this essay we've requiredthe generation process to be at least as e�cient as the e�ciency limitations of the distinguisher.6This seems indeed \fair" and natural. Allowing the generator to be more complex (i.e., use moretime or space resources) than the distinguisher seems unfair, but still yields interesting conse-quences in the context of trying to \de-randomize" randomized complexity classes. For example,one may consider generators working in time exponential in the length of the seed. In some caseswe lose nothing by being more liberal (i.e., allowing exponential-time generators). To see why, weconsider a typical derandomization argument, proceeding in two steps: First one replaces the truerandomness of the algorithm by pseudorandom sequences generated from much shorter seeds, andnext one goes deterministically over all possible seeds and looks for the most frequent behavior ofthe modi�ed algorithm. Thus, in such a case the deterministic complexity is anyhow exponentialin the seed length. The bene�t is that constructing exponential-time generators may be easier thanconstructing polynomial-time ones.AcknowledgmentsWe are grateful to Toni Knapp and Susan Landau for their many useful comments.
6 If fact, we have required the generator to be more e�cient than the distinguisher: The former was required tobe a �xed polynomial-time algorithm, whereas the latter was allowed to be any algorithm with polynomial runningtime. 11
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