
Computational Complexity:A Conceptual PerspectiveOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.July 1, 2008

464

Chapter 10Relaxing the RequirementsThe philosophers have only interpreted the world, invarious ways; the point is to change it.Karl Marx, Theses on FeuerbachIn light of the apparent infeasibility of solving numerous useful computational prob-lems, it is natural to ask whether these problems can be relaxed such that therelaxation is both useful and allows for feasible solving procedures. We stress twoaspects about the foregoing question: on one hand, the relaxation should be suf-�ciently good for the intended applications; but, on the other hand, it should besigni�cantly di�erent from the original formulation of the problem so to escape theinfeasibility of the latter. We note that whether a relaxation is adequate for anintended application depends on the application, and thus much of the materialin this chapter is less robust (or generic) than the treatment of the non-relaxedcomputational problems.Summary: We consider two types of relaxations. The �rst type ofrelaxation refers to the computational problems themselves; that is, foreach problem instance we extend the set of admissible solutions. Inthe context of search problems this means settling for solutions thathave a value that is \su�ciently close" to the value of the optimalsolution (with respect to some value function). Needless to say, thespeci�c meaning of `su�ciently close' is part of the de�nition of therelaxed problem. In the context of decision problems this means thatfor some instances both answers are considered valid; speci�cally, weshall consider promise problems in which the no-instances are \far"from the yes-instances in some adequate sense (which is part of thede�nition of the relaxed problem).The second type of relaxation deviates from the requirement that thesolver provides an adequate answer on each valid instance. Instead,the behavior of the solver is analyzed with respect to a predetermined465

466 CHAPTER 10. RELAXING THE REQUIREMENTSinput distribution (or a class of such distributions), and bad behaviormay occur with negligible probability where the probability is takenover this input distribution. That is, we replace worst-case analysis byaverage-case (or rather typical-case) analysis. Needless to say, a majorcomponent in this approach is limiting the class of distributions in a waythat, on one hand, allows for various types of natural distributions and,on the other hand, prevents the collapse of the corresponding notion ofaverage-case hardness to the standard notion of worst-case hardness.Organization. The �rst type of relaxation is treated in Section 10.1, where weconsider approximations of search (or rather optimization) problems as well asapproximate-decision problems (a.k.a property testing); see Section 10.1.1 and Sec-tion 10.1.2, respectively. The second type of relaxation, known as average/typical-case complexity, is treated in Section 10.2. The treatment of these two types isquite di�erent. Section 10.1 provides a short and high-level introduction to variousresearch areas, focusing on the main notions and illustrating them by reviewingsome results (while providing no proofs). In contrast, Section 10.2 provides a basictreatment of a theory (of average/typical-case complexity), focusing on some basicresults and providing a rather detailed exposition of the corresponding proofs.10.1 ApproximationThe notion of approximation is a very natural one, and has arisen also in otherdisciplines. Approximation is most commonly used in references to quantities (e.g.,\the length of one meter is approximately forty inches"), but it is also used whenreferring to qualities (e.g., \an approximately correct account of a historical event").In the context of computation, the notion of approximation modi�es computationaltasks such as search and decision problems. (In fact, we have already encounteredit as a modi�er of counting problems; see Section 6.2.2.)Two major questions regarding approximation are (1) what is a \good" approx-imation, and (2) can it be found easier than �nding an exact solution. The answerto the �rst question seems intimately related to the speci�c computational taskat hand and to its role in the wider context (i.e., the higher level application): agood approximation is one that su�ces for the intended application. Indeed, theimportance of certain approximation problems is much more subjective than theimportance of the corresponding optimization problems. This fact seems to standin the way of attempts at providing a comprehensive theory of natural approxi-mation problems (e.g., general classes of natural approximation problems that areshown to be computationally equivalent).Turning to the second question, we note that in numerous cases natural approx-imation problems seem to be signi�cantly easier than the corresponding original(\exact") problems. On the other hand, in numerous other cases, natural approx-imation problems are computationally equivalent to the original problems. Weshall exemplify both cases by reviewing some speci�c results, but will not provide

10.1. APPROXIMATION 467a general systematic classi�cation (because such a classi�cation is not known).1We shall distinguish between approximation problems that are of a \searchtype" and problems that have a clear \decisional"
avor. In the �rst case we shallrefer to a function that assigns values to possible solutions (of a search problem);whereas in the second case we shall refer to the distance between instances (of adecision problem).2 We note that, sometimes the same computational problemmay be cast in both ways, but for most natural approximation problems one of thetwo frameworks is more appealing than the other. The common theme underlyingboth frameworks is that in each of them we extend the set of admissible solutions.In the case of search problems, we augment the set of optimal solutions by allowingalso almost-optimal solutions. In the case of decision problems, we extend the setof solutions by allowing an arbitrary answer (solution) to some instances, whichmay be viewed as a promise problem that disallows these instances. In this case wefocus on promise problems in which the yes- and no-instances are far apart (andthe instances that violate the promise are closed to yes-instances).Teaching note: Most of the results presented in this section refer to speci�c computa-tional problems and (with one exception) are presented without a proof. In view of thecomplexity of the corresponding proofs and the merely illustrative role of these resultsin the context of complexity theory, we recommend doing the same in class.10.1.1 Search or OptimizationAs noted in Section 2.2.2, many search problems involve a set of potential solutions(per each problem instance) such that di�erent solutions are assigned di�erent \val-ues" (resp., \costs") by some \value" (resp., \cost") function. In such a case, one isinterested in �nding a solution of maximum value (resp., minimum cost). A corre-sponding approximation problem may refer to �nding a solution of approximatelymaximum value (resp., approximately minimum cost), where the speci�cation ofthe desired level of approximation is part of the problem's de�nition. Let us elab-orate.For concreteness, we focus on the case of a value that we wish to maximize.For greater expressibility (or, actually, for greater
exibility), we allow the valueof the solution to depend also on the instance itself.3 Thus, for a (polynomiallybounded) binary relation R and a value function f : f0; 1g� � f0; 1g� ! R, weconsider the problem of �nding solutions (with respect to R) that maximize the1In contrast, systematic classi�cations of restricted classes of approximation problems areknown. For example, see [56] for a classi�cation of (approximate versions of) Constraint Satis-faction Problems.2In some sense, this distinction is analogous to the distinction between the two aforementioneduses of the word approximation.3This convention is only a matter of convenience: without loss of generality, we can expressthe same optimization problem using a value function that only depends on the solution byaugmenting each solution with the corresponding instance (i.e., a solution y to an instance x canbe encoded as a pair (x; y), and the resulting set of valid solutions for x will consist of pairs of theform (x; �)). Hence, the foregoing convention merely allows avoiding this cumbersome encodingof solutions.

468 CHAPTER 10. RELAXING THE REQUIREMENTSvalue of f . That is, given x (such that R(x) 6= ;), the task is �nding y 2 R(x) suchthat f(x; y) = vx, where vx is the maximum value of f(x; y0) over all y0 2 R(x).Typically, R is in PC and f is polynomial-time computable. Indeed, without lossof generality, we may assume that for every x it holds that R(x) = f0; 1g`(jxj) forsome polynomial ` (see Exercise 2.8).4 Thus, the optimization problem is recastas the following search problem: given x, �nd y such that f(x; y) = vx, wherevx = maxy02f0;1g`(jxj)ff(x; y0)g.We shall focus on relative approximation problems, where for some gap functiong : f0; 1g� ! fr2R : r�1g the (maximization) task is �nding y such that f(x; y) �vx=g(x). Indeed, in some cases the approximation factor is stated as a function ofthe length of the input (i.e., g(x) = g0(jxj) for some g0 : N ! fr2R : r�1g), butoften the approximation factor is stated in terms of some more re�ned parameterof the input (e.g., as a function of the number of vertices in a graph). Typically, gis polynomial-time computable.De�nition 10.1 (g-factor approximation): Let f : f0; 1g� � f0; 1g� ! R, ` :N!N , and g : f0; 1g� ! fr2R : r�1g.Maximization version: The g-factor approximation of maximizing f (w.r.t `) is thesearch problem R such that R(x) = fy 2 f0; 1g`(jxj) : f(x; y) � vx=g(x)g,where vx = maxy02f0;1g`(jxj)ff(x; y0)g.Minimization version: The g-factor approximation of minimizing f (w.r.t `) is thesearch problem R such that R(x) = fy 2 f0; 1g`(jxj) : f(x; y) � g(x) � cxg,where cx = miny02f0;1g`(jxj)ff(x; y0)g.We note that for numerous NP-complete optimization problems, polynomial-timealgorithms provide meaningful approximations. A few examples will be mentionedin x10.1.1.1. In contrast, for numerous other NP-complete optimization problems,natural approximation problems are computationally equivalent to the correspond-ing optimization problem. A few examples will be mentioned in x10.1.1.2, wherewe also introduce the notion of a gap problem, which is a promise problem (ofthe decision type) intended to capture the di�culty of the (approximate) searchproblem.10.1.1.1 A few positive examplesLet us start with a trivial example. Considering a problem such as �nding themaximum clique in a graph, we note that �nding a linear factor approximation istrivial (i.e., given a graph G = (V;E), we may output any vertex in V as a jV j-factor approximation of the maximum clique in G). A famous non-trivial exampleis presented next.Proposition 10.2 (factor two approximation to minimum Vertex Cover): Thereexists a polynomial-time approximation algorithm that given a graph G = (V;E)4However, in this case (and in contrast to Footnote 3), the value function f must depend bothon the instance and on the solution (i.e., f(x; y) may no be oblivious of x).

10.1. APPROXIMATION 469outputs a vertex cover that is at most twice as large as the minimum vertex coverof G.We warn that an approximation algorithm for minimum Vertex Cover does notyield such an algorithm for the complementary search problem (of maximum IndependentSet). This phenomenon stands in contrast to the case of optimization, where anoptimal solution for one search problem (e.g., minimum Vertex Cover) yields anoptimal solution for the complementary search problem (maximum IndependentSet).Proof Sketch: The main observation is a connection between the set of maximalmatchings and the set of vertex covers in a graph. LetM be anymaximal matchingin the graph G = (V;E); that is, M � E is a matching but augmenting it by anysingle edge yields a set that is not a matching. Then, on one hand, the set of allvertices participating in M is a vertex cover of G, and, on the other hand, eachvertex cover of G must contain at least one vertex of each edge ofM . Thus, we can�nd the desired vertex cover by �nding a maximal matching, which in turn can befound by a greedy algorithm.Another example. An instance of the traveling salesman problem (TSP) consistsof a symmetric matrix of distances between pairs of points, and the task is �ndinga shortest tour that passes through all points. In general, no reasonable approx-imation is feasible for this problem (see Exercise 10.1), but here we consider twospecial cases in which the distances satisfy some natural constraints (and prettygood approximations are feasible).Theorem 10.3 (approximations to special cases of TSP): Polynomial-time algo-rithms exist for the following two computational problems.1. Providing a 1.5-factor approximation for the special case of TSP in which thedistances satisfy the triangle inequality.2. For every " > 1, providing a (1+ ")-factor approximation for the special caseof Euclidean TSP (i.e., for some constant k (e.g., k = 2), the points residein a k-dimensional Euclidean space, and the distances refer to the standardEuclidean norm).A weaker version of Part 1 is given in Exercise 10.2. A detailed survey of Part 2is provided in [13]. We note the di�erence exempli�ed by the two items of Theo-rem 10.3: Whereas Part 1 provides a polynomial-time approximation for a speci�cconstant factor, Part 2 provides such an algorithm for any constant factor. Such aresult is called a polynomial-time approximation scheme (abbreviated PTAS).10.1.1.2 A few negative examplesLet us start again with a trivial example. Considering a problem such as �ndingthe maximum clique in a graph, we note that given a graph G = (V;E) �nding

470 CHAPTER 10. RELAXING THE REQUIREMENTSa (1 + jV j�1)-factor approximation of the maximum clique in G is as hard as�nding a maximum clique in G. Indeed, this \result" is not really meaningful.In contrast, building on the PCP Theorem (Theorem 9.16), one may prove that�nding a jV j1�o(1)-factor approximation of the maximum clique in a general graphG = (V;E) is as hard as �nding a maximum clique in a general graph. This followsfrom the fact that the approximation problem is NP-hard (cf. Theorem 10.5).The statement of such inapproximability results is made stronger by referringto a promise problem that consists of distinguishing instances of su�ciently farapart values. Such promise problems are called gap problems, and are typicallystated with respect to two bounding functions g1; g2 : f0; 1g� ! R (which replacethe gap function g of De�nition 10.1). Typically, g1 and g2 are polynomial-timecomputable.De�nition 10.4 (gap problem for approximation of f): Let f be as in De�ni-tion 10.1 and g1; g2 : f0; 1g� ! R.Maximization version: For g1 � g2, the gapg1;g2 problem of maximizing f consistsof distinguishing between fx : vx � g1(x)g and fx : vx < g2(x)g, wherevx = maxy2f0;1g`(jxj)ff(x; y)g.Minimization version: For g1 � g2, the gapg1;g2 problem of minimizing f consistsof distinguishing between fx : cx � g1(x)g and fx : cx > g2(x)g, wherecx = miny2f0;1g`(jxj)ff(x; y)g.For example, the gapg1;g2 problem of maximizing the size of a clique in a graphconsists of distinguishing between graphs G that have a clique of size g1(G) andgraphs G that have no clique of size g2(G). In this case, we typically let gi(G) be afunction of the number of vertices in G=(V;E); that is, gi(G) = g0i(jV j). Indeed,letting !(G) denote the size of the largest clique in the graphG, we let gapCliqueL;sdenote the gap problem of distinguishing between fG= (V;E) : !(G) � L(jV j)gand fG=(V;E) : !(G) < s(jV j)g, where L � s. Using this terminology, we restate(and strengthen) the aforementioned jV j1�o(1)-factor inapproximability result ofthe maximum clique problem.Theorem 10.5 For some L(N) = N1�o(1) and s(N) = No(1), it holds that gapCliqueL;sis NP-hard.The proof of Theorem 10.5 is based on a major re�nement of Theorem 9.16 thatrefers to a PCP system of amortized free-bit complexity that tends to zero (cf.x9.3.4.1). A weaker result, which follows from Theorem 9.16 itself, is presented inExercise 10.3.As we shall show next, results of the type of Theorem 10.5 imply the hardnessof a corresponding approximation problem; that is, the hardness of deciding a gapproblem implies the hardness of a search problem that refers to an analogous factorof approximation.

10.1. APPROXIMATION 471Proposition 10.6 Let f; g1; g2 be as in De�nition 10.4 and suppose that thesefunctions are polynomial-time computable. Then the gapg1;g2 problem of maximiz-ing f (resp., minimizing f) is reducible to the g1=g2-factor (resp., g2=g1-factor)approximation of maximizing f (resp., minimizing f).Note that a reduction in the opposite direction does not necessarily exist (even inthe case that the underlying optimization problem is self-reducible in some naturalsense). Indeed, this is another di�erence between the current context (of approx-imation) and the context of optimization problems, where the search problem isreducible to a related decision problem.Proof Sketch: We focus on the maximization version. On input x, we solve thegapg1;g2 problem, by making the query x, obtaining the answer y, and ruling thatx has value at least g1(x) if and only if f(x; y) � g2(x). Recall that we need toanalyze this reduction only on inputs that satisfy the promise. Thus, if vx � g1(x)then the oracle must return a solution y that satis�es f(x; y) � vx=(g1(x)=g2(x)),which implies that f(x; y) � g2(x). On the other hand, if vx < g2(x) then f(x; y) �vx < g2(x) holds for any possible solution y.Additional examples. Let us consider gapVCs;L, the gapgs;gL problem of mini-mizing the vertex cover of a graph, where s and L are constants and gs(G) = s � jV j(resp., gL(G) = L � jV j) for any graph G=(V;E). Then, Proposition 10.2 implies(via Proposition 10.6) that, for every constant s, the problem gapVCs;2s is solvablein polynomial-time. In contrast, su�ciently narrowing the gap between the twothresholds yields an inapproximability result. In particular:Theorem 10.7 For some constants s > 0 and L < 1 such that L > 43 � s (e.g.,s = 0:62 and L = 0:84), the problem gapVCs;L is NP-hard.The proof of Theorem 10.7 is based on a complicated re�nement of Theorem 9.16.Again, a weaker result follows from Theorem 9.16 itself (see Exercise 10.4).As noted, re�nements of the PCP Theorem (Theorem 9.16) play a key role inestablishing inapproximability results such as Theorems 10.5 and 10.7. In thatrespect, it is adequate to recall that Theorem 9.21 establishes the equivalence ofthe PCP Theorem itself and the NP-hardness of a gap problem concerning themaximization of the number of clauses that are satis�es in a given 3-CNF for-mula. Speci�cally, gapSAT3" was de�ned (in De�nition 9.20) as the gap problemconsisting of distinguishing between satis�able 3-CNF formulae and 3-CNF formu-lae for which each truth assignment violates at least an " fraction of the clauses.Although Theorem 9.21 does not specify the quantitative relation that underliesits qualitative assertion, when (re�ned and) combined with the best known PCPconstruction, it does yield the best possible bound.Theorem 10.8 For every v < 1=8, the problem gapSAT3v is NP-hard.On the other hand, gapSAT31=8 is solvable in polynomial-time.

472 CHAPTER 10. RELAXING THE REQUIREMENTSSharp thresholds. The aforementioned opposite results (regarding gapSAT3v) ex-emplify a sharp threshold on the (factor of) approximation that can be obtainedby an e�cient algorithm. Another appealing example refers to the following maxi-mization problem in which the instances are systems of linear equations over GF(2)and the task is �nding an assignment that satis�es as many equations as possible.Note that by merely selecting an assignment at random, we expect to satisfy halfof the equations. Also note that it is easy to determine whether there exists anassignment that satis�es all equations. Let gapLinL;s denote the problem of dis-tinguishing between systems in which one can satisfy at least an L fraction ofthe equations and systems in which one cannot satisfy an s fraction (or more)of the equations. Then, as just noted, gapLinL;0:5 is trivial (for every L � 0:5)and gapLin1;s is feasible (for every s < 1). In contrast, moving both thresholds(slightly) away from the corresponding extremes, yields an NP-hard gap problem:Theorem 10.9 For every constant " > 0, the problem gapLin1�";0:5+" is NP-hard.The proof of Theorem 10.9 is based on a major re�nement of Theorem 9.16. In fact,the corresponding PCP system (for NP) is merely a reformulation of Theorem 10.9:the veri�er makes three queries and tests a linear condition regarding the answers,while using a logarithmic number of coin tosses. This veri�er accepts any yes-instance with probability at least 1 � " (when given oracle access to a suitableproof), and rejects any no-instance with probability at least 0:5 � " (regardlessof the oracle being accessed). A weaker result, which follows from Theorem 9.16itself, is presented in Exercise 10.5.Gap location. Theorems 10.8 and 10.9 illustrate two opposite situations withrespect to the \location" of the \gap" for which the corresponding promise prob-lem is hard. Recall that both gapSAT and gapLin are formulated with respectto two thresholds, where each threshold bounds the fraction of \local" conditions(i.e., clauses or equations) that are satis�able in the case of yes- and no-instances,respectively. In the case of gapSAT, the high threshold (referring to yes-instances)was set to 1, and thus only the low threshold (referring to no-instances) remaineda free parameter. Nevertheless, a hardness result was established for gapSAT, andfurthermore this was achieved for an optimal value of the low threshold (cf. theforegoing discussion of sharp thresholds). In contrast, in the case of gapLin, set-ting the high threshold to 1 makes the gap problem e�ciently solvable. Thus,the hardness of gapLin was established at a di�erent location of the high thresh-old. Speci�cally, hardness (for an optimal value of the ratio of thresholds) wasestablished when setting the high threshold to 1� ", for any " > 0.A �nal comment. All the aforementioned inapproximability results refer to ap-proximation (resp., gap) problems that are relaxations of optimization problemsin NP (i.e., the optimization problem is computationally equivalent to a decisionproblem in NP ; see Section 2.2.2). In these cases, the NP-hardness of the approx-imation (resp., gap) problem implies that the corresponding optimization problemis reducible to the approximation (resp., gap) problem. In other words, in these

10.1. APPROXIMATION 473cases nothing is gained by relaxing the original optimization problem, because therelaxed version remains just as hard.10.1.2 Decision or Property TestingA natural notion of relaxation for decision problems arises when considering thedistance between instances, where a natural notion of distance is the Hammingdistance (i.e., the fraction of bits on which two strings disagree). Loosely speaking,this relaxation (called property testing) refers to distinguishing inputs that residein a predetermined set S from inputs that are \relatively far" from any input thatresides in the set. Two natural types of promise problems emerge (with respect toany predetermined set S (and the Hamming distance between strings)):1. Relaxed decision w.r.t a �xed relative distance: Fixing a distance parameter�, we consider the problem of distinguishing inputs in S from inputs in ��(S),where ��(S) def= fx : 8z 2 S \ f0; 1gjxj �(x; z) > � � jxjg (10.1)and �(x1 � � �xm; z1 � � � zm) = jfi : xi 6= zigj denotes the number of bits onwhich x = x1 � � �xm and z = z1 � � � zm disagree. Thus, here we consider apromise problem that is a restriction (or a special case) of the problem ofdeciding membership in S.2. Relaxed decision w.r.t a variable distance: Here the instances are pairs (x; �),where x is as in Type 1 and � 2 [0; 1] is a (relative) distance parameter. Theyes-instances are pairs (x; �) such that x 2 S, whereas (x; �) is a no-instanceif x 2 ��(S).We shall focus on Type 1 formulation, which seems to capture the essential questionof whether or not these relaxations lower the complexity of the original decisionproblem. The study of Type 2 formulation refers to a relatively secondary question,which assumes a positive answer to the �rst question; that is, assuming that therelaxed form is easier than the original form, we ask how is the complexity of theproblem a�ected by making the distance parameter smaller (which means makingthe relaxed problem \tighter" and ultimately equivalent to the original problem).We note that for numerous NP-complete problems there exist natural (Type 1)relaxations that are solvable in polynomial-time. Actually, these algorithms runin sub-linear time (speci�cally, in polylogarithmic time), when given direct accessto the input. A few examples will be presented in x10.1.2.2 (but, as indicated inx10.1.2.2, this is not a generic phenomenon). Before turning to these examples, wediscuss several important de�nitional issues.10.1.2.1 De�nitional issuesProperty testing is concerned not only with solving relaxed versions of NP-hardproblems, but rather with solving these problems (as well as problems in P) insub-linear time. Needless to say, such results assume a model of computation in

474 CHAPTER 10. RELAXING THE REQUIREMENTSwhich algorithms have direct access to bits in the (representation of the) input (seeDe�nition 10.10).De�nition 10.10 (a direct access model { conventions): An algorithm with directaccess to its input is given its main input on a special input device that is accessedas an oracle (see x1.2.3.6). In addition, the algorithm is given the length of theinput and possibly other parameters on a secondary input device. The complexity ofsuch an algorithm is stated in terms of the length of its main input.Indeed, the description in x5.2.4.2 refers to such a model, but there the main inputis viewed as an oracle and the secondary input is viewed as the input. In thecurrent model, polylogarithmic time means time that is polylogarithmic in thelength of the main input, which means time that is polynomial in the length of thebinary representation of the length of the main input. Thus, polylogarithmic timeyields a robust notion of extremely e�cient computations. As we shall see, suchcomputations su�ce for solving various (property testing) problems.De�nition 10.11 (property testing for S): For any �xed � > 0, the promiseproblem of distinguishing S from ��(S) is called property testing for S (with respectto �).Recall that we say that a randomized algorithm solves a promise problem if itaccepts every yes-instance (resp., rejects every no-instance) with probability atleast 2=3. Thus, a (randomized) property testing for S accepts every input in S(resp., rejects every input in ��(S)) with probability at least 2=3.The question of representation. The speci�c representation of the input is ofmajor concern in the current context. This is due to (1) the e�ect of the represen-tation on the distance measure and to (2) the dependence of direct access machineson the speci�c representation of the input. Let us elaborate on both aspects.1. Recall that we de�ned the distance between objects in terms of the Hammingdistance between their representations. Clearly, in such a case, the choice ofrepresentation is crucial and di�erent representations may yield di�erent dis-tance measures. Furthermore, in this case, the distance between objects isnot preserved under various (natural) representations that are considered\equivalent" in standard studies of computational complexity. For example,in previous parts of this book, when referring to computational problemsconcerning graphs, we did not care whether the graph was represented by itsadjacency matrix or by its incidence-list. In contrast, these two representa-tions induce very di�erent distance measures and correspondingly di�erentproperty testing problems (see x10.1.2.2). Likewise, the use of padding (andother trivial syntactic conventions) becomes problematic (e.g., when using asigni�cant amount of padding, all objects are deemed close to one another(and property testing for any set becomes trivial)).

10.1. APPROXIMATION 4752. Since our focus is on sub-linear time algorithms, we may not a�ord trans-forming the input from one natural format to another. Thus, representationsthat are considered equivalent with respect to polynomial-time algorithms,may not be equivalent with respect to sub-linear time algorithms that havea direct access to the representation of the object. For example, adjacencyqueries and incidence queries cannot emulate one another in small time (i.e.,in time that is sub-linear in the number of vertices).Both aspects are further clari�ed by the examples provided in x10.1.2.2.The essential role of the promise. Recall that, for a �xed constant � > 0,we consider the promise problem of distinguishing S from ��(S). The promisemeans that all instances that are neither in S nor far from S (i.e., not in ��(S))are ignored, which is essential for sub-linear algorithms for natural problems. Thismakes the property testing task potentially easier than the corresponding stan-dard decision task (cf. x10.1.2.2). To demonstrate the point, consider the set Sconsisting of strings that have a majority of 1's. Then, deciding membership inS requires linear time, because random n-bit long strings with bn=2c ones cannotbe distinguished from random n-bit long strings with bn=2c + 1 ones by probinga sub-linear number of locations (even if randomization and error probability areallowed { see Exercise 10.8). On the other hand, the fraction of 1's in the input canbe approximated by a randomized polylogarithmic time algorithm (which yields aproperty tester for S; see Exercise 10.9). Thus, for some sets, deciding membershiprequires linear time, while property testing can be done in polylogarithmic time.The essential role of randomization. Referring to the foregoing example, wenote that randomization is essential for any sub-linear time algorithm that distin-guishes this set S from, say, �0:1(S). Speci�cally, a sub-linear time deterministicalgorithm cannot distinguish 1n from any input that has 1's in each position probedby that algorithm on input 1n. In general, on input x, a (sub-linear time) deter-ministic algorithm always reads the same bits of x and thus cannot distinguish xfrom any z that agrees with x on these bit locations.Note that, in both cases, we are able to prove lower-bounds on the time com-plexity of algorithms. This success is due to the fact that these lower-bounds areactually information theoretic in nature; that is, these lower-bounds actually referto the number of queries performed by these algorithms.10.1.2.2 Two models for testing graph propertiesIn this subsection we consider the complexity of property testing for sets of graphsthat are closed under graph isomorphism; such sets are called graph properties. Inview of the importance of representation in the context of property testing, weexplicitly consider two standard representations of graphs (cf. Appendix G.1),which indeed yield two di�erent models of testing graph properties.

476 CHAPTER 10. RELAXING THE REQUIREMENTS1. The adjacency matrix representation. Here a graph G = ([N]; E) is rep-resented (in a somewhat redundant form) by an N -by-N Boolean matrixMG = (mi;j)i;j2[N] such that mi;j = 1 if and only if fi; jg 2 E.2. Bounded incidence-lists representation. For a �xed parameter d, a graphG = ([N]; E) of degree at most d is represented (in a somewhat redundantform) by a mapping �G : [N]� [d]! [N][f?g such that �G(u; i) = v if v isthe ith neighbor of u and �G(u; i) = ? if v has less than i neighbors.We stress that the aforementioned representations determine both the notion ofdistance between graphs and the type of queries performed by the algorithm. Aswe shall see, the di�erence between these two representations yields a big di�erencein the complexity of corresponding property testing problems.Theorem 10.12 (property testing in the adjacency matrix representation): Forany �xed � > 0 and each of the following sets, there exists a polylogarithmic timerandomized algorithm that solves the corresponding property testing problem (withrespect to �).� For every �xed k � 2, the set of k-colorable graphs.� For every �xed � > 0, the set of graphs having a clique (resp., independentset) of density �.� For every �xed � > 0, the set of N-vertex graphs having a cut5 with at least� �N2 edges.� For every �xed � > 0, the set of N-vertex graphs having a bisection5with atmost � �N2 edges.In contrast, for some � > 0, there exists a graph property in NP for which propertytesting (with respect to �) requires linear time.The testing algorithms (asserted in Theorem 10.12) use a constant number ofqueries, where this constant is polynomial in the constant 1=�. In contrast, exactdecision procedures for the corresponding sets require a linear number of queries.The running time of the aforementioned algorithms hides a constant that is expo-nential in their query complexity (except for the case of 2-colorability where thehidden constant is polynomial in 1=�). Note that such dependencies seem essen-tial, since setting � = 1=N2 regains the original (non-relaxed) decision problems(which, with the exception of 2-colorability, are all NP-complete). Turning to thelower-bound (asserted in Theorem 10.12), we mention that the graph property forwhich this bound is proved is not a natural one. As in x10.1.2.1, the lower-boundon the time complexity follows from a lower-bound on the query complexity.Theorem 10.12 exhibits a dichotomy between graph properties for which prop-erty testing is possible by a constant number of queries and graph properties for5A cut in a graph G = ([N]; E) is a partition (S1; S2) of the set of vertices (i.e., S1 [S2 = [N]and S1 \ S2 = ;), and the edges of the cut are the edges with exactly one endpoint in S1. Abisection is a cut of the graph to two parts of equal cardinality.

10.1. APPROXIMATION 477which property testing requires a linear number of queries. A combinatorial charac-terization of the graph properties for which property testing is possible (in the ad-jacency matrix representation) when using a constant number of queries is known.6We note that the constant in this characterization may depend arbitrarily on � (andindeed, in some cases, it is a function growing faster than a tower of 1=� exponents).For example, property testing for the set of triangle-free graphs is possible by usinga number of queries that depends only on �, but it is known that this number mustgrow faster than any polynomial in 1=�.Turning back to Theorem 10.12, we note that the results regarding propertytesting for the sets corresponding to max-cut and min-bisection yield approximationalgorithms with an additive error term (of �N2). For dense graphs (i.e., N -vertexgraphs having
(N2) edges), this yields a constant factor approximation for thestandard approximation problem (as in De�nition 10.1). That is, for every constantc > 1, we obtain a c-factor approximation of the problem of maximizing the size of acut (resp., minimizing the size of a bisection) in dense graphs. On the other hand,the result regarding clique yields a so called dual-approximation for maximumclique; that is, we approximate the minimum number of missing edges in the densestinduced subgraph of a given size.Indeed, Theorem 10.12 is meaningful only for dense graphs. This holds, ingeneral, for any graph property in the adjacency matrix representation.7 Also notethat property testing is trivial, under the adjacency matrix representation, for anygraph property S satisfying �o(1)(S) = ; (e.g., the set of connected graphs, the setof Hamiltonian graphs, etc).We now turn to the bounded incidence-lists representation, which is relevantonly for bounded degree graphs. The problems of max-cut, min-bisection and clique(as in Theorem 10.12) are trivial under this representation, but graph connectivitybecomes non-trivial, and the complexity of property testing for the set of bipartitegraphs changes dramatically.Theorem 10.13 (property testing in the bounded incidence-lists representation):The following assertions refer to the representation of graphs by incidence-lists oflength d.� For any �xed d and � > 0, there exists a polylogarithmic time randomizedalgorithm that solves the property testing problem for the set of connectedgraphs of degree at most d.� For any �xed d and � > 0, there exists a sub-linear time randomized algorithmthat solves the property testing problem for the set of bipartite graphs of degree6Describing this fascinating result of Alon et. al. [9], which refers to the notion of regularpartitions (introduced by Szemer�edi), is beyond the scope of the current text.7In this model, as shown next, property testing of non-dense graphs is trivial. Speci�cally,�xing the distance parameter �, we call a N-vertex graph non-dense if it has less than (�=2) � �N2 �edges. The point is that, for non-dense graphs, the property testing problem for any set S istrivial, because we may just accept any non-dense (N-vertex) graph if and only if S containssome non-dense (N-vertex) graph. Clearly, the decision is correct in the case that S does notcontain non-dense graphs. However, the decision is admissible also in the case that S does containsome non-dense graph, because in this case every non-dense graph is \�-close" to S (i.e., it is notin ��(S)).

478 CHAPTER 10. RELAXING THE REQUIREMENTSat most d. Speci�cally, on input an N-vertex graph, the algorithm runs foreO(pN) time.� For any �xed d � 3 and some � > 0, property testing for the set of N-vertex(3-regular) bipartite graphs requires
(pN) queries.� For some �xed d and � > 0, property testing for the set of N-vertex 3-colorablegraphs of degree at most d requires
(N) queries.The running time of the algorithms (asserted in Theorem 10.13) hides a constantthat is polynomial in 1=�. Providing a characterization of graph properties accord-ing to the complexity of the corresponding tester (in the bounded incidence-listsrepresentation) is an interesting open problem.Decoupling the distance from the representation. So far, we have con�nedour attention to the Hamming distance between the representations of graphs.This made the choice of representation even more important than usual (i.e., morecrucial than is common in complexity theory). In contrast, it is natural to considera notion of distance between graphs that is independent of their representation.For example, the distance between G1=(V1; E1) and G2=(V2; E2) can be de�nedas the minimum of the size of symmetric di�erence between E1 and the set of edgesin a graph that is isomorphic to G2. The corresponding relative distance may bede�ned as the distance divided by jE1j+ jE2j (or by max(jE1j; jE2j)).10.1.2.3 Beyond graph propertiesProperty testing has been applied to a variety of computational problems beyondthe domain of graph theory. In fact, this type of computational problems �rstemerged in the algebraic domain, where the instances (to be viewed as inputs tothe testing algorithm) are functions and the relevant properties are sets of algebraicfunctions. The archetypical example is the set of low-degree polynomials; that is,m-variate polynomials of total (or individual) degree d over some �nite �eld GF(q),where m; d and q are parameters that may depend on the length of the input (orsatisfy some relationships; e.g., q = d3 = m6). Note that, in this case, the inputis the (\full" or \explicit") description of an m-variate function over GF(q), whichmeans that it has length qm � log2 q. Viewing the problem instance as a functionsuggests a natural measure of distance (i.e., the fraction of arguments on which thefunctions disagree) as well as a natural way of accessing the instance (i.e., queryingthe function for the value of selected arguments).Note that we have referred to these computational problems, under a di�erentterminology, in x9.3.2.2 and in x9.3.2.1. In particular, in x9.3.2.1 we refereed tothe special case of linear Boolean functions (i.e., individual degree 1 and q = 2),whereas in x9.3.2.2 we used the setting q = poly(d) and m = d= log d (where d is abound on the total degree).Other domains of computational problems in which property testing was stud-ied include geometry (e.g., clustering problems), formal languages (e.g., testing

10.2. AVERAGE CASE COMPLEXITY 479membership in regular sets), coding theory (cf. Appendix E.1.3), probability the-ory (e.g., testing equality of distributions), and combinatorics (e.g., monotone andjunta functions). As discuss at the end of x10.1.2.2, it is often natural to decou-ple the distance measure from the representation of the objects (i.e., the way ofaccessing the problem instance). This is done by introducing a representation-independent notion of distance between instances, which should be natural in thecontext of the problem at hand.10.2 Average Case ComplexityTeaching note: We view average-case complexity as referring to the performance on\average" (or rather typical) instances, and not as the average performance on randominstances. This choice is justi�ed in x10.2.1.1. Thus, it may be more justi�ed to refer tothe following theory by the name typical-case complexity. Still, the name average-casewas retained for historical reasons.Our approach so far (including in Section 10.1) is termed worst-case complex-ity, because it refers to the performance of potential algorithms on each legitimateinstance (and hence to the performance on the worst possible instance). That is,computational problems were de�ned as referring to a set of instances and perfor-mance guarantees were required to hold for each instance in this set. In contrast,average-case complexity allows ignoring a negligible measure of the possible in-stances, where the identity of the ignored instances is determined by the analysisof potential solvers and not by the problem's statement.A few comments are in place. Firstly, as just hinted, the standard statementof the worst-case complexity of a computational problem (especially one havinga promise) may also ignores some instances (i.e., those considered inadmissibleor violating the promise), but these instances are determined by the problem'sstatement. In contrast, the inputs ignored in average-case complexity are notinadmissible in any inherent sense (and are certainly not identi�ed as such by theproblem's statement). It is just that they are viewed as exceptional when claimingthat a speci�c algorithm solve the problem; that is, these exceptional instances aredetermined by the analysis of that algorithm. Needless to say, these exceptionalinstances ought to be rare (i.e., occur with negligible probability).The last sentence raises a couple of issues. Most importantly, a distributionon the set of admissible instances has to be speci�ed. In fact, we shall consider anew type of computational problems, each consisting of a standard computationalproblem coupled with a probability distribution on instances. Consequently, thequestion of which distributions should be considered in a theory of average-casecomplexity arises. This question and numerous other de�nitional issues will beaddressed in x10.2.1.1.Before proceeding, let us spell out the rather straightforward motivation to thestudy of the average-case complexity of computational problems: It is that, in real-life applications, one may be perfectly happy with an algorithm that solves theproblem fast on almost all instances that arise in the relevant application. That is,

