Computational Complexity:

A Conceptual Perspective

Oded Goldreich

Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.

July 1, 2008

464

Chapter 10

Relaxing the Requirements

The philosophers have only interpreted the world, in
various ways; the point is to change it.

Karl Marx, Theses on Feuerbach

In light of the apparent infeasibility of solving numerous useful computational prob-
lems, it is natural to ask whether these problems can be relaxed such that the
relaxation is both useful and allows for feasible solving procedures. We stress two
aspects about the foregoing question: on one hand, the relaxation should be suf-
ficiently good for the intended applications; but, on the other hand, it should be
significantly different from the original formulation of the problem so to escape the
infeasibility of the latter. We note that whether a relaxation is adequate for an
intended application depends on the application, and thus much of the material
in this chapter is less robust (or generic) than the treatment of the non-relaxed
computational problems.

Summary: We consider two types of relaxations. The first type of
relaxation refers to the computational problems themselves; that is, for
each problem instance we extend the set of admissible solutions. In
the context of search problems this means settling for solutions that
have a value that is “sufficiently close” to the value of the optimal
solution (with respect to some value function). Needless to say, the
specific meaning of ‘sufficiently close’ is part of the definition of the
relaxed problem. In the context of decision problems this means that
for some instances both answers are considered valid; specifically, we
shall consider promise problems in which the no-instances are “far”
from the yes-instances in some adequate sense (which is part of the
definition of the relaxed problem).

The second type of relaxation deviates from the requirement that the
solver provides an adequate answer on each valid instance. Instead,
the behavior of the solver is analyzed with respect to a predetermined

465

466 CHAPTER 10. RELAXING THE REQUIREMENTS

input distribution (or a class of such distributions), and bad behavior
may occur with negligible probability where the probability is taken
over this input distribution. That is, we replace worst-case analysis by
average-case (or rather typical-case) analysis. Needless to say, a major
component in this approach is limiting the class of distributions in a way
that, on one hand, allows for various types of natural distributions and,
on the other hand, prevents the collapse of the corresponding notion of
average-case hardness to the standard notion of worst-case hardness.

Organization. The first type of relaxation is treated in Section 10.1, where we
consider approximations of search (or rather optimization) problems as well as
approximate-decision problems (a.k.a property testing); see Section 10.1.1 and Sec-
tion 10.1.2, respectively. The second type of relaxation, known as average/typical-
case complexity, is treated in Section 10.2. The treatment of these two types is
quite different. Section 10.1 provides a short and high-level introduction to various
research areas, focusing on the main notions and illustrating them by reviewing
some results (while providing no proofs). In contrast, Section 10.2 provides a basic
treatment of a theory (of average/typical-case complexity), focusing on some basic
results and providing a rather detailed exposition of the corresponding proofs.

10.1 Approximation

The notion of approximation is a very natural one, and has arisen also in other
disciplines. Approximation is most commonly used in references to quantities (e.g.,
“the length of one meter is approximately forty inches”), but it is also used when
referring to qualities (e.g., “an approximately correct account of a historical event”).
In the context of computation, the notion of approximation modifies computational
tasks such as search and decision problems. (In fact, we have already encountered
it as a modifier of counting problems; see Section 6.2.2.)

Two major questions regarding approximation are (1) what is a “good” approx-
imation, and (2) can it be found easier than finding an exact solution. The answer
to the first question seems intimately related to the specific computational task
at hand and to its role in the wider context (i.e., the higher level application): a
good approximation is one that suffices for the intended application. Indeed, the
importance of certain approximation problems is much more subjective than the
importance of the corresponding optimization problems. This fact seems to stand
in the way of attempts at providing a comprehensive theory of natural approxi-
mation problems (e.g., general classes of natural approximation problems that are
shown to be computationally equivalent).

Turning to the second question, we note that in numerous cases natural approx-
imation problems seem to be significantly easier than the corresponding original
(“exact”) problems. On the other hand, in numerous other cases, natural approx-
imation problems are computationally equivalent to the original problems. We
shall exemplify both cases by reviewing some specific results, but will not provide

10.1. APPROXIMATION 467

a general systematic classification (because such a classification is not known).!

We shall distinguish between approximation problems that are of a “search
type” and problems that have a clear “decisional” flavor. In the first case we shall
refer to a function that assigns values to possible solutions (of a search problem);
whereas in the second case we shall refer to the distance between instances (of a
decision problem).? We note that, sometimes the same computational problem
may be cast in both ways, but for most natural approximation problems one of the
two frameworks is more appealing than the other. The common theme underlying
both frameworks is that in each of them we extend the set of admissible solutions.
In the case of search problems, we augment the set of optimal solutions by allowing
also almost-optimal solutions. In the case of decision problems, we extend the set
of solutions by allowing an arbitrary answer (solution) to some instances, which
may be viewed as a promise problem that disallows these instances. In this case we
focus on promise problems in which the yes- and no-instances are far apart (and
the instances that violate the promise are closed to yes-instances).

Teaching note: Most of the results presented in this section refer to specific computa-
tional problems and (with one exception) are presented without a proof. In view of the
complexity of the corresponding proofs and the merely illustrative role of these results

in the context of complexity theory, we recommend doing the same in class.

10.1.1 Search or Optimization

As noted in Section 2.2.2, many search problems involve a set of potential solutions
(per each problem instance) such that different solutions are assigned different “val-
ues” (resp., “costs”) by some “value” (resp., “cost”) function. In such a case, one is
interested in finding a solution of maximum value (resp., minimum cost). A corre-
sponding approximation problem may refer to finding a solution of approximately
maximum value (resp., approximately minimum cost), where the specification of
the desired level of approximation is part of the problem’s definition. Let us elab-
orate.

For concreteness, we focus on the case of a value that we wish to maximize.
For greater expressibility (or, actually, for greater flexibility), we allow the value
of the solution to depend also on the instance itself.> Thus, for a (polynomially
bounded) binary relation R and a value function f : {0,1}* x {0,1}* — R, we
consider the problem of finding solutions (with respect to R) that maximize the

In contrast, systematic classifications of restricted classes of approximation problems are
known. For example, see [56] for a classification of (approximate versions of) Constraint Satis-
faction Problems.

2In some sense, this distinction is analogous to the distinction between the two aforementioned
uses of the word approzimation.

3This convention is only a matter of convenience: without loss of generality, we can express
the same optimization problem using a value function that only depends on the solution by
augmenting each solution with the corresponding instance (i.e., a solution y to an instance x can
be encoded as a pair (z,y), and the resulting set of valid solutions for = will consist of pairs of the
form (z,-)). Hence, the foregoing convention merely allows avoiding this cumbersome encoding
of solutions.

468 CHAPTER 10. RELAXING THE REQUIREMENTS

value of f. That is, given x (such that R(x) # (), the task is finding y € R(z) such
that f(z,y) = v,, where v, is the maximum value of f(z,y’') over all y' € R(x).
Typically, R is in PC and f is polynomial-time computable. Indeed, without loss
of generality, we may assume that for every x it holds that R(z) = {0,1}*(*D for
some polynomial £ (see Exercise 2.8).* Thus, the optimization problem is recast
as the following search problem: given z, find y such that f(z,y) = v,, where
vy = maxyeo 130 L (2, y')}

We shall focus on relative approximation problems, where for some gap function
g:{0,1}* - {reR : r>1} the (maximization) task is finding y such that f(z,y) >
vz /g(x). Indeed, in some cases the approximation factor is stated as a function of
the length of the input (i.e., g(z) = ¢'(|z]) for some ¢’ : N — {reR : r>1}), but
often the approximation factor is stated in terms of some more refined parameter
of the input (e.g., as a function of the number of vertices in a graph). Typically, g
is polynomial-time computable.

Definition 10.1 (g-factor approximation): Let f : {0,1}* x {0,1}* — R, ¢ :
N-N, and g:{0,1}* - {reR:r>1}.

Maximization version: The g-factor approximation of maximizing f (w.r.t £) is the
search problem R such that R(z) = {y € {0,1}0=D ¢ f(z,y) > v./g(x)},
where v, = maXyero 1yea«n{f (€, y')}-

Minimization version: The g-factor approximation of minimizing f (w.r.t £) is the
search problem R such that R(z) = {y € {0,1}0=D) : f(2,y) < g(z) - 2},
where ¢; = min i 1yea=n 1 (2,9}

We note that for numerous NP-complete optimization problems, polynomial-time
algorithms provide meaningful approximations. A few examples will be mentioned
in §10.1.1.1. In contrast, for numerous other NP-complete optimization problems,
natural approximation problems are computationally equivalent to the correspond-
ing optimization problem. A few examples will be mentioned in §10.1.1.2, where
we also introduce the notion of a gap problem, which is a promise problem (of
the decision type) intended to capture the difficulty of the (approximate) search
problem.

10.1.1.1 A few positive examples

Let us start with a trivial example. Considering a problem such as finding the
maximum clique in a graph, we note that finding a linear factor approximation is
trivial (i.e., given a graph G = (V, E), we may output any vertex in V as a |V|-
factor approximation of the maximum clique in G). A famous non-trivial example
is presented next.

Proposition 10.2 (factor two approximation to minimum Vertex Cover): There
exists a polynomial-time approzimation algorithm that given a graph G = (V, E)

“However, in this case (and in contrast to Footnote 3), the value function f must depend both
on the instance and on the solution (i.e., f(z,y) may no be oblivious of).

10.1. APPROXIMATION 469

outputs a vertex cover that is at most twice as large as the minimum vertex cover
of G.

We warn that an approximation algorithm for minimum Vertex Cover does not
yield such an algorithm for the complementary search problem (of maximum Independent
Set). This phenomenon stands in contrast to the case of optimization, where an
optimal solution for one search problem (e.g., minimum Vertex Cover) yields an
optimal solution for the complementary search problem (maximum Independent
Set).

Proof Sketch: The main observation is a connection between the set of maximal
matchings and the set of vertex covers in a graph. Let M be any mazimal matching
in the graph G = (V, E); that is, M C E is a matching but augmenting it by any
single edge yields a set that is not a matching. Then, on one hand, the set of all
vertices participating in M is a vertex cover of G, and, on the other hand, each
vertex cover of G must contain at least one vertex of each edge of M. Thus, we can
find the desired vertex cover by finding a maximal matching, which in turn can be
found by a greedy algorithm. O

Another example. An instance of the traveling salesman problem (TSP) consists
of a symmetric matrix of distances between pairs of points, and the task is finding
a shortest tour that passes through all points. In general, no reasonable approx-
imation is feasible for this problem (see Exercise 10.1), but here we consider two
special cases in which the distances satisfy some natural constraints (and pretty
good approximations are feasible).

Theorem 10.3 (approximations to special cases of TSP): Polynomial-time algo-
rithms exist for the following two computational problems.

1. Providing a 1.5-factor approximation for the special case of TSP in which the
distances satisfy the triangle inequality.

2. For every € > 1, providing a (1 + ¢)-factor approzimation for the special case
of Euclidean TSP (i.e., for some constant k (e.g., k = 2), the points reside
in a k-dimensional Euclidean space, and the distances refer to the standard
Euclidean norm).

A weaker version of Part 1 is given in Exercise 10.2. A detailed survey of Part 2
is provided in [13]. We note the difference exemplified by the two items of Theo-
rem 10.3: Whereas Part 1 provides a polynomial-time approximation for a specific
constant factor, Part 2 provides such an algorithm for any constant factor. Such a
result is called a polynomial-time approzimation scheme (abbreviated PTAS).

10.1.1.2 A few negative examples

Let us start again with a trivial example. Cousidering a problem such as finding
the maximum clique in a graph, we note that given a graph G = (V, E) finding

470 CHAPTER 10. RELAXING THE REQUIREMENTS

a (1 + |V|7!)-factor approximation of the maximum clique in G is as hard as
finding a maximum clique in G. Indeed, this “result” is not really meaningful.
In contrast, building on the PCP Theorem (Theorem 9.16), one may prove that
finding a |V |'~°()-factor approximation of the maximum clique in a general graph
G = (V, E) is as hard as finding a maximum clique in a general graph. This follows
from the fact that the approximation problem is NP-hard (cf. Theorem 10.5).

The statement of such inapproximability results is made stronger by referring
to a promise problem that consists of distinguishing instances of sufficiently far
apart values. Such promise problems are called gap problems, and are typically
stated with respect to two bounding functions g1, g2 : {0,1}* — R (which replace
the gap function g of Definition 10.1). Typically, g1 and g, are polynomial-time
computable.

Definition 10.4 (gap problem for approximation of f): Let f be as in Defini-
tion 10.1 and g1,92 : {0,1}* —» R.

Maximization version: For g1 > g2, the gap,, ,, problem of maximizing f consists
of distinguishing between {x : v, > gi(x)} and {z : v, < g2(x)}, where
Vg = maxye{[),l}l(lil){f(w;y)}'

Minimization version: For g1 < g2, the gap,, ,, problem of minimizing f consists
of distinguishing between {x : ¢, < gi(z)} and {z : ¢ > g2(z)}, where
Ca = Minyero 13e0=n{f (2, y)}

For example, the gap,, , problem of maximizing the size of a clique in a graph
counsists of distinguishing between graphs G that have a clique of size g1(G) and
graphs G that have no clique of size g»(G). In this case, we typically let g;(G) be a
function of the number of vertices in G =(V, E); that is, g;(G) = ¢i(|V]). Indeed,
letting w(G) denote the size of the largest clique in the graph G, we let gapClique;
denote the gap problem of distinguishing between {G = (V, E) : w(G) > L(|V])}
and {G=(V,E) : w(G) < s(|V])}, where L > s. Using this terminology, we restate
(and strengthen) the aforementioned |V|'~°()-factor inapproximability result of
the maximum clique problem.

Theorem 10.5 For some L(N) = N'=°(1) and s(N) = N°W) it holds that gapClique; |
is NP-hard.

The proof of Theorem 10.5 is based on a major refinement of Theorem 9.16 that
refers to a PCP system of amortized free-bit complexity that tends to zero (cf.
§9.3.4.1). A weaker result, which follows from Theorem 9.16 itself, is presented in
Exercise 10.3.

As we shall show next, results of the type of Theorem 10.5 imply the hardness
of a corresponding approximation problem; that is, the hardness of deciding a gap
problem implies the hardness of a search problem that refers to an analogous factor
of approximation.

10.1. APPROXIMATION 471

Proposition 10.6 Let f,g1,92 be as in Definition 10.4 and suppose that these
functions are polynomial-time computable. Then the gap,, ,, problem of mazimiz-
ing f (resp., minimizing f) is reducible to the gi/g2-factor (resp., g2/gi-factor)
approzimation of mazimizing f (resp., minimizing f).

Note that a reduction in the opposite direction does not necessarily exist (even in
the case that the underlying optimization problem is self-reducible in some natural
sense). Indeed, this is another difference between the current context (of approx-
imation) and the context of optimization problems, where the search problem is
reducible to a related decision problem.

Proof Sketch: We focus on the maximization version. On input z, we solve the
gap,, 4, problem, by making the query z, obtaining the answer y, and ruling that
x has value at least g1 (z) if and only if f(z,y) > g2(z). Recall that we need to
analyze this reduction only on inputs that satisfy the promise. Thus, if v, > g1 (z)
then the oracle must return a solution y that satisfies f(x,y) > v./(91(x)/g2(x)),
which implies that f(z,y) > g2(z). On the other hand, if v, < g2(z) then f(z,y) <
v, < g2(x) holds for any possible solution y. O

Additional examples. Let us consider gapVC, ,, the gap, , problem of mini-
mizing the vertex cover of a graph, where s and L are constants and g;(G) = s-|V|
(resp., gr(G) = L - |V]) for any graph G=(V, E). Then, Proposition 10.2 implies
(via Proposition 10.6) that, for every constant s, the problem gapVC, ,, is solvable
in polynomial-time. In contrast, sufficiently narrowing the gap between the two
thresholds yields an inapproximability result. In particular:

Theorem 10.7 For some constants s > 0 and L < 1 such that L > % - s (e.g.,
s =0.62 and L = 0.84), the problem gapVC_ ; is NP-hard.

The proof of Theorem 10.7 is based on a complicated refinement of Theorem 9.16.
Again, a weaker result follows from Theorem 9.16 itself (see Exercise 10.4).

As noted, refinements of the PCP Theorem (Theorem 9.16) play a key role in
establishing inapproximability results such as Theorems 10.5 and 10.7. In that
respect, it is adequate to recall that Theorem 9.21 establishes the equivalence of
the PCP Theorem itself and the NP-hardness of a gap problem concerning the
maximization of the number of clauses that are satisfies in a given 3-CNF for-
mula. Specifically, gapSAT? was defined (in Definition 9.20) as the gap problem
consisting of distinguishing between satisfiable 3-CNF formulae and 3-CNF formu-
lae for which each truth assignment violates at least an e fraction of the clauses.
Although Theorem 9.21 does not specify the quantitative relation that underlies
its qualitative assertion, when (refined and) combined with the best known PCP
construction, it does yield the best possible bound.

Theorem 10.8 For every v < 1/8, the problem gapSAT> is NP-hard.

On the other hand, gapSAT?/8 is solvable in polynomial-time.

472 CHAPTER 10. RELAXING THE REQUIREMENTS

Sharp thresholds. The aforementioned opposite results (regarding gapSAT?) ex-
emplify a sharp threshold on the (factor of) approximation that can be obtained
by an efficient algorithm. Another appealing example refers to the following maxi-
mization problem in which the instances are systems of linear equations over GF(2)
and the task is finding an assignment that satisfies as many equations as possible.
Note that by merely selecting an assignment at random, we expect to satisfy half
of the equations. Also note that it is easy to determine whether there exists an
assignment that satisfies all equations. Let gapLin, ; denote the problem of dis-
tinguishing between systems in which one can satisfy at least an L fraction of
the equations and systems in which one cannot satisfy an s fraction (or more)
of the equations. Then, as just noted, gapling 5 is trivial (for every L > 0.5)
and gapLin, , is feasible (for every s < 1). In contrast, moving both thresholds
(slightly) away from the corresponding extremes, yields an NP-hard gap problem:

Theorem 10.9 For every constante > 0, the problem gapLin, . ;5. . is NP-hard.

The proof of Theorem 10.9 is based on a major refinement of Theorem 9.16. In fact,
the corresponding PCP system (for NP) is merely a reformulation of Theorem 10.9:
the verifier makes three queries and tests a linear condition regarding the answers,
while using a logarithmic number of coin tosses. This verifier accepts any yes-
instance with probability at least 1 — ¢ (when given oracle access to a suitable
proof), and rejects any no-instance with probability at least 0.5 — & (regardless
of the oracle being accessed). A weaker result, which follows from Theorem 9.16
itself, is presented in Exercise 10.5.

Gap location. Theorems 10.8 and 10.9 illustrate two opposite situations with
respect to the “location” of the “gap” for which the corresponding promise prob-
lem is hard. Recall that both gapSAT and gapLin are formulated with respect
to two thresholds, where each threshold bounds the fraction of “local” conditions
(i-e., clauses or equations) that are satisfiable in the case of yes- and no-instances,
respectively. In the case of gapSAT, the high threshold (referring to yes-instances)
was set to 1, and thus only the low threshold (referring to no-instances) remained
a free parameter. Nevertheless, a hardness result was established for gapSAT, and
furthermore this was achieved for an optimal value of the low threshold (cf. the
foregoing discussion of sharp thresholds). In contrast, in the case of gapLin, set-
ting the high threshold to 1 makes the gap problem efficiently solvable. Thus,
the hardness of gapLin was established at a different location of the high thresh-
old. Specifically, hardness (for an optimal value of the ratio of thresholds) was
established when setting the high threshold to 1 — ¢, for any € > 0.

A final comment. All the aforementioned inapproximability results refer to ap-
proximation (resp., gap) problems that are relaxations of optimization problems
in NP (i.e., the optimization problem is computationally equivalent to a decision
problem in N'P; see Section 2.2.2). In these cases, the NP-hardness of the approx-
imation (resp., gap) problem implies that the corresponding optimization problem
is reducible to the approximation (resp., gap) problem. In other words, in these

10.1. APPROXIMATION 473

cases nothing is gained by relaxing the original optimization problem, because the
relaxed version remains just as hard.

10.1.2 Decision or Property Testing

A natural notion of relaxation for decision problems arises when considering the
distance between instances, where a natural notion of distance is the Hamming
distance (i.e., the fraction of bits on which two strings disagree). Loosely speaking,
this relaxation (called property testing) refers to distinguishing inputs that reside
in a predetermined set S from inputs that are “relatively far” from any input that
resides in the set. Two natural types of promise problems emerge (with respect to
any predetermined set S (and the Hamming distance between strings)):

1. Relazed decision w.r.t a fived relative distance: Fixing a distance parameter
6, we consider the problem of distinguishing inputs in S from inputs in I's(S),
where

def

Ds(S) = {z:Vze Sn{0, 1} A(z,2) > 6 -|z|} (10.1)

and A(zy - Tm, 21 2m) = |{i : ®; # z}| denotes the number of bits on
which = x1---%,, and z = 2, --- z,, disagree. Thus, here we consider a
promise problem that is a restriction (or a special case) of the problem of
deciding membership in S.

2. Relazed decision w.r.t a variable distance: Here the instances are pairs (z,),
where z is as in Type 1 and 6 € [0,1] is a (relative) distance parameter. The
yes-instances are pairs (z,8) such that z € S, whereas (z,8) is a no-instance
if © € Ts(S).

We shall focus on Type 1 formulation, which seems to capture the essential question
of whether or not these relaxations lower the complexity of the original decision
problem. The study of Type 2 formulation refers to a relatively secondary question,
which assumes a positive answer to the first question; that is, assuming that the
relaxed form is easier than the original form, we ask how is the complexity of the
problem affected by making the distance parameter smaller (which means making
the relaxed problem “tighter” and ultimately equivalent to the original problem).

We note that for numerous NP-complete problems there exist natural (Type 1)
relaxations that are solvable in polynomial-time. Actually, these algorithms run
in sub-linear time (specifically, in polylogarithmic time), when given direct access
to the input. A few examples will be presented in §10.1.2.2 (but, as indicated in
§10.1.2.2, this is not a generic phenomenon). Before turning to these examples, we
discuss several important definitional issues.

10.1.2.1 Definitional issues

Property testing is concerned not only with solving relaxed versions of NP-hard
problems, but rather with solving these problems (as well as problems in P) in
sub-linear time. Needless to say, such results assume a model of computation in

474 CHAPTER 10. RELAXING THE REQUIREMENTS

which algorithms have direct access to bits in the (representation of the) input (see
Definition 10.10).

Definition 10.10 (a direct access model — conventions): An algorithm with direct
access to its input is given its main input on a special input device that is accessed
as an oracle (see §1.2.3.6). In addition, the algorithm is given the length of the
input and possibly other parameters on a secondary input device. The complexity of
such an algorithm is stated in terms of the length of its main input.

Indeed, the description in §5.2.4.2 refers to such a model, but there the main input
is viewed as an oracle and the secondary input is viewed as the input. In the
current model, polylogarithmic time means time that is polylogarithmic in the
length of the main input, which means time that is polynomial in the length of the
binary representation of the length of the main input. Thus, polylogarithmic time
yields a robust notion of extremely efficient computations. As we shall see, such
computations suffice for solving various (property testing) problems.

Definition 10.11 (property testing for S): For any fized § > 0, the promise
problem of distinguishing S from Ts(S) is called property testing for S (with respect
to 4).

Recall that we say that a randomized algorithm solves a promise problem if it
accepts every yes-instance (resp., rejects every no-instance) with probability at
least 2/3. Thus, a (randomized) property testing for S accepts every input in S
(resp., rejects every input in I's(S)) with probability at least 2/3.

The question of representation. The specific representation of the input is of
major concern in the current context. This is due to (1) the effect of the represen-
tation on the distance measure and to (2) the dependence of direct access machines
on the specific representation of the input. Let us elaborate on both aspects.

1. Recall that we defined the distance between objects in terms of the Hamming
distance between their representations. Clearly, in such a case, the choice of
representation is crucial and different representations may yield different dis-
tance measures. Furthermore, in this case, the distance between objects is
not preserved under various (natural) representations that are considered
“equivalent” in standard studies of computational complexity. For example,
in previous parts of this book, when referring to computational problems
concerning graphs, we did not care whether the graph was represented by its
adjacency matrix or by its incidence-list. In contrast, these two representa-
tions induce very different distance measures and correspondingly different
property testing problems (see §10.1.2.2). Likewise, the use of padding (and
other trivial syntactic conventions) becomes problematic (e.g., when using a
significant amount of padding, all objects are deemed close to one another
(and property testing for any set becomes trivial)).

10.1. APPROXIMATION 475

2. Since our focus is on sub-linear time algorithms, we may not afford trans-
forming the input from one natural format to another. Thus, representations
that are considered equivalent with respect to polynomial-time algorithms,
may not be equivalent with respect to sub-linear time algorithms that have
a direct access to the representation of the object. For example, adjacency
queries and incidence queries cannot emulate one another in small time (i.e.,
in time that is sub-linear in the number of vertices).

Both aspects are further clarified by the examples provided in §10.1.2.2.

The essential role of the promise. Recall that, for a fixed constant § > 0,
we consider the promise problem of distinguishing S from I's(S). The promise
means that all instances that are neither in S nor far from S (i.e., not in I's(.S))
are ignored, which is essential for sub-linear algorithms for natural problems. This
makes the property testing task potentially easier than the corresponding stan-
dard decision task (cf. §10.1.2.2). To demonstrate the point, consider the set S
consisting of strings that have a majority of 1’s. Then, deciding membership in
S requires linear time, because random n-bit long strings with |n/2]| ones cannot
be distinguished from random n-bit long strings with [n/2] + 1 ones by probing
a sub-linear number of locations (even if randomization and error probability are
allowed — see Exercise 10.8). On the other hand, the fraction of 1’s in the input can
be approximated by a randomized polylogarithmic time algorithm (which yields a
property tester for S; see Exercise 10.9). Thus, for some sets, deciding membership
requires linear time, while property testing can be done in polylogarithmic time.

The essential role of randomization. Referring to the foregoing example, we
note that randomization is essential for any sub-linear time algorithm that distin-
guishes this set S from, say, I'g.1(S). Specifically, a sub-linear time deterministic
algorithm cannot distinguish 1™ from any input that has 1’s in each position probed
by that algorithm on input 1”. In general, on input z, a (sub-linear time) deter-
ministic algorithm always reads the same bits of and thus cannot distinguish x
from any z that agrees with = on these bit locations.

Note that, in both cases, we are able to prove lower-bounds on the time com-
plexity of algorithms. This success is due to the fact that these lower-bounds are
actually information theoretic in nature; that is, these lower-bounds actually refer
to the number of queries performed by these algorithms.

10.1.2.2 Two models for testing graph properties

In this subsection we consider the complexity of property testing for sets of graphs
that are closed under graph isomorphism; such sets are called graph properties. In
view of the importance of representation in the context of property testing, we
explicitly consider two standard representations of graphs (cf. Appendix G.1),
which indeed yield two different models of testing graph properties.

476 CHAPTER 10. RELAXING THE REQUIREMENTS

1. The adjacency matrix representation. Here a graph G = ([N], E) is rep-
resented (in a somewhat redundant form) by an N-by-N Boolean matrix
Mg = (m;j); jern) such that m; ; = 1 if and only if {i,j} € E.

2. Bounded incidence-lists representation. For a fixed parameter d, a graph
G = ([N], E) of degree at most d is represented (in a somewhat redundant
form) by a mapping pg : [N] x [d] — [N]U{L} such that pg(u,i) =vifvis
the i*? neighbor of u and pg(u,7) = L if v has less than i neighbors.

We stress that the aforementioned representations determine both the notion of
distance between graphs and the type of queries performed by the algorithm. As
we shall see, the difference between these two representations yields a big difference
in the complexity of corresponding property testing problems.

Theorem 10.12 (property testing in the adjacency matrix representation): For
any fized § > 0 and each of the following sets, there ezists a polylogarithmic time
randomized algorithm that solves the corresponding property testing problem (with
respect to 0).

o For every fized k > 2, the set of k-colorable graphs.

e For every fized p > 0, the set of graphs having a clique (resp., independent
set) of density p.

e For every fized p > 0, the set of N-vertex graphs having a cut® with at least
p-N? edges.

e For every fized p > 0, the set of N-vertex graphs having a bisection® with at
most p- N? edges.

In contrast, for some § > 0, there exists a graph property in N'P for which property
testing (with respect to §) requires linear time.

The testing algorithms (asserted in Theorem 10.12) use a constant number of
queries, where this constant is polynomial in the constant 1/§. In contrast, exact
decision procedures for the corresponding sets require a linear number of queries.
The running time of the aforementioned algorithms hides a constant that is expo-
nential in their query complexity (except for the case of 2-colorability where the
hidden constant is polynomial in 1/§). Note that such dependencies seem essen-
tial, since setting § = 1/N? regains the original (non-relaxed) decision problems
(which, with the exception of 2-colorability, are all NP-complete). Turning to the
lower-bound (asserted in Theorem 10.12), we mention that the graph property for
which this bound is proved is not a natural one. As in §10.1.2.1, the lower-bound
on the time complexity follows from a lower-bound on the query complexity.
Theorem 10.12 exhibits a dichotomy between graph properties for which prop-
erty testing is possible by a constant number of queries and graph properties for

5A cut in a graph G = ([N], E) is a partition (S1, S2) of the set of vertices (i.e., S1 US2 = [N]
and S1 NSy = (D), and the edges of the cut are the edges with exactly one endpoint in S1. A
bisection is a cut of the graph to two parts of equal cardinality.

10.1. APPROXIMATION 477

which property testing requires a linear number of queries. A combinatorial charac-
terization of the graph properties for which property testing is possible (in the ad-
jacency matrix representation) when using a constant number of queries is known.°
We note that the constant in this characterization may depend arbitrarily on § (and
indeed, in some cases, it is a function growing faster than a tower of 1/6 exponents).
For example, property testing for the set of triangle-free graphs is possible by using
a number of queries that depends only on ¢, but it is known that this number must
grow faster than any polynomial in 1/6.

Turning back to Theorem 10.12, we note that the results regarding property
testing for the sets corresponding to max-cut and min-bisection yield approximation
algorithms with an additive error term (of §N?2). For dense graphs (i.e., N-vertex
graphs having Q(NN?) edges), this yields a constant factor approximation for the
standard approximation problem (as in Definition 10.1). That is, for every constant
¢ > 1, we obtain a c-factor approzimation of the problem of maximizing the size of a
cut (resp., minimizing the size of a bisection) in dense graphs. On the other hand,
the result regarding clique yields a so called dual-approximation for maximum
clique; that is, we approximate the minimum number of missing edges in the densest
induced subgraph of a given size.

Indeed, Theorem 10.12 is meaningful only for dense graphs. This holds, in
general, for any graph property in the adjacency matrix representation.” Also note
that property testing is trivial, under the adjacency matrix representation, for any
graph property S satisfying I',(1)(S) = @ (e.g., the set of connected graphs, the set
of Hamiltonian graphs, etc).

We now turn to the bounded incidence-lists representation, which is relevant
only for bounded degree graphs. The problems of max-cut, min-bisection and clique
(as in Theorem 10.12) are trivial under this representation, but graph connectivity
becomes non-trivial, and the complexity of property testing for the set of bipartite
graphs changes dramatically.

Theorem 10.13 (property testing in the bounded incidence-lists representation):
The following assertions refer to the representation of graphs by incidence-lists of
length d.

o For any fired d and 6 > 0, there exists a polylogarithmic time randomized
algorithm that solves the property testing problem for the set of connected
graphs of degree at most d.

o For any fized d and § > 0, there exists a sub-linear time randomized algorithm
that solves the property testing problem for the set of bipartite graphs of degree

8Describing this fascinating result of Alon et. al. [9], which refers to the notion of regular
partitions (introduced by Szemerédi), is beyond the scope of the current text.

“In this model, as shown next, property testing of non-dense graphs is trivial. Specifically,
fixing the distance parameter §, we call a N-vertex graph non-dense if it has less than (§/2) - (I;[)
edges. The point is that, for non-dense graphs, the property testing problem for any set S is
trivial, because we may just accept any non-dense (N-vertex) graph if and only if S contains
some non-dense (N-vertex) graph. Clearly, the decision is correct in the case that S does not
contain non-dense graphs. However, the decision is admissible also in the case that S does contain
some non-dense graph, because in this case every non-dense graph is “§-close” to S (i.e., it is not
in I's(9))-

478 CHAPTER 10. RELAXING THE REQUIREMENTS

at most d. Specifically, on input an N -verter graph, the algorithm runs for

O(VN) time.

o For any fized d > 3 and some § > 0, property testing for the set of N-vertex
(3-regular) bipartite graphs requires Q(vV N) queries.

e For some fized d and & > 0, property testing for the set of N -vertex 3-colorable
graphs of degree at most d requires Q(N) queries.

The running time of the algorithms (asserted in Theorem 10.13) hides a constant
that is polynomial in 1/6. Providing a characterization of graph properties accord-
ing to the complexity of the corresponding tester (in the bounded incidence-lists
representation) is an interesting open problem.

Decoupling the distance from the representation. So far, we have confined
our attention to the Hamming distance between the representations of graphs.
This made the choice of representation even more important than usual (i.e., more
crucial than is common in complexity theory). In contrast, it is natural to consider
a notion of distance between graphs that is independent of their representation.
For example, the distance between Gy =(V1, E1) and G2 =(V2, Es) can be defined
as the minimum of the size of symmetric difference between E; and the set of edges
in a graph that is isomorphic to G;. The corresponding relative distance may be
defined as the distance divided by |E;| + |E2| (or by max(|E1 |, |E2])).

10.1.2.3 Beyond graph properties

Property testing has been applied to a variety of computational problems beyond
the domain of graph theory. In fact, this type of computational problems first
emerged in the algebraic domain, where the instances (to be viewed as inputs to
the testing algorithm) are functions and the relevant properties are sets of algebraic
functions. The archetypical example is the set of low-degree polynomials; that is,
m-variate polynomials of total (or individual) degree d over some finite field GF(q),
where m,d and ¢ are parameters that may depend on the length of the input (or
satisfy some relationships; e.g., ¢ = d®> = m®). Note that, in this case, the input
is the (“full” or “explicit”) description of an m-variate function over GF(q), which
means that it has length ¢™ - log, g. Viewing the problem instance as a function
suggests a natural measure of distance (i.e., the fraction of arguments on which the
functions disagree) as well as a natural way of accessing the instance (i.e., querying
the function for the value of selected arguments).

Note that we have referred to these computational problems, under a different
terminology, in §9.3.2.2 and in §9.3.2.1. In particular, in §9.3.2.1 we refereed to
the special case of linear Boolean functions (i.e., individual degree 1 and ¢ = 2),
whereas in §9.3.2.2 we used the setting ¢ = poly(d) and m = d/logd (where d is a
bound on the total degree).

Other domains of computational problems in which property testing was stud-
ied include geometry (e.g., clustering problems), formal languages (e.g., testing

10.2. AVERAGE CASE COMPLEXITY 479

membership in regular sets), coding theory (cf. Appendix E.1.3), probability the-
ory (e.g., testing equality of distributions), and combinatorics (e.g., monotone and
junta functions). As discuss at the end of §10.1.2.2, it is often natural to decou-
ple the distance measure from the representation of the objects (i.e., the way of
accessing the problem instance). This is done by introducing a representation-
independent notion of distance between instances, which should be natural in the
context of the problem at hand.

10.2 Average Case Complexity

Teaching note: We view average-case complexity as referring to the performance on
“average” (or rather typical) instances, and not as the average performance on random
instances. This choice is justified in §10.2.1.1. Thus, it may be more justified to refer to
the following theory by the name typical-case complexity. Still, the name average-case
was retained for historical reasons.

Our approach so far (including in Section 10.1) is termed worst-case complex-
ity, because it refers to the performance of potential algorithms on each legitimate
instance (and hence to the performance on the worst possible instance). That is,
computational problems were defined as referring to a set of instances and perfor-
mance guarantees were required to hold for each instance in this set. In contrast,
average-case complexity allows ignoring a negligible measure of the possible in-
stances, where the identity of the ignored instances is determined by the analysis
of potential solvers and not by the problem’s statement.

A few comments are in place. Firstly, as just hinted, the standard statement
of the worst-case complexity of a computational problem (especially one having
a promise) may also ignores some instances (i.e., those considered inadmissible
or violating the promise), but these instances are determined by the problem’s
statement. In contrast, the inputs ignored in average-case complexity are not
inadmissible in any inherent sense (and are certainly not identified as such by the
problem’s statement). It is just that they are viewed as exceptional when claiming
that a specific algorithm solve the problem; that is, these exceptional instances are
determined by the analysis of that algorithm. Needless to say, these exceptional
instances ought to be rare (i.e., occur with negligible probability).

The last sentence raises a couple of issues. Most importantly, a distribution
on the set of admissible instances has to be specified. In fact, we shall consider a
new type of computational problems, each consisting of a standard computational
problem coupled with a probability distribution on instances. Consequently, the
question of which distributions should be considered in a theory of average-case
complexity arises. This question and numerous other definitional issues will be
addressed in §10.2.1.1.

Before proceeding, let us spell out the rather straightforward motivation to the
study of the average-case complexity of computational problems: It is that, in real-
life applications, one may be perfectly happy with an algorithm that solves the
problem fast on almost all instances that arise in the relevant application. That is,

