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1 IntroductionWhile it is safe to assume that any living adult is aware of the revolutionaryimpact of the computing technology on our society, we fear that few readershave a sense of the theory of computation. This contrast is not so surpris-ing, because people seem so overwhelmed by the wonders of this technologythat they do not get to wonder about the theory underlying it. Further-more, people tend to think of computing in the concrete terms in whichthey have lastly encountered it rather than in general terms. Consequently,the fascinating intellectual contents of the theory of computation is rarelyunderstood by non-specialists.One goal of this essay is making a tiny contribution towards a possiblechange in this sour state of a�airs, by discussing one aspect of the theory ofcomputation: its connection to randomness. Our guess is that the suggestionthat there is a connection between computation and randomness may meetthe skepticism of some readers, because computation seems the ultimatemanifestation of determinism.To address this skepticism, we suggest considering what happens whena deterministic machine (or any deterministic process) is fed with a randominput or just with an input that looks random. Indeed, one contributionof the theory of computation (further discussed in Section 2) is a de�nitionof \objects that look random" (a notion which makes sense even if the realworld is actually deterministic).Still one may wonder whether we can obtain or generate objects thatlook random. For example, can we toss a coin (in the sense that one cannotfeasibly predict the answer before seeing it)? Assuming a positive answer,we may also assume that unpredictable values can be obtained by othermechanical and/or electrical processes, which suggest that computers canalso obtain such values. The question then is what bene�t can be achievedby using such random (or unpredictable) values.A major application of random (or unpredictable) values is to the areaof Cryptography (see Section 4). In fact, the very notion of a secret refersto such a random (or unpredictable) value. Furthermore, various naturalsecurity concerns (e.g., private communication) can be met by employingprocedures that make essential use of such secrets and/or random values.Another major application of random (or unpredictable) values is tovarious sampling procedures. In Section 5, we consider a wider perspectiveon such procedures, viewing them as a special type of super fast procedurescalled sub-linear time algorithms. Such a procedure cannot a�ord to scan2



the entire input, but rather probes few (randomly) selected locations in itand, based on these few values, attempts to make a meaningful assertionregarding the entire input. Indeed, we assume that the reader is aware ofthe fact that random sampling allows to approximate the fraction of thepopulation that votes for a particular candidate. Our point is that otherglobal properties of the input, which are not merely averages of varioustypes, can also be approximated by sampling.Lastly, we mention that randomized veri�cation procedures yield fasci-nating types of probabilistic proof systems, which are discussed in Section 3.In particular, such proof systems demonstrate the advantage of interaction(over one-directional communication) and the possibility of decoupling prov-ing from learning (i.e., the possibility of proving an assertion without yield-ing anything beyond its validity). Other forms of probabilistic proof systemsallow for super fast veri�cation (based on probing few locations in a redun-dant proof, indeed as in the aforementioned sublinear-time algorithms).Before discussing the foregoing applications of randomness in greaterlength, we provide a somewhat wider perspective on the theory of computa-tion as well as present some of its central conventions. We will also clarifywhat randomness means in that theory (and in this article).1.1 A wider perspective on the theory of computationThe theory of computation aims at understanding general properties of com-putation be it natural, man-made, or imaginary. Most importantly, it aimsto understand the nature of e�cient computation. We demonstrate theseissues by briey considering a few typical questions.A key question is which functions can be e�ciently computed? For exam-ple, it is (relatively) easy to multiply integers, but it seems hard to take theproduct and factor it into its prime components. In general, it seems thatthere are one-way computations, or put di�erently one-way functions: Suchfunctions are easy to evaluate but hard to invert (even in an average-casesense). But do one-way functions exist? It is widely believed that the answeris positive, and this question is related to other fundamental questions.A related question is that of the comparable di�culty of solving problemsversus verifying the correctness of solutions. Indeed our daily experience isthat it is harder to solve a problem than it is to check the correctness ofa solution (e.g., think of either a puzzle or a research problem). Is thisexperience merely a coincidence or does it represent a fundamental fact oflife (or a property of the world)? Could you imagine a world in which solving3



any problem is not signi�cantly harder than checking a solution to it? Wouldthe term \solving a problem" not lose its meaning in such a hypothetical(and impossible in our opinion) world? The denial of the plausibility of sucha hypothetical world (in which \solving" is not harder than \checking")is what the celebrated \P di�erent from NP" conjecture means, where Prepresents tasks that are e�ciently solvable and NP represents tasks forwhich solutions can be e�ciently checked for correctness.The theory of computation is also concerned with �nding the most ef-�cient methods for solving speci�c problems. To demonstrate this line ofresearch we mention that the simple (and standard) method for multiplyingnumbers that is taught in elementary school is not the most e�cient onepossible. Multiplying two n-digit long numbers by this method requires n2single-digit multiplications (and a similar number of single-digit additions).In contrast, consider writing these numbers as 10n=2 �a0+a00 and 10n=2 �b0+b00,where a0; a00; b0; b00 are n=2-digit long numbers, and note that(10n=2 � a0 + a00)� (10n=2 � b0 + b00) = 10n � P1 + 10n=2 � (P2 � P1 � P3) + P3where P1 = a0 � b0, P2 = (a0 + a00)� (b0 + b00), and P3 = a00 � b00.Thus, multiplying two n-digit long numbers requires only three (rather thanfour) multiplications of n=2-digit long numbers (and a constant number ofadditions of n=2-digit long numbers and \shifts" of n-digit long numbers(indicated by �)). Letting M(n) denote the complexity of multiplying twon-digit long numbers, we obtain M(n) < 3 � M(n=2) + c � n, where c issome constant (independent of n), which solves to M(n) < c0 � 3log2 n =c0 �nlog2 3 < n1:6 (for some constant c0). We mention that this is not the bestknown algorithm; the latter runs in time poly(log n) � n.The theory of computation provides a new viewpoint on old phenom-ena. We have already mentioned the computational approaches to random-ness (see Section 2) and to proofs, interaction, knowledge, and learning (seeSection 3). Additional natural concepts given an appealing computationalinterpretations include the importance of representation, the notion of ex-plicitness, and the possibility that approximation is easier than optimization(see Section 5). Let us say a few words about representation and explicitness.The foregoing examples hint to the importance of representation, be-cause in all these computational problems the solution is implicit in theproblem's statement. That is, the problem contains all necessary informa-tion, and one merely needs to process this information in order to supply4



the answer.1 Thus, the theory of computation is concerned with the manip-ulation of information, and its transformation from one representation (inwhich the information is given) to another representation (which is the onedesired). Indeed, a solution to a computational problem is merely a di�erentrepresentation of the information given; that is, a representation in whichthe answer is explicit rather than implicit. For example, the answer to thequestion of whether or not a given system of quadratic equations has aninteger solution is implicit in the system itself (but the task is to make theanswer explicit). Thus, the theory of computation clari�es a central issueregarding representation; that is, the distinction between what is explicitand what is implicit in a representation. Furthermore, it also suggests aquanti�cation of the level of non-explicitness.1.2 Important conventions for the theory of computationIn light of the foregoing discussion it is important to specify the represen-tation used in computational problems. Actually, a computational problemrefer to an in�nite set of �nite objects, called the problem's instances, andspeci�es the desired solution for each instance. For example, the instances ofthe multiplication problem are pairs of natural numbers, and the desiredsolution is the corresponding product. Objects are represented by �nite bi-nary sequences, called strings.2 For a natural number n, we denote by f0; 1gnthe set of all strings of length n, hereafter referred to as n-bit strings. Theset of all strings is denoted f0; 1g�; that is, f0; 1g� = [n2Nf0; 1gn.Another piece of terminology is the term algorithm, which refers to anautomated procedure designed to solve some computational task. A rigorousde�nition requires specifying a reasonable model of computation, but thespeci�cs of this model are not important for the current essay. We focuson e�cient algorithms, which are commonly de�ned as making a number ofsteps that is polynomial in the length of their input.3 Indeed, asymptoticanalysis (or rather a functional treatment of the running time of algorithmsin terms of the length of their input) is a central convention in the theory1In contrast, in other disciplines, solving a problem may also require gathering infor-mation that is not available in the problem's statement. This information may either beavailable from auxiliary (past) records or be obtained by conducting new experiments.2Indeed, in the foregoing example, we used the daily representation of numbers assequences of decimal digits, but in the theory of computation natural numbers are typicallyrepresented by their binary expansion.3In Section 5 we consider even faster algorithms, which make (signi�cantly) less stepsthan the length of their input, but such algorithms can only provide approximate solutions.5



of computation.4Typically, our notion of e�cient algorithms will include also probabilis-tic (polynomial-time) algorithms; that is, algorithms that can \toss coins"(i.e., make random choices). For each reasonable model of computation,probabilistic (or randomized) algorithms are de�ned as standard algorithmaugmented with the ability to choose uniformly among a �nite number of(say two) predetermined possibilities. That is, at each computation step,such an algorithm makes a move that is chosen uniformly among two pre-determined possibilities.1.3 Randomness in the context of computationThroughout the entire essay we will refer only to discrete probability distri-butions. The support of such distributions will be associated with a set ofstrings, typically of the same length.For the purpose of asymptotic analysis, we will often consider probabilityensembles, which are sequences of distributions that are indexed either byintegers or by strings. For example, throughout the essay, we let fUngn2Ndenote the uniform ensemble, where Un is uniform over the set of strings oflength n; that is, Prz�Un [z=�] equals 2�n if � 2 f0; 1gn and equals 0 oth-erwise. We will often denote by fDngn2N (or fDsgs2S , where S � f0; 1g�)a generic probability ensemble, and typically it will be the case that thereexists some function ` : N!N such that Prz�Dn [z 2 f0; 1g`(n)] = 1 (resp.,Prz�Ds [z 2 f0; 1g`(n)] = 1, where n denotes the length of s). Furthermore,typically, ` will be a polynomial.One important case of probability ensembles is that of ensembles thatrepresent the output of randomized processes (e.g., randomized algorithms).Letting A(x) denote the output of the probabilistic (or randomized) algo-rithmA on input x, we may consider the probability ensemble fA(x)gx2f0;1g� .Indeed, if A is a probabilistic polynomial-time algorithm then A(x) is dis-tributed over strings of length that is bounded by a polynomial in the lengthof x.On the other hand, we say that a probability ensemble fDngn2N (resp.,fDsgs2S) is e�ciently sampleable if there exists a probabilistic polynomial-time algorithm A such that for every n 2 N it holds that A(1n) � Dn (resp.,4We stress, however, that asymptotic (or functional) treatment is not essential to thistheory, but rather provides a convenient framework. One may develop the entire theoryin terms of inputs of �xed lengths and concrete bounds on the number of steps taken bycorresponding algorithms. However, such an alternative treatment is more cumbersome.6



for every s 2 S it holds that A(s) � Ds). That is, algorithm A makes anumber of steps that is polynomial in n, and produces a sample distributedaccording to Dn (resp., Ds, where n denotes the length of s).We will often talk of \random bits" and mean values selected uniformlyand independently in f0; 1g. In particular, randomized algorithms may beviewed as deterministic algorithms that are given an adequate number ofrandom bits as an auxiliary input. This means that rather than viewingthese algorithms as making random choices, we view them as determiningthese choices according to a sequence of random bits that is generated bysome outside process.1.4 The rest of this essayIn the rest of this essay we briey review the theory of pseudorandom-ness (Section 2), three types of probabilistic proof systems (Section 3), thetheoretical foundations of Cryptography (Section 4), and sublinear-time al-gorithms (Section 5). Needless to say, these overviews are the tip of aniceberg, and the interested reader will be referred to related texts for fur-ther information. In general, the most relevant text is [7], which providesmore extensive overviews of the �rst three areas.In addition, we recommend textbooks such as [20, 24] for background onthe aspects of the theory of computation that are most relevant for the cur-rent essay. We note that randomized algorithms and procedures are valuablealso in settings not discussed in the current essay (e.g., for polynomial-timecomputations as well as in the context of distributed and parallel computa-tion). The interested reader is referred to [19].An apology. Our feeling is that in an essay written for a general reader-ship it makes no sense to provide the standard scholarly citations. The mostvaluable references for such readers are relevant textbooks and expositoryarticles, written with the intension of communicating to non-experts. Onthe other hand, the general reader may be interested in having some senseof the history of the �eld, and thus references to few pioneering works seemadequate. We are aware that in trying to accommodate the non-experts, wemay annoy the experts, and hence the current apology to all experts whomade an indispensable contribution to the development of these areas andwho's work was victim to our referencing policy.7



2 Pseudorandomness Indistinguishable things are identical.5G.W. Leibniz (1646{1714)A fresh view at the question of randomness has been taken in the theory ofcomputation: It has been postulated that a distribution is pseudorandomif it cannot be told apart from the uniform distribution by any e�cientprocedure. The paradigm, originally associating e�cient procedures withpolynomial-time algorithms, has been applied also with respect to a varietyof limited classes of such distinguishing procedures.At the extreme, this approach says that the question of whether theworld is deterministic or allows for some free choice (which may be viewedas sources of randomness) is irrelevant. What matters is how the worldlooks to us and to various computationally bounded devices. That is, ifsome phenomenon looks random then we may just treat it as if it wererandom. Likewise, if we can generate sequences that cannot be told apartfrom the uniform distribution by any e�cient procedure, then we can usethese sequences in any e�cient randomized application instead of the idealrandom bits that are postulated in the design of this application.2.1 A wider context and an illustrationThe second half of this century has witnessed the development of threetheories of randomness, a notion which has been puzzling thinkers for ages.The �rst theory (cf., [4]), initiated by Shannon, is rooted in probabilitytheory and is focused at distributions that are not perfectly random (i.e., arenot uniform over a set of strings of adequate length). Shannon's InformationTheory characterizes perfect randomness as the extreme case in which theinformation contents is maximized (i.e., the strings contain no redundancyat all). Thus, perfect randomness is associated with a unique distribution:the uniform one. In particular, by de�nition, one cannot (deterministically)generate such perfect random strings from shorter random seeds.The second theory (cf., [17]), initiated by Solomonov, Kolmogorov, andChaitin, is rooted in computability theory and speci�cally in the notion of5This is the Principle of Identity of Indiscernibles. Leibniz admits that counterexam-ples to this principle are conceivable but will not occur in real life because God is muchtoo benevolent. We thus believe that he would have agreed to the theme of this section,which asserts that indistinguishable things should be considered as identical.8



a universal language (equiv., universal machine or computing device). Itmeasures the complexity of objects in terms of the shortest program (for a�xed universal machine) that generates the object. Like Shannon's theory,Kolmogorov Complexity is quantitative and perfect random objects appearas an extreme case. However, in this approach one may say that a singleobject, rather than a distribution over objects, is perfectly random. Still,Kolmogorov's approach is inherently intractable (i.e., Kolmogorov Complex-ity is uncomputable), and { by de�nition { one cannot (deterministically)generate strings of high Kolmogorov Complexity from short random seeds.The third theory, initiated by Blum, Goldwasser, Micali and Yao [13, 3,25], is rooted in the notion of e�cient computations and is the focus of thissection. This approach is explicitly aimed at providing a notion of random-ness that nevertheless allows for an e�cient generation of random stringsfrom shorter random seeds. The heart of this approach is the suggestion toview objects as equal if they cannot be told apart by any e�cient proce-dure. Consequently, a distribution that cannot be e�ciently distinguishedfrom the uniform distribution will be considered as being random (or rathercalled pseudorandom). Thus, randomness is not an \inherent" propertyof objects (or distributions) but is rather relative to an observer (and itscomputational abilities). To demonstrate this approach, let us consider thefollowing mental experiment.Alice and Bob play \head or tail" in one of the following fourways. In each of them Alice ips an unbiased coin and Bob isasked to guess its outcome before the coin hits the oor. Thealternative ways di�er by the knowledge Bob has before makinghis guess.In the �rst alternative, Bob has to announce his guess before Al-ice ips the coin. Clearly, in this case Bob wins with probability1=2.In the second alternative, Bob has to announce his guess whilethe coin is spinning in the air. Although the outcome is deter-mined in principle by the motion of the coin, Bob does not haveaccurate information on the motion and thus we believe that alsoin this case Bob wins with probability 1=2.The third alternative is similar to the second, except that Bobhas at his disposal sophisticated equipment capable of providingaccurate information on the coin's motion as well as on the en-9



vironment e�ecting the outcome. However, Bob cannot processthis information in time to improve his guess.In the fourth alternative, Bob's recording equipment is directlyconnected to a powerful computer programmed to solve the mo-tion equations and output a prediction. It is conceivable thatin such a case Bob can improve substantially his guess of theoutcome of the coin.We conclude that the randomness of an event is relative to the informationand computing resources at our disposal. Thus, a natural concept of pseudo-randomness arises: a distribution is pseudorandom if no e�cient procedurecan distinguish it from the uniform distribution, where e�cient proceduresare associated with (probabilistic) polynomial-time algorithms. This notionof pseudorandomness is indeed the most fundamental one, and the currentsection is focused on it.6The foregoing discussion has focused at one aspect of the pseudoran-domness question: the resources or type of the observer (or potential dis-tinguisher). Another important aspect is whether such pseudorandom se-quences can be generated from much shorter ones, and at what cost (i.e.,at what computational e�ort). A natural approach is that the generationprocess has to be at least as e�cient as the distinguisher (equiv., that thedistinguisher is allowed at least as much resources as the generator). Cou-pled with the aforementioned strong notion of pseudorandomness, this yieldsthe archetypical notion of pseudorandom generators { these operating inpolynomial-time and producing sequences that are indistinguishable fromuniform ones by any polynomial-time observer. Such (general-purpose) pseu-dorandom generators enable reducing the randomness complexity of any ef-�cient application, and are thus of great relevance to randomized algorithmsand Cryptography (see Sections 2.5 and 4). Indeed, these general-purposepseudorandom generators will be the focus of the current section.7 Fur-6Wemention that weaker notions of pseudorandomness arise as well; they refer to indis-tinguishability by weaker procedures such as space-bounded algorithms (see [7, Sec. 3.5]),constant-depth circuits, etc. Stretching this approach even further one may consideralgorithms that are designed on purpose so not to distinguish even weaker forms of \pseu-dorandom" sequences from random ones (such algorithms arise naturally when trying toconvert some natural randomized algorithm into deterministic ones; see [7, Sec. 3.6]).7We mention that there are important reasons for considering also an alternative thatseems less natural; that is, allowing the pseudorandom generator to use more resources(e.g., time or space) than the observer it tries to fool. This alternative is natural inthe context of derandomization (i.e., converting randomized algorithms to deterministic10



ther discussion of the conceptual contents of this approach is provided inSection 2.6.2.2 The notion of pseudorandom generatorsLoosely speaking, a pseudorandom generator is an e�cient program (oralgorithm) that stretches short random strings into long pseudorandom se-quences. We stress that the generator itself is deterministic and that therandomness involved in the generation process is captured by its input. Weemphasize three fundamental aspects in the notion of a pseudorandom gen-erator:1. E�ciency. The generator has to be e�cient. Since we associate e�-cient computations with polynomial-time ones, we postulate that thegenerator has to be implementable by a deterministic polynomial-timealgorithm.This algorithm takes as input a string, called its seed. The seed cap-tures a bounded amount of randomness used by a device that \gener-ates pseudorandom sequences." The formulation views any such deviceas consisting of a deterministic procedure applied to a random seed.2. Stretching. The generator is required to stretch its input seed to alonger output sequence. Speci�cally, it stretches n-bit long seeds into`(n)-bit long outputs, where `(n) > n. The function ` is called thestretching measure (or stretching function) of the generator.3. Pseudorandomness. The generator's output has to look random toany e�cient observer. That is, any e�cient procedure should fail todistinguish the output of a generator (on a random seed) from a trulyrandom bit-sequence of the same length. The formulation of the lastsentence refers to a general notion of computational indistinguishabilitythat is the heart of the entire approach.To demonstrate the foregoing, consider the following suggestion for a pseu-dorandom generator. The seed consists of a pair of 500-bit integers, denotedx and N , and a million-bit long output is obtained by repeatedly squaringones), where the crucial step is replacing the \random source" of a �xed algorithm by apseudorandom source, which in turn can be deterministically emulated based on a muchshorter random source. For further clari�cation and demonstration of the usefulness ofthis approach the interested reader is referred to [7, Sec. 3.4&3.5].11



the current x modulo N and emitting the least signi�cant bit of each in-termediate result (i.e., let xi  x2i�1 mod N , for i = 1; :::; 106, and outputb1; b2; :::; b106 , where x0 def= x and bi is the least signi�cant bit of xi). Thisprocess may be generalized to seeds of length n (here we used n = 1000)and outputs of length `(n) (here `(1000) = 106). Such a process certainlysatis�es Items (1) and (2) above, whereas the question whether Item (3)holds is debatable (once a rigorous de�nition is provided). As a special caseof Theorem 2.6 (which follows), we mention that, under the assumption thatit is di�cult to factor large integers, a slight variant of the foregoing processis indeed a pseudorandom generator.Computational indistinguishability. Intuitively, two objects are calledcomputationally indistinguishable if no e�cient procedure can tell themapart. Here the objects are (�xed) probability distributions (or rather en-sembles), and the observer is given a sample drawn from one of the twodistributions and is asked to tell from which distribution it was taken (e.g.,it is asked to say \1" if the sample is taken from the �rst distribution). Fol-lowing the asymptotic framework (see Sections 1.2 and 1.3), the foregoingdiscussion is formalized as follows.De�nition 2.1 (computational indistinguishability [13, 25]). Two proba-bility ensembles, fXngn2N and fYngn2N, are called computationally indistin-guishable if for any probabilistic polynomial-time algorithm A, any positivepolynomial p, and all su�ciently large n���Prx�Xn [A(x) = 1] � Pry�Yn [A(y) = 1] ��� < 1p(n) : (1)The probability is taken over Xn (resp., Yn) as well as over the internal cointosses of algorithm A.Algorithm A, which is called a potential distinguisher, is given a sample(which is drawn either from Xn or from Yn) and its output is viewed asan attempt to tell whether this sample was drawn from Xn or from Yn.Eq. (1) requires that such an attempt is bound to fail; that is, the outcome 1(possibly representing a verdict that the sample was drawn from Xn) isessentially as likely to occur when the sample is drawn from Xn as when itis drawn from Yn.A few comments are in order. Firstly, the distinguisher (i.e., A) is al-lowed to be probabilistic. This makes the requirement only stronger, and12



seems essential to several important aspects of our approach. Secondly,we view events occuring with probability that is upper bounded by the re-ciprocal of polynomials as negligible (e.g., 2�pn is negligible as a functionof n). This is well-coupled with our notion of e�ciency (i.e., polynomial-time computations): an event that occurs with negligible probability (asa function of a parameter n), will also occur with negligible probability ifthe experiment is repeated for poly(n)-many times. Thirdly, for e�cientlysampleable ensembles, computational indistinguishability is preserved alsowhen providing the distinguisher with polynomially many samples (of thetested distribution). Lastly we note that computational indistinguishabilityis a coarsening of statistical indistinguishability; that is, waiving the com-putational restriction on the distinguisher is equivalent to requiring that thevariation distance between Xn and Yn (i.e., Pz jXn(z)�Yn(z)j) is negligible(in n).An important case in which computational indistinguishability is strictlymore liberal than statistical indistinguishability arises from the notion of apseudorandom generator.De�nition 2.2 (pseudorandom generators [3, 25]). A deterministic polynomial-time algorithm G is called a pseudorandom generator if there exists a stretch-ing function, ` :N!N (i.e., `(n) > n), such that the following two probabilityensembles, denoted fGngn2N and fRngn2N, are computationally indistin-guishable.1. Distribution Gn is de�ned as the output of G on a uniformly selectedseed in f0; 1gn.2. Distribution Rn is de�ned as the uniform distribution on f0; 1g`(n).Note that Gn � G(Un), whereas Rn = U`(n). Requiring that these twoensembles are computationally indistinguishable means that, for any proba-bilistic polynomial-time algorithm A, the detected (by A) di�erence betweenGn and Rn, denoteddA(n) def= ���Prs�Un [A(G(s)) = 1] � Prr�U`(n) [A(r) = 1] ���is negligible (i.e., dA(n) vanishes faster than the reciprocal of any poly-nomial). Thus, pseudorandom generators are e�cient (i.e., polynomial-time) deterministic programs that expand short randomly selected seeds intolonger pseudorandom bit sequences, where the latter are de�ned as computa-tionally indistinguishable from truly random bit-sequences by e�cient (i.e.,13



polynomial-time) algorithms. It follows that any e�cient randomized algo-rithm maintains its performance when its internal coin tosses are substitutedby a sequence generated by a pseudorandom generator. That is:Construction 2.3 (typical application of pseudorandom generators). LetA be a probabilistic polynomial-time algorithm, and �(n) denote an upperbound on the number of coins that A tosses on n-bit inputs (e.g., �(n) = n2).Let A(x; r) denote the output of A on input x and coin tossing sequencer 2 f0; 1g�(n), where n denotes the length of x. Let G be a pseudorandomgenerator with stretching function ` :N!N (e.g., `(k) = k5). Then AG is arandomized algorithm that on input x 2 f0; 1gn, proceeds as follows. It setsk = k(n) to be the smallest integer such that `(k) � �(n) (e.g., k5 � n2),uniformly selects s 2 f0; 1gk, and outputs A(x; r), where r is the �(jxj)-bitlong pre�x of G(s).Thus, using AG instead of A, the number of random bits used by the algo-rithm is reduced from � to `�1 � � (e.g., from n2 to k(n) = n2=5), while it isinfeasible to �nd inputs (i.e., x's) on which the noticeable behavior of AG isdi�erent from the one of A. That is, we save randomness while maintainingperformance (see Section 2.5).Amplifying the stretch function. Pseudorandom generators as in De�-nition 2.2 are only required to stretch their input a bit; for example, stretch-ing n-bit long inputs to (n+1)-bit long outputs will do. Clearly, generatorswith such moderate stretch functions are of little use in practice. In con-trast, we want to have pseudorandom generators with an arbitrary longstretch function. By the e�ciency requirement, the stretch function can beat most polynomial. It turns out that pseudorandom generators with thesmallest possible stretch function can be used to construct pseudorandomgenerators with any desirable polynomial stretch function. That is:Theorem 2.4 [8, Sec. 3.3.2]. Let G be a pseudorandom generator withstretch function `(n) = n + 1, and `0 be any positive polynomial such that`0(n) � n + 1. Then there exists a pseudorandom generator with stretchfunction `0. Furthermore, the construction of the latter consists of invokingG for `0 times.Thus, when talking about the existence of pseudorandom generators, wemay ignore the stretch function. 14



2.3 How to Construct Pseudorandom GeneratorsThe known constructions of pseudorandomness generators are based on one-way functions. Loosely speaking, a polynomial-time computable function iscalled one-way if any e�cient algorithm can invert it only with negligiblesuccess probability. For simplicity, we consider only length-preserving one-way functions.De�nition 2.5 (one-way function). A one-way function, f , is a polynomial-time computable function such that for every probabilistic polynomial-timealgorithm A0, every positive polynomial p(�), and all su�ciently large nPrx�Un hA0(f(x))2f�1(f(x))i < 1p(n) ;where f�1(y) = fz : f(z)=yg.It is widely believed that one-way functions exists. Popular candidates forone-way functions are based on the conjectured intractability of integer fac-torization, the discrete logarithm problem, and decoding of random linearcode. Assuming that integer factorization is indeed infeasible, one can provethat a minor modi�cation of the construction outlined at the beginning ofSection 2.2 constitutes a pseudorandom generator. More generally, it turnsout that pseudorandom generators can be constructed based on any one-wayfunction.Theorem 2.6 (existence of pseudorandom generators [15]). Pseudorandomgenerators exist if and only if one-way functions exist.To show that the existence of pseudorandom generators implies the existenceof one-way functions, consider a pseudorandom generator G with stretchfunction `(n) = 2n. For x; y 2 f0; 1gn, de�ne f(x; y) def= G(x), so that fis polynomial-time computable (and length-preserving). It must be that fis one-way, or else one can distinguish G(Un) from U2n by trying to invertand checking the result: Inverting f on its range distribution refers to thedistribution G(Un), whereas the probability that U2n has inverse under fis negligible. The interesting direction is the construction of pseudorandomgenerators based on any one-way function. A treatment of some naturalspecial cases is provided in [8, Sec. 3.4-3.5].15



2.4 Pseudorandom FunctionsPseudorandom generators allow one to e�ciently generate long pseudoran-dom sequences from short random seeds (e.g., using n random bits, we cane�ciently generate a pseudorandom bit-sequence of length n2). Pseudoran-dom functions (de�ned below) are even more powerful: they allow e�cientdirect access to a huge pseudorandom sequence (which is infeasible to scanbit-by-bit). For example, based on n random bits, we de�ne a sequence oflength 2n such that we can e�ciently retrieve any desired bit in this sequencewhile the retrieved bits look random. In other words, pseudorandom func-tions can replace truly random functions in any e�cient application (e.g.,most notably in Cryptography). That is, pseudorandom functions are in-distinguishable from random functions by any e�cient procedure that mayobtain the function values at arguments of its choice. Such procedures arecalled oracle machines, and if M is such machine and f is a function, thenMf (x) denotes the computation of M on input x when M 's queries are an-swered by the function f (i.e., during its computation M generates specialstrings called queries such that in response to the query q machine M isgiven the value f(q)).De�nition 2.7 (pseudorandom functions [10]). A pseudorandom function(ensemble), with length parameters `D; `R :N!N , is a collection of functionsfFngn2N, where Fn def= ffs :f0; 1g`D(n)!f0; 1g`R(n)gs2f0;1gn ;satisfying� (e�cient evaluation). There exists an e�cient (deterministic) algo-rithm that when given a seed, s, and an `D(n)-bit argument, x, returnsthe `R(n)-bit long value fs(x), where n denotes the length of s.(Thus, the seed s is an \e�ective description" of the function fs.)� (pseudorandomness). For every probabilistic polynomial-time oraclemachine M , every positive polynomial p, and all su�ciently large n���Prs�Un [Mfs(1n) = 1]� Pr��Rn [M�(1n) = 1] ��� < 1p(n) ;where Rn denotes the uniform distribution over all functions mappingf0; 1g`D(n) to f0; 1g`R(n). 16



Suppose, for simplicity, that `D(n) = n and `R(n) = 1. Then a function uni-formly selected among 2n functions (of a pseudorandom ensemble) presentsan input-output behavior indistinguishable in poly(n)-time from the one of afunction selected at random among all the 22n Boolean functions. Contrastthis with a distribution over 2n sequences, produced by a pseudorandomgenerator applied to a random n-bit seed, which is computationally indis-tinguishable from the uniform distribution over f0; 1gpoly(n) (which has asupport of size 2poly(n)). Still pseudorandom functions can be constructedfrom any pseudorandom generator.Theorem 2.8 (how to construct pseudorandom functions [10]). Let G be apseudorandom generator with stretching function `(n) = 2n. For s 2 f0; 1gn,let G0(s) (resp., G1(s)) denote the �rst (resp., last) n bits in G(s), and letG�n����2�1(s) def= G�n(� � �G�2(G�1(s)) � � �):That is, Gx(s) is computed by successive applications of either G0 or G1 tothe current n-bit long string, where the decision which of the two mappingsto apply is determined by the corresponding bit of x. Let fs(x) def= Gx(s)and consider the function ensemble fFngn2N, where Fn = ffs : f0; 1gn !f0; 1gngs2f0;1gn . Then this ensemble is pseudorandom (with length param-eters `D(n) = `R(n) = n).The foregoing construction can be easily adapted to any (polynomially-bounded) length parameters `D; `R :N!N .2.5 The Applicability of Pseudorandom GeneratorsRandomness is playing an increasingly important role in computation: it isfrequently used in the design of sequential, parallel, and distributed algo-rithms, and is of course central to Cryptography. Whereas it is convenientto design such algorithms making free use of randomness, it is also desirableto minimize the use of randomness in real implementations since generat-ing perfectly random bits via special hardware is quite expensive. Thus,pseudorandom generators (as in De�nition 2.2) are a key ingredient in an\algorithmic tool-box": they provide an automatic compiler of programswritten with free use of randomness into programs that make an economicaluse of randomness.Indeed, \pseudo-random number generators" have appeared with the�rst computers. However, typical implementations use generators that are17



not pseudorandom according to De�nition 2.2. Instead, at best, these gen-erators are shown to pass some ad-hoc statistical test. We warn that thefact that a \pseudo-random number generator" passes some statistical testsdoes not mean that it will pass a new test and that it is good for a fu-ture (untested) application. Furthermore, the approach of subjecting thegenerator to some ad-hoc tests fails to provide general results of the typestated above (i.e., of the form \for all practical purposes using the output ofthe generator is as good as using truly unbiased coin tosses"). In contrast,the approach encompassed in De�nition 2.2 aims at such generality, and infact is tailored to obtain it: the notion of computational indistinguishability,which underlines De�nition 2.2, covers all possible e�cient applications pos-tulating that for all of them pseudorandom sequences are as good as trulyrandom ones.Pseudorandom generators and functions are of key importance in Cryp-tography. In particular, they are typically used to establish private-key en-cryption and authentication schemes. For further discussion see Section 4.2.6 The Intellectual Contents of Pseudorandom GeneratorsWe shortly discuss some intellectual aspects of pseudorandom generators asde�ned above.Behavioristic versus ontological. Our de�nition of pseudorandom gen-erators is based on the notion of computational indistinguishability. The be-havioristic nature of the latter notion is best demonstrated by confronting itwith the Kolmogorov-Chaitin approach to randomness. Loosely speaking, astring is Kolmogorov-random if its length equals the length of the shortestprogram producing it. This shortest program may be considered the \trueexplanation" to the phenomenon described by the string. A Kolmogorov-random string is thus a string that does not have a substantially simpler (i.e.,shorter) explanation than itself. Considering the simplest explanation of aphenomenon may be viewed as an ontological approach. In contrast, consid-ering the e�ect of phenomena (on an observer), as underlying the de�nitionof pseudorandomness, is a behavioristic approach. Furthermore, there existprobability distributions that are not uniform (and are not even statisticallyclose to a uniform distribution) but nevertheless are indistinguishable froma uniform distribution by any e�cient procedure. Thus, distributions thatare ontologically very di�erent are considered equivalent by the behavioristicpoint of view taken in the De�nition 2.1.18



A relativistic view of randomness. Pseudorandomness is de�ned interms of its observer: It is a distribution that cannot be told apart from auniform distribution by any e�cient (i.e., polynomial-time) observer. How-ever, pseudorandom sequences may be distinguished from random ones byin�nitely powerful computers (not at our disposal!). Furthermore, a machinethat runs in exponential-time can distinguish the output of a pseudorandomgenerator from a uniformly selected string of the same length (e.g., just bytrying all possible seeds). Thus, pseudorandomness is subjective, dependenton the abilities of the observer.Randomness and computational di�culty. Pseudorandomness andcomputational di�culty play dual roles: The de�nition of pseudorandom-ness relies on the fact that placing computational restrictions on the observergives rise to distributions that are not uniform and still cannot be distin-guished from uniform. Furthermore, the known constructions of pseudoran-dom generators relies on conjectures regarding computational di�culty (e.g.,the existence of one-way functions), and this is inevitable: the existence ofpseudorandom generators implies the existence of one-way functions.Randomness and Predictability. The connection between pseudoran-domness and unpredictability (by e�cient procedures) plays an importantrole in the analysis of several constructions of pseudorandom generators (see[8, Sec. 3.3.5&3.5]). We wish to highlight the intuitive appeal of this con-nection.2.7 Suggestions for further readingA detailed textbook presentation of the material that is reviewed in thissection is provided in [8, Chap. 3]. For a wider perspective, which treatsthis material as a special case of a general paradigm, the interested readeris referred to [7, Chap. 3].3 Probabilistic Proof SystemsThe glory attributed to the creativity involved in �nding proofs, makes usforget that it is the less glori�ed procedure of veri�cation which gives proofstheir value. Philosophically speaking, proofs are secondary to the veri�ca-tion procedure; whereas technically speaking, proof systems are de�ned interms of their veri�cation procedures.19



The notion of a veri�cation procedure assumes the notion of compu-tation and furthermore the notion of e�cient computation. This implicitassumption is made explicit in the following de�nition in which e�cientcomputation is associated with deterministic polynomial-time algorithms.De�nition 3.1 (NP-proof systems): Let S � f0; 1g� and � : f0; 1g� �f0; 1g� ! f0; 1g be a function such that x 2 S if and only if there exists aw 2 f0; 1g� that satis�es �(x;w) = 1. If � is computable in time boundedby a polynomial in the length of its �rst argument then we say � de�nesan NP-proof system for S and that S is an NP-set. The class of NP-sets isdenoted NP.Indeed, � represents a veri�cation procedure for claims of membership ina set S, a string w satisfying �(x;w) = 1 is a proof that x belongs toS, whereas x 62 S has no such proofs. For example, consider the set ofsystems of quadratic equations that have integer solutions, which is a well-known NP-set. Clearly, any integer solution v to such a system Q con-stitutes an \NP-proof" for the assertion the system Q has an integersolution (the veri�cation procedure consists of substituting the variablesof Q by the values provided in v and computing the value of the resultingarithmetic expression).We seize the opportunity to note that the celebrated \P di�erent fromNP" conjecture asserts that NP-proof systems are useful in the sense thatthere are assertions for which obtaining a proof provides help to somebodythat wishes to verify the correctness of the assertion.8 This conforms withour daily experience by which reading a proof eases the veri�cation of anassertion.The formulation of NP-proofs restricts the \e�ective" length of proofs tobe polynomial in length of the corresponding assertions (since the running-time of the veri�cation procedure is restricted to be polynomial in the lengthof the assertion). However, longer proofs may be allowed by padding theassertion with su�ciently many blank symbols. So it seems that NP givesa satisfactory formulation of proof systems (with e�cient veri�cation pro-cedures). This is indeed the case if one associates e�cient procedures with8NP represents sets of assertions that can be e�ciently veri�ed with the help of ade-quate proofs, whereas P represents sets of assertions that can be e�ciently veri�ed fromscratch (i.e., without proofs). Thus, \P di�erent from NP" asserts the existence of asser-tions that are harder to prove than to be convinced of their correctness when presentedwith a proof. This means that the notion of a proof is meaningful (i.e., that proofs dohelp when trying to be convinced of the correctness of assertions).20



deterministic polynomial-time algorithms. However, we can gain a lot if weare willing to take a somewhat non-traditional step and allow probabilisticveri�cation procedures. In particular:� Randomized and interactive veri�cation procedures, giving rise to in-teractive proof systems, seem much more powerful than their deter-ministic counterparts (see Section 3.1).� Such randomized procedures allow the introduction of zero-knowledgeproofs, which are of great conceptual and practical interest (see Sec-tion 3.2).� NP-proofs can be e�ciently transformed into a (redundant) form (calleda probabilistically checkable proof) that o�ers a trade-o� between thenumber of bit-locations examined in the NP-proof and the con�dencein its validity (see Section 3.3).In all the abovementioned types of probabilistic proof systems, explicitbounds are imposed on the computational resources of the veri�cation pro-cedure, which in turn is personi�ed by the notion of a veri�er. Furthermore,in all these proof systems, the veri�er is allowed to toss coins and rule by sta-tistical evidence. Thus, all these proof systems carry a probability of error;yet, this probability is explicitly bounded and, furthermore, can be reduced bysuccessive application of the proof system.Clari�cations. Like the de�nition of NP-proof systems, the abovemen-tioned types of probabilistic proof systems refer to proving membership inpredetermined sets of strings. That is, the assertions are all of the form\the string x is in a set S", where S is a �xed in�nite set and x is a variableinput. The de�nition of an interactive proof system makes explicit referenceto a prover, which is only implicit in the de�nition of an NP-proof system(where the prover is the unmentioned entity providing the proof). We notethat, as a �rst approximation, we are not concerned with the complexityof the prover or the proving task. Our main focus is on the complexity ofveri�cation. This is consistent with the intuitive notion of a proof, whichrefers to the validity of the proof and not to how it was obtained.3.1 Interactive Proof SystemsIn light of the growing acceptability of randomized and distributed computa-tions, it is only natural to associate the notion of e�cient computation with21



probabilistic and interactive polynomial-time computations. This leads nat-urally to the notion of an interactive proof system in which the veri�cationprocedure is interactive and randomized, rather than being non-interactiveand deterministic. Thus, a \proof" in this context is not a �xed and staticobject but rather a randomized (dynamic) process in which the veri�er in-teracts with the prover. Intuitively, one may think of this interaction asconsisting of \tricky" questions asked by the veri�er, to which the proverhas to reply \convincingly". The above discussion, as well as the followingde�nition, makes explicit reference to a prover, whereas a prover is onlyimplicit in the traditional de�nitions of proof systems (e.g., NP-proofs).Loosely speaking, an interactive proof is a game between a computation-ally bounded veri�er and a computationally unbounded prover whose goalis to convince the veri�er of the validity of some assertion. Speci�cally, theveri�er is probabilistic polynomial-time. It is required that if the assertionholds then the veri�er always accepts (i.e., when interacting with an appro-priate prover strategy). On the other hand, if the assertion is false then theveri�er must reject with probability at least 12 , no matter what strategy isbeing employed by the prover.De�nition 3.2 (Interactive Proofs { IP [14]): An interactive proof systemfor a set S is a two-party game, between a veri�er executing a probabilisticpolynomial-time strategy (denoted V ) and a prover which executes a compu-tationally unbounded strategy (denoted P ), satisfying� Completeness: For every x 2 S the veri�er V always accepts afterinteracting with the prover P on common input x.� Soundness: For every x 62 S and every possible strategy P �, the veri-�er V rejects with probability at least 12 , after interacting with P � oncommon input x.The class of sets having interactive proof systems is denoted by IP.Recall that the error probability in the soundness condition can be reducedby successive application of the proof system. To clarify the de�nition andillustrate the power of the underlying concept, we consider the followingstory.One day on the Olympus, bright-eyed Athena claimed that Nec-tar poured out of the new silver-coated jars tastes less good than22



Nectar poured out of the older gold-decorated jars. Mighty Zeus,who was forced to introduce the new jars by the practically ori-ented Hera, was annoyed at the claim. He ordered that Athenabe served one hundred glasses of Nectar, each poured at randomeither from an old jar or from a new one, and that she tell thesource of the drink in each glass. To everybody's surprise, wiseAthena correctly identi�ed the source of each serving, to whichthe Father of the Gods responded \my child, you are either rightor extremely lucky." Since all gods knew that being lucky wasnot one of the attributes of Pallas-Athena, they all concludedthat the impeccable goddess was right in her claim.Note that the proof system underlying this story establishes the dissimilarityof two objects. This idea can be used to provide an interactive proof systemfor the set of \pairs of non-isomorphic graphs" [12], which informally refer tothe dissimilarity of two given objects.9 Indeed, typically, proving similaritybetween objects is easy, because one can present a mapping (of one objectto the other) that demonstrates this similarity. In contrast, proving dissim-ilarity seems harder, because in general there seems to be no succinct proofof dissimilarity. More generally, it is typically easy to prove the existence ofan easily veri�able structure in the given object by merely presenting thisstructure, but proving the non-existence of such a structure seems hard.Formally speaking, proving the existence of an easily veri�able structurecorresponds to NP-proof systems. The forgoing discussion suggests thatinteractive proof systems can be used to demonstrate the non-existence ofsuch structures. Speci�cally, the set of pairs of non-isomorphic graphs isnot known to have an NP-proof system, and does have an interactive proofsystem. In general, interactive proof systems can be used to prove the non-existence of any easily veri�able structure; that is, for every S 2 NP, the setf0; 1g� nS has an interactive proof system (i.e., the class coNP is containedin IP). We stress that it is widely believed that coNP def= ff0; 1g� n S : S2NPg is not contained in NP. For example, the set of systems of quadraticequations that have no integer solutions has an interactive proof system,but is believed not to have an NP-proof system. Furthermore, the classof sets having interactive proof systems coincides with the class PSPACE9A graph G = (V;E) consists of a �nite set of vertices V and a �nite set of edgesE, where each edge is an unordered pair of vertices. Two graphs, G1 = (V1; E1) andG2=(V2; E2), are called isomorphic if there exists a 1-1 and onto mapping � :V1!V2 suchthat fu; vg2E1 if and only if f�(u); �(v)g2E1.23



containing all sets for which membership is decidable by an algorithm thatuses a polynomial amount of work-space.Theorem 3.3 [18, 24]: IP = PSPACE .We mention that NP [ coNP � PSPACE and that it is widely believedthat NP contain \little" of PSPACE . Thus, interactive proofs seem to bemore powerful than NP-proofs. This conforms with our daily experience bywhich interaction facilitates the veri�cation of assertions. As we shall arguenext, randomness (and the error probability in the soundness condition)play a key role in this phenomenon.Interactive proof systems extend NP-proof systems in allowing extensiveinteraction as well as randomization (and ruling based on statistical evi-dence). As hinted, extensive interaction by itself does not provide any gain(over NP-proof systems). The reason being that the prover can predict theveri�er's part of the interaction and thus it su�ces to let the prover sendthe full transcript of the interaction and let the veri�er check that the inter-action is indeed valid.10 The moral is that there is no point to interact withpredictable parties that are also computationally weaker. This moral rep-resents the prover's point of view (with respect to deterministic veri�ers).Certainly, from the veri�er's point of view it is bene�cial to interact withthe prover, since it is computationally stronger.We mention that the power of interactive proof systems remains un-changed under several natural variants. In particular, it turns out that, inthis context, asking clever questions is not more powerful than asking totallyrandom questions. The reason being that a powerful prover may assist theveri�er, which may thus avoid being clever, while the veri�er can check (byusing only random questions) that the help extended to it is indeed valid.Also, the power of interactive proof systems remains unchanged when al-lowing two-sided error probability (i.e., allowing bounded error probabilityalso in the completeness condition). Recall that, in contrast, one-sided errorprobability (i.e., error probability in the soundness condition) is essential tothe power of interactive proofs.3.2 Zero-Knowledge Proof SystemsStandard proofs are believed to yield knowledge and not merely establishthe validity of the assertion being proven. Indeed, it is commonly believed10In case the veri�er is not deterministic, the transcript sent by the prover may notmatch the outcome of the veri�er coin tosses.24



that (good) proofs provide a deeper understanding of the theorem beingproved. At the technical level, assuming that NP-proof are useful at all(i.e., assuming that P 6= NP), an NP-proof of membership in some setsS 2 NP n P yields something (i.e., the NP-proof itself) that is typicallyhard to �nd (even when assuming that the input is in S). For example,an integer solution to a system of quadratic equations constitutes an NP-proof that this system has an integer solution, but it yields information (i.e.,the solution) that is infeasible to �nd (when given an arbitrary system ofquadratic equations that has an integer solution). In contrast to such NP-proofs, which seem to yield a lot of knowledge, zero-knowledge proofs yieldno knowledge at all; that is, the latter exhibit an extreme contrast betweenbeing convincing (of the validity of a statement) and teaching something ontop of the validity of the statement.Loosely speaking, zero-knowledge proofs are interactive proofs that yieldnothing beyond the validity of the assertion. These proofs, introducedin [14], are fascinating and extremely useful constructs. Their fascinatingnature is due to their seemingly contradictory de�nition: zero-knowledgeproofs are both convincing and yet yield nothing beyond the validity of theassertion being proven. Their applicability in the domain of Cryptographyis vast; they are typically used to force malicious parties to behave accord-ing to a predetermined protocol. In addition to their direct applicability inCryptography, zero-knowledge proofs serve as a good bench-mark for thestudy of various problems regarding cryptographic protocols.Zero-knowledge is a property of some interactive proof systems, or moreaccurately of some speci�ed prover strategies. Speci�cally, it is the propertyof yielding nothing beyond the validity of the assertion; that is, a veri�erobtaining a zero-knowledge proof only gains conviction in the validity of theassertion. This is formulated by saying that anything that can be feasiblyobtained from a zero-knowledge proof is also feasibly computable from the(valid) assertion itself. Details follow.The formulation of the zero-knowledge condition refers to two types ofprobability ensembles, where each ensemble associates a distribution to eachvalid assertion. The �rst ensemble represents the output distribution ofthe veri�er after interacting with the speci�ed prover strategy P , wherethe veri�er is not necessarily employing the speci�ed strategy (i.e., V ) butrather any e�cient strategy. The second ensemble represents the outputdistribution of some probabilistic polynomial-time algorithm (which doesnot interact with anyone). The basic paradigm of zero-knowledge assertsthat for every ensemble of the �rst type there exist a \similar" ensemble of25



the second type. The speci�c variants di�er by the interpretation given tothe notion of similarity. The most strict interpretation, leading to perfectzero-knowledge, is that similarity means equality.De�nition 3.4 (perfect zero-knowledge, a simpli�ed version11): A proverstrategy, P , is said to be perfect zero-knowledge over a set S if for everyprobabilistic polynomial-time veri�er strategy, V �, there exists a probabilis-tic polynomial-time algorithm, M�, such that for every x 2 S it holds that(P; V �)(x) � M�(x), where (P; V �)(x) denote the distribution that repre-sents the output of veri�er V � after interacting with the prover P on commoninput x.12A somewhat more relaxed interpretation of similarity, leading to almost-perfect zero-knowledge, is that similarity means statistical closeness (i.e.,negligible di�erence between the ensembles). The most liberal interpre-tation, leading to the standard usage of the term zero-knowledge, is thatsimilarity means computational indistinguishability (i.e., failure of any ef-�cient procedure to tell the two ensembles apart). The actual de�nition isobtained from De�nition 2.1, by considering ensembles indexed by stringsand providing the distinguisher with the relevant index. That is, the proba-bility ensembles, fYxgx2S and fZxgx2S, are indistinguishable by an algorithmA if dA(n) def= maxx2S\f0;1gnfjprob(A(x; Yx)=1)� Pr(A(x;Zx)=1)jgis a negligible function.13 The ensembles fYxgx2S and fZxgx2S are compu-tationally indistinguishable if they are indistinguishable by every probabilisticpolynomial-time algorithm.The foregoing discussion refers to simpli�ed versions of the actual de�-nitions. Speci�cally, in order to guarantee that zero-knowledge is preservedunder sequential composition it is necessary to slightly augment the de�ni-tions. For details see [8, Sec. 4.3.3-4.3.4].11The actual de�nition allows for a rare event (which occurs with negligible probability)in which M� halts with no output, and the output of M� is considered condition on thisevent not occuring.12As usual, M�(x) denotes a distribution representing the output of algorithm M� oninput x.13If S \ f0; 1gn = ; then we de�ne dA(n) = 0.26



The Power of Zero-Knowledge. We consider the set of 3-colorablegraphs, where a graph14 G=(V;E) is said to be 3-colorable if there exists afunction � :V !f1; 2; 3g (called a 3-coloring) such that �(v) 6= �(u) for everyfu; vg 2 E. It is easy to prove that a given graph G is 3-colorable by justpresenting a 3-coloring of G, but this NP-proof is not a zero-knowledge proof(unless P = NP). In fact, assuming P 6= NP , graph 3-colorability has nozero-knowledge NP-proofs, but as we shall see it has zero-knowledge interac-tive proofs. We �rst describe these proof systems using (abstract) \boxes"in which information can be hidden and later revealed. Such \boxes" canbe implemented using one-way functions.Construction 3.5 (Zero-knowledge proof of 3-colorability [12]): On com-mon input, G=(V;E), The following steps are repeated jV j � jEj times.� Prover's �rst step: Let  be a 3-coloring of G. The prover selects arandom permutation, �, over f1; 2; 3g, and sets �(v) def= �( (v)), foreach v 2 V . Hence, the prover forms a random relabeling of the 3-coloring  . The prover sends the veri�er a sequence of jV j locked andnon-transparent boxes such that the vth box contains the value �(v).� Veri�er's �rst step: The veri�er uniformly selects an edge fu; vg 2 E,and sends it to the prover. Intuitively, the veri�er asks to inspect thecolors of vertices u and v.� Prover's second step: The prover sends to the veri�er the keys to boxesu and v.� Veri�er's second step: The veri�er opens boxes u and v, and checkswhether or not they contain two di�erent elements in f1; 2; 3g.The veri�er accepts if and only if all checks turn out positive.The foregoing veri�er strategy is easily implemented in probabilistic polynomial-time. The same holds with respect to the prover's strategy, provided it isgiven a 3-coloring of G as auxiliary input. Clearly, if the input graph is 3-colorable then the prover can cause the veri�er to accept with probability 1.On the other hand, if the input graph is not 3-colorable then any contentsput in the boxes must be invalid on at least one edge, and consequently eachtime the foregoing steps are repeated the veri�er rejects with probability at14See Footnote 9. 27



least 1jEj . Repeating these steps t � jEj times has the e�ect of reducing thesoundness error probability to�1� 1jEj�t�jEj � e�t:The zero-knowledge property follows easily, in this abstract setting, becauseone can simulate the real interaction by placing a random pair of di�erentcolors in the boxes indicated by the veri�er. This indeed demonstratesthat the veri�er learns nothing from the interaction (since it expects tosee a random pair of di�erent colors and indeed this is what it sees). Westress that this simple argument is not possible in the digital implementationbecause the boxes are not totally una�ected by their contents (but are rathera�ected, yet in an indistinguishable manner).As stated, in order to obtain a real interactive proof, the (abstract orphysical) \boxes" need to be implemented digitally. This can be done usingan adequately de�ned \commitment scheme" (see [8, Sec. 4.4.1]). Looselyspeaking, such a scheme is a two phase game between a sender and a receiverso that after the �rst phase the sender is \committed" to a value and yet, atthis stage, it is infeasible for the receiver to �nd out the committed value.The committed value will be revealed to the receiver in the second phaseand it is guaranteed that the sender cannot reveal a value other than the onecommitted. Such commitment schemes can be implemented assuming theexistence of one-way functions. Thus, the existence of one-way functionsimplies a zero-knowledge proofs for 3-colorability. In fact, one gets zero-knowledge proofs for any NP-set.Theorem 3.6 [12]: Assuming the existence of one-way functions, any NP-proof can be e�ciently transformed into a zero-knowledge interactive proof.That is, the prover strategy in the zero-knowledge interactive proof can beimplemented in probabilistic polynomial-time provided that it is given anadequate NP-proof as auxiliary input.Theorem 3.6 has a dramatic e�ect on the design of cryptographic protocols(cf., [8, 9]). In a di�erent vein and for the sake of elegance, we mentionthat, using further ideas and under the same assumption, any set having aninteractive proof system also has a zero-knowledge interactive proof system.The Role of Randomness. Again, randomness is essential to all theaforementioned results. Namely, zero-knowledge proof systems in which28



either the veri�er or the prover is deterministic exist only for sets in BPP ,where BPP is the class of sets for which membership is decidable by someprobabilistic polynomial-time algorithm. Note that such sets have trivialzero-knowledge proofs in which the prover sends nothing and the veri�erjust test the validity of the assertion by itself. Thus, randomness is essentialto the usefulness of zero-knowledge proofs.3.3 Probabilistically Checkable Proof SystemsWhen viewed in terms of an interactive proof system, the probabilisticallycheckable proof setting consists of a prover that is memoryless (and respondsto each veri�er message as if it were the �rst such message). However, it ismore appealing to view probabilistically checkable proof systems as standard(deterministic) proof systems that are augmented with a probabilistic pro-cedure capable of evaluating the validity of the assertion by examining fewlocations in the alleged proof. In fact, we focus on the latter probabilisticprocedure, which is given direct access to the individual bits of the allegedproof (and need not scan it bit-by-bit). Thus, the alleged proof is a string,as in the case of a traditional proof system, but we are interested in prob-abilistic veri�cation procedures that access only few locations in the proof,and yet are able to make a meaningful probabilistic verdict regarding thevalidity of the alleged proof. Speci�cally, the veri�cation procedure shouldaccept any valid proof (with probability 1), but rejects with probability atleast 1=2 any alleged proof for a false assertion.The main complexity measure associated with probabilistically check-able proof (PCP) systems is indeed their query complexity (i.e., the numberof queries bits accessed in the alleged proof). Another complexity measureof natural concern is the length of the proofs being employed, which inturn is related to the randomness complexity of the system. The random-ness complexity of PCPs plays a key role in numerous applications (e.g.,in composing PCP systems as well as when applying PCP systems to de-rive non-approximability results), and thus we specify this parameter ratherthan the proof length.Loosely speaking, a probabilistically checkable proof system consists ofa probabilistic polynomial-time veri�er having access to an oracle that rep-resents an alleged proof (in redundant form). Typically, the veri�er accessesonly few of the oracle bits, and these bit positions are determined by the out-come of the veri�er's coin tosses. As in the case of interactive proof systems,it is required that if the assertion holds then the veri�er always accepts (i.e.,29



when given access to an adequate oracle); whereas, if the assertion is falsethen the veri�er must reject with probability at least 12 , no matter whichoracle is used. The basic de�nition of the PCP setting is given in Item (1)of De�nition 3.7. Yet, the complexity measures introduced in Item (2) areof key importance for the subsequent discussions.De�nition 3.7 (Probabilistically Checkable Proofs { PCP):1. A probabilistically checkable proof system (PCP) for a set S is a prob-abilistic polynomial-time oracle machine (called veri�er), denoted V ,satisfying� Completeness: For every x 2 S there exists an oracle �x so thatV , on input x and access to �x, always accepts x.� Soundness: For every x 62 S and every oracle �, machine V , oninput x and access to �, rejects x with probability at least 12 .2. Let r and q be integer functions. The complexity class PCP(r(�); q(�))consists of sets having a probabilistically checkable proof system inwhich the veri�er, on any input of length n, makes at most r(n) cointosses and at most q(n) oracle queries, where each query is answered bya single bit. For sets of integer functions, R and Q, we let PCP(R;Q)equal [r2R;q2QPCP(r(�); q(�)).We stress that the oracle �x in a PCP system constitutes a proof in thestandard mathematical sense. Yet, this oracle has the extra property ofenabling a lazy veri�er, to toss coins, take its chances and \assess" thevalidity of the proof without reading all of it (but rather by reading a tinyportion of it).Letting poly denote the set of all polynomials, one may verify thatPCP(0; poly) = NP. Letting log denote the set of all logarithmic functions(i.e., ` 2 log if there exists a constant b such that `(n) � logb n for all suf-�ciently large n), one may also verify that PCP(log; poly) � NP (becausethe relevant oracles are of polynomial length). It follows that, for everyconstant c, it holds that PCP(log; c) � NP . This upper bound turnedout to be tight, but proving this is much more di�cult (to say the least).The following result is a culmination of a sequence of great works (see [7,Sec. 2.6.2] for a detailed account).Theorem 3.8 [2, 1]: There exists a constant c such that NP � PCP(log; c).30



Thus, probabilistically checkable proofs in which the veri�er tosses onlylogarithmically many coins and makes only a constant number of queriesexist for every set in the complexity class NP. (Essentially, this constantis three.) Furthermore, NP-proofs can be e�ciently transformed into NP-proofs that o�er a trade-o� between the portion of the proof being readand the con�dence it o�ers. Speci�cally, if the veri�er is willing to toleratean error probability of � then it su�ces to let it examine c � log2(1=�) bitsof the (transformed) NP-proof.15 These bit locations need to be selectedat random. We mention that the length of the redundant NP-proofs thatprovide the aforementioned trade-o� can be made almost linear in the lengthof the standard NP-proofs.PCP and the study of approximation. Following [5] and [1], the char-acterization of NP in terms of probabilistically checkable proofs has playeda central role in developments concerning the study of approximation prob-lems. For details, see [16, Chap. 10]. We merely mention that Theorem 3.8implies that, assuming P 6= NP , there exists a constant � < 1 such thatgiven a system of quadratic equations it is infeasible to distinguish the case inwhich the system has an integer solution from the case that any assignmentof integers satis�es at most a � fraction of the equations.The Role of Randomness. No trade-o� between the number of bitsexamined and the con�dence is possible if one requires the veri�er to bedeterministic. In particular, PCP(0; log) = P.3.4 Suggestions for further readingMore detailed overviews of the three types of probabilistically proof sys-tems can be found in [7, Chap. 2]. A detailed textbook treatment of zero-knowledge is provided in [8, Chap. 4].4 CryptographyIn this section, we focus on the role of randomness in Cryptography. Asstated at the beginning of the introduction, the very notion of a secret,15In fact, c can be made arbitrarily close to one, when � is small enough.
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which is central to Cryptography, refers to randomness in the sense of un-predictability (i.e., unpredictability of the secret by other parties). Further-more, the use of randomized algorithms and/or strategies is essential forachieving almost any security concern. We start with the concrete exampleof providing secret and authenticated communication, and end with a widerperspective.4.1 Secret and authenticated communicationThe problem of providing secret communication over insecure media is thetraditional and most basic problem of Cryptography. The setting of thisproblem consists of two parties communicating through a channel that ispossibly tapped by an adversary. The parties wish to exchange informationwith each other, but keep the \wire-tapper" as ignorant as possible regard-ing the contents of this information. The canonical solution to the aboveproblem is obtained by the use of encryption schemes.Loosely speaking, an encryption scheme is a protocol allowing these par-ties to communicate secretly with each other. Typically, the encryptionscheme consists of a pair of algorithms. One algorithm, called encryption, isapplied by the sender (i.e., the party sending a message), while the other al-gorithm, called decryption, is applied by the receiver. Hence, in order to senda message, the sender �rst applies the encryption algorithm to the message,and sends the result, called the ciphertext, over the channel. Upon receiv-ing a ciphertext, the other party (i.e., the receiver) applies the decryptionalgorithm to it, and retrieves the original message (called the plaintext).In order for the foregoing scheme to provide secret communication, thecommunicating parties (at least the receiver) must know something thatis not known to the wire-tapper. (Otherwise, the wire-tapper can decryptthe ciphertext exactly as done by the receiver.) This extra knowledge maytake the form of the decryption algorithm itself, or some parameters and/orauxiliary inputs used by the decryption algorithm. We call this extra knowl-edge the decryption-key. Note that, without loss of generality, we mayassume that the decryption algorithm is known to the wire-tapper, andthat the decryption algorithm operates on two inputs: a ciphertext and adecryption-key. (The encryption algorithm also takes two inputs: a cor-responding encryption-key and a plaintext.) We stress that the existenceof a decryption-key, not known to the wire-tapper, is merely a necessarycondition for secret communication.The point we wish to make is that the decryption-key must be generated32



by a randomized algorithm. Suppose, in contrary, that the decryption-keyis a predetermined function of publicly available data (i.e., the key is gener-ated by employing an e�cient deterministic algorithm to this data). Then,the wire-tapper can just obtain the key in exactly the same manner (i.e.,invoking the same algorithm on the said data). We stress that saying thatthe wire-tapper does not know which algorithm to employ or does not havethe data on which the algorithm is employed just shifts the problem else-where; that is, the question remains as to how do the legitimate parties selectthis algorithm and/or the data to which it is applied? Again, deterministi-cally selecting these objects based on publicly available data will not do.At some point, the legitimate parties must obtain some object that is unpre-dictable by the wire-tapper, and such unpredictability refers to randomness(or pseudorandomness).However, the role of randomness in allowing for secret communication isnot con�ned to the generation of secret keys. To see why this is the case,we need to understand what is \secrecy" (i.e., to properly de�ne what ismeant by this intuitive term). Loosely speaking, we say that an encryptionscheme is secure if it is infeasible for the wire-tapper to obtain from the ci-phertexts any additional information about the corresponding plaintexts. Inother words, whatever can be e�ciently computed based on the ciphertextscan be e�ciently computed from scratch (or rather from the a priori knowndata). Now, assuming that the encryption algorithm is deterministic, en-crypting the same plaintext twice (using the same encryption-key) resultsin two identical ciphertexts, which are easily distinguishable from any pairof di�erent ciphertexts resulting from the encryption of two di�erent plain-texts. This problem does not arise when employing a randomized encryptionalgorithm (as presented next).As hinted, an encryption scheme must specify also a method for selectingkeys. In the following encryption scheme, a uniformly chosen n-bit key, s,is used for specifying a pseudorandom function fs (as in De�nition 2.7). Aplaintext x 2 f0; 1gn is encrypted (using the key s) by uniformly selectingr 2 f0; 1gn and producing the ciphertext (r; fs(r)�x), where ��� denotesthe bit-by-bit exclusive-or of the strings � and �. A ciphertext (r; y) isdecrypted (using the key s) by computing fs(r) � y. The security of thisscheme follows from the security of an imaginary (ideal) scheme in which fsis replaced by a totally random function F : f0; 1gn ! f0; 1gn.
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Public-key encryption schemes. The foregoing description correspondsto the so called model of a private-key encryption scheme, and requires thecommunicating parties to agree beforehand on a corresponding pair of en-cryption/decryption keys. This need is removed in public-key encryptionschemes, envisioned by Di�e and Hellman (and materialized by the RSAscheme of Rivest, Shamir, and Adleman). In a public-key encryption scheme,the encryption-key can be publicized without harming the security of theplaintexts encrypted using it, allowing anybody to send encrypted messagesto Party X by using the encryption-key publicized by Party X. But in sucha case, the need for randomized encryption is even more clear. Indeed, if adeterministic encryption algorithm is employed and the wire-tapper knowsthe encryption-key, then it can identity of the plaintext in the case that thenumber of possibilities is small. In contrast, using a randomized encryptionalgorithm, the encryption of plaintext yes under a known encryption-keymay be computationally indistinguishable from the encryption of the plain-text no under the say encryption-key. For further discussion of the securityand construction of encryption schemes, the interested reader is referredto [9, Chap. 5].Authenticated communication. Message authentication is a task re-lated to the setting considered for private-key encryption schemes. Again,there are two designated parties that wish to communicate over an insecurechannel. This time, we consider an active adversary that is monitoring thechannel and may alter the messages sent on it. The parties communicatingthrough this insecure channel wish to authenticate the messages they sendsuch that their counterpart can tell an original message (sent by the sender)from a modi�ed one (i.e., modi�ed by the adversary). Loosely speaking, ascheme for message authentication should satisfy the following:� each of the communicating parties can e�ciently produce an authen-tication tag to any message of its choice;� each of the communicating parties can e�ciently verify whether agiven string is an authentication tag of a given message; but� it is infeasible for an external adversary (i.e., a party other than thecommunicating parties) to produce authentication tags to messages notsent by the communicating parties.Again, such a scheme consists of a randomized algorithm for selecting keysas well as algorithms for tagging messages and verifying the validity of tags.34



In the following message authentication scheme, a uniformly chosen n-bitkey, s, is used for specifying a pseudorandom function (as in De�nition 2.7).Using the key s, a plaintext x 2 f0; 1gn is authenticated by the tag fs(x),and veri�cation of (x; y) with respect to the key s amounts to checkingwhether y equals fs(x). For further discussion of message authenticationschemes and the related notion of signature schemes, the interested readeris referred to [9, Chap. 6].4.2 A wider perspectiveModern Cryptography is concerned with the construction of information sys-tems that are robust against malicious attempts to make these systems de-viate from their prescribed functionality. The prescribed functionality maybe the private and authenticated communication of information throughthe Internet, the holding of incoercible and secret electronic voting, or con-ducting any \fault-resilient" multi-party computation. Indeed, the scope ofmodern Cryptography is very broad, and it stands in contrast to \classical"Cryptography (which has focused on the single problem of enabling secretcommunication over insecure communication media).The design of cryptographic systems is a very di�cult task. One cannotrely on intuitions regarding the \typical" state of the environment in whichthe system operates. For sure, the adversary attacking the system will tryto manipulate the environment into \untypical" states. Nor can one becontent with counter-measures designed to withstand speci�c attacks, sincethe adversary (which acts after the design of the system is completed) will tryto attack the schemes in ways that are di�erent from the ones the designerhad envisioned. The validity of the above assertions seems self-evident, stillsome people hope that in practice ignoring these tautologies will not resultin actual damage. Experience shows that these hopes rarely come true;cryptographic schemes based on make-believe are broken, typically soonerthan later.In view of the foregoing, we believe that it makes little sense to makeassumptions regarding the speci�c strategy that the adversary may use. Theonly assumptions that can be justi�ed refer to the computational abilitiesof the adversary. Furthermore, the design of cryptographic systems has tobe based on �rm foundations; whereas ad-hoc approaches and heuristics area very dangerous way to go. A heuristic may make sense when the designerhas a very good idea regarding the environment in which a scheme is tooperate, yet a cryptographic scheme has to operate in a maliciously selected35



environment which typically transcends the designer's view.The foundations of Cryptography are the paradigms, approaches andtechniques used to conceptualize, de�ne and provide solutions to natural\security concerns". For a presentation of these foundations, the interestedreader is referred to [8, 9]. Here we merely note that randomness plays acentral role in each de�nition and technique presented there. In almost everycase, the inputs of the legitimate parties are assumed to be unpredictableby the adversary, and the task is performing some manipulation (of theinputs) while preserving or creating some unpredictability. In all cases, thisis obtained by using randomized algorithms.5 Sub-linear time algorithmsFor starters, let us consider a well-known example in which fast approxima-tions are possible and useful. Suppose that some cost function is de�nedover a huge data-set, and that one wants to approximate the average cost ofan element in the set. To be more speci�c, let � : S ! [0; 1] be a cost func-tion, and suppose we want to estimate � def= 1jSjPe2S �(e). Then, for someconstant c, uniformly (and independently) selecting m def= c � "�2 log2(1=�)sample points, s1; :::; sm, in S we obtain with probability at least 1 � � anestimate of � within �":Prs1;:::;sm2S "����� 1m mXi=1 �(si) � ������ > "# < � :We stress the fact that the number of samples only depends on the desiredlevel of approximation (and is independent of the size of S). In this sectionwe discuss analogous phenomena that occur with respect to objectives thatare beyond gathering statistics of individual values. We focus on more com-plex features of a data-set; speci�cally, relations among pairs of elementsrather than values of single elements. Such binary relations are capturedby graphs (as de�ned in Footnote 9); that is, a symmetric binary relationR � S � S is represented by a graph G = (S;R), where the elements of Sare called vertices and the elements of R are called edges. Each edge consistsof a pair of vertices, called its end-points.One natural computational question regarding graphs is whether or notthey are bi-partite; that is, whether there exists a partition of S into twosubsets S1 and S2 such that each edge has one end-point in S1 and the36



other endpoint in S2. For example, the graph consisting of a cycle of fourvertices is bi-partite, whereas a triangle is not bi-partite. We mention thatthere exists an e�cient algorithm that given a graph G determines whetheror not G is bi-partite. Needless to say, this algorithm must inspect alledges of G, whereas we seek sub-linear time algorithms (i.e., algorithmsoperating in time smaller than the size of the input). In particular, sub-linear time algorithms cannot a�ord reading the entire input graph. Instead,these algorithm can inspect portions of the input graph by querying for theexistence of speci�c edges (i.e., query whether there is an edge between aspeci�c pair of vertices). It turns out that, by making a number of queriesthat is independent of the size of the graph, one may obtain meaningfulinformation regarding its \distance" to being bi-partite. Speci�cally:Theorem 5.1 [11]: There exists a randomized algorithm that, on input aparameter " and access to a graph G = (S;R), makes poly(1=") queries toG and satis�es the following two conditions:1. If G is bi-partite then the algorithm accepts with probability 1.2. If any partition of S into two subsets S1 and S2 has at least "jSj2edges with both end-points in the same Si then the algorithm rejectswith probability at least 99%.The algorithm underlying Theorem 5.1 uniformly selects m = poly(1=")vertices, and checks whether the induced graph is bi-partite; that is, for asample of vertices v1; :::; vm, it checks whether there exists a partition offv1; :::; vmg into two subsets V1 and V2 such that for every i 2 f1; 2g andevery u; v 2 Vi it holds that (u; v) 62 R.We stress that the said algorithm does not solve the question of whetheror not the graph is bi-partite, but rather a relaxed (or approximated) versionof this question in which one needs to distinguish graphs that are bi-partitefrom graphs that a very far from being bi-partite. This phenomenon is anal-ogous to the case of approximating the average value of � : S ! [0; 1]. Also,as in the case of approximating the average value of � : S ! [0; 1], it is essen-tial that the approximation algorithm be randomized. A similar phenomenaoccurs with respect to several other natural properties of graphs, but is notgeneric. That is, there exist graph properties for which even inspecting aconstant fraction of the graph does not allow for an approximate decisionregarding satis�ability of the property. For details, the interested reader isdirected to [6, 21]. 37



We note that the notion of approximation underlying Theorem 5.1 refersto disregarding "jSj2 edges, where jSj2 is the maximum possible number ofedges over S. This notion of approximation is appealing in the case that Ris dense (i.e., contains a constant fraction of all possible edges). Going tothe other extreme, we may consider the case that R contains only a linearin S number of edge, or even the case that each vertex participates onlyin a constant number of edges. In this case, we may want to distinguishthe case that the graph is bi-partite from the case that any partition of Sinto two subsets S1 and S2 has at least "jSj edges with both end-pointsin the same Si. It turns out that this problem can be solved by an al-gorithm that makes poly((log jSj)=") � pjSj queries (to an adequate datastructure), and that these many queries are essentially necessary. We notethat this sub-linear time algorithm operates by inspecting a graph inducedby poly((log jSj)=") � pjSj vertices that are selected by taking many (rel-atively short) random walks from few randomly selected starting vertices.For details, the interested reader is directed to [21, Sec. 3].The aforementioned type of approximation is known by the name prop-erty testing, and was initiated and developed in [22, 11]. One archetypicalproblem, which played a central role in the construction of PCP systems(see Section 3.3), is distinguishing low-degree polynomials from functionsthat are far from any such polynomial. Speci�cally, let F be a �nite �eldand m; d be integers. Given access to a function f : Fm ! F , we wish tomake few queries and distinguish the case that f is am m-variate polyno-mial of total degree d from the case it disagrees with any such polynomialon at least 1% of the domain. It turns out that making poly(d) random (butdependent) queries to f su�ces for making a decision that is correct withhigh probability.AcknowledgmentsI am grateful to Tamas Rudas for his comments on early versions of thisessay.
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