
Research StatementOded GoldreichFebruary 19961 Research ExperienceMy most important contributions to theoretical computer science are in the areas of compu-tational complexity and cryptography. More speci�cally, I have worked mostly on a varietyof subjects related to randomized computations (e.g., pseudorandom generators, probabilis-tic proof systems, small probability spaces, and weak random sources), cryptography (e.g.,zero-knowledge and fault-tolerant protocols), and distributed computing.1.1 Randomized ComputationsIn recent years, randomness has become a central aspect of the theory of computation.The e�ects of randomness on computation can be appreciated from a variety of points ofview ranging from the abstract study of complexity classes to the concrete constructionof e�cient algorithms. In particular, the notions of pseudorandom generators, interactiveproofs, weak random sources and constructions of small probability spaces have played animportant role in the development of complexity theory and in the analysis of algorithms.I am proud of having contributed to the development and understanding of these notions.PseudorandomnessLoosely speaking, a pseudorandom generator is an e�cient (i.e., polynomial-time) deter-ministic algorithm that stretches a uniformly chosen seed into a much longer sequence,which nevertheless looks random to and e�cient observer. Pseudorandom generators allowto shrink the amount of randomness, in any e�cient application, by an constant power(i.e., instead of using n uniformly chosen bits, the application can be modi�ed to use onlyn� uniformly chosen bits, where �>0 is any constant). The construction of pseudorandomgenerators, under various intractability assumptions, has been a major enterprise in the lastdecade.A key tool in the construction of pseudorandom generators is the construction of hard-core predicates. A hard-core predicate of the function f is a polynomial-time computablepredicate of x which is hard to approximate from f(x). Together with Levin, I was able toprove that any one-way function of the form f(x; r) = (f 0(x); r) has a hard-core predicate[20]. This result played an important role in further development in the area of pseudo-randomness. In particular, our result yields a very simple construction of a pseudorandom1



generator based on any one-way permutation and was used (by Hastad, Impagliazzo, Levinand Luby) to construct a pseudorandom generator based on any one-way function. Our re-sult improves over a previous general result of Yao and previous results concerning speci�cfunctions of Blum and Micali, and Alexi, Chor, Schnorr and myself [1]. Put in more generalterms, the result in [20] asserts that the complexity of any search problem is related to thecomplexity of answering \random (linear) queries" concerning the solution.Getting back to [1], it is worthwhile to note that this work, which demonstrates ahardcore for the RSA and Rabin functions, still o�ers the most e�cient pseudorandomgenerator based on the intractability of factoring.Another contribution to the construction of pseudorandom generators is presented in[19]. This work contains a construction of pseudorandom generators based on any \regular"function. (Loosely speaking, a function f is called regular if each point in its range has thesame number of preimages.) The construction used in [19] utilizes hash functions in orderto preserve the di�culty of successive iterations of a (regular) one-way function. Traces ofthis paradigm can be seem in many subsequent works in the area.The theory of pseudorandomness has been extended to functions by Goldwasser, Micaliand myself [16]. In particular, it has been shown how to construct pseudorandom functions,using an arbitrary pseudorandom (bit) generator. This means that a black box which hasonly k secret bits of storage can implement a function from k bit strings to k bit strings,which cannot be distinguished from a random function by any poly(k)-time observer whichcan \query" the function on arguments of his choice.Other works of mine in the area of pseudorandomness include [18, 15, 26, 17, 21, 22].In particular, in [15] I've shown that two e�ciently sampleable distributions which arestatistically di�erent can be computational indistinguishable only if one-way functions exist.In [17] an e�cient ampli�cation of one-way permutations is presented. Ampli�cation ofone-way function is an important tool, especially in the construction of pseudorandomgenerators.Construction of Small Sample SpacesA careful investigation of many randomized algorithms reveals the fact that they performas well when their random input only possesses weak random properties (rather than be-ing uniformly distributed). Consequently, the construction of small sample spaces whichexhibit some desired (weak) random properties is the key to transforming these algorithmsinto deterministic ones at a reasonable cost. An archetypical example is Luby's MaximalIndependent Set algorithm. The construction of small sample spaces, inducing weak ran-domness properties, is addressed in [11, 9, 2, 13]. The �rst two works deal with generatingand using constant amount of independence between the random variables, whereas thelast two works deal with approximating larger amounts of independence. In particular, [2]contains three simple constructions of small sample spaces which are almost unbiased, and[13] contains general constructions for approximating any product-distribution.Universal Hashing are used in many works in complexity theory. These works typicallyuse two random properties of hash functions (i.e., \extraction" and \mixing"). In [25],we construct small families of functions having these random properties, demonstrating atrade-o� between the quality of the functions and the size of the families from which they2



are drawn. It is stressed that the size of the family does not depend on the size of thedomain on which the functions operate.Using Sources of Weak RandomnessThe above mentioned works capitalize on the fact that particular randomized algorithmsperform as well when their input is taken from a source of weak randomness. A complemen-tary approach is to transform every randomized algorithm into a more robust algorithm sothat the robust algorithm, when fed with a random input produced by a source of weakrandomness, performs as well as the original algorithm when given a random input pro-duced by a perfect source. This way of using sources of weak randomness in algorithmsand other algorithmic settings is investigated in [9, 10]. In [10], Chor and myself introduceand investigate probability bounded sources of randomness which output a stream of blocksso that no string is \too likely" to appear in the next block. The notion of a probabilitybounded source turned out to be very central to subsequent developments in this area.The use of random sources in algorithms is a major motivation for statistical tests,which may be thought of as \program checkers" for devices producing random outputs. Asystematic approach to statistical tests has been recently initiated by Blum and myself [5].Probabilistic Proof SystemsProbabilistic checkable proof (pcp) systems have been a focus of intensive research, mainlydue to the FGLSS-methodology of proving hardness results for combinatorial approximationproblems. In [4], we show that this methodology is \complete" in the following sense. Westudy the free bit complexity, denoted f , of probabilistic veri�ers for NP and show thatan NP-hardness result for the approximation of MaxClique to within a factor of N1=(g+1)would imply f � g. In addition, we reduce this complexity to two (i.e., f � 2) which yields(via the FGLSS-method) that approximating the clique to within a factor of N1=3 (in anN -vertex graph) is NP-hard. We also obtain improved non-approximability results for otherMax-SNP problems such as Max-2SAT and Max-3SAT.Interactive proof systems were presented by Goldwasser, Micali and Racko� as a ran-domized (and more interactive) generalization of NP . The generalization was aimed atproviding a convenient framework for the presentation of zero-knowledge proofs. In fact, in[55] it was proved that this generalization is indeed essential for the (non-trivial) existenceof zero-knowledge proofs. Also, back in 1985 it was not clear whether interactive proofsare more powerful than NP . First evidence to the power of interactive proof systems wasgiven by Micali, Wigderson and myself, by showing that Graph Non-Isomorphism (that isnot known to be in NP) has an interactive proof system [53]. Alas, the focus of that paperis on the zero-knowledge aspects of interactive proofs { see next section.More re�ned studies of the role of randomness in interactive proof systems were thesubject of [14, 3]. In [14], it is shown that the error probability in the completeness conditionof interactive proof systems is unessential. In [3] the problem of e�cient error reductionin interactive proofs is addressed. This work also presents a randomness-e�cient samplingalgorithm that is of independent interest. 3



In [8], interactive proofs were used to present a dramatic contradiction to the \classic"Random Oracle Hypothesis. In contradiction to coNP � IP, it was shown that, relativeto a random oracle, coNP is not contained in IP .A fundamental complexity measure associated to interactive proof systems is theirknowledge complexity. This measure was suggested by Goldwasser, Micali and Racko�,yet without satisfactory de�nition (for the case where complexity is greater than zero). In[24], two satisfactory de�nitions were presented and shown equivalent up to a constant. In[23], evidence was given to show that not all languages in IP have interactive proof systemsof small (e.g., up to logarithmic) knowledge complexity.Probabilistic Communication ComplexityAnother area in which randomness plays a central role is communication complexity. Herethe setting consists of two parties each having an input and a predetermined two-argumentfunction. The goal is to exchange as little bits of communication in order to obtain the valueof the function. In [10], a tight relation between the problem of extracting unbiased bitsfrom two weak sources and probabilistic communication complexity is established, leadingin turn to tight bounds on the probabilistic communication complexity of most functionsand of speci�c functions such as inner-product mod 2. Tradeo�s between randomness andcommunication were investigated in [7].Publications in this area[1] W. Alexi, B. Chor, O. Goldreich, and C.P. Schnorr, \RSA/Rabin Functions: CertainParts Are As Hard As the Whole", SIAM Jour. on Computing, Vol. 17, No. 2, April1988, pp. 194{209. Extended abstract in proceedings of 25th FOCS, 1984.[2] N. Alon, O. Goldreich, J. Hastad, and R. Peralta, \Simple Constructions of Almostk-wise Independent Random Variables, Jour. of Random Structures and Algorithms,Vol. 3, No. 3, pp. 189{304, 1992. Extended abstract in 31st FOCS, 1990.[3] M. Bellare, O. Goldreich, and S. Goldwasser, \Randomness in Interactive Proofs",Computational Complexity, Vol. 4, No. 4 (1993), pp. 319{354. Extended abstract in31st FOCS, 1990.[4] M. Bellare, O. Goldreich and M. Sudan, \Free Bits and Non-Approximability", ECCC,TR95-024, 1995. Extended abstract in 36th FOCS, 1995.[5] M. Blum and O. Goldreich, \Towards a Computational Theory of Statistical Tests",33rd FOCS, 1992.[6] R. Canetti, G. Even and O. Goldreich, \Lower Bounds for Sampling Algorithms",IPL 53 (1995), pp. 17{25.[7] R. Canetti and O. Goldreich, \Bounds on Tradeo�s between Randomness and Com-munication Complexity", Computational Complexity, Vol. 3 (1993), pp. 141{167.Extended abstract in 31st FOCS, 1990.4



[8] R. Chang, B. Chor, O. Goldreich, J. Hartmanis, J. Hastad, D. Ranjan, and P. Rohatgi,\The Random Oracle Hypothesis is False", JCSS, Vol. 49, No. 1, 1994, pp. 24{39.[9] B. Chor, J. Friedmann, O. Goldreich, J. Hastad, S. Rudich and R. Smolansky, \TheBit Extraction Problem or t-Resilient Functions", Proc. of the 26th IEEE Symp. onFoundation Of Computer Science, 1985, pp. 396{407.[10] B. Chor and O. Goldreich, \Unbiased Bits from Sources of Weak Randomness andProbabilistic Communication Complexity", SIAM Jour. on Computing, Vol. 17, No.2, April 1988, pp. 230{261. Extended abstract in proceedings of 26th FOCS, 1985.[11] B. Chor and O. Goldreich, \On the Power of Two-Points Based Sampling", Jour. ofComplexity, Vol 5, 1989, pp. 96{106.[12] B. Chor, O. Goldreich and S. Goldwasser, \The Bit Security of Modular Squaringgiven Partial Factorization of the Moduli", in Advances in Cryptology { Crypto `85(Proceedings), pp. 448{457, 1986.[13] G. Even, O. Goldreich, M. Luby, N. Nisan, and B. Veli�ckovi�c, \Approximations ofGeneral Independent Distributions", extended abstract in 24th STOC, 1992.[14] M. Furer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos, \On Completenessand Soundness in Interactive Proof Systems", Advances in Computing Research: ascienti�c annual. Extended abstract in proceedings of 28th FOCS, 1987.[15] O. Goldreich, \ANote on Computational Indistinguishability", IPL 34 (1990), pp. 277{281.[16] O. Goldreich, S. Goldwasser and S. Micali, \How to Construct Random Functions",Jour. of the ACM, Vol. 33, No. 4, Oct. 1986, pp. 792{807. Extended abstract inproceedings of 25th FOCS, 1984.[17] O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuckerman, \Secu-rity Preserving Ampli�cation of Hardness", extended abstract in 31st FOCS, 1990.[18] O. Goldreich and J. Hastad, \On the Message Complexity of Interactive Proof Sys-tems", ECCC, TR96-018, 1996.[19] O. Goldreich and H. Krawczyk, \On Sparse Pseudorandom Ensembles", RandomStructures and Algorithms, Vol. 3, pp. 163{174, 1992.[20] O. Goldreich, H. Krawczyk, and M. Luby, \On the Existence of Pseudorandom Gen-erators". SIAM J. on Computing, Vol. 22-6 (1993), pp. 1163{1175. Extended abstractin proceedings of 29th FOCS, 1988.[21] O. Goldreich and L.A. Levin, \A Hard-Core Predicate for any One-Way Function".extended abstract in the proceedings of 21th STOC, 1989.[22] O. Goldreich, L.A. Levin, and N. Nisan, \On Constructing 1-1 One-way Functions",ECCC, TR95-029, 1995.[23] O. Goldreich, N. Nisan and A. Wigderson, \On Yao's XOR-Lemma", ECCC, TR95-050, 1995. 5



[24] O. Goldreich, R. Ostrovsky and E. Petrank, \Knowledge Complexity and Computa-tional Complexity", extended abstract in the proceedings of 26th STOC, 1994.[25] O. Goldreich and E. Petrank, \Quantifying Knowledge Complexity", extended ab-stract in 32nd FOCS, 1991.[26] O. Goldreich and A. Wigderson, \Tiny Families of Functions with Random Proper-ties", extended abstract in the proceedings of 26th STOC, 1994.Unpublished manuscripts in this area (cited in literature)[27] O. Goldreich and S. Micali, \The Weakest Pseudo-Random Generator Implies theStrongest One", October 1984.1.2 Cryptography and related areasI have participated in the revolutionary developments that have transformed the �eld ofCryptography from a semi-scienti�c discipline to a respectable �eld in theoretical computerscience. Cryptography today not only has its own merits but also sheds light on fundamentalissues concerning computation such as randomization, knowledge and interaction.Zero-Knowledge and Protocol DesignMy most important contribution to the �eld is the work on zero-knowledge, coauthored byMicali and Wigderson [53]. In this work we demonstrate the generality and wide applicabil-ity of zero-knowledge proofs, a notion introduced by Goldwasser, Micali and Racko�. Theseare probabilistic and interactive proofs that, for the members x of a language L, e�cientlydemonstrate membership in the language without conveying any additional knowledge. Un-til then, zero-knowledge proofs were known only for some number theoretic languages inNP \ coNP. Assuming the existence of one-way functions, we showed that every languagein NP has a zero-knowledge proof.The dramatic e�ect of the above work on the design of cryptographic protocols is demon-strated in another paper of the same authors [54]. Using additional ideas, it is shown thatany protocol problem can be solved. Speci�cally, for every n-ary (computable) function f ,we construct a fault-tolerant protocol computing f . The protocol can tolerate adversarialbehaviour of any minority, and no minority can learn from the execution more than it canlearn from its own inputs and the value of the function. In other words, the protocol \simu-lates" a trusted party in an environment in which no party can be trusted (and furthermoreany minority may be malicious). Furthermore, the construction of the fault-tolerant proto-col is explicit (in the sense that an e�cient algorithm is presented that, on input a Turingmachine description of a function, outputs the desired fault-tolerant protocol). This work[54] has also inspired the development and study of cryptographic protocols in the privatechannel model (cf., work by Ben-Or, Goldwasser and Wigderson).Other works of mine in the area of zero-knowledge proof systems include [55, 52, 51,47, 50, 27, 35]. A joint theme in many of these works is the attempt to uncover theprinciples underlying the phenomenon of zero-knowledge so that they can be better tuned6



towards applications. In particular, in [55, 47, 51] various formulations of zero-knowledgeare suggested and investigated and certain properties of proof systems are demonstratedessential to the zero-knowledge property.Other works of mine in the area of cryptographic protocols include [56, 30, 33]. In [56]it is shown that general multi-party computation reduces to a very simple two-party com-putation (of a two-bit function). In [30] the scope of multi-party computation is extendedto the asynchronous setting, whereas [33] deals with adaptive/dynamic adversaries (in boththe private channel and the computational models). Early works on testing and designingsimple protocols appear in [37, 43, 41, 39, 44, 32, 42].PseudorandomnessPseudorandom generators, surveyed in the previous section, are very important to cryp-tography. In particular, pseudorandom generators yield private-key encryption schemes.Several cryptographic applications (e.g., message authentication) of pseudorandom func-tions were described in [49]. Pseudorandom functions were also essential to the results in[46, 45].Results from cryptography (and in particular pseudorandom functions [16]) were usedto derive many of the impossibility results in the area of machine learning.New Topics in CryptographyThe notion of incremental cryptography was introduced and developed in [28, 29]. The aimof this approach is to design cryptographic algorithms with the property that having appliedthe algorithm to a document, it is possible to quickly update the result of the algorithmfor a modi�ed document, rather than having to re-compute it from scratch. In particular,schemes which support powerful update operation and satisfy strong security requirementswere developed yielding an application to the problem of virus protection (which was notpossible before).In [34], we consider the problem of querying a duplicated database so that none of theindividual copies can know which record has been required by the user. We have obtainedseveral e�cient schemes for this problem.In [46], I have initiated a theoretical treatment of software protection.Other Topics in CryptographyI have also worked on the \classical" problems of cryptography, namely encryption [47] andsignatures [45, 40]. In particular, in [40] the notion of an On-line/O�-line Signature Schemeis presented and instantiated.Publications in this area[28] M. Bellare and O. Goldreich, \On De�ning Proofs of Knowledge", Advances in Cryp-tology { Crypto `92 (Proceedings), Lecture Note in Computer Science (740) SpringerVerlag, pp. 390{420, 1993. 7



[29] M. Bellare, O. Goldreich, and S. Goldwasser, \Incremental Hashing and Signatures",Advances in Cryptology { Crypto `94 (Proceedings), Lecture Note in Computer Science(839) Springer Verlag, pp. 216{233, 1994.[30] M. Bellare, O. Goldreich, and S. Goldwasser, \Incremental Cryptography and Appli-cation to Virus Protection", extended abstract in 27th STOC, 1995.[31] M. Ben-Or, R. Canetti, and O. Goldreich, \Asynchronous Secure Computation", ex-tended abstract in 25th STOC, 1993.[32] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Hastad, J. Kilian, S. Micali, and P. Ro-gaway, \Everything Provable is Provable in Zero-Knowledge", in Advances in Cryp-tology { Crypto `88 (Proceedings), Lecture Note in Computer Science (403) SpringerVerlag, pp. 37{56, 1990.[33] M. Ben-Or, O. Goldreich, S. Micali and R.L. Rivest, \A Fair Protocol for SigningContracts", IEEE Trans. on Inform. Theory, Vol. 36, No. 1, pp. 40{46, Jan. 1990.Extended abstract in the proceedings of 12th ICALP, 1985.[34] R. Canetti, U. Feige, O. Goldreich and M. Naor, \Adaptively Secure Multi-partyComputation", extended abstract in 28th STOC, 1996.[35] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan, \Private Information Retrieval",extended abstract in 36th FOCS, 1995.[36] I. Damgard, O. Goldreich, and A. Wigderson, \Hashing Functions can Simplify Zero-Knowledge Protocol Design (too)", BRICS Techniacl Report, 1994. Appeared inCrypto95 jointly with T. Okamoto under the title \Honest Veri�er vs Dishonest Ver-i�er in Public Coin Zero-Knowledge Proofs".[37] S. Even and O. Goldreich, \DES-Like Functions Can Generate the Alternating Group",IEEE Trans. on Inform. Theory, Vol. IT-29, No. 6, pp. 863{865, 1983.[38] S. Even and O. Goldreich, \On The Security of Multi-Party Ping-Pong Protocols",extended abstract in the proceedings of 24th FOCS, pp. 34{39, 1983.[39] S. Even and O. Goldreich, \On the Power of Cascade Ciphers", ACM Trans. onComputer Systems, Vol. 3, No. 2, pp. 108{116, 1985.[40] S. Even, O. Goldreich, and A. Lempel, \A Randomized Protocol for Signing Con-tracts", Comm. of the ACM, Vol. 28, No. 6, pp. 637{647, 1985. Extended abstractin the proceedings of Crypto82.[41] S. Even, O. Goldreich, and S. Micali, \On-line/O�-line Digital signatures", Journalof Cryptology, Vol. 9, No. 1, 1996, pp. 35{67. Preliminary version in the proceedingsof Crypto89.[42] S. Even, O. Goldreich, and Y. Yacobi, \Electronic Wallet", in Advances in Cryptology:Proceedings of Crypto83, (D. Chaum editor), Plenum Press, pp. 383{386, 1984.[43] S. Even, O. Goldreich and A. Shamir, \On the Security of Ping-Pong Protocols whenImplemented Using the RSA", in Advances in Cryptology { Crypto `85 (Proceedings),pp. 58{72, 1986. 8



[44] O. Goldreich, \A Simple Protocol for Signing Contracts", in Advances in Cryptology:Proceedings of Crypto83, (D. Chaum editor), Plenum Press, pp. 133{136, 1984.[45] O. Goldreich, \On Concurrent Identi�cation Protocols", in Advances in Cryptology:Proceedings of Eurocrypt84, (T. Beth et. al. eds.), Lecture Note in Computer Science(209) Springer Verlag, pp. 387{396, 1985.[46] O. Goldreich, \Two Remarks Concerning the GMR Signature Scheme", in Advances inCryptology { Crypto `86 (Proceedings), (A.M. Odlyzko ed.), Lecture Note in ComputerScience (263) Springer Verlag, pp. 104{110, 1987.[47] O. Goldreich, \Towards a Theory of Software Protection and Simulation by ObliviousRAMs", Proc. of the 19th ACM Symp. on Theory of Computing, pp. 182{194, 1987.[48] O. Goldreich, \AUniform Complexity Treatment of Encryption and Zero-Knowledge",Journal of Cryptology, Vol. 6, No. 1,pp. 21{53, 1993.[49] O. Goldreich, S. Goldwasser, and N. Linial, \Fault-tolerant Computations withoutAssumptions: the Two-party Case", extended abstract in 32nd FOCS, 1991.[50] O. Goldreich, S. Goldwasser and S. Micali, \On the Cryptographic Applications ofRandom Functions", in Advances in Cryptology: Proceedings of Crypto84, pp. 276{288, 1985.[51] O. Goldreich, and A. Kahan, \How to Construct Constant-Round Zero-KnowledgeInteractive Proofs for NP", To appear in Journal of Cryptology,[52] O. Goldreich, and H. Krawczyk, \On the Composition of Zero-Knowledge Proof Sys-tems", SIAM Journal on Computing, Vol. 25, No. 1, February 1996, pp. 169{192.Extended abstract in proceedings of the 17th ICALP, 1990.[53] O. Goldreich and E. Kushilevitz, \A Perfect Zero-Knowledge Proof for a DecisionProblem Equivalent to Discrete Logarithm", Journal of Cryptology, Vol. 6, No. 2,pp. 97{116, 1993.[54] O. Goldreich, S. Micali, and A. Wigderson, \Proofs that Yield Nothing But theirValidity or All Languages in NP have Zero-Knowledge Proofs". JACM, Vol. 38, No.1, pp. 691{729, 1991. Extended abstract in proceedings of 27th FOCS, 1986.[55] O. Goldreich, S. Micali, and A. Wigderson, \How to Play any Mental Game or aCompleteness Theorem for Protocols with Honest Majority", Proc. of the 19th ACMSymp. on Theory of Computing, pp. 218{229, 1987.[56] O. Goldreich and Y. Oren, \De�nitions and Properties of Zero-Knowledge Proof Sys-tems", Journal of Cryptology, Vol. 7, No. 1, pp. 1{32, 1994.[57] O. Goldreich and R. Vainish, \How to Solve any Protocol Problem - An E�ciencyImprovement", in Advances in Cryptology { Crypto `87 (Proceedings), (C. Pomeranceed.), Lecture Note in Computer Science (293) Springer Verlag, pp. 73{86, 1988.9



1.3 Distributed ComputingThroughout the years, I have maintained some interest in the area of distributed computing.In particular, I am familiar and have worked on problems in various models includingstatic and dynamic asynchronous networks, fault-tolerant distributed computing, and radionetworks. My contributions include� Lower bounds on the message complexity of broadcast and related tasks in asyn-chronous networks [59];� Investigation of the deterministic and randomized round-complexity of broadcast inradio networks [60,61];� Initiating a quantitative approach to the analysis of dynamic networks [58];� Enhancement of fast randomized Byzantine Agreement algorithms so that they alwaysterminate [63];� Construction of a randomized reliable channel over a highly unreliable media [62]; and� Investigations of the message complexity of computations in the presence of link fail-ures [64, 65, 66].Publications in this area[58] B. Awerbuch, O. Goldreich, and A. Herzberg, \A Quantitative Approach to DynamicNetworks", 9th ACM Symp. on Principles of Distributed Computing (PODC), pp.189-204, 1990.[59] B. Awerbuch, O. Goldreich, D. Peleg, and R. Vainish, \A Trade-o� between Informa-tion and Communication in Broadcast Protocols, Jour. of the ACM, Vol. 37, No. 2,April 1990, pp. 238{256.[60] R. Bar-Yehuda, O. Goldreich, and A. Itai, \On the Time-Complexity of Broadcast inRadio Networks: An Exponential Gap Between Determinism and Randomization",Journal of Computer and system Sciences, Vol. 45, (1992), pp. 104{126.[61] R. Bar-Yehuda, O. Goldreich, and A. Itai, \E�cient Emulation of Single-Hop RadioNetwork with Collision Detection on Multi-Hop Radio Network with no CollisionDetection", Distributed Computing, Vol. 5, 1991, pp. 67-71.[62] O. Goldreich, A. Herzberg, and Y. Mansour, \Source to Destination Communicationin the Presence of Faults", 8th ACM Symp. on Principles of Distributed Computing(PODC), pp. 85-102, 1989.[63] O. Goldreich, and E. Petrank, \The Best of Both Worlds: Guaranteeing Terminationin Fast Randomized Byzantine Agreement Protocols", IPL, 36, October 1990, pp.45-49.[64] O. Goldreich and L. Shrira, \Electing a Leader in a Ring with Link Failures", ACTAInformatica, 24, pp. 79{91, 1987. 10



[65] O. Goldreich and L. Shrira, \On the Complexity of Computation in the Presence ofLink Failures: the Case of a Ring", Distributed Computing, Vol. 5, 1991, pp. 121-131.[66] O. Goldreich and D. Sneh, \On the Complexity of Global Computation in the Presenceof Link Failures: the case of Unidirectional Faults", 10th ACM Symp. on Principlesof Distributed Computing (PODC), 1991.1.4 Other Areas of Complexity TheoryI consider the theory of average case complexity initiated by Levin to be fundamental. Thistheory provides a framework for investigating the behaviour of algorithms and problemsunder any \reasonable" input distribution. In [67], an attempt was made to further developand strengthen this approach. In particular, the class of \reasonable" distributions hasbeen extended to all distributions for which there exists e�cient sampling algorithms, anda completeness result for the new class has been presented. (Fortunately, Impagliazzo andLevin subsequently showed a general method for translating completeness results from theoriginal framework to the new one, thus unifying the two frameworks.) Furthermore, [67]also contained a reduction of search to decision problems, abolishing the fear that twoseparate theories will need to be investigated.In [72], we study the problem of reconstructing a function when given access to an oracle(for it) which is very rarely correct. We have obtained such a procedure for the case wherethe function is an (unknown) low-degree (multi-variant) polynomial over a large �nite �eld.I have some research experience in parallel computation (i.e., a parallel algorithm forinteger GCD computation [68]), and in combinatorics (motivated by algorithmic problemsas in [71, 9]). Finally, as many theoretical computer scientist, I've proven several NP-completeness results (e.g. for problems in permutation groups [69], for several networktesting problems [70], and for a problem concerning games [73]).Publications in this area[67] S. Ben-David, B. Chor, O. Goldreich, and M. Luby, \On the Theory of Average CaseComplexity", Journal of Computer and system Sciences, Vol. 44, N0. 2, April 1992,pp. 193{219. Extended abstract in the proceedings of 21th STOC, 1989.[68] B. Chor and O. Goldreich, \An Improved Parallel Algorithm for Integer GCD", Al-gorithmica, 5, pp. 1{10, 1990.[69] S. Even and O. Goldreich, \The Minimum Length Generator Sequence is NP-Hard",Journal of Algorithms, Vol. 2, pp. 311{313, 1981.[70] S. Even, O. Goldreich, S. Moran and P. Tong, \On the NP-Completeness of CertainNetwork-Testing Problems", Networks, Vol. 14, No. 1, pp. 1{24, 1984.[71] O. Goldreich, \On the Number of Monochromatic and Close Beads in a Rosary",Discrete Mathematics, Vol. 80, 1990, pp. 59-68.[72] O. Goldreich, R. Rubinfeld and M. Sudan, \Learning Polynomials with Queries: theHighly Noisy Case", extended abstract in 36th FOCS, 1995.11



Unpublished manuscripts in this area (cited in literature)[73] O. Goldreich, \Finding the Shortest Move-Sequence in the Graph-Generalized 15-Puzzle is NP-Hard", July 1984.
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