A Taste of Randomized Computations*

Oded Goldreich
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.

March 6, 2001

Abstract

The purpose of this text is to demonstrate the usage of randomization in a variety of compu-
tational settings. Our choice is governed by the desire to focus on the randomization aspect of
the solution and avoid any complicated details that are due to other aspects of the computational
problem. Thus, we avoid any example that requires substantial problem-specific background.
Our examples are grouped in three (subjective) categories:

1. Traditional algorithmic problems. Here we consider randomized algorithms for graph the-
oretic problems such as finding a perfect matching, algebraic problems such as testing
polynomial identity, and approximation problems such as approximating the number of
satisfying assignments to a DNF formula.

2. Traditional complexity questions. Here we present results such as the randomized reduc-
tions of Approximate Counting to AP, and of SAT to unique-SAT.

3. Distributed and Parallel Computing. Here we consider randomized procedures for dis-
tributed tasks such as Testing String Equality, Byzantine Agreement, and routing in net-
works.

We stress that our presentation is merely aimed at demonstrating the usage of randomization,
and that no attempt was made to present a coherent theory of randomized computation. Fur-
thermore, our presentation tends to be laconic (i.e., it lacks some technical details as well as
wider perspective).

“Adapted from Appendix B of Modern Cryptography, Probabilistic Proofs and Pseudorandomness [11].
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Comment: The interplay between randomness and computation is one of the most fascinating
scientific phenomena uncovered in the last couple of decades. This interplay is at the heart of
modern cryptography and plays a fundamental role in complexity theory at large. Specifically, the
interplay of randomness and computation is pivotal to several intriguing notions of probabilistic
proof systems and is the focal of the computational approach to randomness. In this text, we have
avoided the above areas. For an introduction to to these three, somewhat interwoven areas, the
interested reader is referred to the text Modern Cryptography, Probabilistic Proofs and Pseudoran-
dommness [11]. For a more systematic, detailed and inclusive exposition of Randomized Algorithms,
the interested reader is referred to a textbook by Motwani and Raghavan [24].



1 Randomized Algorithms

Conspicuous omissions in this category include some of the most well-known randomized algorithms
(e.g., many in the domain of computational number theory), as well as the Markov Chain approach
to approximate counting. As stated above, the reason for these omissions is that these algorithms
either require specialized (and unrelated to randomness) background or are quite involved to present
and/or analyze.

1.1 Approximate Counting of DNF satisfying assignments
or, a twist on naive sampling

The problem considered here is to approximate the number of satisfying assignment to a DNF
formula up-to a constant factor. We note that given e and oracle access to any function f :
{0,1}™ — {0,1}, it is easy to approximate the fraction |[{z : f(z) = 1}|/2" up-to an e additive
deviation. Specifically, a sample of O(e~2log(1/6)) points has average value that, with probability
at least 1 — 6, is at most e-away from the correct value. However, our aim is to provide relative
(rather than absolute) approximation of this fraction (i.e., given € > 0 the task is to approximate
the above fraction up-to a 1 £ € factor).

Let ¢ = \i*, C;, where C; : {0,1}" — {0,1} is a conjunction, be a DNF formula. Actually, we
will deal with the more general problem in which we are given (implicitly) m subsets S, ..., S, C
{0,1}™ and wish to approximate | |J; S;|. In our case S; will be the set of assignments satisfying the
conjunction C;. We make several computational assumptions regarding these sets (letting efficient
mean implementable in time polynomial in n - m):

1. Given ¢ and z, one can efficiently determine whether or not = € S;.
2. Given ¢, one can efficiently determine |.S;].
3. Given i, one can efficiently generate a uniformly distributed element of S;.

These assumptions are clearly satisfied in the case S; = C’i_l(l) considered above. The key obser-
vation is that

Usi| = Si\ U s; (1)
i=1 =1 Jj<i
= Z |Si| - Prses, [s ¢ U S; (2)
i=1 j<i

and that the probabilities in Eq. (2) can be approximated up-to € (with overwhelming success
probability) by taking poly(n/€’) many samples. This leads to the following algorithm

Algorithm: On input parameters € and 6, set € = ¢/m and §' = 6/m. For i =1 to m do

1. Let p; & Pryes;[s & Uj<; Sj]- Using a sample of size ¢ def O((1/€)?log(1/¢")), approximate
pi by i so that Pr[|p; — pi| > €/] < §’. That is, we uniformly select ¢ samples in S;, and test
for each sample whether or not it resides in |J;; Sj.

2. Compute |S;|, and let a; % 5; - |S;].

Output the sum of the a;’s.



Analysis: Let N; = p; - |S;|. We are interested in the quality of the approximation to >, N;
provided by >, a;. With probability at least 1 —m - §', we have a; = (p; £ €) - |S;| = N; £ € -|Si],
for all i’s, and so Y, a; = >, N; £ € -3, |S;|. However, max;(|S;|) < |U; Si| = >2; Ni, and so

m m
Zai = ZNi:I:m-e'- max |5

1<i<m
m m
= (L£me) Y Ny = (1+e) ) N;

i=1 i=1
Note that the above approach does not require exact computation of |S;|, nor exact uniform selection
in S;. Instead, ability to approximate |S;| up-to a factor of 1+ ¢ within time related to poly(n/€')
suffices. Likewise, it suffice to generate in time related to poly(n/€') a distribution that is at most
¢’-away from the uniform distribution over S;.

The algorithm presented above is actually a deterministic reduction of the task of approximating
the size of one set (in the relative sense) to the task of providing absolute approximations to some
fractions. It utilizes the hypothesis that the first set can be expressed as a union of feasibly
many sets for which certain natural operations (e.g., deciding membership, approximating the size)
can be performed efficiently. Thus, this approach may be applicable to some sets, but not to their
complement. We stress that, in general, relative approximation may be feasible for one quantity, but
not for its complement (e.g., it is NP-Hard to approximate the number of UNsatisfying assignment
to a DNF formula up-to any factor).

1.2 Finding a perfect matching
or, on the loneliness of the extremum

The problem considered here is to find a perfect matching in a graph. The specific goal is to obtain
a fast parallel algorithm, which is the reason we do not follow the standard combinatorial approach
(of iteratively augmenting the current matching using alternating paths). Instead, we rely on the
following Isolation Lemma that asserts that when assigning each edge a random weight, taken
from a sufficiently large domain, there is a unique perfect matching of minimum (resp., maximum)
weight. The lemma extends to arbitrary set systems.

Lemma 1 (The Isolation Lemma): Let Sy, Sy, ...,S; C [m] o {1,2,...,m} be distinct sets, and let

W1, W, .., Wy, be independently and uniformly chosen in [2m]. Then, with probability at least 1/2,
there exists a unique j so that ) ;cs. wi equals minger(Xes, Wi)-

In our application [m] corresponds to the set of edges, and the S;’s to perfect matchings in the
graph.

Proof: For i =1,...,m, consider the event E; defined as the existence of two sets (i.e., S;’s) with
minimum weight so that one set contains ¢ and the other set does not contain 4. It suffices to show
that the probability that E; occurs is at most 1/2m. The latter is proven by considering a random
process in which the weight of ¢ (i.e., w;) is selected last.

Suppose that the values of all other w;’s (with j # i) have already been determined. Let
S~ be a set of minimum weight among all sets not containing i, and w™ be its weight (i.e.,

w- min;.;gs; (Zkesj wg)). Similarly, let ST be a set of minimum weight among all sets obtained

by omitting 7 from sets that contain it, and w™ be its weight (i.e., w™ def minj.ies; (Lres;\ (i} Wk))-
Then, event E; occurs if and only if w~ = w' + w;, which happens with probability 1/2m if
(w™ —w™) € [2m], and with probability 0 otherwise. [l



Algorithm: On input a bipartite graph G = (U, V, E), do:
1. For each edge e € E, uniformly and independently select a weight we € [2m], where m def |E|.

2. Try to compute the value of the minimum-weight perfect-matching. This is done by computing
the determinant of the matrix, denoted A, obtained by setting the (u,v)-entry to 2¥e if
e = (u,v) and to 0 if (u,v) € E. In case the determinant is 0, halt stating that the graph has
no perfect matching. Otherwise, the value of the minimum-weight perfect-matching is set to
be the largest i so that the value of the determinant is divisible by 2¢. (The determinant can
be computed by a fast parallel algorithm.)

3. For each e € E, try to compute the value of the minimum-weight perfect-matching among
those not containing the edge e. This is done (as above) by computing the determinant of the
matrix, denoted A., obtained from A by resetting the e-entry to 0. All these computations
can be conducted in parallel.

4. A candidate perfect matching is retrieved by including all edges e for which the value (of the
min-weight perfect matching) found in Step 3 is different than the one found in Step 2.

The algorithm for general graphs is a variation of the above (and is not described here). Note that
Steps 1 and 2 (by themselves) provide a randomized algorithm for determining whether a bipartite
graph has a perfect matching.

Analysis: The determinant of A sums (possibly with minus sign) the contributions of all perfect
matchings in the graph G, where the contribution of a perfect matching M equals £ [[ ), 2% =

iZZeeMwe. We may assume that the graph has a perfect matching, or else the determinant
computed in Step 2 is 0. Assume that the weights (i.e., we’s) are such that there exists a unique
perfect matching of minimum weight. Denote this (minimum-weight perfect) matching by M, and
denote its weight by W. In such a case, the determinant of A is of the form 2" + - 2W+! where
r is an integer (possibly zero). This is so because the contribution of the unique minimum-weight
perfect-matching is £2", and the contribution of each other perfect-matching is +2"' where
W' > W (are both integers). Likewise, for every edge e not in M, the determinant of A, is of the
form 2V 4 r - 2W+L where again r is an integer. On the other hand, for every edge e in M, the
determinant of A, is either zero or r - 2W*! with r being a non-zero integer.

A Parenthetical Comment’

It is tempting to think that when selecting weights as above, the minimum-weight perfect matching
may be uniformly distributed among all perfect matchings. As shown below, this is not always
the case (which is unfortunate, because otherwise we would have obtained a simple probabilistic
polynomial-time algorithm for uniformly generating a perfect matching in a graph).

Consider a graph in which the set of perfect matchings consists of two types of matchings.
There are 2" matchings of the first type, a generic one having the form {ey; o, : ¢ = 1,...,n},
where o1,...,0, € {0,1}. In addition, there is a single matching of the second type, denoted
{eanti i =1,...,n}. We claim that the probability that the minimum-weight perfect matching is a
specific matching of the first type is exponentially smaller than the probability that the minimum-
weight perfect matching is the matching of the second type. This claim holds for weights distributed

! This parenthetical comment is based on discussions with Madhu Sudan (during March 1998).



as above, as well as for several other distributions (e.g., the Normal Distribution). For sake of
simplicity, we consider weights uniformly distributed in the interval [0,1]. The claim is proven by
combining the following two facts.

Fact 1.2.1 With overwhelmingly high probability, the value of the minimum-weight matching among
all 2™ matchings of the first type is at least cn, where ¢ is any constant smaller than 1/3 (e.g.,
¢ =0.32).

Proof Sketch: This follows by observing that

n n
min (Z w2i0i> = > min(wyi_1, w;)

o1,..,0n€{0,1} =1 =1
and that the expected value of each min(ws;—1,w9;) equals 1/3. O

Fact 1.2.2 The probability that any specific perfect matching (and in particular the one of the

second type) has weight less than, say, 0.31 - n is greater than % =exp(Q2(n)) - 27"

Proof Sketch: This follows by observing that

n
> wi < 0.31-n]

=1

Pr

> Pr[Vi(w; <0.6)] - (1 —Pr [Zwi >0.31-n| Vi(w; <0.6)

=1

)

> 0.6" !
’ 2
where the last inequality uses Explw; |w; < 0.6 =0.3. W

Combining Facts 1.2.1 and 1.2.2, we conclude that, with probability exp(2(n)) - Zn—lﬂ, the single
(second type) matching has weight less than 0.31 - n and every perfect matching of the first type
has weight at least 0.32 - n. In this case, the single (second type) matching is of minimum-weight

among all 2" 4 1 perfect matchings, and the claim follows.

1.3 Testing whether polynomials are identical
or, on the discrete charm of polynomials

The problem considered here is to determine whether two multi-variant polynomials are identical.
We assume that one is given an oracle for the evaluation of each of the polynomials. We further
assume that the polynomials are defined over a sufficiently large finite field, denoted F. Finally, let
n denote the number of variables in these polynomials.

Algorithm: Given n and black-box access to p,q : F* — F, uniformly select rq,...,7, € F, and
accept if and only if p(r1,...,r,) = q(r1, ..., T0)-



Analysis: Clearly, if p = ¢ then the algorithm always accepts. The following lemma implies that
if p and ¢ are different polynomials, each of total degree at most d, then the algorithm accepts with
probability at most d/|F|.

Lemma 2 Let p: F® — F be a non-zero polynomial of total degree d. Then

d

Pr, r ey Tn) = 0] < —
r 1,---5 n[-p(,rl r ) ] |F|

Proof: The lemma is proven by induction on n. The base case of n = 1 follows immediately by
the Fundamental Theorem of Algebra (i.e., the number of distinct roots of a degree d univariant
polynomial is at most d). In the induction step, we write p as a polynomial in its first variable.
That is,

d
p(r1, T, .y Tp) = Zpi(:ng, ey L)+ XY
i=0

where p; is a polynomial of total degree at most d — 4. Let ¢ be the biggest integer ¢ for which p; is
not identically zero. (We dismiss the case t = 0.) Then, using the induction hypothesis, we have

Pry vy p(r1,79, csmn) = 0] < Proy, o [pe(re, .y mn) =0
+PrT1,Tz,---,Tn[p(T17T27 "'7Tn) =0 |pt(T27 "'7Tn) 7& 0]

< d—t " t
- [FL
where the second term is bounded by fixing any sequence 7y, ..., r, for which p¢(rg, ....,7,) # 0 and

considering the univariant polynomial p’(x) def p(x,re,...,Ty), which by hypothesis is a non-zero
polynomial of degree t.

Comment: The lesson is that whenever the situation is such that almost any choice will do,
taking a random choice yields an algorithm with a rigorous performance guarantee. In a sense
any randomized algorithm is based on this paradigm, except that here the space of choices seems
more straightforward than in any other case. That is, most randomized algorithms are based on
introducing a sample space that is not obvious from the problem at hand; whereas here the sample
space is the obvious one.

1.4 Randomized Rounding applied to MaxSAT
or, on being fractionally pregnant

We slightly deviate from the above style of exposition by considering a general methodology for
approximating combinatorial optimization problems. The methodology, which relies on the fact
that linear programming is solveable in polynomial-time, consists of two steps. First, one presents
a linear programming relaxation of an integer program (corresponding to a combinatorial problem).
Next, one derives from a solution to the linear program (LP) a solution to the integer program (IP).
This is done by using the former (LP) solution in order to determine a probability distribution over
integer solutions (i.e., solution to the IP), and picking a solution according to this distribution.
We exemplify this methodology by applying it to Max-SAT. Specifically, we consider the task of
approximating the maximum number of clauses that can be simultaneously satisfied in a given CNF
formula.



Let ¢ = AjL, Cj be a CNF formula, where Cj = (V,;.g+ i) V (V,c g~ —7) with S]'-", S; C[n] ot
J J

{1,...,n}. Abusing notation, we may express Max-SAT as an integer optimization problem in which
the task is to maximize } 7", y; subject to

ziy; €{0,1} (Vi) (3)
Yowi+ Y (L—z) >y (V) (4)

iest €Sy
In the Linear Programming (LP) relaxation, one replaces Eq. (3) by
0< iy <1 (Vi) (5)

Clearly, the value of the LP is lower bounded by the value of the integer program. Given an (opti-
mal) solution, Z;,y;, to the LP, we randomly derive a solution to the original integer formulation.
It will be shown that the expected value of the integer solution is at least 1 —e ™! times the value of
the LP (and hence at least a 1 — e~! fraction of the optimum of the integer problem). Specifically,
we set x; = 1 with probability Z; (and x; = 0 otherwise).

Analysis: Suppose that clause C; has c; literals. Below, we will show that the probability that
C; is satisfied by the integer assignment (generated by above randomized rounding of the above

LP solution) is at least
o
1\ 1\ s
(1— <l_c_j> )‘Z/j 2 (1—6 )'yj

and so the expected number of satisfied clauses is at least (1 —e™!)- >;9; (as stated above). The
above is proven by noting that the probability of the complementary event (i.e., C; is not satisfied)
is

IHa-z)|-| ] 4 (6)
iest €Sy
where, by Eq. (4), > ,cg+(1 = 2i) + 3icq- @i < (¢j — ;). Eq. (6) is maximized when 1 — &; =
J J
(¢j —9j)/c; for all i € S]'Jr, and 2; = (¢; — 9j)/c; for all i € S;°. Thus, Eq. (6) is bounded above by

(1 — g—j)Cj, and the above claim follows.

Comments: Combining the above algorithm with the naive algorithm that uniformly selects
a truth assignment, one derives a randomized algorithm of a 3/4-approximation factor. The key
observation is that the performance of the LP-based algorithm improves as the clause sizes decrease,
whereas the performance of the naive algorithm improves when the sizes increase. In a different vein,
we mention that the randomized rounding paradigm has been extended also to semidefinite (rather
than linear programming) relaxations of combinatorial problems. In fact, improved approximation
ratios for various versions of MaxSAT were obtained that way (cf., [10, 16]).

1.5 Primality Testing
or, on hiding information from an algorithm

The problem considered here is to decide whether a given number is a prime. The only Number
Theoretic facts that we use are:



Fact 1.5.1 For every prime p > 2, each quadratic residue mod p has exactly two square roots mod p
(and they sum-up to p).

Fact 1.5.2 For every (odd and non-integer-power) composite number N, each quadratic residue
mod N has at least four square Toots mod N.

Our algorithm uses as a black-box an algorithm, denoted R, that given a prime p and a quadratic
residue mod p, returns the smallest among the two square roots. There is no guarantee as to what
is the output in case the input is not of the above form (and in particular in case p is not a prime).

Algorithm: On input a natural number N > 2 do
1. If N is either even or an integer-power then reject.
2. Uniformly select r € {1,..., N — 1}, and set s < 72 mod N.

3. Let v/ — R(N,s). If ' = +r (mod N) then accept else reject.

Analysis: By Fact 1.5.1, on input a prime number IV, the above algorithm always accepts (since
in this case R(N,r? mod N) = +r for any r € {1,..., N —1}). On the other hand, suppose that
N is an odd composite that is not an integer-power. Then, by Fact 1.5.2, each quadratic residue s
has at least four square roots, and each is equally likely to be chosen at Step 2 (becuase s yields
no information on the specific 7). Thus, for every such s, the probability that =R(N, s) has been
chosen in Step 2 is at most 2/4. It follows that, on input a composite number, the algorithm rejects
with probability at least 1/2.

Comment: The above analysis presupposes that the algorithm R is always correct when fed with
a pair (p, s), where p is prime and s a quadratic residue mod p. In case R has error probability
€ < 1/2, our algorithm still distinguishes primes from composites (since on the former it accepts
with probability at least 1 —e > 1/2). We note that efficient randomized algorithms for extracting
square roots modulo a prime are known (cf., [5, 24]). Thus, the above establishes that primality
can be decided in probabilistic polynomial-time (alas, with two-sided error).

1.6 Testing Graph Connectivity via a random walk
or, the accidental tourist sees it all

The problem considered here is to decide whether a given graph is connected. The aim is to devise
an algorithm that does so while using little space (i.e., essentially, as little as needed for storing
the identity of a single vertex). This task can be reduced (in small space) to testing connectivity
between any given pair of vertices. Thus, we focus on the task of determining whether or not two
given vertices are connected in a given graph.

Algorithm: On input a graph G = (V, E) and two vertices, s and ¢, we take a random walk of
length O(|V|-|E|), starting at vertex s, and test at each step whether or not vertex ¢ is encountered.
By a random walk we mean that, at each step, we uniformly select one of the edges incident at the
current vertex and traverse this edge to the other endpoint.



Analysis: We will show that if s is connected to ¢ in the graph G then, with probability at least
1/2, vertex t is encountered in a random walk starting at s. In the following, we consider the
connected component of vertex s, denoted G' = (V', E’). For any edge, (u,v) (in E'), we let T, ,
be a random variable representing the number of steps taken in a random walk starting at « until v
is first encountered. It can be shown that E[T, ,] < 2|E’|.? Also, letting cover(G’) be the expected
number of steps in a random walk starting at s and ending when the last of the vertices of V' is
encountered, and C be any directed cycle that visits all vertices in G', we have

cover(G') < Z E[T, .
(u,p)eC
< [c]-2P|

Letting C be a traversal of some spanning tree of G’, we conclude that cover(G') < 4-|E'|-|[V'|.
Thus, with probability at least 1/2, a random walk of length 8 - |[E'| - |V| starting at s visits all
vertices of G'.

1.7 Finding minimum cuts in graphs
or, random is better than arbitrary

The problem considered here is to find the minimum cut in a graph. The randomized algorithm
that follows is simpler than the traditional flow-based algorithms, and lends itself to parallel im-
plementation (omitted here).

Algorithm: On input a graph G = (V, E), with n = |V, the algorithm makes n — 2 random
edge contraction steps: In each step one selects uniformly an edge of the current multi-graph and
contracts the two endpoints into one vertex, allowing parallel edges but dropping self-loops that
may be created. That is, if (u,v) is the contracted edge of the current graph G’ then we replace
vertices u and v by a new vertex x, and replace edges of the form (w,v) (resp., (w,u)), where
w ¢ {u,v}, by a similar number of edges (w,x). When these n — 2 contraction steps are completed,
we are left with a multi-graph on two vertices, and just output the number of parallel edges.

Analysis: Suppose that G has a minimum cut C' C E. Then, the probability that no edge of C
is contracted in the first step is ‘EEIC‘ > 1— 2 (where |C| < 2|E|/n because the minimum cut

cannot be bigger than the average degree). The question is what happens in subsequent steps. A
key observation is that |C| is a lower bound on the average degree of any multi-graph obtained from
G by any sequence of edge contractions. Thus, the probability that the (n — 2)-step contraction
process leaves C intact is at least

n? 2 1 —i 2
IT {1~ —Gi-1) ~ Il 7= = (n-1)
i—1 n i1 " n-\n

Thus, repeating the above algorithm for a quadratic number of times we obtain the minimum cut,
with probability at least, say, 2/3. We comment that it follows that the number of minimum cuts

2 A hand-waving argument follows: Consider a very long walk, starting at u, and returning to u many times. Note
that each directed edge appears on this walk for about the same number of times. Partition the walks into segments
so that each segment ends with a move from vertex v to vertex u. Then, the number of segments is about a 1/2|E’|
fraction of the length of the walk, and so the average length of a segment is 2| E’|. Note that each segment constitutes
a walk starting at v and passing through v (possiblly several times) before returning to w. Thus, the average length
of segments in the big walk upper bounds the expected length of random walks from u to v.



is at most (n — 1)n/2 (becuase each such cut is generated by the above algorithm with probability
at least 2/(n — 1)n).

Comment: Observe that if the random choices in the above algorithm are replaced by arbitrary
choices then the output gives little indication towards the minimum cut in G. That is, an algorithm
that makes n — 2 arbitrary edge-contraction steps provides no useful information, whereas the
above algorithm that picks these steps at random is useful. In general, making random choices
may be better than making arbitrary choices. This lesson is important because many algorithms
are presented in a non-fully specified manner, allowing some choices to be made arbitrarily (in
which case these choices are typically made in a way most convenient for implementation). It is
important to bear in mind that, in some cases, replacing an arbitrary choice by a random one may
yield improved performance.

2 Randomness in Complexity Theory

In this section we demonstrate the power of randomized reductions (rather than randomized al-
gorithms discussed in the previous section). Again, we focus on simple examples, and avoid the
central role of randomness in the context of proof systems. For a survey of probabilistic proof
systems, the interested reader is referred to [11, Chap. 2].

2.1 Reducing (Approximate) Counting to Deciding
or, the Random Sieve

We consider the class #P of functions that count the number of NP-witnesses (w.r.t an NP-
relation). That is, f € #P if for some NP-relation, R, it holds that f(z) = |{y : (z,y) € R}|, for
every = € {0,1}*. We will show that such f can be approximated in probabilistic polynomial-time
given oracle to an NP-complete set. The (randomized Cook) reduction uses any efficient family of
Universaly Hash functions®, as well as the following lemma.

Lemma 3 (Leftover Hash Lemma [30, 6, 12]):* Let H,, 1, be a family of Universaly Hash functions
mapping {0,1}™ to {0,1}*, and let € > 0. Let S C {0,1}™ be arbitrary provided that |S| > =3 - 2F.
Then, for all but at most an € fraction of the h’s in Hy, 1, it holds that

5]

{ee S : he)=0F} = (1+e¢)- o

Proof: For a uniformly selected h € H,y, i, the random variables {h(e)}ccs are pairwise independent
and uniformly distributed over {0,1}*. On top of these h(e)’s, we define 0-1 random variables,
denoted (.’s, so that ¢, = 1 if h(e) = 0*. Then Exp[(,] = 27* and we need to show that the sum

3 A family of functions mapping {0,1}™ to {0,1}* is called Universaly if for a uniformly selected & in the family,
the random variables {h(e)}.c{0,1}= are pairwise independent and uniformly distributed over {0,1}*. An efficient
family is required to have algorithms for selecting and evaluating functions. A popular example is the family of all
affine transformations from {0,1}™ to {0, 1}".

* A stronger statement of the lemma, supported by essentially the same proof, refers to an arbitrary random
variable X over {0,1}™ satisfying Pr[X =] < €*.27% for every z. The lemma was discovered independently
in [6, 12], yet it is an extension of the ideas underlying [30]. The lemma’s name was coined in [13].
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> ecs Ce is concentrated around |S|/2%. Using Chebyshev’s Inequality and the fact that the (.’s are
pairwise independent, we get

.

(Pairwise independence is used in deriving Var[¥,cg (] = S.cg Var[¢e] < |5[-27%) N

S
ZCB_%

ecS

>

e8] _ VarlSeesc
2 (As1/27

15)/2*
(S| =

€

Reduction: Oninput z € {0,1}", the probabilistic polynomial-time oracle machine (for approxi-
mating f) sets m to be the length of NP-witness w.r.t the guaranteed R. For every k = 0,1, ...,m+2
it performs the following experiment n times.

1. Uniformly select h € Hy, 1, and construct (via Cook’s reduction) a CNF formula ¢ so that ¢
is satisfiable if and only if there exists a string y € {0,1}™ so that (z,y) € R and h(y) = 0F.

2. Query the oracle whether ¢ is satisfiable.

Once all these experiments are completed, the machine determines the smallest non-negative integer
k (possibly zero) so that the oracle has answered NO at least n/2 times, and outputs 2%,

Analysis: We analyze the performance of the above machine when it is given oracle access to
SAT. Clearly, if S, def {y : (z,y) € R} has cardinality N then the probability that the machine

outputs a number k > L o [logy(4N)] is exponentially vanishing (because the probability that a
uniformly selected h € H,, ;, maps some element of S; to 0% is at most 1/4, and so in each iteration
with value of k > L, with probability at least 3/4, the oracle says NO). On the other hand, using the

above lemma, if N def |Sy| > 28+2 then for a uniformly selected h € H,, ; with probability at least
3/4 there exists y € S, so that h(y) = 0¥, Thus, with overwhelmingly high probability, the output
of the oracle machine is at least logy(IN/4). We conclude that approximating f up-to a factor of 4 is
reducible in probabilistic polynomial-time to N"P. Higher accuracy — that is, approximation factor

of 1+ zﬁ’ for any fixed positive polynomial p — can be obtained by considering the “direct product

function” F(z) o (f(x))PU=D that counts the number of NP-witnesses w.r.t the NP-relation R,
defined by

def .
RP = {(xayla"'ayp(|x|)) D Vi (:n,yz)GR}

A related reduction may be used to reduced SAT (or even “approximating #P”) to unique-SAT.
By the latter, we mean the promise problem in which the YESs-instances are CNF formula having a
unique satisfying assignment, and the NO-instances are CNF formula having no satisfying assign-
ment. All that is needed is to notice that in the above reduction, for & = (log, N)+£2, the reduction
produces CNF formula that are typically (i.e., w.p. at least 3/4) either not satisfiable or have few
(say up-to 8) satisfying assignments. Thus, we augment Step 1 as follows. Having produced ¢,
as above, we produce 8 new formulae, ¥, ..., g, so that ¢; asserts that ¢ has at least ¢ different
satisfying assignments (e.g., ¥i(y1, ..., 4:) = A\; ©(¥5) A Ni<j<jr<i(ys < yjr)). We refer each of these
1; to the oracle and use YES as answer if the oracle has answered YES on any of the v; (as this may
happen only if ¢ is indeed satisfiable). Thus, whenever ¢ has few satisfying assignments, YES will
be returned.
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2.2 Two-sided error versus one-sided error

We consider the extension of the classes RP and BPP to promise problems and show that BPP =
RPRP (in the extended sense). It is evident that RPRF C BPPSPP = BPP (where the last
equality utilizes standard “error reduction”). So we focus on the other direction, considering an
arbitrary BPP-problem with a characteristic function x (which may be only partially defined over
{0,1}*). Let R be an NP-relation and p be a polynomial, such that for every x on which x is
defined it holds that

2op(|z])

3p(J])

where R(x,y) = 1if (x,y) € R and R(x,y) = 0 otherwise. We show a randomized one-sided error
(Karp) reduction of x to (the promise problem extension of) coRP.

{y € {0,137V : R(z,y) #x(2)}] <

Reduction: On input z € {0,1}", the randomized polynomial-time mapping uniformly selects
S1y .-y Sm € {0,1}™, and outputs the pair (z,5), where m = p(|z|) and 5 = (s1, ..., Sm)-

We define the following coR’P promise problem, denoted II. The YES-instances, denoted ILyes,
are pairs (z,3) so that for every r € {0,1}™ there exists an ¢ so that R(z,r @ s;) = 1. The NO-
instances, denoted II,),, are pairs (z,3) so that for at least half of the possible r € {0,1}™, it holds
that R(z,r @ s;) = 0 for every i. Clearly, II is indeed a coRP promise problem (via an algorithm
that uniformly selects r, and computes R(z,r @ s;) for all i’s).

Analysis: We claim that the above randomized mapping reduces x to II. Suppose first that
x(z) = 0. Then, for every possible choice of sy,...,s,, € {0,1}™, the fraction of r’s for which
R(z,r @ s;) = 1 holds for some i is at most m - ﬁ = % Thus, the reduction always maps such an
x to a NO-instance (i.e., an element of II,). On the other hand, we will show shortly that in case
x(x) = 1, with probability at least 1/2 the reduction maps z to a YES-instance. Thus, the above
reduction has one-sided error and indeed reduces x to II (which, as observed above, is in coRP).

It is left to analyze the probability that the reduction fails in case y(x) = 1. That is,

Prs[(z,5) € Uyes] = Pry, . [3r€{0,1}" st. (Vi) R(z,r @ s;) = 0]
< > Prg e, (Vi) Rz, @ s;) = 0]
re{0,1}m
< 2m (L)m < 1
- 3m 2

Comment: The traditional presentation uses the above reduction to show that BPP is in the
Polynomial-Time Hierarchy. One defines the polynomial-time predicate ¢(x,s, ) def L (R(x, s
r) = 1), and observes that

2.3 The permanent: Worst-Case versus Average Case
or, the self-correction paradigm
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We consider the problem of computing the permanent of a matrix.> This problem is known to
be #P-complete even in case the matrix has only 0-1 entries. Here we consider the problem of
computing the permanent over sufficiently large finite fields (i.e., the field size is larger than the
dimension). We show that the (worst-case) problem can be reduced to solving the problem on
random (or typical) instances.

Reduction: Oninput an n-by-n matrix, M, over F (s.t., |F| > n+1), the probabilistic polynomial-
time oracle machine (i.e., the reduction) proceeds as follows.

1. Uniformly select an n-by-n matrix, R, over F.

2. For 1 = 1,...,n + 1, obtain from the oracle the value, denoted v;, of the permanent of the
matrix M + i R.

3. Obtain by interpolation, the value of the degree n univariant polynomial, p, satisfying p(i) = v;
(fori=1,....,n+1).

4. Output p(0).

The key observation, underlying the above reduction, is that, for fixed M and R, the permanent of
M + iR is a degree n polynomial in the variable ¢.

Analysis: We counsider the performance of the above reduction assuming it is given access to an
oracle that answers correctly on all but at most an 1/3(n + 1) fraction of the instances. We will
show that in such a case, on any input, the reduction answers correctly with probability at least
2/3. Observe that, for each fixed M and i # 0, the matrix M + iR is uniformly distributed over the
instance space. Thus, the probability that the oracle returns an incorrect answer on any of the n+1
queries is at most 1/3. But otherwise, having the permanent of M + iR for every i = 1,..,n+1, we
obtain the permanent of the formal matrix M + xR (which is a polynomial of degree n in = € F),
and thus the permanent of M (when substituting = 0).

Comments: As seen above, the reduction of a problem to random instances of itself allows to
reduce its “worst” instances to its average (or typical) cases, and thus means that the problem
does not really have “worst” (or “pathological”) instances: The problem’s complexity, in case the
problem is hard, must stem from typical (or random) instances. Viewed from the other side (i.e.,
of feasibility), such a reduction allows to self-correct a (possibly efficient) procedure that is correct
on a large majority of the instances, and obtain a randomized procedure that is correct on every
instance. Thus, as any reduction, a reduction to random instances is open to interpretation: For
example, Ajtai’s reduction of approximating shortest vectors in integer lattices to such random
instances [1], is commonly viewed as a demonstration of average-case hardness based on worst-case
hardness, but it may be also viewed as a self-corrector for (possibly efficient) programs that find
short vectors in a certain class of integer lattices.

® The permanent of an n-by-n matrix A = (a; ;) is the sum, taken over all permutations 7 of [n], of the products

[I-) aixco)-
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3 Randommness in Distributed Computing

As much as randomness is a powerful tool in the design of algorithms and reductions, its power
in the distributed context is even more striking. In particular, randomized distributed protocols
are known to beat some impossibility results and lower bound that refer to deterministic protocols.
Various examples are given in [8, 23, 4, 19, 24].

As a warm-up consider the problem of electing a leader among a set of n ¢dentical processes.
Clearly, there is no deterministic procedure to elect such a leader (even when all processes are
guaranteed to be non-faulty), because there is no way to “deterministically break the symmetry”
among the processors. However, a simple randomized procedure will do the job: Let each processor
toss, independently of all other processors, a coin with bias 1/n towards 1, and announce its coin-
flip to all processors. If a single processor sends 1 then it is elected leader, otherwise the process
is repeated. In general, randomness can be used to “break symmetry” in a variety of distributed
settings. Other uses of randomness in such settings include avoiding “pathological” configurations
(see Section 3.2), and making the actions of non-faulty processors unpredictable to malicious ones
(i.e., Byzantine faults; see Section 3.3). We start with a much simpler problem.

3.1 Testing String Equality
or, randomized fingerprints

The problem considered here is to decide whether or not two strings, each held by a different party,
are identical. The aim is to devise a protocol for this problem using low communication complexity.
We present three such protocols.

Protocol 1: Party A holds z € {0,1}", whereas party B holds y € {0,1}". Here we view x and y
as non-negative integers in {0,1,...,2" —1}. In the protocol, party A uniformly selects i € {1,...,n},
finds the i*! prime, denoted p;, and sends the pair (i, 2 mod p;) to B. Party B recovers p; and accepts
if and only if y mod p; equals the value  mod p; (received from A).

Clearly, if x = y then B always accepts. On the other hand, using the Chinese Reminder
Theorem, we know that if z # y, then x #y (mod p;) for at least n/2 of the p;’s (since otherwise
=y (mod [[;c;pi), for |[I| > n/2, and x = y follows (because z,y < 2" < [[;crpi)). Thus, B
will reject with probability at least 1/2. The number of bits sent is logy n + logy p, = O(logn).

Protocol 2: Again, party A holds x € {0,1}", whereas party B holds y € {0,1}". Here we use a
small-bias probability space S C {0,1}", with bias 1/6 and |S| = poly(n) (see [26]). By definition,
for every non-zero string z € {0,1}", with probability at least 1/3 a uniformly chosen r € S has
inner product mod 2 with 2z equal to 1. In the protocol, party A uniformly selects r € .S, computes
the inner product mod 2 of z and r, and sends the result along with the index of r (in S) to B.
Party B retrieves r, computes the inner product mod 2 of y and r, and accepts if it matches the
bit received.

Clearly, if + = y then B always accepts. On the other hand, by the above, if x # y then the
inner products of x and y with a uniformly chosen r € S differ with probability at least 1/3 (hint:
consider z = x @ y). The number of bits sent is 1 + log, |S| = O(logn).

Protocol 3: The inputs are as above, but here we use a different tool: An error-correcting code,

denoted E : {0,1}" — {0,1}™, with m = O(n) and distance Q(n) (cf., [14]). In the protocol,
party A computes the codeword E(z), uniformly selects ¢ € {1,...,m}, and sends i along with the
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it bit of E(z) to Party B. The latter computes the codeword E(y) and accepts if its i*" bit matches
the bit received.

Clearly, if = y then B always accepts. On the other hand, if # # y then E(x) and E(y) differ
on a constant fraction of the bit positions, and so B will reject with constant probability. The
number of bits sent is 1 4 log, m = O(1) + log, n.

3.2 Routing in networks
or, avoiding pathological configurations

The problem considered here is to allow parallel routing of messages in a network in which proces-
sors have relatively few immediate neighbors (i.e., processors connected to them by a direct link).
In many such networks, routing to random destinations can be done quite efficiently (i.e., fast even
assuming that each processor can only deliver a single message at a time, and without coordination
among the processors). Off course, we are interested in routing messages to “non-random” desti-
nations; that is, to destinations that are imposed upon us by some high-level application. Still the
above fact (regarding routing to random destinations) becomes relevant, via the following two phase
randomized routing strategy: Suppose that processor ¢ wishes to deliver a message to processor d;,
where the d;’s consist of an arbitrary a permutation of the processor names [n] def {1,...,n}. Then,
processor i selects a random intermediate processor, r; € [n], and sends its message to processor
r; with a request to forward it to processor d;. (The r;’s are not likely to be distinct!) Thus, the
routing is in two phases:

1. The message of processor ¢, denoted m;, is delivered to ;.

2. Message m; is delivered from r; to d;.

By our hypothesis, Phase 1 can be completed fast with high probability. It is appealing to say that,
by symmetry, the same should hold also for Phase 2. This is not known to be generically true, but
has been proved to be so for a wide class of networks (cf., [21, Sec. 3.4]). Specifically, if one changes
the model a little, allowing and measuring edge congestion, then bounds on congestion in Phase 1
apply also to Phase 2.

3.3 Byzantine Agreement
or, take actions the adversary cannot predict

The problem considered here is to allow non-faulty processors to agree on a common value, in
presence of Byzantine (malicious) faulty processors. Specifically, it is required that (1) the non-
faulty processors must terminate with the same output value, and (2) in case their input values are
the same this should also be their output value. We may consider, without loss of generality, the
problem of agreeing on a Boolean value. The primary parameters are the total number of processors,
denoted n, and a bound on the number of faulty processors, . We assume a synchronous model of
point-to-point communication.

Protocol: We use auxiliary (threshold) parameters L, H, D so that L > % +t¢, H > L+t and
H +1t < D <n—t (which is feasible for ¢ < n/8). The protocol utilizes a global coin (which may
be implemented in various ways). It is postulated that, for each flipping of this coin, each of the
two possible outcomes occurs with probability at least p > 0 (p = 0.1 will do, whereas p = 0.5
corresponds to an unbiased coin).
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Following is the program to processor i € [n] def {1,...,n}. On input b; € {0,1}, the processor sets
its (initial) vote, denoted vote;, to b;. The processor repeats the following steps r + 1 times, where
r is the iteration in which it decides (see below):

1.

2.

Send vote; to each processor.

Receive votes from all processors, including itself. (In case no message is received from
processor j, use the value last received from it, and if no value was ever received use value
0.) Let cnt; denote the number of votes in favor of 1. If cnt; > n/2 set maj, = 1 and
tally, = cnt;, otherwise set maj, = 0 and tally, = n — cnt;.

. Let C € {L,H} be the value of the global coin, for the current round (in each round the

global coin is flipped anew).

. If tally, > C then set vote; = maj; else set vote; = 0.

. If tally, > D then decide vote;, and proceed for a single additional iteration (skipping this

step in the next iteration).

(Actually, as shown below, if the processor were to decide again in the next iteration its
decision would have been identical.)

Analysis: Let G denote the set of non-faulty (or good) processors. The following observation
regarding members of G is extensively used: In each iteration, |cnt; — cnt;| < ¢, for every ¢,j € G.
Thus, if tally; > L > n/2 +t for some i € G then maj; = maj, for all j € G. Similarly, if
tally; > D (resp., tally, > H) for some i € G then tally, > H (resp., tally,; > L) for all j € G.
Using these facts it follows that

1.

If all good processors enter some round with identical votes then they all decide by the end of
the current round, and their decision equals this vote. This follows since (at this round) this
identical vote would have support of at least |G| > n—t > D. (As a special case, we conclude
that the second requirement of Byzantine Agreement holds.)

. If at some round a good processor decides v then by the end of the next round all good

processors decide v. Suppose that ¢ € G decides v in the current round. Then, tally, > D,
and for each j € G it follows that tally; > H and so at Step 4 vote; = maj; = v. Using
the previous fact, the current one follows. (As a special case, we conclude that the first
requirement of Byzantine Agreement holds.)

. If at some round tally, > H holds for some i € G then with constant probability all good

processors enter the next round with vote equal to maj,. This follows since with constant
probability the outcome of the global coin is L, in which case for every j € G, tally; > L =C
and so at Step 4 vote; =maj; = maj,.

If at some round tally; < H holds for all i € G then with constant probability all good
processors enter the next round with vote 0. This follows since with constant probability the
outcome of the global coin is H.

Thus, the above protocol terminates in constant expected number of rounds, and the output always
satisfies the agreement requirements. This remain valid even if we use a global coin the outcome
of which may be viewed differently by different processors, as long as for each of the two possible
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values, with probability at least p > 0, all non-faulty processors view the outcome as equal to that
value. We comment that such a global coin can be easily implemented in case t = O(y/n), by letting
each processor toss a local coin, announce the outcome, and view the outcome of the global coin to
be the majority vote it has received (which, with constant probability, will be identical at all good
processors). We note that t+1 is a lower bound on the number of rounds in any correct deterministic
protocol. Furthermore, the above protocol can be adapted to the asynchronous model, whereas
there exist no correct deterministic protocol for the latter model (even for t = 1).

4 Bibliographic Notes

Section 1.1 (approzimating the number of DNF satisfying assignments) is based on [17], Section 1.2
(finding perfect matching) is based on [25], and Section 1.3 (testing polynomial identities) is based
on [29, 35]. The Randomized Rounding technique was introduced in [28], and the MazSAT applica-
tion described in Section 1.4 is due to [9]. The primality testing algorithm described in Section 1.5
is folklore attributed to several people; I heard it attributed to M. Blum. Section 1.6 (random
walk algorithm for testing connectivity) is based on [2], and Section 1.7 (the randomized min-cut
algorithm) is based on [15].

Section 2.1 (reduction of approzimate counting to deciding and of SAT to uniqueSAT) is based
on [30, 31] and [34], but the presentation in these sources is quite different. The reduction of
Section 2.2 is based on [20], where it was used to show (independently of [30]) that BPP € PH;
the current presentation is due to Fortnow (priv. comm. 1997, see [3]). Section 2.3 (self-corrector
for the permanent) is based on [22].

Protocol 1 for string equality (in Section 3.1) is commonly attributed to M. Rabin and A. Yao,
Protocol 2 is due to [26, Sec. 9], and Protocol 3 is due to E. Kushilevitz (priv. comm. 1998). Sec-
tion 3.2 (randomized routing) is based on [32, 33|, and Section 3.3 (randomized Byzantine Agree-
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