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1 Randomized AlgorithmsConspicuous omissions in this category include some of the most well-known randomized algorithms(e.g., many in the domain of computational number theory), as well as the Markov Chain approachto approximate counting. As stated above, the reason for these omissions is that these algorithmseither require specialized (and unrelated to randomness) background or are quite involved to presentand/or analyze.1.1 Approximate Counting of DNF satisfying assignmentsor, a twist on naive samplingThe problem considered here is to approximate the number of satisfying assignment to a DNFformula up-to a constant factor. We note that given � and oracle access to any function f :f0; 1gn ! f0; 1g, it is easy to approximate the fraction jfx : f(x) = 1gj=2n up-to an � additivedeviation. Speci�cally, a sample of O(��2 log(1=�)) points has average value that, with probabilityat least 1 � �, is at most �-away from the correct value. However, our aim is to provide relative(rather than absolute) approximation of this fraction (i.e., given � > 0 the task is to approximatethe above fraction up-to a 1� � factor).Let ' = Wmi=1Ci, where Ci : f0; 1gn ! f0; 1g is a conjunction, be a DNF formula. Actually, wewill deal with the more general problem in which we are given (implicitly) m subsets S1; :::; Sm �f0; 1gn and wish to approximate jSi Sij. In our case Si will be the set of assignments satisfying theconjunction Ci. We make several computational assumptions regarding these sets (letting e�cientmean implementable in time polynomial in n �m):1. Given i and x, one can e�ciently determine whether or not x 2 Si.2. Given i, one can e�ciently determine jSij.3. Given i, one can e�ciently generate a uniformly distributed element of Si.These assumptions are clearly satis�ed in the case Si = C�1i (1) considered above. The key obser-vation is that ����� m[i=1Si����� = mXi=1 ������Si n [j<iSj������ (1)= mXi=1 jSij � Prs2Si 24s 62 [j<iSj35 (2)and that the probabilities in Eq. (2) can be approximated up-to �0 (with overwhelming successprobability) by taking poly(n=�0) many samples. This leads to the following algorithmAlgorithm: On input parameters � and �, set �0 = �=m and �0 = �=m. For i = 1 to m do1. Let pi def= Prs2Si [s 62 Sj<i Sj]. Using a sample of size t def= O((1=�0)2 log(1=�0)), approximatepi by epi so that Pr[jepi � pij > �0] < �0. That is, we uniformly select t samples in Si, and testfor each sample whether or not it resides in Sj<i Sj.2. Compute jSij, and let ai def= epi � jSij.Output the sum of the ai's. 2



Analysis: Let Ni = pi � jSij. We are interested in the quality of the approximation to PiNiprovided by Pi ai. With probability at least 1�m � �0, we have ai = (pi � �0) � jSij = Ni � �0 � jSij,for all i's, and so Pi ai =PiNi � �0 �Pi jSij. However, maxi(jSij) � jSi Sij =PiNi, and somXi=1 ai = mXi=1Ni � m � �0 � max1�i�m jSij= (1 �m�0) � mXi=1Ni = (1� �) � mXi=1NiNote that the above approach does not require exact computation of jSij, nor exact uniform selectionin Si. Instead, ability to approximate jSij up-to a factor of 1� �0 within time related to poly(n=�0)su�ces. Likewise, it su�ce to generate in time related to poly(n=�0) a distribution that is at most�0-away from the uniform distribution over Si.The algorithm presented above is actually a deterministic reduction of the task of approximatingthe size of one set (in the relative sense) to the task of providing absolute approximations to somefractions. It utilizes the hypothesis that the �rst set can be expressed as a union of feasiblymany sets for which certain natural operations (e.g., deciding membership, approximating the size)can be performed e�ciently. Thus, this approach may be applicable to some sets, but not to theircomplement. We stress that, in general, relative approximation may be feasible for one quantity, butnot for its complement (e.g., it is NP-Hard to approximate the number of unsatisfying assignmentto a DNF formula up-to any factor).1.2 Finding a perfect matchingor, on the loneliness of the extremumThe problem considered here is to �nd a perfect matching in a graph. The speci�c goal is to obtaina fast parallel algorithm, which is the reason we do not follow the standard combinatorial approach(of iteratively augmenting the current matching using alternating paths). Instead, we rely on thefollowing Isolation Lemma that asserts that when assigning each edge a random weight, takenfrom a su�ciently large domain, there is a unique perfect matching of minimum (resp., maximum)weight. The lemma extends to arbitrary set systems.Lemma 1 (The Isolation Lemma): Let S1; S2; :::; St � [m] def= f1; 2; :::;mg be distinct sets, and letw1; w2; :::; wm be independently and uniformly chosen in [2m]. Then, with probability at least 1=2,there exists a unique j so that Pi2Sj wi equals mink2[t](Pi2Sk wi).In our application [m] corresponds to the set of edges, and the Si's to perfect matchings in thegraph.Proof: For i = 1; :::;m, consider the event Ei de�ned as the existence of two sets (i.e., Sj's) withminimum weight so that one set contains i and the other set does not contain i. It su�ces to showthat the probability that Ei occurs is at most 1=2m. The latter is proven by considering a randomprocess in which the weight of i (i.e., wi) is selected last.Suppose that the values of all other wj 's (with j 6= i) have already been determined. LetS� be a set of minimum weight among all sets not containing i, and w� be its weight (i.e.,w� def= minj:i 62Sj (Pk2Sj wk)). Similarly, let S+ be a set of minimum weight among all sets obtainedby omitting i from sets that contain it, and w+ be its weight (i.e., w+ def= minj:i2Sj (Pk2Sjnfig wk)).Then, event Ei occurs if and only if w� = w+ + wi, which happens with probability 1=2m if(w� � w+) 2 [2m], and with probability 0 otherwise.3



Algorithm: On input a bipartite graph G = (U; V;E), do:1. For each edge e 2 E, uniformly and independently select a weight we 2 [2m], where m def= jEj.2. Try to compute the value of the minimum-weight perfect-matching. This is done by computingthe determinant of the matrix, denoted A, obtained by setting the (u; v)-entry to 2we ife = (u; v) and to 0 if (u; v) 62 E. In case the determinant is 0, halt stating that the graph hasno perfect matching. Otherwise, the value of the minimum-weight perfect-matching is set tobe the largest i so that the value of the determinant is divisible by 2i. (The determinant canbe computed by a fast parallel algorithm.)3. For each e 2 E, try to compute the value of the minimum-weight perfect-matching amongthose not containing the edge e. This is done (as above) by computing the determinant of thematrix, denoted Ae, obtained from A by resetting the e-entry to 0. All these computationscan be conducted in parallel.4. A candidate perfect matching is retrieved by including all edges e for which the value (of themin-weight perfect matching) found in Step 3 is di�erent than the one found in Step 2.The algorithm for general graphs is a variation of the above (and is not described here). Note thatSteps 1 and 2 (by themselves) provide a randomized algorithm for determining whether a bipartitegraph has a perfect matching.Analysis: The determinant of A sums (possibly with minus sign) the contributions of all perfectmatchings in the graph G, where the contribution of a perfect matching M equals �Qe2M 2we =�2Pe2M we . We may assume that the graph has a perfect matching, or else the determinantcomputed in Step 2 is 0. Assume that the weights (i.e., we's) are such that there exists a uniqueperfect matching of minimum weight. Denote this (minimum-weight perfect) matching by M , anddenote its weight by W . In such a case, the determinant of A is of the form 2W + r � 2W+1, wherer is an integer (possibly zero). This is so because the contribution of the unique minimum-weightperfect-matching is �2W , and the contribution of each other perfect-matching is �2W 0 , whereW 0 > W (are both integers). Likewise, for every edge e not in M , the determinant of Ae is of theform 2W + r � 2W+1, where again r is an integer. On the other hand, for every edge e in M , thedeterminant of Ae is either zero or r � 2W+1, with r being a non-zero integer.A Parenthetical Comment1It is tempting to think that when selecting weights as above, the minimum-weight perfect matchingmay be uniformly distributed among all perfect matchings. As shown below, this is not alwaysthe case (which is unfortunate, because otherwise we would have obtained a simple probabilisticpolynomial-time algorithm for uniformly generating a perfect matching in a graph).Consider a graph in which the set of perfect matchings consists of two types of matchings.There are 2n matchings of the �rst type, a generic one having the form fe2i��i : i = 1; :::; ng,where �1; :::; �n 2 f0; 1g. In addition, there is a single matching of the second type, denotedfe2n+i : i = 1; :::; ng. We claim that the probability that the minimum-weight perfect matching is aspeci�c matching of the �rst type is exponentially smaller than the probability that the minimum-weight perfect matching is the matching of the second type. This claim holds for weights distributed1 This parenthetical comment is based on discussions with Madhu Sudan (during March 1998).4



as above, as well as for several other distributions (e.g., the Normal Distribution). For sake ofsimplicity, we consider weights uniformly distributed in the interval [0; 1]. The claim is proven bycombining the following two facts.Fact 1.2.1 With overwhelmingly high probability, the value of the minimum-weight matching amongall 2n matchings of the �rst type is at least cn, where c is any constant smaller than 1=3 (e.g.,c = 0:32).Proof Sketch: This follows by observing thatmin�1;:::;�n2f0;1g nXi=1w2i��i! = nXi=1min(w2i�1; w2i)and that the expected value of each min(w2i�1; w2i) equals 1=3. 2Fact 1.2.2 The probability that any speci�c perfect matching (and in particular the one of thesecond type) has weight less than, say, 0:31 � n is greater than 0:6n2 = exp(
(n)) � 2�n.Proof Sketch: This follows by observing thatPr " nXi=1wi < 0:31 � n#> Pr[8i (wi � 0:6)] �  1� Pr " nXi=1wi � 0:31 � n ����� 8i (wi � 0:6)#!> 0:6n � 12where the last inequality uses Exp[wi jwi � 0:6] = 0:3.Combining Facts 1.2.1 and 1.2.2, we conclude that, with probability exp(
(n)) � 12n+1 , the single(second type) matching has weight less than 0:31 � n and every perfect matching of the �rst typehas weight at least 0:32 � n. In this case, the single (second type) matching is of minimum-weightamong all 2n + 1 perfect matchings, and the claim follows.1.3 Testing whether polynomials are identicalor, on the discrete charm of polynomialsThe problem considered here is to determine whether two multi-variant polynomials are identical.We assume that one is given an oracle for the evaluation of each of the polynomials. We furtherassume that the polynomials are de�ned over a su�ciently large �nite �eld, denoted F. Finally, letn denote the number of variables in these polynomials.Algorithm: Given n and black-box access to p; q : Fn ! F, uniformly select r1; :::; rn 2 F, andaccept if and only if p(r1; :::; rn) = q(r1; :::; rn).
5



Analysis: Clearly, if p � q then the algorithm always accepts. The following lemma implies thatif p and q are di�erent polynomials, each of total degree at most d, then the algorithm accepts withprobability at most d=jFj.Lemma 2 Let p : Fn ! F be a non-zero polynomial of total degree d. ThenPrr1;:::;rn[p(r1; :::; rn) = 0] � djFjProof: The lemma is proven by induction on n. The base case of n = 1 follows immediately bythe Fundamental Theorem of Algebra (i.e., the number of distinct roots of a degree d univariantpolynomial is at most d). In the induction step, we write p as a polynomial in its �rst variable.That is, p(x1; x2; :::; xn) = dXi=0 pi(x2; :::; xn) � xi1where pi is a polynomial of total degree at most d� i. Let t be the biggest integer i for which pi isnot identically zero. (We dismiss the case t = 0.) Then, using the induction hypothesis, we havePrr1;r2;:::;rn[p(r1; r2; :::; rn) = 0] � Prr2;:::;rn[pt(r2; :::; rn) = 0]+Prr1;r2;:::;rn[p(r1; r2; :::; rn) = 0 j pt(r2; :::; rn) 6= 0]� d� tjFj + tjFjwhere the second term is bounded by �xing any sequence r2; :::; rn for which pt(r2; ::::; rn) 6= 0 andconsidering the univariant polynomial p0(x) def= p(x; r2; :::; rn), which by hypothesis is a non-zeropolynomial of degree t.Comment: The lesson is that whenever the situation is such that almost any choice will do,taking a random choice yields an algorithm with a rigorous performance guarantee. In a senseany randomized algorithm is based on this paradigm, except that here the space of choices seemsmore straightforward than in any other case. That is, most randomized algorithms are based onintroducing a sample space that is not obvious from the problem at hand; whereas here the samplespace is the obvious one.1.4 Randomized Rounding applied to MaxSATor, on being fractionally pregnantWe slightly deviate from the above style of exposition by considering a general methodology forapproximating combinatorial optimization problems. The methodology, which relies on the factthat linear programming is solveable in polynomial-time, consists of two steps. First, one presentsa linear programming relaxation of an integer program (corresponding to a combinatorial problem).Next, one derives from a solution to the linear program (LP) a solution to the integer program (IP).This is done by using the former (LP) solution in order to determine a probability distribution overinteger solutions (i.e., solution to the IP), and picking a solution according to this distribution.We exemplify this methodology by applying it to Max-SAT. Speci�cally, we consider the task ofapproximating the maximum number of clauses that can be simultaneously satis�ed in a given CNFformula. 6



Let ' = Vmj=1Cj be a CNF formula, where Cj = (Wi2S+j xi)_ (Wi2S�j :xi) with S+j ; S�j � [n] def=f1; :::; ng. Abusing notation, we may express Max-SAT as an integer optimization problem in whichthe task is to maximize Pmj=1 yj subject to xi; yj 2 f0; 1g (8i; j) (3)Xi2S+j xi + Xi2S�j (1� xi) � yj (8j) (4)In the Linear Programming (LP) relaxation, one replaces Eq. (3) by0 � xi; yj � 1 (8i; j) (5)Clearly, the value of the LP is lower bounded by the value of the integer program. Given an (opti-mal) solution, x̂i; ŷj, to the LP, we randomly derive a solution to the original integer formulation.It will be shown that the expected value of the integer solution is at least 1� e�1 times the value ofthe LP (and hence at least a 1� e�1 fraction of the optimum of the integer problem). Speci�cally,we set xi = 1 with probability x̂i (and xi = 0 otherwise).Analysis: Suppose that clause Cj has cj literals. Below, we will show that the probability thatCj is satis�ed by the integer assignment (generated by above randomized rounding of the aboveLP solution) is at least  1�  1� 1cj!cj! � ŷj � �1� e�1� � ŷjand so the expected number of satis�ed clauses is at least (1� e�1) �Pj ŷj (as stated above). Theabove is proven by noting that the probability of the complementary event (i.e., Cj is not satis�ed)is 0B@ Yi2S+j (1� x̂i)1CA �0B@ Yi2S�j x̂i1CA (6)where, by Eq. (4), Pi2S+j (1 � x̂i) +Pi2S�j x̂i � (cj � ŷj). Eq. (6) is maximized when 1 � x̂i =(cj � ŷj)=cj for all i 2 S+j , and x̂i = (cj � ŷj)=cj for all i 2 S�j . Thus, Eq. (6) is bounded above by�1� ŷjcj �cj , and the above claim follows.Comments: Combining the above algorithm with the naive algorithm that uniformly selectsa truth assignment, one derives a randomized algorithm of a 3=4-approximation factor. The keyobservation is that the performance of the LP-based algorithm improves as the clause sizes decrease,whereas the performance of the naive algorithm improves when the sizes increase. In a di�erent vein,we mention that the randomized rounding paradigm has been extended also to semide�nite (ratherthan linear programming) relaxations of combinatorial problems. In fact, improved approximationratios for various versions of MaxSAT were obtained that way (cf., [10, 16]).1.5 Primality Testingor, on hiding information from an algorithmThe problem considered here is to decide whether a given number is a prime. The only NumberTheoretic facts that we use are: 7



Fact 1.5.1 For every prime p > 2, each quadratic residue mod p has exactly two square roots mod p(and they sum-up to p).Fact 1.5.2 For every (odd and non-integer-power) composite number N , each quadratic residuemod N has at least four square roots mod N .Our algorithm uses as a black-box an algorithm, denoted R, that given a prime p and a quadraticresidue mod p, returns the smallest among the two square roots. There is no guarantee as to whatis the output in case the input is not of the above form (and in particular in case p is not a prime).Algorithm: On input a natural number N > 2 do1. If N is either even or an integer-power then reject.2. Uniformly select r 2 f1; :::; N � 1g, and set s r2 mod N .3. Let r0  R(N; s). If r0 � �r (mod N) then accept else reject.Analysis: By Fact 1.5.1, on input a prime number N , the above algorithm always accepts (sincein this case R(N; r2 mod N) = �r for any r 2 f1; :::; N � 1g). On the other hand, suppose thatN is an odd composite that is not an integer-power. Then, by Fact 1.5.2, each quadratic residue shas at least four square roots, and each is equally likely to be chosen at Step 2 (becuase s yieldsno information on the speci�c r). Thus, for every such s, the probability that �R(N; s) has beenchosen in Step 2 is at most 2=4. It follows that, on input a composite number, the algorithm rejectswith probability at least 1=2.Comment: The above analysis presupposes that the algorithm R is always correct when fed witha pair (p; s), where p is prime and s a quadratic residue mod p. In case R has error probability� < 1=2, our algorithm still distinguishes primes from composites (since on the former it acceptswith probability at least 1� � > 1=2). We note that e�cient randomized algorithms for extractingsquare roots modulo a prime are known (cf., [5, 24]). Thus, the above establishes that primalitycan be decided in probabilistic polynomial-time (alas, with two-sided error).1.6 Testing Graph Connectivity via a random walkor, the accidental tourist sees it allThe problem considered here is to decide whether a given graph is connected. The aim is to devisean algorithm that does so while using little space (i.e., essentially, as little as needed for storingthe identity of a single vertex). This task can be reduced (in small space) to testing connectivitybetween any given pair of vertices. Thus, we focus on the task of determining whether or not twogiven vertices are connected in a given graph.Algorithm: On input a graph G = (V;E) and two vertices, s and t, we take a random walk oflength O(jV j � jEj), starting at vertex s, and test at each step whether or not vertex t is encountered.By a random walk we mean that, at each step, we uniformly select one of the edges incident at thecurrent vertex and traverse this edge to the other endpoint.8



Analysis: We will show that if s is connected to t in the graph G then, with probability at least1=2, vertex t is encountered in a random walk starting at s. In the following, we consider theconnected component of vertex s, denoted G0 = (V 0; E0). For any edge, (u; v) (in E0), we let Tu;vbe a random variable representing the number of steps taken in a random walk starting at u until vis �rst encountered. It can be shown that E[Tu;v] � 2jE0j.2 Also, letting cover(G0) be the expectednumber of steps in a random walk starting at s and ending when the last of the vertices of V 0 isencountered, and C be any directed cycle that visits all vertices in G0, we havecover(G0) � X(u;v)2C E[Tu;v]� jCj � 2jE0jLetting C be a traversal of some spanning tree of G0, we conclude that cover(G0) < 4 � jE0j � jV 0j.Thus, with probability at least 1=2, a random walk of length 8 � jE0j � jV 0j starting at s visits allvertices of G0.1.7 Finding minimum cuts in graphsor, random is better than arbitraryThe problem considered here is to �nd the minimum cut in a graph. The randomized algorithmthat follows is simpler than the traditional 
ow-based algorithms, and lends itself to parallel im-plementation (omitted here).Algorithm: On input a graph G = (V;E), with n = jV j, the algorithm makes n � 2 randomedge contraction steps: In each step one selects uniformly an edge of the current multi-graph andcontracts the two endpoints into one vertex, allowing parallel edges but dropping self-loops thatmay be created. That is, if (u; v) is the contracted edge of the current graph G0 then we replacevertices u and v by a new vertex x, and replace edges of the form (w; v) (resp., (w; u)), wherew 62 fu; vg, by a similar number of edges (w; x). When these n�2 contraction steps are completed,we are left with a multi-graph on two vertices, and just output the number of parallel edges.Analysis: Suppose that G has a minimum cut C � E. Then, the probability that no edge of Cis contracted in the �rst step is jEj�jCjjEj � 1 � 2n (where jCj � 2jEj=n because the minimum cutcannot be bigger than the average degree). The question is what happens in subsequent steps. Akey observation is that jCj is a lower bound on the average degree of any multi-graph obtained fromG by any sequence of edge contractions. Thus, the probability that the (n � 2)-step contractionprocess leaves C intact is at leastn�2Yi=1 �1� 2n� (i� 1)� = n�2Yi=1 n� 1� in+ 1� i = 2n � (n� 1)Thus, repeating the above algorithm for a quadratic number of times we obtain the minimum cut,with probability at least, say, 2=3. We comment that it follows that the number of minimum cuts2 A hand-waving argument follows: Consider a very long walk, starting at u, and returning to u many times. Notethat each directed edge appears on this walk for about the same number of times. Partition the walks into segmentsso that each segment ends with a move from vertex v to vertex u. Then, the number of segments is about a 1=2jE0jfraction of the length of the walk, and so the average length of a segment is 2jE0j. Note that each segment constitutesa walk starting at u and passing through v (possiblly several times) before returning to u. Thus, the average lengthof segments in the big walk upper bounds the expected length of random walks from u to v.9



is at most (n� 1)n=2 (becuase each such cut is generated by the above algorithm with probabilityat least 2=(n� 1)n).Comment: Observe that if the random choices in the above algorithm are replaced by arbitrarychoices then the output gives little indication towards the minimum cut in G. That is, an algorithmthat makes n � 2 arbitrary edge-contraction steps provides no useful information, whereas theabove algorithm that picks these steps at random is useful. In general, making random choicesmay be better than making arbitrary choices. This lesson is important because many algorithmsare presented in a non-fully speci�ed manner, allowing some choices to be made arbitrarily (inwhich case these choices are typically made in a way most convenient for implementation). It isimportant to bear in mind that, in some cases, replacing an arbitrary choice by a random one mayyield improved performance.2 Randomness in Complexity TheoryIn this section we demonstrate the power of randomized reductions (rather than randomized al-gorithms discussed in the previous section). Again, we focus on simple examples, and avoid thecentral role of randomness in the context of proof systems. For a survey of probabilistic proofsystems, the interested reader is referred to [11, Chap. 2].2.1 Reducing (Approximate) Counting to Decidingor, the Random SieveWe consider the class #P of functions that count the number of NP-witnesses (w.r.t an NP-relation). That is, f 2 #P if for some NP-relation, R, it holds that f(x) = jfy : (x; y)2Rgj, forevery x 2 f0; 1g�. We will show that such f can be approximated in probabilistic polynomial-timegiven oracle to an NP-complete set. The (randomized Cook) reduction uses any e�cient family ofUniversal2 Hash functions3, as well as the following lemma.Lemma 3 (Leftover Hash Lemma [30, 6, 12]):4 Let Hm;k be a family of Universal2 Hash functionsmapping f0; 1gm to f0; 1gk, and let � > 0. Let S � f0; 1gm be arbitrary provided that jSj � ��3 � 2k.Then, for all but at most an � fraction of the h's in Hm;k, it holds thatjfe 2 S : h(e)=0kgj = (1� �) � jSj2kProof: For a uniformly selected h 2 Hm;k, the random variables fh(e)ge2S are pairwise independentand uniformly distributed over f0; 1gk . On top of these h(e)'s, we de�ne 0-1 random variables,denoted �e's, so that �e = 1 if h(e) = 0k. Then Exp[�e] = 2�k and we need to show that the sum3 A family of functions mapping f0; 1gm to f0; 1gk is called Universal2 if for a uniformly selected h in the family,the random variables fh(e)ge2f0;1gm are pairwise independent and uniformly distributed over f0; 1gk. An e�cientfamily is required to have algorithms for selecting and evaluating functions. A popular example is the family of alla�ne transformations from f0; 1gm to f0; 1gk.4 A stronger statement of the lemma, supported by essentially the same proof, refers to an arbitrary randomvariable X over f0; 1gm satisfying Pr[X = x] � �3 � 2�k, for every x. The lemma was discovered independentlyin [6, 12], yet it is an extension of the ideas underlying [30]. The lemma's name was coined in [13].10



Pe2S �e is concentrated around jSj=2k. Using Chebyshev's Inequality and the fact that the �e's arepairwise independent, we getPr "�����Xe2S �e � jSj2k ����� > � � jSj2k # < Var[Pe2S �e](�jSj=2k)2< jSj=2k�2 � (jSj=2k)2 � �(Pairwise independence is used in deriving Var[Pe2S �e] =Pe2S Var[�e] < jSj � 2�k.)Reduction: On input x 2 f0; 1gn, the probabilistic polynomial-time oracle machine (for approxi-mating f) setsm to be the length of NP-witness w.r.t the guaranteed R. For every k = 0; 1; :::;m+2it performs the following experiment n times.1. Uniformly select h 2 Hm;k, and construct (via Cook's reduction) a CNF formula ' so that 'is satis�able if and only if there exists a string y 2 f0; 1gm so that (x; y) 2 R and h(y) = 0k.2. Query the oracle whether ' is satis�able.Once all these experiments are completed, the machine determines the smallest non-negative integerk (possibly zero) so that the oracle has answered no at least n=2 times, and outputs 2k.Analysis: We analyze the performance of the above machine when it is given oracle access toSAT. Clearly, if Sx def= fy : (x; y) 2 Rg has cardinality N then the probability that the machineoutputs a number k � L def= dlog2(4N)e is exponentially vanishing (because the probability that auniformly selected h 2 Hm;L maps some element of Sx to 0L is at most 1=4, and so in each iterationwith value of k � L, with probability at least 3=4, the oracle says no). On the other hand, using theabove lemma, if N def= jSxj � 2k+2 then for a uniformly selected h 2 Hm;k with probability at least3=4 there exists y 2 Sx so that h(y) = 0k. Thus, with overwhelmingly high probability, the outputof the oracle machine is at least log2(N=4). We conclude that approximating f up-to a factor of 4 isreducible in probabilistic polynomial-time to NP . Higher accuracy { that is, approximation factorof 1+ 1p(n) , for any �xed positive polynomial p { can be obtained by considering the \direct productfunction" Fp(x) def= (f(x))p(jxj) that counts the number of NP-witnesses w.r.t the NP-relation Rpde�ned by Rp def= f(x; y1; :::; yp(jxj)) : 8i (x; yi)2RgA related reduction may be used to reduced SAT (or even \approximating #P") to unique-SAT.By the latter, we mean the promise problem in which the yes-instances are CNF formula having aunique satisfying assignment, and the no-instances are CNF formula having no satisfying assign-ment. All that is needed is to notice that in the above reduction, for k = (log2N)�2, the reductionproduces CNF formula that are typically (i.e., w.p. at least 3=4) either not satis�able or have few(say up-to 8) satisfying assignments. Thus, we augment Step 1 as follows. Having produced ',as above, we produce 8 new formulae,  1; :::;  8, so that  i asserts that ' has at least i di�erentsatisfying assignments (e.g.,  i(y1; :::; yi) = Vj '(yj) ^V1�j<j0�i(yj < yj0)). We refer each of these i to the oracle and use yes as answer if the oracle has answered yes on any of the  i (as this mayhappen only if ' is indeed satis�able). Thus, whenever ' has few satisfying assignments, yes willbe returned. 11



2.2 Two-sided error versus one-sided errorWe consider the extension of the classes RP and BPP to promise problems and show that BPP =RPRP (in the extended sense). It is evident that RPRP � BPPBPP = BPP (where the lastequality utilizes standard \error reduction"). So we focus on the other direction, considering anarbitrary BPP-problem with a characteristic function � (which may be only partially de�ned overf0; 1g�). Let R be an NP-relation and p be a polynomial, such that for every x on which � isde�ned it holds that jfy 2 f0; 1gp(jxj) : R(x; y) 6=�(x)gj < 2p(jxj)3p(jxj)where R(x; y) = 1 if (x; y) 2 R and R(x; y) = 0 otherwise. We show a randomized one-sided error(Karp) reduction of � to (the promise problem extension of) coRP .Reduction: On input x 2 f0; 1gn, the randomized polynomial-time mapping uniformly selectss1; :::; sm 2 f0; 1gm, and outputs the pair (x; s), where m = p(jxj) and s = (s1; :::; sm).We de�ne the following coRP promise problem, denoted �. The yes-instances, denoted �yes,are pairs (x; s) so that for every r 2 f0; 1gm there exists an i so that R(x; r � si) = 1. The no-instances, denoted �no, are pairs (x; s) so that for at least half of the possible r 2 f0; 1gm, it holdsthat R(x; r � si) = 0 for every i. Clearly, � is indeed a coRP promise problem (via an algorithmthat uniformly selects r, and computes R(x; r � si) for all i's).Analysis: We claim that the above randomized mapping reduces � to �. Suppose �rst that�(x) = 0. Then, for every possible choice of s1; :::; sm 2 f0; 1gm, the fraction of r's for whichR(x; r � si) = 1 holds for some i is at most m � 13m = 13 . Thus, the reduction always maps such anx to a no-instance (i.e., an element of �no). On the other hand, we will show shortly that in case�(x) = 1, with probability at least 1=2 the reduction maps x to a yes-instance. Thus, the abovereduction has one-sided error and indeed reduces � to � (which, as observed above, is in coRP).It is left to analyze the probability that the reduction fails in case �(x) = 1. That is,Prs[(x; s) 62 �yes] = Prs1;:::;sm[9r 2 f0; 1gm s.t. (8i) R(x; r � si) = 0]� Xr2f0;1gm Prs1;:::;sm[(8i) R(x; r � si) = 0]� 2m � � 13m�m � 12Comment: The traditional presentation uses the above reduction to show that BPP is in thePolynomial-Time Hierarchy. One de�nes the polynomial-time predicate '(x; s; r) def= Wmi=1(R(x; si�r) = 1), and observes that �(x) = 1 ) 9s8r '(x; s; r)�(x) = 0 ) 8s9r :'(x; s; r)2.3 The permanent: Worst-Case versus Average Caseor, the self-correction paradigm
12



We consider the problem of computing the permanent of a matrix.5 This problem is known tobe #P-complete even in case the matrix has only 0-1 entries. Here we consider the problem ofcomputing the permanent over su�ciently large �nite �elds (i.e., the �eld size is larger than thedimension). We show that the (worst-case) problem can be reduced to solving the problem onrandom (or typical) instances.Reduction: On input an n-by-nmatrix,M , over F (s.t., jF j > n+1), the probabilistic polynomial-time oracle machine (i.e., the reduction) proceeds as follows.1. Uniformly select an n-by-n matrix, R, over F.2. For i = 1; :::; n + 1, obtain from the oracle the value, denoted vi, of the permanent of thematrix M + iR.3. Obtain by interpolation, the value of the degree n univariant polynomial, p, satisfying p(i) = vi(for i = 1; :::; n + 1).4. Output p(0).The key observation, underlying the above reduction, is that, for �xedM and R, the permanent ofM + iR is a degree n polynomial in the variable i.Analysis: We consider the performance of the above reduction assuming it is given access to anoracle that answers correctly on all but at most an 1=3(n + 1) fraction of the instances. We willshow that in such a case, on any input, the reduction answers correctly with probability at least2=3. Observe that, for each �xedM and i 6= 0, the matrixM+ iR is uniformly distributed over theinstance space. Thus, the probability that the oracle returns an incorrect answer on any of the n+1queries is at most 1=3. But otherwise, having the permanent of M + iR for every i = 1; ::; n+1, weobtain the permanent of the formal matrix M + xR (which is a polynomial of degree n in x 2 F),and thus the permanent of M (when substituting x = 0).Comments: As seen above, the reduction of a problem to random instances of itself allows toreduce its \worst" instances to its average (or typical) cases, and thus means that the problemdoes not really have \worst" (or \pathological") instances: The problem's complexity, in case theproblem is hard, must stem from typical (or random) instances. Viewed from the other side (i.e.,of feasibility), such a reduction allows to self-correct a (possibly e�cient) procedure that is correcton a large majority of the instances, and obtain a randomized procedure that is correct on everyinstance. Thus, as any reduction, a reduction to random instances is open to interpretation: Forexample, Ajtai's reduction of approximating shortest vectors in integer lattices to such randominstances [1], is commonly viewed as a demonstration of average-case hardness based on worst-casehardness, but it may be also viewed as a self-corrector for (possibly e�cient) programs that �ndshort vectors in a certain class of integer lattices.5 The permanent of an n-by-n matrix A = (ai;j) is the sum, taken over all permutations � of [n], of the productsQni=1 ai;�(i).
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3 Randomness in Distributed ComputingAs much as randomness is a powerful tool in the design of algorithms and reductions, its powerin the distributed context is even more striking. In particular, randomized distributed protocolsare known to beat some impossibility results and lower bound that refer to deterministic protocols.Various examples are given in [8, 23, 4, 19, 24].As a warm-up consider the problem of electing a leader among a set of n identical processes.Clearly, there is no deterministic procedure to elect such a leader (even when all processes areguaranteed to be non-faulty), because there is no way to \deterministically break the symmetry"among the processors. However, a simple randomized procedure will do the job: Let each processortoss, independently of all other processors, a coin with bias 1=n towards 1, and announce its coin-
ip to all processors. If a single processor sends 1 then it is elected leader, otherwise the processis repeated. In general, randomness can be used to \break symmetry" in a variety of distributedsettings. Other uses of randomness in such settings include avoiding \pathological" con�gurations(see Section 3.2), and making the actions of non-faulty processors unpredictable to malicious ones(i.e., Byzantine faults; see Section 3.3). We start with a much simpler problem.3.1 Testing String Equalityor, randomized �ngerprintsThe problem considered here is to decide whether or not two strings, each held by a di�erent party,are identical. The aim is to devise a protocol for this problem using low communication complexity.We present three such protocols.Protocol 1: Party A holds x 2 f0; 1gn, whereas party B holds y 2 f0; 1gn. Here we view x and yas non-negative integers in f0; 1; :::; 2n�1g. In the protocol, party A uniformly selects i 2 f1; :::; ng,�nds the ith prime, denoted pi, and sends the pair (i; x mod pi) to B. Party B recovers pi and acceptsif and only if y mod pi equals the value x mod pi (received from A).Clearly, if x = y then B always accepts. On the other hand, using the Chinese ReminderTheorem, we know that if x 6= y, then x 6= y (mod pi) for at least n=2 of the pi's (since otherwisex � y (mod Qi2I pi), for jIj � n=2, and x = y follows (because x; y < 2n < Qi2I pi)). Thus, Bwill reject with probability at least 1=2. The number of bits sent is log2 n+ log2 pn = O(log n).Protocol 2: Again, party A holds x 2 f0; 1gn, whereas party B holds y 2 f0; 1gn. Here we use asmall-bias probability space S � f0; 1gn, with bias 1=6 and jSj = poly(n) (see [26]). By de�nition,for every non-zero string z 2 f0; 1gn, with probability at least 1=3 a uniformly chosen r 2 S hasinner product mod 2 with z equal to 1. In the protocol, party A uniformly selects r 2 S, computesthe inner product mod 2 of x and r, and sends the result along with the index of r (in S) to B.Party B retrieves r, computes the inner product mod 2 of y and r, and accepts if it matches thebit received.Clearly, if x = y then B always accepts. On the other hand, by the above, if x 6= y then theinner products of x and y with a uniformly chosen r 2 S di�er with probability at least 1=3 (hint:consider z = x� y). The number of bits sent is 1 + log2 jSj = O(log n).Protocol 3: The inputs are as above, but here we use a di�erent tool: An error-correcting code,denoted E : f0; 1gn ! f0; 1gm, with m = O(n) and distance 
(n) (cf., [14]). In the protocol,party A computes the codeword E(x), uniformly selects i 2 f1; :::;mg, and sends i along with the14



ith bit of E(x) to Party B. The latter computes the codeword E(y) and accepts if its ith bit matchesthe bit received.Clearly, if x = y then B always accepts. On the other hand, if x 6= y then E(x) and E(y) di�eron a constant fraction of the bit positions, and so B will reject with constant probability. Thenumber of bits sent is 1 + log2m = O(1) + log2 n.3.2 Routing in networksor, avoiding pathological con�gurationsThe problem considered here is to allow parallel routing of messages in a network in which proces-sors have relatively few immediate neighbors (i.e., processors connected to them by a direct link).In many such networks, routing to random destinations can be done quite e�ciently (i.e., fast evenassuming that each processor can only deliver a single message at a time, and without coordinationamong the processors). O� course, we are interested in routing messages to \non-random" desti-nations; that is, to destinations that are imposed upon us by some high-level application. Still theabove fact (regarding routing to random destinations) becomes relevant, via the following two phaserandomized routing strategy: Suppose that processor i wishes to deliver a message to processor di,where the di's consist of an arbitrary a permutation of the processor names [n] def= f1; :::; ng. Then,processor i selects a random intermediate processor, ri 2 [n], and sends its message to processorri with a request to forward it to processor di. (The ri's are not likely to be distinct!) Thus, therouting is in two phases:1. The message of processor i, denoted mi, is delivered to ri.2. Message mi is delivered from ri to di.By our hypothesis, Phase 1 can be completed fast with high probability. It is appealing to say that,by symmetry, the same should hold also for Phase 2. This is not known to be generically true, buthas been proved to be so for a wide class of networks (cf., [21, Sec. 3.4]). Speci�cally, if one changesthe model a little, allowing and measuring edge congestion, then bounds on congestion in Phase 1apply also to Phase 2.3.3 Byzantine Agreementor, take actions the adversary cannot predictThe problem considered here is to allow non-faulty processors to agree on a common value, inpresence of Byzantine (malicious) faulty processors. Speci�cally, it is required that (1) the non-faulty processors must terminate with the same output value, and (2) in case their input values arethe same this should also be their output value. We may consider, without loss of generality, theproblem of agreeing on a Boolean value. The primary parameters are the total number of processors,denoted n, and a bound on the number of faulty processors, t. We assume a synchronous model ofpoint-to-point communication.Protocol: We use auxiliary (threshold) parameters L;H;D so that L > n2 + t, H � L + t andH + t � D � n� t (which is feasible for t < n=8). The protocol utilizes a global coin (which maybe implemented in various ways). It is postulated that, for each 
ipping of this coin, each of thetwo possible outcomes occurs with probability at least p > 0 (p = 0:1 will do, whereas p = 0:5corresponds to an unbiased coin). 15



Following is the program to processor i 2 [n] def= f1; :::; ng. On input bi 2 f0; 1g, the processor setsits (initial) vote, denoted votei, to bi. The processor repeats the following steps r+1 times, wherer is the iteration in which it decides (see below):1. Send votei to each processor.2. Receive votes from all processors, including itself. (In case no message is received fromprocessor j, use the value last received from it, and if no value was ever received use value0.) Let cnti denote the number of votes in favor of 1. If cnti > n=2 set maji = 1 andtallyi = cnti, otherwise set maji = 0 and tallyi = n� cnti.3. Let C 2 fL;Hg be the value of the global coin, for the current round (in each round theglobal coin is 
ipped anew).4. If tallyi � C then set votei = maji else set votei = 0.5. If tallyi � D then decide votei, and proceed for a single additional iteration (skipping thisstep in the next iteration).(Actually, as shown below, if the processor were to decide again in the next iteration itsdecision would have been identical.)Analysis: Let G denote the set of non-faulty (or good) processors. The following observationregarding members of G is extensively used: In each iteration, jcnti� cntj j � t, for every i; j 2 G.Thus, if tallyi � L > n=2 + t for some i 2 G then majj = maji for all j 2 G. Similarly, iftallyi � D (resp., tallyi � H) for some i 2 G then tallyj � H (resp., tallyj � L) for all j 2 G.Using these facts it follows that1. If all good processors enter some round with identical votes then they all decide by the end ofthe current round, and their decision equals this vote. This follows since (at this round) thisidentical vote would have support of at least jGj � n� t � D. (As a special case, we concludethat the second requirement of Byzantine Agreement holds.)2. If at some round a good processor decides v then by the end of the next round all goodprocessors decide v. Suppose that i 2 G decides v in the current round. Then, tallyi � D,and for each j 2 G it follows that tallyj � H and so at Step 4 votej = majj = v. Usingthe previous fact, the current one follows. (As a special case, we conclude that the �rstrequirement of Byzantine Agreement holds.)3. If at some round tallyi � H holds for some i 2 G then with constant probability all goodprocessors enter the next round with vote equal to maji. This follows since with constantprobability the outcome of the global coin is L, in which case for every j 2 G, tallyj � L = Cand so at Step 4 votej = majj = maji.4. If at some round tallyi < H holds for all i 2 G then with constant probability all goodprocessors enter the next round with vote 0. This follows since with constant probability theoutcome of the global coin is H.Thus, the above protocol terminates in constant expected number of rounds, and the output alwayssatis�es the agreement requirements. This remain valid even if we use a global coin the outcomeof which may be viewed di�erently by di�erent processors, as long as for each of the two possible16
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