Derandomization that is rarely wrong
from short advice that is typically good

Oded Goldreich* Avi Wigderson®
Weizmann Institute of Science Institute for Advanced Study
Rehovot, ISRAEL. and Hebrew University
oded@wisdom.weizmann.ac.1il avi@ias.edu

July 21, 2002

Abstract

For every € > 0, we present a deterministic log-space algorithm that correctly decides undi-
rected graph connectivity on all but at most 2% of the n-vertex graphs. The same holds for
every problem in Symmetric Log-space (i.e., SL).

Using a plausible complexity assumption (i.e., that P cannot be approximated by SIZE(p)
for every polynomial p) we show that, for every € > 0, each problem in BPP has a deterministic
polynomial-time algorithm that errs on at most 2™ of the n-bit long inputs. (The complexity
assumption that we use is not known to imply BPP = P.)

All results are obtained as special cases of a general methodology that explores which prob-
abilistic algorithms can be derandomized by generating their coin tosses deterministically from
the input itself. We show that this is possible (for all but extremely few inputs) for algorithms
which take advice (in the usual Karp-Lipton sense), in which the advice string is short, and
most choices of the advice string are good for the algorithm.

To get the applications above and others, we show that algorithms with short and typically-
good advice strings do exist, unconditionally for S£, and under reasonable assumptions for BPP
and AM.

SAT
?

Keywords: Derandomization, Average-Case Complexity, Machines that Take Advice, Undirected
Connectivity, Log-Space, BPP, Direct Product Problems.

*Supported by the MINERVA Foundation, Germany.
TPartially supported by NSF grants CCR-9987845 and CCR-9987077.

Contents

1

Introduction

1.1 A Motivating Example L

1.2 The underlying principle L

1.3 Other applications e
1.3.1 Conditional derandomization of BPP and AM.
1.3.2 Direct Product Problems e

2 Preliminaries
2.1 Randomness and Extractors e
2.2 Some Complexity Classes 0 i it e e e

3 The transformation: Proof of Theorem 3

4 Undirected Connectivity: Proof of Theorem 1

5 Derandomizing BPP and AM

6 Direct Product Problems

Bibliography

Appendix: On the reducibility properties of the matrix problem

11

12

14

1 Introduction

1.1 A Motivating Example

More than two decades ago, Aleliunas et. al. [3] presented a randomized log-space algorithm for
deciding undirected connectivity (UCONN). Their randomized algorithm triggered (or maybe only
draw attention to) the following open problem:

Can undirected connectivity be decided by a deterministic log-space algorithm?

Despite extensive study, the above question is still open. The lowest space-bound currently known
for deterministic algorithms (for undirected connectivity of n-vertex graphs) is (logn)*/3 [4], which
builds upon [18] (obtaining space (logn)®/?) and improves upon Savitch’s [21] classical bound of
(logn)?. We show that if a deterministic log-space algorithm for UCONN does not exist, then this
is due to very few graphs. That is:

Theorem 1 For every € > 0, there exists a deterministic log-space algorithm that correctly decides
undirected connectivity on all but at most 2™ of the n-vertex graphs. Furthermore, the algorithm
never outputs a wrong answer; it either outputs a correct answer or a special (“don’t know”) symbol.
Such algorithms exist for every problem in Symmetric Log-space (SL).!

Surprisingly enough, the proof of Theorem 1 is not difficult (see Sections 3 and 4). It is based
on a new viewpoint of the high-level “derandomization” process of Nisan, Szemeredi and Wigder-
son [18]. Under a different setting of parameters, for every € > 0, this process may be viewed as a
deterministic log-space algorithm that takes advice (for UCONN), denoted Answ, that satisfies the
following two conditions:

1. The advice string is relatively short. Specifically, the length of the advice is n/2, where n
denotes the number of vertices in the input graph.

2. Most choices of the advice string are “good” for all n-vertex graphs. More precisely, the algo-
rithm works correctly (i.e., decides correctly whether the input n-vertex graph is connected)
whenever the n¢/2-bit long advice string is a universal traversal sequence for n¢/1°
graphs. Moreover, by [3], most advice strings satisfy that property.

-vertex

Note that we use the term “advice” in the standard sense of Karp and Lipton [15]; an advice string
is good if it makes the algorithm using it give the correct answer on all inputs of the given length.
The remarkable property of algorithm Axgw is that it satisfies both conditions above: it has good
advice strings that are much shorter than the input, and furthermore most strings of this length
are good advice strings.

Remark 2 Note that the Condition 2 (i.e., many good advice strings) is easy to obtain from every
probabilistic algorithm. Indeed, Adleman’s simulation [1] of probabilistic algorithms by nonuniform
ones shows that any BPP-algorithm A can be modified into a deterministic A" which takes advice,
for which most advice strings are good. However, since this transformation requires amplification’
wn order to enable a union bound over all inputs of a given length, the advice is necessarily longer
than the input length, which violates the Condition 1 (i.e., short advice string).

1For a recent survey of this class, including a list of complete problems, see 2]

*Denoting by A(z,r) the output of A on input z and coins 7, we obtain A’ by letting A'(z, (r1,, 7o(j2|))) output
the most frequent value among A(z,r1), ..., A(%,70(j2|)). Using sophisticated amplification methods, the sequence
(71, .-y TO(l2|)) can be encoded by a string of length O(|z| + |r|), but we cannot hope for length shorter than |z|
(because we need to reduce the error to less than 271#l in order to apply the union bound).

To demonstrate the impact of having many good advice strings that are shorter than the input,
we sketch how to complete the proof of Theorem 1. The general claim is that an advice-taking
algorithm for which at least 2/3 of the possible advice strings are good can be transformed into
a (standard) deterministic algorithm (of comparable complexity) that errs on a number of inputs
that is roughly exponential in the length of the (original) advice. Thus, we obtain a meaningful
result if and only if the length of the advice is significantly smaller than the length of the input.

The claimed transformation is presented in two stages. First, we derive a randomized (log-space)
algorithm A’ that uses a logarithmic amount of randomness (and errs on at most 2 inputs).
Specifically, on input G, algorithm A’ uses its randomness as a seed to an adequate extractor
(cf. [26]), and extracts out of its input G an advice string, s, of length n/2. Then A’ invokes
Answ on input G and advice s, and outputs whatever the latter does. It is easy to show that
there can be at most 2(**)* inputs on which A’ errs with probability greater than 1/2. Applying
a straightforward derandomization (and ruling by majority), we obtain a deterministic (log-space)
algorithm A” that decides correctly on all but at most of the 2" inputs.

1.2 The underlying principle

The above transformation can be applied to any advice-taking algorithm, and is meaningful if and
only if most of the advice strings are good and the length of the advice is significantly smaller than
the length of the input. That is:

Theorem 3 Let A be an advice-taking polynomial-time (resp., log-space) algorithm for a problem
II, and let £ : N — N. Suppose that for every n it holds that at least a 2/3 fraction of the £(n)-bit
long strings are good advice stings for A; that 1s,

Pr,cqo1yeem [Vo € {0,1}" ut holds that A(z,r) = 1l(z)] >

Wil

where II(x) denotes the correct answer for x. Then, for every ¢ > 1, there exists a deterministic
polynomial-time (resp., log-space) algorithm for I1 that errs on at most 2L of the n-bit inputs.
Furthermore, in case £(n) = Q(n), the resulting algorithm errs on at most 2" of the n-bit inputs.

The proof of Theorem 3 appears in Section 3. As hinted above, the proof proceeds by viewing
the input itself as a source of randomness and extracting a random advice string via an adequate
extractor (which uses logarithmically long seeds). The extracted advice string is sufficiently random
(and thus is a good advice with probability greater than 1/2) provided that the input comes from
a source with min-entropy sufficiently larger than the length of the extracted advice. It follows
that the number of inputs on which most extracted advice strings are not good can be bounded in
terms of the min-entropy bound.

1.3 Other applications
The question is how to obtain algorithms to which Theorem 3 can be (meaningfully) applied. We
have seen already one such example (i.e., Axsw), and in this subsection we will discuss some more.

1.3.1 Conditional derandomization of BPP and AM

As mentioned above, any randomized algorithm can be transformed into a (deterministic) advice-
taking algorithm for which most possible advice strings are good. The problem is that the length
of the advice will be longer than the length of the input. One natural idea is to use an adequate

pseudorandom generator in order to shrink the length of the advice strings, while maintaining
the fraction of good advice strings. We observe that the property of being a good advice string
for a specific algorithm can be efficiently tested using a SAT-oracle. Thus, it suffices to have
pseudorandom generators that withstand probabilistic polynomial-time distinguishers that use a
saT-oracle. (Actually, it suffices to have pseudorandom generators that withstand distinguishers
that correspond to the class M.A.)

Recall that pseudorandom generators that withstand non-uniform polynomial-size distinguish-
ers that use a SAT-oracle were constructed before (cf. [5, 16]) under various non-uniform assumptions
(which also refer to circuits with sAT-oracle gates). In particular, we will use the following result:

Theorem 4 (informal, implicit in [16, 19]): Suppose that for every polynomial p there exist a
predicate in P that is hard to approzimate® in SIZE(p)SAT. Then, for every polynomial q, there
exists a deterministic polynomial-time algorithm that ezpands k-bit long random seeds to q(k)-bit
long sequences that are indistinguishable from random ones by any q(k)*-size circuit that uses a
SAT-oracle.

Combining Theorem 4 with the observation that being a good advice string for a polynomial-time
algorithm is testable in comparable time with the help of an SAT-oracle, we obtain (see proof in
Section 5):

Theorem 5 (informal) For every polynomial p and constant € > 0, under the assumption of
Theorem 4, every probabilistic p-time algorithm can be converted into o functionally-equivalent
polynomial-time advice-taking algorithm that uses advice strings of length n¢, such that more than
2/3 fraction of the possible advice strings are good.

Combining Theorem 3 and 5, we obtain (see proof in Section 5):

Corollary 6 (informal) Under the assumption of Theorem 4, for every € > 0, every language in
BPP can be decided by a deterministic polynomial-time algorithm that errs on at most 2% of the
n-bit long inputs.

Interestingly, under the same assumption we can also derandomize AM (see proof in Section 5):

Theorem 7 (informal) Under the assumption of Theorem 4, for every € > 0, every language in
AM can be decided by a non-deterministic polynomial-time algorithm that errs on at most 2 of
the n-bit long inputs.

Comparison to previous results: When making the comparison, we refer to three issues:
1. The running-time of the derandomization,
2. For how many instances does the derandomization fail,
3. The intractability assumption used.

3Here, hard to approximate may mean that any machine in the class fails to guess the correct value of a random
instance with success probability greater than 2/3. Using Yao’s XOR Lemma (cf. [27, 8]), hardness to approximate
can be amplified such that this class fails to guess the correct value of a random n-bit instance with probability
greater than (1/2) 4+ (1/p(n)). (Recall that such amplification requires only logarithmically many instances, and thus
in our case it affects the resource bounds in a minor way.)

Our focus is on polynomial-time derandomization. Thus, Corollary 6 should be compared with
Impagliazzo and Wigderson [12], who proved that BPP = P under the assumption that for some
¢ > 0, the class € 1is not contained in SIZE(2°"). Likewise, Theorem 7 should be compared with
Kilvans and van Melkebeek [16], who proved that AM = NP under the assumption for some ¢ > 0,
the class £ is not contained in SIZE(2¢*)SAT. Both [12] and [16] present perfect derandomizations,
whereas our derandomizations fail on very few inputs (which is of course weaker).

Comparing the assumptions is easier for the AM derandomization, as both Theorem 7 and [16]
refer to lower bounds for circuits with SAT oracle gates. But as Theorem 7 refers to separation
of classes with smaller resources, our assumption is weaker.* As for the BPP derandomization, it
seems that the assumption made by [12] and Corollary 6 are incomparable. We still need the SAT
oracles, but as above, our classes are lower.

There is another set of derandomization results, typically under uniform complexity assumptions
(which are seemingly weaker than the analog non-uniform assumptions, cf. [13]). These results
yield deterministic simulations that may make many errors; however, no efficient procedure can
find inputs on which the simulation errs. This notion of imperfect simulation seems incomparable
to ours; we seem to make much fewer errors, but the inputs for which errors occur may be easy to
generate.

About our assumption: To gain some intuition about the assumption used in Corollary 6, we
consider a few plausible conjectures that imply it.

e Given a Boolean circuit, determine whether it evaluates to 1 on more than half of its possible
wnputs. Clearly, this problem can be decided in time that is exponential in the number of
inputs to the circuit, but it seems hard to decide it in significantly less time. Specifically,
suppose that the input circuit has size n and £(n) input bits (e.g., £(n) = O(logn)), then the
problem is solvable in time 2¢™) . but seems hard to decide in time 2¢"/10. Furthermore, the
problem seems hard even for 24™/10_size circuit that use SAT-gates (i.e., an oracle to SAT).
However, conjecturing that this problem is hard even to approximate (i.e., when given a
random circuit as input) requires a suitable notion of the distribution of inputs (i.e., circuits).
A conceivably good definition is that the input/circuit distribution is uniform over ¢(n)-variate
polynomials over GF(2) having n monomials.

e For any polynomial ¢, we consider the following decision problem: Given a description of
a prime P and an natural number x < P, decide whether most of the natural numbers in
the set {x +1,...,x + q(|P|)} are quadratic residues modulo P. Clearly, this problem can be
decided in time g(|P]) - |P|?, but it seems hard to decide (or even approximate) it by (say)
¢(|P|)'/3-size circuits even ones having SAT-gates.

o Given a sequence of n-by-n matrices, A1, ..., Ay, over a sufficiently large finite field, determine
>oscigdet(Picg Ai), where det(M) denote the determinant of the matrix M. Again, this
problem can be solved in time 2¢-n?, but it seems hard to solve it by (say) min(2¢/3, ¢"/3)-size
circuits, even ones having sAT-gates.> (Again, we may use £ = O(logn).)

For example, if P is contained in SIZE(n?) then £ is contained in SIZE(2°") for every ¢ > 0, but the converse
is not known. Thus, “€ is not contained in SIZE(2°™) for every ¢ > 0” implies “P is not contained in SIZE(n?)”
(but again the converse is not known). Also note that, in case of predicates in £, hardness on the worst-case yields
hardness to approximate.

5The ¢™? term, which is meaningful only if £ = Q(nlogn), is introduced to account for a possible (£ - n*)-time

algorithm that computes the formal (degree n) polynomial p(z1, ..., z¢) def det(X:f=1 x;A;), and computes the sum

We comment that this problem is downward-self-reducible and random-self-reducible (see
Appendix). This is particularly interesting in light of the paper [13], which shows that
for such functions wuniform, worst-case hardness implies that they can be used in the NW-
generator (obtaining derandomization on the average). More concretely, assume this function
is not in BPTIME(p)SAT, for any fixed polynomial p, for infinitely many input lengths. Then
every language in BPP has a deterministic polynomial-time algorithm which, for infinitely
many input lengths errs on at most 2 inputs, with € > 0 an arbitrarily small constant. To
summarize, the special structure of this function, enables reducing our hardness assumption
from non-uniform and average-case to uniform and worst-case. Thus, it will be interesting
to try and substantiate (in direct or indirect ways), the conjecture that for this function is
indeed difficult to compute in time 2¢/9(),

1.3.2 Direct Product Problems

Direct product problems yield another interesting case where randomized algorithms can be trans-
formed into ones having relatively short good advice strings. Specifically, any good advice string
for the original problem constitutes a good advice string for the direct product problem. Apply-
ing Theorem 3, we obtain a deterministic algorithm (of related complexity) for the direct product
problem that errs on a number of inputs that is independent of the arity of the (direct product)
problem. For further details, see Section 6.

2 Preliminaries

In this section we recall some standard notions and notations. We will also recall some known
results.

2.1 Randomness and Extractors

We consider random variables that are assigned binary values as strings. In particular, U,, will
denote a random variable that is uniformly distributed over {0,1}". The min-entropy of a random
variable X is the maximal (real number) k£ such that for every string z it holds that Pr[X = z] <
27k,

The statistical difference between two random variables X and Y, denoted A(X,Y), is defined
as £ -3, |Pr[X = 2] — Pr[Y = z]]|. Clearly, A(X,Y) = maxg{Pr[X € S] — Pr[Y € S]}. We say
that Y is e-close to X if A(X,Y) < ¢; otherwise, we say that Y is e-far from X.

A function E : {0,1}" x {0,1}* — {0,1} is called a (k, €)-extractor if for every random variable
X that has min-entropy at least k it holds that E(X,U;) is e-close to Up. The following fact is
well-known and easy to establish:

Fact 8 Suppose that E : {0,1}" x {0,1}* — {0,1}* is a (k,¢)-evtractor. Then, for every set
S C {0,1}¢, all but at most 2 of the x’s in {0,1}" satisfy Pr[E(z,U;) € S] > (|S]/2¢) —e.

Proof: Let B C {0,1}" denote the set of 2’s that satisfy Pr[E(z,U;) € S] < (|S]/2%) — €. Consider
a random variable X that is uniformly distributed on the set of the latter x’s. Then,

A(E(X,U;),Up) > Pr[E(X,Us) € S]—Pr[U, € S| > ¢
Thus, log, |B| < k must hold, and |B| < 2* follows.

ZII _____ 2p€{0,1} p(z1,...,z¢) by computing separately the contribution of each of the (":2) terms of p.

Uniform families of extractors: We actually consider families of (extractor) functions (of the
above type). These families are parameterized by n, whereas ¢, £,k and € are all functions of n.
Thus, when we say that {E, : {0,1}" x {0,1}*") — {0, 1}£(”)}n€N is a (k,€)-extractor we mean
that for every n the function F,, is a (k(n),e(n))-extractor. We will use the following well-known
result of Trevisan [26]:5

Theorem 9 For every ¢ > 1, € > 0 and every linear-space computable £ : N — N, there exists a
polynomial-time computable family of functions {E, : {0,1}" x {0,1}0U0cen) — {0, 1}6M)} \ that

constitute a (k,€)-extractor, where k(n) def £(n)¢. Furthermore, these functions are computable in
log-space.

2.2 Some Complexity Classes

We denote by SIZE(p) the class of (non-uniform) families of p-size circuits, and by SIZE(p)SAT the

class of such circuits augmented by sAT-gates (oracle gates to SAT).

We refer to two restricted classes of interactive proof systems (cf. [10]), specifically M.A and
AM. The class MA (resp., AM) consists of all languages having a two-round public-coin inter-
active proof in which the prover (called Merlin) sends the first (resp., second) message (cf. [6]).
In both cases, the verifier’s (Arthur’s) message consists of the entire contents of its random-tape
(hence the term public-coin). By MA(p) (resp., AM(p)) we denote a parameterized version of
MA (resp., AM) in which the verifier’s complexity is bounded by p.

3 The transformation: Proof of Theorem 3

We combine an algorithm A as in the hypothesis (of Theorem 3) with an adequate extractor to
obtain the desired deterministic algorithm. Specifically, let use denote by S the set of good advice
strings of algorithm A; that is, for every r € S and x € {0,1}", it holds that A(x,r) = II(x). Then,
by the theorem’s hypotheses, |S| > (2/3) - 24", Let E, : {0,1}" x {0,1}*™) — {0,1}(") be a
(k(n),0.1)-extractor. Then, by Fact 8, for all but at most 25(") of the n-bit long #’s, the probability
that E,(z,Uyy)) € S is at least (2/3) — 0.1 > 1/2. Thus, for all but at most 2k(") of the s, for a
strict majority of the (extractor seeds) ' € {0,1}4™ it is the case that E,(x,r’) € S. Scanning all
possible 7' € {0,1}*™) | an ruling by the majority of the A(x, E,(x, ")) values, we obtain the correct
answer for all but at most 25(") of the n-bit long inputs. (The resulting algorithm is depicted in
Figure 1.)

Clearly, the time complexity of the resulting algorithm is 24 . (Ty(n) 4 Tx(n)), where Ty
(resp., Tx) denotes the time complexity of algorithm A (resp., of the extractor £ = {E,},cN)-
Similarly, the space complexity of the resulting algorithm is ¢(n) + Sa(n)+ Sg(n), where S, (resp.,
Sp) denotes the space complexity of A (resp., of E).

Using Theorem 9, we may set t(n) = O(logn) and k(n) = {(n)¢, while using a log-space
computable extractor. Thus, the main part of Theorem 3 follows. To establish the furthermore
part of Theorem 3 (which refers to £(n) = Q(n)), we use Zuckerman’s extractor [28] instead of
Theorem 9.7

®We mention that both the error-correcting code and the (weak) designs used by Trevisan’s extractor can be
constructed in log-space.

"To handle log-space algorithms, we need a log-space computable extractor for this case (i.e., of £(n) = Q(n) and
k(n) = c¢-¥€(n)). Such extractors do exist [22].

On input 2 € {0,1}", scan all possible ' € {0, 1}*™),
performing the following steps for each 7'
1. Obtain r « E,(x,r").
2. Invoke A on input = and advice r, and record the answer in v(r').

Output the majority value in the sequence of v(r’)’s.

Figure 1: The resulting deterministic algorithm.

Remark 10 If algorithm A never errs (but may rather output a special “dont know” symbol on
some (x,r) pairs) then the same property is inherited by the resulting deterministic (single-input)
algorithm. A similar statement holds for one-sided error of algorithms for decision problems. (In
both cases, we may actually use dispersers instead of extractors.)

4 Undirected Connectivity: Proof of Theorem 1

As explained in the introduction, Theorem 1 is proved by applying Theorem 3 to an advice-
taking algorithm that is implicit in (or rather derived from) the work of Nisan, Szemeredi and
Wigderson [18]. The latter algorithm refers to the notion of a universal traversal sequence for the
set of all (3-regular) graphs of a certain size. Such sequences were defined by Cook (cf. [3]) and
extensively studied since. There are many variants of this definition, and we choose one that is
most convenient for our purpose.

Definition 11 (Universal traversal sequences for d-regular graphs):

e Let G be a d-regular graph, v be a vertex in G, and 0 = (01,....,0¢) be a sequence over

[d] def {1,...,d}. The o-directed G-walk starting at v is the vertex sequence (vg,vi,..., V),
where vy = v and vy s the U}h neighbor of v;.

e We say that o € [d|* is (d, m)-universal if for every m-vertex d-reqular graph G and every
vertex v in G, the o-directed G-walk starting at v wvisits all the vertices of the connected
component of v in G.

We say that o € {0,1}* is (d, m)-universal if when viewed as a sequence over [d] it is (d,m)-
universal.

The following result is implicit in the work of Nisan, Szemeredi and Wigderson [18].

Theorem 12 (following [18]): Let £,m : N — N be space-constructible functions such that m(n) <
{(n) < n for all n’s.® Then, there exists a deterministic O((log®n)/(log m(n)))-space advice-taking
algorithm Axsw for UCONN that on input an n-vertex graph uses an advice string of length £(n),

8The growth restriction on these functions is natural in the context of [18]. Of course m(n) < £(n) must hold, as
otherwise the claim holds vacuously (because m-universal sequences must have length greater than m). For £(n) > n,

algorithm Angwy uses space O((log £(n))(logn)/(log m(n))) rather than O((log®n)/(log m(n))).

where the set of good advice strings contains every (3, m(n))-universal sequence.® Furthermore,
algorithm Answ never errs, but may rather output a special (“dont know”) symbol (in case the
advice string is not good).

Nisan et. al. [18] used the fact that (by [17]) (3, m)-universal sequences of length exp(log?m) can
be constructed in O(log? m)-space. Setting £(n) = n and m(n) = exp(log"/? m), their O(log®/? m)-
space algorithm follows by combining Theorem 12 with the O(log n)-space algorithm (of Nisan [17])
for constructing a m(n)-universal sequence of length n. Here, instead, we use the well-known fact
that most sequences of length O(m?) are (3, m)-universal [3]. That is:

Theorem 13 (Aleliunas et. al. [3]): More than a 2/3 fraction of the O(m3 -log m)-bit long strings
are (3, m)-universal sequences.

Setting £(n) = O(m(n)3-logm(n)) < m(n)?, it follows that a 2/3 fraction of the £(n)-bit long strings
are (3,4(n)"/*)-universal, and thus are good advice strings for Axgw (when applied to n-vertex
graphs). Specifically, under this setting, Axsw uses space O((log® n)/logm(n)) = O((log®n)/ log £(n))
(and £(n)-bit long advice strings). For £(n) = n'/9() we obtain a deterministic log-space advice-
taking algorithm for UCONN that uses £(n)-bit long advice strings such that at least a 2/3 fraction
of the possible advice strings are good.

We are now ready to invoke Theorem 3: given any desired constant e > 0, we set £(n) = n/°
(for any constant ¢ > 1) and invoke Theorem 3. This yields a deterministic log-space algorithm
for UCONN that errs on at most 26" = 27° of the n-vertex graphs. The main part of Theorem 1
follows. By Remark 10, the fact that Axsw never errs is inherited by the log-space algorithm that
we derive, and thus the furthermore-part of Theorem 1 follows.

USTCONN and SL. The arguments presented above apply also to USTCONN, where one is
given an undirected graph G and a pair of vertices (u,v) and needs to determine whether or not
these vertices are connected in G. Actually, the main algorithm presented in [18] is for that version,
and so all the above holds. Since USTCONN is log-space complete for the class SL£ (symmetric
log-space), it is easy to see that for every € > 0 every problem in S£, has a deterministic log-
space algorithm which is always correct, and answers “dont-know” on at most 2" inputs of length
n. Indeed, one only has to observe that log-space reductions can only blow-up the input length
polynomially, and since € can be made arbitrarily small we get the same bound on the number of
“dont-know”s. A compendium of interesting problems in S£ can be found in [2].

5 Derandomizing BPP and AM

Comments on the proof of Theorem 4: With a minor modification (to be discussed), Theo-
rem 3.2 in (the full version of) [16] yields Theorem 4. Theorem 3.2 in [16] assumes the existence of a
predicate that is hard to approximate!'® by SIZE(p)SAT7 and conclude that a certain pseudorandom
generator expanding k-bit strings to g(k)-bit strings exists, where q(k) < p(vVklog q(k))/2. The
resulting generator withstand ¢(k)-sized circuits with SAT-gates, and operates in time related to

®Nisan et. al. [18] work with an auxiliary 3-regular O(n?)-vertex graph that is derived from the initial n-vertex
graph in a straightforward manner. The algorithm works in iterations, where a good advice allows to shrink the size
of the graph by a factor of m(n)/4 in each iterations. (In case the advice is not good, the algorithm may fail to shrink
the graph, but will detect this failure, which justifies the furthermore clause.) Thus, there are (logn)/(log(m(n)/4))
iterations, and each iteration is implementable in O(logn) space.

10Gee Footnote 3.

the complexity of evaluating the predicate on (vklog ¢(k))-bit long inputs and to 29(). However,
the latter additive term (of 29(F)) is merely due to the fact that [16] use the brute-force design
construction of [19] rather than their efficient (i.e., poly(k)-time) construction, which can be used
whenever p is a polynomial.'! (Another minor detail is that we want to withstand q(k)2-sized
circuits rather than withstand g(k)-sized circuits.) Theorem 4 follows by setting, for any given

polynomial ¢, the polynomial p such that q(k)? < p(vk log ¢(k))'/? holds (e.g., p(n) def (q(n?))h).
|

Proof of Theorem 5: For each set in BPP, by using straightforward amplification, we obtain
a randomized polynomial-time algorithm that errs with probability at most 2~ (n+2) (on each n-bit
input). This algorithm yields an advice-taking algorithm for which at least 3/4 of the possible
advice strings are good. We call such an algorithm canonical.

For any polynomial ¢ and € > 0, we construct a generator G¢ 4 as in Theorem 4 such that n°-bit
long strings are stretched into sequences of length ¢(n) that pass all g(n)?-size distinguishers (i.e.,
circuits with SAT-gates).

We claim that for every g-time canonical algorithm, A, at least a 2/3 fraction of the sequences
generated by G 4 are good advice strings. Otherwise, we consider an M.A-proof system for bad (i.e.,
non-good) advice strings. On input a string r € {0,1}™, where m = ¢(n), the prover (i.e., Merlin)
sends x € {0,1}", and the verifier accepts if and only if A(z,r) differs from the majority vote of
A(z, s) taken over a sample (of say 100) uniformly selected s € {0,1}™. Note that if r is a bad advice
string then the verifier accepts with probability at at least 0.99 (provided Merlin acts optimally),
whereas if r is a good (i.e., not bad) advice string then the verifier accepts with probability at
most 0.01 (no matter what Merlin does). Thus, the probability that the verifier accepts a string
produced by G4 is at least (1/3) - 0.99 = 0.33, whereas the probability that the verifier accepts
a uniformly distributed ¢(n)-bit long string is at most (1/4) -1+ (3/4) - 0.01 < 0.3. Observe that
the verifier’s running-time is bounded by O(m) = O(q(n)). Applying known transformations from
MA to AM, and from the latter to BPTIMESAT, yields a distinguisher in BPTIME(m?)SAT for
m-bit inputs (provided that g(n) > nlogn).!? We derive a contradiction to the security of G g,
and the theorem follows. |

Proof of Corollary 6: By applying Theorem 5 (with € replaced by €/2), we can derive for any
set in BPP a polynomial-time advice-taking algorithm with advice strings of length n¢/? such that
at least 2/3 of the advice strings are good. Then applying Theorem 3 (with ¢ = 2), the current
claim follows. B

Proof of Theorem 7: We just follow the proof of Corollary 6, adapting the notion of a good
advice to the AM setting, and observing that the proof of Theorem 5 still applies. Specifically,
a good advice for an AM-game is a verifier message that is good for all inputs of a certain length
(i.e., for inputs in the language there exist an acceptable prover response, whereas no such response
exists in case the input is not in the language). The M.A-proof system described in the proof of

"Tndeed, Theorem 3.2 in [16] is stated for arbitrary p’s, and the focus is actually on super-polynomial p’s.

2The transformation of MA to AM increases the running-time by a factor related to the length of the original
Merlin’s message, which equals n in our case. In the second transformation (i.e., from AM to BPTIMESAT), we need
to make a SAT-query that is answered with an optimal Merlin message. This amounts to encoding the accepting
predicate of Arthur as a SAT-instance, where the length of that instance is almost linear in the verifier’s running-time
(on a multi-tape Turing machine). Thus, MA(m) C AM(mn) C BPTIME(mn log(nm))3AT.

10

Theorem 5 extends in the straightforward manner (i.e., Merlin now sends an adequate x along with
an adequate prover message for the AM-game). Indeed, moving to .AM will blow-up the complexity
by a factor related to the prover message, and so we should start (w.l.o.g.) with a AM-game in
which the verifier’s messages are longer than the prover messages.'® But otherwise, the argument
remains intact. |

6 Direct Product Problems

The following observation is due to Noam Nisan: A natural domain where one may obtain advice-
taking algorithms with good advice strings that are much shorter than the input is the domain
of direct product problems. That is, suppose that II is a problem having a (polynomial-time)
randomized algorithm. As we have commented in the introduction, by straightforward amplification
[1] we may obtain an advice-taking algorithm for IT such that for some polynomial ¢, the algorithm
uses f(n)-bit long advice for n-bit long inputs such that at least a 2/3 fraction of all possible
advice are good. The key point is that such an advice-taking algorithm for II yields an algorithm
with similar performance for the direct product of II. That is, for any n and ¢, given input
(1, ..,) € {0,1}'™ and an £(n)-bit long advice, the latter algorithm invokes the single-instance
algorithm on each x; using the same advice in all invocations. Clearly, if the advice is good for
the single-instance algorithm then it is also good for the multiple-instance algorithm. Applying
Theorem 3, we obtain

Theorem 14 For every problem 11 in BPP, there exist a polynomial p and a deterministic polynomsal-
time algorithm A such that for every n and t, for all but at most 2P of the sequences T =
(21, ..., y) € {0,1}™ it holds that A(T) = (U(z1), ..., [L(x)).

We stress that the number of inputs on which A may err depends only on the length of the individual
II-instances (i.e., n), and not on their number (i.e.,). We comment that this is superior to what
could be obtained by straightforward considerations.*

Acknowledgments

We are grateful to Noam Nisan for suggesting the application to direct product presented in Sec-
tion 6. We also thank Eric Allender and the anonymous reviewers of Random’02 for their helpful
comments.

BSpecifically, assuming that the prover’s messages in the AM-game are shorter than m, we get an M.A(m)
proof system for bad advice strings, which is transformed to an AM (m?) proof system, which in turn resides in
BPTiME(m? log(m?))5*T. So we should use a generator as in Theorem 4 such that n°-bit long strings are stretched
into sequences of length g(n) that pass all g(n)>-size distinguishers (rather than q(n)?-size ones).

MFor example, suppose that II has a BPP-algorithm of randomness complexity p (such that p(n) > n or else we
can derandomize II itself). Then, by straightforward amplification, we obtain a 2/3-majority of good advice strings
for advice length ¢(n) = O(p(n) - n) (or even £(n) = O(p(n) + n) by using expander-based amplification). Thus, in
Theorem 14, we obtain p(n) = £(n)¢, for any desired ¢ > 1. In contrast, if we use w3, ..., x¢ to generate m = t/p(n)
disjoint random pads for invocations of the BPP-algorithm on input @1 then we may err on exp(—m)-2" = g1 —o(1))-tn
of the sequences. Using z3, ..., z; to generate tn/(log d) related pads (by using a d-regular optimal expander) may yield

error on (1/\/E)t"/(l°g d).gtn — gtn/2 sequences. For large t, this is inferior to the upper bound of 90 (p(n)m)*/2 < 9r(n)?
sequences (not to mention 20 ()+m)" — 9r(M)° for any ¢ > 1) obtained by using Theorem 14.

11

References

[1]

2]

[10]

[11]

[12]

[14]

[15]

[16]

L. Adleman. Two theorems on random polynomial time. In 10th FOCS, pages 75-83,
1978.

C. Alvarez and R. Greenlaw. A compendium of problems complete for symmetric loga-
rithmic space. ECCC report TR96-039, 1996.

R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovasz and C. Rackoff. Random walks, universal
traversal sequences, and the complexity of maze problems. In 20th FOCS, pages 218-223,
1979.

R. Armoni, M. Saks, A. Wigderson and S. Zhou. Discrepancy sets and pseudorandom
generators for combinatorial rectangles. In 37th FOCS, pages 412-421, 1996.

V. Arvind and J. Kébler. On pseudorandomness and resource-bounded measure. In 17th
FSTTCS, Springer-Verlag, LNCS 1346, pages 235-249, 1997.

L. Babai. Trading Group Theory for Randomness. In 17th STOC, pages 421-429, 1985.

M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits. SICOMP, Vol. 13, pages 850-864, 1984. Preliminary version in 23rd FFOCS,
1982.

O. Goldreich, N. Nisan and A. Wigderson. On Yao’s XOR-Lemma. ECCC, TR95-050,
1995.

O. Goldreich, D. Ron and M. Sudan. Chinese Remaindering with Errors. TR98-062,
available from ECCC, at http://www.eccc.uni-trier.de/eccc/, 1998.

S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SICOMP, Vol. 18, pages 186-208, 1989. Preliminary version in 17th STOC,
1985.

R. Impagliazzo, V. Kabanets and A. Wigderson. In search of an easy witness: Exponential
versus probabilistic time. In proceedings of 16th CCC, pages 2-12, 2001.

R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Derandom-
izing the XOR Lemma. In 29th STOC, pages 220-229, 1997.

R. Impagliazzo and A. Wigderson. Randomness vs. Time: De-randomization under a
uniform assumption. In 39th FOCS, pages 734-743, 1998.

V. Kabanets. Easiness assumptions and hardness tests: Trading time for zero error.
Journal of Computer and System Sciences, 63(2):236-252, 2001.

R.M. Karp and R.J. Lipton. Some connections between nonuniform and uniform com-
plexity classes. In 12th STOC, pages 302-309, 1980.

A. Klivans and D. van Melkebeek. Graph Nonisomorphism has Subexponential Size Proofs
Unless the Polynomial-Time Hierarchy Collapses. In 31st STOC, pages 659-667, 1998. To
appear in SICOMP.

12

[17]

[18]

[19]

[20]

[21]

[22]

[25]

[26]

[27]

[28]

N. Nisan. Pseudorandom Generators for Space Bounded Computation. Combinatorica,
Vol. 12 (4), pages 449-461, 1992.

N. Nisan, E. Szemeredi, and A. Wigderson. Undirected connectivity in O(log'®n) space.
In 33rd FOCS, pages 24-29, 1992.

N. Nisan and A. Wigderson. Hardness vs Randomness. JCSS, Vol. 49, No. 2, pages
149-167, 1994.

M.O. Rabin. Probabilistic Algorithm for Testing Primality. Journal of Number Theory,
Vol. 12, pages 128-138, 1980.

W.J. Savitch. Relationships between nondeterministic and deterministic tape complexi-
ties. JCSS, Vol. 4 (2), pages 177-192, 1970.

R. Shaltiel. A log-space extractor for high values of min-entropy. Personal communication,
June 2002.

M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. Journal
of Complezity, Vol. 13 (1), pages 180-193, 1997.

M. Sudan, L. Trevisan and S. Vadhan. Pseudorandom Generators without the XOR
Lemma. JCSS, Vol. 62, No. 2, pages 236266, 2001.

A. Ta-Shma. Almost Optimal Dispersers. In 30th STOC, pages 196-202, 1998.

L. Trevisan. Constructions of Near-Optimal Extractors Using Pseudo-Random Genera-
tors. In 31st STOC, pages 141-148, 1998.

A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS, pages 80-91,
1982.

D. Zuckerman. Randomness-Optimal Sampling, Extractors, and Constructive Leader
Election. In 28th STOC, pages 286-295, 1996.

13

Appendix: On the reducibility properties of the matrix problem

For simplicity, we work with finite fields of characteristic 2, rather than with finite fields of large
prime cardinality. The issue at hand is that random self-reducibility for n-by-n matrices requires
working with a field with more than n elements, and so the finite field cannot be fixed (but
should rather depend on the parameter n). The first question is which field should we use (as a
function of n), and the second question is how to support downward self-reducibility in case the
field changes (with the dimension). One solution is to work with fields of prime cardinality, make
the prime number an auxiliary input of the problem, and move among different primes via Chinese
Remainder Theorem (cf. [9]). Here we take a different approach.

We consider the computation of the following function f,,(A1,...;Ae) = Ygcdet(Fiecg Ai),

where ¢ & {(n) is logarithmic in n (i.e., £(n) = [clog, n] for some c), the A;’s are n-by-n matrices
over GF(2™), and m o m(n) = 2[1°8271 (We ignore the issue of representing the field GF(2™);

that is, specifying an irreducible polynomial of degree m over GF(2). Such a polynomial can be
added as an auxiliary parameter to f,, or alternatively be fixed for specific values of m.)!?

Random self-reducibility. We first show that the value of f,, at any instance can be computed
from the value of f,, at poly(n) random instances. Specifically, we show that f, (A1, ..., Ay) can
be computed based on the values of f,(A; +v;R1,---, A¢ + vjRe), for j =1,...,n + 1, where the
R;’s are random matrices (and the ;’s are distinct non-zero elements of GF(2™)). Recall that, for
every two matrices A and B, it holds that det(A) = Z"'H ¢jdet(A 4 v;B), where the ¢;’s depend
only on the -;’s. Using this fact (in the second equahty) we obtain:

fn(Ar, . Ay) = Zdet (ZA)

1€S
n+1
SR ((ZAi> . (ZRi>>
SC[f] j i€S i€S
n+1
= Z Cj - Z det (Z A; -l—’}’jRZ'))
Jj=1 €S
n+1
= > ¢ falAL + 7Ry, s Ae + 75 Re)
j=1

and the claim follows. It follows that given a procedure that computes f, correctly on at least a

—(1/3n) fraction of the instances, we can compute f, correctly (w.v.h.p) on any instance. Actually,
combined with the list-decoding algorithm of Sudan [23], the above random self-reducibility process
implies a very strong worst-case/average-case connection.

Proposition 15 Given a procedure that computes f,, correctly on an € fraction of the instances,
we can obtain a procedure that on input any instance outputs a list of size poly(1l/e) containing the
correct value of f.

Proof: For fix sequences Ay,..., Ay and Ry, ..., Ry of n-by-n matrices, and a variable z (ranging
in the field), the function f,(A4; + 2Ry, ..., A¢ + ©Ry) is a degree n polynomial in = with free-term

158pecifically, for mn = 2 - 3¢, the polynomial ™ + #™/? + 1 is irreducible over GF(2). Using these cases requires

defining m(n) = 2 - 3Mees 1 and slightly modifying the downwards self-reducibility process described below.

14

equal f,(Aj, ..., A¢). Selecting random matrices Ry, ..., Ry, the probability that the given procedure
provides the correct answer to at least an €/2 fraction of the instances in {A; 4+ eRy, ..., Ay + eRy}
is at least €/2. In such a case, using [23], we obtain a list of polynomials containing the correct one.

Downward self-reducibility. We next show that the value of f,, at any instance can be com-
puted from the value of f,_; at poly(n) instances. To prove that f, is downward self-reducible,
we expand the determinant (as usual) about the first row. Specifically, for every n x n matrix A
it holds that det(A4) = >>7_; a’ det(A7), where o/ denotes the (1,7)-entry of A, and A’ denotes the
minor of A obtained by removing the first row and jth column. Thus:

Pti) = 5 e (ZA)
[e(n)]

1€S
- ¥ > (xd)-a (D)
SCle(n)] =1 \ieS €S

j=1:=1 S2i i'eS

= izzn)aj Zdet (ZA{,)
Y (Y det (ZAg‘,)_ Y det (ZAg‘,))
[

j=1i=1 SCle(n)] i'es SClem)\{i} i'es
n)

= YN (faa(Al A)~ Faa(A], AT AL A) (1)
j=1:=1

where in Eq. (1) we have abused the notation f,_1. Specifically, the function f,,_; has £(n — 1)
arguments, whereas we have applied it once to ¢(n) arguments and once to £(n) — 1 arguments.
Furthermore, the function f,_; is to be applied to matrices over GF(2("~1)) whereas we have
applied it to matrices over GF(Zm(”)). We address both problems next.

1. Note that £(n — 1) € {{(n),{(n) — 1} (because £(t) = [clogyt]). In case {(n — 1) = {(n), we
replace the second term in Eq. (1) by Tfac1(A], ... AL |0, Az—l—l’ . ,Afz(n)), using the fact
that > gcre—qdet (Xicq Mi) equals > scigdet (Xies Mi), where M, is the all-zero matrix.
In case £(n—1) = £(n) — 1, we replace the ﬁrst term in Eq. (1) by fn,_1(47, A2, .. AJ()+

ot (AQ Gy A)+ (A + AL A A) - fn_l(o,A;,...,A;(n)_l), using
the fact that

Zdet<zM> - ¥ (det<M1+ZMi>+det(ZMi>>

= SC{2,..4—1} = ieS

+) (det (Mg—i- ZMi> + det (Z MZ>>

SC{2,.. -1} = icS

+) (det ((M1 + M)+ Mi> + det (Z M))

SC{2,.. -1} ieS =

15

B) ()

SC{2,...4—1} = =

2. Note that m(n — 1) € {m(n),m(n)/2} (because m(t) = 2/°821), In case m(n — 1) = m(n),
which typically holds, the above description is accurate. The problematic case is of m(n) =
2m(n — 1), in which case we have to reduce determinants over GF(22™) to determinants over
GF(2™). This can be done by viewing GF(22™) as an extension field of GF(2™). Specifically,
we view GF(22™) as the field of linear polynomials (in z) over GF(2™), consider the determi-
nant of an k-by-k matrix over GF(22™) as a degree k polynomial over GF(2™), and compute
this polynomial by extrapolation from &k + 1 points in GF(2™). Reducing the resulting poly-
nomial modulo the irreducible polynomial representing GF(22™) as an extension of GF(2™),
we obtain the value of the determinant.

16

