
Derandomization that is rarely wrongfrom short advice that is typically goodOded Goldreich�Weizmann Institute of ScienceRehovot, Israel.oded@wisdom.weizmann.ac.il Avi WigdersonyInstitute for Advanced Studyand Hebrew Universityavi@ias.eduJuly 21, 2002AbstractFor every � > 0, we present a deterministic log-space algorithm that correctly decides undi-rected graph connectivity on all but at most 2n� of the n-vertex graphs. The same holds forevery problem in Symmetric Log-space (i.e., SL).Using a plausible complexity assumption (i.e., that P cannot be approximated by SIZE(p)sat,for every polynomial p) we show that, for every � > 0, each problem in BPP has a deterministicpolynomial-time algorithm that errs on at most 2n� of the n-bit long inputs. (The complexityassumption that we use is not known to imply BPP = P .)All results are obtained as special cases of a general methodology that explores which prob-abilistic algorithms can be derandomized by generating their coin tosses deterministically fromthe input itself. We show that this is possible (for all but extremely few inputs) for algorithmswhich take advice (in the usual Karp-Lipton sense), in which the advice string is short, andmost choices of the advice string are good for the algorithm.To get the applications above and others, we show that algorithms with short and typically-good advice strings do exist, unconditionally for SL, and under reasonable assumptions for BPPand AM.

Keywords: Derandomization, Average-Case Complexity, Machines that Take Advice, UndirectedConnectivity, Log-Space, BPP, Direct Product Problems.�Supported by the MINERVA Foundation, Germany.yPartially supported by NSF grants CCR-9987845 and CCR-9987077.

Contents1 Introduction 21.1 A Motivating Example : 21.2 The underlying principle : 31.3 Other applications : 31.3.1 Conditional derandomization of BPP and AM : : : : : : : : : : : : : : : : : : 31.3.2 Direct Product Problems : 62 Preliminaries 62.1 Randomness and Extractors : 62.2 Some Complexity Classes : 73 The transformation: Proof of Theorem 3 74 Undirected Connectivity: Proof of Theorem 1 85 Derandomizing BPP and AM 96 Direct Product Problems 11Bibliography 12Appendix: On the reducibility properties of the matrix problem 14

1

1 Introduction1.1 A Motivating ExampleMore than two decades ago, Aleliunas et. al. [3] presented a randomized log-space algorithm fordeciding undirected connectivity (UCONN). Their randomized algorithm triggered (or maybe onlydraw attention to) the following open problem:Can undirected connectivity be decided by a deterministic log-space algorithm?Despite extensive study, the above question is still open. The lowest space-bound currently knownfor deterministic algorithms (for undirected connectivity of n-vertex graphs) is (log n)4=3 [4], whichbuilds upon [18] (obtaining space (log n)3=2) and improves upon Savitch's [21] classical bound of(log n)2. We show that if a deterministic log-space algorithm for UCONN does not exist, then thisis due to very few graphs. That is:Theorem 1 For every � > 0, there exists a deterministic log-space algorithm that correctly decidesundirected connectivity on all but at most 2n� of the n-vertex graphs. Furthermore, the algorithmnever outputs a wrong answer; it either outputs a correct answer or a special (\don't know") symbol.Such algorithms exist for every problem in Symmetric Log-space (SL).1Surprisingly enough, the proof of Theorem 1 is not di�cult (see Sections 3 and 4). It is basedon a new viewpoint of the high-level \derandomization" process of Nisan, Szemeredi and Wigder-son [18]. Under a di�erent setting of parameters, for every � > 0, this process may be viewed as adeterministic log-space algorithm that takes advice (for UCONN), denoted Answ, that satis�es thefollowing two conditions:1. The advice string is relatively short. Speci�cally, the length of the advice is n�=2, where ndenotes the number of vertices in the input graph.2. Most choices of the advice string are \good" for all n-vertex graphs. More precisely, the algo-rithm works correctly (i.e., decides correctly whether the input n-vertex graph is connected)whenever the n�=2-bit long advice string is a universal traversal sequence for n�=10-vertexgraphs. Moreover, by [3], most advice strings satisfy that property.Note that we use the term \advice" in the standard sense of Karp and Lipton [15]; an advice stringis good if it makes the algorithm using it give the correct answer on all inputs of the given length.The remarkable property of algorithm Answ is that it satis�es both conditions above: it has goodadvice strings that are much shorter than the input, and furthermore most strings of this lengthare good advice strings.Remark 2 Note that the Condition 2 (i.e., many good advice strings) is easy to obtain from everyprobabilistic algorithm. Indeed, Adleman's simulation [1] of probabilistic algorithms by nonuniformones shows that any BPP-algorithm A can be modi�ed into a deterministic A0 which takes advice,for which most advice strings are good. However, since this transformation requires ampli�cation2in order to enable a union bound over all inputs of a given length, the advice is necessarily longerthan the input length, which violates the Condition 1 (i.e., short advice string).1For a recent survey of this class, including a list of complete problems, see [2]2Denoting by A(x; r) the output of A on input x and coins r, we obtain A0 by letting A0(x; (r1; ::::; rO(jxj))) outputthe most frequent value among A(x; r1); :::; A(x; rO(jxj)). Using sophisticated ampli�cation methods, the sequence(r1; ::::; rO(jxj)) can be encoded by a string of length O(jxj + jrj), but we cannot hope for length shorter than jxj(because we need to reduce the error to less than 2�jxj in order to apply the union bound).2

To demonstrate the impact of having many good advice strings that are shorter than the input,we sketch how to complete the proof of Theorem 1. The general claim is that an advice-takingalgorithm for which at least 2=3 of the possible advice strings are good can be transformed intoa (standard) deterministic algorithm (of comparable complexity) that errs on a number of inputsthat is roughly exponential in the length of the (original) advice. Thus, we obtain a meaningfulresult if and only if the length of the advice is signi�cantly smaller than the length of the input.The claimed transformation is presented in two stages. First, we derive a randomized (log-space)algorithm A0 that uses a logarithmic amount of randomness (and errs on at most 2n� inputs).Speci�cally, on input G, algorithm A0 uses its randomness as a seed to an adequate extractor(cf. [26]), and extracts out of its input G an advice string, s, of length n�=2. Then A0 invokesAnsw on input G and advice s, and outputs whatever the latter does. It is easy to show thatthere can be at most 2(n�=2)2 inputs on which A0 errs with probability greater than 1=2. Applyinga straightforward derandomization (and ruling by majority), we obtain a deterministic (log-space)algorithm A00 that decides correctly on all but at most of the 2n� inputs.1.2 The underlying principleThe above transformation can be applied to any advice-taking algorithm, and is meaningful if andonly if most of the advice strings are good and the length of the advice is signi�cantly smaller thanthe length of the input. That is:Theorem 3 Let A be an advice-taking polynomial-time (resp., log-space) algorithm for a problem�, and let ` : N ! N. Suppose that for every n it holds that at least a 2=3 fraction of the `(n)-bitlong strings are good advice stings for A; that is,Prr2f0;1g`(n) [8x 2 f0; 1gn it holds that A(x; r) = �(x)] � 23where �(x) denotes the correct answer for x. Then, for every c > 1, there exists a deterministicpolynomial-time (resp., log-space) algorithm for � that errs on at most 2`(n)c of the n-bit inputs.Furthermore, in case `(n) =
(n), the resulting algorithm errs on at most 2c�`(n) of the n-bit inputs.The proof of Theorem 3 appears in Section 3. As hinted above, the proof proceeds by viewingthe input itself as a source of randomness and extracting a random advice string via an adequateextractor (which uses logarithmically long seeds). The extracted advice string is su�ciently random(and thus is a good advice with probability greater than 1=2) provided that the input comes froma source with min-entropy su�ciently larger than the length of the extracted advice. It followsthat the number of inputs on which most extracted advice strings are not good can be bounded interms of the min-entropy bound.1.3 Other applicationsThe question is how to obtain algorithms to which Theorem 3 can be (meaningfully) applied. Wehave seen already one such example (i.e., Answ), and in this subsection we will discuss some more.1.3.1 Conditional derandomization of BPP and AMAs mentioned above, any randomized algorithm can be transformed into a (deterministic) advice-taking algorithm for which most possible advice strings are good. The problem is that the lengthof the advice will be longer than the length of the input. One natural idea is to use an adequate3

pseudorandom generator in order to shrink the length of the advice strings, while maintainingthe fraction of good advice strings. We observe that the property of being a good advice stringfor a speci�c algorithm can be e�ciently tested using a sat-oracle. Thus, it su�ces to havepseudorandom generators that withstand probabilistic polynomial-time distinguishers that use asat-oracle. (Actually, it su�ces to have pseudorandom generators that withstand distinguishersthat correspond to the classMA.)Recall that pseudorandom generators that withstand non-uniform polynomial-size distinguish-ers that use a sat-oracle were constructed before (cf. [5, 16]) under various non-uniform assumptions(which also refer to circuits with sat-oracle gates). In particular, we will use the following result:Theorem 4 (informal, implicit in [16, 19]): Suppose that for every polynomial p there exist apredicate in P that is hard to approximate3 in SIZE(p)sat. Then, for every polynomial q, thereexists a deterministic polynomial-time algorithm that expands k-bit long random seeds to q(k)-bitlong sequences that are indistinguishable from random ones by any q(k)2-size circuit that uses asat-oracle.Combining Theorem 4 with the observation that being a good advice string for a polynomial-timealgorithm is testable in comparable time with the help of an sat-oracle, we obtain (see proof inSection 5):Theorem 5 (informal) For every polynomial p and constant � > 0, under the assumption ofTheorem 4, every probabilistic p-time algorithm can be converted into a functionally-equivalentpolynomial-time advice-taking algorithm that uses advice strings of length n�, such that more than2=3 fraction of the possible advice strings are good.Combining Theorem 3 and 5, we obtain (see proof in Section 5):Corollary 6 (informal) Under the assumption of Theorem 4, for every � > 0, every language inBPP can be decided by a deterministic polynomial-time algorithm that errs on at most 2n� of then-bit long inputs.Interestingly, under the same assumption we can also derandomize AM (see proof in Section 5):Theorem 7 (informal) Under the assumption of Theorem 4, for every � > 0, every language inAM can be decided by a non-deterministic polynomial-time algorithm that errs on at most 2n� ofthe n-bit long inputs.Comparison to previous results: When making the comparison, we refer to three issues:1. The running-time of the derandomization,2. For how many instances does the derandomization fail,3. The intractability assumption used.3Here, hard to approximate may mean that any machine in the class fails to guess the correct value of a randominstance with success probability greater than 2=3. Using Yao's XOR Lemma (cf. [27, 8]), hardness to approximatecan be ampli�ed such that this class fails to guess the correct value of a random n-bit instance with probabilitygreater than (1=2)+ (1=p(n)). (Recall that such ampli�cation requires only logarithmically many instances, and thusin our case it a�ects the resource bounds in a minor way.)4

Our focus is on polynomial-time derandomization. Thus, Corollary 6 should be compared withImpagliazzo and Wigderson [12], who proved that BPP = P under the assumption that for somec > 0, the class E is not contained in SIZE(2cn). Likewise, Theorem 7 should be compared withKilvans and van Melkebeek [16], who proved that AM = NP under the assumption for some c > 0,the class E is not contained in SIZE(2cn)sat. Both [12] and [16] present perfect derandomizations,whereas our derandomizations fail on very few inputs (which is of course weaker).Comparing the assumptions is easier for the AM derandomization, as both Theorem 7 and [16]refer to lower bounds for circuits with sat oracle gates. But as Theorem 7 refers to separationof classes with smaller resources, our assumption is weaker.4 As for the BPP derandomization, itseems that the assumption made by [12] and Corollary 6 are incomparable. We still need the satoracles, but as above, our classes are lower.There is another set of derandomization results, typically under uniform complexity assumptions(which are seemingly weaker than the analog non-uniform assumptions, cf. [13]). These resultsyield deterministic simulations that may make many errors; however, no e�cient procedure can�nd inputs on which the simulation errs. This notion of imperfect simulation seems incomparableto ours; we seem to make much fewer errors, but the inputs for which errors occur may be easy togenerate.About our assumption: To gain some intuition about the assumption used in Corollary 6, weconsider a few plausible conjectures that imply it.� Given a Boolean circuit, determine whether it evaluates to 1 on more than half of its possibleinputs. Clearly, this problem can be decided in time that is exponential in the number ofinputs to the circuit, but it seems hard to decide it in signi�cantly less time. Speci�cally,suppose that the input circuit has size n and `(n) input bits (e.g., `(n) = O(log n)), then theproblem is solvable in time 2`(n) �n but seems hard to decide in time 2`(n)=10. Furthermore, theproblem seems hard even for 2`(n)=10-size circuit that use sat-gates (i.e., an oracle to sat).However, conjecturing that this problem is hard even to approximate (i.e., when given arandom circuit as input) requires a suitable notion of the distribution of inputs (i.e., circuits).A conceivably good de�nition is that the input/circuit distribution is uniform over `(n)-variatepolynomials over GF(2) having n monomials.� For any polynomial q, we consider the following decision problem: Given a description ofa prime P and an natural number x < P , decide whether most of the natural numbers inthe set fx + 1; :::; x + q(jP j)g are quadratic residues modulo P . Clearly, this problem can bedecided in time q(jP j) � jP j3, but it seems hard to decide (or even approximate) it by (say)q(jP j)1=3-size circuits even ones having sat-gates.� Given a sequence of n-by-n matrices, A1; :::; A`, over a su�ciently large �nite �eld, determinePS�[`] det(Pi2S Ai), where det(M) denote the determinant of the matrix M . Again, thisproblem can be solved in time 2` �n3, but it seems hard to solve it by (say) min(2`=3; `n=3)-sizecircuits, even ones having sat-gates.5 (Again, we may use ` = O(log n).)4For example, if P is contained in SIZE(n2) then E is contained in SIZE(2cn) for every c > 0, but the converseis not known. Thus, \E is not contained in SIZE(2cn) for every c > 0" implies \P is not contained in SIZE(n2)"(but again the converse is not known). Also note that, in case of predicates in E , hardness on the worst-case yieldshardness to approximate.5The `n=3 term, which is meaningful only if ` =
(n log n), is introduced to account for a possible (`n � n3)-timealgorithm that computes the formal (degree n) polynomial p(x1; :::; x`) def= det(Pì=1 xiAi), and computes the sum5

We comment that this problem is downward-self-reducible and random-self-reducible (seeAppendix). This is particularly interesting in light of the paper [13], which shows thatfor such functions uniform, worst-case hardness implies that they can be used in the NW-generator (obtaining derandomization on the average). More concretely, assume this functionis not in BPtime(p)sat, for any �xed polynomial p, for in�nitely many input lengths. Thenevery language in BPP has a deterministic polynomial-time algorithm which, for in�nitelymany input lengths errs on at most 2n� inputs, with � > 0 an arbitrarily small constant. Tosummarize, the special structure of this function, enables reducing our hardness assumptionfrom non-uniform and average-case to uniform and worst-case. Thus, it will be interestingto try and substantiate (in direct or indirect ways), the conjecture that for this function isindeed di�cult to compute in time 2`=O(1).1.3.2 Direct Product ProblemsDirect product problems yield another interesting case where randomized algorithms can be trans-formed into ones having relatively short good advice strings. Speci�cally, any good advice stringfor the original problem constitutes a good advice string for the direct product problem. Apply-ing Theorem 3, we obtain a deterministic algorithm (of related complexity) for the direct productproblem that errs on a number of inputs that is independent of the arity of the (direct product)problem. For further details, see Section 6.2 PreliminariesIn this section we recall some standard notions and notations. We will also recall some knownresults.2.1 Randomness and ExtractorsWe consider random variables that are assigned binary values as strings. In particular, Um willdenote a random variable that is uniformly distributed over f0; 1gm. The min-entropy of a randomvariable X is the maximal (real number) k such that for every string x it holds that Pr[X = x] �2�k.The statistical di�erence between two random variables X and Y , denoted �(X;Y), is de�nedas 12 �Pz jPr[X = z] � Pr[Y = z]]j. Clearly, �(X;Y) = maxSfPr[X 2 S] � Pr[Y 2 S]g. We saythat Y is �-close to X if �(X;Y) � �; otherwise, we say that Y is �-far from X.A function E : f0; 1gn �f0; 1gt ! f0; 1g` is called a (k; �)-extractor if for every random variableX that has min-entropy at least k it holds that E(X;Ut) is �-close to U`. The following fact iswell-known and easy to establish:Fact 8 Suppose that E : f0; 1gn � f0; 1gt ! f0; 1g` is a (k; �)-extractor. Then, for every setS � f0; 1g`, all but at most 2k of the x's in f0; 1gn satisfy Pr[E(x;Ut) 2 S] � (jSj=2`)� �.Proof: Let B � f0; 1gn denote the set of x's that satisfy Pr[E(x;Ut) 2 S] < (jSj=2`)� �. Considera random variable X that is uniformly distributed on the set of the latter x's. Then,�(E(X;Ut); U`) � Pr[E(X;Ut) 2 S]� Pr[U` 2 S] > �Thus, log2 jBj < k must hold, and jBj < 2k follows.Px1;:::;x`2f0;1g p(x1; :::; x`) by computing separately the contribution of each of the �n+`n � terms of p.6

Uniform families of extractors: We actually consider families of (extractor) functions (of theabove type). These families are parameterized by n, whereas t; `; k and � are all functions of n.Thus, when we say that fEn : f0; 1gn � f0; 1gt(n) ! f0; 1g`(n)gn2N is a (k; �)-extractor we meanthat for every n the function En is a (k(n); �(n))-extractor. We will use the following well-knownresult of Trevisan [26]:6Theorem 9 For every c > 1, � > 0 and every linear-space computable ` : N ! N, there exists apolynomial-time computable family of functions fEn : f0; 1gn � f0; 1gO(log n) ! f0; 1g`(n)gn2N thatconstitute a (k; �)-extractor, where k(n) def= `(n)c. Furthermore, these functions are computable inlog-space.2.2 Some Complexity ClassesWe denote by SIZE(p) the class of (non-uniform) families of p-size circuits, and by SIZE(p)sat theclass of such circuits augmented by sat-gates (oracle gates to sat).We refer to two restricted classes of interactive proof systems (cf. [10]), speci�cally MA andAM. The class MA (resp., AM) consists of all languages having a two-round public-coin inter-active proof in which the prover (called Merlin) sends the �rst (resp., second) message (cf. [6]).In both cases, the veri�er's (Arthur's) message consists of the entire contents of its random-tape(hence the term public-coin). By MA(p) (resp., AM(p)) we denote a parameterized version ofMA (resp., AM) in which the veri�er's complexity is bounded by p.3 The transformation: Proof of Theorem 3We combine an algorithm A as in the hypothesis (of Theorem 3) with an adequate extractor toobtain the desired deterministic algorithm. Speci�cally, let use denote by S the set of good advicestrings of algorithm A; that is, for every r 2 S and x 2 f0; 1gn, it holds that A(x; r) = �(x). Then,by the theorem's hypotheses, jSj � (2=3) � 2`(n). Let En : f0; 1gn � f0; 1gt(n) ! f0; 1g`(n) be a(k(n); 0:1)-extractor. Then, by Fact 8, for all but at most 2k(n) of the n-bit long x's, the probabilitythat En(x;Ut(n)) 2 S is at least (2=3) � 0:1 > 1=2. Thus, for all but at most 2k(n) of the x's, for astrict majority of the (extractor seeds) r0 2 f0; 1gt(n) it is the case that En(x; r0) 2 S. Scanning allpossible r0 2 f0; 1gt(n) , an ruling by the majority of the A(x;En(x; r0)) values, we obtain the correctanswer for all but at most 2k(n) of the n-bit long inputs. (The resulting algorithm is depicted inFigure 1.)Clearly, the time complexity of the resulting algorithm is 2t(n) � (TA(n) + TE(n)), where TA(resp., TE) denotes the time complexity of algorithm A (resp., of the extractor E = fEngn2N).Similarly, the space complexity of the resulting algorithm is t(n)+SA(n)+SE(n), where SA (resp.,SE) denotes the space complexity of A (resp., of E).Using Theorem 9, we may set t(n) = O(log n) and k(n) = `(n)c, while using a log-spacecomputable extractor. Thus, the main part of Theorem 3 follows. To establish the furthermorepart of Theorem 3 (which refers to `(n) =
(n)), we use Zuckerman's extractor [28] instead ofTheorem 9.76We mention that both the error-correcting code and the (weak) designs used by Trevisan's extractor can beconstructed in log-space.7To handle log-space algorithms, we need a log-space computable extractor for this case (i.e., of `(n) =
(n) andk(n) = c � `(n)). Such extractors do exist [22]. 7

On input x 2 f0; 1gn, scan all possible r0 2 f0; 1gt(n) ,performing the following steps for each r0:1. Obtain r En(x; r0).2. Invoke A on input x and advice r, and record the answer in v(r0).Output the majority value in the sequence of v(r0)'s.Figure 1: The resulting deterministic algorithm.Remark 10 If algorithm A never errs (but may rather output a special \dont know" symbol onsome (x; r) pairs) then the same property is inherited by the resulting deterministic (single-input)algorithm. A similar statement holds for one-sided error of algorithms for decision problems. (Inboth cases, we may actually use dispersers instead of extractors.)4 Undirected Connectivity: Proof of Theorem 1As explained in the introduction, Theorem 1 is proved by applying Theorem 3 to an advice-taking algorithm that is implicit in (or rather derived from) the work of Nisan, Szemeredi andWigderson [18]. The latter algorithm refers to the notion of a universal traversal sequence for theset of all (3-regular) graphs of a certain size. Such sequences were de�ned by Cook (cf. [3]) andextensively studied since. There are many variants of this de�nition, and we choose one that ismost convenient for our purpose.De�nition 11 (Universal traversal sequences for d-regular graphs):� Let G be a d-regular graph, v be a vertex in G, and � = (�1; ::::; �t) be a sequence over[d] def= f1; :::; dg. The �-directed G-walk starting at v is the vertex sequence (v0; v1; :::; vt),where v0 = v and vi+1 is the �thi neighbor of vi.� We say that � 2 [d]� is (d;m)-universal if for every m-vertex d-regular graph G and everyvertex v in G, the �-directed G-walk starting at v visits all the vertices of the connectedcomponent of v in G.We say that � 2 f0; 1g� is (d;m)-universal if when viewed as a sequence over [d] it is (d;m)-universal.The following result is implicit in the work of Nisan, Szemeredi and Wigderson [18].Theorem 12 (following [18]): Let `;m : N! N be space-constructible functions such that m(n) �`(n) � n for all n's.8 Then, there exists a deterministic O((log2 n)=(logm(n)))-space advice-takingalgorithm Answ for UCONN that on input an n-vertex graph uses an advice string of length `(n),8The growth restriction on these functions is natural in the context of [18]. Of course m(n) � `(n) must hold, asotherwise the claim holds vacuously (because m-universal sequences must have length greater than m). For `(n) > n,algorithm Answ uses space O((log `(n))(log n)=(logm(n))) rather than O((log2 n)=(logm(n))).8

where the set of good advice strings contains every (3;m(n))-universal sequence.9 Furthermore,algorithm Answ never errs, but may rather output a special (\dont know") symbol (in case theadvice string is not good).Nisan et. al. [18] used the fact that (by [17]) (3;m)-universal sequences of length exp(log2m) canbe constructed in O(log2m)-space. Setting `(n) = n and m(n) = exp(log1=2m), their O(log3=2m)-space algorithm follows by combining Theorem 12 with the O(log n)-space algorithm (of Nisan [17])for constructing a m(n)-universal sequence of length n. Here, instead, we use the well-known factthat most sequences of length ~O(m3) are (3;m)-universal [3]. That is:Theorem 13 (Aleliunas et. al. [3]): More than a 2=3 fraction of the O(m3 � logm)-bit long stringsare (3;m)-universal sequences.Setting `(n) = O(m(n)3 �logm(n)) < m(n)4, it follows that a 2=3 fraction of the `(n)-bit long stringsare (3; `(n)1=4)-universal, and thus are good advice strings for Answ (when applied to n-vertexgraphs). Speci�cally, under this setting, Answ uses spaceO((log2 n)= logm(n)) = O((log2 n)= log `(n))(and `(n)-bit long advice strings). For `(n) = n1=O(1), we obtain a deterministic log-space advice-taking algorithm for UCONN that uses `(n)-bit long advice strings such that at least a 2=3 fractionof the possible advice strings are good.We are now ready to invoke Theorem 3: given any desired constant � > 0, we set `(n) = n�=c(for any constant c > 1) and invoke Theorem 3. This yields a deterministic log-space algorithmfor UCONN that errs on at most 2`(n)c = 2n� of the n-vertex graphs. The main part of Theorem 1follows. By Remark 10, the fact that Answ never errs is inherited by the log-space algorithm thatwe derive, and thus the furthermore-part of Theorem 1 follows.USTCONN and SL. The arguments presented above apply also to USTCONN, where one isgiven an undirected graph G and a pair of vertices (u; v) and needs to determine whether or notthese vertices are connected in G. Actually, the main algorithm presented in [18] is for that version,and so all the above holds. Since USTCONN is log-space complete for the class SL (symmetriclog-space), it is easy to see that for every � > 0 every problem in SL, has a deterministic log-space algorithm which is always correct, and answers \dont-know" on at most 2n� inputs of lengthn. Indeed, one only has to observe that log-space reductions can only blow-up the input lengthpolynomially, and since � can be made arbitrarily small we get the same bound on the number of\dont-know"s. A compendium of interesting problems in SL can be found in [2].5 Derandomizing BPP and AMComments on the proof of Theorem 4: With a minor modi�cation (to be discussed), Theo-rem 3.2 in (the full version of) [16] yields Theorem 4. Theorem 3.2 in [16] assumes the existence of apredicate that is hard to approximate10 by SIZE(p)sat, and conclude that a certain pseudorandomgenerator expanding k-bit strings to q(k)-bit strings exists, where q(k) � p(pk log q(k))1=2. Theresulting generator withstand q(k)-sized circuits with sat-gates, and operates in time related to9Nisan et. al. [18] work with an auxiliary 3-regular O(n2)-vertex graph that is derived from the initial n-vertexgraph in a straightforward manner. The algorithm works in iterations, where a good advice allows to shrink the sizeof the graph by a factor of m(n)=4 in each iterations. (In case the advice is not good, the algorithm may fail to shrinkthe graph, but will detect this failure, which justi�es the furthermore clause.) Thus, there are (log n)=(log(m(n)=4))iterations, and each iteration is implementable in O(log n) space.10See Footnote 3. 9

the complexity of evaluating the predicate on (pk log q(k))-bit long inputs and to 2O(k). However,the latter additive term (of 2O(k)) is merely due to the fact that [16] use the brute-force designconstruction of [19] rather than their e�cient (i.e., poly(k)-time) construction, which can be usedwhenever p is a polynomial.11 (Another minor detail is that we want to withstand q(k)2-sizedcircuits rather than withstand q(k)-sized circuits.) Theorem 4 follows by setting, for any givenpolynomial q, the polynomial p such that q(k)2 < p(pk log q(k))1=2 holds (e.g., p(n) def= (q(n2))4).Proof of Theorem 5: For each set in BPP , by using straightforward ampli�cation, we obtaina randomized polynomial-time algorithm that errs with probability at most 2�(n+2) (on each n-bitinput). This algorithm yields an advice-taking algorithm for which at least 3=4 of the possibleadvice strings are good. We call such an algorithm canonical.For any polynomial q and � > 0, we construct a generator G�;q as in Theorem 4 such that n�-bitlong strings are stretched into sequences of length q(n) that pass all q(n)2-size distinguishers (i.e.,circuits with sat-gates).We claim that for every q-time canonical algorithm, A, at least a 2=3 fraction of the sequencesgenerated by G�;q are good advice strings. Otherwise, we consider anMA-proof system for bad (i.e.,non-good) advice strings. On input a string r 2 f0; 1gm, where m = q(n), the prover (i.e., Merlin)sends x 2 f0; 1gn, and the veri�er accepts if and only if A(x; r) di�ers from the majority vote ofA(x; s) taken over a sample (of say 100) uniformly selected s 2 f0; 1gm. Note that if r is a bad advicestring then the veri�er accepts with probability at at least 0:99 (provided Merlin acts optimally),whereas if r is a good (i.e., not bad) advice string then the veri�er accepts with probability atmost 0:01 (no matter what Merlin does). Thus, the probability that the veri�er accepts a stringproduced by G�;q is at least (1=3) � 0:99 = 0:33, whereas the probability that the veri�er acceptsa uniformly distributed q(n)-bit long string is at most (1=4) � 1 + (3=4) � 0:01 < 0:3. Observe thatthe veri�er's running-time is bounded by O(m) = O(q(n)). Applying known transformations fromMA to AM, and from the latter to BPtimesat, yields a distinguisher in BPtime(m2)sat form-bit inputs (provided that q(n) > n log n).12 We derive a contradiction to the security of G�;q,and the theorem follows.Proof of Corollary 6: By applying Theorem 5 (with � replaced by �=2), we can derive for anyset in BPP a polynomial-time advice-taking algorithm with advice strings of length n�=2 such thatat least 2=3 of the advice strings are good. Then applying Theorem 3 (with c = 2), the currentclaim follows.Proof of Theorem 7: We just follow the proof of Corollary 6, adapting the notion of a goodadvice to the AM setting, and observing that the proof of Theorem 5 still applies. Speci�cally,a good advice for an AM-game is a veri�er message that is good for all inputs of a certain length(i.e., for inputs in the language there exist an acceptable prover response, whereas no such responseexists in case the input is not in the language). The MA-proof system described in the proof of11Indeed, Theorem 3.2 in [16] is stated for arbitrary p's, and the focus is actually on super-polynomial p's.12The transformation of MA to AM increases the running-time by a factor related to the length of the originalMerlin's message, which equals n in our case. In the second transformation (i.e., from AM to BPtimesat), we needto make a sat-query that is answered with an optimal Merlin message. This amounts to encoding the acceptingpredicate of Arthur as a sat-instance, where the length of that instance is almost linear in the veri�er's running-time(on a multi-tape Turing machine). Thus, MA(m) � AM(mn) � BPtime(mn log(nm))sat.10

Theorem 5 extends in the straightforward manner (i.e., Merlin now sends an adequate x along withan adequate prover message for the AM-game). Indeed, moving to AM will blow-up the complexityby a factor related to the prover message, and so we should start (w.l.o.g.) with a AM-game inwhich the veri�er's messages are longer than the prover messages.13 But otherwise, the argumentremains intact.6 Direct Product ProblemsThe following observation is due to Noam Nisan: A natural domain where one may obtain advice-taking algorithms with good advice strings that are much shorter than the input is the domainof direct product problems. That is, suppose that � is a problem having a (polynomial-time)randomized algorithm. As we have commented in the introduction, by straightforward ampli�cation[1] we may obtain an advice-taking algorithm for � such that for some polynomial `, the algorithmuses `(n)-bit long advice for n-bit long inputs such that at least a 2=3 fraction of all possibleadvice are good. The key point is that such an advice-taking algorithm for � yields an algorithmwith similar performance for the direct product of �. That is, for any n and t, given input(x1; :::; xt) 2 f0; 1gt�n and an `(n)-bit long advice, the latter algorithm invokes the single-instancealgorithm on each xi using the same advice in all invocations. Clearly, if the advice is good forthe single-instance algorithm then it is also good for the multiple-instance algorithm. ApplyingTheorem 3, we obtainTheorem 14 For every problem � in BPP, there exist a polynomial p and a deterministic polynomial-time algorithm A such that for every n and t, for all but at most 2p(n) of the sequences x =(x1; :::; xt) 2 f0; 1gt�n it holds that A(x) = (�(x1); :::;�(xt)).We stress that the number of inputs on which Amay err depends only on the length of the individual�-instances (i.e., n), and not on their number (i.e., t). We comment that this is superior to whatcould be obtained by straightforward considerations.14AcknowledgmentsWe are grateful to Noam Nisan for suggesting the application to direct product presented in Sec-tion 6. We also thank Eric Allender and the anonymous reviewers of Random'02 for their helpfulcomments.13Speci�cally, assuming that the prover's messages in the AM-game are shorter than m, we get an MA(m)proof system for bad advice strings, which is transformed to an AM(m2) proof system, which in turn resides inBPtime(m2 log(m2))sat. So we should use a generator as in Theorem 4 such that n�-bit long strings are stretchedinto sequences of length q(n) that pass all q(n)3-size distinguishers (rather than q(n)2-size ones).14For example, suppose that � has a BPP-algorithm of randomness complexity � (such that �(n) � n or else wecan derandomize � itself). Then, by straightforward ampli�cation, we obtain a 2/3-majority of good advice stringsfor advice length `(n) = O(�(n) � n) (or even `(n) = O(�(n) + n) by using expander-based ampli�cation). Thus, inTheorem 14, we obtain p(n) = `(n)c, for any desired c > 1. In contrast, if we use x2; :::; xt to generate m � t=�(n)disjoint random pads for invocations of the BPP-algorithm on input x1 then we may err on exp(�m)�2tn = 2(1�o(1))�tnof the sequences. Using x2; :::; xt to generate tn=(log d) related pads (by using a d-regular optimal expander) may yielderror on (1=pd)tn=(log d) �2tn = 2tn=2 sequences. For large t, this is inferior to the upper bound of 2O(�(n)�n)3=2 � 2�(n)3sequences (not to mention 2O(�(n)+n)c = 2�(n)c , for any c > 1) obtained by using Theorem 14.11

References[1] L. Adleman. Two theorems on random polynomial time. In 10th FOCS, pages 75{83,1978.[2] C. Alvarez and R. Greenlaw. A compendium of problems complete for symmetric loga-rithmic space. ECCC report TR96-039, 1996.[3] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lov�asz and C. Racko�. Random walks, universaltraversal sequences, and the complexity of maze problems. In 20th FOCS, pages 218{223,1979.[4] R. Armoni, M. Saks, A. Wigderson and S. Zhou. Discrepancy sets and pseudorandomgenerators for combinatorial rectangles. In 37th FOCS, pages 412-421, 1996.[5] V. Arvind and J. K�obler. On pseudorandomness and resource-bounded measure. In 17thFSTTCS, Springer-Verlag, LNCS 1346, pages 235{249, 1997.[6] L. Babai. Trading Group Theory for Randomness. In 17th STOC, pages 421{429, 1985.[7] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. SICOMP, Vol. 13, pages 850{864, 1984. Preliminary version in 23rd FOCS,1982.[8] O. Goldreich, N. Nisan and A. Wigderson. On Yao's XOR-Lemma. ECCC, TR95-050,1995.[9] O. Goldreich, D. Ron and M. Sudan. Chinese Remaindering with Errors. TR98-062,available from ECCC, at http://www.eccc.uni-trier.de/eccc/, 1998.[10] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive ProofSystems. SICOMP, Vol. 18, pages 186{208, 1989. Preliminary version in 17th STOC,1985.[11] R. Impagliazzo, V. Kabanets and A. Wigderson. In search of an easy witness: Exponentialversus probabilistic time. In proceedings of 16th CCC, pages 2{12, 2001.[12] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Derandom-izing the XOR Lemma. In 29th STOC, pages 220{229, 1997.[13] R. Impagliazzo and A. Wigderson. Randomness vs. Time: De-randomization under auniform assumption. In 39th FOCS, pages 734{743, 1998.[14] V. Kabanets. Easiness assumptions and hardness tests: Trading time for zero error.Journal of Computer and System Sciences, 63(2):236{252, 2001.[15] R.M. Karp and R.J. Lipton. Some connections between nonuniform and uniform com-plexity classes. In 12th STOC, pages 302-309, 1980.[16] A. Klivans and D. van Melkebeek. Graph Nonisomorphism has Subexponential Size ProofsUnless the Polynomial-Time Hierarchy Collapses. In 31st STOC, pages 659{667, 1998. Toappear in SICOMP. 12

[17] N. Nisan. Pseudorandom Generators for Space Bounded Computation. Combinatorica,Vol. 12 (4), pages 449{461, 1992.[18] N. Nisan, E. Szemeredi, and A. Wigderson. Undirected connectivity in O(log1:5n) space.In 33rd FOCS, pages 24-29, 1992.[19] N. Nisan and A. Wigderson. Hardness vs Randomness. JCSS, Vol. 49, No. 2, pages149{167, 1994.[20] M.O. Rabin. Probabilistic Algorithm for Testing Primality. Journal of Number Theory,Vol. 12, pages 128{138, 1980.[21] W.J. Savitch. Relationships between nondeterministic and deterministic tape complexi-ties. JCSS, Vol. 4 (2), pages 177-192, 1970.[22] R. Shaltiel. A log-space extractor for high values of min-entropy. Personal communication,June 2002.[23] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. Journalof Complexity, Vol. 13 (1), pages 180{193, 1997.[24] M. Sudan, L. Trevisan and S. Vadhan. Pseudorandom Generators without the XORLemma. JCSS, Vol. 62, No. 2, pages 236{266, 2001.[25] A. Ta-Shma. Almost Optimal Dispersers. In 30th STOC, pages 196{202, 1998.[26] L. Trevisan. Constructions of Near-Optimal Extractors Using Pseudo-Random Genera-tors. In 31st STOC, pages 141{148, 1998.[27] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS, pages 80{91,1982.[28] D. Zuckerman. Randomness-Optimal Sampling, Extractors, and Constructive LeaderElection. In 28th STOC, pages 286{295, 1996.

13

Appendix: On the reducibility properties of the matrix problemFor simplicity, we work with �nite �elds of characteristic 2, rather than with �nite �elds of largeprime cardinality. The issue at hand is that random self-reducibility for n-by-n matrices requiresworking with a �eld with more than n elements, and so the �nite �eld cannot be �xed (butshould rather depend on the parameter n). The �rst question is which �eld should we use (as afunction of n), and the second question is how to support downward self-reducibility in case the�eld changes (with the dimension). One solution is to work with �elds of prime cardinality, makethe prime number an auxiliary input of the problem, and move among di�erent primes via ChineseRemainder Theorem (cf. [9]). Here we take a di�erent approach.We consider the computation of the following function fn(A1; :::; A`) = PS�[`] det(Pi2S Ai),where ` def= `(n) is logarithmic in n (i.e., `(n) = dc log2 ne for some c), the Ai's are n-by-n matricesover GF(2m), and m def= m(n) = 2dlog2 ne. (We ignore the issue of representing the �eld GF(2m);that is, specifying an irreducible polynomial of degree m over GF(2). Such a polynomial can beadded as an auxiliary parameter to fn, or alternatively be �xed for speci�c values of m.)15Random self-reducibility. We �rst show that the value of fn at any instance can be computedfrom the value of fn at poly(n) random instances. Speci�cally, we show that fn(A1; :::; A`) canbe computed based on the values of fn(A1 +
jR1; � � � ; A` +
jR`), for j = 1; :::; n + 1, where theRi's are random matrices (and the
j's are distinct non-zero elements of GF(2m)). Recall that, forevery two matrices A and B, it holds that det(A) =Pn+1j=1 cj det(A+
jB), where the cj's dependonly on the
j 's. Using this fact (in the second equality), we obtain:fn(A1; :::; A`) = XS�[`]det Xi2SAi!= XS�[`] n+1Xj=1 cj � det Xi2SAi!+
j Xi2SRi!!= n+1Xj=1 cj � XS�[`]det Xi2S(Ai +
jRi)!= n+1Xj=1 cj � fn(A1 +
jR1; :::; A` +
jR`)and the claim follows. It follows that given a procedure that computes fn correctly on at least a1�(1=3n) fraction of the instances, we can compute fn correctly (w.v.h.p) on any instance. Actually,combined with the list-decoding algorithm of Sudan [23], the above random self-reducibility processimplies a very strong worst-case/average-case connection.Proposition 15 Given a procedure that computes fn correctly on an � fraction of the instances,we can obtain a procedure that on input any instance outputs a list of size poly(1=�) containing thecorrect value of fn.Proof: For �x sequences A1; :::; A` and R1; :::; R` of n-by-n matrices, and a variable x (rangingin the �eld), the function fn(A1 + xR1; :::; A` + xR`) is a degree n polynomial in x with free-term15Speci�cally, for m = 2 � 3i, the polynomial xm + xm=2 + 1 is irreducible over GF(2). Using these cases requiresde�ning m(n) = 2 � 3dlog3 ne and slightly modifying the downwards self-reducibility process described below.14

equal fn(A1; :::; A`). Selecting random matrices R1; :::; R`, the probability that the given procedureprovides the correct answer to at least an �=2 fraction of the instances in fA1 + eR1; :::; A` + eR`gis at least �=2. In such a case, using [23], we obtain a list of polynomials containing the correct one.Downward self-reducibility. We next show that the value of fn at any instance can be com-puted from the value of fn�1 at poly(n) instances. To prove that fn is downward self-reducible,we expand the determinant (as usual) about the �rst row. Speci�cally, for every n � n matrix Ait holds that det(A) =Pnj=1 aj det(Aj), where aj denotes the (1; j)-entry of A, and Aj denotes theminor of A obtained by removing the �rst row and jth column. Thus:fn(A1; :::; A`(n)) = XS�[`(n)]det Xi2SAi!= XS�[`(n)] nXj=1 Xi2S aji! � det Xi2SAji!= nXj=1 `(n)Xi=1 aji �XS3i det0@Xi02SAji01A= nXj=1 `(n)Xi=1 aji �0@ XS�[`(n)]det0@Xi02SAji01A� XS�[`(n)]nfig det0@Xi02SAji01A1A= nXj=1 `(n)Xi=1 aji � �fn�1(Aj1; : : : ; Aj̀(n))� fn�1(Aj1; : : : ; Aji�1; Aji+1; : : : ; Aj̀(n))� (1)where in Eq. (1) we have abused the notation fn�1. Speci�cally, the function fn�1 has `(n � 1)arguments, whereas we have applied it once to `(n) arguments and once to `(n) � 1 arguments.Furthermore, the function fn�1 is to be applied to matrices over GF(2m(n�1)), whereas we haveapplied it to matrices over GF(2m(n)). We address both problems next.1. Note that `(n� 1) 2 f`(n); `(n) � 1g (because `(t) = dc log2 te). In case `(n� 1) = `(n), wereplace the second term in Eq. (1) by 12fn�1(Aj1; : : : ; Aji�1; 0; Aji+1; : : : ; Aj̀(n)), using the factthat PS�[`�1] det (Pi2S Mi) equals 12 PS�[`] det (Pi2S Mi), where M` is the all-zero matrix.In case `(n�1) = `(n)�1, we replace the �rst term in Eq. (1) by fn�1(Aj1; Aj2; : : : ; Aj̀(n)�1)+fn�1(Aj̀ ; Aj2; : : : ; Aj̀(n)�1) + fn�1(Aj1 + Aj̀ ; Aj2; : : : ; Aj̀(n)�1) � fn�1(0; Aj2; : : : ; Aj̀(n)�1), usingthe fact thatXS�[`]det Xi2SMi! = XS�f2;:::;`�1g det M1 +Xi2SMi!+ det Xi2SMi!!+ XS�f2;:::;`�1g det M` +Xi2SMi!+ det Xi2SMi!!+ XS�f2;:::;`�1g det (M1 +M`) +Xi2SMi!+ det Xi2SMi!!15

� XS�f2;:::;`�1g det 0 +Xi2SMi!+ det Xi2SMi!!2. Note that m(n � 1) 2 fm(n);m(n)=2g (because m(t) = 2dlog2 te). In case m(n � 1) = m(n),which typically holds, the above description is accurate. The problematic case is of m(n) =2m(n� 1), in which case we have to reduce determinants over GF(22m) to determinants overGF(2m). This can be done by viewing GF(22m) as an extension �eld of GF(2m). Speci�cally,we view GF(22m) as the �eld of linear polynomials (in x) over GF(2m), consider the determi-nant of an k-by-k matrix over GF(22m) as a degree k polynomial over GF(2m), and computethis polynomial by extrapolation from k + 1 points in GF(2m). Reducing the resulting poly-nomial modulo the irreducible polynomial representing GF(22m) as an extension of GF(2m),we obtain the value of the determinant.

16

