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A Study of Statistial Zero-Knowledge ProofsbySalil Pravin VadhanSubmitted to the Department of Mathematison August 6, 1999, in partial ful�llment of therequirements for the degree ofDotor of PhilosophyAbstratZero-knowledge interative proofs, introdued by Goldwasser, Miali, and Rako�, are fas-inating onstruts whih enable one party (the \prover") to onvine another party (the\veri�er") of an assertion, with the property that the veri�er learns nothing other than thefat that the assertion being proven is true. In addition to being powerful tools for onstrut-ing seure ryptographi protools, zero-knowledge proofs yield rih lasses of omputationalproblems that are of both omplexity-theoreti and ryptographi interest.This thesis is a detailed investigation of statistial zero-knowledge proofs, whih are zero-knowledge proofs in whih the ondition that the veri�er \learns nothing" is interpreted ina strong statistial sense. We begin by showing that the lass SZK of problems possessingsuh proofs has two natural omplete problems. These problems essentially amount toapproximating the statistial di�erene or the di�erene in entropies between two \eÆientlysamplable" distributions. Thus, they give a new haraterization of SZK whih makes noreferene to interation or zero knowledge. They also simplify the study of statistial zeroknowledge, as questions about the entire lass SZK an be redued to examining these twopartiular omplete problems.Using these omplete problems as tools, we proeed to answer a number of fundamentalquestions about zero-knowledge proofs, inluding:� Transforming any statistial zero-knowledge proof against an honest veri�er (i.e., averi�er that follows the spei�ed protool) into one whih is zero knowledge evenagainst heating veri�ers that deviate arbitrarily from the spei�ed protool. Thistransformation applies to publi-oin omputational zero-knowledge proofs as well.� Construting statistial zero-knowledge proofs for omplex assertions built out of sim-pler assertions already shown to be in SZK. Via the omplete problems, these losureproperties translate to new methods for manipulating \eÆiently samplable" distri-butions, whih may be of independent interest.� Obtaining simpler proofs of most previously known results about statistial zeroknowledge, suh as: Okamoto's result that SZK is losed under omplement; theFortnow and Aiello{H�astad upper bounds on the omplexity of SZK; and Okamoto'sresult that every statistial zero-knowledge proof an be transformed into a publi-oinone.Thesis Supervisor: Sha� GoldwasserTitle: RSA Professor of Computer Siene
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Chapter 1Introdution1.1 The magi of zero-knowledge proofsThe notion of a proof plays a entral role in mathematis and omputer siene. Proofsare the main fruits of a mathematiian's labor; the goal of modern mathematis is not justto determine whih mathematial statements are true but to prove that they are so. Intheoretial omputer siene, the fundamental \P vs. NP" question essentially amounts toasking whether proofs are omputationally harder to �nd than they are to verify.Given their importane, it is natural to ask \What does one learn from a proof?" Byde�nition, upon verifying a proof, one should be onvined that the assertion being proven istrue. But a proof an atually reveal muh more than that. Indeed, proofs in mathematisare valued for providing a great deal of insight in addition to validating a partiular theorem.And, at a minimum, it seems inherent in the notion of a proof that after verifying a proof,one leaves not just with on�dene that the assertion is true, but also with the ability topresent the same proof to others and onvine them of the assertion.Zero-knowledge proofs, introdued by Goldwasser, Miali, and Rako� [GMR89℄, arefasinating onstruts whih somehow esape the on�nes of this intuition | they areproofs whih are onvining but reveal nothing other than the validity of the assertionbeing proven. In partiular, after verifying a zero-knowledge proof, one does not gain theability to onvine someone else of the same statement!In order to ahieve this seemingly impossible goal, Goldwasser, Miali, and Rako�introdue two new elements to the notion of a proof | interation and randomization.Whereas lassially a proof is a stati objet that an be written down and later veri�ed,now a proof is viewed as interative protool between two ommuniating parties, a proverand a veri�er. Both parties an be randomized (i.e., they an \ip oins"), so the veri�er anpresent the prover with \random hallenges" and the prover an give \random responses."At the end, the veri�er should be onvined (with high statistial on�dene) that theassertion is true. Amazingly, it is possible to guarantee that the veri�er learns essentiallynothing else from the interation.Goldwasser, Miali, and Rako� gave several possible interpretations of the onditionthat the veri�er \learns nothing." This thesis is a detailed investigation of statistial zero-knowledge proofs, whih are zero-knowledge proofs in whih \learns nothing" is interpretedin a strong statistial sense. In the ourse of this investigation, we will address and answer11



12 CHAPTER 1. INTRODUCTIONseveral fundamental questions about statistial zero-knowledge proofs and ompletely har-aterize the types of \assertions" that possess statistial zero-knowledge proofs. Some ofour results also apply to perfet and omputational zero-knowledge proofs, whih are thoseobtained by di�erent interpretations of the ondition that the veri�er \learns nothing."1.2 Informal de�nitionsIt is remarkable that zero-knowledge proofs an even be de�ned in a meaningful and realiz-able manner. In this setion, we give a high-level sketh of the notions needed to formalizethem, beginning with what we mean by \assertion."In order to failitate their omplexity-theoreti study, \assertions" are thought of asstrings written in some �xed alphabet, and their interpretations are given by a languageL identifying the \valid assertions." For example, assertions about 3-olorability of graphsan be formalized by interpreting every string x as a graph Gx and taking the language L tobe the set of x for whih Gx is 3-olorable. So, the string x represents the assertion \x 2 L,"whih translates to the statement \Gx is 3-olorable." We also think of the language L asde�ning the following deision problem: given a string x, deide whether it is in L or not.Therefore, we will use the terms \assertion," \language," and \problem" interhangeablyin our informal disussion.The omplexity lass NP onsists of those languages possessing eÆiently veri�able\lassial" proofs. That is, a language L is in NP if there is an eÆient proof-veri�ationalgorithm (alled a veri�er) satisfying the following two onditions:� Completeness: For every valid assertion (i.e., every string in L), there exists a proofthat the veri�er will aept.� Soundness: For every invalid assertion (i.e., every string not in L), no \proof" anmake the veri�er aept.By \eÆient," we mean that the veri�er should run in time polynomial in the length ofthe assertion (written as a string). We onsider suh proofs \lassial" beause the proofis a �xed, written string given in its entirety to the veri�ation algorithm whih heks itdeterministially.Interative proofs, introdued by Goldwasser, Miali, and Rako� [GMR89℄ serve thesame purpose as lassial proofs | to onvine a veri�er with limited omputational powerthat some assertion is true. However, as mentioned above, this is no longer aomplished bygiving the veri�er a �xed, written proof, but rather by having the veri�er to interat with aprover that has unbounded omputational power. After the parties exhange messages forsome number of rounds, the veri�er deides whether to aept or rejet. We still require thatthe veri�er's omputation time be polynomial in the length of the assertion, but now boththe prover and veri�er may be randomized. The following two relaxations of the lassialnotions of ompleteness and soundness guarantee that an interative proof is \onvining":� Completeness: For every valid assertion, there is a prover strategy that will makethe veri�er aept with high probability.



1.2. INFORMAL DEFINITIONS 13� Soundness: For every invalid assertion, the veri�er will rejet with high probability,no matter what strategy the prover follows.The omplexity lass IP is the lass of languages possessing interative proofs. Clearly,every language that possesses a lassial proof also possesses an interative proof (in whihthe prover simply sends the veri�er the lassial proof). But the onverse is not lear; inter-ative proofs are potentially muh more expressive than lassial ones. In fat, it has beenshown that many more languages possess interative proofs than lassial ones [LFKN92,Sha92℄. That is, IP is muh larger than NP (given widely believed omplexity-theoretiassumptions).A zero-knowledge proof is an interative proof in whih the veri�er learns nothing fromthe interation with the prover, other than the fat that the assertion being proven istrue. This is guaranteed by requiring that whatever the veri�er sees in the interationwith the prover is something it ould have eÆiently generated on its own. That is, thereshould be a polynomial-time algorithm, alled a simulator, that \simulates" the veri�er'sview of the interation with the prover (e.g., all the messages exhanged between the twoparties). Reall that the interation between the prover and veri�er is probabilisti. Thus,the simulator is also probabilisti, and we require that it generates an output distributionthat is \lose" to what the veri�er sees when interating with the prover (when the assertionbeing proven is true). Intuitively, this means that the veri�er learns nothing beause it anrun the simulator instead of interating with the prover.Three di�erent interpretations of \lose" were suggested in [GMR89℄ and these lead tothe three forms of zero knowledge ommonly onsidered in the literature:� Perfet zero knowledge: Requires that the distributions are idential.� Statistial zero knowledge: Requires that the distributions are statistially lose.� Computational zero knowledge: Requires that the distributions annot be dis-tinguished by any polynomial-time algorithm.PZK, SZK, and CZK are the lasses of languages possessing perfet, statistial, andomputational zero-knowledge proofs, respetively. Perfet and statistial zero knowledgeapture muh stronger requirements than omputational zero-knowledge, in that the zero-knowledge ondition is meaningful regardless of the omputational power of the veri�er.1Amazingly, every problem having a lassial proof also has a omputational zero-knowledgeproof; that is NP � CZK [GMW87℄. In fat, so does every problem with an interativeproof; that is, IP = CZK [IY87, BGG+88℄.2In ontrast, it is unlikely that every problem in NP possesses a perfet or statistialzero-knowledge proof [For89, AH91, BHZ87℄. This is the prie paid for the strong seurityguarantee o�ered by these types of zero-knowledge proofs. Still, as we will see, a numberof important, nontrivial problems possess statistial zero-knowledge proofs, and these aresuÆient for some ryptographi appliations.1Although the veri�er need only run in polynomial time to verify an interative proof, a \heating" veri�ermay be willing to invest additional omputation to gain knowledge from the proof. Perfet and statistialzero-knowledge proofs guarantee that this will not help.2Both of these results require the standard assumption that \one-way funtions" exist.



14 CHAPTER 1. INTRODUCTION1.3 Motivation for our study1.3.1 Complexity TheoryStatistial zero knowledge, though de�ned with ryptography in mind, is a rih domainfor omplexity-theoreti investigations. The �rst indiation of this omes from the fatthat statistial zero-knowledge proofs have been given for a number of important om-putational problems: Quadrati Residuosity and Nonresiduosity [GMR89℄, GraphIsomorphism and Nonisomorphism [GMW91℄, a problem equivalent to Disrete Loga-rithm [GK93℄, and approximate versions of the Shortest Vetor and Closest Vetorproblems for latties [GG98a℄. These problems have attrated a great deal of attention inthe theoretial omputer siene and ryptography literature, and statistial zero knowl-edge aptures a nontrivial property shared by all of them. Moreover, no eÆient (i.e.,polynomial-time) algorithms are known for solving these problems and they are widely be-lieved to be omputationally hard. On the other hand, it is unlikely that any problempossessing a statistial zero-knowledge proof is NP-hard [For89, AH91, BHZ87℄. Thus, thelass SZK, of problems possessing statistial zero-knowledge proofs, holds an intriguingposition in omplexity theory, lying somewhere between the tratable problems and theNP-hard problems.In this thesis, we will show that SZK possesses two natural \omplete problems," alledStatistial Differene and Entropy Differene. Both of these problems involveomparing probability distributions given by eÆient sampling proedures. The fat thatthey are \omplete" means that the omputational omplexity of these problems is equiv-alent to that of entire lass SZK. As a onsequene, many results about statistial zeroknowledge diretly translate to methods for manipulating eÆiently samplable distributionsand onversely. Indeed, in this thesis we will make use of this orrespondene in both di-retions. These omplete problems are of independent interest, so the fat that they areomplete for SZK gives further evidene that statistial zero knowledge aptures a rih andnatural lass of omputational problems.1.3.2 CryptographyAs one might imagine, zero-knowledge proofs have vast appliability in ryptography. Oneof the �rst examples of their utility was the onstrution of Identi�ation Shemes by Feige,Fiat, and Shamir [FFS88℄. The premise is that one party, Alie, should be able to identifyherself repeatedly to a seond party, Bob. For example, Bob an be thought of as an internetservie provider or a remote omputer network on whih Alie has an aount. The mostommon solution for this problem is for Alie to hoose a password that Bob keeps storedin a seure password �le. When Alie wishes to identify herself to Bob, she simply sendsher password to Bob, who heks it against the �le. The diÆulty with this solution isthat an adversary an, by impersonating Bob, obtain Alie's password and later use this tomisrepresent himself as Alie.Zero-knowledge proofs provide an elegant solution to this problem. Instead of hoosinga password, Alie generates a true mathematial statement S for whih only she knows theproof (and suh that it is diÆult for an adversary to ome up with a proof for S). Bob storesthis statement. When Alie wishes to identify herself to Bob, she gives Bob a zero-knowledge



1.3. MOTIVATION FOR OUR STUDY 15proof that S is true. This identi�es Alie as the one who knows a proof for S, while Bob(or an adversary impersonating Bob) does not learn the proof for S and hene annot latermisrepresent himself as Alie. There are some subtleties in making this approah work,but these an be handled, and the example illustrates the potential ryptographi powerof zero-knowledge proofs. The advantage of using statistial zero-knowledge proofs in aryptographi protool is that they provide an extremely strong seurity guarantee, in thatthey remain onvining and reveal nothing even when the parties involved have unlimitedomputational power.More generally, zero-knowledge proofs are a tool for foring parties to behave \honestly"in ryptographi protools. Partiipants an prove to eah other that their ations are on-sistent with a spei�ed protool without revealing any of the seret information they possess(suh as ryptographi keys). To exploit this idea in its full generality, Goldreih, Miali,and Wigderson [GMW91, GMW87℄ and Yao [Yao86℄ use the fat that all NP statementsan be proven in omputational zero knowledge (i.e., NP � CZK), as shown in [GMW91℄.As mentioned earlier, the strong seurity guarantee of statistial zero-knowledge proofsmakes it unlikely that NP � SZK [For89, AH91, BHZ87℄, but statistial zero-knowledgeproofs an and have been used in spei� ryptographi protools, suh as the identi�ationshemes of Feige, Fiat, and Shamir [FFS88℄ mentioned above.This issue of parties deviating from the protool already arises within zero-knowledgeproofs themselves. For the �rst few hapters of this thesis, we will fous on honest-veri�erzero-knowledge proofs, whih are those in whih the veri�er is only guaranteed to learnnothing if it follows the spei�ed protool. Fousing on honest-veri�er proofs will greatlyfailitate our investigation and will be essential in our proofs of several results, suh as theompleteness theorems mentioned earlier. But learly suh proofs are unsuitable for mostryptographi appliations. One of the main results of this thesis is a method for trans-forming every honest-veri�er statistial zero-knowledge proof into one robust even againstveri�ers that deviate arbitrarily from the spei�ed protool. By this transformation (givenin Chapter 6), our results about honest-veri�er zero knowledge proofs automatially trans-late to general zero-knowledge proofs. Moreover, it suggests a methodology for onstrutinggeneral zero-knowledge proofs: �rst onstrut an honest-veri�er proof (whih is often an eas-ier task) and then use our transformation to make it robust against heating veri�ers. Ourtransformation also applies to wide lass of omputational zero-knowledge proofs (namely,\publi oin" proofs).Another important role statistial zero knowledge an play from the perspetive of ryp-tography is that it provides the leanest model for the study of zero-knowledge proofs. Sta-tistial zero-knowledge proofs tend to be easier to analyze and manipulate than other formsof zero-knowledge proofs, and general theorems about them an be proven without makingany omplexity-theoreti assumptions. In ontrast, other forms of zero-knowledge proofs,suh as omputational zero-knowledge proofs and zero-knowledge \arguments"3 are usuallyonstruted based on intratability assumptions suh as the existene of \one-way fun-tions" (e.g., the hardness of fatoring). Thus, a natural methodology is to �rst understand3Zero-knowledge arguments, introdued by Brassard, Chaum, and Cr�epeau [BCC88℄, are a variant of zero-knowledge proofs in whih the soundness requirement is weakened to only require that it is omputationallyhard to onvine the veri�er of a false statement. We will not disuss these further in this thesis.



16 CHAPTER 1. INTRODUCTIONa phenomenon with respet to statistial zero knowledge and then attempt to translatethe tehniques and results to other forms of zero knowledge. This approah has seen su-ess in the past (e.g., [Ost91℄ leading to [OW93℄) and our transformation of honest-veri�erzero-knowledge proofs into general ones is another example.It should be noted that, if one assumes the existene of one-way funtions, essentially allquestions about omputational zero knowledge have been resolved. However, we regard itas important to understand whih aspets of omputational zero knowledge rely inherentlyon intratability assumptions and whih do not. Moreover, minimizing the use of hardproblems in onstruting zero-knowledge proofs tends to lead to more eÆient onstru-tions and higher levels of seurity. Our approah of �rst proving results about statistialzero knowledge and then attempting to translate them to omputational zero knowledge isompelling in these respets.1.4 Results & struture of this thesisChapter 2 | De�nitions. We give an introdution to statistial zero knowledge. Afteran informal example, we formally de�ne statistial zero-knowledge proofs and identify someof the issues that arise with the de�nitions. In partiular, we note that until Chapter 6,we fous on honest-veri�er statistial zero knowledge. As mentioned above, this restritionwill be onvenient for the �rst few hapters, but will be removed ompletely in Chapter 6.Chapter 3 | Complete Problems. We introdue the problems Statistial Differ-ene and Entropy Differene and prove that they are omplete for (honest-veri�er)SZK. These omplete problems will be our main tools in obtaining further results aboutstatistial zero knowledge. When proving general theorems about statistial zero knowledge,we will be able to fous on these spei� omplete problems, and largely avoid working withthe rather unwieldy general de�nition of statistial zero-knowledge proofs. StatistialDifferene was shown to be omplete for statistial zero knowledge in joint work withAmit Sahai [SV97℄ and Entropy Differene in joint work with Oded Goldreih [GV99℄.The material in Chapter 3 is a ombination of tehniques and results from the orrespondingtwo papers.Chapter 4 | Appliations of the Complete Problems. We present a number ofimmediate appliations of the omplete problems and the tehniques used in their proof.For example, we show that every problem possessing an (honest-veri�er) statistial zero-knowledge proof also has a very ommuniation-eÆient one, in whih only two messagesare exhanged and the error parameters are exponentially small. We also exhibit somestrong losure properties of statistial zero-knowledge, obtain eÆient algorithms for ma-nipulating the statistial properties of samplable distributions, and prove some results about\knowledge omplexity." In addition, the omplete problems yield simpler proofs of mostpreviously known results about the omplexity of statistial zero knowledge. For example,in Setion 4.2, we show how Okamoto's result from [Oka96℄ that (honest-veri�er) SZK islosed under omplement follows immediately from the ompleteness theorems. We alsoapply some of the same tehniques to obtain results about perfet and omputational zero-



1.4. RESULTS & STRUCTURE OF THIS THESIS 17knowledge proofs. Most of the material in this hapter was obtained in joint work withAmit Sahai [SV97, SV99℄.Chapter 5 | Private Coins vs. Publi Coins. We show that every problem pos-sessing an (honest-veri�er) statistial zero-knowledge proof also possesses a publi-oin one| that is, a statistial zero-knowledge proof in whih the veri�er's messages onsist merelyof random oin ips. This was originally proven by Okamoto [Oka96℄. However, we give amarkedly simpler proof. The result of this hapter is useful beause publi-oin interativeproofs are muh easier to analyze and manipulate than general \private-oin" interativeproofs. Indeed, this result provides an essential starting point for the following hapter.We also give the �rst transformation from private oins to publi oins whih applies toa wide lass of omputational zero-knowledge proofs. Namely, we show how to transform3-message (honest-veri�er) omputational zero-knowledge proofs into publi-oin ones.The transformations from private oins to publi oins presented in this hapter arebased on joint work with Oded Goldreih [GV99℄ and disussions with Amit Sahai.Chapter 6 | Coping with Cheating Veri�ers. We show how to transform anyhonest-veri�er statistial zero-knowledge proof into one whih remains statistial zero-knowledge even against heating veri�er strategies. The same transformation applies topubli-oin omputational zero-knowledge proofs. The transformation is obtained by aug-menting any publi-oin honest-veri�er proof with a new protool for two mutually dis-trustful parties to selet a random string. This Random Seletion Protool may be ofindependent interest. The material in this hapter is joint work with Oded Goldreih andAmit Sahai [GSV98℄.Chapter 7 | Noninterative SZK. We examine \noninterative" statistial zero-knowledge proofs, whih are ones in whih the need for interation is removed via an aug-mentation to the model. We exhibit two natural omplete problems for NISZK, the lassof problems possessing noninterative statistial zero knowledge proofs. These ompleteproblems are losely related to those for SZK. We then use these problems to relate theomplexities of NISZK and SZK, and explore the possibility that every statistial zero-knowledge proof an be transformed into a noninterative one. This hapter onsists ofresults obtained with Oded Goldreih and Amit Sahai [GSV99℄.Chapter 8 | Conlusions. We summarize what has been ahieved in the thesis, anddisuss possible avenues for further researh.Historial remark. The results in this thesis are not presented in hronologial order. Wehave shu�ed the historial order to yield what seems to be the most natural presentation,given the bene�ts of hindsight. In reality, Okamoto's transformation from private oins topubli oins [Oka96℄ preeeded all the results in this thesis, and indeed sparked muh ofthis work. The ompleteness of Statistial Differene [SV97℄, its appliations givenin Chapter 4 [SV97, SV99℄, and the honest-veri�er to heating-veri�er transformation ofChapter 6 [GSV98℄ all originally used Okamoto's theorem as a starting point. We later



18 CHAPTER 1. INTRODUCTIONintrodued Entropy Differene in [GV99℄ in order to give a simpler proof of Okamoto'stheorem.



Chapter 2De�nitions2.1 An exampleBefore giving the formal de�nitions, we illustrate the notion of a zero-knowledge proofwith an elegant example: the (honest-veri�er) perfet zero-knowledge proof for GraphNonisomorphism. The proof system is due to Goldreih, Miali, andWigderson [GMW91℄,and uses ideas from an earlier proof system for Quadrati Nonresiduosity, due toGoldwasser, Miali, and Rako� [GMR89℄.De�nition 2.1.1 If G = (V;E) is an undireted graph and � is a permutation on V ,then �(G) denotes the graph obtained by permuting the verties of G aording to �. Thatis, �(G) = (V;E0), where E0 = f(�(u); �(v)): (u; v) 2 Eg. If G and H are graphs onthe same vertex set, and there exists a � suh that �(G) = H, we say that G and H areisomorphi and write G�=H. � is alled an isomorphism between G and H, and H is said tobe an isomorphi opy of G. Graph Isomorphism is the language GI = f(G;H):G�=Hg:Graph Nonisomorphism (GNI) is the omplement of GI.1It is easy to see that Graph Isomorphism is in NP; an easily veri�able proof that twographs are isomorphi is an isomorphism between them. In ontrast, no lassial proofsare known for Graph Nonisomorphism. Nevertheless, Graph Nonisomorphism doespossess a very eÆient interative proof.2 The interative proof is based on two observations.First, if two graphs are nonisomorphi, then their sets of isomorphi opies are disjoint.Seond, if two graphs are isomorphi, then a uniformly seleted isomorphi opy of onegraph is indistinguishable from a uniformly seleted isomorphi opy of the other. Thus,the interative proof, given in Protool 2.1.2, tests whether the prover an distinguishuniformly seleted isomorphi opies of the two graphs.1To formally de�ne GI and GNI as sets of strings, one must speify how graphs are enoded as strings,but any reasonable enoding will work for our purposes. Typially, enoding issues are easily managed andhene we will usually ignore them in this thesis. Also note that if two graphs are on di�erent vertex sets ofthe same size, we have impliitly de�ned them to be nonisomorphi. This onvention is inessential.2There has been some reent evidene that Graph Nonisomorphism is in NP, in fat based on theexistene of an eÆient interative proof for Graph Nonisomorphism [KvM99℄.19



20 CHAPTER 2. DEFINITIONSProtool 2.1.2: Interative proof (P; V ) for Graph NonisomorphismInput: Graphs G0 = (V0; E0) and G1 = (V1; E1)1. V : Uniformly selet b 2 f0; 1g. Uniformly selet a permutation � on Vb.Let H = �(Gb). Send H to P .2. P : If G0�=H, let  = 0. Else let  = 1. Send  to V .3. V : If  = b, aept. Otherwise, rejet.Proposition 2.1.3 ([GMW91℄) Protool 2.1.2 is an interative proof system for GraphNonisomorphism.Proof Sketh: If G0 and G1 are nonisomorphi, then G0�=H if and only if b = 0. Sothe prover strategy spei�ed above will make the veri�er aept with probability 1. Thus,ompleteness is satis�ed.On the other hand, if G0 and G1 are isomorphi, then H has the same distributionwhen b = 0 as it does when b = 1. Thus, b is independent of H and the prover has at mostprobability at most 1=2 of guessing b orretly no matter what strategy it follows. Thisshows that the protool is sound. 2A few remarks about the proof system are in order. The �rst is that the veri�er'son�dene that the graphs are nonisomorphi after one exeution of the protool is not veryhigh, as the prover an sueed with probability 1/2 even when the graphs are isomorphi.However, this error probability an be made redued to 1=2k by repeating the protool ktimes (sequentially or in parallel) and requiring that the prover sueeds in all k repetitions.Seond, the proof system is very ommuniation eÆient; only two messages are exhangedand the prover sends only one bit to the veri�er (more generally, k bits to ahieve soundness1=2k). Finally, note that it is ruial for soundness that the veri�er's random oin ips arekept \private." If the bit b is made publi and revealed to the prover, soundness willno longer hold. Surprisingly, every private-oin interative proof (like the one above) anbe transformed into a publi-oin one; that is, one in whih the veri�er's oin ips areompletely visible to the prover [GS89℄. We will present an analogous transformation forstatistial zero-knowledge proofs in Chapter 5.We now informally argue that, when the graphs are nonisomorphi, the veri�er learnsnothing else from the above protool. The only message sent from the prover to the veri�eris the guess . We have already shown that, when the graphs are nonisomorphi, the proverguesses orretly with probability 1. That means that, with probability 1,  is simply equalto b, whih is a value the veri�er already knows (sine it hooses b itself)! Note that thisintuition only refers to a veri�er that follows the spei�ed protool. There is nothing tofore a heating veri�er to selet H by �rst piking one of the two input graphs and thenpermuting its verties. So we have no reason to believe that a heating veri�er \already



2.1. AN EXAMPLE 21knows" whether H is isomorphi to G0 or G1, and thus we will only prove that the proofsystem is honest-veri�er zero knowledge.To formalize this intuition, we must exhibit a simulator, as required by the de�nition ofzero knowledge. The simulator must be an eÆient probabilisti algorithm whose output issimilar to the veri�er's view of the interation, when given a pair of nonisomorphi graphsas input. The veri�er's view of the interation inludes not just the messages exhangedbetween the veri�er and prover (H and ), but also inludes the veri�er's random ointosses (the permutation � and the bit b). By onvention, the output of the simulator isof the form (m1;m2; : : : ;mk; r), where the mi's are the simulated messages, and r is thesimulation for the veri�er's random oins. In light of the above disussion, the simulator,given in Algorithm 2.1.4, simply mimis the veri�er's protool and assumes that the proverguesses orretly.Algorithm 2.1.4: Simulator for Graph Nonisomorphism Proof SystemInput: Graphs G0 = (V0; E0) and G1 = (V1; E1)1. Uniformly selet b 2 f0; 1g. Uniformly selet a permutation � on Vb. LetH = �(Gb).2. Let  = b.3. Output (H; ; b; �)From the fat that the prover guesses orretly with probability 1 in the protool, itfollows immediately that the output distribution of the simulator is idential to the veri�er'sview of the interation (when the input graphs are nonisomorphi and the veri�er followsthe protool). Thus, we have:Proposition 2.1.5 ([GMW91℄) Protool 2.1.2 is an honest-veri�er perfet zero-knowledgeproof system for Graph Nonisomorphism.As mentioned before, the probability that the prover an onvine the veri�er to aeptwhen the graphs are isomorphi an be redued by repeating the proof system many times.Lukily, both forms repetition (parallel and sequential) preserve honest-veri�er perfet zeroknowledge; a simulator for the repeated proof system an be obtained by running the originalsimulator many times. With heating veri�ers, however, things are more subtle. Sequentialrepetition preserves zero knowledge against heating veri�ers, but parallel repetition doesnot [GK96b℄.Although we have only exhibited an honest-veri�er zero-knowledge proof system forGraph Nonisomorphism, Goldreih, Miali, and Wigderson [GMW91℄ show how to aug-ment this partiular protool to make it perfet zero-knowledge even against heating veri-�ers. Later in this thesis, we will present general method for making zero-knowledge proofs



22 CHAPTER 2. DEFINITIONSrobust against heating veri�ers whih ould be used instead (though the result will bestatistial, rather than perfet, zero knowledge).Having seen just this one beautiful example of a zero-knowledge proof, one might wonderwhether the same ideas an be used to onstrut zero-knowledge proofs for other problems.As mentioned earlier, the Graph Nonisomorphism proof system is based on ideas drawnfrom an earlier proof system for Quadrati Nonresiduosity [GMR89℄. Although bothof these proof systems seem to be exploiting algebrai properties of permutation groups orquadrati residues modulo a omposite, atually at the heart of orretness is simply the re-lationship between two probability distributions. In the ase of Graph Nonisomorphism,these distributions are those obtained by taking a random isomorphi opy of G0 or G1,respetively. In Chapter 3, we use this observation to abstrat and generalize Protool 2.1.2.We then prove that the resulting proof system is \universal" for statistial zero knowledge,in the sense that every statistial zero-knowledge proof an be transformed into one \of thesame form".2.2 Notation and preliminariesStrings and promise problems. Throughout this thesis, all strings are over the binaryalphabet f0; 1g. Often we will disuss non-binary strings or tuples of strings, but it is easyto enode suh objets as binary strings, and we impliitly assume that suh an enodinghas been �xed. A unary string of length k is denoted 1k.We will onsider a wider lass of deision problems than languages. Spei�ally, wewill allow some inputs to be \exluded." This is formalized by the notion of a promiseproblem [ESY84℄. A promise problem � is a pair (�Y ;�N ) of disjoint sets of strings,orresponding to yes instanes and no instanes, respetively. This naturally yields thefollowing omputational problem: Given a string x whih is \promised" to be in �Y [�N ,deide whether x 2 �Y or x 2 �N . Strings in �Y [�N are alled instanes of �, and stringsnot in �Y [�N are said to violate the promise. The omplement of a promise problem � isthe promise problem �, where �Y = �N and �N = �Y . If C is a lass of promise problems,then o-C def= �� : � 2 C	.Algorithms. As we will only be doing omplexity analysis at a fairly oarse-grained level,the partiular model of omputation used is not ruial. Any standard model, suh as themultitape Turing mahine, will do, and the reader is referred to any standard text onomplexity theory (e.g., [Sip97, Pap94℄) for a more detailed disussion. We will desribealgorithms at a high level, ignoring implementation details suh as enodings of inputs.We measure the running time of a deterministi algorithm as a funtion of input length;algorithm A runs in time t(�), if A takes at most time t(jxj) on every input x. The omplexitylass P is the lass of promise problems solvable in polynomial time.Randomized algorithms are obtained by allowing our algorithms the ability to ip anunbiased \oin" upon request. To avoid assuming an a priori bound on the number of oinips an algorithm will make, we model this by giving the algorithm aess to an in�nitestring r 2 f0; 1g� in whih every bit is seleted uniformly and independently. Sine thenumber of bits in this string that are aessed is bounded by the algorithm's running time,



2.2. NOTATION AND PRELIMINARIES 23we will often trunate r to be just a �nite string ontaining only the random bits that areused in a partiular exeution. If A is a randomized algorithm, we write A(x; r) for theoutput of A on input x, using random oins r. A is said to have (strit) running time t(�)if for every x and r, A takes time at most t(jxj). A is said to have expeted running timet(�) if for every x, the number of steps taken by A on input (x; r) has expetation at mostt(jxj), taken over the hoie of r. For a �xed input x, we write either A(x) or Ax for theprobability distribution indued on the output A(x; r) obtained by hoosing r uniformly atrandom.We say that a randomized algorithm A solves a promise problem � with 2-sided errorif for every instane x of �, A orretly deides whether x is a yes or no instane withprobability at least 2=3 over the hoie of r. BPP is the lass of promise problems thatan be solved in (worst-ase) polynomial time with 2-sided error.We will also onsider nonuniform polynomial-time algorithms, whih are polynomial-time algorithms that are given an extra \advie" string of length polynomial in its input.More formally, a nonuniform polynomial-time algorithm A is spei�ed by a polynomial-timealgorithm B together with strings f�ngn2N suh that A(x) = B(x; �jxj) for all x and j�njis bounded by some polynomial in n. Nonuniform probabilisti polynomial-time algorithmsare de�ned analogously, by taking B to be probabilisti polynomial time. Nonuniformpolynomial-time algorithms are equivalent to polynomial-sized families of iruits.Redutions and ompleteness. Redutions are our means for omparing the omplex-ities of problems. A (Karp) redution from a promise problem � to a promise problem � isa polynomial-time omputable funtion f suh thatx 2 �Y ) f(x) 2 �Yx 2 �N ) f(x) 2 �N :If suh a redution exists, we say that � (Karp-)redues to � and write � �Karp � (or just� � �).A Cook redution from � to � is a polynomial-time algorithm that solves � when givenaess to an orale whih solves �. That is, on input x, the orale returns Y if x 2 �Y , Nif x 2 �N , and an respond either Y or N if x violates the promise. The redution shouldwork regardless of how the orale responds on inputs that violate the promise. If suh aredution exists, we say that � Cook redues to � and write � �Cook �. Informally, theexistene of a (Karp or Cook) redution from � to � means that � is omputationally noharder than �.Let C be a lass of promise problems. We say that C is losed under (Karp) redutions(resp., Cook redutions) if � � � (resp., � �Cook �) and � 2 C implies that � 2 C. Apromise problem � is C-hard (with respet to a given type of redution) if every promiseproblem in C redues to � via that type of redution. � is omplete for C (or C-omplete)if (1) � 2 C, and (2) � is C-hard with respet to Karp redutions.Probability distributions. If X is a probability distribution (or random variable) on auniverse U , then the support of X is Supp(X) def= fx 2 U : Pr [X = x℄ > 0g. We writex  X to denote the proess of randomly hoosing x aording to the distribution X. If



24 CHAPTER 2. DEFINITIONSS is a set, then the uniform distribution is also written S, so x  S denotes hoosing xuniformly in S.The de�nition of statistial zero knowledge makes use of a standard measure of similaritybetween probability distributions.De�nition 2.2.1 (statistial di�erene) If X and Y are probability distributions (orrandom variables) on a disrete universe U , then the statistial di�erene (or variationdistane) between X and Y is de�ned to beStatDi� (X;Y ) def= maxS�U jPr [X 2 S℄� Pr [Y 2 S℄j :Various properties of this distane measure will play a major role in our investigation,but, for now, we just list some basi fats about StatDi� (�; �) that show that it onformsto an intuitive notion of the distane between probability distribution.Fat 2.2.2 Let X, Y , and Z be any three probability distributions (on a ommon universeU). Then1. StatDi� (X;Y ) � 0, with equality i� X and Y are identially distributed.2. StatDi� (X;Y ) � 1, with equality i� X and Y have disjoint supports.3. StatDi� (X;Y ) = StatDi� (Y;X).4. StatDi� (X;Z) � StatDi� (X;Y ) + StatDi� (Y;Z).5. For any funtion f , StatDi� (f(X); f(Y )) � StatDi� (X;Y ).2.3 Zero-knowledge proofsIn this setion, we give formal de�nitions for the notions of lassial proofs (NP), interativeproofs (IP), and honest-veri�er zero-knowledge proofs.De�nition 2.3.1 (lassial proofs | NP) A lassial proof system for a promise prob-lem � is given by a veri�ation algorithm V and a polynomial p(�) suh that1. (EÆieny) V runs in (deterministi) polynomial time.2. (Completeness) If x 2 �Y , then there exists a y of length at most p(jxj) suh thatV (x; y) aepts. y is alled a proof (or witness) for x.3. (Soundness) If x 2 �N , then for every y, V (x; y) rejets.NP is the lass of promise problems possessing lassial proofs.NP was originally de�ned in terms of nondeterministi Turing mahines, but it is wellknown that the above de�nition is equivalent. The purpose of the polynomial p(�) in theabove de�nition is to guarantee that the time for verifying a proof is polynomial in thelength of the assertion x.



2.3. ZERO-KNOWLEDGE PROOFS 25Reall that interative proofs are obtained by replaing proofs with a \prover" that\interats" with a probabilisti \veri�er". In order to make this preise, we must �rstformalize the notion of an interative protool between two parties A and B. We do thisby viewing eah party as a funtion, taking the history of the protool (all the messagespreviously exhanged) and the party's random oins, to the party's next message. Eitherparty an deide to halt the interation (possibly aepting or rejeting at the same time),and the other party is given an opportunity to ompute one more message at that time.De�nition 2.3.2 (interative protools) An interative protool (A;B) is any pair offuntions. The interation between A and B on ommon input x is the following randomproess (denoted (A;B)(x)):1. Uniformly hoose random oins rA and rB (in�nite binary strings) for A and B,respetively.2. Repeat the following for i = 1; 2; : : ::(a) If i is odd, let mi = A(x;m1; : : : ;mi�1; rA).(b) If i is even, let mi = B(x;m1; : : : ;mi�1; rB).() If mi�1 2 faept; rejet; haltg, then exit loop.If the last message omputed by A is aept (resp., rejet), we say that A aepts(resp., rejets), and similarly for B. We all suh a protool polynomially bounded if thereis a polynomial p(�) suh that, on ommon input x, at most p(jxj) messages are exhanged,and eah is of length at most p(jxj) (with probability 1 over the hoie of rA and rB).In [GMR89℄, interative protools were de�ned in terms \interative Turing mahines,"but that approah is too tied to a partiular model of omputation for our tastes. Thisequivalent formulation in terms of funtions was noted by Goldwasser and Sipser [GS89℄.Now interative proofs an be de�ned as a type of interative protool between a prover(with no omputational limitations) and a polynomial-time veri�er. The ompleteness andsoundness onditions of lassial proofs are replaed with probabilisti ones that guaran-tee that the veri�er gains statistial on�dene that the assertion being proven is true.The amount of on�dene gained by the veri�er is quanti�ed by two quantities, alled theompleteness and soundness errors, whih in turn are funtions of a seurity parameter k.De�nition 2.3.3 (interative proofs | IP) Let (P; V ) be an interative protool andlet � be a promise problem. (P; V ) is said to be an interative proof system for � with om-pleteness error  : N ! [0; 1℄ and soundness error s : N ! [0; 1℄ if the following onditionshold:1. (EÆieny) (P; V ) is polynomially bounded and V is polynomial-time omputable.2. (Completeness) If x 2 �Y , then V aepts with probability at least 1 � (k) in(P; V )(x; 1k).3. (Soundness) If x =2 �Y , then for any P �, V rejets with probability at least 1 � s(k)in (P �; V )(x; 1k).



26 CHAPTER 2. DEFINITIONSWe require that (k) and s(k) be omputable in time poly(k) and that 1 � (k) > s(k) +1=poly(k). If  � 0, then we say that the proof system has perfet ompleteness. IP is lassof promise problems possessing interative proofs.Note that the ompleteness and soundness errors of an interative proof system an bothbe redued to 2�k by repeating the proof system poly(k) times (sequentially or in parallel)and having the new veri�er aept aording to majority/threshold rule.Reall that the de�nition of zero knowledge is based on the notion of a simulator, whihis an algorithm that simulates the veri�er's view of the interation with the prover.De�nition 2.3.4 (view of an interative protool) Let (A;B) be an interative proto-ol. B's view of (A;B) on ommon input x is the random variable hA;Bi(x) = (m1; : : : ;mt; r)onsisting of all the messages m1; : : : ;mt exhanged between A and B together with the sub-string r of rB ontaining all the random bits that B has read during the interation.3Statistial zero knowledge requires that the statistial di�erene between the simulator'soutput distribution and the veri�er's view is so small that it does not beome notieableeven after polynomially many repetitions of the protool. This is ahieved by requiringthat the statistial di�erene is negligible. A funtion � : N ! [0; 1℄ is negligible if for everypolynomial p : N ! N, �(k) < 1=p(k) for suÆiently k.We will allow our simulators to oasionally fail by outputting a string fail, and weonly measure the quality of the simulation onditioned on non-failure. Thus, we all aprobabilisti algorithm A useful if Pr [A(x) = fail℄ � 1=2 for all x and we de�ne eA(x) tobe the output distribution of A on input x, onditioned on A(x) 6= fail.De�nition 2.3.5 (honest-veri�er zero knowledge | HVSZK, HVPZK) An inter-ative proof system (P; V ) for a promise problem � is said to be honest-veri�er statistialzero knowledge if there is a useful probabilisti polynomial-time algorithm S and a negligiblefuntion �(�) suh that for all x 2 �Y and all k > 0,StatDi� �eS(x; 1k); hP; V i(x; 1k)� � �(k):The negligible funtion � is alled the simulator deviation. If � � 0, then (P; V ) is said tobe honest-veri�er perfet zero knowledge. HVSZK (resp., HVPZK) denotes the lass ofpromise problems possessing honest-veri�er statistial (resp., perfet) zero-knowledge proofs.Note that the simulation is only required to be aurate on yes instanes of the promiseproblem; that is, when the statement being proven is true. We wanted the de�nition toapture the fat that the veri�er should learn nothing from the \proof" (whih is nowatually the strategy for P ). For no instanes, there is no \orret" proof (as guaranteedby soundness), so it would be somewhat strange to require that the veri�er learns nothingin this ase. From a ryptographi point of view, this assymetry orresponds to the idea3It may seem unnatural that our notation is assymetri in that it does not allow for indiating A's viewof the protool. However, in this thesis, we will only be interested in B's view (as B orresponds to theveri�er in an interative proof), and thus we have opted for a simpler notation at the expense of generality.



2.3. ZERO-KNOWLEDGE PROOFS 27that we only wish to protet parties that are behaving honestly; a prover that is trying toprove a false statement is ertainly not.Computational zero-knowledge proofs are de�ned by requiring that simulator's out-put and the veri�er's view are merely indistinguishable by any polynomial-time algorithm,rather than being statistially lose. This is the natural omputationally bounded analogueof the de�nition of statistial di�erene.De�nition 2.3.6 (omputational indistinguishability [GM84, Yao82℄)Let X = fXx;kgx2L;k2N and Y = fYx;kgx2L;k2N be ensembles of probability distributionsindexed by strings x in a set L and natural numbers k (the seurity parameter). X andY are said to be omputationally indistinguishable if for every nonuniform probabilistipolynomial-time algorithm (\distinguisher") D, there is a negligible funtion �(�) suh that���Pr hD(x; 1k;Xx;k) = 1i� Pr hD(x; 1k; Yx;k) = 1i��� � �(k) 8x 2 L:De�nition 2.3.7 (honest-veri�er zero knowledge | HVCZK) An interative proofsystem (P; V ) for a promise problem � is said to be honest-veri�er omputational zeroknowledge if there is a useful probabilisti polynomial-time algorithm S suh thatneS(x; 1k)ox2�Y ;k2N and nhP; V i(x; 1k)ox2�Y ;k2Nare omputationally indistinguishable. HVCZK denotes the lass of promise problems pos-sessing honest-veri�er omputational zero-knowledge proofs.A remark on nonuniformity. Note that we have allowed the distinguisher to be nonuni-form in the de�nition of omputational indistinguishability. While the de�nitions an bemade in the uniform setting, the theory of omputational zero knowledge is \leaner" witha nonuniform de�nition. Already, some sort of nonuniformity is impliit in the notion ofzero knowledge, beause the veri�er and distinguisher are given the input x, whih an beregarded as nonuniform \advie". In addition, several researhers [FS89, GMR89, GO94,Ore87, TW87℄ have observed that that allowing some sort of nonuniformity (or \auxiliaryinput") is important in proving some some basi results about zero knowledge.For example, suppose we repeat an HVCZK proof several times, either sequentiallyor in parallel. Intuitively, sine one run of the simulator is omputationally indistinguish-able from one exeution of the proof system, t independent runs of the simulator shouldbe omputationally indistinguishable from t independent exeutions of the proof system,and hene the repeated proof system should still be HVCZK. Unfortunately, this \fat"that omputational indistinguishability is preserved under taking many independent sam-ples only is guaranteed when either the distinguishers are permitted to be nonuniform orboth distributions are polynomial-time samplable (see, e.g., [GS98℄). Sine the exeutionsof the proof system are not neessarily polynomial-time samplable, we must take nonuni-form distinguishers. Having adopted a nonuniform de�nition, it an be proven using thestandard \hybrid" argument of [GM84℄ that honest-veri�er omputational zero knowledgeis preserved under both sequential and parallel repetition.



28 CHAPTER 2. DEFINITIONSAs disussed in Chapter 6, nonuniformity beomes even more important when we disussheating veri�ers. It is possible to develop the theory of zero knowledge in the uniformsetting, as done by Goldreih [Gol93℄; there, the de�nitions are modi�ed to require thatit is infeasible to �nd yes instanes x on whih the prover leaks knowledge (rather thanrequiring this for all yes instanes x). Most of the results we prove about omputationalzero knowledge also hold in that setting, but for simpliity, we only disuss the nonuniformversions.2.4 Contrast with the GMR de�nitionThe de�nitions we have given above di�er from the original de�nitions given by Goldwasser,Miali, and Rako� [GMR89℄ (heneforth alled the GMR de�nitions) in several ways, whihwe outline below.Honest veri�ers. The most important di�erene is that we have only de�ned honest-veri�er zero knowledge, whih formalizes the requirement that the veri�er should learnnothing from the interation if it follows the spei�ed protool. The general de�nition of zeroknowledge, whih is important in ryptographi appliations, requires that even heatingveri�ers whih deviate from the protool should learn nothing. Roughly speaking, thisis formalized by requiring that, for every (polynomial-time) veri�er strategy, there exists aorresponding simulator. However, there are a number of subtle issues in the de�nition. Forthis reason, together with the fat that we will be fousing on honest-veri�er zero knowledgefor the �rst few hapters of this thesis, we postpone the de�nitions of zero-knowledge proofsfor heating verifers to Chapter 6. However, in informal disussions, we still will refer tothe lasses of problems possessing proof systems that are zero-knowledge against heatingveri�ers, whih we denote by SZK, PZK, and CZK. In that Chapter 6, we will showhow to transform any honest-veri�er statistial zero-knowledge proof (and any publi-oinhonest-veri�er omputational zero-knowledge proof) into one whih are zero knowledgeeven against heating veri�ers. That is, HVSZK = SZK. Fortnow [For89℄ was the �rst toformally de�ne and investigate honest-veri�er zero-knowledge proofs. (His terminology was\trusted veri�er").The seurity parameter. Another di�erene between our de�nition and the GMRde�nition is our use of a seurity parameter to ontrol the error parameters (ompleteness,soundness, and simulator deviation). The original de�nition measures these as a funtionof the input length jxj, and in partiular only requires that the simulator deviation benegligible as a funtion of jxj. We feel that it is unnatural to tie the error parameters to theinput length in this manner, as one may wish to prove even short statements with very high\seurity". The use of a separate seurity parameter to ontrol the errors has appeared invarious plaes in the literature suh as [BP89, KMO89℄ and has beome standard in theliterature on \noninterative" zero-knowledge proofs (e.g., [FLS99, Kil94, KP98℄).With ompleteness and soundness errors, this de�nitional hoie is mainly a philosophi-al one, as it does not hange the lass of problems possessing interative proofs (sine evena onstant error probability an be made exponentially small in k by repeating the proof



2.4. CONTRAST WITH THE GMR DEFINITION 29system O(k) times.) With the simulator deviation, it is not a priori lear that, given aproof system with simulator deviation that is a funtion of jxj, one an obtain one whosesimulator deviation is a funtion of a seurity parameter k (though we will prove it later inthis thesis).One nie property of our seurity-parameter based de�nition is that it allows one toprove that HVSZK is losed under redutions.Proposition 2.4.1 If � has an honest-veri�er statistial zero-knowledge proof with sim-ulator deviation �(�), and � (Karp-)redues to �, then � has an honest-veri�er statistialzero-knowledge proof with simulator deviation �(�). Thus, HVSZK andHVPZK are losedunder (Karp) redutions.Proof: Let (P; V ) be the statistial zero-knowledge proof for � and f be the redutionfrom � to �. A statistial zero-knowledge proof (P 0; V 0) for � an be obtained as follows: Onommon input (x; 1k), P 0 and V 0 exeute the protool (P; V ) on ommon input (f(x); 1k).A simulator for (P 0; V 0) with deviation �(�) an be obtained by running the simulator for(P; V ) on input (f(x); 1k).The reason suh a proposition annot be proved so easily for the GMR de�nition is thatf(x) might be muh shorter than x, whih means �(jf(x)j), whih is the simulator deviationahieved by exeuting (P; V ) and S on input f(x) (aording to the GMR de�nition), mightnot be negligible as a funtion of jxj. However, there are oasions when the seurityparameter is irrelevant (e.g., perfet zero-knowledge proofs with onstant ompleteness andsoundness errors), and, in those ases, we will often omit the seurity parameter from thenotation for sake of larity.Expeted polynomial-time simulators. Two more di�erenes between our de�nitionand GMR's is that they allow expeted polynomial-time simulators, but do not allow thesimulator to fail. Following Goldreih [Gol95℄, we require strit polynomial-time simulators,but do allow the simulator to fail. The reason for this modi�ation is that strit polynomial-time is better behaved and less ontroversial as formalization of \eÆient omputation" thanexpeted polynomial time. Our requirement is more stringent, beause a strit polynomial-time simulator whih may fail an be onverted into an expeted polynomial-time onewhih never fails (by running the simulator many times independently until it sueeds). Infat, for statistial zero knowledge, one an remove the need for failure without passing toexpeted polynomial time: running the simulator polynomiallymany times makes the failureprobability exponentially small, and this an be absorbed into the simulator deviation. Inontrast, it is not lear how to onvert an expeted polynomial-time simulator into a stritpolynomial-time simulator without inurring a nonnegligible inrease in simulator deviation.Weak statistial zero knowledge. A notion that aptures all the ways in whih theGMR de�nition is weaker than ours (and more) is that of weak-HVSZK (analogous toweak-SZK onsidered in [DOY97℄):De�nition 2.4.2 (weak statistial zero knowledge | weak-HVSZK)An interative proof system (P; V ) for a promise problem � is weak honest-veri�er sta-tistial zero knowledge if for every  > 0, there is a useful probabilisti polynomial-time



30 CHAPTER 2. DEFINITIONSalgorithm S suh that, for all but �nitely many x 2 �Y ,StatDi� �S(x); hP; V i(x; 1jxj)� � 1jxj :weak-HVSZK denotes the lass of promise problems possessing weak honest-veri�er sta-tistial zero-knowledge proofs.Thus, the simulator deviation an be made smaller than any inverse polynomial, butthe simulator itself (and, in partiular, its running time) an depend on the partiularpolynomial. Any interative proof with an expeted polynomial-time simulator of negligiblesimulator deviation (i.e., meeting the GMR de�nition for honest veri�ers) also satis�es theabove de�nition: trunating simulator exeutions after jxj times the expeted number ofsteps inreases the simulator deviation by at most 1=jxj. In Setion 4.3, we will show howto onvert weak honest-veri�er statistial zero-knowledge proofs into ones meeting the morestringent De�nition 2.3.5; that is, weak-HVSZK = HVSZK.2.5 Complexity aspets of interative proofsThere are a number of omplexity issues that arise with interative proofs and statistialzero knowledge whih we will address in this thesis. One issue that arose in the interativeproof for Graph Nonisomorphism presented in Setion 2.1 was that it was essential thatthe veri�er's random oins were kept hidden from the prover. Proof systems in whih therandom oins used by the veri�er at eah round are revealed to the prover at the sametime are alled publi-oin proof systems. Sine the veri�er's messages are a deterministifuntion of the input x and the oin ips, the prover an be given just the oin ipsthemselves at eah round without loss of generality.De�nition 2.5.1 (publi-oin protools [BM88℄) An interative protool (A;B) ispubli oin for B if in every exeution of the protool, the string of random oins aessedby B an be written r1r2 � � � rt 2 f0; 1g�, so that B's i'th message m2i equals ri 2 f0; 1g`i ,`i is solely a funtion of (x;m1;m2; : : : ;m2i�1), and m2t+2 is the last message omputed byB. An interative proof (P; V ) is publi oin if, for every P �, (P �; V ) is publi oin for V .Publi-oin proofs are also known as Arthur{Merlin games, so we often denote theprover in suh proof systems by M (for \Merlin") and the veri�er by A (for \Arthur").Sometimes we will refer to general interative proofs as private-oin proofs to emphasizethe di�erene with publi-oin ones. Publi-oin proof systems are extremely omputationeÆient for the veri�er, as the only omputation the veri�er needs to do is to ompute itslast message m2t+2 (aept or rejet) and possibly the number of oins to send at eahround (whih is usually a simple funtion of jxj). Amazingly, every problem possessing aninterative proof also possesses a publi-oin interative proof [GS89℄. In Chapter 5, we willprove an analogous theorem for statistial zero-knowledge proofs, a result �rst obtained byOkamoto [Oka96℄.



2.5. COMPLEXITY ASPECTS OF INTERACTIVE PROOFS 31Some other important omplexity measures for interative proofs are the amount ofinteration, as measured by the number of messages exhanged,4 and the number of bits ofommuniation.De�nition 2.5.2 (number of messages & ommuniation) We say that an intera-tive protool (A;B) exhanges m messages on input x, if for every hoie of the randomoins for A and B, the number of messages omputed before the �rst aept/rejet/haltmessage is at most m (or m+1, if the �rst message m1 of A is always the empty string). Thelass of promise problems possessing interative proofs whih exhange a onstant numberof messages is denoted AM.We say that an interative protool (A;B) has A-to-B (resp., B-to-A) ommuniation on input x, if for every hoie of the random oins for A and B, the sum of the lengthsof the messages omputed by A (resp., B) (exluding an aept/rejet/halt message) isat most . (A;B) has total ommuniation  on input x, if the sum of the lengths of allmessages omputed (by both A and B) is at most  (again, exluding aept/rejet/haltmessages).In Setion 4.1, we will show that every problem in HVSZK has an extremely eÆienthonest-veri�er statistial zero-knowledge proof, namely, a 2-message proof system with 1bit of prover-to-veri�er ommuniation.

4In the literature, sometimes the term \rounds" is used to measure the amount of interation. However,its usage is not onsistent | some authors ount eah message as one round, while others refer to a pair ofA/B messages as a round. To avoid ambiguity, we speak only of the number of messages exhanged.
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Chapter 3Complete ProblemsA revolution in theoretial omputer siene ourred when it was disovered that NP hasomplete problems [Coo71, Lev73, Kar72℄. Most often, this theorem and other omplete-ness results are viewed as negative statements, as they provide evidene of a problem'sintratability. These same results, viewed as positive statements, enable one to study anentire lass of problems by fousing on a single problem. For example, all languages inNP were shown to have omputational zero-knowledge proofs when suh a proof was ex-hibited for Graph 3-olorability [GMW91℄. Similarly, the result that IP = PSPACEwas shown by giving an interative proof for Quantified Boolean Formula, whih isomplete for PSPACE [LFKN92, Sha92℄. More reently, the elebrated PCP theoremharaterizing NP was proven by designing eÆient probabilistially hekable proofs for aspei� NP-omplete language [ALM+98, AS98℄.In this hapter, we present two omplete problems for HVSZK, the lass of problemspossessing statistial zero-knowledge proofs against an honest veri�er. For traditional om-plexity lasses, suh as NP and PSPACE, the onstrution of natural omplete problemshas beome a routine task. However, it may ome as a surprise that HVSZK, whih isde�ned in terms of two interating mahines and a simulator, has omplete problems whihmakes no referene to interation or zero-knowledge. In subsequent hapters, we use theseomplete problems problems not as a negative tool, but as a positive tool to derive generalresults about the entire lass HVSZK.Organization. Reall that proving that a problem � is omplete for HVSZK involvesboth proving that � 2 HVSZK and that every problem in HVSZK redues to �. Inthis hapter, we do this for two problems, alled Statistial Differene (SD) andEntropy Differene (ED). These two problems will be simultaneously proven ompletefor HVSZK via a \irle of redutions" omposed of the following three results.1. SD 2 HVSZK (Setion 3.1).2. Every problem in HVSZK redues to ED (Setion 3.3).3. ED redues to SD (Setion 3.4). 33



34 CHAPTER 3. COMPLETE PROBLEMSThe ombination of Steps 2 and 3 imply that every problem in HVSZK redues to SD,and the ombination of Steps 1 and 3 imply that ED 2 HVSZK, so it follows that bothSD and ED are omplete for HVSZK.Setion 3.2 ontains a motivating warm-up to Step 2. Namely, we show that everyproblem possessing a publi-oin honest-veri�er statististial zero-knowledge proof reduesto SD.3.1 Statistial DiffereneThe �rst problem we show to be omplete forHVSZK is alled Statistial Differene.Roughly speaking, it is the problem of deiding whether a pair of \eÆiently samplable"distributions are statistially lose or statistially far apart, as measured by the statistialdi�erene metri. In order to de�ne the problem formally, we must make preise the notionof an eÆiently samplable distribution. To do this, we view Boolean iruits as samplingalgorithms, whose inputs are random bits.De�nition 3.1.1 (distributions enoded by iruits) Let X be a Boolean iruit (withAND, OR, and NOT gates, unbounded fan-in and fan-out) with m input gates and n outputgates. The distribution enoded by X is the distribution indued on f0; 1gn by evaluatingX on a uniformly seleted string from f0; 1gm. By abuse of notation, we also write X forthe distribution de�ned by X.Sine iruits an be evaluated in time polynomial in their size, yet are rih enough to en-ode general (e.g., Turing mahine) omputations, they e�etively apture the notion of an\eÆiently samplable distribution." Now we an de�ne the promise problem StatistialDifferene.De�nition 3.1.2 Statistial Differene is the promise problem SD = (SDY ;SDN ),where SDY = f(X;Y ) : StatDi� (X;Y ) � 2=3gSDN = f(X;Y ) : StatDi� (X;Y ) � 1=3g :Above, X and Y are iruits enoding probability distributions, as in De�nition 3.1.1.In order to show that SD is omplete for HVSZK, we need to prove two things: thatSD 2 HVSZK, and that every problem in in HVSZK redues to SD. This setion isdevoted to the former task. To do this, we generalize the Graph Nonisomorphism proofsystem given in Setion 2.1. Reall that the analysis of that proof system is based on theobservation that two probability distributions (obtained by taking a random isomorphiopy of one graph or the other) either have disjoint supports or are idential, dependingon whether the input is a yes or no instanes, respetively. This motivates onsidering arestrition of SD in whih the distributions are either disjoint or idential (as distributions,not as iruits). We all this problem SD1;0 beause it an obtained by replaing thethresholds of 2=3 and 1=3 in the de�nition of SD with 1 and 0, respetively. Atually, weonsider a number of variants of SD, parametrized by the thresholds.



3.1. STATISTICAL DIFFERENCE 35De�nition 3.1.3 (variants of SD) For any onstants 0 � � < � � 1, the promise prob-lem SD�;� = (SD�;�Y ;SD�;�N ) is given bySD�;�Y = f(X;Y ) : StatDi� (X;Y ) � �gSD�;�N = f(X;Y ) : StatDi� (X;Y ) � �g :Above, X and Y are iruits enoding probability distributions, as in De�nition 3.1.1.3.1.1 A basi proof systemFollowing the intuition from the Graph Nonisomorphism proof system, a natural wayto onstrut a proof system for any of these variants of SD is to test whether the proveran distinguish random sample from the �rst distribution from a random sample from theseond distribution. The prover's best strategy is to simply guess that the sample amefrom the distribution whih assigns it more probability mass. This intuition motivates thebasi proof system given in Protool 3.1.4.Protool 3.1.4: Basi proof system (P; V ) for variants of SDInput: Ciruits X0 and X1 (eah with m input gates and n output gates)1. V : Selet b f0; 1g. Obtain a sample x Xb (by hoosing r  f0; 1gmand letting x = Xb(r)). Send x to P .2. P : If Pr [X0 = x℄ > Pr [X1 = x℄, let  = 0. Else let  = 1. Send  to V .3. V : If  = b, aept. Otherwise, rejet.We �rst analyze this protool for SD1;0. It is lear that if X0 and X1 have disjointsupports, then the prover strategy given in Protool 3.1.4 will sueed with probability 1.On the other hand, if X0 and X1 are idential as distributions, then b is independent of x,so the prover an guess b from x with probability at most 1=2, no matter what strategy itfollows. Thus, we haveClaim 3.1.5 Protool 3.1.4 is an interative proof system for SD1;0 with perfet omplete-ness and soundness error 1=2.When the distributions are disjoint, all the veri�er sees is the prover's (orret) guess for b, whih is a value the veri�er already \knows." This suggests that the proof system iszero knowledge, and thus we onsider a simulator (given in Algorithm 3.1.6), analogous toAlgorithm 2.1.4.It follows readily from the fat that the prover guesses orretly with probability 1that the output distribution of Algorithm 3.1.6 and the veri�er's view of Protool 3.1.4 areidential when X0 and X1 have disjoint supports. Thus, we have:



36 CHAPTER 3. COMPLETE PROBLEMSAlgorithm 3.1.6: Simulator for basi SD proof systemInput: Ciruits X0 and X1 (eah with m input gates and n output gates)1. Selet b f0; 1g. Choose r f0; 1gm and let x = Xb(r).2. Let  = b.3. Output (x; ; b; r)Proposition 3.1.7 Protool 3.1.4 is an (honest-veri�er) perfet zero-knowledge proof sys-tem for SD1;0.Intuitively, it seems that our analysis of this proof system should hold \approximately"when the distributions are either statistially very far apart or statistially very lose insteadof being disjoint or idential, respetively. This is indeed the ase, and using statistialdi�erene as a measure of loseness, we get exat expressions for the error parameters.Lemma 3.1.8 When X0 and X1 have statistial di�erene Æ, the prover strategy given inProtool 3.1.4 makes the veri�er aept with probability exatly (1 + Æ)=2, and no proverstrategy sueeds with greater probability. Moreover, the output of Algorithm 3.1.6 has sta-tistial di�erene exatly (1� Æ)=2 from the veri�er's view of (P; V )(X0;X1).In order to prove Lemma 3.1.8, we �rst need to get a slightly better understanding ofthe statistial di�erene metri.Fat 3.1.9 Let X and Y be probability distributions (or random variables) on a disreteuniverse U , let SX = fx 2 U : Pr [X = x℄ > Pr [Y = y℄g, and de�ne SY analogously. ThenStatDi� (X;Y ) = Pr [X 2 SX ℄� Pr [Y 2 SX ℄ = Pr [Y 2 SY ℄� Pr [X 2 SY ℄ :Proof: For any set S, Pr [X 2 S℄ = Px2S Pr [X = x℄ and similarly for Y . So Æ(S) def=Pr [X 2 S℄ � Pr [Y 2 S℄ is inreased by adding elements of SX to S, dereased by addingelements of SY to S, and is unhanged by adding points on whih X and Y have the samemass. Thus, the maximum (positive) value Æ(S) an take on is ahieved by S = SX andthe minimum (negative) value is ahieved by S = SY . The maximum positive value andthe minimum negative value of Æ(S) must have the same magnitude, sine Æ �S� = �Æ(S).Hene, StatDi� (X;Y ) = maxS jÆ(S)j= Pr [X 2 SX ℄� Pr [Y 2 SX ℄= Pr [Y 2 SY ℄� Pr [X 2 SY ℄ :



3.1. STATISTICAL DIFFERENCE 37

Common Region

Area = 1−δ

X−above
Region

Area = δ
Region

Area = δ

Y−above

Universe U

Mass

X

Y

Probability

Figure 3-1: Statistial di�erene as areaFat 3.1.9 gives us another way of viewing statistial di�erene | as area betweenurves. Suppose we graph the mass funtions of two distributions X and Y (so the areaunder eah of these urves is 1). Then, Fat 3.1.9 says that the region that is above Y andbelow X has area Æ, the region that is above X and below Y has area Æ, and the regionthat is below both has area 1 � Æ. We all these regions the X-above region, the Y -aboveregion and the ommon region, respetively. See Figure 3-1.Proof of Lemma 3.1.8: From the desription of statistial di�erene as area, we an givean alternative proess that indues the same distribution on (b; x) as the veri�er's strategyin Protool 3.1.4:1. Flip a biased oin d that is 0 with probability 1� Æ and 1 with probability Æ.2. If d = 0:(a) Uniformly selet a point in the ommon region, and let x be orresponding ele-ment of f0; 1gn(b) Uniformly selet b 2 f0; 1g.3. If d = 1:(a) Uniformly selet b 2 f0; 1g.(b) If b = 0, uniformly selet a point from the X0-above region, and let x be theorresponding element of f0; 1gn.() If b = 1, uniformly selet a point from the X1-above region, and let x be theorresponding element of f0; 1gn.



38 CHAPTER 3. COMPLETE PROBLEMS4. Output (b; x).From this desription, it is lear that, when d = 0, b is independent of x and theprover's suess probability is exatly 1=2 no matter what strategy is used. In addition,the prover strategy spei�ed in Protool 3.1.4 perfetly distinguishes the X0-above and X1-above regions and therefore sueeds with probability 1 when d = 1. Hene, the spei�edprover strategy is optimal, and its suess probability is exatly12 � Pr [d = 0℄ + 1 � Pr [d = 1℄ = 12 � (1� Æ) + 1 � Æ = 1 + Æ2 :To analyze the simulator deviation, notie that the only transripts that our withgreater probability in the veri�er's view than in the simulator's output are those in whihveri�er rejets. Sine these our with probability zero in the simulator, the statistialdi�erene is exatly the prover's failure probability, whih is 1� (1 + Æ)=2 = (1� Æ)=2.From Lemma 3.1.8, we immediately obtain:Proposition 3.1.10 For any onstants 0 � � < � � 1, Protool 3.1.4 is an interativeproof for SD�;� with ompleteness error (1� �)=2 and soundness error (1 + �)=2.Proposition 3.1.11 For every onstant 0 � � < 1, Protool 3.1.4 is an honest-veri�erperfet zero-knowledge proof for SD1;� with perfet ompleteness and soundness error (1 +�)=2.However, Lemma 3.1.8 does not yet give a zero-knowledge proof for SD = SD2=3;1=3 asdesired, beause the simulator deviation would be a onstant (1=6), rather than a negligiblefuntion. One way to obtain a negligible simulator deviation would be to give a transfor-mation whih maps a pair of iruits with statistial di�erene at least 2=3 to a pair withstatistial di�erene extremely lose to 1 (while keeping an initial statistial di�erene of atmost 1=3 bounded away from 1). In the next setion, we show how to ahieve this.3.1.2 A polarization lemmaLemma 3.1.12 (Polarization Lemma)1 Let �; � 2 [0; 1℄ be any two onstants suh that�2 > � (e.g., � = 2=3, � = 1=3). There is a polynomial-time omputable funtionPolarize�;� that takes a triple (X0;X1; 1k), where X0 and X1 are distributions enodedby iruits, and outputs a pair of iruits (Y0; Y1) suh thatStatDi� (X0;X1) � � ) StatDi� (Y0; Y1) � 1� 2�kStatDi� (X0;X1) � � ) StatDi� (Y0; Y1) � 2�kThe usefulness of the Polarization Lemma omes from the fat that the two distributionsit produes an be treated almost as if they were disjoint or identially distributed, respe-tively (i.e., statistial di�erene 0 and 1, respetively). Indeed, in the next setion, we show1The Polarization Lemma stated here is alled the Ampli�ation Lemma in [SV97℄. The name washanged in [SV99℄ to stress that the Polarization Lemma does not merely inrease statistial di�erene.



3.1. STATISTICAL DIFFERENCE 39how this Polarization Lemma an be used to augment Protool 3.1.4 and obtain a statisti-al zero-knowledge proof for SD. This setion is devoted to the proof of the PolarizationLemma. The hallenge in proving the lemma is that we need to inrease statistial di�er-ene in some ases and derease statistial di�erene in other ases. We will obtain suha transformation by ombining two omplementary transformations | one whih inreasesstatistial di�erene and one whih dereases statistial di�erene. The analysis of both ofthese transformations will make use of yet another formulation of statistial di�erene, thistime in terms of probability mass vetors.If X is a probability distribution on a disrete universe U , then we an view its massfuntion as a vetor in RU , whih we denote by ~X . Fat 3.1.9 says that the area betweenthe graphs of the mass funtions of distributions X and Y is exatly twie their statistialdi�erene (see Figure 3-1). The area between the graphs is exatly the `1-distane betweenthe vetors ~X and ~Y , where the `1-norm of a vetor ~v 2 RS is j~vj1 def= Pi2S jvij. Thus, wehave:Fat 3.1.13 StatDi� (X;Y ) = 12 ��� ~X � ~Y ���1.We now fous on inreasing statistial di�erene. Intuitively, taking many independentopies of two distributions should inrease their distinguishability and drive the statistialdi�erene to 1. Thus, we now analyze the behavior of statistial di�erene with respetto independene. In order to do so, we express independene in terms of probability massvetors.Reall that the tensor produt of vetors ~v 2 RS and ~w 2 RT is the vetor ~v 
 ~w 2RS�T with (~v 
 ~w)i;j = vi � wj. Note that, any vetors ~v and ~w, j~v 
 ~wj1 = j~vj1 � j~wj1.Now, observe that a pair of jointly distributed random variables (X;Y ) are independent i�����!(X;Y ) = ~X 
 ~Y . For this reason, for any two distributions X and Y , we write X 
 Y forthe distribution obtained by taking a sample of X followed by an independent sample of Y ,and 
kX for the distribution onsisting of k independent samples of X.The above observations enable us to bound the e�et of independene on statistialdi�erene.Fat 3.1.14 Let X = (X0;X1) be a distribution in whih X0 and X1 are independent andY = (Y0; Y1) be one in whih Y0 and Y1 are independent. ThenStatDi� (X;Y ) � StatDi� (X0;X1) + StatDi� (Y0; Y1) :Proof: StatDi� (X;Y ) = 12 ��� ~X0 
 ~X1 � ~Y0 
 ~Y1���1� 12 ��� ~X0 
 ~X1 � ~Y0 
 ~X1���1 + 12 ��� ~Y0 
 ~X1 � ~Y0 
 ~Y1���1= 12 ���( ~X0 � ~Y0)
 ~X1���1 + 12 ��� ~Y0 
 ( ~X1 � ~Y1)���1= 12 ��� ~X0 � ~Y0���1 � ��� ~X1���1 + 12 ��� ~Y0���1 � ��� ~X1 � ~Y1���1= StatDi� (X0; Y0) + StatDi� (X1; Y1) :



40 CHAPTER 3. COMPLETE PROBLEMSOf ourse, Fat 3.1.14 does not aomplish our goal; it only gives an upper bound onthe e�et of independent opies on statistial di�erene, whereas want a lower bound. Thefollowing Diret Produt Lemma shows that statistial di�erene goes to 1 exponentiallyfast when we take independent opies. The lemma is reminisent of a Cherno� bound, andindeed, that is how the proof will proeed.Lemma 3.1.15 (Diret Produt Lemma) Let X and Y be distributions suh thatStatDi� (X;Y ) = Æ. Then for all k 2 N,1� 2e�kÆ2=2 � StatDi� �
kX;
kY � � kÆProof: The upper bound of kÆ follows immediately from Fat 3.1.14, so we proeed tothe proof of the lower bound. Reall, from the de�nition of statistial di�erene, that thereexists a set S suh that Pr [X 2 S℄� Pr [Y 2 S℄ = Æ:Let p = Pr [Y 2 S℄. Then, Pr [X 2 S℄ = p+ Æ. Hene, in k independent samples of X, theexpeted number of samples that lie in S is (p+ Æ)k, whereas in k independent samples ofY , the expeted number of samples that lie in S is pk.The Cherno� Bound (Theorem A.1) tells us that the probability that at least (p+ Æ2)komponents of 
kY lie in S is at most exp(�kÆ2=2), whereas the probability that at most(p + Æ2)k omponents of 
kX lie in S is at most exp(�kÆ2=2). Let S0 be the set of allk-tuples that ontain more than (p+ Æ2)k omponents that lie in S. Then we have,StatDi� �
kX;
kY � � Pr h
kX 2 S0i� Pr h
kY 2 S0i � 1� 2e�kÆ2=2:Given the Diret Produt Lemma, a �rst attempt at making Protool 3.1.4 statistialzero knowledge for SD would be to replae eah distribution with many independent opiesof itself. If the original pair of distributions was yes instane (i.e., with statistial di�ereneat least 2=3), their statistial di�erene will now be exponentially lose to 1, and hene thesimulation will be statistially lose by Lemma 3.1.8. Unfortunately, this will also drive thestatistial di�erene of some no instanes (like those with statistial di�erene 1=3) towards1 and this will destroy the soundness of the proof system.However, the Diret Produt Lemma does drive larger values of statistial di�erene to1 more quikly than it drives smaller values to 1 (as illustrated by the upper bound of kÆ),so it is a step in the right diretion. Thus, we will seek a omplementary tehnique whihdereases the statistial di�erene to 0, with small values going to 0 faster than large values.By alternating the two proedures, we will manage to inrease the statistial di�erene foryes instanes and derease it for no instanes.To �gure out how one might derease the statistial di�erene between two distributionsin a ontrolled manner, we onsider how one might derease the prover's suess probabilityin Protool 3.1.4. One natural idea would be to repeat the protool many times indepen-dently and see if the prover guesses the orretly in all exeutions. That is, the veri�erwould hoose b1; : : : ; bk 2 f0; 1g uniformly and independently at random, obtain samplesz1; : : : ; zk independently from Xb1 ; : : : ;Xbk , respetively, send these samples to the prover,and see if the prover an guess all the bi's. Alternatively, one might instead ask the prover



3.1. STATISTICAL DIFFERENCE 41to guess the exlusive-OR of all the bi's. Looking at the proof of Lemma 3.1.8, one seesthat the prover will have no information about bi if the \ommon region" is hit in thei'th exeution. If the prover has no information about even just one bi, then it also hasno information about the exlusive-OR, and hene the suess probability will be exatly1/2. The probability that the ommon region is hit in the i'th exeution is 1 � Æ, whereÆ = StatDi� (X0;X1), so the probability that it is hit in at least one exeution is 1 � Æk.Thus, the prover's suess probability goes to 1/2 exponentially fast with k. This suggeststhat the two distributions on k-tuples obtained by onditioning on the exlusive-OR be-ing 0 and 1, respetively, in this repeated protool have statistial di�erene Æk. This isformalized by the following XOR Lemma.Lemma 3.1.16 (XOR Lemma) There is a polynomial-time omputable funtion that mapsa triple (X0;X1; 1k), where X0 and X1 are iruits, to a pair of iruits (Y0; Y1) suh thatStatDi� (Y0; Y1) = StatDi� (X0;X1)k. Spei�ally, Y0 and Y1 are de�ned as follows:Y0: Uniformly selet (b1; : : : ; bk) 2 f0; 1gk suh that b1 � � � � � bk = 0, and output a sampleof Xb1 
 � � � 
Xbk .Y1: Uniformly selet (b1; : : : ; bk) 2 f0; 1gk suh that b1 � � � � � bk = 1, and output a sampleof Xb1 
 � � � 
Xbk .The motivation given above atually is suÆient to prove the lemma, but instead, wewill do a alulation using the `1 desription of statistial di�erene to see what happenswhen we ombine just two pairs of distributions in this fashion. This onstrution is ageneralization of the tehnique used by De Santis et. al. [DDPY94℄ to represent the logialAND of statements about Graph Nonisomorphism.Proposition 3.1.17 Let X0;X1; Y0; Y1 be any random variables, and de�ne the followingpair of random variables:Z0: Choose a; b f0; 1g suh that a� b = 0. Output a sample of Xa 
 Yb.Z1: Choose a; b f0; 1g suh that a� b = 1. Output a sample of Xa 
 Yb.Then StatDi� (Z0; Z1) = StatDi� (X0;X1) � StatDi� (Y0; Y1).Proof:StatDi� (Z0; Z1) = 12 ��� ~Z0 � ~Z1���1= 12 �����12 ~X0 
 ~Y0 + 12 ~X1 
 ~Y1���12 ~X1 
 ~Y0 + 12 ~X0 
 ~Y1�����1= 14 ���� ~X0 � ~X1�
 � ~Y0 � ~Y1����1= �12 ��� ~X0 � ~X1���1� ��12 ��� ~Y0 � ~Y1���1�= StatDi� (X0;X1) � StatDi� (Y0; Y1) :



42 CHAPTER 3. COMPLETE PROBLEMSProposition 3.1.17 and an indution argument establish Lemma 3.1.16. Yao's XORLemma [Yao82℄ (see also [GNW95℄) an be seen as an analogue of Lemma 3.1.16 in theomputational setting, where the analysis is muh more diÆult.The Diret Produt onstrution gives a way to inrease statistial di�erene with largevalues going to 1 faster than small values. Similarly, the XOR Lemma shows how to dereasestatistial di�erene with small values going to 0 faster than large values. Alternating theseproedures should \polarize" large and small values of statistial di�erene, pushing themloser to 1 and 0, respetively, and yield Lemma 3.1.12. This following proof on�rms thisintuition.Proof of Lemma 3.1.12: Let � = minf�2=�; 2g > 1, and let ` = dlog� 4ke = O(log k).Apply the XOR Lemma (Lemma 3.1.16) to the triple (X0;X1; 1`) to produe (X 00;X 01) suhthat StatDi� (X0;X1) � � ) StatDi� �X 00;X 01� � �`StatDi� (X0;X1) � � ) StatDi� �X 00;X 01� � �`Let m = �`=(2�2`) � 1=(2�`). Notie that m � poly(k), sine ` = O(log k), � � 2, and� is a onstant. Now apply the Diret Produt onstrution, de�ning X 000 = 
mX 00 andX 001 = 
mX 01. Then, by Lemma 3.1.15,StatDi� (X0;X1) � � ) StatDi� �X 000 ;X 001 � � 1� 2 exp�� �`2�2`� � (�`)22 � � 1� 2e�kStatDi� (X0;X1) � � ) StatDi� �X 000 ;X 001 � � (1=2�`) � �` = 1=2Finally, apply the XOR Lemma (Lemma 3.1.16) one more time to (X 000 ;X 001 ; 1k) to pro-due (Y0; Y1) suh thatStatDi� (X0;X1) � � ) StatDi� (Y0; Y1) � (1� 2e�k)k � 1� 2ke�k > 1� 2�kStatDi� (X0;X1) � � ) StatDi� (Y0; Y1) � 1=2k(as long as k is suÆiently large, whih we may assume by arti�ially inreasing it at thestart).A similar alternation between proedures with omplementary e�ets was used by Ajtaiand Ben-Or [AB84℄ to amplify the suess probability of randomized onstant-depth iruits.Interestingly, we do not know how to remove the ondition that �2 > � in Lemma 3.1.12.Perhaps this onstraint is inherent for any transformation like ours, in whih the newdistributions are obtained by onatenating random samples taken obliviously from theoriginal distributions.Open Problem 3.1.18 Is there a Polarization Lemma for arbitrary onstant thresholds0 � � < � � 1? Or even for any spei� thresholds suh that �2 � � (e.g., � = 5=9,� = 4=9)? Is the onstraint �2 > � inherent for a wide lass of transformations?



3.2. ANALYZING PUBLIC-COIN HVSZK PROOFS 433.1.3 Statistial Differene is in HVSZKWith the Polarization Lemma, it is easy to give a statistial zero-knowledge proof for SD.The proof system is given in Protool 3.1.19 and the simulator in Algorithm 3.1.20.Protool 3.1.19: Statistial zero-knowledge proof (P; V ) for SDInput: Ciruits X0 and X1, and seurity parameter 1k1. P; V : Both parties ompute (Y0; Y1) = Polarize2=3;1=3(X0;X1; 1k�1).2. P; V : Both parties exeute Protool 3.1.4 on ommon input (Y0; Y1). Vaepts or rejets as in that protool.
Algorithm 3.1.20: Simulator for SD proof systemInput: Ciruits X0 and X1 (eah with m input gates and n output gates), andseurity parameter 1k1. Compute (Y0; Y1) = Polarize2=3;1=3(X0;X1; 1k�1).2. Run Algorithm 3.1.6 on input (Y0; Y1) and output whatever it outputs.It follows immediately from Lemma 3.1.8 that the above protool and simulator yield astatistial zero-knowledge proof for SD.Theorem 3.1.21 Protool 3.1.19 is an honest-veri�er statistial zero-knowledge proof forSD with ompleteness error 2�k, soundness error 1=2 + 2�k, and simulator deviation 2�k.In partiular, SD 2HVSZK.From Lemma 3.1.12, we see this protool and theorem an be generalized to plae SD�;�in HVSZK as long as �2 > �.3.2 Analyzing publi-oin HVSZK proofsTo omplete the proof that Statistial Differene is omplete for HVSZK, it remainsto show that every problem possessing an honest-veri�er statistial zero-knowledge proofredues to SD. As is typial with ompleteness theorems, this is the more hallengingpart of the proof. In this setion, we fous on the easier task of showing that every problemwith a publi-oin statistial zero-knowledge proof redues to SD (atually its omplement).



44 CHAPTER 3. COMPLETE PROBLEMSAlthough this result will be subsumed by the general redution for all of HVSZK givenin subsequent setions, it will provide a good motivating warm-up. Both redutions arere�nements of the general approah to analyzing statistial zero-knowledge proofs pioneeredby Fortnow [For89℄.3.2.1 The Fortnow methodologyIn both lassial and interative proofs, the veri�er is what distinguishes between yes andno instanes; on yes instanes, there is a proof (or prover strategy) that makes the veri�eraept, whereas on no instanes there is not. The ruial observation of Fortnow [For89℄ wasthat in zero-knowledge proofs, the simulator also provides information that an distinguishbetween yes and no instanes. Spei�ally, he showed that, for statistial zero-knowledgeproofs, yes and no instanes an be (almost) ompletely distinguished based on statistialproperties of the simulator's output distribution. By then showing that these statistialproperties an be deided in low omplexity, he was able to give a strong upper boundon the omplexity of statistial zero knowledge, namely HVSZK � o-AM.2 Aiello andH�astad [AH91℄ subsequently used the same general approah to show that HVSZK �AM. These are fairly strong upper bounds on the omplexity of HVSZK, as they implythat HVSZK annot ontain NP-hard problems unless the Polynomial Time Hierarhy3ollapses [BHZ87℄. However, in this thesis, we will not be satis�ed with upper boundson the omplexity of statistial zero knowledge. Rather, we seek a tight haraterizationof statistial zero knowledge, in the form of omplete problems. In order to obtain suhharaterizations, we will re�ne Fortnow's methodology, and thus we begin by desribinghis approah at an intuitive level.Reall that Fortnow's aim was to �nd properties of the simulator's output distributionthat distinguish between yes and no instanes of the promise problem whose statistialzero-knowledge proof we are onsidering. Using terminology taken from [AH91℄, we thinkof the simulator as desribing an \interation" between a virtual prover and a virtual veri�er.For yes instanes, the de�nition of statistial zero knowledge gives very strong guaranteeson the output distribution of the simulator. Namely, the simulator's output must be verylose to the interation between the real prover and veri�er. In partiular, the followingtwo onditions must hold.Conditions for yes instanes. Both of the following must hold:1. The simulator outputs aepting onversations (i.e., ones in whih the virtual veri�eraepts) with high probability.2. The virtual veri�er \behaves like" the real veri�er.2Atually, there was an error in Fortnow's proof, pointed out in [GOP98℄, but his general approah wassound and inuened many later works. Aiello and H�astad [AH91℄ gave a orret proof of the result (andwe will see another one in this thesis).3See any standard textbook on omplexity theory (e.g., [Sip97, Pap94℄) for a de�nition of the PolynomialTime Hierarhy, whih is widely onjetured to be in�nite.



3.2. ANALYZING PUBLIC-COIN HVSZK PROOFS 45For no instanes, however, the de�nition of zero knowledge does not expliitly give anyguarantees on the simulator's behavior. Despite this, one an prove something about thesimulator's behavior in this ase. Spei�ally, the above two onditions annot simulta-neously hold for no instanes. Suppose both onditions did hold for a no instane. The�rst ondition says the virtual prover is onvining the virtual veri�er to aept with highprobability. The seond ondition then implies that if we allow the virtual prover to interatwith the real veri�er instead of the virtual veri�er, it should not hange things signi�antly.Therefore, the virtual prover will onvine the real veri�er to aept with high probability.But this annot happen for a no instane, by the soundness of the proof system. Atu-ally, sine there is large gap between the veri�er's aeptane probability on yes instanesand no instanes, we obtain the following \strong omplement" to the onditions for yesinstanes:Conditions for no instanes. At least one of the following must hold:1. The simulator outputs aepting onversations with low probability.2. The virtual veri�er \behaves very di�erently" from the real veri�er.Now, to distinguish between yes and no instanes, one need only show how to separatethe onditions for yes instanes from the onditions for no instanes. In [For89, AH91℄, itwas shown that short interative proofs an separate the two ases, and thereby HVSZKwas plaed in AM\ o-AM. Here, we will show that the onditions an be embedded intoinstanes of Statistial Differene, and this will show that every problem in HVSZKredues to SD.There are a number of aspets of the above intuition that are nontrivial to formalize orquantify. First, one must make preise this idea of allowing the virtual prover to interatwith the real veri�er. Fortnow gave a natural solution to this, by introduing the notion ofa simulation-based prover PS , whih is a (real) prover strategy that determines its messagesaording to the same distribution as the virtual prover, when onditioned on past messages.Thus, the interation (PS ; V ) exatly aptures the idea of the virtual prover interating withthe real veri�er.A seond important hallenge is to quantify what it means for the virtual veri�er to\behave like" the real veri�er. This is the ruial point whih determines the tightness ofthe haraterization obtained at the end, for the other ondition is easily determined (byrunning the simulator many times to estimate the probability of an aepting onversation).To summarize, the main steps in analyzing the simulator of a statistial zero knowledgeproof are the following:1. Quantify what it means for the virtual veri�er to \behave like" the real veri�er.2. Con�rm that in the ase of a yes instane, the virtual veri�er does indeed behave likethe real veri�er aording to the hosen quanti�ation.3. Show that if the virtual veri�er behaves like the real veri�er, then the interationbetween the simulation-based prover and the real veri�er is \lose" to the outputdistribution of the simulator.



46 CHAPTER 3. COMPLETE PROBLEMS4. Conlude that if the virtual veri�er behaves like the real veri�er on a no instane,then the simulator must output aepting onversations with low probability.In the next setion, we will arry out this approah for publi-oin statistial zero-knowledge proofs. In this ase, it is partiularly easy to quantify what it means for thevirtual veri�er to \behave like" the real veri�er, beause all the real veri�er's behavioronsists of is sending uniformly distributed strings that are independent of the onversationhistory. Thus, the virtual veri�er behaves like the real veri�er if and only if the virtualveri�er's messages are nearly uniform and nearly independent of the onversation history.We will show how to apture this ondition by the statistial di�erene between samplabledistributions, thereby obtaining a redution to Statistial Differene.3.2.2 Simulator analysisNotation and onventions. Let (P; V ) be an interative proof system for a promiseproblem �, and let S be a simulator for (P; V ). (At this point, S is an arbitrary algorithm,sine we have not yet spei�ed the quality of the simulation.) Throughout this setion andSetion 3.2.3, we will �x the seurity parameter k = jxj and omit it from the notation.When we apply our simulator analysis, we will only require weak statistial zero knowledgeand onstant ompleteness and soundness errors, settings in whih the seurity parameteris irrelevant. Sine the proof system is polynomially bounded, there is a polynomial v(�)suh that v(jxj) bounds the total number of messages sent from the veri�er to the proveron input x (not inluding the veri�er's �nal aept/rejet message). By onvention (seeDe�nition 2.3.2), the prover's messages are those with odd index, and the veri�er's messagesare those with even index. We are interested in the random variables S(x) and hP; V i(x),desribing the simulation and (the veri�er's view of) the real interation, respetively. Wealso onsider pre�xes of these random variables, where S(x)i and hP; V i(x)i denote thepre�xes onsisting of the �rst i messages exhanged. At times, we may drop x from thesenotations.For j � 2v(jxj) + 2, we refer to a tuple of strings  = (m1;m2; : : : ;mj ; r) as a (partial)onversation transript if the even-numbered messages in  (inluding an aept=rejetmessage) orrespond to what V would have sent given random oins r and the odd-numberedprover messages spei�ed in . Without loss of generality, we may assume that the outputof the simulator always onsists of onversation transripts that are onsistent with V inthis sense. This an be ahieved by having the simulator, before giving its output, alwaysuse the veri�er algorithm to realulate the veri�er messages based on the simulated provermessages and the simulated veri�er oins. This modi�ation does not a�et any of the errorparameters or omplexity parameters of the proof system. We say that a transript  isaepting if the veri�er aepts on it.Simulation-based prover. Reall that the simulation-based prover PS is the proverstrategy that \mimis" the virtual prover desribed by S. More formally, given an input (x)and a onversation history  (onsisting of 2i previous messages exhanged), PS respondsas follows:



3.2. ANALYZING PUBLIC-COIN HVSZK PROOFS 47� If S(x) outputs onversations that begin with  with probability 0, then PS replieswith a dummy message, say fail.� Otherwise, PS replies aording with the same onditional probability as the proverin the output of the simulator. That is, it replies � with probabilityp� = Pr[S(x)2i+1 = (; �)jS(x)2i = ℄Following our previous notation, we denote the veri�er's view of the interation betweenPS and V by hPS ; V i(x) and its pre�xes by hPS ; V i(x)iPubli-oin proofs. For the remainder of this setion, we onsider only publi-oin in-terative proofs (P; V ). Reall that this means that in every exeution of the protool,the string of random oins aessed by V an be written r1r2 � � � rv 2 f0; 1g�, so that theveri�er's i'th message m2i equals ri 2 f0; 1g`i , where `i = `i(x; ) is solely a funtion of theinput x and the history  = (m1;m2; : : : ;m2i�1). Sine V runs in polynomial time, `i ispolynomial-time omputable from the input and history. Without loss of generality, we mayassume that the simulated random oins output by the simulator do not ontain any oinsother than those that would atually be aessed by the veri�er in the interation; removingthese \irrelevant" oins from the output an only derease the simulator deviation.The simulator analysis. Now we need to quantify what it means for the virtual veri�erto \behave like" the real veri�er. As noted in the previous setion, for publi-oin proofs, thisamounts to measuring how lose to uniform and independent of history the virtual veri�er'smessages are. Thus, for i = 1; : : : ; v(jxj), we ompare the following two distributions Xi =Xi(x) and Yi = Yi(x):Xi(x): Run S(x) to obtain a transript  and let 2i denote the �rst 2i messages exhanged.Output 2i.Yi(x): Run S(x) to obtain a transript  and let 2i�1 denote the �rst 2i � 1 messagesexhanged. Compute `i = `i(x; 2i�1). Choose r  f0; 1g`i . Output (2i�1; r).InXi, the i'th veri�er message is omputed aording to the virtual veri�er strategy, andin Yi, it is hosen uniformly and independently of the history (of the appropriate length).Thus, the statistial di�erene between these two distributions measures exatly how muhthe virtual veri�er behaves like the real veri�er in omputing its i'th message. So we de�neÆi = Æi(x) by Æi def= StatDi� (Xi; Yi) :The following lemma on�rms that, when the simulation is good (e.g., for yes instanes),the virtual veri�er does indeed behave like the real veri�er aording to this measure.Lemma 3.2.1 For every i = 1; : : : ; v(jxj),Æi(x) � 2 � StatDi� (S(x); hP; V i(x)) :



48 CHAPTER 3. COMPLETE PROBLEMSProof: Dropping x from the notation, we have:Æi = StatDi� (Xi; Yi)� StatDi� (Xi; hP; V i2i) + StatDi� (hP; V i2i; Yi)Note that Xi is the same distribution as S2i, soStatDi� (Xi; hP; V i2i) = StatDi� (S2i; hP; V i2i) � StatDi� (S; hP; V i) :On the other hand, Yi is obtained from a sample of S2i�1 by applying a ertain randomizedproedure: namely omputing `i and then onatenating `i random bits to Yi. Applyingthe same randomized proedure to hP; V i2i�1 yields hP; V i2i, by the de�nition of V . Thus,sine applying the same randomized proedure to two distributions annot inrease theirstatistial di�erene (to be justi�ed after this proof), we haveStatDi� (hP; V i2i; Yi) � StatDi� �hP; V i2i�1; S2i�1� � StatDi� (hP; V i; S) :The laim that randomized proedures annot inrease statistial di�erene used in theabove proof an be formalized as follows: A randomized proedure on a set U is a probabilitydistribution F on funtions from a U to some set V. The distribution obtained by applyingthe randomized proedure F to a distribution X on U is de�ned to be the probabilitydistribution F (X) on V obtained by independently sampling f  F and x  X andevaluating f(x). The following fat follows immediately from and Fats 2.2.2 and 3.1.14.Fat 3.2.2 For any two probability distributions X and Y on U , and any randomized pro-edure F on U , StatDi� (F (X); F (Y )) � StatDi� (X;Y ).The next step in analyzing the simulator is to show that, if the virtual veri�er is behavinglike the real veri�er (i.e., all the Æi's are small), then the interation between the simulation-based prover and the real veri�er is lose to the simulator's output distribution.Lemma 3.2.3 StatDi� (hPS ; V i(x); S(x)) � v(jxj)Xi=0 Æi(x)Proof: We will prove by indution on j that for j = 1; : : : ; v(jxj),StatDi� �hPS ; V i2j ; S2j� � jXi=0 Æi:The ase j = 0 is trivial. For general j, note that the de�nition of the simulation-basedprover implies that hPS ; V i2j+1 is generated by applying the same randomized proedureto hPS ; V i2j as the one used to obtain S2j+1 from S2j . Thus, by Fat 3.2.2,StatDi� �hPS ; V i2j+1; S2j+1� = StatDi� �hPS ; V i2j ; S2j� : (3.1)



3.2. ANALYZING PUBLIC-COIN HVSZK PROOFS 49Realling that Xj+1 = S2j+2, we haveStatDi� �hPS ; V i2j+2; S2j+2� = StatDi� �hPS ; V i2j+2;Xj+1�� StatDi� �hPS ; V i2j+2; Yj+1�+ StatDi� (Yj+1;Xj+1) :Now hPS ; V i2j+2 is obtained from hPS ; V i2j+1 via the same randomized proedure used toobtain Yj+1 from S2j+1. Thus,StatDi� �hPS ; V i2j+2; S2j+2� � StatDi� �hPS ; V i2j+1; S2j+1�+ StatDi� (Yj+1;Xj+1) :� StatDi� �hPS ; V i2j ; S2j�+ StatDi� (Yj+1;Xj+1) :�  jXi=0 Æi!+ Æj ;where the last inequality is by indution. This ompletes the indution.Taking j = v in Inequality 3.1 almost gives the lemma, exept that the transriptsoming from hPS ; V i and S ontain a few additional strings: the prover messages m2v+1and m2v+3, the veri�er's aept=rejet message m2v+2, and the simulated veri�er oins.By our assumptions that the simulator's output is onsistent with the veri�er algorithmand does not ontain any \irrelevant" simulated oins, and the de�nition of the simulation-based prover, these strings are determined in both hPS ; V i and S by applying the samerandomized proedure to the history (m1;m2; : : : ;m2v). Thus, inluding these omponentsdoes not inrease the statistial di�erene.The �nal lemma needed to omplete the analysis simply says that if the simulatoroutputs aepting onversations with high probability in the ase of a no instane, then thesimulator's output and the interation between the simulation-based prover and the realveri�er annot be lose.Lemma 3.2.4 Let p denote the probability that S(x) outputs an aepting transript, andlet q be the maximum, taken over all provers P �, that V aepts in (P �; V )(x). Then,StatDi� (hPS ; V i(x); S(x)) � p� q:Proof: This follows immediately from the de�nition of statistial di�erene | the set oftransripts in whih the veri�er aepts ours with probability p in the simulator and withprobability at most q in hPS ; V i(x).3.2.3 Reduing to Statistial DiffereneWe now use the simulator analysis given above to show that every problem possessing anpubli-oin statistial zero-knowledge proof redues SD. In fat, the redution will evenwork for weak publi-oin statistial zero-knowledge proofs.Theorem 3.2.5 Every promise problem possessing a weak publi-oin honest-veri�er sta-tistial zero-knowledge proof redues to SD.



50 CHAPTER 3. COMPLETE PROBLEMSProof: Let � be a promise problem with a weak publi-oin honest-veri�er statistial zero-knowledge proof (P; V ). We maintain the notation and onventions from the Setion 3.2.2,in partiular �xing k = jxj and dropping it from the notation. We also hide the dependenyof the various parameters and distributions on x from the notation throughout this proof.Without loss of generality, we assume that � has ompleteness and soundness errors  =s = 1=3. Let S be a simulator for (P; V ) ahieving simulator deviation � � 1= �4 � (12v)3�The redution should map an input x to a pair of distributions (X;Y ), whih are sta-tistially lose or far, depending on whether x is yes instane or no instane, respe-tively. X (resp., Y ) will essentially onsist of the onatentation of all the Xi's (resp., Yi's).Lemma 3.2.1 immediately implies that all the Xi's and Yi's have small statistial di�erenewhen x is a yes instane. Lemmas 3.2.3 and 3.2.4 imply that they annot all have smallstatistial di�erene when x is a no instane and the simulator outputs aepting transriptswith too muh probability. Thus, we still need to de�ne distributions that will handle thease that the simulator outputs aepting onversations with low probability. Therefore,we de�ne distributions X0 and Y0 as follows:X0: Output 1.Y0: Run S for 216 ln 12v independent exeutions, and output 1 if veri�er aepts in themajority of the transripts obtained.Now we onsider the distributions X 0 = X0
X1
 � � � 
Xv and Y 0 = Y0
Y1
 � � � 
Yv(not yet our �nal distributions).Claim 3.2.6 If x is a yes instane, then StatDi� (X 0; Y 0) � 1= �12 � (12v)2�Proof of laim: By Fat 3.1.14, the statistial di�erene between X 0 and Y 0is at most the sum of the statistial di�erenes between the Xi's and Yi's. ByLemma 3.2.1, StatDi� (Xi; Yi) � 2� � 12 � (12v)3when x is a yes instane.To bound the di�erene betwen X0 and Y0, observe that, on yes instanes x,S must output aepting onversations with probability at least 2=3�� � 7=12.By the Cherno� bound (Theorem A.1), Y0 outputs 1 with probability at least1� exp ��2 � (216 ln 12v) � (1=12)2� � 1� 1(12v)3 :Thus, the statistial di�erene between X0 and Y0 is at most 1=(12v)3, and thetotal statistial di�erene between X 0 and Y 0 is at mostv � 12 � (12v)3 + 1(12v)3 � 112 � (12v)2 : 2Claim 3.2.7 If x is a no instane, then StatDi� (X 0; Y 0) � 1=12v.



3.2. ANALYZING PUBLIC-COIN HVSZK PROOFS 51Proof of laim: It suÆes to show that for at least one i, the statistial dif-ferene between Xi and Yi is at least 1=12v, as the statistial di�erene betweenX 0 and Y 0 is only greater.First suppose the simulator outputs aepting onversations with probabilityat most 5=12. Then, by the Cherno� bound (Theorem A.1), Y0 outputs 1 withprobability at most exp ��2 � (216 ln 12v) � (1=12)2� < 12 ;so the statistial di�erene between X0 and Y0 is at least 1=2 � 1=12v.Now suppose that the simulator outputs aepting onversations with prob-ability at least 5=12. By Lemma 3.2.4, this implies that the statistial di�erenebetween hPS ; V i and S is at least 5=12 � 1=3 � 1=12. Lemma 3.2.3 in turnimplies that, for some i, Æi � 1=12v. 2So now let s = 4 � (12v)2, onsider X = 
sX 0, Y = 
sY 0. By the above two laims andLemma 3.1.15, we onlude:x 2 �Y ) StatDi� (X;Y ) � �4 � (12v)2� � 112 � (12v)2 � 13x 2 �N ) StatDi� (X;Y ) � 1� exp��4 � (12v)2 � (1=12v)22 � > 2=3Thus, X and Y are the desired distributions, and the x 7! (X;Y ) is a Karp redutionfrom � to SD. Stritly speaking, the distributions X and Y , whih are de�ned in terms ofthe simulator need to be enoded by iruits mapping random oins to the output. This anbe done by the standard tehnique of enoding general (e.g., Turing mahine) omputationsas iruits. (See, e.g., the proof of Cook's theorem in [Pap94℄.)Note that the above proof only requires a simulator with deviation O(1=v3), where v isthe number of messages sent from the veri�er to the prover in the proof system. Hene, foronstant-message proof systems, the redution even works when the simulator deviation isa (suÆiently small) onstant!Theorem 3.2.8 (Thm. 3.2.5, generalized) There is a onstant C suh that the follow-ing holds. Suppose a promise problem � possesses a publi-oin interative proof system(P; V ) with ompleteness and soundness errors 1=3 whih exhanges at most m(n) mes-sages on inputs of length n. Suppose further that (P; V ) has a simulator that ahievesdeviation �(n) � 1=(C �m(n)3). Then, � redues to SD. In partiular, � 2 HVSZK.In addition, we need not assume ompleteness and soundness errors of 1/3, beauseparallel repetitions an be used to the redue the error of the proof system. Note, however,that ` parallel repetitions inreases the simulator deviation by a fator of ` (though it doesnot inrease the number of messages exhanged). Thus the bound on the simulator deviationrequired to generalize Theorem 3.2.8 to arbitrary ompleteness and soundness errors willinvolve the ompleteness and soundness errors.



52 CHAPTER 3. COMPLETE PROBLEMS3.3 Analyzing general HVSZK proofsIn this setion, we generalize the approah outlined in the previous setion to handle gen-eral, private-oin proof systems. In doing so, we will atually redue not to StatistialDifferene, but to a di�erent promise problem, alled Entropy Differene. Theredution is based on the simulator analysis of Aiello and H�astad [AH91℄.In Setion 3.3.1, we introdue the promise problem Entropy Differene, and alsomention some basi notions from information theory that we will use. Setion 3.3.2 ontainsthe Aiello{H�astad simulator analysis, formulated in terms of entropy, following Petrank andTardos [PT96℄. In Setion 3.3.3, we use this simulator analysis to prove that every problemin HVSZK redues to Entropy Differene.3.3.1 Entropy DiffereneWe reall Shannon's notion of entropy.De�nition 3.3.1 (entropy) If X is a disrete probability distribution, then the entropyof X, denoted H(X), is de�ned asH(X) def= Xx Pr [X = x℄ � log 1Pr [X = x℄ = Ex X �log 1Pr [X = x℄� :The binary entropy funtion H2 : [0; 1℄ ! [0; 1℄ is de�ned to be the entropy of a 0{1random variable with expetation p, i.e.,H2(p) def= p log 1p + (1� p) log 11� pThe entropy of a distribution is a measure of how many \bits of randomness" thedistribution ontains. Some basi fats about entropy that illustrate its naturalness as ameasure of randomness are given below. (Proofs an be found in any standard text oninformation theory, suh as [CT91℄.)Fat 3.3.2 For any distribution X (or joint distribution (X;Y )) on a universe U ,1. H(X) � 0, with equality i� X is onstant.2. H(X) � log jUj, with equality i� X is uniform on U .3. For any funtion f , H(f(X)) � H(X).4. H(X;Y ) � H(X) + H(Y ), with equality i� X and Y are independent.The seond problem we will prove to be omplete forHVSZK is essentially the problemof determining whih of two given samplable distributions has signi�antly higher entropy.



3.3. ANALYZING GENERAL HVSZK PROOFS 53De�nition 3.3.3 Entropy Differene is the promise problem ED = (EDY ;EDN ),where EDY = f(X;Y ) : H(X) � H(Y ) + 1gEDN = f(X;Y ) : H(Y ) � H(X) + 1g :Above, X and Y are iruits enoding probability distributions, as in De�nition 3.1.1.Requiring a gap of 1 bit of entropy in the de�nition of ED is inessential, as any notieablegap an be easily ampli�ed by replaing eah distribution with many independent opiesof itself. This ontrasts with the de�nition SD, in whih the thresholds of 2=3 and 1=3 arenot arbitrary (f., Open Problem 3.1.18).In the subsequent setions, we will show that every problem possessing a (private-oin)HVSZK proof redues to Entropy Differene. In doing so, we will make use of a moresophistiated (albeit less intuitive) measure of distane between probability distributionsthan statistial di�erene.De�nition 3.3.4 Let X and Y be two disrete probability distributions. The relative en-tropy (or Kullbak{Leibler distane) between X and Y is de�ned asRelEnt (X;Y ) def= E� X �log Pr [X = �℄Pr [Y = �℄ � :We also de�ne the binary relative entropy for p; q 2 [0; 1℄ byRelEnt2 (p; q) def= p log pq + (1� p) log 1� p1� q :Note that if X and Y are 0{1 random variables with expetions p and q respetively, thenRelEnt (X;Y ) = RelEnt2 (p; q).Although RelEnt (�; �) is not symmetri and does not satisfy the triangle inequality, it isuseful to think of it as a distane between probability distributions. It does have some ofthe other properties we would expet suh a distane measure to have.Fat 3.3.5 For any two distributions X and Y ,1. RelEnt (X;Y ) � 0, with equality i� X and Y are identially distributed.2. For any funtion f , RelEnt (f(X); f(Y )) � RelEnt (X;Y ).3. For any 0 � q0 � q � p � p0 � 1, RelEnt2 (p0; q0) � RelEnt2 (p; q).Proofs for these fats an be found in any standard text on information theory, suh as[CT91℄. Item 2 is equivalent to the Log Sum Inequality [CT91, Thm. 2.7.1℄, and Item 3follows from the onvexity of RelEnt (�; �) [CT91, Thm. 2.7.2℄.One other notion from information theory that will prove useful to us is that of on-ditional entropy, whih, for a joint distribution (X;Y ), measures how muh randomness isleft in X after Y is revealed.



54 CHAPTER 3. COMPLETE PROBLEMSDe�nition 3.3.6 (onditional entropy) If (X;Y ) is a joint probability distribution, thenthe onditional entropy of X given Y , denoted H(XjY ), is de�ned asH(XjY ) def= Ey Y [H(XjY=y)℄ :Some basi fats about onditional entropy, whose proofs an be found in [CT91℄, follow.Fat 3.3.7 For every joint distribution (X;Y ),1. H(XjY ) � H(X).2. H(X;Y ) = H(Y ) + H(XjY ).3.3.2 The Aiello{H�astad simulator analysisIn this setion, we present the simulator analysis for private-oin statistial zero-knowledgeproofs, due to Aiello and H�astad [AH91℄. Following, Petrank and Tardos [PT96℄, we formu-late the analysis in terms of entropy and relative entropy, rather than in terms of set sizesas done in [AH91℄. This simulator analysis will be used in Setion 3.3.3 to show that everyproblem in HVSZK redues to Entropy Differene.Notation and onventions. Let (P; V ) be an interative proof system for a promiseproblem � and let S be a simulator for (P; V ). We follow the notation and onventions givenin Setion 3.2.2. In partiular, v(jxj) is a polynomial bound on the number of messages sentfrom the veri�er to the prover on input x. In addition, we let t(jxj) and r(jxj) be polynomialbounds on the total ommuniation in the proof system (as measured in bits) and thenumber of random bits aessed by the veri�er, respetively. We now modify the proofsystem so that the veri�er sends its random oins to the prover in an additional messagejust before the end of the protool. S an be modi�ed to simulate this without inreasingthe simulator deviation (sine S was supposed to simulate the veri�er's oins, too), and thisdoes not inrease the ompleteness or soundness errors. The total ommuniation and thenumber of messages sent from the veri�er to prover now inrease to t0(jxj) = t(jxj) + r(jxj)and v0(jxj) = v(jxj) + 1, respetively. The purpose of this modi�ation is so that we maysimultaneously analyze the simulation of the messages exhanged and the simulation of theveri�er's random oins, rather treating them separately.The simulator analysis. Reall that, aording to the approah outlined in Se-tion 3.2.1, the �rst step in analyzing the simulator is to quantify what it means for thevirtual veri�er to \behave like" the real veri�er. In the ase of publi-oin proofs, it waseasy to see that this amounts to measuring how lose to uniform and independent of historythe virtual veri�er's messages are. For private-oin proofs, however, the analogous onditionis less obvious. Intuitively, it should somehow apture the requirement that the veri�er'smessages are distributed almost orretly, given the history, but it is unlear how to quan-tify this. For a lue, we skip to the seond step, and ompare the output of the simulatorto the interation hPS ; V i between the simulation-based prover (as de�ned in Setion 3.2.2)



3.3. ANALYZING GENERAL HVSZK PROOFS 55and the real veri�er. The only di�erene between these distributions is that, in the sim-ulator, the real veri�er is replaed with the virtual veri�er, so omparing hPS ; V i and Sis tantamount to omparing the real veri�er and virtual verifer. Amazingly, the relativeentropy between these distributions an be rewritten exatly as an expression just involvingentropies of pre�xes of the simulator's output.Lemma 3.3.8 (impliit in [AH91℄, expliit in [PT96℄)RelEnt (S(x); hPS ; V i(x)) = r(jxj)� v0(jxj)Xi=1 [H(S(x)2i)�H(S(x)2i�1)℄The term H(S(x)2i) � H(S(x)2i�1) equals the onditional entropy H(S(x)2ijS(x)2i�1).Intuitively, this measures how many bits of randomness the i'th virtual veri�er messageontributes to the output distribution of the simulator. Sine, over the ourse of the entireinteration, the real veri�er exposes all of its r random oins, the sum of these terms shouldbe lose to r when the simulation is good. The onverse is also plausible. If this sum islose to r, then it means that the virtual veri�er's randomness has been fully spread outover its messages. Sine we have required that the simulator's output is onsistent withthe veri�er algorithm, this should mean that the virtual veri�er is indeed behaving like thereal veri�er. Therefore, we use the same quantity to ompare how muh the virtual veri�erbehaves like the real veri�er and to measure the similarity between the distributions S(x)and hPS ; V i(x), in ontrast to the publi-oin ase, in whih we used di�erent measures forthese two purposes and related them via Lemma 3.2.3.Proof: For a transript , we we let i denote the pre�x of  onsisting of the �rst imessages exhanged. Then, by de�nition,RelEnt (S; hPS ; V i) = X Pr [S = ℄ � log Pr [S = ℄Pr [hPS ; V i = ℄= X Pr [S = ℄ � log Q2vi=1 Pr [Si = ijSi�1 = i�1℄Q2vi=1 Pr �hPS ; V ii = ijhPS ; V ii�1 = i�1�= X Pr [S = ℄ � log Qvj=1 Pr [S2j = 2j jS2j�1 = 2j�1℄Qvj=1 Pr hhPS ; V i2j = 2j jhPS ; V i2j�1 = 2j�1iwhere the last equality is due to the de�nition of PS , by whihPr hhPS ; V i2j�1 = 2j�1jhPS ; V i2j�2 = 2j�2i = Pr [S2j�1 = 2j�1jS2j�2 = 2j�2℄ :A key observation is that, for any transript , the denominator in the above fration equalsthe reiproal of the number of possible outomes of the veri�er oins (i.e., 2�r), sine even-indexed messages of hPS ; V i are generated by V exatly as in hP; V i. Multiplying both the



56 CHAPTER 3. COMPLETE PROBLEMSnumerator and denominator in the above fration by Qvj=1 Pr [S2j�1 = 2j�1℄, we obtainRelEnt (S; hPS ; V i) = X Pr [S = ℄ � log Qvj=1 Pr [S2j = 2j ℄2�r �Qvj=1Pr [S2j�1 = 2j�1℄= vXj=1X Pr [S = ℄ � log Pr [S2j = 2j ℄+r + vXj=1X Pr [S = ℄ � log 1Pr [S2j�1 = 2j�1℄= � vXj=1H(S2j) + r + vXj=1H(S2j�1)The lemma follows.We will now on�rm that, when the simulation is good (e.g., for yes instanes), thevirtual veri�er does indeed behave like the real veri�er, as measured by the expression inLemma 3.3.8. In order to do this, we will observe that the expression is zero if S(x) isreplaed by hP; V i(x). When the simulation is good, it follows that H(S(x)i) is approxi-mately equal to H(hP; V i(x)i), so replaing former by the latter does not a�et the valuesigni�antly. Sine the quality of the simulation is given in terms of statistial di�erene,we need a bound on entropy di�erene in terms of statistial di�erene.Fat 3.3.9 For any two random variables, X and Y , ranging over a universe U it holdsthat jH(X) �H(Y )j � log(jUj � 1) � Æ + H2(Æ)where Æ def= StatDi� (X;Y ).This fat an be inferred from Fano's Inequality (f., [CT91, Thm. 2.11.1℄). A more diretproof follows.Proof: Assume Æ > 0 or else the laim is obvious. Consider the desription of statistialdi�erene in terms of area (Fat 3.1.9 and Figure 3-1). Let C, X+, and Y + denote thedistributions on U indued by hoosing a point uniformly in the ommon region, X-aboveregion, and Y -above region, respetively.Think of X (resp., Y ) as being generated by ipping a biased oin R whih is 1 withprobability 1 � Æ, and then outputting a sample of C if R = 1 and a sample of X+ (resp.,Y +) otherwise. Then, by Fats 3.3.2 and 3.3.7,H(X) � H(X;R)= H(R) + H(XjR)= H2(Æ) + (1� Æ) � H(C) + Æ � H(X+);



3.3. ANALYZING GENERAL HVSZK PROOFS 57and H(Y ) � H(Y jR) � (1� Æ) �H(C):Observing that Pr [X+ = x℄ = 0 on at least one x 2 U , it follows that H(X+) � log(jUj�1),and the fat follows.Remark 3.3.10 The above bound is tight. Let e 2 U and onsider X whih is identiallye, and Y whih with probability 1�Æ equals e and otherwise is uniform over Unfeg. Clearly,StatDi� (X;Y ) = Æ and H(Y )�H(X) = Æ log(jUj � 1) + H2(Æ)� 0.Thus, we have the following lemma, analogous to Lemma 3.2.1 in the publi-oin ase.Lemma 3.3.11 (impliit in [AH91, PT96℄) Let Æ(x) = StatDi� (S(x); hP; V i(x)). Thenr(jxj)� v0(jxj)Xi=1 [H(S(x)2i)�H(S(x)2i�1)℄ � 2v0(x) � �t0(x) � Æ(x) + H2(Æ(x))� :Proof: Consider a perfet simulator (i.e., of zero deviation), denoted S, for hP; V i. Notethat the simulator-based-prover with respet to S is P itself. Thus, by Lemma 3.3.8,r + 2v0Xi=1(�1)i+1 � H(hP; V ii) = r + 2v0Xi=1(�1)i+1 � H(Si)= RelEnt �S; hP; V i� = 0Now we haver + 2v0Xi=1(�1)i+1 �H(Si) � r + 2v0Xi=1(�1)i+1 � H(hP; V ii) + 2v0Xi=1 jH(Si)�H(hP; V ii)j= 0 + 2v0Xi=1 jH(Si)�H(hP; V ii)j� 2v0 � (Æ � t0 +H2(Æ));where the last inequality is by Fat 3.3.9.Finally, we observe that a lemma analogous to Lemma 3.2.4 holds for the relative entropymeasure.Lemma 3.3.12 (impliit in [AH91, PT96℄) Let p denote the probability that S(x) out-puts an aepting transript, let q be the maximum, taken over all provers P �, that V aeptsin (P �; V )(x), and assume that p � q. Then,RelEnt (S(x); hPS ; V i(x)) � RelEnt2 (p; q):



58 CHAPTER 3. COMPLETE PROBLEMSProof: De�ne a Boolean funtion on transripts by f() = 1 if  is aepting and f() = 0otherwise. By Fat 3.3.5, Items 2 and 3, we haveRelEnt (S; hPS ; V i) � RelEnt (f(S); f(hPS ; V i)) = RelEnt2 �p; q0� � RelEnt2 (p; q);where q0 � q equals the probability that hPS ; V i is aepting.3.3.3 Reduing to Entropy DiffereneIn analogy with Setion 3.2.3, we now use the simulator analysis of the previous setion toredue every problem in HVSZK to Entropy Differene.Theorem 3.3.13 Every promise problem possessing a weak publi-oin honest-veri�er sta-tistial zero-knowledge proof redues to ED.Proof: Let � be a promise problem with a weak honest-veri�er statistial zero-knowledgeproof (P; V ). We maintain the notation and onventions from the Setion 3.3.2, in partiular�xing k = jxj and dropping it from the notation. We also hide the dependeny of the variousparameters and distributions on x from the notation throughout this proof. Without lossof generality, we assume that � has ompleteness and soundness errors  = s = 2�40. LetS be a simulator for (P; V ) ahieving simulator deviation � � min f1=v0t0; �g ; where � is asmall onstant to be determined from the proof.The redution should map an input x to a pair of distributions (X;Y ) suh that X or Yhas larger entropy, depending on whether x is yes instane or no instane, respetively. X isde�ned as X = S2
S4
� � �
S2v0 , and the Y will be losely related to the distribution Y1 =S1
S3
� � �
S2v0�1: Note that H(X) =PiH(S2i) and H(Y1) =PiH(S2i�1). Lemma 3.3.11implies that, in the ase of yes instanes, H(X) � H(Y1) + r. Lemmas 3.3.8 and 3.3.12imply that H(X) � H(Y1) + r for no instanes on whih the simulator outputs aeptingtransripts with too muh probability. To ompensate for the r in these expressions, wede�ne Y2 to be the uniform distribution on r� 7 bits. We still need to handle the ase thatthe simulator outputs aepting onversations with low probability. Therefore, we de�ne adistribution Y3 that we will use to arti�ially inrease the entropy of Y in this ase.Y3: Run S 8 ln(t0v0 + 2) times independently. If the veri�er rejets in the majority of thetransripts obtained, output t0v0+2 random bits. Otherwise, output the empty string.We de�ne Y = Y1 
 Y2 
 Y3.Claim 3.3.14 If x is a yes instane, then H(X) � H(Y ) + 1.Proof of laim: By Lemma 3.3.11,H(Y1) + r �H(X) � 2v0 � �t0 � �+H2(�)� :Standard Taylor estimates show that H2(Æ) = Æ � log(1=Æ) +O(Æ) for small Æ, sowe may assume that H2(�) � p�. Also noting that t0 � v0, we haveH(Y1) + r �H(X) � 2v0 "t0 � � 1v0t0�+r 1v0t0# � 4:



3.3. ANALYZING GENERAL HVSZK PROOFS 59To bound the entropy of Y3, observe that, on yes instanes x, S must outputrejeting onversations with probability at most 2�40+� � 1=4. By the Cherno�bound (Theorem A.1), the probability p that the majority of the onversationssampled from S are rejeting satis�esp � exp ��2 � (8 ln(t0v0 + 2)) � (1=4)2� � 1t0v0 + 2 :Thus, H(Y3) � p � �t0v0 + 2�+ (1� p) � 0 + H2(p)� 1 + 0 + 1 = 2:Putting the above together, we haveH(Y ) = H(Y1) + H(Y2) + H(Y3)� (H(X) + 4� r) + (r � 7) + 2� H(X) � 1:Claim 3.3.15 If x is a no instane, then H(Y ) � H(X) + 1.Proof of laim: It suÆes to show that either H(Y1) + H(Y2) � H(X) + 1or H(Y3) � H(X) + 1. First, suppose the simulator outputs aepting onver-sations with probability at most 1=4. By the Cherno� bound (Theorem A.1),the probability p that the majority of the onversations independently sampledfrom S are aepting isp � exp ��2 � (8 ln(t0v0 + 2)) � (1=4)2� � 1t0v0 + 2 :Thus, H(Y3) � (1� p) � (t0v0 + 2) � t0v0 + 1 � H(X) + 1;where the last inequality is beause X outputs at most t0v0 bits.Now, suppose that the simulator outputs aepting onversations with prob-ability at least 1=4. By Lemma 3.2.4, the relative entropy between S andhPS ; V i is at least RelEnt2 �1=4; 2�40� > 8. By Lemma 3.3.8, this implies thatr �H(X) +H(Y1) � 8, and thereforeH(Y1) + H(Y2) � (r � 7) + (8 + H(X) � r) = H(X) + 1: 2These laims show that the map x 7! (X;Y ) is a Karp redution from � to ED.Note that the above proof only requires a simulator with deviation � = O(1=t0v0) =O(1=[(t+r) �v℄), where t is a bound on the total ommuniation, r is the number of random



60 CHAPTER 3. COMPLETE PROBLEMSoins used by the veri�er, and v is the number of messages sent from the veri�er to theprover.Theorem 3.3.16 (Thm. 3.3.13, generalized) There is a onstant C suh that the fol-lowing holds. Suppose a promise problem � possesses an interative proof system (P; V )with ompleteness and soundness errors 1=3, in whih the number of messages exhangedis m(n), the total ommuniation is t(n), and the veri�er uses r(n) random oins oninputs of length n. Suppose further that (P; V ) has a simulator that ahieves deviation�(n) � 1= [C �m(n) � (t(n) + r(n))℄. Then, � redues to ED.As with Theorem 3.2.8, this result also applies to proof systems with ompleteness andsoundness errors other than 1=3, as the error an be redued using parallel repetitions.(Indeed, this is why we may we state Theorem 3.3.16 for error 1=3, when we assumed error2�40 in the proof.) Note that the parallel repetitions inrease t and r in addition to �.3.4 Entropy Differene redues to Statistial DiffereneIn this setion, we omplete the irle of redutions, by showing that Entropy Differeneredues to Statistial Differene. It will then follow that both problems are ompletefor HVSZK. The main tehnial tool in the redution is 2-universal hash funtions, sowe begin by desribing those in Setion 3.4.1. Then, in Setion 3.4.2, we explain themain ideas in the redution, by treating the speial ase of \at" distributions, whihare distributions whih are uniform over some subset of their range. In Setion 3.4.3, weformalize the notion of a \nearly at" distribution and present some standard tehniques for\attening" distributions. Finally, we ombine all these ideas to give the general redutionin Setion 3.4.4.3.4.1 Universal hashingUniversal hash funtions, introdued by Carter and Wegman [CW79℄, are families of fun-tions whose values are pairwise independent. They have a wide variety of appliations inomputer siene, and we will use them many times throughout this thesis.De�nition 3.4.1 (universal hash funtions [CW79℄) A family H of funtions map-ping a domain D to a range R is 2-universal if for every x 6= y 2 D and a; b 2 R,Prh H [h(x) = a & h(y) = b℄ = 1jRj2 :There exist very eÆient families of 2-universal hash funtions. For example, if weidentify the set f0; 1g with GF(2), the set of aÆne-linear funtions Hm;n from GF(2)m toGF(2)n is a 2-universal family of hash funtions from f0; 1gm to f0; 1gn. Every funtionh in this family an be uniquely written in the form h(x) = Ax + b, where A is an n �mmatrix over GF(2) and b is a vetor in GF(2)n. Throughout this thesis, we write Hm;n forthis partiular family of 2-universal hash funtions (with this represenation).



3.4. ED REDUCES TO SD 613.4.2 A speial ase | at distributionsIn order to motivate our redution from Entropy Differene to Statistial Differ-ene, we �rst limit ourselves to a simpler lass of distributions. A distribution X is alledat if all elements in the support of X have the same probability mass. That is, X is theuniform distribution on Supp(X). The simplifying assumptions we make is that we aregiven an instane (X;Y ) of ED suh that1. X and Y are both at.2. jH(X) �H(Y )j � k, where k is \the seurity parameter".Now we want to onstrut from (X;Y ) a new pair of distributions (A;B) suh that ifH(X) � H(Y ) + k, then A and B are statistially far apart, and if H(Y ) � H(X) + k, thenA and B are statistially lose. Let SX and SY be the supports of X and Y , respetively.By the de�nition of entropy, jSX j = 2H(X) and jSY j = 2H(Y ), so the ondition H(X)� H(Y )is equivalent to the ondition jSX j � jSY j and similarly for H(Y )� H(X).The following speial ase of the \Leftover Hash Lemma" shows how to onvert atdistributions with high entropy into uniform ones.Lemma 3.4.2 (Leftover Hash Lemma for at distributions [ILL89℄) Let H be a 2-universal family of hash funtions mapping a domain D to a range R. Let Z be a atdistribution on D suh that jRj � " � 2H(Z) Then, the following distribution has statistialdi�erene at most "
(1) from the uniform distribution on H�R.� Choose h H and x Z. Output (h; h(x)).It is also easy to see that the same proess gives a distribution that is far from uniformif Z has small entropy: For any h, the number of values h(x) an take on is at mostjSupp(Z)j = 2H(Z), so if this is muh smaller than jRj, (h; h(x)) will be very far fromuniform on H�R.Lemma 3.4.3 Let H be any family of funtions mapping a domain D to a range R. LetZ be a at distribution on D suh that 2H(Z) � " � jRj. Then, the following distribution hasstatistial di�erene at least 1� " from the uniform distribution on H�R.� Choose h H and x Z. Output (h; h(x)).These two lemmas seem to be a step in the right diretion, beause they onvert aondition about entropy into a ondition about statistial di�erene: distributions withlarge entropy are transformed into ones having small statistial di�erene from uniform,whereas distributions with small entropy are transformed into ones with large statistialdi�erene from uniform. So, one approah would be to take Z = Y and hoose R suhthat jRj = 2jH(X)j. Then, the distribution desribed in the above lemmas and the uniformdistribution on H � R will have large or small statistial di�erene aording to whetherH(X)� H(Y ) or H(Y )� H(X), as desired. Unfortunately, onstruting a set R for whihjRj = 2H(X) requires that we know the entropy of X. If omputing (or even approximating)the entropy of a samplable distribution ould be done in polynomial time, then Entropy



62 CHAPTER 3. COMPLETE PROBLEMSDifferene would be in BPP and there would be nothing to prove! To overome thisdiÆulty, we adopt a tehnique of Okamoto [Oka96℄ (whih he alls \omplementary usageof messages").Reall that we are given a iruit (whih we also denote X) whih samples from X, andlet m denote the length of the input to this iruit. So, for any x, we let 
X(x) � f0; 1gmdenote the set of inputs to the iruit whih yield output x. Then, Pr [X = x℄ = 2�m �j
X(x)j. Sine X is at, we havej
X(x)j = 2m � Pr [X = x℄ = � 2m � 2�H(X) if x 2 SX .0 otherwise.The key observation is that for any x 2 SX , jSY � 
X(x)j = 2H(Y )+m�H(X). WhetherH(X)� H(Y ) or H(Y )� H(X) now translates to whether jSY �
X(x)j is� 2m or� 2m,where m is a value that we an ompute just by looking at the iruit for X! So, insteadof hashing Y down to a set of size 2H(X) bits, we will hash the uniform distribution onSY � 
X(x) down to f0; 1gm (for some x 2 SX). However, we are not expliitly givena sampling algorithm for 
X(x). This an be \simulated" by having eah of our newdistributions hoose r 2 f0; 1gm and reveal x = X(r). Then, onditioned on x, r is uniformlydistributed in 
X(x), as desired. That is, letting H = Hm+n;m, where n is the number ofoutput gates of Y , we de�ne A and B as follows.A: Choose r  f0; 1gm and let x = X(r). Choose h H, y  Y . Output (x; h; h(r; y)).B: Choose x X, h H, z  f0; 1gm. Output (x; h; z).It follows from our disussion above and Lemmas 3.4.2 and 3.4.3 that this redution isorret, under our assumptions about X and Y . That is, for at X and Y , we have:1. If H(X) > H(Y ) + k, then StatDi� (A;B) � 1� 2�
(k).2. If H(Y ) > H(X) + k, then StatDi� (A;B) � 2�
(k).To deal with general instanes of ED, we need to remove both of our simplifying as-sumptions. The assumption that jH(X)�H(Y )j � k is easy to ahieve. If let X 0 (resp., Y 0)onsist of k independent opies ofX (resp., Y ), then H(X 0) = k �H(X) and H(Y 0) = k �H(Y ).So, the di�erene in entropies is multiplied by k. The same onstrution also helps dealwith the fat that X and Y are not at. As we shall see in the next setion, taking manyindependent opies of eah distribution yields distributions that are \nearly at" (in a senseto be made preise later). Our �nal onstrution is therefore the same as the onstrutiondesribed above, merely augmented by replaing X and Y with many independent opiesof eah at the start.3.4.3 Flattening distributionsAs a preliminary step towards treating general instanes of Entropy Differene, weformulate the proess of \attening" distributions (i.e., making them \nearly at" by takingmany independent opies).



3.4. ED REDUCES TO SD 63De�nition 3.4.4 (heavy, light and typial elements) Let X be a distribution on a uni-verse U , x an element of U , and � a positive real number. We say that x is �-heavy (resp.,�-light) if Pr [X = x℄ � 2� � 2�H(X) (resp., Pr [X = x℄ � 2�� � 2�H(X)). Otherwise, we saythat x is �-typial.A natural relaxed de�nition of atness follows. The de�nition links the amount ofslakness allowed in \typial" elements with the probability mass assigned to non-typialelements.De�nition 3.4.5 (nearly at distributions) A distribution X is alled �-at if for ev-ery t > 0 the probability that an element hosen from X is t ��-typial is at least 1�2�t2+1.By straightforward appliation of Hoe�ding Inequality, we haveLemma 3.4.6 (Flattening Lemma) Let X be a distribution, k a positive integer, and
kX denote the distribution omposed of k independent opies of X. Suppose that for allx in the support of X it holds that Pr [X = x℄ � 2�m. Then 
kX is pk �m-at.Proof: For every x in the support of X, we de�ne the weight of x to be wt(x) =� log Pr [X = x℄. Then wt(�) maps the support of X to [0;m℄. For every x1; : : : ; xk, wehave log 1Pr [
kX = (x1; : : : ; xk)℄ = kXi=1 wt(xi):Thus, if we let X1; : : : ;Xk be independent, identially distributed opies of X, we have:Pr �
kX is not t�-typial� = Pr"����� kXi=1 wt(Xi)�H(
kX)����� � t�# :For every i, E[wt(Xi)℄ = H(X) and H(
kX) = k �H(X), so we are bounding the probabilitythat the average of k independent, identially distributed random variables taking values in[0;m℄ deviates from its expetation by t�=k. By the Hoe�ding Inequality (Theorem A.2),this probability is at most 2 � exp��2 � k � (t�=k)2m2 � :For � = pk �m this bound beomes 2 exp(�2t2) � 2�t2+1, establishing the lemma.The key point is that the entropy of 
kX grows linearly with k, whereas its deviationfrom atness grows signi�antly more slowly (i.e., linear in pk) as a funtion of k. Notethat if X is a distribution de�ned by a iruit with ` input gates, then Pr [X = x℄ � 2�` forall x in the support of X, so the onlusion of Lemma 3.4.6 holds with m = `. The othermain tool we will use is the following more general form of the Leftover Hash Lemma.:Lemma 3.4.7 (Leftover Hash Lemma [ILL89℄) Let H be a 2-universal family of hashfuntions mapping a domain D to a range R. Suppose Z is a distribution on D suh thatwith probability at least 1�Æ over z seleted from Z, Pr [Z = z℄ � "=jRj. Then the followingdistribution has statistial di�erene at most O(Æ + "1=3) from the uniform distribution onH�R.



64 CHAPTER 3. COMPLETE PROBLEMS� Choose h H and z  Z. Output (h; h(z)).In partiular, notie that if Z is a �-at distribution, then for any parameters s; t > 0,Z satis�es the hypothesis of the Leftover Hash Lemma with jRj = 2H(X)�t��s, Æ = 2�t2+1,and " = 2�s.3.4.4 The general redutionNow, we ombine the ideas of Setion 3.4.2 with the tools in Setion 3.4.3 to prove ourdesired result.Theorem 3.4.8 Entropy Differene redues to Statistial Differene.Proof: Given an instane (X;Y ) of Entropy Differene, we desribe how to eÆientlyprodue an instane (A;B) of Statistial Differene suh that the latter is a yes orno instane aording to whether the former is. By arti�ially adding gates if neessary,we may assume that both X and Y have m input gates and n output gates. Let k be alarge onstant (to be determined from the proof). Set q = 9km2 and de�ne X 0 = 
qX,Y 0 = 
qY . X 0 and Y 0 have input (resp., output) length m0 = qm (resp., n0 = qn). LetH = Hm0+n0;m0 . The distributions A and B are de�ned just as in Setion 3.4.2, exept thatwe use X 0 and Y 0 instead of X and Y :A: Choose r  f0; 1gm0 and let x = X 0(r). Choose h  H and y  Y 0. Output(x; h; h(r; y)).B: Choose x X 0, h H, and z  f0; 1gm0 . Output (x; h; z).Now we analyze this onstrution. We denote the omponents of the distributionsby A = (A1; A2; A3) and B = (B1; B2; B3). By Lemma 3.4.6, X 0 and Y 0 are �-at for� = p9km2 �m = 3pk �m2. Noting that q > 2pk�+ k, we have:Claim 3.4.9 (X;Y ) 2 EDY ) H(X 0) > H(Y 0) + 2pk�+ k:(X;Y ) 2 EDN ) H(Y 0) > H(X 0) + 2pk�+ k:Now we show that A and B are statistially far or lose aording whether X or Y haslarger entropy.Claim 3.4.10 If (X;Y ) 2 EDY , then StatDi� (A;B) � 1�O(2�k):Proof of laim: (A1; A2) and (B1; B2) are both distributed aording toX 0 
 H. Thus, to show that A and B are statistially far, it suÆes to showthat onditioned on most values (x; h)  X 0 
 H, the marginal distributionon A3 and B3 are statistially far. Sine X 0 is � at, x  X 0 is pk�-typialwith probability at least 1 � 2�k+1. Fix any suh pk�-typial x and �x anyh 2 H, and we ompare the distributions Ax;h = A3jA1=x;A2=h and Bx;h =



3.4. ED REDUCES TO SD 65B3jB1=x;B2=h. Bx;h is simply the uniform distribution on f0; 1gm0 . Ax is thedistribution obtained by seleting (r; y)  
X0(x) 
 Y 0 and outputting h(r; y).Sine Y 0 is �-at, y  Y 0 is pk�-typial with probability at least 1 � 2�k+1.Let Tx;h = nh(r; y) : r 2 
X0(x) and y is pk�-typialo :So, Ax;h lies in Tx;h with high probability. We will argue that jTx;hj is muhsmaller than 2m0 . jTx;hj is ertainly at most j
X0(x)j times the number of pk�-typial y's. j
X0(x)j � 2m0�H(X0)+pk�, beause x is pk�-typial. The numberof pk�-typial y's is at most 2H(Y 0)+pk�, sine they eah have mass at least2�H(Y 0)�pk�. Thus,jTx;hj � 2m0�H(X0)+pk� � 2H(Y 0)+pk� � 2m0�k;where the seond inequality is by Claim 3.4.9. So,StatDi� (Ax;h; Bx;h) � Pr [Ax;h 2 Tx;h℄� Pr [Bx;h 2 Tx;h℄� �1� 12k�1�+ 2m0�k2m0= 1�O(2�k):This holds for any h and any pk�-typial x, so to lower-bound the statistialdi�erene between A and B, we should subtrat the probability that x is nottypial, whih is also O(2�k). 2Claim 3.4.11 If (X;Y ) 2 EDN , then StatDi� (A;B) � 2�
(k):Proof of laim: As in the proof for yes instanes, �x any pk�-typialx. We onsider the distributions Ax = (A2; A3)jA1=x and Bx = (B2; B3)jB1=x.Bx is simply the uniform distribution on H � f0; 1gm0 . Ax is the distributionobtained by seleting (r; y)  
X0(x) 
 Y 0, h  H and outputting (h; h(r; y)).Sine 
X0(x) is a at distribution and Y 0 is �-at, 
X0(x) 
 Y 0 is also �-at.The entropy of this distribution an also be bounded by Claim 3.4.9 and thepk�-typiality of x as follows.H �
X0(x)
 Y 0� = log j
X0(x)j+H(Y 0)� �m0 �H(X 0)�pk��+ (H(X 0) + 2pk�+ k)� m0 + k +pk�:Thus, taking R = f0; 1gm0 , " = 2�k, and Æ = 2�k+1 in the Leftover Hash Lemma(Lemma 3.4.7), it follows that Ax has statistial di�erene at most 2�
(k) fromBx for any pk�-typial x. Sine x is pk�-typial with probability at least1�O(2k), A and B have statistial di�erene at most 2�
(k). 2The theorem follows from Claims 3.4.10 and 3.4.11, taking k to be a suÆiently largeonstant.



66 CHAPTER 3. COMPLETE PROBLEMS3.5 The Completeness TheoremPutting everything together, we obtain the main theorem of this hapter.Theorem 3.5.1 (Completeness Theorem) Statistial Differene and EntropyDifferene are both omplete for HVSZK.Proof: SD is in HVSZK by Theorem 3.1.21. Sine ED redues to SD (Theorem 3.4.8)and HVSZK is losed under Karp redutions (Proposition 2.4.1), it follows that ED 2HVSZK. Every problem in HVSZK redues to ED by Theorem 3.3.13. Composing theseredutions with the redution from ED to SD (Theorem 3.4.8), it follows that every problemin HVSZK redues to SD.This theorem has a number of immediate onsequenes. The �rst is that it gives us avery lear piture of expressiveness of statistial zero-knowledge proofs. Spei�ally, Theo-rem 3.5.1 has the following informal interpretation:The assertions that an be proven in statistial zero knowledge are exatlythose that an be ast as omparing two samplable distributions, with respet toeither their entropies or their statistial di�erene.The term \statistial zero knowledge" oined by Goldwasser, Miali, and Rako� [GMR89℄seems almost propheti of this haraterization of statistial zero knowledge as the lass of(approximate) statistial properties.A seond onsequene of this theorem is that questions about HVSZK an now betranslated to questions about these two spei� omplete problems, and onversely. Forexample, if we wish to show that every problem in HVSZK has a proof system witha ertain properties (suh as being onstant round, publi oin, zero knowledge againstheating veri�ers, or perfet zero knowledge), we need only exhibit suh a proof system forone of the omplete problems. Or a question suh as whether HVSZK is losed underomplementation now translates to asking if one of the omplete problems redues to itsomplement (whih is easily seen for Entropy Differene). Indeed, in the remainder ofthis thesis, these omplete problems will be used to prove many new results about HVSZKand also obtain muh simpler proofs of previously known results.This orrespondene is also fruitful in the reverse diretion; that is, from examiningHVSZK, we obtain new results about eÆiently samplable distributions, and how their en-tropies and statistial di�erenes an be manipulated. Already, we have seen a few examplesof this. The XOR Lemma (Lemma 3.1.16), the Polarization Lemma (Lemma 3.1.12), andthe redution from Entropy Differene to Statistial Differene (Theorem 3.4.8)are all results solely about manipulating eÆiently samplable distributions, whih are ofinterest independent of their signi�ane for zero-knowledge proofs. Yet, we obtained eahof these transformations by extrating ideas from works on statistial zero knowledge. Wewill see additional examples of this in the next hapter.



Chapter 4Appliations of the CompleteProblemsIn this hapter, we give a number of appliations of the Completeness Theorem. We brieydesribe these results by setion:Setion 4.1 | EÆient HVSZK proof systems. Using the ompleteness of Statis-tial Differene, we prove that every problem in HVSZK has a very ommuniation-eÆient honest-veri�er statistial zero-knowledge proof | namely, a two-message proofsystem with one bit of prover-to-veri�er ommuniation (to ahieve soundness error 1=2).Setion 4.2 | The omplexity of SZK. We dedue some of the important results onthe omplexity of HVSZK as immediate orollaries of the Completeness Theorem. Speif-ially, Okamoto's result that HVSZK is losed under omplement [Oka96℄ and the upperbounds of Fortnow [For89℄ and Aiello and H�astad [AH91℄ on the omplexity of HVSZKall follow immdeiately.Setion 4.3 | Expeted polynomial-time simulators. We show how our proof of theCompleteness Theorem implies that our de�nition ofHVSZK (using strit polynomial-timesimulators and a seurity parameter) is atually equivalent to the weaker GMR de�nition,and in fat equivalent to weak-HVSZK. That is, we show that every problem possessinga weak-HVSZK proof system also possesses an HVSZK proof system in our sense.Setion 4.4 | Reversing statistial di�erene. From the Completeness Theorem andthe losure of HVSZK under omplement, we dedue a novel result about manipulatingthe statistial di�erene between eÆiently samplable distributions. Spei�ally, we givea polynomial-time omputable transformation whih maps pairs of distributions that arestatistially lose (resp., far apart) to pairs that are statistially far apart (resp., lose). Wealso extrat a more expliit desription of suh a \Reversal Mapping" (that does not passthrough statistial zero-knowledge proofs). 67



68 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSSetion 4.5 | Closure properties. We prove strong Boolean losure properties ofHVSZK using the omplete problem Statistial Differene together with our resultsabout manipulating eÆiently samplable distributions (the XOR Lemma, Diret ProdutLemma, Polarization Lemma, and Reversal Mapping). These losure properties an beinterpreted as giving honest-veri�er statistial zero-knowledge proofs for omplex assertionsbuilt out simpler assertions already known to be inHVSZK (e.g., proving that at least halfof (x1; : : : ; xm) are yes instanes of some problem in � 2 HVSZK). Alternatively, theselosure properties an be viewed as asserting the losure of HVSZK under nonadaptiveCook redutions whose postomputation is done by a log-depth iruit.Setion 4.6 | Knowledge omplexity. We onsider the notions of knowledge om-plexity de�ned in [GMR89, GP91℄, whih aim to measure the amount of knowledge that isleaked in an interative proof. We show how (statistial) knowledge omplexity in the \hintsense" [GP91℄ an be understood in terms of statistial zero knowledge, and thereby useour results about HVSZK to obtain new results about this form of knowledge omplexity.In partiular, we obtain the �rst ollapse in any of the knowledge omplexity hierarhiesde�ned by Goldreih and Petrank [GP91℄. In addition, we obtain some tighter bounds onthe perfet knowledge omplexity of HVSZK.Setion 4.7 | Perfet and omputational zero knowledge. We apply the simula-tor analyses of Setions 3.2 and 3.3 to perfet and omputational zero-knowledge proofs.We obtain redutions to restrited versions of Statistial Differene and EntropyDifferene for HVPZK, and nontrivial results for publi-oinHVCZK, though they donot seem to yield omplete problems.Setion 4.8 | Zero-knowledge proofs for hard problems imply one-way fun-tions. Using the ompleteness of Statistial Differene, we obtain a simpler proof ofa theorem of Ostrovsky [Ost91℄, whih asserts that if HVSZK ontains a hard-on-averagelanguage, then one-way funtions exist. We also onsider the generalization of Ostrovsky'sresult to omputational zero knowledge, due to Ostrovsky and Wigderson [OW93℄. Usingthe simulator analysis from Setion 4.7, we also obtain a simpler proof of the Ostrovsky{Wigderson theorem in the ase of publi-oin omputational zero-knowledge proofs.4.1 EÆient HVSZK proof systemsOne immediate onsequene of the Completeness Theorem is that every problem inHVSZKinherits a proof system with the nie properties possessed by the one for StatistialDifferene (Protool 3.1.19).Corollary 4.1.1 Every problem inHVSZK has an honest-veri�er statistial zero-knowledgeproof system with the following properties:1. The proof system exhanges only 2 messages.2. The prover-to-veri�er ommuniation is only 1 bit.



4.2. THE COMPLEXITY OF SZK 693. The ompleteness error and simulator deviation are both 2�k.4. The soundness error is 1=2 + 2�k.5. The prover is deterministi.Okamoto [Oka96℄ has previously shown that every problem inHVSZK has a 2-messageHVSZK proof, but the other properties listed in Corollary 4.1.1 are new.The soundness error above an atually be redued to exatly 1=2 using a simpletrik [Gol99℄. Spei�ally, set p = 1=(1 + 2�k+1) and modify the proof system as fol-lows. At the start the veri�er automatially rejets with probability 1 � p, and otherwiseproeeds as in the original proof system. The soundness error beomes p �(1=2+2�k) = 1=2,the ompleteness error and simulator deviation beome at most 1� p+2�k = O(2�k), andthe other properties listed remain the same.It is easy to see that soundness error � 1=2 is the best ahievable in nontrivial proofsystems where the prover sends one bit and the ompleteness error is small.Proposition 4.1.2 Suppose promise problem � has an interative proof in whih the prover-to-veri�er ommuniation is one bit and the ompleteness error  and soundness error s areonstants satisfying 1�  > 2s. Then � 2 BPPProof: The following randomized algorithm deides �: Simulate the veri�er algorithmfor both possible prover responses. If either response makes the veri�er aept, then aept.On yes instanes, this algorithm will aept with probability at least 1� , sine om-pleteness tells us that there is a good response with at least that probability. On noinstanes, this algorithm will aept with probability at most 2s, for otherwise a proverstrategy that hooses its response uniformly at random will make the veri�er aept withprobability greater than s. Sine 1 �  > 2s and both quantities are onstants, the errorprobability of this algorithm an be redued via the usual method.4.2 The omplexity of SZKFrom the omplete problems, we obtain as immediate orollaries some of the most importantresults known about the omplexity of HVSZK. First note that the omplete problemEntropy Differene has a trivial redution to its omplement | the map (X;Y ) 7!(Y;X). From this (and the losure of HVSZK under redutions), we obtain a trivial proofof Okamoto's result that HVSZK is losed under omplement.Corollary 4.2.1 ([Oka96℄) HVSZK is losed under omplement.From the eÆient proof systems given by Corollary 4.1.1 and losure under omplement,the main results of Fortnow [For89℄ and Aiello and H�astad [AH91℄ immediately follow.Corollary 4.2.2 ([For89, AH91℄) HVSZK � AM \ o-AM.This is a strong upper bound on the omplexity of HVSZK, as demonstrated by thefollowing result of Boppana, H�astad, and Zahos [BHZ87℄.



70 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSProposition 4.2.3 ([BHZ87℄) If NP � o-AM, then the Polynomial Hierarhy (PH)ollapses.From these two results, it immediately follows that neitherNP nor o-NP are ontainedin HVSZK unless the PH ollapses. Moreover, HVSZK annot ontain any problem thatis NP-hard under any type of redution that AM \ o-AM is losed under. As notedin [ESY84, GG98a℄, some are must be taken here, sine we are dealing with lasses ofpromise problems. As a lass of promise problems, AM\ o-AM is atually unlikely to belosed under the most general form of Cook redutions. It is, however, losed under Cookredutions whih are either nonadaptive (i.e., the orale queries are made all at one, priorto reeiving any answers) or smart (i.e., the queries do not violate the promise) [ESY84,GG98a℄.1The ompleteness of Statistial Differene also illustrates a loser onnetion be-tween HVSZK and BPP than might be evident from their de�nitions.Proposition 4.2.4 Let 1-SD be the promise problem obtained by restriting the iruits inthe de�nition of SD to have only one bit of output. Then 1-SD is omplete for BPP.Proof: To see that 1-SD is in BPP, �rst observe that for any distributions X and Y onf0; 1g, StatDi� (X;Y ) = jPr [X = 1℄� Pr [Y = 1℄j :Thus, an estimate on StatDi� (X;Y ) that is orret within an additive fator of, say, 1/6,an be obtained by sampling X and Y a onstant number of times and ounting the numberof ones that our. This is suÆient to deide 1-SD.Now we show that every promise problem � 2 BPP redues to 1-SD. Let A be theprobabilisti polynomial time mahine that deides � with two-sided error at most 1=3.Given an input x, it is possible to ompute in polynomial time a iruit Xx desribingthe omputation of A on input x (see, e.g., the proof of Cook's theorem in [Pap94℄). Theinputs to Xx are the random bits used by A's omputation on x and the output is 1(resp., 0) if A aepts (resp., rejets). Let Y be a iruit whih always outputs 0. ThenStatDi� (Xx; Y ) = Pr [A(x) aepts℄, so x 7! (Xx; Y ) is a redution from � to 1-SD.Proposition 4.2.4 remains true even if we allow the iruits to have output length log-arithmi in their size. Analogously restriting SD1;1=2 to have one output bit yields aomplete problem for o-RP, and restriting the input length of SD to be one bit or loga-rithmially many bits yields a omplete problem for P (under logarithmi-spae redutions).4.3 Expeted polynomial-time simulatorsReall that our de�nition of statistial zero knowledge di�ers from the de�nition of Gold-wasser, Miali, and Rako� [GMR89℄ in several ways. The GMR de�nition is a weaker1It should be noted that these problems disappear if one onsiders only languages. When restrited tolanguages, AM \ o-AM is losed under general Cook redutions, and no language in AM \ o-AM anbe NP-hard with respet to even more general forms of reduibility (unless PH ollapses) [Sh88℄.



4.4. REVERSING STATISTICAL DIFFERENCE 71requirement in that it allows expeted polynomial time simulators whose deviation is afuntion of the input length rather than a separate seurity parameter. De�nition 2.4.2introdues weak-HVSZK as an even weaker notion, in whih, for every polynomial p(�),there an be a di�erent simulator to ahieve simulator deviation 1=p(jxj). From the de�ni-tions, HVSZK � weak-HVSZK, and the lass satisfying the GMR de�nition (for honestveri�ers) lies between these two lasses. Our proof of the ompleteness theorem atuallydemonstrates that all three of these lasses are equal.Corollary 4.3.1 weak-HVSZK = HVSZK.Proof: Theorem 3.3.13 shows that every problem inweak-HVSZK redues to ED. SineED 2 HVSZK and HVSZK is losed under redutions, weak-HVSZK � HVSZK.From Corollary 4.1.1, this implies that every problem in weak-HVSZK in fat hasan honest-veri�er statistial zero-knowledge proof with exponentially small simulator devi-ation as a funtion of a seurity parameter. Thus, the relatively weak inverse-polynomialsimulation ondition of weak-HVSZK an always be bootstrapped into this very strongone.4.4 Reversing statistial di�ereneThe ompleteness of Statistial Differene together with the losure of HVSZK un-der omplementation imply that SD redues to SD. This is equivalent to the followingsurprising result about manipulating statistial di�erene.Corollary 4.4.1 (Reversal Mapping) There is a polynomial-time omputable funtionthat maps pairs of iruits (X;Y ) to pairs of iruits (X 0; Y 0) suh thatStatDi� (X;Y ) � 2=3 ) StatDi� �X 0; Y 0� � 1=3StatDi� (X;Y ) � 1=3 ) StatDi� �X 0; Y 0� � 2=3Although the statement of this result does not involve zero-knowledge proofs, the proofof it given above and (and its original disovery in [SV97℄) both involve transformationsand analysis of statistial zero-knowledge proofs. In this setion, we give a more diretonstrution of suh a mapping, that does not use zero-knowledge proofs (though it isbased on ideas extrated from works on statistial zero knowledge [Oka96, SV97, GV99℄).Reall that the other omplete problem for HVSZK, Entropy Differene, has atrivial redution to its omplement, namely the map (X;Y ) 7! (Y;X). Also reall that,in Setion 3.4, we gave a diret redution from ED to SD. Thus, to redue SD to itsomplement, it suÆes to give a diret redution from SD to ED. That is what we proeedto do.Let (X0;X1) be an instane of SD and onsider the following joint distribution Y =(X;B):Y = (X;B): Choose b f0; 1g. Sample x Xb. Output (x; b).



72 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSIntuitively, if X0 and X1 are statistially very far apart, then b is essentially determined byx, and therefore H(Y ) � H(X). On the other hand, if X0 and X1 are statistially very lose,then b is essentially independent of x and therefore H(Y ) � H(X) + 1. Thus, the statistialloseness of X0 and X1 is onverted into entropy; this same onstrution was used byGoldreih [Gol90℄ in the omputational setting to onvert omputational indistinguishabilityinto \false entropy."We now make this intuition quantitative by estimating H(Y ) as a funtion of H(X) andthe statistial di�erene between X0 and X1.Claim 4.4.2 Let Æ = StatDi� (X0;X1). Then 1� Æ � H(Y )�H(X) � H2((1 + Æ)=2).Proof of laim: By Fat 3.3.7, H(Y ) = H(X) + H(BjX), so our task is tobound H(BjX) above and below. For the lower bound, onsider the desriptionof statistial di�erene in terms of area (Fat 3.1.9 and Figure 3-1). Withoutloss of generality, assume that both X0 and X1 have n output gates and therebyde�ne distributions on universe U = f0; 1gn. Let C, X+0 , and X+1 denote thedistributions on U indued by hoosing a point uniformly in the ommon region,X0-above region, and X1-above region, respetively. We an think of Y as beinggenerated as in the proof of Lemma 3.1.8: A biased oin D is ipped suh thatD is 0 with probability 1� Æ. If D = 0, then X is hosen aording to C and Bis seleted uniformly in f0; 1g. If D = 1, then B is seleted uniformly in f0; 1gand X is hosen aording to X+B . Now, onditioned on D = 0, B is uniform inf0; 1g and independent of X, soH(BjX) � H(BjX;D) � 1� Æ;whih gives the lower bound in the laim.For the upper bound, note that the distribution of (X;B) is the same as thedistribution of (x; b) in Protool 3.1.4. Let P (x) denote the spei�ed prover'sguess for b when given x in the protool (i.e., P (x) = 0 i� Pr [X0 = x℄ >Pr [X1 = x℄). In Lemma 3.1.8, we showed that P (X) = B with probability(1 + Æ)=2. Let E be the indiator for the event that P (X) = B. Then,H(BjX) � H(E) + H(BjX;E) = H2�1 + Æ2 �+ 0;sine B is determined by X and E. 2Plugging in Æ = 1=3; 2=3 into this laim, we see:(X0;X1) 2 SDY ) H(Y )�H(X) � H2(5=6) < :651(X0;X1) 2 SDN ) H(Y )�H(X) � 1� 1=3 > :666If we let X 0 = 
200X 
 U132, where U132 is the uniform distribution on 132 bits, andY 0 = 
200Y , then(X0;X1) 2 SDY ) H(Y 0)�H(X 0) < :651 � 200� 132 < �1(X0;X1) 2 SDN ) H(Y 0)�H(X 0) > :666 � 200� 132 > 1:



4.5. CLOSURE PROPERTIES 73Thus, (X0;X1) 7! (X 0; Y 0) is a redution from SD to ED, as desired.Remark 4.4.3 Clearly, the above tehnique an be used to redue SD�;� to ED for anyonstants � and � suh that H2((1 + �)=2) < 1 � �. After reduing to ED, one anapply the redution from ED to SD (Theorem 3.4.8) and the Polarization Lemma for SD(Lemma 3.1.12), to obtain a Polarization Lemma for SD�;� . Unfortunately, it turns out thatH2((1 +�)=2) � 1��2 for all � 2 [0; 1℄, so we must have �2 > � for this to work, in whihase Lemma 3.1.12 applies diretly. Hene, this does not answer Open Problem 3.1.18.In addition, both the upper and lower bounds in Claim 4.4.2 are tight. To maththe lower bound, onsider a universe of three points U = f0; 1; 2g, de�ne X0 to be 0 withprobability Æ and 2 otherwise, and de�neX1 to be 1 with probability Æ and 2 otherwise. ThenStatDi� (X0;X1) = Æ and H(BjX) = 1� Æ. To math the upper bound, onsider a universeof two points U = f0; 1g, de�ne X0 to be 0 with probability (1 + Æ)=2 and 1 otherwise, andX1 to be 1 with probability (1 + Æ)=2 and 0 otherwise. Then StatDi� (X0;X1) = Æ andH(BjX) = H2((1 + Æ)=2).4.5 Closure propertiesWe have already shown that HVSZK has two losure properties. Closure under Karpredutions (Proposition 2.4.1), whih is a omputational losure property, follows immedi-ately from our seurity-parameter based de�nition. Closure under omplementation (Corol-lary 4.2.1), whih is a Boolean losure property, follows from the symmetry of the ompleteproblem Entropy Differene. In this setion, we will prove that HVSZK satis�es astronger losure property that is both omputational and Boolean in nature.In order to motivate the losure property, we �rst desribe the onsequene it will havefor statistial zero-knowledge proofs. Suppose � is a problem in HVSZK and a proverwishes to onvine a veri�er not just that a string is a yes instane of �, but also that someomplex expressions built out of � are true. For example, they might be given m instanesx1; : : : ; xm of �, and the prover wishes to onvine the veri�er that exatly half of these areyes instanes. Or more generally, they are given m instanes of � together with an m-aryBoolean formula �(v1; : : : ; vm), and the prover wants to onvine the veri�er that � is truewhen v1; : : : ; vm are set to 0 or 1 aording to whether xi is a yes or no instane of �. Inthis setion, we demonstrate that suh Boolean expressions over � an be proven in (honest-veri�er) statistial zero knowledge as long as � 2 HVSZK. Moreover, the interation ispolynomially-bounded not just in jx1j; : : : ; jxmj and the seurity parameter, but also in mand j�j.In order to deal with instanes of promise problems that violate the promise, we willwork with an extension of Boolean algebra that inludes an additional \ambiguous" value?.De�nition 4.5.1 A partial assignment to variables v1; : : : ; vk is a k-tuple a = (a1; : : : ; ak) 2f0; 1; ?gk. For a propositional formula (or iruit) � on variables v1; : : : ; vk, the evaluation



74 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMS�(a) is reursively de�ned as follows:vi(a) = ai (� ^  )(a) = ( 1 if �(a) = 1 and  (a) = 10 if �(a) = 0 or  (a) = 0? otherwise(:�)(a) = 8<: 1 if �(a) = 00 if �(a) = 1? if �(a) = ? (� _  )(a) = ( 1 if �(a) = 1 or  (a) = 10 if �(a) = 0 and  (a) = 0? otherwiseNote that �(a) equals 1 (resp., 0) for some partial assignment a, then �(a0) also equals1 (resp., 0) for every Boolean a0 obtained by replaing every ? in a with either a 0 or1. The onverse, however, is not true: The formula � = v _ :v evaluates to 1 on everyBoolean assignment, yet is not 1 when evaluated at ?. Thus, the \law of exluded middle"� _ :� � 1 no longer holds in this setting. However, other identities in boolean algebrasuh as De Morgan's laws (e.g. :(� _  ) � :� ^ : ) do remain true.De�nition 4.5.2 For a promise problem �, the harateristi funtion of � is the map�� : f0; 1g� ! f0; 1; ?g given by ��(x) = ( 1 if x 2 �Y0 if x 2 �N? otherwiseThe following de�nition desribes preisely what kind of Boolean losure properties wewill ahieve. (Later, we will see how it an also be interpreted as losure under a ertainlass of polynomial-time redutions.)De�nition 4.5.3 For any promise problem �, we de�ne a new promise problem �(�) asfollows: �(�)Y = f(�; x1; : : : ; xm) : �(��(x1); : : : ; ��(xm)) = 1g�(�)N = f(�; x1; : : : ; xk) : �(��(x1); : : : ; ��(xm)) = 0g;where � is a m-ary propositional formula. Mon(�) is de�ned analogously, exept that onlymonotone � (i.e., without negations) are onsidered.De Santis et. al. [DDPY94℄ show that Mon(L) 2 PZK for any language L whih is\random self-reduible" or whose omplement is self-reduible. They also show Mon(L) 2HVSZK for any language whose omplement has a \noninterative" statistial zero-knowledgeproof. In addition, they give statistial zero-knowledge proofs for some simple statementsinvolving a random-self-reduible language and its omplement and for threshold formulaeover random-self-reduible languages. Damg�ard and Cramer [DC96℄ extend some of theseresults by showing that for any language L whih has a 3-message honest-veri�er publi-oinstatistial (resp., perfet) zero-knowledge proof, Mon(L) 2 SZK (resp., Mon(L) 2 PZK)and Mon(L) 2 HVSZK. The results of [DC96℄ atually apply to all monotone funtionswhih have an \eÆient seret-sharing sheme with ompletion," not just monotone formu-lae. In this setion, we prove a result whih holds for all of HVSZK and for all Booleanformulae, not just monotone ones:



4.5. CLOSURE PROPERTIES 75Theorem 4.5.4 For any promise problem � 2 HVSZK, �(�) 2 HVSZK.Although some of the results of [DDPY94, DC96℄ yield proof systems that are zeroknowledge even for heating veri�ers, this theorem only yields honest-veri�er proof systems.However, this weakness will be removed in Chapter 6, when we prove thatHVSZK = SZK.First, let us see how strong a result follows diretly from what we have already shown.Note that it is trivial to give a proof system when we restrit to formulae whih are on-juntions, i.e., �(v1; : : : ; vm) = Vmi=1 vi. The prover and veri�er exeute the HVSZK proofsystem for � (with error redued to� 1=m) on eah of the inputs xi and the veri�er aeptsi� it would aept in all m exeutions. This an be simulated by running the simulator for�'s proof system m times, on eah of the inputs. If all the xi's are yes instanes (i.e., theformula is true when all the vi's are set appropriately), then this simulation will be good,with deviation inreased just by a fator of m.Combining this observation with the fat that HVSZK is losed under omplementa-tion, it follows that we an also handle disjuntions. By an indutive argument, one anthen onstrut proof systems for arbitrary formulae. This, however, does not yield ourdesired result, beause the proof system may not be polynomially bounded in the size ofthe formula. Suppose, for example, that transforming the proof system for a problem �into one for its omplement or one for disjuntions over � squares the running time of theproof system. Then one an only a�ord to apply the indutive step a onstant numberof times while keeping the time polynomial. Therefore, one obtains a losure result foronstant-depth formulae (with unbounded fan-in), whih are provably weaker than generalformulae and do not ontain simple funtions like parity and majority [FSS84℄.To obtain a more eÆient onstrution, we �rst observe that it suÆes to fous on theomplete problem Statistial Differene. We then note that the tehniques developedby De Santis et. al. to show that Mon(L) 2 HVSZK for any random self-reduible languageL diretly generalize to SD. Spei�ally, our Diret Produt Lemma (Lemma 3.1.15) andXOR Lemma (Lemma 3.1.16) are generalizations of the methods they use to represent ANDand OR over random self-reduible languages. Combining these with our Reversal Mapping(Corollary 4.4.1) and Polarization Lemma (Lemma 3.1.12), we are able to eÆiently handleany Boolean formula over SD. The resulting onstrution an be viewed as purely an eÆ-ient proedure for manipulating statistial di�erene, whih may be of interest independentof statistial zero knowledge:Lemma 4.5.5 �(SD) redues to SD.Proof: For intuition, onsider two instanes of statistial di�erene (X0;X1) and (Y0; Y1),both of whih have statistial di�erene very lose to 1 or very lose to 0 (whih an beahieved by the Polarization Lemma). Then (X0
Y0;X1
Y1) will have statistial di�erenevery lose to 1 if either of the original statistial di�erenes is very lose to 1 and will havestatistial di�erene very lose to 0 otherwise. Thus, this operation represents OR. Similarly,the XOR operation in Proposition 3.1.17 represents AND. To obtain Lemma 4.5.5, we willreursively apply these onstrutions, taking are to keep the running time polynomial.Let w = (�; (X10 ;X11 ); : : : ; (Xm0 ;Xm1 )) be an instane of �(SD). By applying De Mor-gan's Laws, we may assume that the only negations in � are applied diretly to the vari-ables. By the Polarization Lemma (Lemma 3.1.12) and the Reversal Mapping (Corol-



76 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSlary 4.4.1), we an onstrut in polynomial time pairs of iruits (Y 10 ; Y 11 ); : : : ; (Y m0 ; Y m1 )and (Z10 ; Z11 ); : : : ; (Zm0 ; Zm1 ) suh that(Xi0;Xi1) 2 SDY ) StatDi� �Y i0 ; Y i1 � � 1� 13j�j and StatDi� �Zi0; Zi1� � 13j�j(Xi0;Xi1) 2 SDN ) StatDi� �Y i0 ; Y i1 � � 13j�j and StatDi� �Zi0; Zi1� � 1� 13j�j :Consider the randomized reursive proedure Samplew( ; b), given in Algorithm 4.5.6,whih takes a subformula  of � and a bit b as input.Algorithm 4.5.6: Samplew( ; b)Input: A subformula  of � and a bit b 2 f0; 1g1. If  = vi, sample z  Y ib .2. If  = :vi, sample z  Zib.3. If  = � _ �,(a) Sample z1  Samplew(�; b);(b) Sample z2  Samplew(�; b);() Let z = (z1; z2).4. If  = � ^ �,(a) Choose ; d f0; 1g subjet to � d = b;(b) Sample z1  Samplew(�; );() Sample z2  Samplew(�; d);(d) Let z = (z1; z2).5. Output z.Exeuting Samplew(�; b) for b 2 f0; 1g takes time polynomial in jwj, beause the numberof reursive alls is equal to the number of subformulae of �. For a subformula � of �, let�(�) = StatDi� (Samplew(�; 0);Samplew(�; 1)). Then we an prove the following about �:Claim 4.5.7 Let a = (�SD(X10 ;X11 ); : : : ; �SD(Xm0 ;Xm1 )). For every subformula  of �, wehave:  (a) = 1 ) �( ) � 1� j j3j�j



4.5. CLOSURE PROPERTIES 77 (a) = 0 ) �( ) � j j3j�j :Note that nothing is laimed when  (a) = ?.Proof of laim: By indution on subformulae of �. It holds for atomisubformulae (i.e., the variables vi and their negations :vi) by the properties ofthe Y ib 's and Zib's.Consider the ase when  = � _ �. By onstrution, Samplew( ; b) =Samplew(�; b) 
 Samplew(�; b). If  (a) = 1, then either �(a) = 1 or �(a) = 1.Without loss of generality, say �(a) = 1. Then, by Fat 2.2.2 (Item 5) andindution, �( ) � �(�) � 1� j� j3j�j � 1� j j3j�j :If  (a) = 0, then both �(a) = �(a) = 0. By Fat 3.1.14 and indution,�( ) � �(�) + �(�) � j� j3j�j + j�j3j�j � j j3j�j :Now onsider the ase when  = � ^ �. By onstrution, the distributionsfor  are those obtained by applying the XOR onstrution (Proposition 3.1.17)to the distributions for � and �. Hene, �( ) = �(�) ��(�). If  (a) = 1, then,by indution,�( ) � �1� j� j3j�j� ��1� j�j3j�j� > 1� j� j+ j�j3j�j � 1� j j3j�j :If  (a) = 0, then, without loss of generality, say �(a) = 0. By indution,�( ) � �(�) � j� j3j�j � j j3j�j : 2Let A andB be iruits desribing the omputations of Samplew(�; 0) and Samplew(�; 1),respetively, (whih take the random bits eah proedure uses as input). By the above laim,StatDi� (A;B) � 2=3 if w 2 �(SD)Y and StatDi� (A;B) � 1=3 if w 2 �(SD)N . In otherwords, the onstrution of A and B from w desribes a Karp redution from �(SD) to SD.This redution an be omputed in polynomial time beause Sample runs in polynomialtime.Theorem 4.5.4 follows readily from Lemma 4.5.5:Proof of Theorem 4.5.4: Let � be any promise problem in HVSZK. By the om-pleteness of SD, there is a redution from � to SD. This indues a redution from �(�) to�(SD). Composing this with the redution in Lemma 4.5.5, we see that �(�) redues toSD 2 HVSZK. Sine HVSZK is losed under redutions, �(�) 2HVSZK.



78 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSExamining the proof of Lemma 4.5.5 more losely, it is easy to see that all parts of theonstrution, exept for the Reversal Mapping, preserve the extreme ases of SD (i.e., sta-tistial di�erene 0 or 1, respetively). Thus, we obtain the following additional redutions.Proposition 4.5.8 Mon(�) redues to � for � 2 nSD1;0;SD1;1=2;SD1=2;0o. In partiular,Mon(SD1;1=2) 2 HVPZK.Theorem 4.5.4, though stated as a sort of Boolean losure property, an also be viewedfrom a more omputational point of view, as asserting the losure of HVSZK under aertain lass of redutions.De�nition 4.5.9 (truth-table redution [LLS75℄) We say a promise problem � truth-table redues to a promise problem �, written � �tt �, if there exists a (deterministi)polynomial-time omputable funtion f , whih on input x produes a tuple (y1; y2; : : : ; ym)and a iruit C (with m input gates), suh thatx 2 �Y ) C(��(y1); : : : ; ��(ym)) = 1x 2 �N ) C(��(y1); : : : ; ��(ym)) = 0Truth-table redutions are easily seen to be equivalent to nonadaptive Cook redutions.We further onsider the ase where we restrit the omplexity of omputing the output ofthe redution from the answers to the queries:De�nition 4.5.10 (NC1 truth-table redutions) A truth-table redution f between promiseproblems is an NC1 truth-table redution2 if the iruit C produed by the redution oninput x has fan-in 2 and depth bounded by f log jxj, where f is a onstant independent ofx. If there is an NC1 truth-table redution from � to �, we write � �NC1�tt �.It is easy to see that losure under NC1 truth-table redutions is equivalent to losureunder the �(�) operator (together with losure under Karp redutions).Proposition 4.5.11 A lass C of promise problems is losed under NC1 truth-table re-dutions i� the following two onditions hold:1. � 2 C) �(�) 2 C.2. C is losed under Karp redutions.Proof: ). Suppose C is losed under NC1 truth-table redutions. It is well-knownthat every formula � an be transformed (in polynomial time) to an equivalent \balaned"formula �0 of depth O(log j�j) [Spi71℄. Thus the map (�; x1; : : : ; xm) 7! (�0; x1; : : : ; xm)is an NC1 truth-table redution from �(�) to � for any promise problem �. Thus, if� 2 C, then �(�) 2 C. For losure under Karp redutions, we simply note that every2This terminology is inherited from the NC hierarhy of languages, where NCi denotes the lass oflanguages deided by (uniform) families of iruits of depth O(logi n). See, e.g., [Sip97, Pap94℄.



4.6. KNOWLEDGE COMPLEXITY 79Karp redution is also an NC1 truth-table redution (take C to be the identity funtion onone variable).(. Suppose that C is losed under �(�) and Karp redutions. Any iruit C of depth dan be transformed in time poly(jCj; 2d) into a formula �C . Let f be an NC1 truth-tableredution from a promise problem � to a promise problem � 2 C. Composing f with themap (C; x1; : : : ; xm) 7! (�C ; x1; : : : ; xm) gives a Karp redution from � to �(�) (omputablein time poly(jxj; 2f log jxj) = poly(jxj)). By losure under �(�) and Karp redutions, it followthat � 2 C.Thus, we have:Corollary 4.5.12 HVSZK is losed under NC1 truth-table redutions.This shows that HVSZK has a substantial amount of robustness and rihness as a lassof omputational problems. It would be very interesting to strengthen this result to moregeneral forms of Cook or truth-table redutions, or give evidene that it is not possible todo so.Open Problem 4.5.13 IsHVSZK losed under general truth-table redutions? or (adap-tive) Cook redutions?4.6 Knowledge omplexityThe various de�nitions of zero-knowledge proofs beautifully apture what it means to learn\nothing" from an interative proof. For interative proofs whih are not zero knowledge,it is natural to try to measure how muh the veri�er learns from the proof. Indeed, theonferene version of the paper of Goldwasser, Miali, and Rako� [GMR89℄ whih intro-dued zero-knowledge proofs also suggested a more general notion of knowledge omplexityto aomplish this task. However, the formalization of (non-zero) knowledge omplexitysuggested there does not seem to oinide with an intuitive notion of how muh knowledgeis leaked in a protool (f., [GP91℄). Goldreih and Petrank [GP91℄ presented a number ofalternative de�nitions of knowledge omplexity, whih have been studied further by a num-ber of researhers [GP91, GOP98, ABV95, PT96℄. In this setion, we use the results we haveobtained on statistial zero knowledge to obtain new results about (non-zero) knowledgeomplexity.4.6.1 De�nitionsReall that zero-knowledge proofs are de�ned by requiring that there is an eÆient simulatorwhose output is \lose" to the veri�er's view of the interation with the prover. Most of thede�nitions given by Goldreih and Petrank measure knowledge omplexity by how muh\help" a simulator needs to produe a good simulation. The various formulations arise fromallowing the help to be given in di�erent forms (e.g., as a string or from an orale) and fromdi�erent methods of measuring the amount of help (e.g., averaging over the simulator's ointosses or taking the maximum).



80 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSThere is one subtlety in our versions of the de�nitions that does not arise in the literature.In our de�nitions of interative proofs and zero-knowledge proofs, the error parameters areontrolled by a seurity parameter independent of the input length. It is not lear whetherthe knowledge omplexity should be measured as a funtion of the seurity parameter inaddition to the input length. It is not even lear whether for \natural" problems, the knowl-edge omplexity would be inreasing or dereasing as a funtion of the seurity parameter.On one hand, the prover may have to reveal more knowledge in order to redue the errorparameters. On the other hand, an inreased seurity parameter gives the simulator morerunning time and hene the simulator may need less help.Beause of this unlear situation, we allow the knowledge omplexity of proof systems tobe a funtion of both the input length and the seurity parameter, but, in order to maintainonsisteny with the literature, we set the seurity parameter equal to the input length whende�ning the knowledge omplexity of promise problems and the assoiated hierarhies.3 Inall our de�nitions, the knowledge omplexity of a proof system (resp., promise problem) willbe a funtion � : N � N ! R (resp., � : N ! R). Throughout our disussion on knowledgeomplexity, we require that �(n; k) (resp., �(n)) is omputable in time poly(n; k) (resp.,poly(n)).We now give de�nitions for several forms of knowledge omplexity. Modulo some minormodi�ations for onsisteny with the rest of this thesis, all of these de�nitions are due toto Goldreih and Petrank [GP91℄, exept for knowledge omplexity in the \entropy sense"whih is due to Aiello, Bellare, and Venkatesan [ABV95℄. We only give de�nitions for perfetand statistial knowledge omplexity, as all languages in IP have omputational knowledgeomplexity zero (i.e., are in CZK) if (nonuniformly) one-way funtions exist [GMW91,IY87, BGG+88℄. We also only give de�nitions for honest veri�ers, sine we have not yeteven given the de�nition of zero knowledge for heating veri�ers.The �rst de�nition of knowledge omplexity provides \help" to the simulator in themost diret manner | as a \hint" string given as an additional input.De�nition 4.6.1 (hint sense) Let (P; V ) be an interative proof system for a promiseproblem �. The statistial knowledge omplexity of (P; V ) in the hint sense is said to be� : N�N ! N if there is a funtion h : �Y �N ! f0; 1g�, a useful4 probabilisti polynomial-time algorithm S, and a negligible funtion � : N ! [0; 1℄ suh that for all x 2 �Y and allk 2 N,1. jh(x; k)j = �(jxj; k).2. StatDi� �eS(x; 1k; h(x; k)); hP; V i(x; 1k)� � �(k):3This is an admittedly ad-ho solution to the problem, and will hopefully be remedied as our understand-ing of knowledge omplexity improves. We still would prefer to have the error parameters (ompleteness,soundness, simulator deviation) ontrolled by a seurity parameter independent of the input length, whereasit seems that knowledge omplexity should be primarily a funtion of the input length. But, as shown byseveral researhers [GOP98, PT96℄, the knowledge omplexity and error parameters are not free to varyindependently for ertain languages.4Reall that a probabilisti algorithm A is alled useful if Pr [A(x) = fail℄ � 1=2 for all x and eA(x)denotes the output distribution of A on input x, onditioned on A(x) 6= fail.



4.6. KNOWLEDGE COMPLEXITY 81h(x; k) is alled the hint, S is alled a simulator, and � is alled the simulator deviation. If� � 0, then (P; V ) is said to have perfet knowledge omplexity � in the hint sense.As with zero knowledge, allowing the simulator to fail with probability 1=2 is inessentialfor statistial knowledge omplexity in the hint sense, as the failure probability an be madeexponentially small and absorbed into the simulator deviation.In the remaining de�nitions, help is provided to the simulator by means of an oralewhih it an query. If O : f0; 1g� ! f0; 1g� is any funtion and M is an algorithm, thenwe write MO to indiate that M is being given orale aess to M . The �rst orale-basedde�nition measures the amount of help provided by the orale by the maximum number ofbits it sends to the simulator and does not allow the simulator any failure probability.De�nition 4.6.2 (strit orale sense) Let (P; V ) be an interative proof system for apromise problem �. The statistial knowledge omplexity of (P; V ) in the strit oralesense is said to be � : N � N ! R if there is a funtion O : f0; 1g� ! f0; 1g, a probabilistipolynomial-time algorithm S, and a negligible funtion � : N ! [0; 1℄ suh that for allx 2 �Y and all k 2 N,1. SO(x; 1k) reeives at most �(jxj; k) bits from O, with probability 1 over the oins ofS.2. StatDi� �SO(x; 1k); hP; V i(x; 1k)� � �(k):S is alled a simulator and � is alled the simulator deviation. If � � 0, then (P; V ) is saidto have perfet knowledge omplexity � in the strit orale sense.The next de�nition allows the simulator to fail with probability 1=2.De�nition 4.6.3 (orale sense) Let (P; V ) be an interative proof system for a promiseproblem �. The statistial knowledge omplexity of (P; V ) in the orale sense is said to be� : N � N ! R if there is a funtion O : f0; 1g� ! f0; 1g, a useful probabilisti polynomial-time algorithm S, and a negligible funtion � : N ! [0; 1℄ suh that for all x 2 �Y and allk 2 N,1. SO(x; 1k) reeives at most �(jxj; k) bits from O, with probability 1 over the oins ofS.2. StatDi� �eSO(x; 1k); hP; V i(x; 1k)� � �(k):S is alled a simulator and � is alled the simulator deviation. If � � 0, then (P; V ) is saidto have perfet knowledge omplexity � in the orale sense.In ontrast to statistial knowledge omplexity in the hint sense, it is not apparentthat allowing the simulator to fail in the orale sense is inessential, as reduing the failureprobability of the simulator to negligible may involve making more orale queries. However,Goldreih and Petrank [GP91℄ show that the statistial knowledge omplexities of anyproof system in the strit orale and orale senses di�er by at most log log k + g(k) for anyunbounded funtion g(�) (and this annot be improved).The next de�nition measures the average number of bits of help the simulator gets fromthe orale.



82 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSDe�nition 4.6.4 (average orale sense) Let (P; V ) be an interative proof system for apromise problem �. The statistial knowledge omplexity of (P; V ) in the average oralesense is said to be � : N � N ! R if there is a funtion O : f0; 1g� ! f0; 1g, a usefulprobabilisti polynomial-time algorithm S, and a negligible funtion � : N ! [0; 1℄ suh thatfor all x 2 �Y and all k 2 N,1. The expeted number of bits that SO(x; 1k) reeives from O is at most �(jxj; k), withthe expetation being taken over the oins of S.2. StatDi� �eSO(x; 1k); hP; V i(x; 1k)� � �(k):S is alled a simulator and � is alled the simulator deviation. If � � 0, then (P; V ) is saidto have perfet knowledge omplexity � in the average orale sense.In ontrast to Goldreih and Petrank [GP91℄, we allow the simulator fail in de�ning theaverage orale sense (as in [ABV95℄). This a�ets the knowledge omplexity by at most anadditive onstant, as the simulator an use the orale to \hone in" on a non-failing set ofrandom oins in an expeted onstant number of queries, analogous to the proof of [GP91,Prop. 4.6℄. Goldreih and Petrank [GP91℄ have shown that the knowledge omplexity of aproof system in the average orale sense an be muh smaller than its knowledge omplexityin the orale sense.To address a feeling that the above measures slightly \overount" the knowledge om-plexity, partiularly for knowledge omplexities lose to 0, Aiello, Bellare, and Venkate-san [ABV95℄ introdued yet another measure of knowledge omplexity. Essentially, thismeasure avoids ounting the bits sent from the orale to the simulator S to the extent thatthose bits an be guessed without aess to the orale O. That is, another mahine S0, alledan orale simulator, is onsidered. S0 is given the input x, the seurity parameter k, and therandom oins R of the simulator, and attempts to guess the output of the simulator withouthaving aess to the orale O. The unpreditability of this output by S0, as measured in anentropy-like fashion, is taken to be an upper bound on the amount of \useful information"obtained from the orale.De�nition 4.6.5 (entropy sense) Let (P; V ) be an interative proof system for a promiseproblem �. The statistial knowledge omplexity of (P; V ) in the entropy sense is said to be� : N � N ! R if there is a funtion O : f0; 1g� ! f0; 1g, a useful probabilisti polynomial-time algorithm S, a probabilisti polynomial-time algorithm S0, and a negligible funtion� : N ! [0; 1℄ suh that for all x 2 �Y and all k 2 N,1. ER [log (1=Px;k(R))℄ � �(jxj; k), where Px;k(R) = Pr� �S0(x; 1k; R; �) = SO(x; 1k;R)�.2. StatDi� �eSO(x; 1k); hP; V i(x; 1k)� � �(k):S is alled a simulator and � is alled the simulator deviation. If � � 0, then (P; V ) is saidto have perfet knowledge omplexity � in the entropy sense.Aiello, Bellare, and Venkatesan [ABV95℄ have shown that knowledge omplexity in theentropy sense is always at most the knowledge omplexity in the average orale sense, andan be smaller by at most an additive onstant.



4.6. KNOWLEDGE COMPLEXITY 83It is lear that the prover-to-veri�er ommuniation of any interative proof upper-bounds its perfet knowledge omplexity in eah of the above senses, exept the hint sense.For this reason, the hint sense is viewed as an inadequate measure of knowledge omplex-ity [GP91℄.Eah of the above forms of knowledge omplexity gives rise to a hierarhy of promiseproblems.De�nition 4.6.6 (knowledge omplexity hierarhies) A promise problem � has knowl-edge omplexity � : N ! R in one of the above senses if there exists an interativeproof for � with negligible ompleteness and soundness errors whose knowledge omplexity�0 : N � N ! R (in the given sense) satis�es �0(n; n) � �(n) for all n.The lasses of promise problems with statistial knowledge omplexity �(n) in the hint,strit orale, orale, average orale, and entropy senses are denoted by SKChint(�(n)),SKCstrit(�(n)) SKCorale(�(n)), SKCavg(�(n)), and SKCent(�(n)), respetively. Thelasses of promise problems with perfet knowledge omplexity are similarly denoted by PKCwith the appropriate subsript.Sine the above de�nition only refers to ase when the seurity parameter is equal to theinput length, we will often omit the seurity parameter from the notation in what follows.It is lear that the bottom level (i.e., �(n) � 0) of eah of the statistial (resp., perfet)knowledge omplexity hierarhies is exatly HVSZK (resp., HVPZK). An importantquestion about these hierarhies is whether they are strit or not, and previously no ollapseswere known for any of them.4.6.2 A Collapse for the Hint HierarhyThe �rst thing we will prove in this setion is a lemma showing that statistial knowledgeomplexity in the hint sense an be expressed in terms of statistial zero knowledge. Thislemma will enable us to immediately dedue a number of results about the SKChint hier-arhy from our results on HVSZK. Most signi�antly, the Boolean losure properties ofHVSZK demonstrated in the previous setion will easily imply that the statistial knowl-edge omplexity hierarhy for the hint sense ollapses by logarithmi additive terms at alllevels. As mentioned earlier, the hint sense has some de�ienies as a measure of knowledgeomplexity, so it would be of greater interest to obtain suh results for the other forms ofknowledge omplexity. Our results are best viewed as a �rst step in this diretion.Lemma 4.6.7 Let � : N ! N be any polynomially bounded funtion. Then � 2 SKChint(�(n))(resp., PKChint(�(n))) i� there exists a promise problem � 2 HVSZK (resp., HVPZK)suh that1. x 2 �Y ) there exists a 2 f0; 1g�(jxj) suh that (x; a) 2 �Y , and2. x 2 �N ) for all a, (x; a) 2 �N .Proof: We only give the proof for statistial knowledge omplexity and zero knowledge;the perfet ase is similar.



84 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMS) Let � be a promise problem in SKChint(�(n)) and let h : �Y ! f0; 1g�. be a hintfuntion orresponding to an appropriate interative proof system and simulator for �.Consider the following promise problem �:�Y = f(x; h(x)) : x 2 �Y g�N = f(x; a) : x 2 �NgThe protool and simulator for � almost immediately yield an honest-veri�er statistial zero-knowledge proof for � (the veri�er and prover for � should ignore the seond omponentof the input and the simulator should use it as a hint). There is one small tehniality,however. Sine our de�nition of SKChint(�(n)) only refers to the knowledge omplexitywhen the seurity parameter is set equal to the input length, the simulator deviation of theresulting proof system for � is only negligible as a funtion of the input length, not theseurity parameter. So, we only obtain � 2 weak-HVSZK. But now we an apply ourresult that weak-HVSZK = HVSZK (Corollary 4.3.1). It is lear that � satis�es theother onditions of Lemma 4.6.7.( Let � 2 HVSZK be the promise problem satisfying the stated onditions. Let h :�Y ! f0; 1g� be any funtion satisfying1. For all x, jh(x)j = �(jxj),2. x 2 �Y ) (x; h(x)) 2 �Y .(Suh a funtion is guaranteed by Condition 1.) We now give a proof system for � ofknowledge omplexity �(n). On input x, the prover gives the veri�er h(x) in the �rst step,and then they exeute the protool for � on (x; h(x)). The ompleteness and soundness ofthis protool follow from the properties of �'s proof system. This proof system is easilyseen to have knowledge omplexity �(n) in the hint sense, using h as the hint funtion andthe same simulator as for �'s proof system.From this lemma and its proof, we an immediately apply some of our results aboutHVSZK to SKChint. First, looking at the proof of the \if" (() diretion of Lemma 4.6.7,we see that any problem in SKChint(�(n)) has a proof system whih is simply an HVSZKproof system augmented by the prover sending �(n) bits in the �rst message. Combining thiswith the eÆient HVSZK proof systems of Corollary 4.1.1 (possibly repeated in parallel),we obtain the following:Corollary 4.6.8 Let �; t : N ! N be any two polynomially bounded funtions whih areboth omputable in time polynomial in their arguments. Every problem in SKChint(�(n))has an interative proof system with the following properties (on input (x; 1k)):1. The statistial knowledge omplexity is �(jxj).2. The proof system exhanges only 3 messages.3. The prover-to-veri�er ommuniation is �(jxj) + t(k) bits.



4.6. KNOWLEDGE COMPLEXITY 854. The ompleteness error and simulator deviation are both 2�k.5. The soundness error is 1=2t(k).6. The prover is deterministi.In partiular, we have:Corollary 4.6.9 ([GP91℄) For any polynomially bounded funtion � : N ! N,SKChint(�(n)) � AM:Atually, this orollary does not neeed the full power of Corollary 4.1.1. The result of Aielloand H�astad [AH91℄ that HVSZK � AM (f., Corollary 4.2.2) together with Lemma 4.6.7suÆes.By Proposition 4.2.3, o-NP does not have polynomial statistial knowledge omplexityin the hint sense unless the Polynomial Hierarhy ollapses. On the other hand, o-NPdoes possess interative proofs in whih the prover sends only polynomially many bits tothe veri�er (by de�nition) [LFKN92℄; this intuitively should imply that the veri�er is onlygaining polynomially many bits of knowledge. This disrepany is one of the de�ieniesof the hint sense as a measure of knowledge omplexity pointed out by Goldreih andPetrank [GP91℄.Another result of ours aboutHVSZK that an be diretly applied to SKChint is Corol-lary 4.3.1, whih states that weak-HVSZK = HVSZK. In analogy with weak-HVSZK,one an de�ne weak forms of the SKC hierarhies, in whih for every polynomial p : N ! Nthere should be a simulator that ahieves simulator deviation 1=p(jxj) on input x using �(jxj)bits of help.Corollary 4.6.10 For any polynomially bounded funtion � : N ! Nweak-SKChint(�(n)) = SKChint(�(n)):Proof: Note that the proof of the \only if" ()) diretion of Lemma 4.6.7 yields � 2weak-HVSZK = HVSZK satisfying the properties listed in lemma even if � is only inweak-SKChint(�(n)). Now, applying the \if" (() diretion of the lemma to �, we see that� is atually in (non-weak) SKChint(�(n)).Finally, we use the Boolean losure properties we have proven about HVSZK to showa ollapse in the SKChint hierarhy.Theorem 4.6.11 For any polynomially bounded funtion � : N ! R,SKChint(�(n) + log n) = SKChint(�(n)):Proof: For intuition, onsider the ase � � 0, and let � be any promise problem inSKChint(log n). By Lemma 4.6.7, there is a promise problem � 2 HVSZK suh thatproving that x is a yes instane of � amounts to proving that for at least one stringa of length log jxj, (x; a) is a yes instane of �. This is an OR of polynomially many



86 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSstatements about membership in �. In Setion 4.5, we showed that any suh Booleanformula over a problem in HVSZK an also be proven in HVSZK, so it follows that� 2 HVSZK = SKChint(0), as desired. To deal with �(n) > 0, we only take the OR overthe last log n bits of the hint, and use the \if" diretion of Lemma 4.6.7 to pass bak toSKChint.We now proeed with the formal proof. Let � be a language in SKChint(�(n) + logn)and let � be the related promise problem guaranteed by the \only if" ()) diretion ofLemma 4.6.7. Now onsider a di�erent promise problem �0, de�ned by�0Y = f(x; a)) : there exists b suh that jbj = log jxj and (x; ab) 2 �Y g�0N = f(x; a) : for all b, (x; ab) 2 �Ng = f(x; a) : x 2 �Ng:For any string x, let m = log jxj, let b1; : : : ; bn be all strings of length m, and let � bethe formula �(v1; : : : ; vn) = Wi vi. The de�nition of �0 implies that(x; a) 7! (�; (x; ab1); : : : ; (x; abn))is anNC1 truth-table redution from �0 to �. SineHVSZK is losed under suh redutions(Corollary 4.5.12), �0 2 HVSZK.Now, if x 2 �Y , then there exists an a of length �(jxj) + log(jxj) suh that (x; a) 2 �Y .Taking a0 to be the �rst �(jxj) bits of a, we see that there exists an a0 of length �(jxj) suhthat (x; a0) 2 �0Y . On the other hand, if x 2 �N , then for all a, (x; a) 2 �0N . Thus, by the\if" (() diretion of Lemma 4.6.7, we onlude that � 2 SKChint(�(n)).It would be unexpeted to strengthen Theorem 4.6.11 by inreasing the logn to anyfuntion f(n) = !(log n), beause SKChint(f(n)) ontains every problem solvable in non-deterministi time f(n) (atually even polynomial time with f(n) bits of nondeterminism),and it seems unlikely that all suh problems would be ontained in HVSZK � o-AM.As stated above, it would be more signi�ant to obtain a similar ollapse for one ofthe other forms of knowledge omplexity, or give evidene that suh a ollapse does notour. Perhaps our work on statistial zero knowledge an also help in suh a task. Inpartiular, in Setion 3.3, we used the Aiello{H�astad simulator analysis to show that everyproblem in HVSZK redues to Entropy Differene. Petrank and Tardos [PT96℄ haveused ideas from the the Aiello{H�astad simulator analysis to study interative proofs withlogarithmi statistial knowledge omplexity in the orale sense, and thereby showed thatSKCorale(log n) � AM \ o-AM. Perhaps all these ideas an be ombined to obtainstronger results about knowledge omplexity in the orale sense. Spei�ally, showing thatevery problem in SKCorale(log n) redues to Entropy Differene would imply thatSKCorale(log n) = HVSZK.Open Problem 4.6.12 Do any of the other knowledge omplexity hierarhies de�ned byGoldreih and Petrank [GP91℄ ollapse?Our results about HVSZK in the next two hapters will also immediately imply similarresults about SKChint via Lemma 4.6.7. Spei�ally, they will imply that, for any poly-nomially bounded funtion � : N ! N, SKChint(�(n)) proofs an always be transformed



4.6. KNOWLEDGE COMPLEXITY 87into ones whih use publi oins, and into ones that have knowledge omplexity �(n) evenagainst heating veri�ers.4.6.3 The Relationship between Perfet and Statistial Knowledge Com-plexityOne of the major questions about zero-knowledge proofs that has been open sine thede�ning paper of Goldwasser, Miali, and Rako� [GMR89℄ is whether perfet and statistialzero knowledge oinide. That is, does PZK = SZK (or even HVPZK = HVSZK)? Thisquestion motivates a more general study of the relationship between perfet and statistialknowledge omplexity. Goldreih, Ostrovsky, and Petrank [GOP98℄ have shown that, inthe orale sense, the perfet and statistial knowledge omplexity are not too far apart.Spei�ally, they have shown that SKCorale(�(n)) � PKCorale(�(n) + O(log n)) forevery funtion � : N ! R. In partiular, HVSZK � PKCorale(O(log n)).Aiello, Bellare, and Venkatesan [ABV95℄ have shown that the relationship is even tighterfor the average orale and entropy senses. Spei�ally, they proved that, for every poly-nomially bounded funtion � : N ! R, SKCavg(�(n)) � PKCavg(�(n) + 1 + n�!(1)) andSKCent(�(n)) � PKCent(�(n) + n�!(1)), and the latter inlusion beomes an equality for� � 0. In addition, they give analogous results for the heating-veri�er versions of theselasses.Our ompleteness theorems give another way to obtain suh results when � � 0, i.e.,when we want bounds on the perfet knowledge omplexity of HVSZK. Namely, thesetheorems redue the question to measuring the perfet knowledge omplexity of spei�proof systems for the omplete problems. By a straightforward analysis of (variants of)Protool 3.1.19, we obtain:Theorem 4.6.131. For any funtion �(n) = !(log n), HVSZK � PKCstrit(�(n)).2. For any  > 0, HVSZK � PKCavg(1 + 2�n).3. For any  > 0, HVSZK = PKCent(2�n).The last two items improve on the bounds of [ABV95℄ for knowledge omplexity 0(though their results also apply to the heating-veri�er lasses). These two items ould alsobe obtained by applying their proofs to our result that every problem in HVSZK has aproof with simulator deviation 2�k.Proof:1. Let � be any problem in HVSZK and let �(n) = !(log n). By Corollary 4.1.1, thereis a proof system for � with negligible ompleteness error, onstant soundness error,and 1 bit of prover-to-veri�er ommuniation. Exeuting this protool �(n) timesin parallel results in a proof system with negligible error probabilities and prover-to-veri�er ommuniation �(n). The prover-to-veri�er ommuniation is an upper boundon the perfet knowledge omplexity in the strit orale sense.



88 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMS2. Let � be any promise problem in HVSZK. Consider the proof system for � in whihproeeds as follows on an input x of length n: Both parties apply the redution to SDto obtain an instane (X;Y ) of SD. They exeute Protool 3.1.19 n times (sequentiallyor in parallel) on input (X;Y ) with the seurity parameter set to k = 4n, and theveri�er aepts if the prover is orret in all subprotools. This proof system hasnegligible ompleteness and soundness errors.A perfet simulator for the proof system an be obtained as follows: The simulatorsimulates the veri�er strategy and queries the orale one to �nd out if the proverwould give an inorret response in any of the exeutions of Protool 3.1.19. Of theorale replies yes, then the simulator queries the orale n more times to �nd out whihprover answers would be inorret. The simulator then outputs the random oins usedfor running the veri�er strategy together with the appropriate prover responses.In eah subprotool, the prover gives an inorret response with probability at most2�4n . Thus, the simulator has to query the orale for more than one bit with proba-bility at most n �2�4n . Thus, on average, the simulator queries the orale for at most1 + n2 � 2�4n < 1 + 2�n bits, for suÆiently large n.3. We onsider the same protool used in the proof of Part 2 above and show that ithas perfet knowledge omplexity 2�n in the entropy sense. Let S be the simulatorwhih simply simulates the veri�er and queries the orale for all prover responses. Onepossible orale simulator would assume that the prover is orret in all subprotools.Unfortunately, this gives 1=Px(R) = 1 for any R whih orresponds to a transriptin whih the prover would make an error. Thus, we instead have our orale simulatorS0 assume that the prover is right in eah subprotool independently with probability1� Æ, where Æ = 2�2n . Thus, Px(R) = (1� Æ)kÆn�k, if R is a set of random oins forthe veri�er (equivalently S, sine S mimis the veri�er) whih would eliit a orretprover response in exatly k of the subprotools. Let � be the probability that theprover is inorret in an individual subprotool. Then, � � Æ2, and we haveER �log 1Px(R)�= nXk=0�nk��n�k(1� �)k log� 1(1� Æ)kÆn�k�= �log 1Æn� � " nXk=0�nk��n�k(1� �)k#+�log Æ1� Æ� � " nXk=0�nk��n�k(1� �)kk#= �log 1Æn� � 1 +�log Æ1� Æ� � n � (1� �) � " nXk=1�n� 1k � 1��n�k(1� �)k�1#= log 1Æn + n � (1� �) � �log Æ1� Æ� � 1= n�log 11� Æ + � log 1� ÆÆ �



4.7. PERFECT AND COMPUTATIONAL ZERO KNOWLEDGE 89� n�log 11� Æ + Æ2 log 1Æ�� 2nÆ < 2�nfor suÆiently large n.The opposite inlusion follows from the result of [ABV95℄ that PKCent(�(n)) �HVSZK for any negligible funtion �.Despite these slightly improved bounds, the basi question about the relationship be-tween perfet and statistial zero knowledge remains open.Open Problem 4.6.14 Does HVSZK = HVPZK? Does SZK = PZK?The Completeness Theorem may help in addressing this question, for now it beomesequivalent to asking whether Statistial Differene or Entropy Differene has aperfet zero-knowledge proof.4.7 Perfet and omputational zero knowledgeThe simulator analyses we used to prove the Completeness Theorems an also be applied toperfet and omputational zero-knowledge proofs. Although we do not know how to obtainomplete problems for HVPZK and HVCZK using these tehniques, they do yield someadditional insight into these lasses.We begin with the simulator analysis for publi-oin proofs from Setion 3.3. For perfetzero knowledge, we obtain a redution to a variant of SD. Sine the seurity parameterplays a less entral role in perfet zero-knowledge proofs (there is no simulator deviation toontrol), we omit it in the statement and proof of this proposition.Proposition 4.7.1 Suppose a promise problem � has an honest-veri�er publi-oin perfetzero-knowledge proof with perfet ompleteness. Then � redues to SD1=2;0.More generally, the ondition that the proof system has perfet ompleteness an berelaxed to requiring that the probability that veri�er aepts an input x 2 �Y be omputablein polynomial time from x.5Proof: Let (P; V ) be a perfet zero-knowledge proof for with perfet ompleteness andsoundness error s = 1=3, with simulator S. The redution onstruts an instane (X;Y ) ofSD1=2;0 from an instane x of �. The distributions X and Y are onstruted based on S(and V ) exatly as in the proof of Theorem 3.2.5. The only hange needed in the analysisis that Claim 3.2.6 should be replaed with one that states that StatDi� (X 0; Y 0) = 0when x is a yes instane. To see that this is the ase, �rst note that Lemma 3.2.1 gives5That is, we require that there is a (deterministi) polynomial-time algorithm A suh that when givenx 2 �Y , A outputs the probability that V aepts on input x. A's behavior on no instanes or inputs thatviolate the promise an be arbitrary.



90 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSStatDi� (Xi; Yi) = 2 � 0 = 0 for i > 0 when S is a perfet simulator. In addition, byperfet ompleteness and perfet simulation, Y0 will always output 1 in the ase of a yesinstane, so StatDi� (X0; Y0) = 0. Therefore, StatDi� (X 0; Y 0) = 0. Sine X and Y onsistjust of many independent opies of X 0 and Y 0, respetively, it follows that their statistialdi�erene is also 0 in the ase of a yes instane.Now we treat the more general version in whih the aeptane probability on yesinstanes is only assumed to be eÆiently omputable from the input. By repeating theproof system sequentially or in parallel and ruling by majority/threshold, we may assumethat the ompleteness error is at most 1=3 (as is assumed in the proof of Theorem 3.2.5);note that majority/threshold rule preserves the property that the aeptane probability iseÆiently omputable. Now we onstrut X and Y just as before, with one small hange. Itis no longer the ase that Y0 always outputs 1, so we rede�ne X0 as follows to ompensate:X0: Calulate the probability p that the veri�er aepts on input x (as if x were a yesinstane). If p < 2=3, output 1. Otherwise let t = 216 ln 12v and alulateq = Xt=2<j�t�tj�pj(1� p)t�j :Output 1 with probability q, and 0 otherwise.Note that q is exatly the probability that Y0 outputs 1 on a yes instane, so we haveStatDi� (X0; Y0) = 0 for yes instanes as desired. Now we must also hek that thismodi�ation in X0 does not hurt the analysis for no instanes. The only time X0 plays arole is in the ase that the simulator outputs aepting onversations with probability atmost 5=12. There, a Cherno� bound is used to show that Y0 outputs 1 with probabilityat most 1=2 in this ase. A Cherno� bound similarly implies the modi�ed X0 given abovealways outputs 1 with high probability, ertainly at least 3=4. This gives StatDi� (X0; Y0) �1=4 > 1=12v, so Claim 3.2.7 still holds.If we ompletely remove the onditions on the aeptane probability, we an ompensateby allowing the distributions to be samplable in expeted polynomial time.Proposition 4.7.2 Suppose a promise problem � has an honest-veri�er publi-oin perfetzero-knowledge proof. Then, there exist expeted polynomial-time algorithms X and Y suhthat:1. x 2 �Y ) StatDi� (X(x); Y (x)) = 0.2. x 2 �N ) StatDi� (X(x); Y (x)) � 1=2.Proof Sketh: Again, the only diÆulty is onstruting the distributionsX0 and Y0. Letr be the number of random oins used by the simulator S. Y0 is modi�ed so that it runsthe simulator t = �(r + ln v) times rather than just �(ln v) times; this guarantees that Y0will output 1 with probability at least 1� 2�r in the ase of a yes instane. X0 is modi�edas follows:



4.7. PERFECT AND COMPUTATIONAL ZERO KNOWLEDGE 91X0: With probability 1� 2�r, just output 1. Otherwise, alulate the probability p that Soutputs an aepting onversation (by exhaustive searh over the random oins) anduse that to alulate the probability q that Y0 outputs 1 (a simple sum involving somebinomial oeÆients and p). If q � 1� 2�r, output 1 or 0 with exatly the right biasto guarantee that the overall probability of outputting 1 is q.This de�nition of X0 guarantees that StatDi� (X0; Y0) = 0 for yes instanes. Note thatX0 runs in expeted polynomial time; with probability 2�r, it does a alulation that takestime 2r (times a polynomial fator). The tedious details are omitted. 2If we ould show that SD1=2;0 (or its omplement) has an (honest-veri�er) publi-oinperfet zero-knowledge proof, we would essentially have a ompleteness theorem for publi-oin perfet zero knowledge. Interestingly, it is the \opposite" extreme ase of SD |namely, SD1;1=2 | that we plaed in (private-oin) HVPZK with Proposition 3.1.11. InChapter 6, we shall see that SD1;0 atually has a publi-oin perfet zero-knowledge proof.Adapting the simulator analysis of Setion 3.2 to omputational zero-knowledge proofs,we obtain the following.Proposition 4.7.3 Suppose a promise problem � has an honest-veri�er publi-oin om-putational zero-knowledge proof system. Then there exist probabilisti polynomial-time al-gorithms X and Y suh that1. fX(x; 1k)gx2�Y ;k2N and fY (x; 1k)gx2�Y ;k2N are omputationally indistinguishable.2. x 2 �N ) StatDi� �X(x; 1k); Y (x; 1k)� � 1=2.Proof Sketh: Again, the onstrution of X(x; 1k) and Y (x; 1k) from x are just as in theproof of Theorem 3.2.5. The proof that they are statistially far for no instanes remainsunhanged. To see that they are omputationally indistinguishable for yes instanes, oneneed only replae the arguments about statistial loseness with analogous ones referringto omputationally indistinguishability (e.g., Claim 3.2.6, Lemma 3.2.1). 2Clearly, an analogous proposition also holds for the traditional de�nition of HVCZK inwhih the indistinguishability in the zero-knowledge property is with respet to the inputlength and not a separate seurity parameter. (The indistinguishability of the resultingdistributions X(x) and Y (x) will then hold with respet to the jxj and not a separateseurity parameter.)Note that the properties of the distributions produed by Proposition 4.7.3 annot beused to distinguish between yes and no instanes in general, beause there an be distri-butions whih are both omputationally indistinguishable and statistially far apart. Nev-ertheless, Proposition 4.7.3 will enable us to prove a nontrivial result about HVCZK inthe next setion.Our simulator analysis for private-oin proofs in Setion 3.3 an also be applied toperfet zero-knowledge proofs, and yields a redution to the following variant of EntropyDifferene, denoted ED0:ED0Y = f(X;Y ) : H(X) = H(Y )gED0N = f(X;Y ) : H(Y ) � H(X) + 1g



92 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSProposition 4.7.4 Suppose a promise problem � has an honest-veri�er perfet zero-knowledgeproof with perfet ompleteness. Then � redues to ED0.More generally, the ondition that the proof system has perfet ompleteness an berelaxed to requiring that the probability that veri�er aepts an input x 2 �Y be omputablein polynomial time from x.The proof of Proposition 4.7.4 onsists of similar modi�ations to the proof of Theo-rem 3.3.13 as was needed to obtain Proposition 4.7.1 from the proof of Theorem 3.2.5. Thedetails are omitted. As in Proposition 4.7.2, the omputability ondition on the aep-tane probability an be removed, at the ost of yielding distributions that are samplablein expeted polynomial time.The simulator analysis of private-oin proofs an also be applied to omputational zeroknowledge, but unfortunately, it appears to yield something trivial. Spei�ally, it yieldstwo probabilisti polynomial time algorithms X and Y suh that (omitting the seurityparameter):1. If x 2 �N , H(Y (x)) � H(X(x)) + 1.2. If x 2 �Y , then there exist distributions X 0(x) and Y 0(x) suh that H(X 0(x)) �H(Y 0(x)) + 1, X 0(x) is omputationally indistinguishable from X(x), and Y 0(x) isomputationally indistinguishable from Y (x).These onditions are trivial in the sense that suh algorithms X and Y an be shown toexist for any promise problem �, regardless of whether it possesses a zero-knowledge proof:Fix X(x) to be the uniform distribution on jxj bits and Y (x) the uniform distribution onjxj+1 bits, so the ondition for no instanes ertainly holds. To meet the ondition for yesinstanes, take X 0(x) to equal X(x) and Y 0(x) to be the uniform distribution on a subsetof f0; 1gjxj+1 of size 2jxj�1. (Note that X 0 and Y 0 are not required to be samplable.)The main question remaining here is whether a tighter haraterization of HVPZK orHVCZK an be given.Open Problem 4.7.5 Exhibit natural omplete problems for HVPZK or HVCZK.The question for HVCZK is only interesting if one does not assume that one-way fun-tions exist, for under that assumption, HVCZK = PSPACE [GMW91, IY87, BGG+88,LFKN92, Sha92℄, so any PSPACE-omplete problem would do.4.8 Zero-knowledge proofs for hard problems imply one-wayfuntionsLooking at the array problems known to be in HVSZK| suh as Quadrati Residuos-ity andNonresiduosity [GMR89℄, a problem equivalent toDisrete Logarithm [GK93℄,and approximate versions of the Shortest Vetor and Closest Vetor problems forlatties [GG98a℄ | it strikes one that many of them are related to problems underlying var-ious ryptosystems [DH76, GM84, ElG84, GGH97, AD97℄. Ostrovsky [Ost91℄ showed thatthis is not a oinidene. Informally, he proved that ifHVSZK ontains any hard problem,



4.8. HARD PROBLEMS AND ONE-WAY FUNCTIONS 93then one-way funtions exist and hene many ryptographi tasks an be aomplished.This may be surprising at �rst, beause typially one-way funtions are not expliitly usedin onstruting statistial zero-knowledge proofs. Rather, Ostrovsky's result should be un-derstood as saying that the types of problems possessing statistial zero-knowledge proofsare the kind that would yield one-way funtions if they were hard. Subsequently, Ostro-vsky and Wigderson [OW93℄ generalized this result to omputational zero knowledge | ifHVCZK ontains any hard problem, then one-way funtions exist. From a very high level,their analysis of omputational zero-knowledge proofs an be separated into two ases: if ahard language possesses an honest-veri�er omputational zero-knowledge proof, then one ofthe following two ases must hold: (a) the proof is really a statistial zero-knowledge proof,in whih ase Ostrovsky's result applies, or (b) one-way funtions are impliitly being usedin onstruting a proof and simulation whih are omputationally indistinguishable but notstatistially lose.In this setion, we show how Ostrovsky's theorem follows readily from our CompletenessTheorem and a result of Goldreih [Gol90℄ on omputational indistinguishability. Using ouranalysis of publi-oin omputational zero-knowledge proofs (Proposition 4.7.3), we alsoobtain a simpler proof of the Ostrovsky{Wigderson theorem for the speial ase of publi-oin proofs.In order to state these theorems preisely, we need to de�ne what we mean for a problem� to be \hard." Informally, we require that membership in � is (very) hard to deide undersome samplable distribution of instanes.De�nition 4.8.1 (samplable distributions) An ensemble of distributions fDngn2N issaid to be samplable if there is a probabilisti polynomial-time algorithm that, on input 1noutputs a string distributed aording to Dn.De�nition 4.8.2 (hard-on-average problems) A promise problem � is hard-on-averageif there exists a samplable ensemble of distributions fDngn2N suh that the following holds:For every nonuniform probabilisti polynomial-time algorithm A, there exists a negligiblefuntion � : N ! [0; 1℄ suh thatPr [A(x) orretly deides whether x is a yes or no instane of �℄ � 12 +�(n) 8n 2 N;where the probability is taken over x Dn and the oins of A. (If x violates the promise,then A is onsidered to be orret no matter what it outputs.)For ompleteness, we also de�ne one-way funtions.De�nition 4.8.3 (one-way funtions) A funtion f : f0; 1g� ! f0; 1g� is one way if1. f an be evaluated in polynomial time.2. For every nonuniform probabilisti polynomial-time algorithm A, there is a negligiblefuntion � : N ! [0; 1℄ suh thatPrx f0;1gn �A(f(x)) 2 f�1(f(x))� � �(n) 8n 2 N;



94 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSwhere the probability is taken over x f0; 1gn and the oins of A.One-way funtions are known to be neessary and suÆient for many ryptographitasks, suh as private-key enryption, digital signatures, pseudorandom generation, and bitommitment [GGM86, HILL99, IL89, Nao91, Rom90℄.A formal statement of the result of Ostrovsky that we will prove in this setion follows.Theorem 4.8.4 ([Ost91℄) If there is a hard-on-average promise problem in HVSZK,then one-way funtions exist.Our proof will make use of the following result of Goldreih [Gol90℄:Proposition 4.8.5 ([Gol90℄) Suppose there exist two samplable ensembles of distribu-tions, fXngn2N and fYngn2N, suh that1. fXng and fYng are omputationally indistinguishable.2. There is a polynomial p : N ! N suh that for all n, StatDi� (Xn; Yn) � 1=p(n).Then one-way funtions exist.Proof of Theorem 4.8.4: Suppose � is a hard-on-average problem in HVSZK, and letfDng be the ensemble of distributions under whih � is hard. By the Completeness Theorem(Theorem 3.5.1) and the Polarization Lemma (Lemma 3.1.12), there is a polynomial-timeomputable funtion that maps instanes x of � to pairs (X(x); Y (x)) of distributions suhthat1. x 2 �Y ) StatDi� (X(x); Y (x)) � 1=2.2. x 2 �N ) StatDi� (X(x); Y (x)) � neg(jxj),where here and throughout this proof, we write neg(n) to denote negligible funtions.We will show that the following ensembles fXng and fYng meet the requirements ofProposition 4.8.5:Xn: Sample x aording to Dn. Sample z from X(x). Output (x; z).Yn: Sample x aording to Dn. Sample z from Y (x). Output (x; z).The statistial farness of these ensembles will follow from the farness of X(x) and Y (x)on yes instanes. The omputational indistinguishability will follow from the statistialloseness of X(x) and Y (x) on no instanes, together with the fat that it is hard todistinguish yes instanes of � from no instanes.To formalize this intuition, we make some observations whih follow from the hypothesisthat � is hard-on-average:1. Pr [Dn =2 �Y [�N ℄ = neg(n).2. ��Pr [Dn 2 �Y ℄� 12 �� = neg(n) and ��Pr [Dn 2 �Y ℄� 12 �� = neg(n).



4.8. HARD PROBLEMS AND ONE-WAY FUNCTIONS 953. The ensembles fDYn gn2N and fDNn gn2N obtained by onditioning Dn on being a yesor no instane, respetively, are omputationally indistinguishable.Items 1 and 2 hold beause otherwise the trivial algorithm that always outputs yes or theone that always outputs no would deide � orretly with nonnegligible advantage. Item 3holds beause a distinguisher between fDYn g and fDNn g ould be used to deide � withnonnegligible advantage.Claim 4.8.6 StatDi� (Xn; Yn) � 1=4� neg(n).Proof of laim: Sine Dn must produe a yes instane of � with probabilityat least 1=2�neg(n), StatDi� (Xn; Yn) � (1=2�neg(n)) � (1=2) = 1=4�neg(n).2Claim 4.8.7 fXngn2N and fYngn2N are omputationally indistinguishable.Proof of laim: Let A be any probabilisti polynomial-time algorithm. Fromthe fat that X(x) and Y (x) are statistially lose for no instanes, it followsthatjPr [A(x;X(x)) = 1jx 2 �N ℄� Pr [A(x; Y (x)) = 1jx 2 �N ℄j = neg(n); (4.1)where these probabilities (and all those to follow) are taken over x Dn and theoins of all algorithms (A, X, and Y ). By the omputational indistinguishabilityof fDYn g and fDNn g, we also havejPr [A(x;X(x)) = 1jx 2 �Y ℄� Pr [A(x;X(x)) = 1jx 2 �N ℄j = neg(n)jPr [A(x; Y (x)) = 1jx 2 �Y ℄� Pr [A(x; Y (x)) = 1jx 2 �N ℄j = neg(n):Combining these with Equation 4.1, we see that all four onditional probabilitiesdi�er only by negligible amounts. Therefore,Pr [A(x;X(x)) = 1℄� Pr [A(x; Y (x)) = 1℄� jPr [A(x;X(x)) = 1jx 2 �Y ℄� Pr [A(x; Y (x)) = 1jx 2 �Y ℄j+ jPr [A(x;X(x)) = 1jx 2 �N ℄� Pr [A(x; Y (x)) = 1jx 2 �N ℄j+2Pr [x =2 �Y [�N ℄= neg(n):This establishes the omputational indistinguishability of fXng and fYng. 2Given these laims, the result now follows from Proposition 4.8.5.Essentially the same proof applies to publi-oin omputational zero-knowledge proofsvia Proposition 4.7.3.Theorem 4.8.8 ([OW93℄ for publi-oin proofs) If a hard-on-average promise prob-lem possesses a publi-oin HVCZK proof system, then one-way funtions exist.



96 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSProof: The one point in the proof of Theorem 4.8.4 where we used the statistial losenessof X(x) and Y (x) for x 2 �Y instanes was Equation 4.1; it is lear that omputationalindistinguishability would atually suÆe. Thus, if we replae the ensembles fX(x)g andfY (x)g with the ones given by Proposition 4.7.3 (setting k = jxj), the proof will still work.(yes and no instanes play the opposite role, but that is okay.)In both the theorems of Ostrovsky and Ostrovsky{Wigderson, one an relax the average-ase assumption to a worst-ase assumption at the prie of a weaker onlusion. Spei�ally,if one only assumes that HVSZK or HVCZK ontains a problem outside of BPP, thenone an show the existene of a weak form of one-way funtions, whih are given an extraauxiliary input and are hard to invert only for in�nitely many values of the auxiliary input.Suh versions of Theorems 4.8.4 and 4.8.8 an also be proven using our tehniques. Inaddition, these theorems also have uniform versions, in whih the hard-on-average prob-lems, one-way funtions, and omputational zero-knowledge are all with respet to uniformadversaries. Our proofs work essentially unhanged in that setting.It would be interesting to obtain a simpler proof of the full version of the Ostrovsky{Wigderson theorem (i.e., with no restrition to publi oins) using our tehniques. Oneapproah would be to make use of the simulator analysis for private-oin proofs given inSetion 3.3. Indeed, one an use that simulator analysis to show that ifHVSZK ontains ahard-on-average problem, then a \false entropy generator" (in the sense of [HILL99℄) exists,whih in turn implies the existene of one-way funtions by [HILL99℄. This gives yet anotherproof of Ostrovsky's theorem for statistial zero knowledge. Unfortunately, as disussed inSetion 4.7, that simulator analysis appears to yield something trivial for omputationalzero knowledge.Open Problem 4.8.9 Can one re�ne the private-oin simulator analysis of Setion 3.3and use it to give a simpler proof of the full Ostrovsky{Wigderson [OW93℄ theorem?The Ostrovsky{Wigderson theorem also has a onverse. If (nonuniformly) one-wayfuntions exist, then it is known that HVCZK = PSPACE [GMW91, IY87, BGG+88,LFKN92, Sha92℄ and it an be shown that PSPACE ontains hard-on-average promiseproblems. However, no suh onverse is known for Ostrovsky's theorem.Open Problem 4.8.10 Does the existene of one-way funtions (or some other generalintratability assumption) imply that HVSZK ontains a hard-on-average problem? oreven just that HVSZK 6= BPP?A positive answer to this question would show that the omplexity of statistial zeroknowledge is intimately tied with the feasibility of omplexity-based ryptography [IL89℄.



Chapter 5Private Coins vs. Publi Coins5.1 Motivation and resultsIn the two interative proofs we have seen so far | the ones for Statistial DiffereneandGraph Nonisomorphism (Protools 2.1.2 and 3.1.19) | it is essential that the veri�erkeeps its random oins hidden from the prover. From suh examples, one might guess thatallowing suh deeptiveness on the veri�er's part makes interative proofs stritly morepowerful. Surprisingly, this onjeture is false. Goldwasser and Sipser [GS89℄ showed thatevery interative proof an be transformed into a publi-oin one.1 In this hapter, we willprove an analogous result for statistial zero-knowledge, originally due to Okamoto [Oka96℄:Theorem 5.1.1 ([Oka96℄) Every problem in HVSZK possesses a publi-oin honest-veri�er statistial zero-knowledge proof.Although Theorem 5.1.1 played a entral role in later work, Okamoto's proof of it in [Oka96℄was very ompliated and understood by very few researhers. The proof we give hereis muh simpler. This simpli�ation stems from the Completeness Theorem and Corol-lary 4.1.1 in partiular, whih says that every problem inHVSZK has a 2-messageHVSZKproof. Thus, to obtain our result, we need only give a transformation that applies to 2-message proof systems. This is a muh simpler speial ase of Okamoto's transformation,and enables us to use Okamoto's innovative tehniques in a lean form, unhampered by theompliations arising from many rounds of interation.Transformations from private oins to publi oins, like the one given by Theorem 5.1.1,are very useful as publi-oin proofs are muh easier to analyze and manipulate than gen-eral private-oin proofs. Indeed, the result of Goldwasser and Sipser for interative proofsfound many appliations (e.g., [BHZ87, FGM+89, BGG+88℄), and the same is true forstatistial zero knowledge. For example, we have already seen that the simulator analysisfor publi-oin proofs, given in Setion 3.2, is muh simpler than the simulator analysisfor general private-oin proofs, given in Setion 3.3. We will see another example in thefollowing hapter: our transformation from honest-veri�er zero-knowledge proofs to ones1Reall that publi-oin (a.k.a. Arthur{Merlin) proofs [BM88℄ are interative proofs in whih the veri�er'smessages onsist solely of random oin ips, and the only omputation the veri�er does is to deide whetherto aept or rejet at the end of the interation. 97



98 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINSrobust against heating veri�ers will only be given for publi-oin proofs, and hene we willrely on Theorem 5.1.1 to dedue that HVSZK = SZK. Moreover, the losure of HVSZKunder omplement and the ompleteness of Statistial Differene (together with allits onsequenes) were both originally proven in [Oka96, SV97℄ using Theorem 5.1.1 as astarting point.We make one additional modi�ation to Okamoto's transformation (desribed later),whih enables us to prove that the transformation also works for ertain omputationalzero-knowledge proofs.Theorem 5.1.2 Every promise problem possessing a 3-message honest-veri�er omputa-tional zero-knowledge proof also possesses a publi-oin honest-veri�er omputational zero-knowledge proof.We view this as a �rst step towards exhibiting a general (i.e., with no restrition on themessage omplexity) transformation from private oins to publi oins for omputationalzero knowledge.2An alternative approah to proving Theorem 5.1.1 would be to exhibit a publi-oinstatistial zero-knowledge proof for one of the omplete problems. That is the approah wetook in [GV99℄ and it gives the most diret proof of Okamoto's theorem, sine all one needsis the redution from HVSZK to Entropy Differene from Setion 3.3 and a publi-oin proof system for ED. However, given that we have already proven the CompletenessTheorem, the transformation given in this hapter is not muh more omplex than the proofsystem for ED, and has the advantage of also applying to omputational zero knowledge.Organization. We begin by giving an overview of the transformation from 2-messagezero-knowledge proofs to publi-oin zero-knowledge proofs in Setion 5.2. Like we didwhen reduing Entropy Differene to Statistial Differene in Setion 3.4, formotivation we start by treating a speial ase of 2-message proof systems in whih theveri�er's message distribution is at.3 For this speial ase, we desribe why the Goldwasser{Sipser transformation fails to be preserve zero knowledge and desribe Okamoto's methodfor overoming this problem. We onlude the overview by disussion of the ideas underlyingthe extension of this speial ase to the general one. In partiular, two subprotools dueto Okamoto [Oka96℄ are ruial in treating the general ase. In Setion 5.3, we state theproperties of these subprotools that we need in the transformation. In Setion 5.4, we givethe transformation from private oins to publi oins systems and prove Theorems 5.1.1and 5.1.2, assuming the existene of Okamoto's subprotools. Setion 5.5 ontains a self-ontained presentation of the two subprotools and their proofs of orretness.2As usual, it is only interesting to exhibit suh a transformation for omputational zero knowledge unon-ditionally, for if one assumes that (nonuniformly) one-way funtions exist, publi-oin omputational zero-knowledge proofs an be onstruted for all of IP = PSPACE \from srath" [GMW91, IY87, BGG+88,LFKN92, Sha92℄.3Reall that a at distribution is one that is uniform over a subset of its range.



5.2. OVERVIEW 995.2 OverviewWe begin with an exposition of the standard protool for proving lower bounds on set sizes,whih is the starting point for the Goldwasser{Sipser proof system. We stress that allprotools desribed in this setion are publi-oin protools.5.2.1 The standard lower bound protoolSuppose T is some subset of f0; 1gn and a prover M (\Merlin") wants to onvine a veri�erA (\Arthur") that jT j � 2m. Assuming A has orale aess to a proedure whih testsmembership in T , Protool 5.2.1 gives a way to aomplish this task using 2-universal hashfuntions.4 This publi-oin protool was �rst desribed in [Bab85, GS89℄ and orginateswith a lemma of Sipser [Sip83℄.Protool 5.2.1: Lower bound protool (M;A)Input: Integers m and n (in unary) and a membership orale for T � f0; 1gn1. A: Selet h uniformly from Hn;m and send h to M .2. M : Selet y uniformly from T \ h�1(0) (if this intersetion is nonempty)and send y to A.a If the intersetion is empty, send fail to A.3. A: If both h(y) = 0 and y 2 T , aept. Otherwise, rejet.aHere 0 is a anonially �xed element of f0; 1gm.The best analysis of the Protool 5.2.1 was provided in [AH91℄:Lemma 5.2.2 Protool 5.2.1 has the following properties:1. (Completeness) If jT j � 2k � 2m, then A aepts with probability at least 1� 2�k.2. (Soundness) If jT j � 2�k � 2m, then no matter what strategy M uses, A aepts withprobability at most 2�k.In fat, this protool also has a sort of statistial zero-knowledge property. The propertyholds with respet to the inputs n and m, provided that jT j � 2m and that one is given auniformly seleted element of T .Lemma 5.2.3 (impliit in [Oka96℄) Let H be a 2-universal family of hash funtionsmapping a domain D to a range R, and let 0 be any �xed element of R. Let T be asubset of D suh that jRj � " � jT j. Then the following two distributions have statistialdi�erene "
(1):4Reall that for every pair of integers k and `, Hk;` denotes a family of 2-universal hash funtions mappingf0; 1gk to f0; 1g` (aÆne-linear funtions over GF(2)).



100 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINS(A) Choose h uniformly in H, and y uniformly in T \ h�1(0). Output (h; y).5(B) Choose y uniformly in T , and h uniformly in fh0 2 H : h0(y) = 0g.6 Output (h; y).Think of D = f0; 1gn, R = f0; 1gm, and � = 2m=jT j. Then, Distribution (A) orresponds toA's view of the exeution of the protool and Distribution (B) provides a simulation withdeviation (at most) (2m=jT j)
(1) for it.5.2.2 The simplifying assumptions | at distributionsLet (P; V ) be a 2-message interative proof system for a promise problem � whih is sta-tistial zero knowledge for the honest veri�er. We aim to onstrut a publi-oin proofsystem (M;A) for �. Without loss of generality, we may assume that, in (P; V ), V sendsits message �rst, sine any veri�er messages after the last prover message are irrelevant inan interative proof. We write Vx;k to denote the distribution of V 's message on input xand seurity parameter k. The two simplifying assumptions we make about (P; V ) are1. The protool has perfet ompleteness and soundness error 2�4k.2. Vx;k is a at distribution.5.2.3 The Goldwasser{Sipser transformation for at distributionsWith these assumptions, we now desribe the Goldwasser{Sipser transformation from 2-message proof systems to publi-oin proof systems. Let v = H(Vx;k), so that, by atness,jSupp(Vx;k)j = 2v. On yes instanes x, the perfet ompleteness guarantees that for allveri�er messages y 2 Supp(Vx;k), the spei�ed prover response P ((x; 1k); y) makes V aeptwith probability 1 over V 's random oins (onditioned on y). The soundness error 2�4kprovides a strong negation of this for no instanes | for all but a 2�2k fration of the y'sin Supp(Vx;k), V aepts with probability at most 2�2k onditioned on y, no matter whatthe prover response is. Thus, an idea for onverting suh a proof system into a publi-oinone would be to use a lower bound protool to show that there are \many" (i.e., 2v) y'sfor whih V 's marginal aeptane probability is high. But the last step of the lower boundprotool requires A to test membership in the set; that is, A must test that for the y given,V 's marginal aeptane probability is high. It does not seem possible for A to aomplishthis on his own.To see how Goldwasser and Sipser overome this obstale, note that onditioned on y,V 's random oins r are distributed uniformly in the set
(y) def= fr : Vx;k(r) = yg:Thus, V 's marginal aeptane probability given y and a prover response z is exatly thefration of r 2 
(y) for whih V (x; y; z; r) = aept. This fration an be proven to be5 In ase T \ h�1(0) = ; the output is de�ned to be a speial failure symbol.6Note that this task | hoosing a hash funtion uniformly among those that map a given point to 0 |an be easily done in polynomial time for our partiular hash families Hn;m.



5.2. OVERVIEW 101large via another lower bound protool! Thus, the Goldwasser{Sipser transformation (fortwo-message proof systems) onsists of two lower bound protools; together, these showthat there are \many" y's for whih there are \many" r's making the veri�er aept. Forthe formal desription of the protool, let m be the number of random oins used by V andlet n be the length of V 's messages. By atness, j
(y)j = 2m�v for any y 2 Supp(Vx;k),so 2m�v is the set size for whih the seond lower bound should be proven. Atually, toguarantee a small ompleteness error via Lemma 5.2.1, we need some slakness in the setsizes for whih the lower bound protool is exeuted, so we use set sizes 2v�k and 2m�v�krather than 2v and 2m�v. The resulting proof system is Protool 5.2.4.Protool 5.2.4: Goldwasser{Sipser [GS89℄ transformed protool(M;A) for at distributionsInput: Instane x of � and a seurity parameter k (in unary)1. M : Calulate v = H(Vx;k). Send v to A.2. A: Choose h1 uniformly from Hn;v�k. Send h1 to M .3. M : Choose y uniformly in Supp(Vx;k) \ h�11 (0). Send y to A.4. A: Chek that h1(y) = 0. If not, rejet immediately.5. M : Let z  P (x; 1k; y). Send z to A.6. A: Choose h2 uniformly from Hm;m�v�k. Send h2 to M .7. M : Choose r uniformly in 
(y) \ h�12 (0). Send r to A.8. A: Chek that Vx;k(r) = y, h2(r) = 0, and V (x; 1k; y; z; r) = aept.Aept if all three onditions hold and rejet otherwise.We now show that Protool 5.2.4 is omplete. Fix a yes instane x and a seurityparameter k. By the ompleteness of the lower bound protool, M will sueed to �nda y 2 Supp(Vx;k) (respetively, an r 2 
(y)) satisfying the appropriate hashing onditionwith probability at least 1� 2�k in eah of the two lower bound protools. By the perfetompleteness of (P; V ), the ondition that V (x; 1k; y; z; r) will always be satis�ed as long asr 2 
(y). Thus, (M;A) has ompleteness error at most 2 � 2�k.The soundness of this proof system an be dedued from the soundness of both (P; V )and the lower bound protool as follows: Fix a no instane x and a seurity parameter k.Consider the optimal prover strategy M�, whih we may assume is deterministi withoutloss of generality. Let v� be M�'s �rst message. For any y and z, de�neRy;z def= fr 2 
(y) : V (x; 1k; y; z; r) = aeptg:



102 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINSAlso set T = fy : 9 z jRy;zj > 2m�v��2kg:From the soundness of (P; V ), it follows that jT j � 2v��2k (for otherwise, there would exist aP � whih makes V aept with probability greater than (2v��2k �2m�v��2k)=2m = 2�4k). Bythe soundness of the lower bound protool, M� will be able to selet a y 2 T in Step 3 withprobability at most jT j=2v��k � 2�k. Also by the soundness of the lower bound protool,given any y =2 T and any z, the probability that M� will be able to selet an r (in Step 7)that will make A aept is at most jRy;zj=2m�v��k � 2�k. Thus, the total soundness erroris at most 2 � 2�k.5.2.4 Preserving zero knowledge for at distributionsSine (M;A) onsists essentially of two lower bound protools, Lemma 5.2.3 suggests that(M;A) might satisfy some sort of zero-knowledge property. That lemma implies that whenboth parties follow the protool, y is distributed almost uniformly in Supp(Vx;k), and giveny and z, r is distributed almost uniformly in 
(y). Thus the distribution of (y; z; r) in(M;A) is statistially lose to the interation between P and V (the statistial di�ereneis 2�
(k)). This suggests a way to simulate the (M;A) proof system: Run the simulatorfor (P; V ) to obtain a transript (y; z; r) and then uniformly hoose hash funtions h1 andh2 subjet to the onditions that h1(y) = 0 and h2(r) = 0. However, to selet these hashfuntions, one needs to know v, the entropy of Vx;k. This appears diÆult to ompute inpolynomial time; indeed, that is why we have the prover alulate it and send it to theveri�er in the �rst message. This is essentially the only reason that (M;A) an fail to bezero-knowledge even when (P; V ) is.To get around this diÆulty, Okamoto [Oka96℄ uses a tehnique whih he alls \om-plementary usage of messages" (whih we also used in the redution from ED to SD). InProtool 5.2.4, M proves two lower bound; one for set size 2v�k (for the set of \good" y's),the other for set size 2m�v�k (for the set of \good" r's). We aim to give a method by whihM an prove suh lower bounds without revealing v. We begin with the seond lower bound(for set size 2m�v�k). Reall that jSupp(Vx;k)j = 2v. So, proving that some set T is of sizeat least 2m�v�k is equivalent to proving that T � Supp(Vx;k) is of size at least 2m�k. Notethat v has disappeared, and all that is left is m (the number of oins that V uses) and k(the seurity parameter), whih are trivial to ompute! Thus, in the seond lower bound inProtool 5.2.4, we an replae 
(y) with 
(y)� Supp(Vx;k) and have h2 map to m� k bitsinstead of m� v � k.The �rst lower bound (for set size 2v�k) is only slightly trikier. Reall that for anyy0 2 T , 
(y0) = 2m�v . Thus, proving a lower bound of 2v�k on the size of a set T is equivalentto proving a lower bound of 2m�k on the size of T �
(y0) , for some y0 2 Supp(Vx;k). Notethat in order to implement this idea, some y0 must be �xed in advane; we an simply haveM hoose one at random and send it to A prior to the lower bound protool. Inorporatingthese ideas into Protool 5.2.4, we obtain Protool 5.2.5, whih gives a publi-oin zero-knowledge proof system, assuming that Vx;k is at.The last two steps of Protool 5.2.5 are for M to prove that y00 is in fat in the supportof Vx;k. The ompleteness and soundness errors of this protool an be shown to be 2 �2�k inthe same manner done for Protool 5.2.4, together with our observations above. In addition,
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Protool 5.2.5: Zero-knowledge transformed protool (M;A) for atdistributionsInput: Instane x of � and a seurity parameter k (in unary)1. M : Selet y0  Vx;k. Send y0 to A.2. A: Choose h1 uniformly from Hn+m;m�k. Send h1 to M .3. M : Choose (y; r0) uniformly in (Supp(Vx;k)�
(y0))\h�11 (0). Send (y; r0)to A.4. A: Chek that h1(y; r0) = 0 and Vx;k(r0) = y0. If either does not hold,rejet immediately.5. M : Let z  P (x; 1k; y). Send z to A.6. A: Choose h2 uniformly from Hm+n;m�k. Send h2 to M .7. M : Choose (r; y00) uniformly in (
(y)�Supp(Vx;k))\h�1(0). Send (r; y00)to A.8. A: Chek that Vx;k(r) = y, h2(r; y00) = 0, and V (x; 1k; y; z; r) = aept.If any of these onditions does not hold, rejet immediately.9. M : Choose r00 uniformly in 
(y00). Send r00 to A.10. A: Chek that Vx;k(r00) = y00 and aept if this holds and rejet otherwise.



104 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINShaving eliminated the use of v = H(Vx;k) in the protool, we an now argue that the proofsystem is statistial zero-knowledge, assuming that (P; V ) is. Consider the simulator givenin Algorithm 5.2.6.Algorithm 5.2.6: Simulator for Protool 5.2.5Input: Instane x of � and a seurity parameter k (in unary)1. Run the simulator for (P; V ) on x to obtain a transript (y; z; r).2. Choose r0 and r00 uniformly from f0; 1gm. Let y0 = Vx;k(r0) and y00 =Vx;k(r00).3. Choose h1 uniformly from fh 2 Hn+m;m�k : h(y; r0) = 0g.4. Choose h2 uniformly from fh 2 Hm+n;m�k : h(r; y00) = 0g.5. Output (y0; h1; (y; r0); z; h2; (r; y00); r00).aaIn an honest-veri�er publi-oin proof, the veri�er's oins need not be separately simulatedsine they are the same as the veri�er's messages.The deviation of this simulator an be analyzed as follows: First assume that the simu-lator for (P; V ) is atually a perfet simulator, i.e., has deviation 0; using a statistial zero-knowledge simulator would only inreases the deviation by a negligible amount. Now, thedistribution of y0 is the same (uniform in Supp(Vx;k)) in both (M;A) and the simulator, sowe analyze both distributions onditioned on any �xed y0. In (M;A), h1 is hosen uniformlyfrom Hn+m;m�k, and then (y; r0) is hosen uniformly from (Supp(Vx;k)�
(y0))\h�1(0). Inthe simulator, (y; r0) is distributed uniformly in Supp(Vx;k)�
(y0) and h1 is hosen uniformlysubjet to h1(y; r0) = 0. These orrespond to distributions (A) and (B) in Lemma 5.2.3,respetively. By that lemma, these two distributions have statistial di�erene at most�2m�k=jSupp(Vx;k)� 
(y0)j�
(1) = (2�k)
(1). So, now �x any (y0; h1; (y; r0)) (suh thath1(y; r0) = 0 and Vx;k(r0) = y0) and let us analyze the remaining omponents onditionedon those. In both (M;A) and the simulator, z is hosen aording to P 's strategy, so it doesnot inrease the statistial di�erene. Another appliation of Lemma 5.2.3, with respet tothe set 
(y) � Supp(Vx;k), shows that the omponents (h2; (r; y00)) inrease the statistialdi�erene by at most 2�
(k). Finally, r00 is distributed uniformly in 
(y00) in both (M;A)and the simulator. Thus, the total simulator deviation is at most 2�
(k) plus the deviationof the simulator for (P; V ).Remark 5.2.7 Okamoto [Oka96℄ also treats the speial ase of 2-message proof systems inwhih the veri�er message distribution is at for motivation. Protool 5.2.5 (and its gen-eralization to non-at distributions below) di�er from Okamoto's protools in one respet.Okamoto uses the simulated verifer (as de�ned by the simulator for (P; V )) instead of the



5.2. OVERVIEW 105real veri�er V in onstruting the proof system (M;A). Beause of this, in Okamoto's trans-formation, the fat that the simulated veri�er is statistially lose to the real veri�er is usedin proving the ompleteness of (M;A); hene, the transformation is restrited to statistialzero knowledge proofs. In our ase, the simulator for (P; V ) is only used in onstruting thesimulator for (M;A); this enables us to prove that the transformation also works for om-putational zero knowledge. On the other hand, the fat that Okamoto uses the simulator Srather than the veri�er V in onstruting (M;A) appears to be ruial in his transformationfor many-message proof systems (whih we have avoided via Corollary 4.1.1). To extendthe result to 3-message omputational zero-knowledge proofs, we simply note that an extraprover message at the start does not harm the analysis.5.2.5 Removing the assumptions | general distributionsThere are several problems in generalizing the transformation of Protool 5.2.5 to arbitrarytwo-message zero-knowledge proofs (P; V ). The assumption about the ompleteness andsoundness errors is not very problemati. Essentially the same analysis as given aboveworks even when the proof system does not have perfet ompleteness, but ompletenesserror, say, 2�k. And exponentially small ompleteness and soundness errors an be ahievedby straightforward parallel repetitions.The assumption that the veri�er message distribution Vx;k is at presents more seriousdiÆulties. Reall the Flattening Lemma (Lemma 3.4.6), whih says that if we take manyindependent opies of a distribution, the distribution gets \attened" in the sense that,with high probability, a random sample from the distribution X will have probability masswithin a fator of 2O(�) of 2�H(X), where � grows sublinearly with the number of opiestaken. Note that taking parallel repetitions of the proof system has exatly the e�et ofreplaing the message distribution Vx;k with many independent opies of itself. A key pointis that the soundness error dereases like a true exponential 2�
(t) with the number t ofparallel repetitions. Thus, with suÆiently many parallel repetitions, we an make thedeviation � from atness small relative to the soundness error, in the sense that the extraslakness fators of 2O(�) needed in the lower bound protools to deal with the deviationfrom atness will not a�et the soundness of the resulting proof system (M;A).Unfortunately, the protool still needs further modi�ations to work with \nearly at"rather than truly at distributions. The problems arise from the fat that, although �-atness guarantees that, with high probability, a random sample will have a nearly typialprobability mass, some very heavy and very light samples an still exist. So, M may selety0 to be \too heavy", allowing him many hoies for r0 and leading to a violation of thesoundness requirement. Similarly, although there are only about 2H(Vx;k) hoies for y00 thathave probability mass near 2�H(Vx;k), if Vx;k is only nearly at there may be many morehoies for y00 (alas, these are \too light" | i.e., have probability mass muh smaller than2�H(Vx;k)). This gives M too muh freedom (in the hoie of y00) and may also lead toviolation of the soundness requirement.In order to solve these problems, Okamoto [Oka96℄ introdues two subprotools: The�rst is a \sample generation" protool, whih is a protool for M and A to selet a samplefrom a nearly at distribution suh that no matter what strategy M uses, the sample willnot be too heavy. This will replae Step 1 in Protool 5.2.5, and guarantee that M does



106 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINSnot have too muh freedom in its hoie of r0 (in Step 3). The seond protool is a \sampletest" protool, whih is a way for M to prove that a sample y00 taken from a nearly atdistribution is not too light. This will replae Steps 9 and 10 in Protool 5.2.5 and guaranteethat M does not have too muh freedom in its hoie of y00 (in Step 7).We stress that both of these subprotools will be publi-oin and will possess appropriatesimulability properties to ensure that the resulting protool for � is a publi-oin HVSZKproof system. Below, we will speify the properties of these subprotools, and formulate andanalyze the transformed proof system assuming that these subprotools exist. In Setion 5.5,we present these subprotools and prove that they have the asserted properties.5.3 Subprotool spei�ationsBelow, all distributions are given in the form of a iruit whih generate them. The inputto these protools will onsist of a distribution, denoted X. We will denote by m (resp.,n) the length of the input to (resp., output of) the iruit generating the distribution X.In order to de�ne the notion of a sample generation protool, we must formalize what itmeans for an interative protool to have output.De�nition 5.3.1 Let f be any (deterministi) polynomial-time omputable funtion andlet (A;B) be an interative protool. The f -output of (A;B) on input x is the randomvariable obtained by applying f to x and all the messages exhanged between A and B (butnot to the random oins of A and B).Usually, for any given protool, we will only be interested in one partiular outputfuntion f (given at the same time as the protool), so we will usually omit f from thenotation when referring to the protool.De�nition 5.3.2 (sample generation protool) A protool (M;A) is alled a samplegeneration protool if on ommon input a distribution X and parameters �; t, suh that Xis �-at and t � �,7 the following holds:1. (EÆieny) (M;A) is polynomially bounded and A is polynomial-time omputable.2. (\Completeness") If both parties are honest, then the output of the protool will bet ��-typial with probability at least 1�m � 2�
(t2).3. (\Soundness") If A is honest then, no matter howM plays, the output will be 2pt���-heavy with probability at most m � 2�
(t2).4. (Strong \Zero Knowledge") There exists a probabilisti polynomial-time simulator Sso that for every (X;�; t) as above, the following two distributions have statistialdi�erene at most m � 2�
(t2):7The ondition t � � is to simplify the error expressions and will always be satis�ed in our appliations.Moreover, the partiular error expressions we give are artifats of our onstrution and a protool ahievingslightly di�erent expressions might suÆe. What is important is that the error probabilities (m � 2�
(t2))are negligible as a funtion of t and that the heaviness expression 2pt� �� is subquadrati in �.



5.3. SUBPROTOCOL SPECIFICATIONS 107(A) Exeute (M;A) on ommon input (X;�; t) and output the view of A, appendedby the output.(B) Choose x X and output (S(X;�; t; x); x).A sample generation protool is said to be publi oin if it is publi oin for A.The above zero-knowledge property is referred to as strong sine the simulator annotprodue a view-output pair by �rst generating the view and then omputing the orrespond-ing output. Instead, the simulator is fored (by the expliit inlusion of x in Distribution(B)) to generate a onsistent random view for a given random output (of the protool). Weomment that the trivial protool in whih A uniformly selets an input r to the iruitX and reveals both r and the output x = X(r) annot be used sine the simulator is onlygiven x and it may be diÆult to �nd an r yielding x in general. Still, a sample generationprotool is impliit in Okamoto's work [Oka96℄ (where it is alled a \pre-test").Theorem 5.3.3 (impliit in [Oka96℄) There exists a publi-oin sample generation pro-tool. Furthermore, the number of messages exhanged in the protool is linear in m.A proof of Theorem 5.3.3 is presented in Setion 5.5.De�nition 5.3.4 (sample test protool) A protool (M;A) is alled a sample test pro-tool if on ommon input a distribution X, a string x 2 f0; 1gn and parameters �; t, suhthat X is �-at and t � �, the following holds:1. (EÆieny) (M;A) is polynomially bounded and A is polynomial-time omputable.2. (\Completeness") If both parties are honest and x is t ��-typial then A aepts withprobability at least 1�m � 2�
(t2).3. (\Soundness") If x is 6pt� ��-light and A is honest then, no matter how M plays,A aepts with probability at most m � 2�
(t2).4. (Weak \Zero Knowledge") There exists a probabilisti polynomial-time simulator Sso that for every (X;�; t) as above and for every t � �-typial x, the following twodistributions have statistial di�erene at most m � 2�
(t2):(A) Exeute (M;A) on ommon input (X;x;�; t) and output the view of A, prependedby x.(B) Choose r uniformly in 
X(x)def= fr0 : X(r0) = xg, and output (x; S(X;x;�; t; r)).A sample test protool is said to be publi oin if it is publi oin for A.The above zero-knowledge property is referred to as weak sine the simulator gets a randomr giving rise to x (i.e., x = X(r)) as an auxiliary input (whereas A is only given x). Weomment that a simple publi-oin testing protool exists in ase one an approximate thesize of 
X(x) and uniformly sample from it. However, this may not be the ase in general.Still, a sample test protool is impliit in Okamoto's work [Oka96℄ (where it is alled a\post-test").



108 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINSTheorem 5.3.5 (impliit in [Oka96℄) There exists a publi-oin sample testing protool.Furthermore, the number of messages exhanged in the protool is linear in m.A proof of Theorem 5.3.5 is presented in Setion 5.5.5.4 The transformed proof systemWe now present the transformation from 2-message zero-knowledge proofs to publi-oinzero-knowledge proofs. (The ase of 3-message omputational zero-knowledge proofs issimilar, but ompliates the notation, so we just sketh the hanges neessary at the end.)Let (P0; V0) be a 2-message interative proof system whih is honest-veri�er zero-knowledge(either omputational or statistial). Without loss of generality, we assume that on seurityparameter k, the ompleteness error is at most 2�k and the soundness error is at most1=2. Throughout what follows, we will always assume that the seurity parameter k isat least the input length jxj; this an be ahieved by arti�ally inreasing k if neessary.Let m0(k) = poly(k) be a bound on the number of random oins used by V0 on inputs(x; 1k), when k � jxj. Let (P; V ) denote the interative proof system for �, whih doesthe following on input x and seurity parameter k � jxj: Both parties set m0 = m0(k),and ` = 216 �m60 � k; and exeute (P0; V0)(x; 1k) ` times in parallel, with V aepting i� V0aepts in all ` exeutions.Let Vx;k denote the message distribution of V on input (x; 1k). Let n be the length ofmessages produed by this distribution, and m = ` �m0 the number of random oins usedto generate the distribution. We an immediately make the following observations about(P; V ):Claim 5.4.11. The ompleteness error is at most ` � 2�k = 2�
(k).2. The soundness error is at most 2�`.3. Vx;k is �-at, for � = p` �m0 = 28m40pk:The last item follows from the Flattening Lemma (Lemma 3.4.6), as Vx;k onsist of ` inde-pendent opies of V0's message distribution.Protool 5.4.2 gives the transformed proof system (M;A) obtained by generalizing Pro-tool 5.2.5 to \nearly at" distributions and augmenting it with sample generation andsample test protools. In the protool, the parameters m0, m, n, `, and � have the samevalues as above (as funtions of k), and, for any y, 
(y) def= fr 2 f0; 1gm : Vx;k(r) = yg.We now prove that (M;A) is the protool we want. Clearly, (M;A) is publi-oin,assuming that the sample generation and test protools are (as we may by Theorems 5.3.3and 5.3.5). The ompleteness property will follow from the zero knowledge one, so we startby establishing soundness.Lemma 5.4.3 (soundness) Suppose that x 2 �N . Then, for any M�, A aepts in(M�; A)(x; 1k) with probability at most exp(�
(k)).
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Protool 5.4.2: Zero-knowledge transformed protool (M;A)Input: Instane x of � and a seurity parameter k � jxj (in unary)1. M;A: Exeute a sample generation protool, with inputs (Vx;k;�;pk), toobtain an output y0.2. A: Choose h1 uniformly from Hn+m;m�3pk�. Send h1 to M .3. M : Choose (y; r0) aording to Vx;k

(y0),a onditioned on h1(y; r0) = 0.Send (y; r0) to A.4. A: Chek that h1(y; r0) = 0 and Vx;k(r0) = y0. If either does not hold,rejet immediately.5. M : Let z  P (x; 1k; y). Send z to A.6. A: Choose h2 uniformly from Hm+n;m�3pk�. Send h2 to M .7. M : Choose (r; y00) aording to 
(y)
 Vx;k, onditioned on h2(r; y00) = 0.Send (r; y00) to A.8. A: Chek that Vx;k(r) = y, h2(r; y00) = 0, and V (x; 1k; y; z; r) = aept.If any of these onditions does not hold, rejet immediately.9. M;A: Exeute a sample test protool, with input (Vx;k; y00;�;pk), and Aaepts i� the test is onluded satisfatorily.aReall that we use the same notation for a set (e:g :; 
(y0)) and the uniform distributionon that set.



110 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINSProof: Observe that the sample generation and test protools are invoking with parame-ters t = pk and � = 28m40pk, and Vx;k is in fat �-at. Thus, the soundness of the samplegeneration protool implies that with probability at most m � exp(�
(t2)) = exp(�
(k)),the outome y0 is 2pt� ��-heavy. Thus, we have:Claim 5.4.4 y0 is 2pt� ��-heavy with probability at most exp(�
(k)).Suppose that y0 is not 2pt� ��-heavy. We will show that M� will be fored to selet ay whih has very few aepting r's. As in the analysis of Protool 5.2.4, for any y and z, letRy;z def= fr 2 
(y) : V (x; 1k; y; z; r) = aeptg;and de�ne T def= fy : 9 z jRy;zj > 2m�H(Vx;k)�7pt���g:Claim 5.4.5 jT j � 2H(Vx;k)�3pt���.Proof of laim: Suppose not. Then there would be a prover strategy P �whih onvines V to aept with probability at leastjT j � 2m�H(Vx;k)�7pt���2m > 2�10pt���:However, by our setting of parameters,10pt� �� = 10 � 212 �m60 � k < `;so we have ontradited the fat that the soundness error of (P; V ) is 2�`. 2Claim 5.4.6 If y0 is not 2pt� � �-heavy, then, with probability at least 1 � 2�k (overSteps 2{4), y =2 T (or A rejets).Proof of laim: By the soundness of the standard lower bound protool(Lemma 5.2.2), it suÆes to show that the number of pairs (y; r0) suh thatVx;k(r0) = y0 and y 2 T is at most 2�k � 2m�3pk�. Sine y0 is not 2pt� � �-heavy, there are at most 2m�H(Vx;k)+2pt��� values of r0 suh that Vx;k(r0) = y0.Thus the total number of pairs (y; r0) suh that Vx;k(r0) = y0 and y 2 T is atmost 2m�H(Vx;k)+2pt��� � 2H(Vx;k)�3pt��� = 2m�pt���:So we need to show that pt� �� > 3pk�+ k. This follows from our hoie ofparameters: pt� �� = 24m20pk �� > 3pk ��+ k: 2Claim 5.4.7 If y =2 T , then with probability at least 1�2�k (over Steps 6{8), y00 is 6pt���-light (or A rejets).



5.4. THE TRANSFORMED PROOF SYSTEM 111Proof of laim: In Step 7, M� must hoose r from Ry;z, or else A will rejet.Thus, by the soundness of the lower bound protool, it suÆes to show that thenumber of pairs (r; y00) suh that r 2 Ry;z and y00 is not 6pt� � �-light is atmost 2�k � 2m�3pk�. jRy;zj � 2m�H(Vx;k)�7pt���, beause y =2 T . The numbernon-6pt� ��-light hoies for y00 is at most 2H(Vx;k)+6pt��� (as eah suh y00 hasprobability mass at least 2�H(Vx;k)�6pt��� under Vx;k). Thus, the total numberof pairs (r; y00) suh that r 2 Ry;z and y00 is not 6pt� ��-light is at most2m�H(Vx;k)�7pt��� � 2H(Vx;k)+6pt��� = 2m�pt���;whih is smaller than 2�k � 2m�3pk�, as shown in the proof of Claim 5.4.6. 2By the soundness of the sample test protool, we have:Claim 5.4.8 If y00 is 6pt���-light, A will rejet in the sample test protool with probabilityat least 1� 2�
(k).Putting together all these laims, it follows that A will rejet on a no instane withprobability at least 1� 2�
(k).We now show that (M;A) retains the zero-knowledge properties of (P; V ). Let S bea (HVSZK or HVCZK) simulator for (P; V ). The simulator for (M;A), given in Algo-rithm 5.4.9, is similar to Algorithm 5.2.6, but is augmented by the simulators for the samplegeneration and test protools.The orretness of this simulator will rely on the following generalization of Lemma 5.2.3to non-at distributions, proved in Appendix B.Lemma 5.4.10 (impliit in [Oka96℄) Let H be a 2-universal family of hash funtionsmapping a domain D to a range R and let 0 be any �xed element of R. Let Z be adistribution on D suh that with probability 1�Æ over z seleted aording to Z, Pr [Z = z℄ �"=jRj. Then the following two distributions have statistial di�erene at most 3(Æ + "1=3):(A) Choose h uniformly in H. Selet z aording to Z onditioned on h(z) = 0. Output(h; z).(B) Choose z aording to Z. Selet h uniformly in fh0 2 H : h0(z) = 0g. Output (h; z).We �rst analyze the simulator when transript obtained from S is replaed with a truesample of hP; V i.Lemma 5.4.11 Let S denote the output distribution of Algorithm 5.4.9, when the tran-sript (y; z; r) obtained from S(x; 1k) is replaed with a sample of hP; V i(x; 1k). Then, Shas statistial di�erene at most exp(�
(k)) from hM;Ai(x; 1k).Proof: By the strong zero-knowledge property of the sample generation protool, thepair (�; y0) in an exeution of S has statistial di�erene at most m � 2�
(k) = 2�
(k)



112 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINSAlgorithm 5.4.9: Simulator for Protool 5.4.2Input: Instane x of � and a seurity parameter k (in unary)1. Run the simulator S for (P; V ) on input (x; 1k) to obtain a transript(y; z; r).2. Choose r0 and r00 uniformly from f0; 1gm. Let y0 = Vx;k(r0) and y00 =Vx;k(r00).3. Run the simulator for the sample generation protool on input(Vx;k;�;pk; y0) to obtain a transript � orresponding to output y0.4. Choose h1 uniformly from fh 2 Hn+m;m�k : h(y; r0) = 0g.5. Choose h2 uniformly from fh 2 Hm+n;m�k : h(r; y00) = 0g.6. Simulate an exeution of the sample test protool on input (Vx;k; y00;�;pk)and auxiliary input r00, obtaining a transript, denoted �.7. Output (�; h1; (y; r0); z; h2; (r; y00); �).from a real exeution of that protool.8 Sine Vx;k is �-at, the string y0 is pk�-lightwith probability at most 2�k+1 in the simulator. Thus, we onsider the distributions on(h1; (y; r0)) onditioned on any pair (�; y0) suh that y0 is not pk�-light. To analyze this,we apply Lemma 5.4.10 with Z = Vx;k 
 
(y0), D = f0; 1gn+m, and R = f0; 1gm�3pk�.Distribution (A) (resp., (B)) in Lemma 5.4.10 orresponds to the distribution of (h1; (y; r0))in the proof system (resp., S). Sine Vx;k is �-at and y0 is not pk�-light, the followingholds with probability � 1� 2�k+1 over (y; r0) seleted aording to Vx;k 
 
(y0):Pr �Vx;k 
 
(y0) = (y; r0)� = Pr [Vx;k = y℄ � 1j
(y0)j� 2�H(Vx;k)+pk� � 12m�H(Vx;k)�pk�= 2�pk�jRj< 2�kjRj8y0 is not atually part of the transripts, sine it is not a message exhanged. Rather, it is omputed byapplying a polynomial-time omputable funtion to � (see De�nition 5.3.1). But, for the purposes of thisproof, it is onvenient to treat it on its own.



5.4. THE TRANSFORMED PROOF SYSTEM 113Thus, we an take Æ = 2�k+1 and " = 2�k in Lemma 5.4.10, and see that the two distribu-tions on (h1; (y; r0)) have statistial di�erene 2�
(k) (onditioned on history �).In both S and hM;Ai, z is generated by applying the same randomized proedure tothe history (�; h1; (y; r0)) (namely, the strategy for P ), so inluding z does not inrease thestatistial di�erene. Another appliation of Lemma 5.4.10, similar to the one above, showsthat the distributions on (h2; (r; y00)) have statistial di�erene at most 2�
(k), onditionedon any history (�; h1; (y; r0); z) in whih y is not pk�-light. Sine y is distributed aordingto the �-at distribution Vx;k in the simulator, it is pk�-light with probability at most2�k+1.Finally, inluding � only inreases the statistial di�erene by 2�
(k) by the weak zero-knowledge property of the sample test protool (noting that in the simulator, y00 ispk�-lightwith probability at most 2�k+1 and r00 is distributed uniformly in 
(y00)).Lemma 5.4.11 immediately implies the ompleteness of (M;A):Lemma 5.4.12 (ompleteness) (M;A) has ompleteness error 2�
(k).Proof: The transript generated by S is aepting whenever the transript (y; z; r)it reeives from hP; V i(x; 1k) is aepting. Sine (P; V ) has ompleteness error at mostexp(�
(k)) and the statistial di�erene between S and hM;Ai(x; 1k) is at most exp(�
(k)),it follows that (M;A) has ompleteness error exp(�
(k)).Statistial zero knowledge also follows readily from Lemma 5.4.11; using a simulator ofdeviation � instead of sample of hP; V i an only a�et the statistial di�erene by �.Lemma 5.4.13 (statistial zero knowledge) If S simulates (P; V ) with deviation devi-ation �(k), then Algorithm 5.4.9 simulates (M;A) with deviation �(k) + 2�
(k). Thus, if(P; V ) is honest-veri�er statistial zero knowledge, then so is (M;A).Computational zero knowledge follows from the additional observation that Algorithm 5.4.9performs an eÆient omputation on the transript of (P; V ) reeived.Lemma 5.4.14 (omputational zero knowledge) If (P; V ) is honest-veri�er omputa-tional zero knowledge, then so is (P; V ).Proof: If hP; V i(x; 1k) and S(x; 1k) are omputationally indistinguishable, then so areS and the output of Algorithm 5.4.9, beause they are obtained by applying the samepolynomial-time proedures to hP; V i(x; 1k) and S(x; 1k), respetively. Sine hM;Ai(x; 1k)has negligible statistial di�erene from S, it follows that it too is omputationally indis-tinguishable from the output of Algorithm 5.4.9.This ompletes the proof of Theorems 5.1.1, and the proof of Theorem 5.1.2 for 2-message proof systems. To extend the result to 3-message HVCZK, we simply note thatinluding an extra prover message w at the start of the proof system does not ause anyproblems. Throughout the onstrution and analysis, the veri�er message distribution Vx;kshould be replaed with Vx;k;w, whih is the veri�er's message distribution when the inputis x, the seurity parameter is k, and the prover's �rst message is w.



114 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINSWe an strengthen the statements of the theorems somewhat. First, reall that weshowed that every problem in HVSZK has a 2-message statistial zero-knowledge proofwith simulator deviation 2�k (Corollary 4.1.1). Using suh a proof system as the startingpoint for the onstrution, Lemma 5.4.13 says that the resulting simulator deviation willbe 2�
(k). (Atually, we did poly(k) parallel repetitions to obtain the (P; V ) used in thetransformation, whih inreases the simulator deviation by a poly(k) fator, but poly(k) �2�
(k) = 2�
(k).) Renaming k, the simulator deviation beomes simply 2�k. Seond, F�ureret. al. [FGM+89℄ have shown how to transform publi-oin proofs into ones with perfetompleteness; their transformation preserves honest-veri�er statistial and omputationalzero-knowledge, and in fat preserves an exponentially small simulator deviation.9 Thus,we obtain:Theorem 5.4.15 (Thm. 5.1.1, strengthened) Every problem in HVSZK has a publi-oin honest-veri�er statistial zero-knowledge proof with perfet ompleteness and simulatordeviation 2�k.Theorem 5.4.16 (Thm. 5.1.2, strengthened) Every problem possessing a 3-messagehonest-veri�er omputational zero-knowledge proof also possesses a publi-oin honest-veri�eromputational zero-knowledge proof with perfet ompleteness.By Lemma 4.6.7, we an immediately dedue an analogous result for knowledge om-plexity in the hint sense.Corollary 5.4.17 Let � : N ! N be any polynomially bounded funtion. Then every prob-lem � 2 SKChint(�(n)) has a publi-oin proof system of statistial knowledge omplexity�(n).A orollary of the result for omputational zero knowledge, is that we an now alsoprove the Ostrovsky{Wigderson for 3-message omputational zero-knowledge proofs. Thatis, ombining Theorems 4.8.8 and 5.1.2, we get:Theorem 5.4.18 ([OW93℄ for 3-message proofs) If a hard-on-average promise prob-lem possesses a 3-message omputational zero-knowledge proof, then one-way funtions ex-ist.The most important open problem left by these results is to remove the 3-messagerestrition for omputational zero knowledge (without making any omputational assump-tions).Open Problem 5.4.19 Does every problem in HVCZK possess a publi-oin HVCZKproof system?9F�urer et. al. [FGM+89℄ atually laim to onvert any honest-veri�er statistial zero-knowledge proof(even a private-oin one) into one with perfet ompleteness, but atually, their transformation only preserveszero knowledge when starting with a publi-oin proof system.



5.5. OKAMOTO'S SUBPROTOCOLS 115Another interesting problem is to improve the message omplexity of the transformation.Neither of these theorems give any guarantee on the message omplexity of the publi-oinproof systems produed, despite the fat that they are obtained by starting with onstant-message proof systems. This is a sharp ontrast with the Goldwasser{Sipser transformationwhih only inreases the message omplexity by 2 (and this an be atually redued to zerousing the ollapse theorems of [BM88℄). Thus, the following question is still unanswered:Open Problem 5.4.20 Does every problem in HVSZK have a publi-oin HVSZK proofsystem whih exhanges a onstant number of messages?For a positive answer to this question, it would suÆe to exhibit onstant-message(publi-oin) sample generation and sample test protools, as the rest of Protool 5.4.2only uses a onstant number of messages. (The proof system for Entropy Differenein [GV99℄ uses even fewer messages beyond the sample generation and test protools.)5.5 Okamoto's subprotoolsIn this setion, we present Okamoto's protools for generating and testing samples from anearly at distribution. Reall that these protools must be publi oin and furthermoremust satisfy ertain \zero-knowledge" properties.5.5.1 OverviewSample generation. Here the input to the protool (M;A) is a �-at distribution X(enoded by a iruit) and the output should be a sample x from this distribution. Werequire that, no matter what strategy M follows, x will not be too heavy. If, however, bothparties play honestly, then x should be nearly typial with high probability, and should besimulatable for an externally spei�ed x. In partiular, the protool should not reveal aninput to the iruit X that yields x, as the simulator is only given x and it may be diÆultto �nd an input yielding x in general. If we remove this ondition, the problem beomestrivial: A ould just sample x aording to X and reveal both x and the input used toprodue it. Sine X is nearly at, x will be nearly typial with high probability.Okamoto's solution to this problem has the following general struture: M proposesa sample x (whih is supposed to be distributed aording to X) and sends it to A. (Ofourse, if M is dishonest, he an hoose x to be too heavy.) Then M and A engage in ashort \game" whih ends by M proposing another sample x0. Roughly speaking, this gamehas the following properties:1. If x is too heavy, then no matter what strategy M follows, he will be fored to seletx0 whih is notieably lighter than x.2. If x is not too heavy, then no matter what strategy M follows, he will be fored tohoose x0 that is also not too heavy.3. If x is nearly typial and M plays honestly, then x0 will also be nearly typial.



116 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINS4. IfM plays honestly, then A's view of the game is simulatable for an externally spei�edx0.Clearly, repeating this game many times to obtain a sequene of samples x0; : : : ; xm(where x0 is proposed by M and xi+1 = x0i) will have the e�et of pushing a heavy proposalfor x0 loser and loser to the nearly typial set. Taking m suÆiently large (but stillpolynomial in the appropriate parameters), xm will be guaranteed to be not too heavy, nomatter howM plays. On the other hand, ifM plays honestly, all the samples will be nearlytypial. Finally, the simulability property of the game enables the entire sample generationprotool to be simulated \bakwards" for an externally spei�ed xm.Sample test. Here the input to the protol (M;A) is a �-at distribution X (enodedby a iruit) together with a string x from the domain of X. At the end of the protool, Aaepts or rejets. We require that if x is too light, A should rejet with high probabability.If, however, x is nearly typial and both parties play honestly, then A should aept withhigh probability, and, moreover, A's view of the interation should be simulatable (givenadditionally a random input for X whih yields x).The general struture of this protool is very similar to that of the sample generationprotool. Given x, M and A engage in a short game whih ends by M proposing anothersample x0. Roughly speaking, this game has the following properties:1. If x is too light, then no matter what strategy M follows, he will be fored to seletx0 whih is notieably lighter than x.2. If x is nearly typial and M plays honestly, then x0 will also be nearly typial.3. If x is nearly typial and M plays honestly, then A's view of the game is simulatable(given a random input to X whih yields x).Clearly, repeating this game many times to obtain a sequene x0; : : : ; xm (where x0 = xand xi+1 = x0i) will have the e�et of making a light input sample lighter and lighter. Takingm suÆiently large, xm�1 will be so light that it has zero probability, so there is no xmlighter than xm�1 and A will rejet! Notie that we do not are what happens in the gameif xi is not too light and M plays dishonestly; if the original input is too light (whih is thethe only time we worry about a dishonest M), all the subsequent xi's will also be too lightwith high probability. On the other hand, if the original input x is nearly typial and Mplays honestly, all the samples will be nearly typial. Finally, the simulability property ofthe game enables the entire sample test protool to be simulated \forwards" given oins forx. Amazingly, the game used for the sample test protool is idential to the game used forthe sample generation protool. We desribe this \pushing" game in the next setion, andsubsequently give formal desriptions of the two protools.5.5.2 The pushing gameThroughout the remainder of Setion 5.5, X is a �-at distribution enoded by a iruitand m (resp., n) denotes the length of the input (resp., output) of the iruit generating X.



5.5. OKAMOTO'S SUBPROTOCOLS 117Reall that for positive integers k and `, Hk;` denotes a 2-universal family of hash funtionsmapping f0; 1gk to f0; 1g`.The basi game underlying the sample generation and sample test protools is the 2-message protool given in Protool 5.5.1 (alled \sequentially reursive hashing" in [Oka96℄).Protool 5.5.1: Pushing game (M;A)Input: (X;x;�; t), where x 2 f0; 1gn and t � �1. A: Choose h uniformly from Hm+n;m�3t� and send h to M .2. M : Choose (r; x0) from the distribution 
X(x) � X, onditioned onh(r; x0) = 0, and send (r; x0) to A. (If there is no suh pair (r; x0), then Msends fail to A.)3. A: Chek that X(r) = x and h(r; x0) = 0. If either ondition fails, rejet.Output: x0Observe that if j
X(x)j = ;, then A rejets with probability 1. In order to desriberemaining the properties of the pushing game, we de�ne the weight of a string x relative toa iruit X by wtX(x) = log(Pr [X = x℄ � 2H(X)). So, x is -heavy i� wtX(x) �  and x is-light i� wtX(x) � �. Also note that for x in the support of X, jwtX(x)j � m. When thedistribution X is lear from the ontext, we will often write wt(x) instead of wtX(x). Thefollowing lemma asserts that no matter how M plays, if the input to the game is atypial,then the output is notieably lighter. (The behavior on typial inputs is analyzed later |in Lemma 5.5.3.)Lemma 5.5.2 If A follows the presribed strategy in the pushing game, then no matterwhat strategy M uses, the following hold:1. (\heavy gets lighter") With probability � 1 � 2�
(t2), either wt(x0) < max(wt(x) �1; 2pt� ��) or A rejets.2. (\light gets lighter") If wt(x) � �6pt� ��, then with probability � 1� 2�
(t2), eitherwt(x0) < wt(x)� 1 or A rejets.Proof: 1. Let S be the set of x0 suh that wt(x0) � max(wt(x)� 1; 2pt� ��). We needto show that with probability at most 2�
(t2) over the hoie of h from Hm+n;m�3t�, thereexists a pair (r; x0) 2 
X(x) � S suh that h(x; r0) = 0. By the soundness of the standardlower-bound protool (Lemma 5.2.3), it suÆes to prove thatj
X(x)� Sj � 2�
(t2) � 2m�3t�:



118 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINSThe intuition is that the number of x0 that are heavier than max(wt(x)� 1; 2pt� ��) is sosmall that not even the size of 
X(x) an ompensate.By de�nition of wt(x), j
X(x)j = 2m�H(X)+wt(x). We now bound jSj. First, sine X is�-at, we have 2�4t�+1 � Prx0 X hwt(x0) � 2pt� ��i� Pr [X 2 S℄= Xx02S Pr �X = x0�On the other hand, every x0 2 S is (wt(x) � 1)-heavy, whih means that Pr [X = x0℄ �2�H(X)+wt(x)�1. Thus, 2�4t�+1 � jSj � 2�H(X)+wt(x)�1:Putting everything together, we havej
X(x)� Sj � 2m�H(X)+wt(x) �� 2�4t�+12�H(X)+wt(x)�1�= 2m�4t�+2� 2�t2+2 � 2m�3t�;as desired. (In the last inequality, we used the fat that t � �.)2. Let S = fx0 : wt(x0) � wt(x) � 1g. Again, it suÆes to show that j
X(x) � Sj �2�
(t2) � 2m�3t�. Here the intuition is that j
X(x)j is so small (sine x is so light) that theonly way for M to sueed is to hoose x0 even lighter than x (sine there annot be toomany strings of notieable probability mass). This time we bound jSj by dividing S intotwo parts. De�ne S1 = fx0 : wt(x)� 1 � wt(x0) � �2pt� ��gS2 = fx0 : �2pt� �� < wt(x0)g;so that S = S1 [ S2. Sine every x0 2 S2 has probability mass greater than 2�H(X)�2pt���,we must have jS2j < 2H(X)+2pt���� 2H(X)�wt(x)�4t�;where the last inequality follows from wt(x) � �6pt� �� and � � t. We now bound jS1j.Sine X is �-at, we have 2�4t�+1 � Pr �X 0 2 S1�� jS1j � 2�H(X)+wt(x)�1:



5.5. OKAMOTO'S SUBPROTOCOLS 119Thus, jS1j � 2H(X)�wt(x)�4t�+2, and sojSj = jS1j+ jS2j < 2H(X)�wt(x)�4t�+3;and j
X(x)� Sj < 2m�H(X)+wt(x) � 2H(X)�wt(x)�4t�+3= 2m�4t�+3� 2�t2+3 � 2m�3t�;as desired.The pushing game has the following simulability and \ompleteness" properties whenboth parties are honest:Lemma 5.5.3 If both parties follow the protool in the pushing game and x is t�-typial,then the following two distributions have statistial di�erene at most 2�
(t2):(A) Exeute the pushing game on input (X;x;�; t) to obtain (h; r; x0). Output (h; r; x0).(B) Let x0 be distributed aording to X and let r be seleted uniformly from 
X(x). Chooseh uniformly in Hm+n;m�3t� subjet to h(r; x0) = 0. Output (h; r; x0).Proof: We apply Lemma 5.4.10 with Z = 
X(x) � X, D = f0; 1gm+n and R =f0; 1gm�3t�. Distribution (A) (resp., (B)) in Lemma 5.4.10 orresponds to Distribution(A) (resp., (B)) above. Sine X is �-at, the following holds with probability � 1� 2�t2+1over (r; x0) seleted aording to 
X(x)�X:Pr �
X(x) = (r; x0)� = Pr �X = x0� � 1j
X(x)j< 2�H(X)+t� � 12m�H(X)�t�= 2�t�jRjThus, we an take Æ = 2�t2+1 and " = 2�t� � 2�t2 in Lemma 5.4.10, and see that the twodistributions have statistial di�erene 2�
(t2).5.5.3 The protoolsThe sample generation and test protools are given in Protools 5.5.4 and 5.5.5, respetively,They simply onsist of many repetitions of the basi pushing game.5.5.4 Corretness of sample generation protoolUsing the properties of the pushing game, we now prove that the sample generation protoolsatis�es De�nition 5.3.2 and thus Theorem 5.3.3 holds.
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Protool 5.5.4: Sample generation protool (M;A)Input: (X;�; t), where t � �1. M : Selet x0 2 f0; 1gn aording to X and send x0 to A.2. M;A: Repeat for i from 1 to m: Exeute the pushing game on input(X;xi�1;�; t) and let xi be the output.Output: xm, unless A rejets in one of the pushing games, in whih ase outputany anonial string outside the range of X (e.g., 0n+1).

Protool 5.5.5: Sample test protool (M;A)Input: (X;x;�; t), where x 2 f0; 1gn and t � �1. M;A: Let x0 = x.2. M;A: Repeat for i from 1 to m+ 1: Exeute the pushing game on input(X;xi�1;�; t) and let xi be the output.3. A: Rejet if A rejeted in any of the pushing games, else aept.



5.5. OKAMOTO'S SUBPROTOCOLS 121Soundness. By Lemma 5.5.2 (Part 1) and indution, we see that for every 0 � i � m,with probability at least 1 � i � 2�
(t2), either wt(xi) < max(wt(x0) � i; 2pt� � �) or Arejets. In partiular, sine wt(x0) � m, with probability at least 1�m � 2�
(t2), we havewt(xm) < max(wt(x0)�m; 2pt� ��) = 2pt� ��unless A rejets. In addition, if A rejets in any of the pushing games, then the outputhas weight 0 (sine it is hosen to be outside the support of X). Therefore, soundness issatis�ed.Completeness and zero knowledge. First we observe that the ompleteness onditionfollows from the strong zero-knowledge ondition: In Distribution (B) of De�nition 5.3.2, xis distributed aording to X, and hene is t�-typial with probability � 1� 2�t2+1 by the�-atness of X. Sine x orresponds to the output of the sample generation protool inDistribution (A) and Distributions (A) and (B) have statistial di�erene at most 2�
(t2),the output of the sample generation protool must be t�-typial with probability at least1� 2�t2+1 � 2�
(t2) = 1� 2�
(t2).Now we prove the zero-knowledge ondition. Consider the probabilisti polynomial-timesimulator given in Algorithm 5.5.6.Algorithm 5.5.6: Simulator for sample generation protoolInput: (X;�; t; x)1. Let xm = x.2. For i from m down to 1 repeat:(a) Choose ri�1 uniformly from f0; 1gm and let xi�1 = X(ri�1).(b) Choose hi uniformly from Hm+n;m�3t� subjet to hi(ri�1; xi) = 0.3. Output (x0; h1; (r0; x1); h2; (r1; x2); : : : ; hm; (rm�1; xm)):We prove by indution on i that the distribution on i = (x0; h1; (r0; x1); : : : ; hi; (ri�1; xi))in the output of the simulator (when x is hosen aording to X) has statistial di�ereneat most i � 2�
(t2) from the veri�er's view of the sample generation protool up to the endof the i'th exeution of the pushing game. Clearly this is true for i = 0, as in both asesx0 is distributed aording to X. Now suppose it is true for i; we will prove it for i + 1.From the following two observations it follows that the statistial di�erene only inreasesby 2�t2+1 + 2�
(t2) = 2�
(t2) when going from i to i+ 1:1. In the simulator, xi is t�-typial with probability at least 1� 2�t2+1.2. For any history i = (x0; h1; (r0; x1); : : : ; hi; (ri�1; xi)) in whih xi is t�-typial, the



122 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINSfollowing two distributions have statistial di�erene 2�
(t2):(A) A's view of the (i+ 1)'st pushing game onditioned on history i.(B) The distribution of (hi+1; (ri; xi+1)) onditioned on history i in the output ofthe simulator.Observation 1 is immediate from the fat that xi is distributed aording to X in thesimulator and X is �-at. Observation 2 follows from Lemma 5.5.3, observing that ondi-tioned on history i, the triple (hi+1; (ri; xi+1)) in the output of the simulator is seletedexatly aording to the Distribution (B) in Lemma 5.5.3. That is, onditioned on historyi, ri is seleted uniformly from 
X(xi), xi+1 is distributed aording to X, and hi+1 isseleted uniformly in Hm+n;m�3t� subjet to hi+1(ri; xi+1) = 0.5.5.5 Corretness of sample test protoolFinally, we prove that the sample test protool satis�es De�nition 5.3.4 and thus Theo-rem 5.3.5 holds.Soundness. By Lemma 5.5.2 (Part 2) and indution, we see that if wt(x) � �6pt� ��,then with probability at least 1� i �2�
(t2), for every 0 � i � m+1, wt(xi) < wt(x0)� i (orA rejets). In partiular, sine wt(x0) < H(X), with probability at least 1�m � 2�
(t2), wehave wt(xm) < H(X)�m unless A rejets at some iteration. Sine m�H(X) + wt(xm) =log j
X(xm)j annot be negative unless j
X(xm)j = ;, it follows that with probability atleast 1�m � 2�
(t2), A must rejet in one of the iterations.Completeness and zero knowledge. First we prove the zero-knowledge ondition.Consider the probabilisti polynomial-time simulator given in Algorithm 5.5.7.Algorithm 5.5.7: Simulator for sample test protoolInput: (X;x;�; t; r)1. Let x0 = x and r0 = r.2. For i from 1 to m repeat:(a) Choose ri uniformly from f0; 1gm and let xi = X(ri).(b) Choose hi uniformly from Hm+n;m�3t� subjet to hi(ri�1; xi) = 0.3. Output (x0; h1; (r0; x1); h2; (r1; x2); : : : ; hm+1; (rm; xm+1)):We prove by indution on i that the distribution on i = (x0; h1; (r0; x1); : : : ; hi; (ri�1; xi))in the output of the simulator (when r is seleted uniformly from 
X(x) and x is t�-typial)



5.5. OKAMOTO'S SUBPROTOCOLS 123has statistial di�erene at most i � 2�
(t2) from the veri�er's view of the sample test proto-ol up to the end of the i'th exeution of the pushing game. Clearly this is true for i = 0.The indution step is proved analogously to the argument used for the sample generationprotool, using the same two observations and noting that, although the simulator worksin reverse order, the seletion of ri and hi is as before.Now we observe that the ompleteness ondition follows from the weak zero-knowledgeondition and the partiular simulator we have given above. Spei�ally, the above simulatoralways outputs transripts whih would make A aept. Sine it has statistial di�erene atmost m � 2�
(t2) from the sample test protool, A must aept in the sample test protoolwith probability at least 1�m � 2�
(t2).
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Chapter 6Coping with Cheating Veri�ersUp to this point, the fous of our investigation has been honest-veri�er zero-knowledgeproofs, whih only guarantee that the veri�er learns nothing if it follows the spei�edprotool. The existene of suh honest-veri�er proofs is already interesting from both amathematial and philosophial point of view, and, as we have seen, one an develop a rihtheory about their omplexity. However, from a ryptographi point of view, the applia-bility of honest-veri�er proofs is quite limited, sine it is usually unreasonable to assumethat mutually distrustful parties will follow a given protool. Indeed, one of the most dra-mati appliations of zero-knowledge proofs is as a general tool for limiting the amount of\heating" in ryptographi protools [GMW91, Yao86, GMW87℄. Clearly, honest-veriferproofs are unsuitable for suh purposes.The main ontribution of this hapter is a general method for onverting honest-veri�erzero-knowledge proofs into proofs whih remain zero knowledge even against heating ver-i�ers. The transformation applies to all honest-veri�er statistial zero-knowledge proofs,ansd thus we onlude that HVSZK = SZK. It also applies to all publi-oin honest-veri�er omputational zero-knowledge proofs. Suh a result is useful in several ways. First,the transformation allows us to immediately translate the results we have obtained abouthonest-veri�er zero knowledge (suh as the omplete problems and losure properties) to theheating-veri�er zero knowledge. Seond, the transformation suggests a useful methodologyfor onstruting zero-knowledge proofs: First onstrut an honest-veri�er zero-knowledgeproof for the problem at hand (whih is often an easier task), and then use our generaltransformation to onvert it into one robust against heating veri�ers.Our transformation relies on a new \random seletion protool," whih may be usefulin other settings. It is a protool for two mutually distrustful parties to selet a \random"string of a given length, with ertain (assymmetri) guarantees on how muh eah partyan a�et the output distributions and an additional simulability property for one of theparties. The random seletion protool in turn relies on a new lemma about 2-universalhash funtions.We begin, in Setion 6.1, by de�ning the various forms of zero-knowledge proofs againstheating veri�ers, and disussing some issues that arise in the de�nitions. In order toillustrate the de�nitions, in Setion 6.2 we present suh a (heating-veri�er) statistial125



126 CHAPTER 6. COPING WITH CHEATING VERIFIERSzero-knowledge proof for a variant of Statistial Differene (namely, SD1;1=2).1 InSetion 6.3, we give our transformation from honest-veri�er proofs to heating-veri�er onesand prove its orretness, assuming the existene of a random seletion protool with er-tain properties. We exhibit suh a random seletion protool in Setion 6.4, ompletingthe proof of the main results of this hapter. We onlude, in Setion 6.5, by listing someorollaries and open problems. In partiular, we desribe the results about SZK obtainedby translating things we have proven about HVSZK.6.1 De�nitionsThe basi approah of Goldwasser, Miali, and Rako� [GMR89℄ in de�ning zero-knowledgeproofs against heating veri�ers, is to require that, for every polynomial-time veri�er strat-egy V �, there exists a simulator whose output distribution is lose to V �'s view of the in-teration. As with honest-veri�er zero knowledge, di�erent interpretations of \lose" yieldperfet, statistial, and omputational variants of the de�nition. Also like the honest-veri�erversions, our de�nitions di�er from the original de�nitions of Goldwasser, Miali, and Rak-o� [GMR89℄ in that we use a seurity parameter to ontrol the error parameters and werequire the simulator to run in strit polynomial time (but allow a failure probability). Asdisussed in more detail later, we allow the veri�er to be nonuniform in these de�nitions,and hene provide the simulator with the same \advie" as is given to the veri�er. For apolynomial-time algorithm V and a string a, let V[a℄ denote V with \advie" string a. (Weadopt the onventation that the running time of V is is independent of a, so if a is too long,V will not be able to aess it in its entirety.)De�nition 6.1.1 (heating-veri�er zero knowledge | PZK;SZK)An interative proof system (P; V ) for a promise problem � is said to be statistial zeroknowledge if for every probabilisti polynomial-time V �, there exists a useful2 probabilistipolynomial-time S and a negligible funtion �(�) suh thatStatDi� �eS[a℄(x; 1k); hP; V �[a℄i(x; 1k)� � �(k) 8x 2 �Y ; k 2 N; a 2 f0; 1g�:The negligible funtion � is alled the simulator deviation for V �. If, for every V �, � � 0,then (P; V ) is said to be perfet zero knowledge. SZK (resp., PZK) denotes the lass ofpromise problems possessing statistial (resp., perfet) zero-knowledge proofs.De�nition 6.1.2 (heating-veri�er zero knowledge | CZK)An interative proof system (P; V ) for a promise problem � is said to be omputational zeroknowledge if for every probabilisti polynomial-time V �, there exists a useful probabilistipolynomial-time S suh thatneS[a℄(x; 1k)ox2�Y ;k2N and nhP; V �[a℄i(x; 1k)ox2�Y ;k2N;a2f0;1g�1We have not shown this variant of SD to be omplete forHVSZK, so this does not prove thatHVSZK =SZK.2Reall that a probabilisti algorithm A is alled useful if Pr [A(x) = fail℄ � 1=2 for all x and eA(x)denotes the output distribution of A on input x, onditioned on A(x) 6= fail.



6.1. DEFINITIONS 127are omputationally indistinguishable. CZK denotes the lass of promise problems possess-ing omputational zero-knowledge proofs.Note that we have allowed the veri�er strategy V � to be nonuniform even in the ase ofSZK and PZK. As it did with HVCZK, allowing nonuniformity allows us to prove thatzero knowledge is preserved under sequential repetition, and this augmentation beomeseven more important in the setting of heating veri�ers. In fat, it has been proven thatheating-veri�er omputational zero knowledge fails to be preserved under the uniformversions of the de�nitions [GK96b℄. Allowing nonuniformity is also important when zero-knowledge proofs are used as omponents of larger ryptographi protools, as in [Yao86,GMW87℄. Intuitively, in these settings, the veri�er an use information it has obtainedprior to the start of the zero-knowledge proof (e.g., from an earlier exeution of the zero-knowledge proof, in the ase of sequential omposition) in trying to extrat knowledge fromthe prover. A de�nition that is robust against nonuniform veri�ers implies that suh extrainformation does not help, as it an be regarded as \nonuniform advie". Even with anonuniform de�nition, however, heating-veri�er zero knowledge fails to be losed underparallel omposition [GK96b, FS90℄, so the only diret method for doing error redution issequential omposition.At �rst, De�nitions 6.1.1 and 6.1.2 seem very hard to meet. How an one onstruta simulator for eah of the in�nitely many possible veri�er strategies? The way this taskis handled in all known onstrutions of zero-knowledge proofs is that atually only one\universal" simulator is onstruted. The way this one algorithm simulates the in�nitelymany possible veri�ers is that, in order to simulate the interation between P and somepartiular veri�er V �, the simulator is given orale aess to V �. By observing the veri�er'sbehavior when it is fed various partial transripts, the simulator is able to onstrut a\good" simulation for that partiular veri�er. This sort of \universal" simulation in whihthe veri�er is used as a \blak box" was formalized by Goldreih and Oren [GO94℄. Oneadvantage of adopting suh a de�nition is that it allows one to make sense of a proof beingzero knowledge not just against polynomial-time veri�ers, but all veri�er strategies (evenunomputable ones).De�nition 6.1.3 (blak-box simulation SZK) An interative proof system (P; V ) for apromise problem � is said to be blak-box simulation statistial zero knowledge if there is auseful probabilisti polynomial-time algorithm S suh that for every nonuniform probabilistipolynomial-time V �,StatDi� �gSV �(x; 1k); hP; V �i(x; 1k)� � �(k) 8x 2 �Y ; k 2 N; 3 (6.1)for some negligible funtion � (whih may depend on V �). The negligible funtion � isalled the simulator deviation for V �. If, for every V �, � � 0, then (P; V ) is said to beblak-box simulation perfet zero knowledge. If (6.1) holds for all veri�er strategies V �(not just polynomial-time ones), then the proof system is said to blak-box simulation zeroknowledge against all veri�ers3Reall the notation MO is used to indiate algorithm M being given orale aess to funtion O.



128 CHAPTER 6. COPING WITH CHEATING VERIFIERSDe�nition 6.1.4 (blak-box simulation CZK) An interative proof system (P; V ) fora promise problem � is said to be blak-box simulation omputational zero knowledge ifthere is a useful probabilisti polynomial-time algorithm S suh that for every nonuniformprobabilisti polynomial-time V �,ngSV �(x; 1k)ox2�Y ;k2N and nhP; V �i(x; 1k)ox2�Y ;k2Nare omputationally indistinguishable.There is one subtlety in these de�nitions of blak-box simulation, pointed out in [BMO90b℄.S is required to run in time that is a �xed polynomial in its input length, yet it is requiredto simulate veri�ers V � whose running time an be an arbitrary polynomial in the inputlength, and hene even the messages and random oins of V � an be too long for S to read.To deal with this, we give S some additional power:1. S has random aess to its ommuniations with the orale V �, and may opy stringsreeived from the orale diretly to the output (in one time step).2. S an uniformly selet and �x the random oins of V � in one time step. It may alsoautomatially opy them to the output in a single time step.6.2 A heating-veri�er SZK proof system for SD1;1=2In this setion, we illustrate the above de�nitions by giving a heating-veri�er zero-knowledgeproof system for SD1;1=2. The proof system is based on the perfet zero-knowledge proofsfor Quadrati Residuosity [GMR89℄ and Graph Isomorphism [GMW91℄. For moti-vation, we �rst observe that NP proofs an be given for membership in SD1;1=2. A \proof"that two distributions X0 and X1 are not disjoint is simply a triple (x; r0; r1) suh thatX0(r0) = x = X1(r1). In order to obtain a zero-knowledge proof, the prover sends just x(randomly sampled from one of the distributions) and the veri�er asks for either a proofr0 that x 2 Supp(X0) or a proof r1 that x 2 Supp(X1). A formal desription of this proofsystem is given in Protool 6.2.1 (whih is not yet our �nal proof system).The ompleteness and soundness of this protool are easy to hek.Lemma 6.2.2 For any � < 1, Protool 6.2.1 is an interative proof for SD1;� with om-pleteness error �=2 and soundness error 1=2.Proof: (Completeness) When both parties follow the protool, A rejets i� b = 1 andx is not in the support of X1. By the de�nition of statistial di�erene, a random samplefrom X0 will fail to be in the support of X1 with probability at most StatDi� (X0;X1) � �.Sine b = 1 with probability 1=2, A rejets with probability at most �=2.(Soundness) If X0 and X1 have disjoint supports, then no string x an be in the supportof both distributions. So, with probability at least 1=2, A will hoose b so that x =2 Supp(Xb)and the prover will fail.



6.2. A CHEATING-VERIFIER SZK PROOF SYSTEM FOR SD1;1=2 129
Protool 6.2.1: Basi proof system (M;A) for SD1;�Input: Ciruits X0 and X1 (eah with m input gates and n output gates)1. M : Sample x X0. Send x to A.2. A: Choose b f0; 1g. Send b to M .3. M : Choose r uniformly from 
b(x) def= fr0 : Xb(r0) = xg. Send r to A. (If
b(x) = ;, then send fail to A.)4. A: If Xb(r) = x, then aept. Otherwise, rejet.For zero-knowledgeness, we �rst onsider the speial ase when X0 and X1 have statis-tial di�erene 0 and the veri�er is honest. Note that the veri�er's view onsists of triples(x; b; r) where x is distributed aording to X0 (equivalently, X1), b is uniform in f0; 1g,and r is a random input to Xb yielding x. It is easy to generate suh triples: hoose b andr uniformly and let x = Xb(r). The diÆulty when extending this approah to heatingveri�ers is that a heating veri�er may selet b as a funtion of x. This an be handled byhaving the simulator \guess" b in advane and use its orale aess to A� to hek the guessat the end. Thus we onsider the simulator given in Algorithm 6.2.3.Algorithm 6.2.3: Blak-box simulator for Protool 6.2.1Input: Ciruits X0 and X1 (eah with m input gates and n output gates) andorale aess to veri�er A�.1. Selet and �x the random oins R of A�.2. Choose b f0; 1g and r  f0; 1gm.3. Let x = Xb(r).4. Let b0 = A�(x).a5. If b0 = b, output (x; b; r;R). Otherwise, output fail.aHere, and often in this hapter, we omit the input (X0; X1) and the random oins R of A�to simplify the notation.



130 CHAPTER 6. COPING WITH CHEATING VERIFIERSLemma 6.2.4 For any pair of iruits X0, X1 with statistial di�erene � and any veri�erstrategy A� (even omputationally unbounded), Algorithm 6.2.3 outputs fail with probabil-ity at most (1 + �)=2 and, onditioned on non-failure, has statistial di�erene at most �from hM;A�i.Proof: To ompare the simulator distribution SA� to the real interation hM;A�i, weonsider the following intermediate distribution D:D: Selet and �x the random oins R of A�. Choose b  f0; 1g. Sample x  X0. Letb0 = A�(x). Choose r  
b0(x). Output (x; b; r;R) if b = b0 and fail otherwise.Note that, sine b is independent of (x; b0; r), D outputs fail with probability exatly1/2, and onditioned on non-failure, is distributed identially to hM;A�i. In addition, ifthe x  X0 in D is replaed with x  Xb, we obtain exatly the output distribution ofSA� . Sine b = 1 with probability 1=2 in D, the statistial di�erene between D and SA� isat most (1=2) � StatDi� (X0;X1) = �=2. If we now ondition both of these distributions onnon-failure, the statistial di�erene inreases by a fator of at most 1=Pr [D = fail℄ = 2(as justi�ed below).The fat about the behavior of statistial di�erene with respet to onditioning usedin the above proof is the following:Lemma 6.2.5 Let X and Y be any two distributions on a universe U and let T � U beany set. Let X 0 (respetively, Y 0) denote the distribution of X (resp., Y ) onditioned onX 2 T (resp., Y 2 T ). Then, StatDi� (X 0; Y 0) � StatDi� (X;Y ) =Pr [X 2 T ℄.Proof: We may assume that Pr [X 2 T ℄ � Pr [Y 2 T ℄, for otherwise swapping the twodistributions gives a stronger bound. Let T 0 be any subset of T . Then,Pr �X 0 2 T 0�� Pr �Y 0 2 T 0� = Pr [X 2 T 0℄Pr [X 2 T ℄ � Pr [Y 2 T 0℄Pr [Y 2 T ℄= Pr [X 2 T 0℄ � Pr [Y 2 T ℄� Pr [Y 2 T 0℄ � Pr [X 2 T ℄Pr [X 2 T ℄ � Pr [Y 2 T ℄� Pr [X 2 T 0℄ � Pr [Y 2 T ℄� Pr [Y 2 T 0℄ � Pr [Y 2 T ℄Pr [X 2 T ℄ � Pr [Y 2 T ℄= Pr [X 2 T 0℄� Pr [Y 2 T 0℄Pr [X 2 T ℄ � StatDi� (X;Y )Pr [X 2 T ℄ :Maximizing over T 0 � T ompletes the proof.Setting � = 0 in Lemmas 6.2.2 and 6.2.4, we have:Proposition 6.2.6 SD1;0 2 PZK: Moreover, it has a perfet zero-knowledge proof withthe following properties:1. The proof system is publi oin.



6.2. A CHEATING-VERIFIER SZK PROOF SYSTEM FOR SD1;1=2 1312. Perfet ompleteness and soundness error 1=2.3. 1 bit of veri�er-to-prover ommuniation.4. Exhanges only three messages.5. Blak-box simulation perfet zero knowledge against all veri�ers.In order to redue the error, one annot do an arbitrary number of parallel repetitions,sine PZK is not losed under parallel repetition [FS90℄. However, up to O(log k) parallelrepetitions of this partiular proof system an be shown to remain perfet zero knowledge,by generalizing the simulator in the natural way. Thus, the error an be redued to 1=kwithout inreasing the number of rounds. It is unlikely that this an be improved further, asonly problems inBPP have onstant-round zero-knowledge proofs with negligible soundnesserror [GK96b℄.Sine Graph Isomorphism redues to SD1;0, the proof system for it from [GMW91℄ isa speial ase.Corollary 6.2.7 ([GMW91℄) Graph Isomorphism is in PZK. Moreover, it has a proofsystem with all the properties listed in Proposition 6.2.6.As disussed above, this proof system has nonnegligible soundness error. However,Graph Isomorphism does have a onstant-message (private-oin) perfet zero-knowledgeproof system with negligible soundness error, as shown by Bellare, Miali, and Ostro-vsky [BMO90a℄.In order to get a zero-knowledge proof for SD1;� for � < 1, we need to redue thestatistial di�erene for yes instanes. The XOR Lemma (Lemma 3.1.16) aomplishesexatly this. If we augment Protool 6.2.1 by having both parties (and the simulator) applythe XOR Lemma to the two distributions, then Lemmas 6.2.2 and 6.2.4 imply that theresulting proof system is statistial zero knowledge:Proposition 6.2.8 For every onstant � < 1, SD1;� 2 SZK. Moreover, it has a statistialzero-knowledge proof with the following properties:1. The proof system is publi oin.2. Completeness error 2�k and soundness error 1=23. 1 bit of veri�er-to-prover ommuniation.4. Exhanges only three messages.5. Blak-box simulation zero knowledge against all veri�ers with simulator deviation 2�k.This suggests one way to prove thatHVSZK = SZK| show that SD (Karp) redues toSD1;1=2.4 Even a randomized Karp redution would suÆe (as long as the error probability is4Sine HVSZK is losed under omplement, it does not matter whether we omplement these problemsor not.



132 CHAPTER 6. COPING WITH CHEATING VERIFIERSnegligible, so it an get absorbed in the simulator deviation). Unfortunately, we do not knowhow to do that. In the next setion, we will prove that HVSZK = SZK in a ompletelydi�erent way. Nonetheless, the question of whether SD redues to SD1;1=2 remains aninteresting one, as it would show that every problem in HVSZK has a onstant-messagepubli-oin HVSZK proof (resolving Open Problem 5.4.20). Obtaining a deterministiredution seems more diÆult, as it would have the dramati onsequenes thatHVSZK =HVPZK (by Proposition 3.1.11) and HVSZK � NP \ o-NP (sine SD1;1=2 2 o-NPand HVSZK is losed under omplement).6.3 Transforming honest-veri�er proofs to heating-veri�eronesWe now state the main results of this hapter.Theorem 6.3.1 HVSZK = SZK. Moreover, every promise problem in HVSZK pos-sesses a statistial zero-knowledge proof with the following properties:1. Blak-box simulation with simulator deviation 2�k for all veri�ers.2. The proof system is publi oin.3. Perfet ompleteness.Theorem 6.3.2 Every problem possessing a publi-oin HVCZK proof system also has apubli-oin CZK proof system. Moreover, the CZK proof system has a blak-box simulatorand perfet ompleteness.We stress that both of these theorems are unonditional. Similar results have beenpreviously ahieved under intratability assumptions; we disuss these in more detail below.Somewhat surprisingly, Theorem 6.3.2 indiates that the intratability assumptions used inonstruting (publi-oin) omputational zero-knowledge proofs do not play an essential rolein dealing with heating veri�ers, but rather their importane lies solely in the onstrutionof the honest-veri�er proofs.We prove both Theorems 6.3.1 and 6.3.2 by exhibiting a transformation from publi-oin honest-veri�er zero-knowledge proofs to publi-oin (heating-veri�er) zero-knowledgeproofs; we then use Theorem 5.1.1 to obtain a result that applies to all of (private-oin)HVSZK. The transformation is very eÆient, in that it preserves the omplexity of originalproof system in many respets; this is desribed in detail in Setion 6.3.6.3.1 Previous resultsConditional results. For omputational zero knowledge, the question is ompletelyresolved if one assumes that (nonuniformly) one-way funtions exist. This is beause, underthat assumption, it is known that HVCZK = CZK = IP [GMW91, IY87, BGG+88℄. Inaddition, the omputational zero-knowledge proofs produed by these onstrutions alreadyhave the extra properties given in Theorem 6.3.2 (publi oins, perfet ompleteness, blak-box simulation).



6.3. THE TRANSFORMATION 133The problem of giving a general transformation from honest-veri�er zero-knowledgeproofs to heating-veri�er ones was �rst studied by Bellare, Miali, and Ostrovsky [BMO90b℄,who showed that HVSZK = SZK under the assumption that the Disrete Logarithmproblem is hard. Already there, they observe the potential bene�ts of suh a transformationthat we disussed at the beginning of the hapter, and indeed, use theirs to dedue severalnew results about SZK under the same intratability assumption. At �rst, it seems puzzlingthat omputational assumptions an be used in the supposedly \information-theoreti" set-ting of statistial zero knowledge. However, a areful examination of the de�nitions revealsthat the standard lass SZK doers refer to omputational limitations: It requires a simula-tor only for all polynomial-time veri�ers. The omputational assumption is therefore usedto limit the behavior of heating veri�ers. Later work gradually weakened the assumptionused to prove HVSZK = SZK. Ostrovsky, Venkatesan, and Yung [OVY93℄ ahieved it un-der the assumption that one-way permutations exist, and �nally, Okamoto [Oka96℄ provedit using any bit-ommitment sheme (and hene any one-way funtion [HILL99, Nao91℄).However, there is something dissatisfying about using intratability assumptions to provethat HVSZK = SZK. One of the appealing features of statistial zero knowledge is thatit an often be exhibited unonditionally and maintains its zero-knowledge properties evenagainst omputationally unbounded veri�ers (as formalized in De�nition 6.1.3). Needless tosay, the results proving HVSZK = SZK under intratability assumptions only yield SZKproofs that are zero-knowledge against polynomial-time veri�ers.Unonditional results. Previously, the only unonditional transformations of honest-veri�er zero knowledge to heating-veri�er zero knowledge were restrited to onstant-message publi-oin proof systems. The �rst suh transformation was due to Damg�ard [Dam93℄,and another (with improved message omplexity) was given by Damg�ard, Goldreih, andWigderson [DGW94℄. Both of these results apply to all three forms of zero knowledge |perfet, statistial, and omputational.Di Cresenzo, Okamoto, and Yung [DOY97℄ also laim to prove that HVSZK �weak-SZK, where weak-SZK is de�ned analogously to weak-HVSZK (De�nition 2.4.2).6.3.2 OverviewWe prove Theorems 6.3.1 and 6.3.2 by transforming publi-oin honest-veri�er zero-knowledgeproofs to heating-veri�er ones. This fous on publi oins simpli�es the task onsiderably,and one again illustrates the usefulness of private-to-publi oin transformations as givenby Theorem 5.1.1. In a publi-oin proof system, the honest veri�er's behavior is verystrutured; it simply sends random oins ips at eah round of interation. So \heating"amounts to sending messages that are not seleted uniformly at random. Thus, a naturalapproah to making suh a proof system zero knowledge for heating veri�ers is to replaethe veri�er's messages with strings jointly hosen by the prover and veri�er in a \randomseletion protool." If the veri�er's ability to bias the outome of this protool is suÆientlylimited, then we have essentially fored its behavior to be \honest." However, we must alsotake are that we do not give the prover too muh ontrol over the outome of the protool,lest the resulting proof system will not be sound. Finally, it order to onlude that the �nalproof system is zero knowledge, it is not enough that a heating veri�er annot bias the



134 CHAPTER 6. COPING WITH CHEATING VERIFIERSoutome too muh; it is also important that the veri�er does not learn anything from therandom seletion protool itself. Thus, some sort of simulability property is also needed.Various random seletion protools were onstruted for this purpose in [Dam93, DGW94,Oka96℄, but all of these either rely on omputational assumptions or are restrited toonstant-round proof systems. We will onstrut a random seletion protool without ei-ther of these limitations. Our random seletion protool builds on the one of Damg�ard,Goldreih, Wigderson [DGW94℄, so we begin by desribing the properties of their onstru-tion. For every positive polynomial p, they give a protool (the \DGW random seletionprotool") for two parties (\Arthur" and \Merlin") for seleting a string in f0; 1g` with thefollowing properties:1. As long as Arthur plays aording to the protool, Merlin may ause the outometo deviate from uniform distribution over f0; 1g` by at most 1=p(`). (That is, thevariation distane is at most 1=p(`).)2. As long as Merlin plays aording to the protool, Arthur may not ause any `-bitstring to appear as the outome with probability greater than p(`)4 �2�`. In partiular,when Arthur applies a deterministi heating strategy, the outome of the protool isuniformly distributed over some set of 2`p(`)4 strings.When this protool is used to transform honest-veri�er proof systems into heating-veri�er ones, the veri�er plays the role of Arthur and the prover that of Merlin. Theresulting proof system is simulated in [DGW94℄ by running the honest-veri�er simulator,and hoping that all veri�er messages inluded in the transript fall in the sets mentionedin Item 2 above. This strategy sueeds with probability 1=p(`)4i, where i is the number ofveri�er messages in the original proof system. If the original proof system exhanges onlya onstant number of messages, then the suess probability is nonnegligible and the abovesuÆes for produing a blak-box simulation with respet to any heating veri�er strategy.But this approah fails when we have a nononstant number of messages.In this paper we modify the above transformation as follows. Rather than seleting amessage, we use the DGW random seletion protool to speify (in a suint manner) aset of 2k messages (where k is the seurity parameter). Merlin is then supposed to seleta message for Arthur, uniformly from this set. An immediate onern is that this allowsMerlin to selet a string whih is advantageous for heating. However, this only inreasesMerlin's heating probability by a fator of 2k per eah round. (We an �rst make theoriginal proof system have an even smaller soundness error, so this should not sare us.) Sothe question is what we gained by doing so. Intuitively, we gained not having to simulatethe DGW random seletion protool for any possible outome. Rather than having tosimulate an exeution whih results in any spei� `-bit output �, we only need to simulatean exeution whih results in a random set of strings ontaining �. The distintion isimportant sine exeutions of the former type may exist only for a 1=poly(`) fration ofthe possible �'s, whereas | as we show | exeutions of the latter type exist and an beeÆiently generated for all but a 2�
(k) fration of the �'s. Proving the last statement isthe major tehnial task needed to justify our onstrution.A preise statement of the properties of our random seletion protool is given in thefollowing lemma:



6.3. THE TRANSFORMATION 135Proposition 6.3.3 There is an interative protool RS = (MRS ;ARS ) with the followingproperties on input (1`; 1q; 1k).1. (EÆieny) The protool is polynomially bounded, publi oin for both MRS and ARS ,and both parties an be implemented in polynomial time. In addition, the protoolexhanges only four messages (starting with ARS ).2. (Soundness) For all Merlin strategies M�RS and all sets T � f0; 1g`, the probabilitythat the output of (M�RS ; ARS )(1`; 1q; 1k) lies in T is at most2k � jT j2` + 1q :3. (Strong Simulability) There exists a polynomial-time blak-box simulator SRS suhthat for all deterministi5 Arthur strategies A�RS , the statistial di�erene between thefollowing distributions is poly(q; `) � 2�
(k):(I) Exeute (A�RS ;MRS )(1`; 1q; 1k), let � 2 f0; 1g` be the output of the protool, andlet v be A�RS 's view of the interation. Output (v; �).(II) Choose � uniformly from f0; 1g`. Output (SA�RSRS (1`; 1q; 1k; �); �).The �'s are inluded in the outputs of Distributions (I) and (II) above to fore the simulatorto produe a transript for an externally spei�ed � (rather than an � whih it generateson its own while produing the transript). Observe that the strong simulability onditionalso implies that for any Arthur strategy A�RS , the output of the random seletion protoolwill have statistial di�erene at most 2�
(k) from uniform.Proposition 6.3.3 will be proven in Setion 6.4, after we show how it an be used totransform honest-veri�er zero-knowledge proof systems into heating-veri�er ones. It is re-dued to proving the following generalization of Lemma 5.4.10 whih may be of independentinterest:Lemma 6.3.4 There exists a universal onstant,  > 0, so that the following holds, forevery "; Æ > 0. Let D and R be �nite sets, H be a 2-universal family of hash funtionsfrom D to R, and let 0 be any �xed element of R. Let S � H suh that jSj � ÆjHj, andX be a random variable ranging over a �nite set D having ollision probability at most "jRj(i.e., Px2D Pr [X = x℄2 � "jRj). Then the statistial di�erene between the following twodistributions is at most  � "1=Æ�.(A) Choose h S, and selet x aording to X onditioned on h(x) = 0. Output (h; x).(B) Choose x X, and selet h fh0 2 S : h0(x) = 0g Output (h; x).5The restrition to deterministi Arthur strategies is only for ease of presentation, as a simulator forrandomized Arthur strategies an uniformly selet and �x Arthur's oins and then use the simulator fordeterministi strategies. When we use the Random Seletion simulator as a subroutine in the simulator forthe transformed protool in the subsequent setion, the oins of Arthur will have already been �xed by theouter simulator.



136 CHAPTER 6. COPING WITH CHEATING VERIFIERSAtually, a speial ase of this lemma, where X is uniform over D (and jRj = " � jDj) suÆesfor the urrent proof of Theorems 6.3.1 and 6.3.2. The stronger version was developed foran alternative proof, disovered �rst, whih is totally superseded by the urrent proof.6.3.3 The transformationNow we present our transformation of proof systems. The properties of the transformationare given in the following theorem:Theorem 6.3.5 Any honest-veri�er publi-oin statistial (resp., omputational)zero-knowledge proof system an be transformed into a (heating-veri�er) publi-oin statis-tial (resp., omputational) zero-knowledge proof system. Furthermore,1. The resulting proof system exhanges twie as many messages as the original one.2. The resulting prover strategy an be implemented in probabilisti polynomial time givenorale aess to the original prover strategy.63. The resulting proof system has ompleteness error 2�
(k) and soundness error 1=k,where k is the seurity parameter. In ase the original proof system has perfet om-pleteness, so does the resulting one.4. The resulting proof system has a blak-box simulator.5. In ase of statistial zero-knowledge, the blak-box simulator works for all veri�ers andhas simulator deviation poly(k) � �(k) + 2�
(k), where �(k) is the original simulatordeviation.Theorem 6.3.1 follows from ombining Theorem 6.3.5 with Theorem 5.4.15 (and re-naming k). Theorem 6.3.2 follows by ombining Theorem 6.3.5 with the result of F�ureret. al. [FGM+89℄ that transforms publi-oin honest-veri�er zero-knowledge proofs intoones with perfet ompleteness. One important feature of the transformation given in The-orem 6.3.5 is that it preserves the omputational omplexity of the prover strategy. Hene,for ryptographi appliations, Theorem 6.3.5 is probably most useful on its own, with-out ombining it with the other transformations of Theorem 5.4.15 or [FGM+89℄, as thosetransformations do not have this feature. We also note that Theorem 6.3.5 yields a proofsystem with nonnegliglible soundness error 1=k, whih an be redued further by doingsequential repetitions. This annot be improved (while preserving the message-omplexityof the transformation) unless NP � BPP. This is beause only problems in BPP haveonstant-message publi-oin CZK proof systems with negligible soundness error [GK96b℄,whereas all ofNP has onstant-message publi-oinHVCZK proof systems (with negligiblesoundness error) [GMW91℄.6Again, we use the onventions given after De�nition 6.1.4 regarding how a polynomial-time algorithman make use of a more powerful orale whih may use a superpolynomial number of random oins. In thisase, we need not worry about the messages being too long sine the spei�ed prover strategy always sendspolynomial-length messages.



6.3. THE TRANSFORMATION 137We now proeed to give the transformation. Let (M0; A0) be any publi-oin honest-veri�er zero-knowledge proof system for a promise problem �. In what follows, we alwaysassume that the seurity parameter k is at least the input length jxj; this an be ahievedby arti�ially inreasing k if neessary. Let m = m(k) denote the number of messagesexhanged by (M0; A0) on seurity parameter k and, in the ase of statistial zero knowledge,let � = �(k) denote the simulator deviation. By taking poly(k) parallel repetitions of(M0; A0), we obtain a zero-knowledge proof system (M;A) with the following properties onseurity parameter k:1. m(k) messages are exhanged.2. The soundness error is 2�k�m and the ompleteness error is 2�k.3. In the ase of statistial zero knowledge, simulator deviation is poly(k) � �(k).4. M an be implemented in probabilisti polynomial time with orale aess to M0.We now desribe how to obtain a heating-veri�er proof system (fM; eA) by replaingA's messages in (M;A) with our random seletion protool. For notational onveniene, weassume that (M;A) exhanges m = 2r messages, with A sending the �rst message.7 Wealso assume (wlog) that all the A-messages are of the same length ` = `(k). We denotethe i'th A-message by �i and the i'th M -message by �i. Throughout what follows, we willoften drop the input x and seurity parameter k from the notation. Having �xed theseonventions, we give the transformed proof system (fM; eA) in Protool 6.3.6.Protool 6.3.6: Transformed proof system (fM; eA)Input: Instane x of � and seurity parameter k1. Repeat for i = 1; : : : ; r:(a) fM; eA: Exeute the random seletion protool RS on input(1`; 12kr; 1k) to obtain an output �i 2 f0; 1g`.(b) fM : Selet �i  M(�1; �1; �2; �2; : : : ; �i) and send �i to eA.2. eA: Aept or rejet as A would on transript (�1; �1; : : : ; �r; �r).We now prove that Protool 6.3.6 satis�es the requirements of Theorem 6.3.5.7This assumption that the number of messages in (M;A) is even only a�ets the laim about messageomplexity in Theorem 6.3.5. The ase when (M;A) exhanges an odd number m of messages is similar,and atually yields message omplexity better than laimed (2m� 1 rather than 2m).



138 CHAPTER 6. COPING WITH CHEATING VERIFIERSEÆieny. Sine the random seletion protool RS onsists of 4 messages, withM sendingthe last message (whih an be sent together with �i), (fM; eA) exhanges 4r = 2m messages.This proves Property 1. Property 2, the prover's omplexity, is lear, given thatM 's strategyin the Random Seletion Protool an be exeuted in probabilisti polynomial time.Completeness and Soundness. The laim about the ompleteness error in Property 3follows from the fat that (M;A) has ompleteness error 2�k and the fat that, when Mbehaves honestly in the random seletion protool RS, the output has statistial di�ereneat most poly(`; 2kr; r) � 2�
(k) = 2�
(k) from uniform (by the strong simulability). It is alsoimmediate that if (M;A) has perfet ompleteness, then so does (fM; eA).For soundness, onsider any heating strategy fM� in Protool 6.3.6 and �x a no instanex of � (whih we hide from the notation). We write hfM�; eAi2i to denote the distribution of(�1; �1; : : : ; �i; �i) in hfM�; eAi, and hfM�; eAi2i�1 for the same distribution without �i. FromfM�, we onstrut a heating strategy M� for the original protool (M;A) as follows: Onpartial onversation transript  = (�1; �1; : : : ; �i), M� gives response �i with probabilityPr hhfM�; eAi2i = (; �i)jhfM�; eAi2i�1 = i :We de�ne random variables hM�; Aij analogously to hfM�; eAij .The main laim needed to establish soundness states that, with eah exeution of therandom seletion protool, the advantage fM� has over M� inreases by a multipliativefator of at most 2k (plus an additive term of 12kr ).Claim 6.3.7 Let S be any set of partial onversation transripts onsisting of j messages.Then, Pr hhfM�; eAij 2 Si � 2dj=2e�k � Pr [hM�; Aij 2 S℄ + dj=2e2kr :Now, setting j = 2r and S to be the setting of aepting onversations and realling that(M;A) has soundness error smaller than 2�2kr, the laim says that eA aepts in (fM�; eA)with probability at most 2kr � 2�2kr + r=(2kr) � 1=k. We now give the somewhat tediousproof of the laim.Proof: We prove the laim by indution on j. For j = 0, the statement is trivial. Assumeit is true for j and we will prove it for j + 1. For any partial onversation  onsisting of jmessages, let Æ def= maxn0;Pr hhfM�; eAij = i� 2dj=2e�k � Pr [hM�; Aij = ℄o :Then, applying the indutive hypothesis to the set T of  for whih Æ > 0, we see thatX Æ = Pr h(fM�; eA�) 2 T i� 2dj=2e�k � Pr [hM�; Aij 2 T ℄ � dj=2e2kr :



6.3. THE TRANSFORMATION 139Now, let S denote any set of j + 1-message onversation transripts. Then,Pr hhfM�; eAij+1 2 Si =X Pr hhfM�; eAij = i �Pr hhfM�; eAij+1 2 S j hfM�; eAij = i : (6.2)Consider the ase when j is even. Then, in hM�; Ai, the (j + 1)'st message is hosenuniformly in f0; 1g` by A, and in hfM�; eAi, it is generated via the random seletion protool.Thus, by the soundness property of the random seletion protool, the following holds forany partial transript :Pr hhfM�; eAij+1 2 S j hfM�; eAij = i � 2k � Pr [hM�; Aij+1 2 S j hM�; Aij = ℄ + 12kr :Plugging this into Expression 6.2, we get:Pr hhfM�; eAij+1 2 Si� X �Pr hhfM�; eAij = i� Æ� ��Pr hhfM�; eAij+1 2 S j hfM�; eAij = i� 12kr�+X Æ � Pr hhfM�; eAij+1 2 S j hfM�; eAij = i+X 12kr � Pr hhfM�; eAij = i� X �2dj=2e�k � Pr [hM�; Aij = ℄� � �2k � Pr [hM�; Aij+1 2 S j hM�; Aij = ℄�+dj=2e2kr + 12kr= 2d(j+1)=2ek � Pr [hM�; Aij+1 2 S℄ + d(j + 1)=2e2kr :The ase when j is odd is similar, but simpler. Instead of using the soundness of the randomseletion protool, we use the fat that M� generates message j + 1 aording to the samemarginal distribution as fM�.Zero knowledge. Let S be the honest-veri�er simulator for the original protool (M;A).In Algorithm 6.3.8, we give a universal simulator eS for (fM; eA) whih uses any veri�erstrategy eA� as a blak-box.To prove that the simulator has the desired properties, we �rst onsider its outputdistribution in the ase that the original honest-veri�er simulator S is perfet: Let S eA� bethe output distribution of eS eA� if the output of S in Step 2 is replaed with a true sample(�1; �1; : : : ; �r; �r) of hM; eA�i.Claim 6.3.9 S eA�(x) and hfM; eA�i(x) have statistial di�erene at most 2�
(k).Proof: Let us onsider what happens in both the interation between fM and eA� and in thesimulator S eA� onditioned on a partial transript i = (t1; �1; �1; : : : ; ti; �i; �i). Let A(i+1)be eA� with history i. The proess by whih ti+1 and �i+1 are obtained in the interation



140 CHAPTER 6. COPING WITH CHEATING VERIFIERS
Algorithm 6.3.8: The simulator eS eA� for Protool 6.3.6Input: An instane x of �, a seurity parameter k, and orale aess to aheating veri�er strategy eA�.1. Uniformly hoose and �x random oins R for eA� to obtain a determinististrategy A(1).2. Run the original honest-veri�er simulator to obtain a transript(�1; �1; : : : ; �r; �r) S(x; 1k).3. For i = 1 to r, do the following:(a) Run the strong simulator for the random seletion protool RS, oninput �i with Arthur strategy A(i), to obtain a simulated transriptti of the random seletion protool (i.e., ti  SA(i)RS (1`; 12kr; 1k; �i)).(b) Let A(i+1) be the state of A(i) after additional history ti; �i; �i.4. Output (t1; �1; �1; : : : ; tr; �r; �r;R).between fM and eA� is exatly Distribution (I) in the strong simulability ondition of therandom seletion protool (Proposition 6.3.3), taking A�RS to be A(i+1). Now, in S eA� , eah�i+1 is uniform and independent of (�1; �1; : : : ; �i; �i) (and thus also of i). Therefore, theproess by whih ti+1 and �i+1 are obtained in S eA� is exatly Distribution (II) in the strongsimulability ondition of the random seletion protool. The strong simulability onditiontells us that Distributions (I) and (II) have statistial di�erene poly(`; 2kr)�2�
(k) = 2�
(k).Moreover, �i+1 is hosen aording to the same distribution (onditioned on i, ti+1 and�i+1) in both hfM; eA�i and S eA� | that is, aording to the original M strategy. So �i+1does not inrease the statistial di�erene. Thus for every triple (ti; �i; �i), the statistialdi�erene aumulates by at most 2�
(k), for a total of r � 2�
(k) = 2�
(k).Now we dedue Theorem 6.3.5, Items 4 and 5, from Claim 6.3.9.Statistial zero knowledge. Using the output of S instead of a true sample from (M;A)an inrease the simulator deviation by at most StatDi� (S; hM;Ai), whih is exatly thesimulator deviation for the protool (M;A), whih in turn is at most poly(k) times thesimulator deviation for the original proof system (M0; A0).Computational zero knowledge. We need to show that the probability ensemblesX1 def= fhfM; eA�i(x; 1k)gx2�Y ;k2N and X2 def= feS eA�(x; 1k)gx2�Y ;k2N are omputationally in-distinguishable for any probabilisti polynomial-time eA�. Consider a third ensemble X3 def=



6.4. RANDOM SELECTION 141fS eA�(x; 1k)gx2�Y ;k2N. By Claim 6.3.9, X1 and X3 are statistially lose and thereforeomputationally indistinguishable. We laim that X2 and X3 are omputationally indis-tinguishable, for any probabilisti polynomial-time eA�. This holds beause X2 and X3 areobtained by performing the same probabilisti polynomial-time omputation on the om-putationally indistinguishable ensembles fS(x; 1k)gx2�Y ;k2N and f(M;A)(x; 1k)gx2�Y ;k2N ,respetively.6.4 Random seletionIn this setion, we desribe our random seletion protool and prove Proposition 6.3.3. Ourprotool builds on an earlier protool of Damg�ard, Goldreih, and Wigderson [DGW94℄,whih we desribe now. Their protool takes two parameters s and q and produes anelement of f0; 1gs as output. Informally, the protool works as follows: First, A hooses a(suintly desribed) partition of f0; 1gs into ells of size poly(s; q). Then, M hooses aell uniformly from the partition. Lastly, A uniformly selets an element of that ell, whihis the output. These \partitions" are implemented using a family Fs;q of hash funtionsmapping f0; 1gs to f0; 1gt, for t = s�4 log2(3qs). The properties of this family of funtionsare given in the following lemma.Lemma 6.4.1 For every pair of integers s; q 2 N, there is a family of funtions Fs;q map-ping f0; 1gs to f0; 1gt, for t = s� 4 log2(3qs), with the following properties:1. Eah f 2 Fs;q has a desription of size poly(s; q).2. There is a poly(s; q)-time algorithm that, on input f 2 Fs;q and x 2 f0; 1gs, outputsf(x).3. There is a poly(s; q)-time algorithm that, on input f 2 Fs;q, y 2 f0; 1gt, lists all theelements of f�1(y). In partiular, jf�1(y)j � p(s; q) for some polynomial p.4. For every y 2 f0; 1gt and f 2 Fs;q, f�1(y) is nonempty.5. Fs;q is a family of almost s-wise independent hashing funtions in the following sense:For every s distint points x1; : : : ; xs 2 (f0; 1gs n f0; 1gt0s�t), for a uniformly ho-sen f 2 Fs;q, the random variables f(x1); : : : ; f(xs) are independently and uniformlydistributed in f0; 1gt.Suh a family an essentially be obtained by assoiating f0; 1gs with GF(2s) and takingall polynomials of degree s � 1 over this �eld, with the output of the polynomials beingtrunated to t bits. The details of the onstrution an be found in [DGW94℄. We anview eah f 2 Fs;q as de�ning a partition of f0; 1gs into 2t ells of the form f�1(y), eahof size poly(s; q). For notational onveniene, we will sometimes write ell y to refer tothe ell f�1(y). A formal desription of the DGW random seletion protool is given inProtool 6.4.2.In [DGW94℄, it was shown that Protool 6.4.2 has the following properties (roughlyspeaking):



142 CHAPTER 6. COPING WITH CHEATING VERIFIERSProtool 6.4.2: DGW random seletion protoolDGW = (MDGW ; ADGW ) [DGW94℄Input: Parameters s and q (in unary)1. ADGW : Selet f  Fs;q and send it to MDGW (i.e., selet a randompartition).a2. MDGW : Selet y  f0; 1gt, and send it to ADGW (i.e., uniformly selet aell).3. ADGW : Selet x f�1(y) (i.e., uniformly selet an element of the ell).Output: xaIf, at any step, ADGW orMDGW do not selet an objet from the appropriate set, whatevermessage they send is interpreted as a anonial element of that set.
1. (Soundness) For any Merlin strategy M�DGW , the output distribution on f0; 1gs of(M�DGW ; ADGW ) deviates from uniform by at most 1=q (in statistial di�erene).2. (Simulability) Let A�DGW be any strategy for Arthur. At least a 1=poly(s; q) fration ofthe elements x 2 f0; 1gs our as possible outputs of the interation (MDGW ; A�DGW )and given suh an x, one an simulate in poly(s; q)-time A�DGW 's view of an interationresulting in x.The main hindrane in applying the protool as used by [DGW94℄ is that the simulatoris only guaranteed to work for a 1=poly(s; q) fration of the x's. The new tehnique of thispaper is to interpret the output x of the DGW protool as a set of 2k strings, from whiha single string � is randomly seleted by Merlin. It is this �, rather than x, that is theoutput of the random seletion protool. The family of sets of size 2k that we use has theruial property that every subset of them of density at least 1=poly(s; q) will still over allbut an exponentially vanishing fration of �'s. Beause of this, we will be able to simulatethe protool for all but an exponentially vanishing fration of the �'s.In order to de�ne our sets of 2k strings, we use 2-universal hash funtions. Reall thatfor every pair of integers ` and m, we de�ned H`;m to be the 2-universal family of all aÆne-linear (over GF(2)) funtions from f0; 1g` to f0; 1gm. Eah suh funtion is of the formh(x) = Ax+ b, where A is an m � ` matrix over GF(2) and b is an element of f0; 1gm, soelements of H`;m an be uniquely represented by strings of length m � (`+ 1).Our protool takes three parameters `, q, and k as input and produes an elementof f0; 1g` as output. The two parties use the DGW protool to selet an element h ofH = H`;`�k, and then Merlin selets the output uniformly from h�1(0). That is, the DGWrandom seletion protool is alled with parameters s and q, where s = (`� k) � (`+ 1), so



6.4. RANDOM SELECTION 143that its s-bit output an be interpreted as an element of H`;`�k. A full desription of theprotool is given in Protool 6.4.3.Protool 6.4.3: Our random seletion protool RS = (MRS ;ARS )Input: parameters `, q, and k (in unary)1. MRS ; ARS : Set s = (`� k) � (`+ 1), t = s� 4 log2(3qs), and H = H`;`�k.2. ARS : Selet f  Fs;q and send it to MRS .3. MRS : Selet y  f0; 1gt, and send it to ARS .4. ARS : Selet h f�1(y) and sent it to MRS .5. MRS : Selet �  h�1(0), viewing h as an element of H. (If h�1(0) = ;then � is de�ned to be 0`.)Output: �We now prove that Protool 6.4.3 satis�es Proposition 6.3.3. EÆieny is immediatefrom the desription of the protool.Soundness. Let M�RS be any heating Merlin strategy and onsider an exeution of theprotool (M�RS ; ARS ). Notie that that the probability that the output � lies in some setT is bounded above by the probability that h�1(0) ontains an element of T . Now, for hhosen uniformly from H (instead of by the protool), the probability that h�1(0) ontainsan element of T is at most X�2T Prh H[h(�) = 0℄ = jT j2`�k :In our protool, h is hosen using the DGW protool. It shown in [DGW94, Prop. 1℄ that aheating Merlin an ause at most a 1=q statistial di�erene from the uniform distributionon H, and so the soundness property follows.Strong simulability. Reall that p = p(s; q) is polynomial bound on the size of f�1(y)for any f 2 Fs;q, s is the desription length for elements of H = H`;`�k, and funtions inFs;q map f0; 1gs to f0; 1gt, where t = s� 4 log2(3qs). For � 2 f0; 1g`, we write H� def= fh 2H : h(�) = 0g. With these notations, the simulator is given in Algorithm 6.4.4.From the various properties of the families Fs;q and H, suh as the fat that f�1(y) anbe enumerated in time poly(s; q), and the fat that s and p are poly(`; q; k), we see that therunning time of SA�RSRS is poly(`; q; k).Let us now show that Distributions (I) and (II) in Proposition 6.3.3 have statistial
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Algorithm 6.4.4: The random seletion protool simulator SA�RSRSInput: Parameters `, q, and k (in unary), � 2 f0; 1g`, and orale aess to A�RSS1. Let f 2 Fs;q be the �rst message sent by A�RS .S2. Repeat the following up to k � 2(3sq)4 � p times:(a) Choose h0 uniformly from H�.(b) Let y = f(h0) (i.e., y is the ell ontaining h0). Compute i def=jf�1(y)\H�j. With probability 1� 1i , proeed to next iterationof Step S2. (Otherwise ontinue.)() Let h = A�RS (y), that is, the element (hereafter alled the ellrepresentative) of ell y that A�RS gives in Step 6.4.3 after beingsent y in Step 6.4.3.(d) If h(�) = 0, output ((f; y; h; �); �) and terminate the simula-tion. Otherwise, proeed to next iteration of Step S2.S3. If the simulator failed to produe output so far, output fail.



6.4. RANDOM SELECTION 145di�erene poly(s; q) � 2�
(k). Eah produes output of the form ((f; y; h; �); �). In bothases, f is the (deterministially hosen) �rst message of A�RS and y = f(h), so it suÆes toshow that the distributions restrited to their (h; �) omponents are statistially lose. Wetherefore de�ne the Distributions (I0) and (II0) to be the Distributions (I) and (II) restritedto their (h; �) omponents. To analyze these distributions, we make use of the followinglemma, the proof of whih is in Appendix B.Lemma 6.4.5 There exists a universal onstant  > 0, so that the following holds: LetH = H`;m be the family of aÆne-linear maps from D = f0; 1g` to R = f0; 1gm. Let S � Hbe suh that jSj � ÆjHj. Let " = jRjjDj . ThenPart 1: The statistial di�erene between the following two distributions is at most ( �"1=Æ�):(A) Choose h S. Selet x h�1(0). Output (h; x).(B) Choose x D. Selet h S \Hx. Output (h; x).Part 2: For at least a 1� ( � "1=Æ�) fration of x 2 D,jS \HxjjHxj � Æ=2:When we apply the lemma, we take m = `�k, " = 2�k, and S = fA�RS (y) : y 2 f0; 1gtg.In other words, S is the set all possible ell representatives that A�RS an send in Step 6.4.3of the protool (MRS ; A�RS ). Notie thatÆ def= jSjjHj = 2t2s = 2�4 log2(3sq) = 1(3sq)4 :and so,  � "1=Æ� = poly(`; q; k) � 2�
(k). Now, observe that the protool (MRS ; A�RS )selets h uniformly from S. (Reall that A�RS is deterministi.) Thus, Distribution (I0) isexatly Distribution (A) of Lemma 6.4.5. Now we will show that the Distribution (II0) isstatistially lose to Distribution (B).Let us onsider a single iteration of Step S2 in SA�RSRS . In suh an iteration, h0 is hosenuniformly from H�, and y = f(h0). We write f(H�) to denote the set of images of elementsof H� under f (i.e., f(H�) = ff(h) : h 2 H�g). In other words, f(H�) is the set of ellsintersetingH�. We want to establish that the distribution of h's produed by the simulatorwill be uniform in S \H�. In order for this to happen, y must be uniformly seleted fromf(H�). If f was hosen honestly by A�RS , we would expet it to be nearly one-to-one onthe set H�, sine H� is a vanishingly small fration of the domain. However, f is hosenadversarially, so we must do some work to ensure uniformity.Notie that for any y0 2 f(H�), the probability that f(h0) = y0 when uniformly seletingh0  H� is exatly jf�1(y0) \H�jjH�j :



146 CHAPTER 6. COPING WITH CHEATING VERIFIERSIn Step 5b, any suh hoie is maintained with probability 1=jf�1(y0) \ H�j. Thus theprobability that y = y0 after Steps 5a and 5b in SRS is exatly1jH�j :This is independent of y0, and therefore y is a uniformly hosen element of f(H�) | thatis, a uniformly hosen ell interseting H�. (These probabilities sum up to jf(H�)j=jH�j,whih may be less than 1; this is due to the possibility that the iteration ends prematurelyin Step 5b.)Now, sine, in Step 5, h = A�RS (y) is taken to be the representative of ell y, thefuntion h is uniformly distributed over the representatives of ells whih interset H�. InStep 5d, we abandon any h not in H�, so the resulting distribution on h is uniform overell representatives in H�, that is, uniform over S \H�. Thus a single iteration of the loopprodues an h uniformly hosen from S \H�, if it manages to produe output at all. Thisis idential to how h is hosen in Distribution (B) of Lemma 6.4.5. So, to show that theDistribution (II0) is statistially lose to Distribution (B), we need only to show that theprobability that the repeat loop fails to produe output in all its iterations is 2�
(k) for atleast a 1 � 2�
(k) fration of the �'s in f0; 1g`. We do this by showing that eah iterationprodues output with probability at least k times the reiproal of the number of iterations.There are two plaes in whih an iteration an be exited, ausing it to fail to produeoutput | Steps 5b and 5d. Observe that the simulator never exits in Step 5d if h0 hosenin Step 5a lies in S, beause then h will equal h0. This ours with probabilityjS \H�jjH�j :By Lemma 6.4.5, for at least a 1 � 2�
(k) fration of � 2 f0; 1g`, this quantity is at leastÆ=2 = 1=2(3sq)4.Now suppose that h0 has been hosen in S. The probability of not exiting in Step 5b isat least 1=jf�1(y)j, whih is at least 1=p by the properties of the family Fs;q. Thus, for a1 � 2�
(k) fration of the �'s, a single iteration produes output with probability at least1=(2(3sq)4 �p). Sine there are (2(3sq)4 �p) �k iterations, output is produed with probability1� 2�
(k).We have shown that Distribution (I0) is idential to Distribution (A) in Lemma 6.4.5and Distribution (II0) has a statistial di�erene of 2�
(k) from Distribution (B). So, byLemma 6.4.5, we onlude that Distributions (I) and (II) have statistial di�erene 2�
(k)and strong simulability is established.6.5 Corollaries and open problemsWe an use our transformation to translate many of the results about HVSZK to SZK.Some of the results about HVSZK were already impliitly translated when we used Theo-rem 5.4.15 as the starting point for the proof of Theorem 6.3.1. The nie properties of theproof system given by Theorem 5.4.15, suh as publi oins, perfet ompleteness, and ex-ponentially small simulator deviation, are all preserved by our transformation and therefore



6.5. COROLLARIES AND OPEN PROBLEMS 147appear in the statement of Theorem 6.3.1.A number of additional results that an be immediately translated are those that justrefer to properties of HVSZK as a lass of promise problems; these now apply to SZKsimply by the equality HVSZK = SZK:Corollary 6.5.1 Properties of SZK:1. Entropy Differene and Statistial Differene are omplete for SZK.2. SZK is losed under omplement.3. For every promise problem �, �(�) 2 SZK.84. SZK is losed under NC1 truth-table redutions.5. weak-SZK = SZK.For Item 5, we de�ne weak-SZK via the obvious analogy to weak-HVSZK, and applythe hain of inlusionsweak-SZK � weak-HVSZK = HVSZK = SZK � weak-SZK:We have omitted analogues of some of the results that only refer to the lassHVSZK simplybeause the honest-veri�er version of the result is the stronger one. This is the ase withupper bounds on the omplexity of HVSZK, suh as Corollary 4.2.2 and Theorem 4.8.4,sine the inlusion SZK � HVSZK is obvious even without Theorem 6.3.1.The equality HVSZK = SZK also has impliations for knowledge omplexity in thehint sense via Lemma 4.6.7. Spei�ally, if we de�ne SKC�hint(�(n)) to be the heating-veri�er version of the lass SKChint(�(n)), then Theorem 6.3.1 and Lemma 4.6.7 have thefollowing onsequene:Corollary 6.5.2 For every polynomially bounded funtion � : N ! N, SKChint(�(n)) =SKC�hint(�(n)). Moreover, every problem in these lasses has an interative proof of statis-tial knowledge omplexity �(n) in the hint sense against heating veri�ers with the followingproperties:1. Blak-box simulation with simulator deviation 2�k for all veri�ers.2. The same hint funtion an be used for all veri�ers.3. Perfet ompleteness.4. The proof system is publi oin.By this equality of the SKChint and SKC�hint hierarhies, it follows that the SKC�hint(�(n))hierarhy must also ollapse by logarithmi terms, as in Theorem 4.6.11.For omputational zero knowledge, we an ombine Theorems 5.4.16 and 6.3.2 to obtain:8For a de�nition of �(�) and NC1 truth-table redutions, see Setion 4.5



148 CHAPTER 6. COPING WITH CHEATING VERIFIERSCorollary 6.5.3 Every problem that has a 3-message honest-veri�er omputational zero-knowledge proof also has heating-veri�er omputational zero-knowledge proof (whih is pub-li oin, has a blak-box simulator, and has perfet ompleteness).Clearly, the main outstanding question about omputational zero knowledge in this regardis whether a transformation an be given for all of HVCZK (unonditionally, of ourse).Open Problem 6.5.4 Does HVCZK = CZK?A positive answer to Open Problem 5.4.19 would imply a positive answer to this problem.It is important to note that several of our results about honest-veri�er statistial zero-knowledge proofs do not translate to heating-veri�er proofs. For one, we do not obtain trueheating-veri�er analogues of the results on the perfet knowledge omplexity ofHVSZK inTheorem 4.6.13, sine we do not know how to relate the honest-veri�er and heating-veri�erversions of the PKC lasses.A more signi�ant result that does not translate is Corollary 4.1.1, whih says thatevery problem in HVSZK has a onstant-message HVSZK proof system (with additionalnie properties). Even though the main transformation presented in this hapter preservesmessage omplexity upto a onstant fator (Theorem 6.3.5), to obtain a result for all ofHVSZK we �rst had to apply the private-to-publi oin transformation of Theorem 5.4.15,whih does not preserve message omplexity. The HVSZK-to-SZK transformation ofBellare, Miali, and Ostrovsky [BMO90b℄ does preserve message omplexity (and appliesdiretly to private-oin proofs), but it relies on an intratability assumption. Applying theirtransformation to the proof systems of Corollary 4.1.1, one obtains:Proposition 6.5.5 If the Disrete Logarithm problem is hard, then every problem inHVSZK has a (heating-veri�er) statistial zero-knowledge proof system with the followingproperties:1. The proof system exhanges a onstant number of messages.2. Blak-box simulation (for polynomial-time veri�ers).3. Completeness error and soundness error 2�k.However, to obtain onstant-message SZK proof systems unonditionally is still open.Open Problem 6.5.6 Does every problem in HVSZK have a onstant-message SZKproof system?A positive answer to Open Problem 5.4.20 would also imply a positive answer to thisproblem, using even just the transformation of [DGW94℄.Another property given by Corollary 4.1.1 that does not translate to the heating-veri�er proofs is the fat that the prover is deterministi. This is inevitable, as only BPPhas heating-veri�er zero-knowledge proofs with a deterministi prover [GO94℄.



Chapter 7Noninterative SZKIteration is at one a blessing and a urse for zero-knowledge proofs. On one hand, in-teration is one of the ingredients that makes the seemingly paradoxial notion of zeroknowledge feasible. On the other hand, in many ryptographi appliations where onewould like to use zero-knowledge proofs, interation is either too expensive or ompletelyunavailable. While onsiderable researh has been devoted to reduing the amount of inter-ation in zero-knowledge proofs (f., Corollary 4.1.1, [FS89, BMO90a, GK96a, Oka96℄), itannot be ompletely removed in the GMR paradigm of a proof system. Indeed, Goldreihand Oren [GO94℄ have shown that GMR zero knowledge beomes trivial (i.e., exists onlyfor problems in BPP) if one requires that the proofs are noninterative (i.e., with onlyunidiretional ommuniation).Suprisingly, however, Blum, Feldman, and Miali [BFM88℄ showed that by augmentingthe model slightly, it is possible to ahieve zero knowledge in a noninterative setting.Spei�ally, they assume that the prover and veri�er have aess to a shared truly randomstring, alled the referene string. Aside from this assumption, all ommuniation onsistsof one message, the proof, whih is generated by the prover (based on the assertion beingproven and the referene string) and sent from the prover to the veri�er.As in the interative ase, the zero-knowledge property is formalized by requiring thatthere is a probabilisti polynomial-time simulator whose output distribution is \lose" tothe veri�er's view of the proof system (whih now onsists of the shared referene string andthe proof sent by the prover). Various interpretations of \lose" give rise to three variants ofnoninterative zero knowledge proofs | perfet, statistial, and omputational | de�nedanalogously the interative ase. (Formal de�nitions will be given in Setion 7.1.)Noninterative zero-knowledge proofs, on top of being more ommuniation eÆientby de�nition, have several appliations not o�ered by ordinary interative zero-knowledgeproofs. They have been used, among other things, to build digital signature shemes seureagainst adaptive hosen message attak [BG89℄, and publi-key ryptosystems seure againsthosen-iphertext attak [BFM88, NY90, DDN91℄.Until reently, most of the work on noninterative zero knowledge has foused on theomputational type (f., [BFM88, DMP87, DMP88, BDMP91, FLS99, KP98℄). This isprobably due to the early results whih showed that all of NP has noninterative om-putational zero knowledge proofs (under various assumptions [BFM88, DMP87, FLS99℄),and the ensuing ryptographi appliations [BFM88, NY90, BG89℄. In ontrast, for a long149



150 CHAPTER 7. NONINTERACTIVE SZKtime the only (nontrivial) noninterative statistial zero-knowledge proofs known were theone for Quadrati Nonresiduosity [BDMP91℄ and variants of it [DDP94, DDP97℄, andhene the study of suh proofs was rather limited.1In this hapter, we shall see that noninterative statistial zero knowledge is riher thanmight have been expeted. Our �rst step towards demonstrating this is to exhibit twonatural omplete problems for NISZK, the lass of problems possessing noninterativestatistial zero-knowledge proofs. This builds on earlier work of De Santis, Di Cresenzo,Persiano, and Yung [DDPY98℄, who exhibited the �rst omplete problem for NISZK. Thekey feature of these omplete problems is that they are natural restritions of our ompleteproblems for SZK, Statistial Differene and Entropy Differene. Thus, wean use these problems to relate SZK and NISZK. Spei�ally, we show that if SZK isnontrivial, then so isNISZK, where by nontrivial we mean that the lass ontains problemsoutside of BPP. Reall that the hypothesis holds under various assumptions, suh as theintratability of the Disrete Logarithm [GK93℄ problem or approximate versions of theShortest Vetor and Closest Vetor problems for latties [GG98a℄. By our result,under any of these assumptions, NISZK is also nontrivial, even though no versions ofthese problems were known to be in NISZK. Furthermore, we shed light on the questionof whether SZK = NISZK, i.e., whether all statistial zero-knowledge proofs an be madenoninterative. Namely, we show that SZK = NISZK if (and only if) NISZK is losedunder omplement. We note that [DDPY98℄ have laimed that NISZK is losed underomplement, but this laim has been retrated [DDPY99℄.Organization. In Setion 7.1, we give the formal de�nitions of noninterative zero-knowledge proofs and disuss some of the issues that arise in the de�nitions. In Se-tion 7.2, we introdue the problems Entropy Approximation and Statistial Differ-ene from Uniform, and state our Completeness Theorem for NISZK, whih assertsthat these two problems are omplete for NISZK. The proof of the Completeness Theo-rem omes in Setions 7.3 and 7.4. In Setion 7.5, we use the omplete problems to study therelationship between SZK and NISZK. Setion 7.6 ontains some additional appliationsof the Completeness Theorem for NISZK.7.1 The noninterative modelWe begin by de�ning noninterative proof systems in the shared random string model.De�nition 7.1.1 (shared random string model) A noninterative protool in the sharedrandom string model os a pair of probabilisti algorithms (A;B) together with a polynomial-time omputable funtion ` : f0; 1g� ! N. The ommuniation from A to B on ommoninput x, denoted (A;B)(x);2 is the following probabilisti experiment:1An exeption is an unpublished manusript of Bellare and Rogaway [BR90℄, whih ontains a noninter-ative perfet zero-knowledge proof for the language of graphs with trivial automorphism group, along withsome basi results about noninterative perfet zero knowledge.2We use the same notation as for interative protools, but it will always be lear from ontext whih weare referring to. Stritly speaking, ` should also be inluded in the notation, but it too will always be learfrom ontext.



7.1. THE NONINTERACTIVE MODEL 1511. Selet the shared random string �  f0; 1g`(x).2. Let m A(x; �).3. Let answer  B(x; �;m).If answer = aept (resp., answer = rejet), we say that B aepts (resp., rejets).We say that (A;B) is polynomially bounded if `(x) and jmj are both bounded above by apolynomial in jxj. B's view of (A;B)(x) is the random variable (�;m).The key features of the above de�nition are that both parties A and B have aess to therandom string �, and B does not send any messages to A. Given this ommuniation model,proofs and zero-knowledgeness are ompletely analogous to the interative ase.De�nition 7.1.2 (noninterative proofs) Let P and V be probabilisti algorithms andlet � be a promise problem. (P; V ) is said to be an noninterative proof system (in theshared random string model) for � with ompleteness error  : N ! [0; 1℄, and soundnesserror s : N ! [0; 1℄ if the following onditions hold:1. (EÆieny) (P; V ) is polynomially bounded and V is polynomial-time omputable.2. (Completeness) If x 2 �Y , then V aepts with probability at least 1 � (k) in(P; V )(x; 1k).3. (Soundness) If x =2 �Y , then V rejets with probability at least 1�s(k) in (P; V )(x; 1k).We require that (k) and s(k) be omputable in time poly(k) and that 1 � (k) > s(k) +1=poly(k). If  � 0, then we say that the proof system has perfet ompleteness.De�nition 7.1.3 (noninterative zero knowledge | NISZK, NIPZK) A noninter-ative proof system (P; V ) for a promise problem � is said to be statistial zero knowledgeif there is a useful3 probabilisti polynomial-time algorithm S and a negligible funtion �(�)suh that for all x 2 �Y and all k > 0, eS(x; 1k) has statistial di�erene at most �(k)from V 's view of (P; V )(x; 1k). The negligible funtion � is alled the simulator deviation.If � � 0, then (P; V ) is said to be perfet zero knowledge. NISZK (resp., NIPZK)denotes the lass of promise problems possessing noninterative statistial (resp., perfet)zero-knowledge proofs.Noninterative omputational zero knowledge (NICZK) is de�ned analogously, repla-ing statistial loseness with omputational indistinguishability, as in De�nition 2.3.7.Note that noninterative zero knowledge is losed under parallel repetition, so the om-pleteness and soundness errors an always be made exponentially small. (The problems thatarise with parallel repetition in interative zero knowledge ome from heating veri�ers, butthere is no way for a veri�er to heat when there is no interation.) In fat, it is shown in[BDMP91, BR90℄ that every noninterative zero knowledge proof an be transformed intoone with perfet ompleteness.3Reall that a probabilisti algorithm A is alled useful if Pr [A(x) = fail℄ � 1=2 for all x and eA(x)denotes the output distribution of A on input x, onditioned on A(x) 6= fail.



152 CHAPTER 7. NONINTERACTIVE SZK7.1.1 Relationship with the interative proofsIt is easy to see that that noninterative proofs are equivalent to 2-message publi-oin in-terative proofs, as the shared random string an play the role of the veri�er's single randommessage (and onversely). Similarly, we see that eah of the three types of noninterativezero-knowledge proofs (perfet, statistial, and omputational) are equivalent to the analo-gous types of 2-message publi-oin honest-veri�er zero-knowledge proofs. Hene, we haveNICZK � HVCZK, NIPZK � HVPZK, and NISZK � HVSZK = SZK.Without a zero knowledge onstraint, the expressive power of noninterative proof sys-tems atually extends to all of AM; that is, the lass of problems possessing onstant-message private-oin interative proofs (rather than just 2-message publi-oin proofs).This follows from the transformation from private oins to publi oins of Goldwasser andSipser [GS89℄ (whih preserves the number of messages exhanged up to an additive on-stant) and the Collapse Theorem of Babai and Moran [BM88℄ (whih redues the numberof messages in any onstant-message publi-oin proof system to two).Like its interative ounterpart, noninterative omputational zero knowledge \hits theroof" under an intratability assumption. Namely, it has been shown that NICZK =AM under suessively weaker intratability assumptions and ultimately one-way permu-tations [BFM88, BDMP91, FLS99℄.7.1.2 Contrast with the original de�nitionsOur de�nitions of noninterative zero knowledge are striter than those of Blum et. al. [BFM88,BDMP91℄ in the same way that our de�nitions of interative zero knowledge are striterthan the GMR de�nition. First, we require the simulators to run in strit (rather than ex-peted) polynomial time, but allow a failure probability. Seond, we use a separate seurityparameter, rather than the input length, to ontrol the error parameters; this has also beendone in a number of previous works on noninterative zero knowledge [FLS99, Kil94, KP98℄.As in the interative ase, the use of a seurity parameter has the nie onsequene thatnoninterative zero knowledge is losed under Karp redutions.Proposition 7.1.4 If � has a noninterative statistial zero-knowledge proof with simu-lator deviation �(�), and � (Karp-)redues to �, then � has a noninterative statistialzero-knowledge proof with simulator deviation �(�). Thus, NISZK and NIPZK are losedunder (Karp) redutions.Analogous to De�nition 2.4.2, we de�ne weak-NISZK to apture the ways in whihthe original de�nitions are weaker than ours.De�nition 7.1.5 (weak-NISZK)A noninterative proof system (P; V ) for a promise problem � is said to be weak statistialzero knowledge if for every  > 0, there is probabilisti polynomial-time algorithm S suhthat for all but �nitely many x 2 �Y , S(x) has statistial di�erene at most 1=jxj fromV 's view of (P; V )(x; 1jxj). weak-NISZK denotes the lass of promise problems possessingweak noninterative statistial zero-knowledge proofs.



7.1. THE NONINTERACTIVE MODEL 153Later in this hapter, we will prove that weak-NISZK = NISZK, so our results aboutNISZK (as we've de�ned it) also apply to NISZK as de�ned by [BFM88, BDMP91℄. Oneother minor di�erene between our de�nition and that of Blum et. al. is that we allow theveri�er to be probabilisti, whereas they require it to be deterministi. We feel that allowinga probabilisti veri�er maintains the spirit of noninterative zero knowledge. In any ase,a probabilisti veri�er an always be made deterministi by having the veri�er use part ofthe shared random string in plae of its random oin ips (in ombination with standarderror redution via parallel repetition and majority/threshold rule).7.1.3 Augmentations to the de�nitionsIn appliations, one often needs noninterative zero-knowledge proofs that have additionalproperties beyond those guaranteed by De�nition 7.1.3. For ompleteness, we briey men-tion some of these properties below, though we will be working with De�nition 7.1.3. Var-ious formulations of these properties and methods for ahieving them an be found in[BFM88, BDMP91, BG89, NY90, DY90, FLS99℄.Proving many statements. In many appliations of noninterative zero knowledge,one needs to prove many statements noninteratively using the same shared random string,whereas our de�nition only refers to proving one statement. One way of proving t statementsis to use t independent exeutions of the proof system, but this multiplies the length of theshared random string by a fator of t, and hene requires an a priori bound on the numberof statements to be proven. Ideally, the shared random string would be a �xed length(polynomial in the input length and the seurity parameter) and an be used to prove anarbitrary (polynomial) number of statements. De�nition 7.1.3 is sometimes referred to asbounded or single-theorem noninterative zero knowledge in the literature.Adaptive noninterative zero knowledge. Another issue is whether the statementsto be proven an be seleted \adaptively" after the shared random string is published.Our de�nition only guarantees soundness and zero-knowledgeness if the statement to beproven is �xed before the shared random string is seleted. Preserving soundness in theadaptive setting is not diÆult | if one uses parallel repetitions to make the soundnesserror of a nonadaptive proof system suÆiently smaller than 2�n, then with high probabilitythe shared random string will be \good" (with respet to soundness) for all statements oflength n, and thus it does not matter if the statement is seleted after the proof. Preservingzero-knowledgeness in the adaptive setting, however, is muh less straightforward.EÆient provers. In order to atually implement a noninterative zero-knowledge proofsystem, it is learly neessary that the prover strategy an be implemented in polynomialtime given, say, some auxiliary information. This only makes sense for problems in NP, asthe auxiliary information an be viewed as an NP-proof.44Stritly speaking, it also makes sense for problems in MA [BM88℄, as the veri�ation might beprobabilisti.



154 CHAPTER 7. NONINTERACTIVE SZKSolutions for NICZK. Feige, Lapidot, and Shamir [FLS99℄ show how to ahieve allof these properties for NICZK under intratability assumptions. Spei�ally, they showthat every problem in NP has a many-theorem adaptive NICZK proof with an eÆientprover, if trapdoor permutations exist. For NISZK andNIPZK, however, the relationshipbetween De�nition 7.1.3 and the many-theorem and adaptive variants is still open.7.2 The Completeness TheoremWe onsider the following restrited versions of Statistial Differene and EntropyDifferene.De�nition 7.2.1 Statistial Differene from Uniform is the promise problem SDU =(SDUY ;SDUN ), whereSDUY = fX : StatDi� (X;Un) � 1=ngSDN = fX : StatDi� (X;Un) � 1� 1=ng :Above, X is a iruit enoding a probability distribution on f0; 1gn (where n is the numberof output gates of X), as in De�nition 3.1.1, and Un is the uniform distribution on f0; 1gn.De�nition 7.2.2 Entropy Approximation is the promise problem EA = (EAY ;EAN ),where EAY = f(X; t) : H(X) � t+ 1gEAN = f(X; t) : H(X) � t� 1g :Above, X is iruit enoding a probability distribution, as in De�nition 3.1.1, t is an integer,and H(�) denotes the entropy funtion (De�nition 3.3.1).In Setions 7.3 and 7.4, we will prove the following ompleteness theorem for NISZK.Theorem 7.2.3 (Completeness Theorem for NISZK) Entropy Approximation andStatistial Differene from Uniform are omplete for NISZK.It is interesting to informally ompare this with the Completeness Theorem forHVSZK(= SZK) (Theorem 3.5.1):Whereas (interative) statistial zero knowledge aptures those assertions thatan be ast as omparing two eÆiently samplable distributions to eah other (ei-ther with respet to their statistial di�erene or their entropies), noninterativestatistial zero knowledge onsists exatly of those assertions whih an be astas omparing a single distribution to the uniform distribution.As was the ase with HVSZK, the omplete problems for NISZK are useful tools forproving general theorems about the entire lass. Our most dramati appliation of theseomplete problems omes from the fat that they are natural restritions of the ompleteproblems for SZK. In Setion 7.5, we exploit this relationship to get a better understanding



7.3. ENTROPY APPROXIMATION IS IN NISZK 155of how NISZK ompares to SZK. Other orollaries of the ompleteness theorem are givenin Setions 7.4 and 7.6.Prior to this work, De Santis, Di Cresenzo, Persiano, and Yung [DDPY98℄ showed thata di�erent promise problem, alled Image Density (ID) is omplete for NISZK. Roughlyspeaking, the yes instanes of ID are distributions on strings of some length n (enodedby iruits) whih are statistially lose to the uniform distribution on f0; 1gn, and theno instanes of ID are distributions whose support is a small fration of f0; 1gn. Thus,for an appropriate quanti�ation of \lose" and \small fration," ID is a restrited versionof SDU. The main interesting feature of our omplete problems (as ompared to ID) isthat they are more losely related to the omplete problems for SZK. Spei�ally, we willexploit the onnetion between Entropy Approximation and Entropy Differene inomparing SZK and NISZK.We prove the Completeness Theorem via a \irle of redutions" analogous to (butsimpler than) the one used to prove the Completeness Theorem for HVSZK. First, inSetion 7.3, we prove that EA is in NISZK. Next, in Setion 7.4, we show that SDUredues to EA. Finally, also in Setion 7.4, we omplete the irle by showing that everyproblem in NISZK redues to EA.7.3 Entropy Approximation is in NISZK7.3.1 The proof systemIn this setion, we exhibit a noninterative statistial zero-knowledge proof system for En-tropy Approximation. We begin by onsidering Protool 7.3.1, whih is a simple nonin-terative protool for proving that the support of a distribution X on f0; 1gn is nearly allof f0; 1gn.Protool 7.3.1: Basi noninterative proof system (P; V ) for showinga distribution has large supportInput: Ciruit X (with m input gates and n output gates), and shared randomstring x 2 f0; 1gn1. P : Selet r uniformly from 
X(x) def= fr0 : X(r0) = xg and send r to V .(If 
X(x) = ;, then send fail to V .)2. V : Aept if X(r) = x, otherwise rejet.The prover's suess probability in Protool 7.3.1 is evident by inspetion:Claim 7.3.2 The prover strategy given in Protool 7.3.1 makes the veri�er aept withprobability exatly jSupp(X)j=2n, and no prover strategy an make the veri�er aept withhigher probability.



156 CHAPTER 7. NONINTERACTIVE SZKThus, the protool is omplete and sound: if the support of X is nearly all of f0; 1gn, theveri�er will aept with high probability; and if the support is a small fration of f0; 1gn, theveri�er will rejet with high probability no matter what strategy the prover uses. In fat,if X has not just large support, but is lose to uniform, the protool also an be simulatedwell, as done by Algorithm 7.3.3.Algorithm 7.3.3: Simulator for Protool 7.3.1Input: Ciruit X (with m input gates and n output gates)1. Selet r 2 f0; 1gm. Let x = X(r).2. Output (x; r)
Claim 7.3.4 The statistial di�erene between the output of Algorithm 7.3.3 and the veri-�er's view of Protool 7.3.1 is exatly StatDi� (X;Un).Proof: The statistial di�erene between the x-omponents of the two distributions isexatly StatDi� (X;Un). Conditioned on x, r is seleted uniformly from 
X(x) in bothdistributions, so it does not inrease the statistial di�erene.Thus, to give an NISZK proof system for EA, it suÆes to give a transformationmapping yes instanes to distributions that are lose to uniform and no instanes to dis-tributions with small support. This is given by the following lemma, whih we prove inSetion 7.3.2.Lemma 7.3.5 There is a polynomial-time omputable funtion that takes an instane (X; t)of EA and a parameter k (in unary) and produes a distribution Z (enoded by a iruitwhih samples from it) suh that, letting N be the number of output gates of Z, we have:1. If H(X) � t + 1, then Z has statistial di�erene at most 2�k from the uniformdistribution on f0; 1gN , and2. If H(X) � t� 1, then the support of Z is at most a 2�k fration of f0; 1gN .Lemma 7.3.5 essentially redues to Entropy Approximation to Image Density, theomplete problem of De Santis et. al. [DDPY98℄. Combining Lemma 7.3.5 with Claims 7.3.2and 7.3.4, we obtain:Theorem 7.3.6 Entropy Approximation is in NISZK. Moreover, it has a nonintera-tive statistial zero-knowledge proof system with simulator deviation 2�k and a deterministiveri�er.



7.3. ENTROPY APPROXIMATION IS IN NISZK 157Protool 7.3.1 (together with Lemma 7.3.5) gives a proof system with nonzero, thoughexponentially small, ompleteness error. However, this ompleteness error an be removedusing a transformation given in [BDMP91, BR90℄, whih onverts noninterative zero knowl-edge proofs into ones with perfet ompleteness. (That transformation preserves both sta-tistial and omputational zero knowledge, maintains an exponentially small simulator de-viation in the ase of statistial zero knowledge, and keeps the veri�er deterministi.)7.3.2 Proof of Lemma 7.3.5We now prove Lemma 7.3.5. The transformation is based on tehniques we have used manytimes | 2-universal hashing, the Leftover Hash Lemma, and attening distributions (f.,Setions 3.4.1 and 3.4.3 for the de�nitions). Let (X; t) be an instane of EA. Reall thatthe Leftover Hash Lemma onverts nearly at distributions with large entropy into nearlyuniform ones. This suggests the following �rst attempt at onstruting the distribution Z:1. Let X 0 onsists of many, say s, independent opies of X so that the entropy of X 0 isgreater s � (t+1) for yes instanes and less than s � (t� 1) for for no instanes, whileX 0 is �-at, for �� s.2. De�ne Z to be the distribution (h; h(x)), where h is hosen uniformly from a 2-universal family of hash funtions with range f0; 1gst and x is sampled aording toX 0.For a suÆiently large (but still polynomial) hoie of the parameter s, this does indeedmap yes instanes (X; t) of EA to distributions Z that are lose to uniform. Unfortunately,Z does not neessarily have small support when (X; t) is a no instane. However, it almostworks: The fat that the entropy of X 0 is muh smaller than st implies that if we removethe very \light" strings from Supp(X 0) (i.e., the strings assigned probability mass muhsmaller than 2�H(X0)), what remains is a set T of size muh smaller than 2st. The near-atness of X 0 implies that Pr [X 0 2 T ℄ is very lose to 1. For any hash funtion h mappingto st bits, h(T ) will be a very small fration of f0; 1gst. So, the reason that Z might stillhave large support is the rare event that we obtain a very light sample from X 0. To dealwith suh light samples, note that a sample x being light means that fr : X 0(r) = xg isatypially small. So, we add to Z another two omponents (h0; h0(r)), where h0 is anotherhash funtion (mapping to a di�erent number of bits) and r is is the input to X 0 used toprodue the sample x used in the seond omponent of Z. Thus, when x is one of theserare points outside T , h0(r) will only hit a small fration of its range, and Z will have smallsupport.To formalize this intuition, let (X; t) and k be given as in the lemma. Note that itsuÆes for the transformation to ahieve error parameters 2�
(k) rather than 2�k, as wean ompensate for this by �rst inreasing k by a onstant fator. Let m be the number ofinput gates to X and n the number of output gates. De�ne X 0 = 
sX, for s = 4k �m2.Thus, X 0 has sm input gates, sn output gates, and, by Lemma 3.4.6, is �-at for � =p(4km2) �m = 2pk �m2. Consider the following distribution Z:Z: Choose r  f0; 1gsm. Let x = X 0(r). Selet h1  Hsn;st and h2  Hsm;sm�st�k.Output (h1; h1(x); h2; h2(r)).



158 CHAPTER 7. NONINTERACTIVE SZKWe denote the (jointly distributed) random variables orresponding to the omponentsof Z by (H1; Y1;H2; Y2). We also use X 0 to denote the distribution of x and R to denotethe distribution of r, so Y1 = H1(X 0), Y2 = H2(R) and X 0 = X 0(R).Claim 7.3.7 If H(X) � t + 1, then Z has statistial di�erene at most 2�
(k) from theuniform distribution on Hsn;st � f0; 1gst �Hsm;sm�st�k � f0; 1gsm�st�k.Proof: First we analyze the distribution on the �rst two omponents (H1;H1(X 0)). Notethat X 0 has entropy at least s�(t+1) = st+2pk�. By the �-atness ofX 0, we an apply theLeftover Hash Lemma (Lemma 3.4.7) with parameters Æ = 2�k+1 and " = 2�pk� < 2�k tosee that (H1;H1(X 0)) = (H1; Y1) has statistial di�erene at most 2�
(k) from the uniformdistribution on Hsn;st � f0; 1gst. It follows that with probability at least 1 � 2�
(k) over(h1; y1) (H1; Y1), Pr [(H1; Y1) = (h1; y1)℄ � 12 � 1jHsn;st � f0; 1gstj :Fix any pair (h1; y1) suh that this holds. Then the onditional distribution Rj(H1;Y1)=(h1;y1)is uniform over the set fr : h1(X 0(r)) = y1g, whih is of size2sm � Pr [Y1 = y1jH1 = h1℄ = 2sm � Pr [(H1; Y1) = (h1; y1)℄Pr [H1 = h1℄� 2sm � 1= �2 � jHsn;stj � 2st�1=jHsn;stj= 2sm�st�1:Thus, by the Leftover Hash Lemma, (H2;H2(R))j(H1;Y1)=(h1;y1) has statistial di�erene2�
(k) from the uniform distribution on Hsm;sm�st�k � f0; 1gsm�st�k . Realling that thisholds with probability 1� 2�
(k) over (h1; y1) (H1; Y1) and that (H1; Y1) has statistialdi�erene at most 2�
(k) from uniform, we onlude that (H1; Y1;H2; Y2) has statistialdi�erene at most 2�
(k) from uniform.Claim 7.3.8 If H(X) � t � 1, then the support of Z is at most an O(2�k) fration ofHsn;st � f0; 1gst �Hsm;sm�st�k � f0; 1gsm�st�k.Proof: Note that the entropy of X 0 is at most s � (t� 1) � st�p3k ���k. We will showthat, for every �xed h1 2 Hsm;st, the support S = Sh1 of (h1(X 0);H2;H2(R)) is at mostan O(2�k) fration of D = f0; 1gst �Hsm;sm�st�k � f0; 1gsm�st�k . Clearly this suÆes toprove the lemma.Fix h1 2 Hsm;st. To bound the size of S = Sh1 , we divide it into three subsets, dependingon the probability mass of the �rst omponent h1(X 0) (as ompared to a \typial," unhashedsample from X 0). Reall that a \typial" sample from X 0 has probability mass � 2�H(X0) �



7.4. PROOF OF THE COMPLETENESS THEOREM 1592�st+p3k��+k.S1 = f(y1; h2; y2) 2 S : 2�st+k < Pr [h1(X 0) = y1℄g (\not too light")S2 = f(y1; h2; y2) 2 S : 2�st�2k < Pr [h1(X 0) = y1℄ � 2�st+kg(\too light, but not muh too light")S3 = f(y1; h2; y2) 2 S : Pr [h1(X 0) = y1℄ � 2�st�2kg (\muh too light")Clearly, S = S1 [ S2 [ S3. We will show that jSij=jDj � O(2�k) for i = 1; 2; 3, and sojSj=jDj � 3 � O(2�k) = O(2�k).First, we bound jS1j. Clearly, there an be at most 2st�k values of y1 suh thatPr [h1(X 0) = y1℄ > 2�st+k, so the �rst omponents of elements of S1 over at most a 2�kfration of f0; 1gst. Hene S1 is at most a 2�k fration of D.Now we bound jS2j. Consider the setA = fy1 : 2�st�2k < Pr �h1(X 0) = y1� � 2�st+kg:We will show that A is of size at most 2st�k+1; like the previous ase, it then follows thatjS2j=jDj � 2�k+1. Note that if h1(x) 2 A, then Pr [X 0 = x℄ � Pr [h1(X 0) = h1(x)℄ � 2�st+k.Thus, if h1(x) 2 A, then x isp3k ��-light (sine X 0 has entropy at most st�k�p3k ��). Bythe �-atness of X 0, Pr [h1(X 0) 2 A℄ is at most 2�3k+1. Sine every y1 2 A has probabilitymass at least 2�st�2k under h1(X 0), it follows that jAj is at most 2�3k+1=2�st�2k = 2st�k+1.Finally, we bound jS3j. Note that, for any y1,Pr �h1(X 0) = y1� = 2�sm � ��fr : h1(X 0(r)) = y1g�� :Thus, for any y1 suh that Pr [h1(X 0) = y1℄ � 2�st�2k, there are at most 2�st�2k � 2smvalues of r onsistent with h1(X 0(r)) = y1. Hene, for any suh y1 and any h2, the setof y2 suh that (y1; h2; y2) 2 S is of size at most 2sm�st�2k (beause eah suh y2 is ofthe form h2(r) for some r suh that h1(X 0(r)) = y1). This implies that S3 is at most a2sm�st�2k=2sm�st�k = 2�k fration of D.We omment that the protool obtained by ombining the above transformation withProtool 7.3.1 yields a protool that is losely related to the standard lower bound protool(Protool 5.2.1). Indeed, proving an approximate lower bound on the entropy of a nearlyat distribution X is almost equivalent to proving an approximate lower bound on the sizeof Supp(X), exept for diÆulties aused by \light" samples. Our method for handling thisdiÆulty an be viewed as using another lower bound protool on the inputs to X.7.4 Proof of the Completeness TheoremIn this setion, we omplete the proof of the ompleteness theorem for NISZK. First, weshow that Statistial Differene from Uniform redues to Entropy Approxima-tion.



160 CHAPTER 7. NONINTERACTIVE SZKLemma 7.4.1 SDU �Karp EA. In partiular, SDU 2 NISZK.Proof: Let X be an instane of SDU. First, we treat the ase that log n > 4, wheren is the output length of the iruit X. In this ase, we laim X 7! (X;n � 3) is a validredution to EA. The orretness of this redution follows from the following laim relatingthe entropy of a distribution to its distane from the uniform distribution.Claim 7.4.2 Let X be any distribution on a universe U and let U denote the uniformdistribution on U . Then1. If StatDi� (X;U) � �, then H(X) � log jUj � ��+ 1jUj� � log jUj.2. If StatDi� (X;U) � �, then H(X) � log jUj � log � 11���.Applying this laim with U = f0; 1gn, � = 1=n, and � = 1�1=n shows that yes instanesof SDU have entropy at least n�2 and no instanes have entropy at most n� logn � n�4.This establishes the validity of the redution.Now we treat the ase that log n < 4. In this ase, the statistial di�erene between Xand Un an be approximated in probabilisti polynomial time by sampling X suÆientlymany times and ounting the number of times eah output ours. So let A(X) be theprobabilisti algorithm whih outputs 1 with probability at least 2=3 when X 2 SDUYand outputs 1 with probability at most 1=3 when X 2 SDUN . Now onsider the iruit Yde�ned as follows:Y : Run A(X) to obtain output b. If b = 1 output 9 random bits, and if b = 0 output 09.Now, if X 2 SDUY , then H(Y ) � (2=3) � 9 = 6. If instead X 2 SDUN , then H(Y ) �H2(1=3) + (1=3) � 9 � 4. Thus X 7! (Y; 5) is a valid redution from SDU to EA in thisase.Now we omplete the irle of redutions by showing that every problem inweak-NISZKredues to SDU.Lemma 7.4.3 Every promise problem in weak-NISZK redues to SDU.By the orrespondene between noninterative proofs and 2-message publi-oin intera-tive proofs, we ould apply the simulator analysis for publi-oin statistial zero-knowledgeproofs given in Setion 3.2. However, sine the ase of noninterative proof systems is muhsimpler, we give the redution diretly. Our redution is essentially the same as the redu-tion of De Santiset. al. [DDPY98℄ to their omplete problem Image Density, with a smallompliation aused by the fat that we allow the veri�er to be probabilisti.Proof: Let � be any promise problem in weak-NISZK. Let (P; V ) be a weak-NISZKproof system for � and let ` = `(n) be a polynomial bound on the length of the sharedrandom string on inputs of length n. We assume that (P; V ) has ompleteness and soundnesserror at most 1=9` (atually these an be assumed to be exponentially small by repeatingthe proof system suÆiently many times in parallel). By the weak-NISZK property, thereis a simulator S for (P; V ) whih ahieves simulator deviation 1=3`.For an instane x of �, onsider the following distribution Xx:



7.5. COMPARING SZK AND NISZK 161Xx: Run S(x) to obtain a simulated transript (�; proof ). Run V (x; �; proof ) ` times. If Vaepts in the majority of the exeutions, output �. Otherwise, output 0`.We laim that x 7! Xx is the redution we are seeking. Suppose x 2 �Y . Considerthe distribution Xx whih is the same as Xx, exept that (�; proof ) is taken from (P; V )(x)instead of from S(x). Xx and Xx have statistial di�erene at most the simulator deviation(1=3`), so it suÆes to show that Xx has statistial di�erene at most 2=3` from uniform.For (�; proof ) taken from (P; V )(x), � is distributed uniformly, so we need only analyzethe probability that it is disarded and replaed with 0` in Xx. Let B be the set of\bad" pairs (�; proof )'s for whih Pr [V (x; �; proof ) = aept℄ � 2=3. The probabilitythat (�; proof ) 2 B is at most 1=3`, for otherwise V would rejet with probability greaterthan (1=3`) � (1=3) = 1=9`, violating ompleteness. By the Cherno� Bound, for any pair(�; proof ) =2 B, the probability that V (x; �; proof ) aepts in the majority of ` independentexeutions is at least 1 � exp(�
(`)). Thus, in Xx, � is replaed with 0` with probabilityat most 1=3` + exp(�
(`)) < 2=3`, and hene Xx has statistial di�erene at most 2=3`from uniform.Now suppose that x 2 �N . Consider the set B of \bad" �'s for whih there exists a proofsuh that Pr [V (x; �; proof ) = aept℄ � 1=3. The probability that a uniformly distributed� is in B is at most 1=3`, for otherwise there would be a prover strategy whih makes Vaept with probability greater than (1=3`) � (1=3) = 1=9`, violating soundness. However,whenever � =2 B, Xx outputs 0` with probability at least 1� exp(�
(`)) (by the Cherno�Bound). Hene, Xx is in B [ f0`g with probability at least 1 � exp(�
(`)) � 1 � 1=3`,whereas the uniform distribution is in B [f0`g with probability at most 1=3`+2�` � 2=3`,for a statistial di�erene at least [1� 1=3`℄ � 2=3` = 1� 1=`.The Completeness Theorem (Theorem 7.2.3) follows by ombining Theorem 7.3.6 andLemmas 7.4.1 and 7.4.3. We an draw a ouple of immediate orollaries from our proof ofthe Completeness Theorem. By the fat that the redution from NISZK to SDU atuallyworks for all of weak-NISZK, we obtain:Corollary 7.4.4 weak-NISZK = NISZK.Sine the omplete problem EA possesses an NISZK proof system with exponentiallyvanishing simulator deviation (Theorem 7.3.6), so must all other problems in NISZK.Corollary 7.4.5 Every problem inNISZK possesses a noninterative statistial zero knowl-edge proof system with simulator deviation 2�k and a deterministi veri�er.7.5 Comparing SZK and NISZK7.5.1 Nontriviality of NISZKIn this setion, we use the omplete problems to relate SZK and NISZK. The �rst resultis that if NISZK = BPP then SZK = BPP. This is done by giving a Cook redutionfrom Entropy Differene (ED) to Entropy Approximation (EA).



162 CHAPTER 7. NONINTERACTIVE SZKLemma 7.5.1 Suppose (X;Y ) is an instane of ED. Let X 0 = 
3X (resp., Y 0 = 
3Y )onsist of 4 independent opies of X (resp., Y ), and let n denote the output length of X 0.Then, (X;Y ) 2 EDY =) n_t=1 ��(X 0; t) 2 EAY � ^ �(Y 0; t) 2 EAN��(X;Y ) 2 EDN =) n̂t=1 ��(X 0; t) 2 EAN� _ �(Y 0; t) 2 EAY ��Proof: Suppose (X;Y ) 2 EDY , so that H(X 0) � H(Y 0) + 3. Sine (H(X 0) � 1) �(H(Y 0) + 1) � 1, there must be some integer t in the interval [H(X 0)� 1;H(Y 0) + 1℄, whihimplies that (X 0; t) 2 EAY and (Y 0; t) 2 EAN . Suppose instead (X;Y ) 2 EDN , so thatH(Y 0) � H(X 0) + 3. Sine H(X 0) + 1 < H(Y 0)� 1, every t is either greater than H(X 0) + 1or less than H(Y 0)� 1. That is, for every t, (X 0; t) 2 EAN or (Y 0; t) 2 EAY .Thus, we onlude:Theorem 7.5.2 NISZK 6= BPP i� SZK 6= BPP.Proof: By de�nition, BPP � NISZK � HVSZK, and HVSZK = SZK by Theo-rem 6.3.1. Thus, if SZK = BPP, then NISZK = BPP.Now suppose that NISZK = BPP. In partiular, there is a probabilisti polynomialtime algorithm A whih deides EA with exponentially small error probability. To provethat SZK = BPP, it suÆes to exhibit a BPP algorithm for ED, sine ED is SZK-omplete. The algorithm is given as follows: Given an instane (X;Y ) of ED, let X 0, Y 0,and n be as stated in Lemma 7.5.1. Run A(X 0; t) and A(Y 0; t) for t = 1; : : : ; n. If, forsome t, A(X 0; t) = yes and A(Y 0; t) = no, then output yes. Otherwise, output no. ByLemma 7.5.1, this is a orret BPP algorithm for deiding ED.7.5.2 Conditions under whih NISZK = SZKIn this setion, we use speial properties of the redution from ED to EA given in theprevious setion to shed additional light on the relationship between NISZK and SZK.Spei�ally, we will show that ifNISZK is losed under omplement, then in fatNISZK =SZK.The key observation is that the redution from ED to EA is nonadaptive (i.e., all thequeries to EA an be asked at one) and the �nal answer is omputed by applying thesimple Boolean formula of Lemma 7.5.1 to the responses. That is, it is an NC1 truth-tableredution, in the sense of De�nition 4.5.10. In fat, the Boolean formula has onstant depth;this property is aptured by the following de�nition.De�nition 7.5.3 (AC0 truth-table redutions) A truth-table redution f between promiseproblems is an AC0 truth-table redution5 if the iruit C produed by the redution on input5This terminology is inherited from the AC hierarhy of languages, where ACi denotes the lass oflanguages deided by (uniform) families of iruits of unbounded fan-in and depth O(logi n). See, e.g.,[Pap94℄.



7.5. COMPARING SZK AND NISZK 163x has depth bounded by f , where f is a onstant independent of x. (C may have unboundedfan-in.) If there is an AC0 truth-table redution from � to �, we write � �AC0�tt �.From Lemma 7.5.1, we have:Proposition 7.5.4 ED �AC0�tt EA.By this proposition, if NISZK were losed under AC0 truth-table redutions, thenED would be in NISZK and hene NISZK = SZK. Thus, we would like to apture theminimal onditions for a omplexity lass to be losed under AC0 truth-table redutions.We de�ne the following operator on promise problems to apture the notion of an unboundedfan-in AND gate.De�nition 7.5.5 (unbounded AND) For any promise problem �, we de�ne AND(�)to be the following promise problem:AND(�)Y = f(x1; x2; : : : ; xk) : k � 0; 8i 2 [1; k℄ xi 2 �Y gAND(�)N = f(x1; x2; : : : ; xk) : k � 0; 9i 2 [1; k℄ xi 2 �NgWe say a lass C of promise problems is losed under unbounded AND if � 2 C impliesthat AND(�) 2 C.We have de�ned AND(�) so that it has the weakest promise ondition possible to remainwell-de�ned. In partiular, AND(�)N is de�ned to inlude xi's that violate �'s promise, aslong as just one of them is in �N .We also need a way of ombining two promise problems:De�nition 7.5.6 (disjoint union) For any pair of promise problems � and �, we de�nethe disjoint union of � and � to be the promise problem DisjUn(�;�) de�ned as follows:DisjUn(�;�)Y = f0g ��Y [ f1g � �YDisjUn(�;�)N = f0g ��N [ f1g � �NWe say a lass C of promise problems is losed under disjoint union if �;� 2 C impliesthat DisjUn(�;�) 2 C.With these de�nitions, we an give some onditions that imply losure under AC0truth-table redutions.Lemma 7.5.7 A promise lass C is losed underAC0 truth-table redutions if the followingonditions hold:1. C is losed under Karp redutions.2. C is losed under unbounded AND.3. C is losed under disjoint union.4. C is losed under omplementation.



164 CHAPTER 7. NONINTERACTIVE SZKProof: As a �rst step, we observe that C is losed under unbounded OR (de�nedanalogously to unbounded AND): DeMorgan's Laws say that OR(�) = AND(�), whihis in C, by losure under unbounded AND and omplementation. To generalize this toonstant-depth iruits, we de�ne for eah d 2 N, a promise problem Depthd(�) whih isde�ned exatly as �(�) (De�nition 4.5.3), exept formulae � are replaed with iruits Cof depth at most d (using unbounded fan-in AND and OR gates).By de�nition, � �AC0�tt � means that there exists some d suh that � �Karp Depthd(�).Hene if we an show that for all d � 0 and promise problems � 2 C, Depthd(�) 2 C, thelemma will be established. We will prove this by indution on d.First, observe that a depth 0 iruit is simply a variable or its negation. Hene,Depth0(�) �Karp DisjUn(�;�) 2 C. (The redution maps (vi; (x1; : : : ; xm)) 7! (0; xi)and (:vi; (x1; : : : ; xm)) 7! (1; xi)). Now assume that Depthd(�) 2 C. By de�nition, adepth d+ 1 iruit is an AND or an OR of some number of depth d iruits. (By applyingDeMorgan's Laws, we may assume that all negations are applied diretly to the variables.)Using this fat, we will argue that thatDepthd+1(�) �Karp DisjUn(AND(Depthd(�));OR(Depthd(�))):By the hypothesized losure properties ofC, this implies that Depthd+1(�) 2 C. The redu-tion works as follows. The input to the redution is a pair (C; x) where x = (x1; x2; : : : xm).First, the redution extrats from C the iruits C1; C2; : : : ; Cs that provide input to thetopmost AND/OR gate, and sets � = 0 (resp., � = 1) if that gate is an AND (resp., OR)gate. Then the redution outputs (�; ((C1; x); (C2; x); : : : ; (Cs; x))). It is lear that this mapgives a Karp redution from Depthd+1(�) to DisjUn(AND(Depthd(�));OR(Depthd(�)));ompleting the indution step and the proof.Whih of the onditions of Lemma 7.5.7 does NISZK satisfy? We have already shownthat Condition 1 is satis�ed byNISZK (Proposition 2.4.1). We now argue that Conditions 2and 3 are also satis�ed:Lemma 7.5.8 NISZK is losed under unbounded AND.Proof: Let � be any problem in NISZK. Let (P; V ) be a noninterative statistialzero-knowledge proof system for � with ompleteness and soundness errors at most 1=kand simulator devation �(k) (where k is the seurity parameter). We now desribe anNISZK proof system (P 0; V 0) for AND(�): Given an instane (x1; : : : ; xm) of AND(�) anda seurity parameter k0, P 0 and V 0 exeute the (P; V ) on eah xi, using seurity parameterk = 2k0m, and V 0 aepts if V aepts in eah of these exeutions.(P 0; V 0) is a noninterative proof system for AND(�) with ompleteness error at mostm � 1=k � 1=k0 and soundness error at most 1=k � 1=k0. Moreover, it an be simulated byrunning the simulator for (P; V ) on eah of the inputs xi. This gives simulator deviationm � �(k), whih is (bounded by) a negligible funtion of k0.Lemma 7.5.9 NISZK is losed under disjoint union.Proof: If �0;�1 2 NISZK, an NISZK proof system for DisjUn(�0;�1) an be obtainedas follows: On input (�; x) and seurity parameter k, the prover and veri�er exeute theNISZK proof system for �� on input x and seurity parameter k.



7.5. COMPARING SZK AND NISZK 165Combining everything, we an give a ondition under whih SZK = NISZK.Proposition 7.5.10 If NISZK is losed under omplementation, then SZK = NISZK.Proof: Suppose NISZK is losed under omplementation. By Lemmas 7.5.7, 7.5.8,and 7.5.9 and Proposition 7.1.4, it follows that NISZK is losed under AC0 truth-tableredutions. Combining Proposition 7.5.4 (ED �AC0�tt EA) and Theorem 3.5.1 (ED isomplete for SZK), we see that every problem in SZK AC0 truth-table redues to EA.Thus, SZK � NISZK. As NISZK � SZK is true from the de�nition of NISZK, weonlude that NISZK = SZK.Finally, we give a number of other onditions equivalent to NISZK = SZK.Theorem 7.5.11 (onditions for SZK = NISZK) The following are equivalent:1. SZK = NISZK.2. NISZK is losed under omplement.3. NISZK is losed under NC1 truth-table redutions.4. ED (resp., SD) Karp-redues to EA (resp., SDU). (\general versions redue toone-sided ones")5. EA (resp., SDU) Karp-redues to its omplement. (\one-sided versions redue totheir omplements")Proof: 1 ) 3. This follows from Corollary 4.5.12, whih states that SZK is losed underNC1 truth-table redutions.3 ) 2 ) 1. The �rst impliation is trivial and the seond is Proposition 7.5.10.1 , 4. This follows from the Completeness Theorems (Theorem 3.5.1 and 7.2.3), whihassert that EA and SDU are omplete for NISZK, and that ED and SD are omplete forSZK, and Proposition 7.1.4 (that NISZK is losed under Karp redutions).2, 5. This follows from Theorem 7.2.3 (that EA and SDU are omplete for NISZK) andProposition 7.1.4 (that NISZK is losed under Karp redutions).Theorem 7.5.11 an be interpreted as saying that ifNISZK has a relatively weak losureproperty (losure under omplement), then the lass is surprisingly rih (equals SZK) andhas a muh stronger losure property (losure under NC1 truth-table redutions.) At �rst,it might seem implausible that a lass like NISZK with suh an assymetri de�nitionwould be losed under omplement. But SZK, whih has a similarly assymetri de�nition,is known to be losed under omplement [Oka96℄ (f., Corollary 4.2.1). In light of this, thelosure ofNISZK under omplement would not be quite as unexpeted, and Theorem 7.5.11illustrates that proving it would have wider onsequenes.The last two onditions in Theorem 7.5.11 show that these questions about noninter-ative versus interative statistial zero-knowledge proofs are atually equivalent to basiquestions about relationships between natural omputational problems whose de�nitionshave no a priori relationship to zero-knowledge proofs.



166 CHAPTER 7. NONINTERACTIVE SZKThe equality of SZK and NISZK would have interesting onsequenes not just forNISZK, but also for SZK. Note that NISZK = SZK would imply that every problemin SZK = HVSZK has a 2-message publi-oin HVSZK proof, giving a positive an-swer to Open Problem 5.4.20. By the transformation of Damg�ard, Goldreih and Wigder-son [DGW94℄, this in turn would imply that every problem in SZK has a 4-message publi-oin SZK proof system (against heating veri�ers, with inverse polynomial soundness error),giving a positive answer to Open Problem 6.5.6.In summary, it would be very interesting to answer the following question.Open Problem 7.5.12 Does SZK = NISZK?7.6 Other appliations of the Completeness Theorem7.6.1 Problems in NISZKWe an also use the omplete problems to plae other problems in NISZK. To do so, weneed only exhibit a redution from the given problem to one of the omplete problems. Thefollowing observation will make exhibiting redutions to Entropy Approximation some-what more onvenient: While the de�nition of EA amounts to the problem approximatingentropy up to �1, atually it is equivalent to approximating entropy up to any additiveonstant. More preisely, we have:Proposition 7.6.1 There is an eÆient transformation that takes a triple (X; t1; t2), whereX is a distribution enoded by a iruit and t1 > t2 are rational numbers, and produes anew distribution X 0 and an integer t suh thatH(X) � t1 ) (X 0; t) 2 EAYH(X) � t2 ) (X 0; t) 2 EAYThe transformation is omputable in time polynomial in the input length and 1=(t1 � t2).Proof: Let m = d 3t1�t2 e, X 0 = 
mX, and t = dmt2e+ 1. ThenH(X) � t1 ) H(X 0) � mt1 � mt2 + 3 � t+ 1and H(X) � t2 ) H(X 0) � mt2 � t� 1:Expliit proof systems for the problems we onsider below an be obtained by ombiningthe redutions to EA given below with the protool for Entropy Approximation givenin Setion 7.3. However, for these problems, the onstrution and analysis of the trans-formation given by Lemma 7.3.2 an be somewhat simpli�ed, sine the distributions arealready at. In partiular, there are no \light" samples and hene the seond hash funtionis unneessary.



7.6. OTHER APPLICATIONS OF THE COMPLETENESS THEOREM 167The �rst problem we show to be in NISZK is the following promise problem Numberof Prime Fators (NPF):NPFY = f(n; k) 2 N � N : n has at most k distint prime fatorsgNPFN = f(n; k) 2 N � N : n has more than k distint prime fatorsgNote that, sine NPFN is exatly the omplement of NPFY , NPF is atually a language.Proposition 7.6.2 Number of Prime Fators is in NISZK.Proof: We redue NPF to EA. The redution is based on the following well-known fat.Fat 7.6.3 If an odd integer n has exatly k distint prime fators, then the map from Z�nto Z�n given by x 7! x2 mod n is 2k-to-1.Now, we redue a pair (n; k) to EA as follows: By exhaustive searh, �nd all the primefators of n less than 4 log n. Let t be the number of suh prime fators, and let m beobtained by dividing all suh prime fators out of n. Thus if n has at most (resp., morethan) k prime fators, m has at most (resp., more than) k � t prime fators. Now onsiderthe following distribution:Xn;k: Choose x uniformly in Z�m and output x2 (mod m).By Fat 7.6.3, Xn;k is uniform on a set of size jZ�mj=2` = �(m)=2`, where ` is the number ofprime fators of m, and hene H(Xn;k) = (log �(m))� `. Now, sine m has no prime fatorssmaller than (log n)=4,m � �(m) = mYpjm�1� 1p� � m ��1� 14 log n�logm � m ��1� logm4 log n� � 3m=4:Therefore,(n; k) 2 NPFY ) H(Xn;k) � log(3m=4) � (k � t) > logm� k + t� :5:(n; k) 2 NPFN ) H(Xn;k) � logm� (k � t+ 1) = logm� k + t� 1Thus, taking X = Xn;k, t1 = logm�k+t�:5, and t2 = logm�k+t�1 in Proposition 7.6.1,we see that NPF redues to EA.Now we onsider a version Quadrati Nonresiduosity, whih was the �rst problemshown to be in NISZK.QNRY = f(n; x) 2 N � N : x is a quadrati nonresidue modulo n, n is odd,and n has exatly two distint prime fatorsg;QNRN = N � N nQNRYProposition 7.6.4 ([BDMP91℄) Quadrati Nonresiduosity is in NISZK.



168 CHAPTER 7. NONINTERACTIVE SZKProof: The fat that n is odd and has exatly two distint prime fators an be proven inNISZK by Proposition 7.6.2. (Polynomial-time primality testing algorithms, as in [SS77,Mil76, Rab80℄ an be used to rule out n with exatly one distint prime fator.) Thus,we may assume that n is of the orret form, and need only give a redution to EA thatworks in this ase. We also may assume that both of the prime divisors of n are larger than(log n)=4, for otherwise one an fator n and deide if x is a quadrati residue in polynomialtime. Finally, we may assume that gd(x; n) = 1, as (n; x) 2 QNRN if this is not the ase,and this an be heked in polynomial time. Consider the following distribution:Xn;x: Choose y uniformly in Z�n. With probability 1=2, output y2 mod n, and with proba-bility 1=2, output x � y2 mod n.First, suppose that x is a quadrati residue modulo n. ThenXn;x is distributed uniformlyon the quadrati residues modulo n, whih, by Fat 7.6.3, is a set of size �(n)=4 � n=4.Thus, H(Xn;x) � log n� 2.On the other hand, if x is a quadrati nonresidue modulo n, then the elements of Z�n ofthe form x � y2 are disjoint from those of the form y2, so Xn;x is uniformly distributed on aset of size �(n)=2. As in the proof of Proposition 7.6.2, the assumption that n has no smallprime fators implies that �(n) � 3n=4, so H(Xn;x) � log((3n=4)=2) � log n� 1:5.Taking X = Xn;k, t1 = log n� 1:5, and t2 = log n� 2 in Proposition 7.6.1, we see thatQNR redues to EA.Blum et. al. [BDMP91℄ atually onsider a slightly di�erent version of QNR, in whih theyes instanes (n; x) also have the onstraint that n is not a perfet square and that x hasJaobi symbol 1. They show that their version of QNR is atually in NIPZK.The �nal example we onsider is a variant of Graph Isomorphism, observed to be inNISZK by Bellare and Rogaway [BR90℄. If G is a graph, then Aut(G) denotes the group ofisomorphisms from G to itself, also known as automorphisms. G is said to be rigid if Aut(G)onsists of only the identity map. The problem we onsider is Rigid Graphs (RG), givenby: RGY = fG : G is rigidgRGN = fG : G is not rigidgProposition 7.6.5 ([BR90℄) Rigid Graphs is in NISZK.Proof: Consider the following distribution for any graph G:XG: Uniformly selet a permutation � on the verties of G and output �(G).Standard group theory implies that XG is distributed uniformly on a set of size n!=jAut(G)j.So if G is rigid, H(XG) = logn!, whereas if G is not rigid, H(XG) � log(n!=2) = log n!� 1.Thus, taking X = XG, t1 = log n!, and t2 = log n!� 1 in Proposition 7.6.1, we see that RGredues to EA.



7.6. OTHER APPLICATIONS OF THE COMPLETENESS THEOREM 1697.6.2 A Polarization Lemma for SDUCombining Lemmas 7.3.5 and 7.4.1, we obtain an SDU-analogue of the Polarization Lemma(Lemma 3.1.12).Lemma 7.6.6 There is a polynomial-time omputable funtion that takes a distributionX on f0; 1gn (enoded by a iruit) and a parameter k (in unary) and outputs a newdistribution X 0 on f0; 1gn0 suh thatStatDi� (X;Un) � 1n ) StatDi� �X 0; Un0� � 2�kStatDi� (X;Un) � 1� 1=n ) StatDi� �X 0; Un0� � 1� 2�kMoreover, in the latter ase, the support of X 0 is at most a 2�k fration of f0; 1gn0 .This an be generalized somewhat, observing that the redution from SDU to EA givenin Lemma 7.4.1 atually works for more general thresholds:Lemma 7.6.7 (Polarization Lemma for SDU) Let �; � : N ! N be any two funtionssuh that �(n) and �(n) are omputable in time poly(n) and, for some onstant ,log� 11� �(n)� � �(n) � n+ 1n :Then, there is a polynomial-time omputable funtion that takes a distribution X on f0; 1gn(enoded by a iruit) and a parameter k (in unary) and outputs a new distribution X 0 onf0; 1gn0 suh thatStatDi� (X;Un) � �(n) ) StatDi� �X 0; Un0� � 2�kStatDi� (X;Un) � �(n) ) StatDi� �X 0; Un0� � 1� 2�kMoreover, in the latter ase, the support of X 0 is at most a 2�k fration of f0; 1gn0 .Lemma 7.6.7 is proven using Claim 7.4.2 together with Proposition 7.6.1. We do notknow whether an analogous lemma an be proven for any pair of onstant thresholds0 < � < � < 1. One might hope to obtain suh a result using the approah used in thePolarization Lemma for statistial di�erene | alternating proedures whih inrease andderease statistial di�erene. However, while the Diret Produt onstrution for inreas-ing statistial di�erene also applies to SDU, the XOR onstrution does not, as neitherdistribution it produes is uniform even if one of the original distributions is uniform. Thus,the following problem remains open:Open Problem 7.6.8 Can the Polarization Lemma for SDU be extended to any pair ofonstant thresholds 0 < � < � < 1?
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Chapter 8ConlusionIn this thesis, we have addressed a number of fundamental questions about statistial zero-knowledge proofs. Our main tools in this investigation were the two omplete problemsEntropy Differene and Statistial Differene. The entral role played by theseproblems in our study is a dramati illustration of the power of ompleteness as a positivetool.First, these omplete problems gave us a tight haraterization of the problems thatpossess statistial zero-knowledge proofs. Namely, we saw that the lass SZK an beidenti�ed with \approximate statistial properties of samplable distributions." Then theseomplete problems provided a starting point for understanding a number of importantaspets of statistial zero-knowledge proofs. Among the issues we addressed were eÆieny,losure properties, private oins vs. publi oins, honest veri�ers vs. heating veri�ers, andinterative vs. noninterative proofs. Although we managed to answer some of the basiquestions in these areas, a number of intriguing problems remain. We have desribed manyof these open problems in the relevant hapters, but there are a few worth highlighting here.EÆient SZK proof systems. In the ourse of this thesis, we have shown how to trans-form an arbitrary HVSZK proof system into one with various desirable additional prop-erties, suh as being zero knowledge versus heating veri�ers (Theorem 6.3.1), exhanginga onstant number of messages (Corollary 4.1.1), and using publi oins (Theorem 5.1.1).However, we do not know how to ahieve the onstant-message property together with ei-ther of the other two properties. In partiular, the following questions remain open (OpenProblems 6.5.6, 5.4.20, and 7.5.12):� Does every problem in HVSZK possess a onstant-message SZK proof system?� Does every problem in HVSZK possess a onstant-message publi-oin HVSZKproof system?� Does HVSZK = NISZK?Reall that a positive answer to the seond or third questions implies a positive answer tothe previous ones. 171



172 CHAPTER 8. CONCLUSIONExtending more tehniques to CZK. One broad researh projet is to extend moreof the tehniques developed here to other forms of zero-knowledge proofs, suh as om-putational zero-knowledge proofs and zero-knowledge \arguments" [BCC88℄ (whih we didnot disuss). In partiular, three questions about omputational zero knowledge stand out(Open Problems 4.7.5, 5.4.19, 6.5.4).� Can one exhibit a natural omplete problem for (honest-veri�er) omputational zeroknowledge? or at least give a nontrivial result suh as Proposition 4.7.3 withoutrestriting to publi oins?� Can private-oin (honest-veri�er) omputational zero-knowledge proofs be transformedinto publi-oin ones? (We showed how to do this for 3-message private-oin proofs.)� Does honest-veri�er omputational zero knowledge equal heating-veri�er omputa-tional zero knowledge? (We answered this question in the positive for the ase ofpubli-oin proofs.)Reall that it is only of interest to answer these questions unonditionally, as essentiallyeverything about omputational zero knowledge has been resolved under the assumptionthat one-way funtions exist.More omplete problems. Another general researh avenue is to exhibit additionalnatural omplete problems for SZK. In partiular, it would be very interesting to exhibit aombinatorial or number-theoreti omplete problem, suh as one of the problems of rypto-graphi interest known to be in SZK. While we have primarily used SZK-ompleteness asa positive tool, it also ould provide strong evidene of intratability, as SZK ontains manyproblems believed to be hard. Indeed, we are in need of alternatives toNP-ompleteness forhardness results, as there are important ases in whih it seems out of reah. For example,for most of the problems on whih modern ryptography is based, we would like to provehardness results, but NP-hardness is unlikely due to these problems lying in AM\o-AM(f., [Bra79, BHZ87, GG98a, GG98b℄). In ontrast, this does not rule out the possibility ofSZK-hardness, as SZK � AM \ o-AM.SZK vs. PZK. A �nal open problem is the relationship between statistial zero knowl-edge and perfet zero knowledge (Open Problem 4.6.14). In fat, it was this question, askedto us by Sha� Goldwasser, that started the researh in this thesis, and unfortunately the an-swer remains a mystery. For a number of years after zero-knowledge proofs were introdued,there were no natural examples of problems known to be in SZK but not known to be inPZK; now the omplete problems Statistial Differene and Entropy Differeneare examples of suh problems. On one hand, this may be regarded as evidene that thelasses are di�erent. On the other hand, the problem of proving that SZK = PZK is nowredued to giving a perfet zero-knowledge proof for either of the omplete problems.



Appendix ACherno� BoundsThe following useful bound shows that if one has n independent events, eah whih ourwith probability p, then roughly np of the events our with high probability.Theorem A.1 (Cherno� Bound [Che52℄) Suppose X1; : : : ;Xn are independent randomvariables suh that for all i, Pr [Xi = 1℄ = p and Pr [Xi = 0℄ = 1 � p. Let X = 1nPni=1Xi.Then for any Æ > 0, Pr [X � p+ Æ℄ � exp ��2nÆ2� ; andPr [X � p� Æ℄ � exp ��2nÆ2� :The following generalization of the Cherno� Bound to non-Boolean random variableswill also be useful to us.Theorem A.2 (Hoe�ding Inequality [Hoe63℄) Suppose X1; : : : ;Xn are independent ran-dom variables with mean �, taking values in the real interval [a; b℄, and X = 1nPni=1Xi.Then for any � > 0, Pr [X � �+�℄ � exp��2n�2(b� a)2� ; andPr [X � ���℄ � exp��2n�2(b� a)2� :A proof of this version of the Hoe�ding Inequality an be found in [Hof95, Se. 7.2℄,and the Cherno� Bound above an be obtained by setting a = 0, b = 1, � = Æ, and � = p.
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Appendix BHashing LemmasIn this appendix, we prove the two lemmas about 2-universal hash funtions that we used| Lemmas 5.4.10 and 6.4.5.B.1 Proof of Lemma 5.4.10In this setion, we prove the hashing lemma used to analyze the transformation from private-oin zero-knowledge proofs to publi-oin ones in Chapter 5. We restate the lemma here:Lemma B.1.1 (impliit in [Oka96℄) Let H be a 2-universal family of hash funtionsmapping a domain D to a range R and let 0 be any �xed element of R. Let Z be adistribution on D suh that with probability 1�Æ over z seleted aording to Z, Pr [Z = z℄ �"=jRj. Then the following two distributions have statistial di�erene at most 3(Æ + "1=3):(A) Choose h uniformly in H. Selet z aording to Z onditioned on h(z) = 0. Output(h; z).(B) Choose z aording to Z. Selet h uniformly in fh0 2 H : h(z) = 0g. Output (h; z).We denote the two distributions on pairs (h; z) in Lemma B.1.1 by A = (AH; AZ) andB = (BH; BZ). By the de�nition of statistial di�erene, it suÆes to show that for everyset S � H�D, Pr [A 2 S℄�Pr [B 2 S℄ � 3(Æ+ "1=3). In order to do this, we �rst will arguethat for \most" pairs (h; z), Pr [A = (h; z)℄ is not too muh greater than Pr [B = (h; z)℄.Observe that both distributions A and B only output pairs (h; z) suh that h(z) = 0. Now,for any (h; z) 2 H �D suh that h(z) = 0, we havePr [A = (h; z)℄ = Pr [AH = h℄ � Pr [AZ = zjAH = h℄= 1jHj � Pr [Z = z℄Pw2h�1(0) Pr [Z = w℄ ;and Pr [B = (h; z)℄ = Pr [BZ = z℄ � Pr [BH = hjBZ = z℄175



176 APPENDIX B. HASHING LEMMAS= Pr [Z = z℄ � 1jfh0 : h0(z) = 0gj= Pr [Z = z℄ � jRjjHj ;where the last equality follows from 2-universality.Thus, showing that Pr [A = (h; z)℄ is not too muh greater than Pr [B = (h; z)℄ for mostpairs (h; z) amounts to showing that for most h, Pw2h�1(0) Pr [Z = w℄ is not too muhsmaller than 1=jRj. In order to prove a lower bound on this sum (for most h), we restritthe sum to a slightly smaller set of w's. Let L = fw 2 D : Pr [Z = w℄ � "=jRjg, so byhypothesis, Pr [Z 2 L℄ = 1� Æ. For w 2 D and h 2 H, de�ne indiator funtions�w(h) = n 1 if h(w) = 00 otherwiseDe�ne f(h) =Pw2L Pr [Z = w℄ � �w(h). Thus,Xw2h�1(0)Pr [Z = w℄ = Xw2DPr [Z = w℄ � �w(h) � f(h)By 2-universality, for h seleted uniformly in H, the random variables f�w(h)gw2D eahhave mean 1=jRj and are pairwise independent. Thus,Eh [f(h)℄ = Xw2L Pr [Z = w℄jRj = 1� ÆjRjand Varh [f(h)℄ � Xw2L Pr [Z = w℄2jRj� Xw2L Pr [Z = w℄ � "jRj2� "jRj2By Chebyshev's Inequality,Prh "f(h)� 1� ÆjRj < �"1=3jRj # � Varh(f(h))("1=3=jRj)2 � "1=3:Let G = fh 2 H : f(h) � (1 � Æ � "1=3)=jRjg be the set \good" h's for whih f(h) isnot too muh smaller than 1=jRj. Then for every z 2 D and h 2 G,Pr [A = (h; z)℄ � Pr [Z = z℄jHj � jRj1� Æ � "1=3 = Pr [B = (h; z)℄1� Æ � "1=3 :



B.2. PROOF OF LEMMA 6.4.5 177Thus, for any S � H�D,Pr [A 2 S℄ � Pr [A 2 S and AH 2 G℄ + Pr [AH =2 G℄� Pr [B 2 S and BH 2 G℄1� Æ � "1=3 + "1=3� Pr [B 2 S℄ + Æ + "1=31� Æ � "1=3! � Pr [B 2 S℄ + "1=3� Pr [B 2 S℄ + 3(Æ + "1=3);(as long as Æ+"1=3 � 1=2, whih we may assume as otherwise the lemma is trivially satis�ed).This ompletes the proof.B.2 Proof of Lemma 6.4.5Here we provide a proof of the hashing lemma used to analyze the transformation fromhonest-veri�er zero-knowledge proofs to heating-veri�er zero-knowledge proofs. We restatethe lemma here:Lemma B.2.1 There exists a universal onstant  > 0, so that the following holds: LetH = H`;m be the family of aÆne-linear maps from D = f0; 1g` to R = f0; 1gm. Let S � Hbe suh that jSj � ÆjHj. Let " = jRj=jDj. ThenPart 1: The statistial di�erene between the following two distributions is at most ( �"1=Æ�):A = (AH; AX): Choose h S. Selet x h�1(0). Output (h; x).B = (BH; BX): Choose x D. Selet h S \Hx.1 Output (h; x).Part 2: For at least a 1� ( � "1=Æ�) fration of x 2 D,jS \HxjjHxj � 12 � jSjjHj � Æ2 :Proof: We de�ne a perfet hash funtion h 2 H to be one of the form h(x) = Ax + b,where the matrix A is full rank (and hene h is surjetive). Note that a straightforwardalulation shows that at most an " fration of the funtions in H are not perfet. We �rstestablish Part 1 of Lemma B.2.1 for the speial ase of perfet hash funtions.Sublemma B.2.2 Part 1 of Lemma B.2.1 holds when S ontains only perfet hash fun-tions.Proof: First, we onsider the relationship between distributions AX and BX .Claim B.2.3 StatDi� (AX ; BX) � 3"1=3=Æ.1Reall that Hx denotes fh 2 H : h(x) = 0g.



178 APPENDIX B. HASHING LEMMASProof of laim: Note BX is uniform over D. To establish the laim, it suÆesto show that for all C � D,����Pr [AX 2 C℄� jCjjDj ���� � 3"1=3Æ :Note ���Pr [AX 2 C℄� jCjjDj ��� = ���Pr [AX 2 (D n C)℄� jDnCjjDj ���, so it suÆes to onsidersets C suh that jCjjDj � 12 . From the de�nition of A, we observe:Pr [AX 2C℄ = 1jSjXh2S jh�1(0) \ Cjjh�1(0)j = 1jSjXh2S " � jh�1(0) \ Cjwhere the last equality is due to our assumption that every h 2 S is perfet,and hene jh�1(0)j = 1=".To analyze the expression above, whih refers to a sum over h 2 S, we �rstonsider the behaviour of the sum over all h 2 H. This will enable us to use the2-universality of H and Chebyshev's Inequality. Consider the probability spaeuniform over H, and de�ne, for every x 2 C, an indiator random variable:�x(h) = � 1 if h(x) = 00 otherwiseLet WC(h) = " � jh�1(0) \ Cj = " � Px2C �x(h). Sine H is a 2-universal familyof hash funtions, the �x's are pairwise independent with Prh2H[�x(h) = 1℄ =1=jRj = 1=(" � jDj). Thus,Eh2H[WC(h)℄ = " �Xx2C Eh2H[�x(h)℄ = " �Xx2C 1jRj = jCjjDj :Varh2H[WC(h)℄ = "2 �Xx2C Varh2H[�x(h)℄ = "2 �Xx2C 1jRj �1� 1jRj� < " � jCjjDj :By Chebyshev's Inequality,Prh2H �����WC(h)� jCjjDj ���� > "1=3 � jCjjDj� < Var[WC ℄�"1=3 � jCjjDj�2< "1=3jDjjCj � 2"1=3;where the last inequality is beause jCj � jDj=2. Sine jSj=jHj � Æ, we anapply the above to the probability spae uniform over S and onlude thatPrh2S �����WC(h)� jCjjDj ���� > "1=3 jCjjDj� < 2"1=3Æ :



B.2. PROOF OF LEMMA 6.4.5 179Reall that Pr [AX 2 C℄ = 1jSjXh2SWC(h):Hene, for all but at most 2"1=3Æ � jSj terms in the sum, ���WC(h)� jCjjDj ��� � "1=3 jCjjDj .Sine for every h it is true that 0 �WC(h) � 1, we have,����Pr [AX 2 C℄� jCjjDj ���� � "1=3 jCjjDj + 2"1=3Æ � 3"1=3Æ :And the laim is proved. 2We are now ready to omplete the proof of the sublemma. For all x 2 D and all h 2 Ssuh that h(x) = 0, we have, by Bayes' Law:Pr [AH = hjAX = x℄ = Pr [AX = xjAH = h℄ � Pr [AH = h℄Pr [AX = x℄= jh�1(0)j�1 � jSj�1Pr [AX = x℄ = " � jSj�1Pr [AX = x℄where the last step is beause for all perfet h, jh�1(0)j = 1=". Note that this value has nodependene on h. Hene, for every x, given AX = x, the distribution AH is uniform overfh 2 S : h(x) = 0g. Note that for all x, given BX = x, BH is also uniform over the sameset. Thus, onditioned on the value of x, the distributions AH and BH are idential.Hene StatDi� (A;B) = StatDi� (AX ; BX) � 3"1=3=Æ, and the sublemma is established.Before we argue Part 1 of Lemma B.2.1 in general, we will show how Part 2 follows fromSublemma B.2.2. In the sequel, it will be onvenient to introdue the following notation:For any subset I � H and x 2 D, we will write Ix to denote the set fh 2 I : h(x) = 0g.In order to apply Sublemma B.2.2, we will onsider the subset S0 � S of all perfet hashfuntions in S. Sine less than an " fration of all hash funtions are not perfet,jS0j � jSj � " � jHj � (1� "Æ )jSj � (Æ � ") � jHj:We de�ne the following two modi�ations of the distributions A and B, using S0 instead ofS:A0 = (A0H; A0X): Choose h S0. Selet x h�1(0). Output (h; x).B0 = (B0H; B0X): Choose x D. Selet h S0 \Hx. Output (h; x).The following laim establishes Part 2 of the Hashing Lemma:Claim B.2.4 Let �1 def= 3"1=3Æ�" . For at least a (1�p�1) fration of x 2 D; jSxjjHxj � Æ=2:Proof of laim: By the de�nition of A0X ,



180 APPENDIX B. HASHING LEMMASPr �A0X = x� = 1jS0j Xh2S0x 1jh�1(0)j = " � jS0xjjS0jwhere the last equality follows beause jh�1(0)j = 1=" for all h 2 S0. However,by the sublemma, StatDi� (A0X ; B0X) � �1. Note that B0X is uniform over D, sofor a (1�p�1) fration of x 2 D, it must be that" jS0xjjS0j = Pr �A0X = x� � (1�p�1) � 1jDj :Thus, jSxjjHxj � jS0xjjHxj � (1�p�1) � jS0j"jDj � jHxj = (1�p�1) � jS0jjHjwhere the last equality follows from " � jDj = jRj and jRj � jHxj = jHj. Using thefat that jS0jjHj � (1� "Æ ) � jSjjHj , we have, for a (1�p�1) fration of x 2 D,jSxjjHxj � (1�p�1) � (1� "Æ ) � Æ � Æ2 :Note that the �nal inequality follows beause we an safely assume that p�1 +"Æ < 12 . This is beause we an freely assume that  � "1=Æ� < 1, sine otherwisethe statement of the Hashing Lemma beomes trivially satis�ed. Sine p�1 + "Æis upper bounded by k � "1=kÆ�k for some onstant k, our assumption an bemade to imply that p�1 + "Æ < 12 by hoosing  > 2k. 2Finally, we establish Part 1 of the Hashing Lemma in general by showing that thepresene of imperfet hash funtions will not disturb our omputations. First, sine jS0j �(1 � "Æ ) � jSj, the statistial di�erene between A and A0 an be at most "=Æ. To see thatthe statistial di�erene between B0 and B is suÆiently small, it suÆes to show thatfor almost all x, the probability that BH outputs an imperfet hash funtion, given thatBX = x, is small. First we argue:Claim B.2.5 For every x 2 D; Prh2Hx[h is imperfet℄ � ".Proof of laim: Observe that for any x 2 D, Hx onsists exatly of thosefuntions h(y) = Ay + b where b = �Ax. Thus, there is exatly one funtionin Hx for every matrix A. Hene, the fration of imperfet funtions in Hx ispreisely the fration of matries A that do not have full rank, whih is at most". 2For any x 2 D, the probability that BH outputs an imperfet hash funtion given thatBX = x is Prh2Sx[h is imperfet℄ � Prh2Hx[h is imperfet℄ � jHxjjSxj :Using Claim B.2.4 and Claim B.2.5 above, we have that for at least a (1�p�1) fration ofx 2 D, this probability is at most �2def= "�(2=Æ). Thus, StatDi� (B;B0) � (1�p�1)��2+p�1 �



B.2. PROOF OF LEMMA 6.4.5 181�2+p�1. We have already observed that StatDi� (A0; A) � "Æ , and Sublemma B.2.2 showedthat StatDi� (B0; A0) � �1. Hene StatDi� (A;B) � �1 + "Æ + �2 + p�1, and the HashingLemma is established.
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