
A Sample of Samplers:A Computational Perspective on SamplingOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.Email: oded@wisdom.weizmann.ac.ilMay 26, 1997AbstractWe consider the problem of estimating the average of a huge set of values. That is, givenoracle access to an arbitrary function f : f0; 1gn 7! [0; 1], we need to estimate 2�nPx2f0;1gn f(x)upto an additive error of �. We are allowed to employ a randomized algorithm which may errwith probability at most �.We survey known algorithms for this problem and focus on the ideas underlying their con-struction. In particular, we present an algorithm which makes O(��2 � log(1=�)) queries and usesn+O(log(1=�))+O(log(1=�)) coin tosses, both complexities being very close to the correspondinglower bounds.
Keywords: Sampling, randomness complexity, saving randomness, pairwise independent randomvariables, Expander graphs, random walks on graphs, lower bounds.0

1 IntroductionIn many settings repeated sampling is used to estimate the average value of a huge set of values.Namely, there is a value function � de�ned over a huge space, say � : f0; 1gn 7! [0; 1], and onewishes to approximate �� def= 12n Px2f0;1gn �(x) without having to inspect the value of � on the entiredomain. We comment that it is essential to have the range of � be bounded (or else no reasonableapproximation may be possible). Our convention of having [0; 1] be the range of � is adopted forsimplicity, and the problem for other (predetermined) ranges can be treated analogously.1.1 Formal SettingOur notion of approximation depends on two parameters: accuracy (denoted �) and error probability(denoted �). We wish to have an algorithm which with probability at least 1� �, gets within � ofthe correct value. This leads to the following de�nition.De�nition 1.1 (sampler): A sampler is a randomized algorithm that on input parameters n (length),� (accuracy) and � (error), and oracle access to any function � :f0; 1gn 7! [0; 1], outputs, with prob-ability at least 1� �, a value that is at most � away from �� def= 12n Px2f0;1gn �(x). Namely,Pr(jsampler�(n; �; �)� �� j > �) < �where the probability is taken over the internal coin tosses of the sampler.We are interested in \the complexity of sampling" quanti�ed as a function of the parameters n, �and �. Speci�cally, we will consider three complexity measures1. Sample Complexity: the number of oracle queries made by the sampler.2. Randomness Complexity: the number of (unbiased) coin tosses performed by the sampler.3. Computational Complexity: the running-time of the sampler. We say that a sample is e�cientif its running-time is polynomial in the total length of its queries (i.e., polynomial in both itssample complexity and in n).We will focus on e�cient samplers. Furthermore, we will focus on e�cient samplers which haveoptimal (upto a constant factor) sample complexity, and will be interested in having the randomnesscomplexity be as low as possible.1.2 OverviewThe straightforwardmethod (or the naive sampler) consists of uniformly and independently selectingsu�ciently many sample points (queries), and outputting the average value of the function on thesepoints. Using Cherno� Bound one easily determines that O(log(1=�)�2) sample points su�ce. Thenaive sampler is optimal (upto a constant factor) in its sample complexity, but is quite wasteful inrandomness. In Section 2, we discuss the naive sampler and present lower (and upper) bounds onthe sample and randomness complexities of samplers. These will guide our quest for improvements.Pairwise-independent sampling yields a great saving in the randomness complexity. In Sec-tion 3 we present the Pairwise-Independent Sampler, and discuss its advantages and disadvantages.Speci�cally, for constant � > 0, the Pairwise-Independent Sampler is optimal upto a constant factor1

in both its sample and randomness complexities. However, for small � (i.e., � = o(1)), its samplecomplexity is wasteful.A new idea is required for going further, and a relevant tool { random walks on expander graphs(see Appendix A) { is needed too. In Section 4, we combine the Pairwise-Independent Samplerwith the Expander Random Walk Technique to obtain a new sampler. Loosely speaking, the newsampler uses a random walk on an expander to generate a sequence of ` def= O(log(1=�)) (related)random pads for ` invocations of the Pairwise-Independent Sampler. Each of these invocationsreturns an �-close approximation with probability at least 0:9. The expander walk technique yieldsthat, with probability at least 1 � exp(�`) = 1 � �, most of these ` invocations return an �-close approximation. Thus, the median value is an (�; �)-approximation to the correct value. Theresulting sampler, called the Median-of-Averages Sampler, has sample complexity O(log(1=�)�2) andrandomness complexity 2n+ O(log(1=�)).In Section 5, we present an alternative sampler which improves over the pairwise-independentsampler. Maintaining the sample complexity of the latter (i.e., O(1=��2)), the new sampler hasrandomness complexity n + O(log(1=��)) (rather than 2n). Combining this new sampler withthe Expander Random Walk Technique, we obtain sample complexity O(log(1=�)�2) and randomnesscomplexity n + O(log(1=�)) + O(log(1=�)). Better bounds are obtained for the case of \Booleansamplers" (i.e., algorithms which must only well-approximate Boolean functions). In addition, inSection 5 we present two general techniques for re�ning samplers.We conclude with some open problems. In particular, we discuss the notion of \oblivious" (or\averaging") samplers.The Hitting Problem is considered in Appendix C. Here, given an oracle to a function havingat least an � fraction of 1's, one is required to �nd an input which evaluates to 1. Clearly, eachsampler can be used for this purpose, but this is an over-kill. Nevertheless, all results and techniquesfor samplers (presented in this survey) have simpler analogies for the hitting problem. Thus,Appendix C can be read as a warm-up towards the rest of the survey.2 The Information Theoretic PerspectiveThe Naive Sampler, presented below, corresponds to the information theoretical (or statistician)perspective of the problem. We augment it by a lower bound on the sampling complexity ofsamplers which is in the spirit of these areas. We conclude with lower and upper bounds on therandomness complexity of samplers: The latter lower bound is information theoretic in nature butrepresents a concern which is more common in computer science.2.1 The Naive SamplerThe straightforward sampling method consists of randomly selecting a small sample set S andoutputting 1jSjPx2S �(x) as an estimate to ��. More accurately, we select m independently anduniformly distributed strings in f0; 1gn, denoted s1; :::; sm, and output 1m Pi=1 �(si) as our estimate.Setting m = 1+ln(1=�)2�2 , we refer to this procedure as to the Naive Sampler.To analyze the performance of the Naive Sampler, we use the Cherno� Bound. Speci�cally, wede�ne m independent random variables, denoted �1; :::; �m, such that �i def= �(si), where the si's are2

independently and uniformly distributed in f0; 1gn. By Cherno� Bound:Pr ������� � 1m mXi=1 �i����� > �! � 2 exp ��2�2m� (1)< � (2)where Eq. (2) is due to m = (1 + ln(1=�))=(2�2). Observing that 1m Pmi=1 �i represents the esti-mate output by the Naive Sampler, we have established that the Naive Sampler indeed satis�esDe�nition 1.1 (i.e., is indeed a sampler). We now consider the complexity of the Naive Sampler� Sample Complexity: m def= 1+ln(1=�)2�2 = �(log(1=�)�2).� Randomness Complexity: m � n = �(log(1=�)�2 � n).� Computational Complexity: indeed e�cient.In light of Theorem 2.1 (below), the sample complexity of the Naive Sampler is optimal upto aconstant factor. However, as we will shortly see, it is extremely wasteful in its usage of randomness.In fact, the rest of this survey is devoted to presents ways for redeeming the latter aspect.2.2 A Sample Complexity Lower BoundWe �rst assert that the Naive Sampler is quite good as far as sample complexity is concerned. Thefollowing theorem is analogous to many results known in statistics, though we are not aware of aprior reference where it can be found.Theorem 2.1 [10]: Any sampler has sample complexity bounded below bymin�2(n�4)=2; ln(1=O(�))4�2 �provided � � 18 and � � 16 .Note that a (constant factor) gap remains between the lower bound asserted here and the upperbound established by the Naive Sampler. We conjecture that the lower bound can be improved.Motivated by the lower bound, we say that a sampler is sample-optimal if its sample complexity isO(log(1=�)�2).2.3 Randomness Complexity Lower and Upper BoundsWe �rst assert that the Naive Sampler is quite bad as far as randomness complexity is concerned.First evidence towards our claim is provided by a non-explicit (and so ine�cient) sampler:Theorem 2.2 [10]: There exists a (non-e�cient) sampler with sample complexity 1+ln(1=�)2�2 andrandomness complexity n + 2 log2(2=�) + log2 log2(1=�).The proof is by a probabilistic argument which, given the Naive Sampler, asserts the existence ofa relatively small set of possible coin tosses under which this sampler behaves almost as under allpossible coin tosses (with respect to any possible function �). Actually, the randomness bound canbe improved to n+log2(1=�)� log2 log2(1=�) while using a constant factor larger sample complexityand more sophisticated techniques [27]. More generally,3

Theorem 2.3 [27]: For every function s : [0; 1]2 7! R such that s(�; �) � 2 log2(1=�)�2 , there exists a(non-e�cient) sampler with sample complexity s(�; �) and randomness complexityn + log2(1=�) + 2 log2(4=�)� log2 s(�; �)This gets us very close to the following lower boundTheorem 2.4 [10]: Let s : N � [0; 1]2 7! R. Any sampler which has sample complexity boundedabove by s(n; �; �), has randomness complexity bounded below byn+ log2(1=�)� log2 s(n; �; �)� log2(1� 2�)�1 � 2provided �; � < 0:5 and s(n; �; �) � 2n�1.The dependency of the lower bound on the sample complexity should not come as a surprise.After all, there exist a deterministic sampler which just queries the function on the entire domain.Furthermore, the upper bound of Theorem 2.3 does express a similar trade-o� between randomnesscomplexity and sample complexity. Similarly, one should not be surprised at the e�ect of 1� 2� onthe bound: For example, when � = 0:5, a sample may merely output ~� = 12 as its estimate and bewithin � of the average of any function � : f0; 1gn 7! [0; 1].Using Theorem 2.4, we obtain a lower bound on the randomness complexity of any sample-optimal sampler:Corollary 2.5 [10]: Any sampler which has sample complexity O(log(1=�)�2), has randomness com-plexity bounded below by n+ (1� o(1)) � log2(1=�)� 2 log2(1=�)provided �; � < 0:4 and log(1=�)�2 = o(2n).The exact bound is n + log2(1=�)� 2 log2(1=�)� log2 log2(1=�)� O(1).3 The Pairwise-Independent SamplerTo motivate the Pairwise-Independent Sampler, let us confront two well-known central limit the-orems: Cherno� Bound which refers to totally independent random variables and Chebishev's In-equality which refers to pairwise-independent random variablesCherno� Bound: Let �1; :::; �m be totally independent random variables, each ranging in [0; 1]and having expected value �. Then,Pr ������� 1m mXi=1 �i����� > �! � 2 exp ��2�2m�Chebishev's Inequality: Let �1; :::; �m be pairwise-independent random variables, each rangingin [0; 1] and having expected value �. Then,Pr ������ � 1m mXi=1 �i����� > �! � 14�2m4

Our conclusion is that these two bounds essentially agree when m = O(1=�2). That is, in bothcases �(1=�2) identical random variables are necessary and su�cient to guarantee a concentrationwithin � with constant probability. Thus, if this is what we want then there is no point in usingthe more sophisticated Cherno� Bound which requires more of the random variables.In the context of sampling, our conclusion is that for achieving an approximation to within �accuracy with constant error probability, using O(1=�2) pairwise-independent random sample pointsis as good as using O(1=�2) totally independent random sample points. Furthermore, in the �rstcase we may be save a lot in terms of randomness.The Pairwise-Independent Sampler [13]: On input parameters n, � and �, set m def= 14�2�and generate a sequence of m pairwise-independently and uniformly distributed strings in f0; 1gn,denoted s1; :::; sm. Using the oracle access to �, output 1m Pi=1 �(si) as the estimate to �� . UsingChebishev's Inequality, one can easily see that the Pairwise-Independent Sampler indeed satis�esDe�nition 1.1 (i.e., is indeed a sampler).There are two di�erences between the Naive Sampler and the Pairwise-Independent Sampler.Whereas the former uses independently selected sample points, the latter uses a sequence of pairwiseindependent sample points. As we'll see below, this allows the latter sampler to use much lessrandomness. On the other hand, the Naive Sampler uses O(log(1=�)�2) samples (which is optimal uptoa constant factor), whereas the Pairwise-Independent Sampler uses O(1�2�) samples. However, forconstant �, both samplers use essentially the same number of sample points. Thus, for constant �,the Pairwise-Independent Sampler o�ers a saving in randomness while being sample-optimal.Generating a Pairwise-Independent sequence: Whereas generating m totally independentrandom points in f0; 1gn requires m �n unbiased coin ips, one can generate t pairwise-independentrandom points using only O(n) unbiased coin ips. We present two well-known ways of doing this.1. Linear functions over �nite �elds: We associate f0; 1gn with the �nite �eld F def= GF(2n). Let�1; :::; �m be m � jF j distinct elements of F . To generate a (pairwise-independent) sequenceof length m, we uniformly and independently selects s; r 2 F , and let the ith element in thesequence be ei def= r+�is (where the arithmetic is that of F). The analysis of this construction\reduces" the stochastic independence of ei and ej to the linear independence of the vectors(1 ; �i) and (1 ; �j): For every i 6= j and every a; b 2 F , we havePrr;s (ei = a ^ ej = b) = Prr;s 1 �i1 �j ! rs ! = ab !!= Prr;s0@ rs ! = 1 �i1 �j !�1 ab !1A= 1jF j2Only 2n random coins are required in this construction, but the drawback is that we need arepresentation of the �eld F (i.e., an irreducible polynomial of degree n over GF(2)) which isnot easy to �nd.11 Things are not better if we wish to work with a large �eld of prime cardinality; since we need to �nd such aprime. 5

2. Toeplitz matrices: To avoid problems with non-trivial representation, one may use the followingconstruction (which is Levin's favorite). We associate f0; 1gn with the n-dimensional vectorspace over GF(2). Let v1; :::; vm be m � 2n distinct vectors in this vector space. A Toeplitzmatrix is a matrix with all diagonals being homogeneous; that is, T = (ti;j) is a Toeplitzmatrix if ti;j = ti+1;j+1, for all i; j. Note that a Toeplitz matrix is determined by its �rst rowand �rst column (i.e., the values of t1;j's and ti;1's). To generate a (pairwise-independent)sequence of length m, we uniformly and independently select an n-by-n Toeplitz matrix, T ,and an n-dimensional vector u. We let the ith element in the sequence be ei def= Tvi + u(where the arithmetic is that of the vector space). The analysis of this construction is givenin Appendix B. Here, we merely note that 3n� 1 random coins su�ce for this construction,Plugging-in either of these constructions, we obtain the following complexities for the Pairwise-Independent Sampler� Sample Complexity: 14��2 .� Randomness Complexity: 2n or 3n� 1, depending on which of the constructions is used.� Computational Complexity: indeed e�cient.We note that for constant �, the sample and randomness complexities match the lower bounds uptoa constant factor. However, as � decreases, the sample complexity of the Pairwise-IndependentSampler increases faster than the corresponding complexity of the Naive Sampler. Redeeming thisstate of a�airs is our next goal.4 The combined Median-of-Averages SamplerOur goal here is to decrease the sample complexity of the Pairwise-Independent Sampler whileessentially maintaining its randomness complexity. To motivate the new construction we �rstconsider an oversimpli�ed version of it.Median-of-Averages Sampler (oversimpli�ed): On input parameters n, � and �, set m def=�(1�2) and ` def= �(log(1=�)), generate ` independent m-element sequences, each being a sequenceof m pairwise-independently and uniformly distributed strings in f0; 1gn. Denote the sample pointsin the ith sequence by si1; :::; sim. Using the oracle access to �, compute ~�i def= 1m Pmj=1 �(sij), fori = 1; :::; `, and output the median value among these ~�i's. Using Chebishev's Inequality (as inprevious section), we have for each i Pr(j~�i � �� j > �) < 0:1and so Pr(jfi : j~�i � ��j > �gj) < X̀j=`=2 j̀! � 0:1j � 0:9`�j< 2` � 0:1`=2� �where the last inequality is due to the choice of `. Thus, the oversimpli�ed version described aboveis indeed a sampler and has the following complexities6

� Sample Complexity: ` �m = O(log(1=�)�2).� Randomness Complexity: ` �O(n) = O(n � log(1=�)).� Computational Complexity: indeed e�cient.Thus, the sample complexity is optimal (upto a constant factor), but the randomness complexityis higher than what we aim for. To reduce the randomness complexity, we use the same approachas above, but take dependent (pairwise independent) sequences rather than independent ones. Thedependency we use is such which essentially preserves the probabilistic behavior of independentchoices. Speci�cally, we use random walks on expander graphs (cf., Appendix A) to generate asequence of ` \seeds" each of length O(n). Each seed is used to generate a sequence of m pairwiseindependent elements in f0; 1gn, as above.Theorem 4.1 (general median-composition [7]): Suppose we are given an e�cient sampler ofsample complexity s(n; �; �) and randomness complexity r(n; �; �). Then,1. there exists an e�cient sampler with sample complexity O(s(n; �; 0:01) � log(1=�)) and ran-domness complexity r(n; �; 0:01)+O(log(1=�)).2. for any c > 4, there exists an � > 0 and an e�cient sampler with sample complexityO(s(n; �; �) � log(1=�)) and randomness complexity r(n; �; �) + c � log2(1=�).Proof: For Item 1, let r def= r(n; �; 0:01). We use an explicit construction of expander graphs withvertex set f0; 1gr, degree d and second eigenvalue � so that �=d < 0:1. We consider a random walkof (edge) length `� 1 = O(log(1=�)) on this expander, and use each of the ` vertices along the pathas random coins for the given sampler. Thus, we obtain ` estimates to �� and output the medianvalue as the estimate of the new sampler. To analyze the performance of the resulting sampler, welet W denote the set of coin tosses (for the basic sampler) which make the basic sampler outputan estimate which is �-far from the correct value (i.e., ��). By the hypothesis, jW j2r � 0:01, and usingTheorem A.5, the probability that at least `=2 vertices of the path reside in W is bounded aboveby X̀j=`=2 j̀! � 0:2j < 2` � 0:2`=2� �Note that we have used ` � s(n; �; 0:01) samples and r+(`� 1) � log2 d = r+O(log(1=�)) coin tosses.Item 1 follows.Item 2 is proven using the same argument but using Ramanujan Graphs and slightly more care.Speci�cally, we use Ramanujan graphs (i.e., expanders with � � 2pd� 1) with vertex set f0; 1gr,where r def= r(n; �; �) and � = (�d)2. Repeating the above argument, with `�1 = 2 log2(1=�)log2(�=8) , we obtainan e�cient sampler which uses `�s(n; �; �) samples and r+(`�1)�log2 d = r+(4+ 16(log2 d)�8)�log2(1=�)coin tosses. Item 2 follows.Combining the Pairwise-Independent Sampler with Theorem 4.1, we getCorollary 4.2 (The Median-of-Averages Sampler [7]): There exists an e�cient sampler with� Sample Complexity: O(log(1=�)�2). 7

� Randomness Complexity: O(n+ log(1=�)).Furthermore, we can obtain randomness complexity 2n+ (4 + o(1)) � log2(1=�)).In the next section, we further reduce the randomness complexity of samplers to n+O(log(1=�) +log(1=�)), while maintaining the sample complexity (up-to a multiplicative constant).5 The Expander Sampler and two Generic TechniquesThe main result of this section isTheorem 5.1 [7, 17]: There exists an e�cient sampler which has� Sample Complexity: O(log(1=�)�2).� Randomness Complexity: n + log2(1=�) +O(log(1=�)).The theorem is proven by applying Theorem 4.1 to a new e�cient sampler which makes O(1��2)oracle queries and tosses n+ log2(1=�) coins. We start by presenting a sampler for the special caseof Boolean functions.De�nition 5.2 (Boolean sampler): A Boolean sampler is a randomized algorithm that on inputparameters n, � and �, and oracle access to any Boolean function � :f0; 1gn 7!f0; 1g, outputs, withprobability at least 1� �, a value that is at most � away from �� def= 12n Px2f0;1gn �(x). Namely,Pr(jsampler�(n; �; �)� �� j > �) < �where the probability is taken over the internal coin tosses of the sampler.That is, unlike (general) samplers, a Boolean Sampler is required to work well only when givenaccess to a Boolean function. The rest of this section is organized as follows:Subsection 5.1: The Expander Sampler { a Boolean sampler using Ramanujan Graphs.Subsection 5.2: From Boolean samplers to general ones.Subsection 5.3: The Expander Sampler, revisited. Here we use an arbitrary expander and ageneric composition of samplers.Theorem 5.1 is proven by combining the ideas of Subsections 5.1 and 5.2. An alternative proof ofa somewhat weaker result is obtained by combining the ideas of Subsections 5.1 and 5.3.5.1 A Sampler for the Boolean CaseWe start by presenting a sampler for the special case of Boolean functions. Our sampling procedureis exactly the one suggested by Karp, Pippinger and Sipser for hitting a witness set [20] (cf.,Appendix C), yet the analysis is somewhat more involved. Furthermore, to get an algorithm whichsamples the universe only on O(1=��2) points, it is crucial to use a Ramanujan graph in role of theexpander in the Karp-Pippinger-Sipser method. 8

The sampler. We use an expander of degree d = 4=��2 second eigenvalue bounded by � andassociate the vertex set of the expander with f0; 1gn. The sampler consists of uniformly selectinga vertex, v, (of the expander) and averaging over the values assigned (by �) to all the neighbors ofv; namely, the algorithm outputs the estimate~� def= 1d Xu2N (v) �(u)where N (v) denotes the set of neighbors of vertex v. The algorithm has� Sample Complexity: O(1��2).� Randomness Complexity: n.� Computational Complexity: polynomial in n, ��1 and ��1.Lemma 5.3 [17]: The above algorithm constitutes an e�cient Boolean sampler.Proof: We denote by B the set of bad choices for the algorithm; namely, the set of vertices thatonce selected by the algorithm yield a wrong estimate. That is, v 2 B if������1d Xu2N (v) �(u)� �������� > �Denote by B0 the subset of v 2 B for which1d Xu2N (v) �(u) > �� + � (3)It follows that each v 2 B0 has �d too many neighbors in the set A def= fu : �(u)=1g; namely,jfu2N (v) : u2Agj > (�(A) + �) � d (4)where �(A) def= jAjN and N def= 2n. Using the Expander Mixing Lemma (Lemma A.3) ones gets that� � �(B0) = ���� jB0j � (�(A) + �)ddN � �(B0) � �(A)����� ���� j(B0 �A) \ EjjEj � jAjjV j � jB0jjV j ����� �d �q�(A) � �(B0)Thus, �(B0) � � �d��2 � �(A) (5)Using � � 2pd and d = 4��2 , we get �(B0) � � � �(A). Using a similar argument, we can show that�(B nB0) � � � (1� �(A)). Thus, �(B) � � and the claim follows.Comment 5.4 [17]: Observe that if we were to use an arbitrary d-regular graph with second eigen-value � then the above proof would hold provided that�d � p��22 (6)This would have yield an e�cient Boolean sampler with sample complexity d and randomnesscomplexity n. 9

5.2 From Boolean Samplers to General SamplersThe following generic transformation was suggested to us by Luca Trevisan.Theorem 5.5 (Boolean samplers imply general ones): Suppose we are given an e�cient Booleansampler of sample complexity s(n; �; �) and randomness complexity r(n; �; �). Then, there existsan e�cient sampler with sample complexity s(n + log2(1=�); �=2; �) and randomness complexityr(n+ log2(1=�); �=2; �).Proof: As a mental experiment, given an arbitrary function � :f0; 1gn 7! [0; 1], we de�ne a Booleanfunction � : f0; 1gn+` 7! [0; 1], where ` def= log2(1=�), as follows: For i = 1; :::; ��1, �(x; i) def= 1 if andonly if �(x) < (i� 0:5) � �. Then, j�(x)� � �P1=�i=1 �(x; i)j < �=2. Thus, if we were to sample � andobtain an �=2-approximation of �� then we get an �-approximation of �� . Now, although we don'thave actual access to � we can emulate its answers given an oracle to �.Given a Boolean sampler, B, we construct a general sampler, A, as follows. On input n; �; �and access to an arbitrary � as above, algorithm A sets n0 = n+ `, �0 = �=2, and �0 = �, and invokeB on input n0; �0; �0. When B makes a query (x; i) 2 f0; 1gn� f0; 1g`, algorithm A queries for �(x)and returns 1 if and only if �(x) < (i� 0:5) � �. When B halts with output v, A does the same. Thetheorem follows.As a corollary to the above, we getCorollary 5.6 There exists an e�cient sampler which has� Sample Complexity: O(1��2).� Randomness Complexity: n + log2(1=�).Theorem 5.1 follows by combining Corollary 5.6 with Theorem 4.1.5.3 The Expander Sampler, RevisitedUsing an arbitrary expander graph (with d = poly(1=��) and �d < p��22) and invoking Comment 5.4,we have an e�cient Boolean sampler with sample complexity poly(1=��) and randomness complexityn. Using Theorem 5.5, we getCorollary 5.7 There exists an e�cient sampler with sample complexity poly(1=��) and random-ness complexity n+ log2(1=�).To derive (a weaker form of) Theorem 5.1 via the above sampler, we �rst need to reduce its samplecomplexity. This is done via the following general transformation. We say that a sampler is of theaveraging type if its output is the average value obtained on its queries which are determined as afunction of its own coin tosses (independently of the answers obtained on previous queries).Theorem 5.8 (reducing sample complexity): Suppose we are given two e�cient samplers so thatthe ith sampler has sample complexity si(n; �; �) and randomness complexity ri(n; �; �). Furthersuppose that the �rst sampler is of the averaging type. Then, there exists an e�cient samplerwith sample complexity s2(log2 s1(n; �=2; �=2); �=2; �=2) and randomness complexity r1(n; �=2; �=2)+r2(log2 s1(n; �=2; �=2); �=2; �=2). 10

Proof: We compose the two samplers as follows. Setting m def= s1(n; �=2; �=2), we invoke the�rst sampler and determine the m queries it would have asked (given a particular choice of itscoins).2 We then use the second sampler to sample these m queries (invoking it with parameterslog2m; �=2 and �=2). That is, we let the second sampler make virtual queries into the domain[m] def= f1; :::; mg and answer a query q 2 [m] by the value of the function at the ith query speci�edby the �rst sampler. That is, given access to a function � : f0; 1gn 7! [0; 1], and determining asequence r of coins for the �rst sampler, we consider the function �r : [m] 7! [0; 1] de�ned by letting�r(i) = �(qr;i) where qr;i is the ith query made by the �rst sampler on coins r. We run the secondsampler providing it virtual access to the function �r in the obvious manner, and output its output.Thus, the complexities are as claimed and the combined sampler errs if either j��� 1m Pmi=1 �(qr;i)j > �2or j 1m Pmi=1 �(qr;i) � ~�r j > �=2, where ~�r is the estimate output by the second sampler when givenvirtual access to �r . Observing that the �rst event means that the �rst sampler errs (here we usethe hypothesis that this sampler is averaging) and that the second event means that the secondsampler errs (here we use Pmi=1 �(qr;i) = ��r), we are done.Note that the sampler used to establish Corollary 5.7 is of the averaging type. Combining thissample with the Pairwise-Independent Sampler, via Theorem 5.8, we obtainCorollary 5.9 There exists an e�cient sampler which has� Sample Complexity: O(1��2).� Randomness Complexity: n +O(log(1=�)) + O(log(1=�)).A weaker form of Theorem 5.1 (i.e., O(log(1=�) rather than log2(1=�) term) follows by combiningCorollary 5.9 with Theorem 4.1.6 Conclusions and Open ProblemsThe main results are summarized in Figure 1. The �rst row tabulates
(��2 log(1=�)) as a lowerbound on sample complexity and the subsequent three rows refer to sample-optimal samplers (i.e.,samplers of sample complexity O(��2 log(1=�))). The last row refers to a sampler (cf., Thm. 6.1below) which, for � < 2�n=O(1), has randomness complexity closer to the lower bound. However,this sampler is not sample-optimal.The randomness complexity of sample-optimal samplers: A closer look at the randomnesscomplexity of sample-optimal samplers is provided in Figure 2. The �rst two rows tabulate lowerand upper bounds which are 2 log2(1=�) = O(1) apart. Our conjecture is that the lower boundcan be improved to match the upper bound. The e�cient samplers use at least n + 4 log2(1=�)coins, where one factor of 2 is due to the use of expanders and the other to the \median-of-averagesparadigm". As long as we stick to using expanders in the Median-of-Averages Sampler, there is nohope to reduce the �rst factor which is due to the relation between the expander degree and itssecond eigenvalue. Actually, achieving a factor of 4 rather than a bigger factor is due to the use ofRamanujan Graphs (which have the best possible such relation).2 Here we use the hypothesis that the �rst sampler is non-adaptive; that is, its queries are determined by its cointosses (independently of the answers obtained on previous queries).11

sample complexity randomness complexity pointerlower bound
(log(1=�)�2) Thm. 2.1lower bound for O(log(1=�)�2) n+ (1� o(1)) � log2(1=�)� 2 log2(1=�) Cor. 2.5upper bound O(log(1=�)�2) n+ log2(1=�) Thm. 2.3algorithm O(log(1=�)�2) n+O(log(1=�)) + log2(1=�) Thm. 5.1algorithm poly(n; ��1; log(1=�)) (1 + �)(n+ log(1=�)), 8� > 0 Thm. 6.1Figure 1: Summary of results.lower bound (even for Boolean) n+ log2(1=�)� 2 log2(1=�)� log2 log2(1=�)�O(1)upper bound n+ log2(1=�)� log2 log2(1=�)e�cient samplers n+ (4 + �) log2(1=�) + log2(1=�), for any � > 0e�cient Boolean samplers n+ (4 + �) log2(1=�), for any � > 0Figure 2: The randomness complexity of samplers which make �(log(1=�)�2) queries.Boolean Samplers vs general ones: Another fact presented in Figure 2 is that we can currentlydo better if we are guaranteed that the oracle function is Boolean (rather than mapping to theinterval [0; 1]). We stress that the lower bound holds also with respect to samplers which need onlyto work for Boolean functions.Adaptive vs non-adaptive: All known samplers are non-adaptive; that it, they determine thesample points (queries) as a function of their coin tosses. More general, adaptive samplers maydetermine the next query depending on the value of the function on previous queries. Intuitively,adaptivity should not help the sampler. Indeed, all lower bound refer also to adaptive samplersand so, in conjunction with the upper bound which only utilize non-adaptive samplers, indicatethat the di�erence between adaptive samplers and non-adaptive ones can not be signi�cant. Yet,it will be nice to have a direct and more tight proof of the above intuition.Averaging (or Oblivious) Samplers: A special type of non-adaptive samplers are ones whichoutput the average value of the function over their sample points. Such samplers were �rst de-�ned in [9] and called \oblivious". We prefer the term averaging. Averaging samplers have someapplications not o�ered by arbitrary non-adaptive samplers (cf., [9] and [25]). More importantly,averaging samplers are very appealing since averaging over a sample seem the natural thing to do.Furthermore, as pointed out in [27], averaging samplers are related to dispersers and to random-ness extractors. Note that the Naive Sampler, the Pairwise-Independent Sampler and the ExpanderSampler are all averaging samplers although they di�er in the way they generate their sample. How-ever, the Median-of-Averages Sampler, as its name indicates, is not an averaging sampler. Thus,to obtain an averaging sampler having relatively low sample and randomness complexities, analternative approach is required. The best know result in this direction is:Theorem 6.1 [27]: For every � > 0, there exists an e�cient averaging sampler with samplecomplexity poly(n; ��1; log(1=�)) and randomness complexity (1 + �)(n+ log(1=�)).We stress that this sampler is not sample-optimal (i.e., the polynomial in ��1 is of quite highdegree). It would be interesting to obtain a sample-optimal averaging sampler of low randomnesscomplexity, say, one which uses O(n+ log(1=�)) coins.12

Sampling with weak sources: So far our discussion presupposed that a randomized algo-rithm has at its disposal a uniformly selected string of certain length (which may be consideredthe outcome of its internal coin tosses). A question which has received a lot of attention in thelast decade is whether algorithms can be transformed into robust counterparts which may workgiven also \weak random sources" (cf., e.g., [26]). Following [12], we call a random variable Xa (`;m)-source if its support is a subset of f0; 1g` and no string in its support is assigned prob-ability mass greater than 2�m. That is, m is a lower bound on the min-entropy of X de�nedas min�2f0;1g`f� log2(Prob(X = �))g. A recent result [6] states that any BPP-algorithm can beconverted to work with very weak sources. Speci�cally, for any > 0, there exists a robust BPP-algorithm working with any (`; `)-source. More generally,Theorem 6.2 [6]: For every > 0 and �, there exists a polynomial p and a deterministic algorithmwhich for any n; � and any (p(n=�); p(n=�))-source X, given input (n; �;X) and access to any oracle� : f0; 1gn 7! [0; 1], runs in time poly(n=�) and outputs a value ~� so thatPr(j~� � ��j > �) < 2�n�AcknowledgmentsI would like to thank Noga Alon, Nabil Kahale, and Luca Trevisan for useful discussions.DedicationThe idea of writing this survey has �rst occurred to me when �nding out that a brilliant, youngresearcher who works in very related areas was unaware of the Median-of-Averages Sampler. It hasthen occurred to me that many of the results presented above have appeared in papers devotedto other (more speci�c) subjects and have thus escaped the attention of a wider community whichmight have cared to know about them. Thus, I've decided to try to redeem the situation and itseems fair to dedicate my attempt to this researcher:Forasmuch as many have taken in hand to set forth in order a declaration of thosethings which are most surely believed among us; Even as they delivered them unto us,who from the beginning were eyewitnesses, and ministers of the word; It seems goodto me also, having had perfect understanding of all things from the very �rst, to writeunto thee in order, most excellent Theophilus; That thou mightest know the certaintyof those things, wherein thou hast been instructed.Luke, 1:1-4, c. A.D. 60.
13

References[1] M. Ajtai, J. Komlos, E. Szemer�edi, \Deterministic Simulation in LogSpace", Proc. 19thSTOC, 1987, pp. 132{140.[2] N. Alon, \Eigenvalues, Geometric Expanders, Sorting in Rounds and Ramsey Theory",Combinatorica, 6 (1986), pp. 231{243.[3] N. Alon, J. Bruck, J. Naor, M. Naor and R. Roth, \Construction of Asymptotically Good,Low-Rate Error-Correcting Codes through Pseudo-Random Graphs", IEEE Transactionson Information Theory 38 (1992), pp. 509{516.[4] N. Alon and V.D. Milman, �1, Isoperimetric Inequalities for Graphs and Superconcentrators,J. Combinatorial Theory, Ser. B 38 (1985), pp. 73{88.[5] N. Alon and J.H. Spencer, The Probabilistic Method, John Wiley & Sons, Inc., 1992.[6] A.E. Andreev, A.E.F. Clementi, J.D.P. Rolin and L. Trevisan, \Weak Random Sources,Hitting Sets, and BPP Simulation", manuscript, February 1997.[7] M. Bellare, O. Goldreich, and S. Goldwasser \Randomness in Interactive Proofs", Compu-tational Complexity, Vol. 4, No. 4 (1993), pp. 319{354. Extended abstract in 31st FOCS,1990, pp. 318{326.[8] M. Bellare, O. Goldreich, and S. Goldwasser. Addendum to [7], available fromhttp://theory.lcs.mit.edu/~oded/papers.html, May 1997.[9] M. Bellare, and J. Rompel, \Randomness-e�cient oblivious sampling", 35th FOCS, 1994.[10] R. Canetti, G. Even and O. Goldreich, \Lower Bounds for Sampling Algorithms for Esti-mating the Average", IPL, Vol. 53, pp. 17{25, 1995.[11] L. Carter and M. Wegman, \Universal Classes of Hash Functions", J. Computer and SystemSciences , Vol. 18, pp. 143{154 (1979).[12] B. Chor and O. Goldreich, \Unbiased Bits from Sources of Weak Randomness and Prob-abilistic Communication Complexity", SIAM J. Comput., Vol. 17, No. 2, April 1988, pp.230{261.[13] B. Chor and O. Goldreich, \On the Power of Two{Point Based Sampling," Jour. of Com-plexity, Vol 5, 1989, pp. 96{106.[14] A. Cohen and A. Wigderson, \Dispensers, Deterministic Ampli�cation, and Weak RandomSources", 30th FOCS, 1989, pp. 14{19.[15] O. Gaber and Z. Galil, \Explicit Constructions of Linear Size Superconcentrators", JCSS,22 (1981), pp. 407-420.[16] O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuckerman, \SecurityPreserving Ampli�cation of Hardness", 31st FOCS, pp. 318{326, 1990.[17] O. Goldreich and A. Wigderson, \Tiny Families of Functions with Random Properties:A Quality{Size Trade{o� for Hashing", to appear in Journal of Random structures andAlgorithms. Preliminary version in 26th STOC, pp. 574{583, 1994.14

[18] R. Impagliazzo and D. Zuckerman, \How to Recycle Random Bits", 30th FOCS, 1989, pp.248-253.[19] N. Kahale, \Eigenvalues and Expansion of Regular Graphs", Journal of the ACM,42(5):1091{1106, September 1995.[20] R.M. Karp, N. Pippinger and M. Sipser, \A Time-Randomness Tradeo�", AMS Conferenceon Probabilistic Computational Complexity , Durham, New Hampshire (1985).[21] A. Lubotzky, R. Phillips, P. Sarnak, \Explicit Expanders and the Ramanujan Conjectures",Proc. 18th STOC, 1986, pp. 240-246.[22] G.A. Margulis, \Explicit Construction of Concentrators", Prob. Per. Infor. 9 (4) (1973),71{80. (In Russian, English translation in Problems of Infor. Trans. (1975), 325{332.)[23] N. Nisan, \Extracting randomness: how and why (a survey)". Proceedings of the 11th AnnualIEEE conference on Computational Complexity (formerly known as Structures), IEEE 1996.[24] M. Sipser, \Expanders, Randomness or Time vs Space", Structure in Complexity Theory(proceedings), 1986.[25] L. Trevisan, \When Hamming meets Euclid: The Approximability of Geometric TSP andMST", 29th STOC, pp. 21{29, 1997.[26] U. Vazirani and V. Vazirani, \Random Polynomial Time Equal to Semi-Random PolynomialTime", Proc. 26th FOCS, pp. 417{428, 1985.[27] D. Zuckerman, \Randomness-Optimal Sampling, Extractors, and Constructive Leader Elec-tion", 28th STOC, 1996, pp. 286{295.

15

Appendix A: Expanders and Random WalksA.1 ExpandersAn (N; d; �)-expander is a d-regular graph with N vertices so that the absolute value of all eigenval-ues (except the biggest one) of its adjacency matrix is bounded by �. A (d; �)-family is an in�nitesequence of graphs so that the nth graph is a (2n; d; �)-expander. We say that such a family is ef-�ciently constructible if there exists a log-space algorithm which given a vertex, v, in the expanderand an index i 2 [d] def= f1; :::; dg, returns the ith neighbor of v. We �rst recall that for d = 16 andsome � < 16, e�ciently constructible (16; �)-families do exist (cf., [15])3.In our applications we use (parameterized) expanders satisfying �d < � and d = poly(1=�),where � is an application-speci�c parameter. Such (parameterized) expanders are also e�cientlyconstructible. For example, we may obtain them by taking paths of length O(log(1=�) on anexpander as above. Speci�cally, given a parameter � > 0, we obtain an e�ciently constructible(D;�)-family satisfying �D < � and D = poly(1=�) as follows. We start with a constructible(16; �)-family, set k def= log16=�(1=�) = O(log 1=�) and consider the paths of length k in each graph.This yields a constructible (16k; �k)-family, and both �k16k < � and 16k = poly(1=�) indeed hold.Comment: To obtain the best constants in Sections 4 and 5, one may use e�ciently constructibleRamanujan Graphs [21]. Furthermore, using Ramanujan Graphs is essential for our proof of thesecond item of Theorem 4.1 as well as of Lemma 5.3. Ramanujan Graphs satisfy � � 2pd and so,setting d = 4=�, we obtain �d < �, where � is an application-speci�c parameter. Here some minortechnicalities arise as these graphs are given only for certain degrees and certain sizes. Speci�cally,they can be e�ciently constructed for 12 � qk � (q2k�1) vertices, where q � d�1 � 1 mod 4 and d�1being a quadratic residue modulo q (cf., [3, Sec. II]). This technical di�culties may be resolved intwo ways:1. Fixing d and �; N , we may �nd a q satisfying the above conditions with 12 � qk � (q2k � 1) 2[(1��) �N;N], in time polynomial in 1=�. This de�nes a Ramanujan Graph which is adequatefor all our applications (since it biases the desired sample in [N] only by �).2. Fixing d and �; N , we may �nd a q satisfying the above conditions with 12 �qk�(q2k�1) 2 [N; 2N],in time polynomial in logN . We may easily modify our applications so that whenever weobtain a vertex not in [N] we just ignore it. One can easily verify that the analysis of theapplication remains valid.A.2 The Expander Mixing LemmaThe following lemma is folklore and has appeared in many papers. Loosely speaking, the lemmaasserts that expander graphs (for which d � �) have the property that the fraction of edgesbetween two large sets of vertices approximately equals the product of the densities of these sets.This property is called mixing.Lemma A.3 (Expander Mixing Lemma): Let G = (V;E) be an expander graph of degree d and �be an upper bound on the absolute value of all eigenvalues, save the biggest one, of the adjacency3The are minor technicalities which can be easily �xed. Firstly, the Gaber{Galil expanders are de�ned (only) forgraph sizes which are perfect squares [15]. This su�ces for even n's. For odd n's, we may use a trivial modi�cation,such as taking two copies of the graph of size 2n�1 and connecting each pair of corresponding vertices. Finally, weadd multiple edges so that the degree becomes 16, rather than being 14 for even n's and 15 for odd n's.16

matrix of the graph. Then for every two subsets, A;B � V , it holds���� j(A�B) \EjjEj � jAjjV j � jBjjV j ���� � �pjAj � jBjd � jV j < �dThe lemma (and a proof) appears as Corollary 2.5 in [5, Chap. 9].A.3 Random walks on ExpandersA fundamental discovery of Ajtai, Komlos, and Szemer�edi [1] is that random walks on expandergraphs provide a good approximation to repeated independent attempts to hit any arbitrary �xedsubset of su�cient density (within the vertex set). The importance of this discovery stems fromthe fact that a random walk on an expander can be generated using much fewer random coins thanrequired for generating independent samples in the vertex set. Precise formulations of the abovediscovery were given in [1, 14, 16] culminating in Kahale's optimal analysis [19, Sec. 6].Theorem A.4 (Expander Random Walk Theorem [19, Cor. 6.1]): Let G = (V;E) be an expandergraph of degree d and � be an upper bound on the absolute value of all eigenvalues, save the biggestone, of the adjacency matrix of the graph. Let W be a subset of V and � def= jW j=jV j. Then thefraction of random walks (in G) of (edge) length ` which stay within W is at most� � ��+ (1� �) � �d�`A more general bound (which is weaker for the above special case) was pointed out to us by NabilKahale (personal communication, April 1997):Theorem A.5 (Expander Random Walk Theorem { general case): Let G = (V;E), d and � be asabove. Let W0;W1; :::;W` be subsets of V with densities �0; :::; �`, respectively. Then the fraction ofrandom walks (in G) of (edge) length ` which intersect W0 �W1 � � � � �W` is at mostp�0�` � Ỳi=1s�i + (1� �i) � ��d�2The above improves over a previous bound of [7] (see [8]). Comments regarding the proofs of boththeorems follow.Comments on the proof of Theorems A.4 and A.5Let A be a matrix representing the random walk on G (i.e., A is the adjacency matrix of G dividedby the degree, d). Let �� denote the absolute value of the second largest eigenvalue of A (i.e.,�� def= �=d).Let kxk denote the Euclidean norm of x 2 Rn. For any stochastic matrix M , we let kMk denotethe norm of M ; that is the maximum of kMxk taken over all normal vectors x (i.e., x 2 Rn withkxk = 1). The following technical lemma is the key ingredient in both proofs.Lemma A.6 ([19, Lem. 3.2] restated): Let M be a symmetric stochastic matrix and let � denotethe absolute value of the second largest eigenvalue of M . Let P be a 0-1 matrix which has 1's onlyon the diagonal and let � be the fraction of 1's on the diagonal. Then kPMP k � �+ (1� �) � �.17

Proof of Theorem A.4: Let u 2 Rn be the vector representing the uniform distribution (i.e.,u = (n�1; :::; n�1)). Let P be a 0-1 matrix so that the only 1-entries are in entries (i; i) with i 2 W .Thus, the probability that a random walk of length ` stays within W is the sum of the entries ofthe vector x def= (PA)`Pu (7)In other words, denoting by kxk1 the L1 norm of x, we are interested in an upper bound on kxk1.Since x has at most �n non-zero entries (i.e., x = Px0 for some x0), we have kxk1 � p�n � kxk.Invoking Lemma A.6 we get kxk1 � p�n � k(PA)`Puk� p�n � kPAP k` � kPuk� p�n � ��+ (1� �) � ���` �q�=nand the theorem follows.Proof of Theorem A.5: Using the same argument, we need to upper bound the L1 norm of xgiven by x def= P`A � � �P1AP0u (8)We observe that kPjAk = qkPjA2Pjk and use Lemma A.6 to obtain kPjA2Pjk � �j+ (1� �j) � ��2.Thus, we have kxk1 � p�`n � kP`A � � �P1AP0uk� p�`n � Ỳj=1 kPjAk � kP0uk� p�`n � Ỳj=1q�j + (1� �j) � ��2 �q�0=nand the theorem follows.Appendix B: Analyzing the Toeplitz Matrix ConstructionFor every i 6= j and a; b 2 GF(2)n, we havePrT;u ei = aej = b ! = PrT;u (ei = ajei � ej = a� b) �PrT;u (ei � ej = a� b)= PrT;u (Tvi + u = ajTw = c) � PrT (Tw = c)where w = vi � vj 6= 0n and c = a � b. Clearly, for any c 2 GF(2)n and any T 0:PrT;u(Tvi + u = ajTw = c) = Pru(T 0vi + u = a)= 2�nIt is thus left to show that, for any w 6= 0n, when T is a uniformly chosen Toeplitz matrix, the vectorTw is uniformly distributed over GF(2)n. It may help to consider �rst the distribution of Mw,where M is a uniformly distributed n-by-n matrix. In this case Mw is merely the sum of several18

(not zero) uniformly and independently chosen column vectors, and so is uniformly distributed overGF(2)n. The argument regarding a uniformly chosen Toeplitz matrix is slightly more involved.Let f be the �rst non-zero entry of w = (w1; :::; wn) 6= 0n (i.e., w1 = � � � = wf�1 = 0 andwf = 1). We make the mental experiment of selecting T = (ti;j), by uniformly selecting elementsdetermining T as follows. First we uniformly and independently select t1;n; :::; t1;f. Next, we selectt2;f ; :::; tn;f (here it is important to select tj;f before tj+1;f). Finally, we select tn;f�1; :::; tn;1. Clearly,this determines a uniformly chosen Toeplitz matrix, denoted T . We conclude by showing that eachof the bits of Tw is uniformly distributed given the previous bits. To prove the claim for the jth bitof Tw, consider the time by which t1;n; :::; t1;f; :::; tj�1;f were determined. Note that these determinethe �rst j � 1 bits of Tw. The key observation is that the value of the jth bit of Tw is a linearcombination of the above determined values xored with the still undetermined tj;f . (Here we usethe hypothesis that w1 = � � � = wf�1 = 0 and wf = 1.) Thus, uniformly selecting tj;f makes the jthbit of Tw be uniformly distributed given the past.Appendix C: The Hitting problemThe hitting problem is a one-sided version of the Boolean sampling problem. Given parameters n(length), � (density) and � (error), and oracle access to any function � : f0; 1gn 7! f0; 1g so thatjfx : f(x)=1gj � �2n, the task to �nd a string which is mapped to 1. That isDe�nition C.1 (hitter): A hitter is a randomized algorithm that on input parameters n, � and �,and oracle access to any function � :f0; 1gn 7!f0; 1g, so that jfx : f(x)=1gj � �2n, satis�esPr[�(hitter�(n; �; �)) = 1] > 1� �All results and techniques regarding sampling presented above, have simpler analogous with respectto the hitting problem. In fact this appendix may be read as a warm-up towards the entire paper.C.1 The Information Theoretic PerspectiveAnalogously to the Naive Sampler, we have the Naive Hitter which independently selectsm def= ln(1=�)�uniformly distributed sample points and queries the oracle on each. Clearly, the probability thatthe hitter fails to sample a point of value 1 is bounded above by (1� �)m = �. The complexities ofthis hitter are as follows� Sample Complexity: m def= ln(1=�)� = �(log(1=�)�).� Randomness Complexity: m � n = �(log(1=�)� � n).� Computational Complexity: indeed e�cient.It is easy to prove that the Naive Hitter is sample-optimal. That is,Theorem C.2 Any hitter has sample complexity bounded below bymin�2n�O(1); ln(1=2�)2� �provided � � 18. 19

Proof Sketch: Let A be a hitter with sample complexity m = m(n; �; �) and let � be a functionselected at random by setting its value independently on each argument so that Pr(�(x)=1) = 1:5�.Then, Pr�[�(A�(n; �; �)) 6= 1] = (1� 1:5�)mwhere the probability is taken over the choice of � and the internal coin tosses of A. On the otherhand, using a Multiplicative Cherno� Bound:Pr�[jfx : �(x)=1gj < �2n] = 2 exp(�
(�2n))We may assume that
(�2n) > log2(1=�) and so the probability that � has at least � fraction of 1'sand yet algorithm A fails is at least (1� 1:5�)m � � > �, unless m > ln(1=2�)ln(1�1:5�) > ln(1=2�)2� .Theorem C.3 Let s : N � [0; 1]2 7! R. Any sampler which has sample complexity bounded aboveby s(n; �; �), has randomness complexity bounded below byr > n � log2 s(n; �; �) + log2((1� �)=�)Proof Sketch: Let A be a hitter with sample complexity s = s(n; �; �), and randomness complexityr = r(n; �; �). Consider any subset of �2r possible sequence of coin tosses for A and all �2r �s pointsqueries at any of these coin-sequences. We argue that �2r � s > (1 � �)2n, or else we may have afunction � be 0 on each of these points and 1 otherwise (contradicting the requirement that thisfunction be \hit" with probability at least 1 � �). Thus, r > n + log2(1 � �) � log2 s + log2(1=�)C.2 The Pairwise-Independent HitterUsing a pairwise-independent sequence of uniformly distributed sample points rather than a totallyindependent one, we obtain the pairwise-independent hitter. Here we set m def= 1���� . Letting �irepresent the �-value of the ith sample point, considering only �'s with �-fraction of 1-values, andusing Chebishev's Inequality we havePr mXi=1 �i = 0! � Pr �����m�� mXi=1 �i����� � �m!� m � �(1� �)(�m)2= �Recalling that we can generate 2n � 1 pairwise-independent samples using 2n coins the pairwise-independent hitter achieves� Sample Complexity: 1�� (reasonable for constant �).� Randomness Complexity: 2n� Computational Complexity: indeed e�cient.C.3 The combined HitterOur goal here is to decrease the sample complexity of the Pairwise-Independent Hitter while essen-tially maintaining its randomness complexity. To motivate the new construction we �rst consideran oversimpli�ed version of it. 20

Combined Hitter (oversimpli�ed): On input parameters n, � and �, set m def= 2� and ` def=log2(1=�), generate ` independent m-element sequences, each being a sequence of m pairwise-independently and uniformly distributed strings in f0; 1gn. Denote the sample points in the ithsequence by si1; :::; sim. We merely try all these ` �m samples as hitting points. Clearly, for eachi = 1; :::; `, Pr(8j = 1; ::; m : �(sij)=0) < 12and so the probability that none of these sij \hits �" is at most 0:5` = �. Thus, the oversimpli�edversion described above is indeed a hitter and has the following complexities� Sample Complexity: ` �m = O(log(1=�)�2).� Randomness Complexity: ` �O(n) = O(n � log(1=�)).� Computational Complexity: indeed e�cient.Thus, the sample complexity is optimal (upto a constant factor), but the randomness complexityis higher than what we aim for. To reduce the randomness complexity, we use the same approachas above, but take dependent (pairwise independent) sequences rather than independent ones. Thedependency we use is such which essentially preserves the probabilistic behavior of independentchoices. Speci�cally, we use random walks on expander graphs (cf., Appendix A) to generate asequence of ` \seeds" each of length O(n). Each seed is used to generate a sequence of m pairwiseindependent elements in f0; 1gn, as above. Thus, we obtainCorollary C.4 (The Combined Hitter): There exists an e�cient hitter with� Sample Complexity: O(log(1=�)�).� Randomness Complexity: 2n+ O(log(1=�)).Furthermore, we can obtain randomness complexity 2n+ (2 + o(1)) � log2(1=�)).Proof Sketch: We use an explicit construction of expander graphs with vertex set f0; 1g2n, degreed and second eigenvalue � so that �=d < 0:1. We consider a random walk of (edge) length `� 1 =log2(1=�) on this expander, and use each of the ` vertices along the path as random coins forthe Pairwise-Independent Hitter which makes m def= �=3 trials. To analyze the performance ofthe resulting algorithm, we let W denote the set of coin tosses (for the basic hitter) which makethe basic hitter output a point which evaluates to 1. By the hypothesis, jW j22n � 1=3, and usingTheorem A.4, the probability that all vertices of a random path reside in W is bounded above by(0:34 + 0:1)` < �. The furthermore clause follows by using a Ramanujan Graph and an argumentas in the proof of Item 2 of Theorem 4.1.C.4 The Expander HitterUse a Ramanujan Graph of degree d = O(1=��) and vertex-set f0; 1gn. Uniformly select a vertexin the graph and use its neighbors as a sample. Suppose we try to hit a 1-value of a function � andlet S def= fu : �(u)=1g. Let B def= fv : N (v) \ S = ;g be the set of bad vertices (i.e., choosing anyof these results in not �nding a preimage of 1). Using the Expander Mixing Lemma we have�(B)�(S) = ���� j(B � S) \ EjjEj � �(B)�(S)����� �d �q�(B)�(S)21

Hence, �(B)�(S) � (�=d)2 = �� and using �(S) � � we get �(B) � �. The complexities of thishitter are as follows� Sample Complexity: O(1��) (reasonable for constant �).� Randomness Complexity: n� Computational Complexity: indeed e�cient.Adapting the argument in the proof of Corollary C.4, we obtainCorollary C.5 (The Combined Hitter, revisited): There exists an e�cient hitter with� Sample Complexity: O(log(1=�)�).� Randomness Complexity: n + (2 + o(1)) � log2(1=�)).

22

