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1 The problem and its solutionsThis work addresses a generi
 te
hni
al problem that arises in the 
ontext of trying to establish the
omputational indistinguishability of 
ertain pairs of probability ensembles. The problem refersto the fa
t that 
omputational (and also statisti
al) indistinguishability is de�ned in terms of theabsolute di�eren
e between probabilities, whereas it is typi
ally easier to manipulate the di�eren
eitself. Thus, we seek a method of 
onverting a non-negligible absolute di�eren
e into a non-negligibledi�eren
e; that is, we wish the di�eren
e itself (rather than its absolute value) to be positive.1.1 A motivational exampleMany se
urity de�nitions are formulated by referring to two pairs of probability ensembles thatare indexed by strings, and requiring that these pairs of probability ensembles are 
omputationallyindistinguishable (see, e.g., the de�nitions of 
omputational zero-knowledge [2, Se
. 4.3.1.2℄ andse
ure two-party 
omputation [3, Se
. 7.2℄). Su
h a probability ensemble fZ�g�2S 
onsists of (anin�nite number of) \random variables" Z�'s, whi
h are ea
h distributed over some �nite set (relatedto its index, �). Two su
h ensembles, fX�g�2S and fY�g�2S , are said to be 
omputationallyindistinguishable if for every probabilisti
 polynomial-time algorithm D it holds thatgD(�) def= jPr[D(�;X�)=1℄ � Pr[D(�; Y�)=1℄j (1)is negligible as a fun
tion of j�j (i.e., for every positive polynomial p and all suÆ
iently long �'sthe value of gD(�) is upper bounded by 1=p(j�j)).The aforementioned formulation mandates that the value of gD(�) is small for every � 2 S.A weaker requirement, whi
h suÆ
es in pra
ti
e, is that it is infeasible to �nd � 2 S for whi
hthe value of gD(�) is not small. This requirement may be formulated as mandating that for everyprobabilisti
 polynomial-time algorithm F , representing a potential �nder that given 1n outputsan n-bit long string � 2 S, the expe
ted value of gD(�) (when de�ned as in Eq. (1)) is negligible(as a fun
tion of n); that is, E[gD(F (1n))℄ is negligible in n. This 
ondition means thatX� Pr[F (1n)=�℄ � jPr[D(�;X�)=1℄ � Pr[D(�; Y�)=1℄j (2)is negligible as a fun
tion of n.When trying to establish a 
ondition as in Eq. (2) it is often easier to establish a 
orresponding
ondition in whi
h the absolute value operator is dropped. Indeed, suppose that for every F andD as above it holds thatX� Pr[F (1n)=�℄ � (Pr[D(�;X�)=1℄ � Pr[D(�; Y�)=1℄) (3)is negligible (as a fun
tion of n). Can we infer that Eq. (2) holds too?In the 
ase that both ensembles are polynomial-time sampleable, a positive answer is impli
itin many works. Essentially, given a probabilisti
 polynomial-time algorithm D su
h that Eq. (2)is not negligible, one derives a probabilisti
 polynomial-time algorithm D0 su
h that Eq. (3) is notnegligible by estimating the di�eren
e between Pr[D(�;X�)=1℄ and Pr[D(�; Y�)=1℄ and 
ippingD's output if the estimated di�eren
e is negative. Thus, the 
onstru
tion of D0 depends also on gD(whi
h determines the adequate level of approximation). In parti
ular, the time 
omplexity of D0is (polynomially) related to gD. Our goal is to get rid of this dependen
y; in parti
ular, we wish toavoid the aforementioned approximation. 1



1.2 A generi
 problem and one solutionThe generi
 problem we fa
e is 
onverting an algorithm D that distinguishes X� and Y� (i.e.,jPr[D(�;X�) = 1℄ � Pr[D(�; Y�) = 1℄j is noti
eable) into an algorithm D0 that on input (�;X�)outputs 1 with probability that is noti
eably higher than Pr[D(�; Y�) = 1℄. We stress that wewish this transformation to hold for every �, whereas it may be that for some �'s the di�eren
ePr[D(�;X�)=1℄�Pr[D(�; Y�)=1℄ is positive while for other �'s the di�eren
e is negative. Clearly,D0 must know something about X� and Y� in order for this to be possible, and indeed we provideD0with samples taken from X� and Y� (or, a
tually, with algorithms for sampling these distributions).Thus, the problem we fa
e is a
tually the following one. We are given a probabilisti
 polynomial-time algorithm D and sampling algorithms for two ensembles, fX�g�2S and fY�g�2S (i.e., prob-abilisti
 polynomial-time algorithms X and Y su
h that on any input � it holds that X� � X(�)and Y� � Y (�)). Our task is to 
onstru
t a probabilisti
 polynomial-time algorithm D0 su
h thatfor some fun
tion � : (0; 1℄! (0; 1℄ it holds thatPr[D0(�;X�)=1℄ � Pr[D0(�; Y�)=1℄ � � (jPr[D(�;X�)=1℄ � Pr[D(�; Y�)=1℄j) : (4)We stress that the r.h.s of Eq. (4) refers to the absolute di�eren
e between two probabilities, whereasthe l.h.s refers to a 
orresponding di�eren
e that is not taken in absolute value and yet is requiredto be positive (whenever the former di�eren
e is positive).We seek a universal transformation of D into D0, whereas this transformation may use a pre-determined number of auxiliary samples of the two distributions. That is, the resulting algorithmD0 is given as input a single sample that is drawn from one of two distributions (i.e., either fromX� or from Y�), but in addition it 
an obtain (a predetermined number of) samples from ea
h ofthe two distributions. Like D, algorithm D0 should distinguish the two 
ases (whi
h 
orrespond tothe sour
e of its input). We stress that we wish the 
omplexity of D0 (and spe
i�
ally the numberof auxiliary samples it obtains) to be independent of gD(�). We note that su
h a transformation(of D into D0) may be useful also in other settings. One su
h generi
 example is provided bysettings in whi
h the notion of negligible probability being 
onsidered is signi�
antly smaller thanthe re
ipro
al of the 
omplexity of the distinguishers (e.g., 
onsider polynomial-time distinguishers
oupled with (sub-)exponentially small distinguishing gaps).A simple transformation. One solution to the foregoing problem is to let D0 estimate the signof Pr[D(�;X�) = 1℄ � Pr[D(�; Y�) = 1℄ by using a single sample of X� and a single sample of Y�.(Although this estimate is quite poor, it 
an be shown to suÆ
e.) Spe
i�
ally, on input (� and) z(where z is taken from either X� or Y�), algorithm D0 pro
eeds as follows:1. Ignoring its (\main") input (i.e., z), algorithm D0 generates a single sample x of X� and asingle sample y of Y�, and 
omputes �  D(�; x) and �  D(�; y);2. If � > � then D0 invokes D on its input and outputs D(�; z).If � < � then D0 outputs 1�D(�; z).Otherwise (i.e., � = �), algorithm D0 outputs the out
ome of a fair 
oin toss.Indeed, we have assumed here (without loss of generality) that D always outputs a Boolean value.Intuitively, � � � provides a probabilisti
 guess of the sign of Pr[D(�;X�)=1℄� Pr[D(�; Y�)=1℄,and using this guess in the obvious manner yields the desired result.2



Proposition 1.1 Let D and D0 be as above. Then,Pr[D0(�;X�)=1℄ � Pr[D0(�; Y�)=1℄ = (jPr[D(�;X�)=1℄ � Pr[D(�; Y�)=1℄j)2 :Proof: For the analysis of the performan
e of D0, we 
onsider an algorithm D00, whi
h may outputany number in [0; 1℄, su
h thatD00(�; z) def= 12 � �1 + sign(D(�;X�)�D(�; Y�)) � (�1)D(�;z)+1� ; (5)where sign(r) = 1 if r > 0 (resp., sign(r) = �1 if r < 0), and sign(0) = 0. Re
all that inStep 2 of D0(�; z), the output is set to D(�; z) if � > � , to 1 � D(�; z) if � < � , and is randomif � = � . Using D(�; z) 2 f0; 1g and assuming � 6= � , the output of D0(�; z) 
an be written as(1+sign(���)�(�1)D(�;z)+1)=2. Thus, D0(�; z) outputs 1 with probabilityD00(�; z), and it suÆ
esto evaluate E[D00(�;X�)℄� E[D00(�; Y�)℄ = Pr[D0(�;X�)=1℄� Pr[D0(�; Y�)=1℄: (6)Denoting p = Pr[D(�;X�)=1℄ and q = Pr[D(�; Y�)=1℄ (and using X 0� and Y 0� to denote indepen-dent 
opies of X� and Y�), we evaluate Eq. (6) as follows.gD00(�) def= E[D00(�;X�)℄� E[D00(�; Y�)℄= 12 � E h1 + sign(D(�;X 0�)�D(�; Y 0�)) � (�1)D(�;X�)+1i�12 � E h1 + sign(D(�;X 0�)�D(�; Y 0�)) � (�1)D(�;Y�)+1i= 12 � E �sign(D(�;X 0�)�D(�; Y 0�))� � E h(�1)D(�;X�)+1 � (�1)D(�;Y�)+1iUsing E[(�1)D(�;X�)+1℄ = p� (1� p) = 2p� 1 and E[(�1)D(�;Y�)+1℄ = 2q � 1, we getgD00(�) = (p� q) � E [sign(D(�;X�)�D(�; Y�))℄= (p� q) � (Pr[D(�;X�)>D(�; Y�)℄� Pr[D(�;X�)<D(�; Y�)℄)= (p� q) � (p � (1� q)� (1� p) � q)whi
h equals (p� q)2.1.3 Other transformationsTwo natural questions arise:1. Is the foregoing 
onstru
tion of D0 optimal (with respe
t to all 
onstru
tions that use a singleauxiliary sample from ea
h of the two distributions)?2. Can we do better if we obtain k auxiliary samples from ea
h of the two distributions (ratherthan one auxiliary sample from ea
h of the two distributions)? How good 
an su
h a 
on-stru
tion be?Before answering these questions we note that no 
onstru
tion (whi
h is given a single test samplefrom an unknown distribution) 
an outperform the variation distan
e between the tested distribu-tions, (i.e., jp � qj, where p = Pr[D(�;X�) = 1℄ and q = Pr[D(�; Y�) = 1℄). We answer the abovequestions as follows. 3



Main Result (informal). For every k � 1, the best 
onstru
tion that uses k auxiliary samplesfrom ea
h of the two distributions is the one that rules analogously to Eq. (5), when applying thesign fun
tion to the di�eren
e between the average value of D in the two 
ases. Su
h a pro
edureyields a gap that equals the minimum of 
(pk) � (p� q)2 and (1� �p;q(k)) � jp� qj, where �p;q(k) =exp(�
((p� q)2 � k)).We stress that the above result holds both in the 
omputational setting and in the informationtheoreti
 setting.2 The a
tual treatmentLet X and Y be 0-1 random variables (representing D(�;X�) and D(�; Y�), respe
tively), and letXi's (resp., Yi's) be independent 
opies of X (resp., Y ) representing additional samples availableto us. We seek a randomized pro
ess � : f0; 1g2k+1 ! f0; 1g su
h thatE[�(X1; :::;Xk; Y1; :::; Yk;X)℄� E[�(X1; :::;Xk; Y1; :::; Yk; Y )℄ (7)is maximized (as a fun
tion of Æ = jE[X℄�E[Y ℄j, when maximizing over all possible 0-1 random vari-ablesX and Y that are at statisti
al distan
e Æ). Indeed, the probability that �(a1; :::; ak; b1; :::; bk; 
) =1 is determined by a fun
tion f : f0; 1g2k+1 ! [0; 1℄ su
h thatPr[�(a1; :::; ak ; b1; :::; bk; 
)=1℄ = f(a1; :::; ak; b1; :::; bk; 
)Thus, it suÆ
es to seek su
h a fun
tion f that maximizesE[f(X1; :::;Xk; Y1; :::; Yk;X)℄� E[f(X1; :::;Xk; Y1; :::; Yk; Y )℄ (8)(as a fun
tion of Æ = jE[X℄ � E[Y ℄j).Let us formally de�ne a more general optimization problem. For a fun
tion f : f0; 1g2k+1 ![0; 1℄ and a pair (p; q) 2 [0; 1℄, we denote by V(p;q)(f) the value of Eq. (8), when X and Y satisfyp = E[X℄ and q = E[Y ℄. Now, for any (possibly in�nite) set (or 
lass) of pairs in [0; 1℄, denotedC, and any fun
tion f : f0; 1g2k+1 ! [0; 1℄, we denote VC(f) def= min(p;q)2CfV(p;q)(f)g. We seek afun
tion f for whi
h VC(f) is maximal.Overview. First, we will show that, without loss of generality, the fun
tion f(x1; :::; xk; y1; ::::; yk; z)may only depend on s def= Pi2[k℄ xi, t def= Pi2[k℄ yi and z, and furthermore that it 
an take a spe
i�

anoni
al form (see Se
tion 2.1). Next, in Se
tion 2.2, we will show that in all natural 
ases (i.e.,for \symmerti
" 
lasses) the 
anoni
al form 
an be further simpli�ed to depend only on sign(s� t)and z. A
tually, this will yield a single optimal fun
tion. Lastly, in Se
tion 2.3, we will analyze theperforman
e of this fun
tion.2.1 Canoni
al fun
tionsWe will �rst show that it suÆ
es to 
onsider fun
tions f of the formf(a1; ::::; ak ; b1; ::::; bk; 
) = 1 + g �Pi2[k℄ ai ;Pi2[k℄ bi� � (�1)
2 (9)where g : N2 ! [�1;+1℄. We 
all su
h an f 
anoni
al. Note that the normalization (i.e., shiftingby 1 and dividing by 2) is used to map [�1;+1℄ to [0; 1℄. (Note that an additive shift of f leavesthe value of Eq. (8) inta
t, whereas multiplying f by any fa
tor has the same e�e
t on the value ofEq. (8).) 4



De�nition 2.1 (dominating strategies) We say that f 0 dominates f (w.r.t C) if for every (p; q) 2 Cit holds that V(p;q)(f 0) � V(p;q)(f).Proposition 2.2 (strong optimality): For every C and every f : f0; 1g2k+1 ! [0; 1℄ there exists a
anoni
al fun
tion that dominates f .Proof: Given any fun
tion f , we 
onsider the fun
tion f 0 su
h that for every a; b 2 f0; 1; :::; kgand 
 2 f0; 1g, the value f 0(a; b; 
) equals the average of f(a1; ::::; ak; b1; ::::; bk; 
) taken over all(a1; ::::; ak); (b1; ::::; bk) 2 f0; 1gk that satisfy Pi2[k℄ ai = a and Pi2[k℄ bi = b. Then, for every (p; q),we have V(p;q)(f 0) = V(p;q)(f). Note that the value of f 0 at any (a; b) and 
 2 f0; 1g 
an be writtenas 1 + (�1)
2 � f 0(a; b; 0) + 1� (�1)
2 � f 0(a; b; 1)= 12 � �f 0(a; b; 0) + f 0(a; b; 1)� + (�1)
2 � �f 0(a; b; 0) � f 0(a; b; 1)�= g0(a; b) + g1(a; b) � (�1)
where g0(a; b) = (f 0(a; b; 0) + f 0(a; b; 1))=2 and g1(a; b) = (f 0(a; b; 0) � f 0(a; b; 1))=2. Note thatg1(a; b) 2 [�0:5;+0:5℄ and that repla
ing g0(a; b) by 0:5 does not 
hange the value of V(p;q)(f 0).Thus, setting f 00(a; b; 
) = (1 + 2g1(a; b) � (�1)
)=2, we obtain a 
anoni
al fun
tion that dominatesf (be
ause V(p;q)(f 00) = V(p;q)(f 0) = V(p;q)(f)).Con
lusion and Notation. At this point we 
an limit our sear
h for good fun
tions (i.e., fun
-tions that maximize Eq. (8)) to 
anoni
al fun
tions. That is, for every fun
tion g : N2 � f0; 1g ![�1;+1℄ and every k 2 N , we de�ne f (k)g as in Eq. (9), and 
onsider the value V(p;q)(f (k)g ). Toestimate V(p;q)(f (k)g ), we let X and Y be 0-1 random variables with E[X℄ = p and E[Y ℄ = q and getV(p;q)(f (k)g ) = 12 � E24g0�Xi2[k℄Xi ; Xi2[k℄Yi1A � (�1)X35� 12 � E24g0�Xi2[k℄Xi ; Xi2[k℄Yi1A � (�1)Y 35 (10)Using the independen
e of X;Y and the Xi's and Yi's, we rewrite Eq. (10) asV(p;q)(f (k)g ) = 12 � E24g0�Xi2[k℄Xi ; Xi2[k℄Yi1A35 � E h(�1)X � (�1)Y i : (11)Re
alling that E[(�1)X ℄ = (1� p)� p = 1� 2p and E[(�1)Y ℄ = 1� 2q, we get E[(�1)X � (�1)Y ℄ =2(q � p) and so V(p;q)(f (k)g ) = (q � p) � E[g(X 0; Y 0)℄; (12)where X 0 =Pi2[k℄Xi and Y 0 =Pi2[k℄ Yi. Denoting B(p; i; k) = �ki� � pi � (1� p)k�i, we getV(p;q)(f (k)g ) = (q � p) � Xi;j2f0;1;:::;kgB(p; i; k) �B(q; j; k) � g(i; j) (13)
5



2.2 Symmetri
 
lassesWe fo
us on symmetri
 
lasses of pairs, where C is symmetri
 if for every (p; q) 2 C it also holdsthat (q; p) 2 C. In 
ontrast, if C 
ontains only pairs (p; q) su
h that p > q, then we may set k = 0and use the identity fun
tion (be
ause E[X℄�E[Y ℄ = p� q = StatDiff(X;Y )). We show that, forsymmetri
 
lasses, the \sign of the di�eren
e" fun
tion (i.e., sd(a; b) = sign(b� a) 2 f�1; 0;+1g)is optimal as a fun
tion g.Proposition 2.3 (optimality): For every symmetri
 C and every k 2 N and g : N2 ! [�1;+1℄, itholds that VC(f (k)sd ) � VC(f (k)g ), where sd(a; b) = sign(b� a).Re
all that sign(d) = �1 if d < 0 (resp., sign(d) = 1 if d > 0), and sign(0) = 0.Proof: Let (p; q) 2 C be su
h that V(p;q)(f (k)sd ) = VC(f (k)sd ). Then, VC(f (k)g ) � (V(p;q)(f (k)g ) +V(q;p)(f (k)g ))=2 (by de�nition of VC(f (k)g ) and the fa
t that (q; p) 2 C [whi
h follows by the symmetryof C℄), whereas VC(f (k)sd ) � V(p;q)(f (k)sd ) (by the 
hoi
e of (p; q) 2 C). Also note that V(p;q)(f (k)sd ) =V(q;p)(f (k)sd ) (by the invarian
e of the fun
tion f (k)sd under of this swit
h, as seen in Eq. (12)). Thus,it suÆ
es to show thatV(p;q)(f (k)sd ) + V(q;p)(f (k)sd ) � V(p;q)(f (k)g ) + V(q;p)(f (k)g ): (14)For every a; b 2 f0; 1; :::; kg, we shall show that repla
ing g(a; b) by sign(b� a) may only in
reaseV(p;q)(f (k)g ) + V(q;p)(f (k)g ). Let us start by re
alling Eq. (13), whi
h yieldsV(p;q)(f (k)g ) + V(q;p)(f (k)g ) = (q � p) � Xi;j2f0;1;:::;kgB(p; i; k)B(q; j; k) � g(i; j)+(p� q) � Xi;j2f0;1;:::;kgB(q; i; k)B(p; j; k) � g(i; j)= (q � p) � Xi;j2f0;1;:::;kg[B(p; i; k)B(q; j; k) �B(q; i; k)B(p; j; k)℄ � g(i; j):Clearly, for i = j we have B(p; i; k)B(q; j; k) = B(q; i; k)B(p; j; k). For i < j (resp., j < i), it holdsthat B(p; i; k)B(q; j; k) > B(q; i; k)B(p; j; k) if and only if p < q (resp., q < p). The latter 
laimseems self-evident, yet we provide a detailed proof next (for the 
ase p; q 2 (0; 1)).B(p; i; k)B(q; j; k) =  ki! � pi � (1� p)k�i �  kj! � qj � (1� q)k�j=  ki! � (1� p)k �  kj! � (1� q)k � (p=(1 � p))i � (q=(1 � q))jThus, B(p;i;k)B(q;j;k)B(q;i;k)B(p;j;k) equals (p=(1� p))i � (q=(1� q))j(q=(1� q))i � (p=(1� p))j = (q=(1� q))j�i(p=(1� p))j�iNote that we have p < q i� (p=(1�p)) < (q=(1�q)), and so p < q i� (p=(1�p))j�i < (q=(1�q))j�i.It follows that p < q i� B(p; i; k)B(q; j; k) > B(q; i; k)B(p; j; k).6



Re
all that for i < j, it holds that B(p; i; k)B(q; j; k) � B(q; i; k)B(p; j; k) > 0 if and only ifq > p. Thus, in this 
ase, we maximize(q � p) � [B(p; i; k)B(q; j; k) �B(q; i; k)B(p; j; k)℄ � g(i; j) (15)by setting g(i; j) = 1 (be
ause the �rst two fa
tors have the same sign). Similarly, for j > i, itholds that B(p; i; k)B(q; j; k)�B(q; i; k)B(p; j; k) > 0 if and only if q < p, and so the maximizationrequires g(i; j) = �1. Indeed, for i = j, any setting of g(i; j) will do. Thus, an optimal setting ofg(i; j) is sign(j � i), whi
h equals sd(i; j). The 
laim follows.2.3 The performan
e of the fun
tion f (k)sdWe now turn to evaluating the performan
e of the optimal fun
tion; that is, we evaluate V(p;q)(f (k)sd ).Re
all that V(p;q)(f (k)sd ) = (q � p) � Xi;j2f0;1;:::;kgB(p; i; k)B(q; j; k) � sd(i; j)= (p� q) � Xi;j2f0;1;:::;kgB(p; i; k)B(q; j; k) � sign(i� j)whi
h yields V(p;q)(f (k)sd ) = (p� q) � vp;q, wherevp;q def= E24sign0�Xi2[k℄Xi �Xi2[k℄Yi1A35 (16)su
h that the Xi's (resp., Yi's) are 0-1 i.i.d with expe
tation p (resp., q). Letting Ti = Xi � Yi, werewrite Eq. (16) as E[sign(Pi2[k℄ Ti)℄, whi
h equalsPr24Xi2[k℄Ti > 035� Pr24Xi2[k℄Ti < 035 : (17)Note that E[Ti℄ = p� q and Var[Ti℄ = p(1� p) + q(1� q).The 
ases of k = 1 and k = 2. For small k, we 
an write expli
it expressions for Eq. (17); forexample, for k = 1 Eq. (17) yields Pr[T1 > 0℄ � Pr[T1 < 0℄ = p(1 � q) � q(1 � p) = p � q, and soV(p;q)(f (1)sd ) = (p� q)2. For k = 2, we havePr[T1 + T2>0℄� Pr[T1 + T2<0℄ = Pr[T1 + T2=2℄ + 2Pr[T1=1 ^ T2=0℄� (Pr[T1 + T2=�2℄ + 2Pr[T1=�1 ^ T2=0℄)= p2(1� q)2 + 2p(1� q)(pq + (1� p)(1� q))� �q2(1� p)2 + 2q(1 � p)(pq + (1� p)(1� q))�= (1 + (1� p)(1� q) + pq) � (p� q)and so V(p;q)(f (2)sd ) = (1+(1�p)(1�q)+pq)�(p�q)2 (see alternative proof following Proposition 2.4).Thus, the improvement of the 
ase of k = 2 over the 
ase of k = 1 is a fa
tor of (1+(1�p)(1�q)+pq),whi
h is greater than 1 unless fp; qg = f0; 1g (where a single sample is as good as k samples, forany k > 1). 7



The general 
ase of k > 1. We now turn to a general analysis of Eq. (17) (and V(p;q)(f (k)sd )).Spe
i�
ally, we 
onsider the in
rease in the value of Eq. (17) when going from k to k + 1; that is,we de�ne �(p;q)(k) def= E24sign0� Xi2[k+1℄Ti1A35� E24sign0�Xi2[k℄Ti1A35 (18)and note that V(p;q)(f (k+1)sd ) = V(p;q)(f (k)sd ) + (p� q) ��(p;q)(k).Proposition 2.4 (the growth of V(p;q)(f (k)sd ) as a fun
tion of k): For every k � 1, it holds that�(p;q)(k) = (p� q) � Pr[Sk=0℄, where Sk def= Pi2[k℄ Ti.It follows that V(p;q)(f (k+1)sd ) = V(p;q)(f (k)sd )+(p� q)2 �Pr[Sk=0℄, and so V(p;q)(f (k+1)sd ) � V(p;q)(f (k)sd ),where equality holds if and only if fp; qg = f0; 1g (when ignoring the 
ase of p = q). Proposition 2.4
an also be used to re-establish V(p;q)(f (2)sd ) = (1+ pq+ (1� p)(1� q)) � (p� q)2, sin
e V(p;q)(f (1)sd ) =(p� q)2 and Pr[S1=0℄ = pq + (1� p)(1� q).Proof: Starting with Eq. (18), we have�(p;q)(k) = E[sign(Sk + Tk+1)℄� E[sign(Sk)℄= Xs2f�1;0;1gPr[Sk=s℄ � E[sign(s+ Tk+1)� sign(s)℄= Pr[Sk=0℄ � (Pr[Tk+1=1℄� Pr[Tk+1=�1℄)+Pr[Sk=�1℄ � Pr[Tk+1=1℄� Pr[Sk=1℄ � Pr[Tk+1=�1℄By symmetry (e.g., 
onsider the 
ase of k = 1), it is rather self-evident that Pr[Sk=�1℄ �Pr[Tk+1=1℄ = Pr[Sk=1℄ � Pr[Tk+1=�1℄, yet we provide a detailed proof next.Pr[Sk=�1℄ � Pr[Tk+1=1℄ = p(1� q) � kXj=1B(p; j � 1; k)B(q; j; k)= p(1� q) � kXj=1 kj � 1!pj�1(1� p)k�j+1 kj!qj(1� q)k�j= kXj=1 kj � 1!pj(1� p)k+1�j kj!qj(1� q)k�j+1= (1� p)q kXj=1 kj � 1!pj(1� p)k�j kj!qj�1(1� q)k�j+1= (1� p)q � kXj=1B(p; j; k)B(q; j � 1; k)= Pr[Sk=1℄ � Pr[Tk+1=�1℄Hen
e, �(p;q)(k) = Pr[Sk = 0℄ � (Pr[Tk+1=1℄� Pr[Tk+1=�1℄), and the 
laim follows (be
ausePr[Tk+1=1℄� Pr[Tk+1=�1℄ = p� q). 8



Proposition 2.4 yields another expression for V(p;q)(f (k)sd ):V(p;q)(f (k)sd ) = V(p;q)(f (1)sd ) + (p� q) � k�1X̀=1�(p;q)(`) (19)= (p� q)2 + (p� q)2 � k�1X̀=1 Pr[S`=0℄ (20)Note that for fp; qg = f0; 1g this expression (i.e., Eq. (20)) equals 1 (for any k � 1), whereasfor p = q it equals 0. In all other 
ases (i.e., 0 < (p � q)2 < 1) Eq. (20) grows with k. UsingPr[S`=0℄ =Pj̀=0B(p; j; `)B(q; j; `), we getV(p;q)(f (k)sd ) = (p� q)2 + (p� q)2 � k�1X̀=1 X̀j=0 j̀!2(pq)j((1� p)(1� q))`�j (21)In the spe
ial 
ase of p = 0, Eq. (21) yieldsV(0;q)(f (k)sd ) = q2 + q2 � k�1X̀=1(1� q)`= q2 + q � �(1� q)� (1� q)k�whi
h 
onverges to q = jp � qj when k ! 1. Similarly, V(1;q)(f (k)sd ) 
onverges to 1 � q = jp � qj(where p = 1). Note that in these 
ases 
onvergen
e o

urs with k � jp � qj�1. As we shall seenext, in the other 
ases (i.e., p; q 2 (0; 1)), 
onvergen
e o

urs with k � jp�qj�2. We note that the
onstants in the approximation given next depend on the distan
e of p and q from the boundariesof (0; 1); that is, these 
onstants depends on min(p; q; 1 � p; 1� q).Proposition 2.5 (the approximate value of V(p;q)(f (k)sd )): For any �xed p; q 2 (0; 1) and everyk > 2, it holds that V(p;q)(f (k)sd ) = v � jp � qj, where v = �(pk) � jp � qj if k � 5(p � q)�2 andv � 1� exp(�(p� q)2k=3) otherwise.Proof: We shall approximate V(p;q)(f (k)sd ) by using Eq. (16) (rather than Eq. (21)). Re
all thatby Eq. (16) we have V(p;q)(f (k)sd ) = (p� q) � E[sign(Sk)℄ (22)where Sk = Pki=1 Ti (and Ti = Xi � Yi). We assume, without loss of generality, that p > q andlower bound the value of E[sign(Sk)℄, using E[Ti℄ = p� q. We distinguish three 
ases a

ording tothe relation between k and p� q:Case 1: k � 5(p� q)�2. In this 
ase we use the (standard additive) Cherno� Bound, and deriveE[sign(Sk)℄ = Pr[Sk>0℄� Pr[Sk<0℄> 1� 2 � Pr[Sk�0℄> 1� 2 � exp �(p� q)2 � k2 !:This establishes the relevant part of the 
laim (i.e., V(p;q)(f (k)sd ) = v � jp � qj, where v =1� 2 exp(�(p� q)2k=2) > 1� exp(�(p� q)2k=3)).The following 
omplemantary two 
ases are distinguished a

ording to a 
onstant 
 � 5 thatdepends only on 
p;q def= pp(1� p) + q(1� q).9



Case 2: k 2 [
 � (p� q)�1; 5(p � q)�2℄. In this 
ase we use the Berry{Esseen estimate of the Cen-tral Limit Theorem (
f., e.g., [1, Se
. XVI.5℄). Spe
i�
ally, we approximate E[sign(Sk)℄ byE[sign( eSk)℄, where eSk is the normal distribution approximation of Sk; that is,eSk def= k � (p� q) +pk � 
p;q �N(0; 1); (23)where N(0; 1) denotes the normal distribution (with mean 0 and varian
e 1), and pk � 
p;qrepla
es pVar[Sk℄ = pk �pp(1� p) + q(1� q). More formally, we use the fa
t that for everyr it holds that that jPr[Sk>r℄� Pr[ eSk>r℄j < � def= 3�
p;q3pk (24)where � = E[jT1 � (p� q)j3℄ < 2 � 
p;q2. It follows thatE[sign(Sk)℄ = Pr[Sk>0℄� Pr[Sk<0℄ (25)= Pr[ eSk>0℄� Pr[ eSk<0℄� 2� (26)= 2Pr[ eSk>0℄� 1� 2�: (27)Now, we analyze Pr[ eSk>0℄ viaPr[(p� q)k +pk
p;q �N(0; 1) > 0℄ = Pr "N(0; 1) > �p� q
p;q � pk# (28)Setting r def= (p � q)pk � 1, it follows that Pr[N(0; 1) > �r=
p;q℄ = 0:5 + �(r). So Eq. (27)yields �(pk � (p � q)) � �(k�1=2), whi
h is lower bounded by �(pk � (p � q)), when usingk � 
 � (p � q)�1 (where 
 is large enough w.r.t the above hidden 
onstants). It followsV(p;q)(f (k)sd ) = �(pk) � (p � q)2, whi
h establishes the other part of the 
laim for the 
urrent
ase.Case 3: k � 
 � (p� q)�1. It suÆ
es to establish that V(p;q)(f (k)sd ) = �(pk) � (p � q)2, for k �(p�q)�1. This is done by writing Ti as T 0i+(1�T 0i )�T 00i , where T 0i 2 f0; 1g and T 00i 2 f�1; 0; 1gare independent random variables satisfying Pr[T 0i = 1℄ = p � q and Pr[T 00i = 1℄ = Pr[T 00i =�1℄ = q�pq1�(p�q) . Letting S0k =Pi2[k℄ T 0i and S00k =Pi2[k℄ T 00i , we haveE[sign(Sk)℄ = kXj=0Pr[S0k = j℄ � E[sign(S00k�j + j)℄ (29)= kXj=0Pr[S0k = j℄ � �E[sign(S00k�j)℄ + 2 � Pr[0 � S00k�j < j℄� (30)where S00k�j represents the sum of the k� j variables T 00i that 
orrespond to the indi
es i thatsatisfy T 0i = 0 (i.e., S00k�j representsPi2I T 00i , where I = fi : T 0i = 0g). Sin
e E[sign(S00k�j)℄ = 0(be
uase E[T 00i ℄ = 0), Eq. (30) simpli�es to2 � kXj=1Pr[S0k = j℄ � Pr[0 � S00k�j < j℄: (31)
10



The lower bound in the 
laim (i.e., v = 
(pk � (p � q))) follows on
e we prove that Pr[S0k=1℄ � Pr[S00k�1=0℄ = 
(pk � (p� q)). We start by noting thatPr[S0k = 1℄ � Pr[S00k�1 = 0℄ = k � (p� q)(1� (p� q))k�1 � Pr[S00k�1 = 0℄ (32)> (p� q)k3 � Pr[S00k�1 = 0℄ (33)In order to estimate Pr[S00k�1 = 0℄, we write S00k�1 as the di�eren
e of Pi2[k�1℄X 00i andPi2[k�1℄ Y 00i , where the X 00i 's and Y 00i 's are iid 0-1 random valiables (i.e., p00 = Pr[X 00i = 1℄satis�es p00(1� p00) = (1�p)q1�(p�q)). We getPr[S00k�1 = 0℄ � Xj=(k�1)p00�pk�1Pr24 Xi2[k�1℄X 00i = j35 � Pr24 Xi2[k�1℄Y 00i = j35= Xj=(k�1)p00�pk�1Pr24 Xi2[k�1℄X 00i = j352> Pr hPi2[k�1℄X 00i = (k � 1)p00 �pk � 1i22pk � 1 + 1> Pr hq(k � 1)
p00;p00 � N(0; 1) = �pk � 1i2 � o(1)2pk � 1 + 1where the last inequality uses the Berry{Esseen estimate of the Central Limit Theorem.Observing that Pr[N(0; 1) = �1=
p00;p00 ℄ = 
(1), it follows that Pr[S00k�1 = 0℄ = 
(1=pk � 1),and so Eq. (32) is 
((p� q)k=pk � 1) (and the same holds w.r.t Eq. (31)). To upper boundEq. (31), we note that it 
an be upper bounded by2 � kXj=1Pr[S0k = j℄ � j � Pr[S00k�j = 0℄ < 2 � kXj=1 kj! � (p� q)j � j � Pr[S00k�j = 0℄= O((p� q)k � Pr[S00k�1 = 0℄)and the 
laim follows be
ause Pr[S00k�1 = 0℄ = O(1=pk). This establishes V(p;q)(f (k)sd ) =�(pk) � (p� q)2 also in the 
urrent 
ase.The proposition follows.3 Con
lusionThe obvious way of using statisti
al information (e.g., a binary guess that is positively 
orrelatedwith the 
orre
t value) is to amplify the 
on�den
e level of the information and use it as if it were
ertainly 
orre
t. The 
urrent work studies an alternative method of using statisti
al informationand shows that in some settings using unreliable information dire
tly works quite well. This wasdemonstrated already in Se
tion 1.2, whereas the rest of this work studies the question of how tomake the best use of multiple independent 
opies of su
h statisti
al information.11
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