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1 The problem and its solutionsThis work addresses a generi tehnial problem that arises in the ontext of trying to establish theomputational indistinguishability of ertain pairs of probability ensembles. The problem refersto the fat that omputational (and also statistial) indistinguishability is de�ned in terms of theabsolute di�erene between probabilities, whereas it is typially easier to manipulate the di�ereneitself. Thus, we seek a method of onverting a non-negligible absolute di�erene into a non-negligibledi�erene; that is, we wish the di�erene itself (rather than its absolute value) to be positive.1.1 A motivational exampleMany seurity de�nitions are formulated by referring to two pairs of probability ensembles thatare indexed by strings, and requiring that these pairs of probability ensembles are omputationallyindistinguishable (see, e.g., the de�nitions of omputational zero-knowledge [2, Se. 4.3.1.2℄ andseure two-party omputation [3, Se. 7.2℄). Suh a probability ensemble fZ�g�2S onsists of (anin�nite number of) \random variables" Z�'s, whih are eah distributed over some �nite set (relatedto its index, �). Two suh ensembles, fX�g�2S and fY�g�2S , are said to be omputationallyindistinguishable if for every probabilisti polynomial-time algorithm D it holds thatgD(�) def= jPr[D(�;X�)=1℄ � Pr[D(�; Y�)=1℄j (1)is negligible as a funtion of j�j (i.e., for every positive polynomial p and all suÆiently long �'sthe value of gD(�) is upper bounded by 1=p(j�j)).The aforementioned formulation mandates that the value of gD(�) is small for every � 2 S.A weaker requirement, whih suÆes in pratie, is that it is infeasible to �nd � 2 S for whihthe value of gD(�) is not small. This requirement may be formulated as mandating that for everyprobabilisti polynomial-time algorithm F , representing a potential �nder that given 1n outputsan n-bit long string � 2 S, the expeted value of gD(�) (when de�ned as in Eq. (1)) is negligible(as a funtion of n); that is, E[gD(F (1n))℄ is negligible in n. This ondition means thatX� Pr[F (1n)=�℄ � jPr[D(�;X�)=1℄ � Pr[D(�; Y�)=1℄j (2)is negligible as a funtion of n.When trying to establish a ondition as in Eq. (2) it is often easier to establish a orrespondingondition in whih the absolute value operator is dropped. Indeed, suppose that for every F andD as above it holds thatX� Pr[F (1n)=�℄ � (Pr[D(�;X�)=1℄ � Pr[D(�; Y�)=1℄) (3)is negligible (as a funtion of n). Can we infer that Eq. (2) holds too?In the ase that both ensembles are polynomial-time sampleable, a positive answer is impliitin many works. Essentially, given a probabilisti polynomial-time algorithm D suh that Eq. (2)is not negligible, one derives a probabilisti polynomial-time algorithm D0 suh that Eq. (3) is notnegligible by estimating the di�erene between Pr[D(�;X�)=1℄ and Pr[D(�; Y�)=1℄ and ippingD's output if the estimated di�erene is negative. Thus, the onstrution of D0 depends also on gD(whih determines the adequate level of approximation). In partiular, the time omplexity of D0is (polynomially) related to gD. Our goal is to get rid of this dependeny; in partiular, we wish toavoid the aforementioned approximation. 1



1.2 A generi problem and one solutionThe generi problem we fae is onverting an algorithm D that distinguishes X� and Y� (i.e.,jPr[D(�;X�) = 1℄ � Pr[D(�; Y�) = 1℄j is notieable) into an algorithm D0 that on input (�;X�)outputs 1 with probability that is notieably higher than Pr[D(�; Y�) = 1℄. We stress that wewish this transformation to hold for every �, whereas it may be that for some �'s the di�erenePr[D(�;X�)=1℄�Pr[D(�; Y�)=1℄ is positive while for other �'s the di�erene is negative. Clearly,D0 must know something about X� and Y� in order for this to be possible, and indeed we provideD0with samples taken from X� and Y� (or, atually, with algorithms for sampling these distributions).Thus, the problem we fae is atually the following one. We are given a probabilisti polynomial-time algorithm D and sampling algorithms for two ensembles, fX�g�2S and fY�g�2S (i.e., prob-abilisti polynomial-time algorithms X and Y suh that on any input � it holds that X� � X(�)and Y� � Y (�)). Our task is to onstrut a probabilisti polynomial-time algorithm D0 suh thatfor some funtion � : (0; 1℄! (0; 1℄ it holds thatPr[D0(�;X�)=1℄ � Pr[D0(�; Y�)=1℄ � � (jPr[D(�;X�)=1℄ � Pr[D(�; Y�)=1℄j) : (4)We stress that the r.h.s of Eq. (4) refers to the absolute di�erene between two probabilities, whereasthe l.h.s refers to a orresponding di�erene that is not taken in absolute value and yet is requiredto be positive (whenever the former di�erene is positive).We seek a universal transformation of D into D0, whereas this transformation may use a pre-determined number of auxiliary samples of the two distributions. That is, the resulting algorithmD0 is given as input a single sample that is drawn from one of two distributions (i.e., either fromX� or from Y�), but in addition it an obtain (a predetermined number of) samples from eah ofthe two distributions. Like D, algorithm D0 should distinguish the two ases (whih orrespond tothe soure of its input). We stress that we wish the omplexity of D0 (and spei�ally the numberof auxiliary samples it obtains) to be independent of gD(�). We note that suh a transformation(of D into D0) may be useful also in other settings. One suh generi example is provided bysettings in whih the notion of negligible probability being onsidered is signi�antly smaller thanthe reiproal of the omplexity of the distinguishers (e.g., onsider polynomial-time distinguishersoupled with (sub-)exponentially small distinguishing gaps).A simple transformation. One solution to the foregoing problem is to let D0 estimate the signof Pr[D(�;X�) = 1℄ � Pr[D(�; Y�) = 1℄ by using a single sample of X� and a single sample of Y�.(Although this estimate is quite poor, it an be shown to suÆe.) Spei�ally, on input (� and) z(where z is taken from either X� or Y�), algorithm D0 proeeds as follows:1. Ignoring its (\main") input (i.e., z), algorithm D0 generates a single sample x of X� and asingle sample y of Y�, and omputes �  D(�; x) and �  D(�; y);2. If � > � then D0 invokes D on its input and outputs D(�; z).If � < � then D0 outputs 1�D(�; z).Otherwise (i.e., � = �), algorithm D0 outputs the outome of a fair oin toss.Indeed, we have assumed here (without loss of generality) that D always outputs a Boolean value.Intuitively, � � � provides a probabilisti guess of the sign of Pr[D(�;X�)=1℄� Pr[D(�; Y�)=1℄,and using this guess in the obvious manner yields the desired result.2



Proposition 1.1 Let D and D0 be as above. Then,Pr[D0(�;X�)=1℄ � Pr[D0(�; Y�)=1℄ = (jPr[D(�;X�)=1℄ � Pr[D(�; Y�)=1℄j)2 :Proof: For the analysis of the performane of D0, we onsider an algorithm D00, whih may outputany number in [0; 1℄, suh thatD00(�; z) def= 12 � �1 + sign(D(�;X�)�D(�; Y�)) � (�1)D(�;z)+1� ; (5)where sign(r) = 1 if r > 0 (resp., sign(r) = �1 if r < 0), and sign(0) = 0. Reall that inStep 2 of D0(�; z), the output is set to D(�; z) if � > � , to 1 � D(�; z) if � < � , and is randomif � = � . Using D(�; z) 2 f0; 1g and assuming � 6= � , the output of D0(�; z) an be written as(1+sign(���)�(�1)D(�;z)+1)=2. Thus, D0(�; z) outputs 1 with probabilityD00(�; z), and it suÆesto evaluate E[D00(�;X�)℄� E[D00(�; Y�)℄ = Pr[D0(�;X�)=1℄� Pr[D0(�; Y�)=1℄: (6)Denoting p = Pr[D(�;X�)=1℄ and q = Pr[D(�; Y�)=1℄ (and using X 0� and Y 0� to denote indepen-dent opies of X� and Y�), we evaluate Eq. (6) as follows.gD00(�) def= E[D00(�;X�)℄� E[D00(�; Y�)℄= 12 � E h1 + sign(D(�;X 0�)�D(�; Y 0�)) � (�1)D(�;X�)+1i�12 � E h1 + sign(D(�;X 0�)�D(�; Y 0�)) � (�1)D(�;Y�)+1i= 12 � E �sign(D(�;X 0�)�D(�; Y 0�))� � E h(�1)D(�;X�)+1 � (�1)D(�;Y�)+1iUsing E[(�1)D(�;X�)+1℄ = p� (1� p) = 2p� 1 and E[(�1)D(�;Y�)+1℄ = 2q � 1, we getgD00(�) = (p� q) � E [sign(D(�;X�)�D(�; Y�))℄= (p� q) � (Pr[D(�;X�)>D(�; Y�)℄� Pr[D(�;X�)<D(�; Y�)℄)= (p� q) � (p � (1� q)� (1� p) � q)whih equals (p� q)2.1.3 Other transformationsTwo natural questions arise:1. Is the foregoing onstrution of D0 optimal (with respet to all onstrutions that use a singleauxiliary sample from eah of the two distributions)?2. Can we do better if we obtain k auxiliary samples from eah of the two distributions (ratherthan one auxiliary sample from eah of the two distributions)? How good an suh a on-strution be?Before answering these questions we note that no onstrution (whih is given a single test samplefrom an unknown distribution) an outperform the variation distane between the tested distribu-tions, (i.e., jp � qj, where p = Pr[D(�;X�) = 1℄ and q = Pr[D(�; Y�) = 1℄). We answer the abovequestions as follows. 3



Main Result (informal). For every k � 1, the best onstrution that uses k auxiliary samplesfrom eah of the two distributions is the one that rules analogously to Eq. (5), when applying thesign funtion to the di�erene between the average value of D in the two ases. Suh a proedureyields a gap that equals the minimum of 
(pk) � (p� q)2 and (1� �p;q(k)) � jp� qj, where �p;q(k) =exp(�
((p� q)2 � k)).We stress that the above result holds both in the omputational setting and in the informationtheoreti setting.2 The atual treatmentLet X and Y be 0-1 random variables (representing D(�;X�) and D(�; Y�), respetively), and letXi's (resp., Yi's) be independent opies of X (resp., Y ) representing additional samples availableto us. We seek a randomized proess � : f0; 1g2k+1 ! f0; 1g suh thatE[�(X1; :::;Xk; Y1; :::; Yk;X)℄� E[�(X1; :::;Xk; Y1; :::; Yk; Y )℄ (7)is maximized (as a funtion of Æ = jE[X℄�E[Y ℄j, when maximizing over all possible 0-1 random vari-ablesX and Y that are at statistial distane Æ). Indeed, the probability that �(a1; :::; ak; b1; :::; bk; ) =1 is determined by a funtion f : f0; 1g2k+1 ! [0; 1℄ suh thatPr[�(a1; :::; ak ; b1; :::; bk; )=1℄ = f(a1; :::; ak; b1; :::; bk; )Thus, it suÆes to seek suh a funtion f that maximizesE[f(X1; :::;Xk; Y1; :::; Yk;X)℄� E[f(X1; :::;Xk; Y1; :::; Yk; Y )℄ (8)(as a funtion of Æ = jE[X℄ � E[Y ℄j).Let us formally de�ne a more general optimization problem. For a funtion f : f0; 1g2k+1 ![0; 1℄ and a pair (p; q) 2 [0; 1℄, we denote by V(p;q)(f) the value of Eq. (8), when X and Y satisfyp = E[X℄ and q = E[Y ℄. Now, for any (possibly in�nite) set (or lass) of pairs in [0; 1℄, denotedC, and any funtion f : f0; 1g2k+1 ! [0; 1℄, we denote VC(f) def= min(p;q)2CfV(p;q)(f)g. We seek afuntion f for whih VC(f) is maximal.Overview. First, we will show that, without loss of generality, the funtion f(x1; :::; xk; y1; ::::; yk; z)may only depend on s def= Pi2[k℄ xi, t def= Pi2[k℄ yi and z, and furthermore that it an take a spei�anonial form (see Setion 2.1). Next, in Setion 2.2, we will show that in all natural ases (i.e.,for \symmerti" lasses) the anonial form an be further simpli�ed to depend only on sign(s� t)and z. Atually, this will yield a single optimal funtion. Lastly, in Setion 2.3, we will analyze theperformane of this funtion.2.1 Canonial funtionsWe will �rst show that it suÆes to onsider funtions f of the formf(a1; ::::; ak ; b1; ::::; bk; ) = 1 + g �Pi2[k℄ ai ;Pi2[k℄ bi� � (�1)2 (9)where g : N2 ! [�1;+1℄. We all suh an f anonial. Note that the normalization (i.e., shiftingby 1 and dividing by 2) is used to map [�1;+1℄ to [0; 1℄. (Note that an additive shift of f leavesthe value of Eq. (8) intat, whereas multiplying f by any fator has the same e�et on the value ofEq. (8).) 4



De�nition 2.1 (dominating strategies) We say that f 0 dominates f (w.r.t C) if for every (p; q) 2 Cit holds that V(p;q)(f 0) � V(p;q)(f).Proposition 2.2 (strong optimality): For every C and every f : f0; 1g2k+1 ! [0; 1℄ there exists aanonial funtion that dominates f .Proof: Given any funtion f , we onsider the funtion f 0 suh that for every a; b 2 f0; 1; :::; kgand  2 f0; 1g, the value f 0(a; b; ) equals the average of f(a1; ::::; ak; b1; ::::; bk; ) taken over all(a1; ::::; ak); (b1; ::::; bk) 2 f0; 1gk that satisfy Pi2[k℄ ai = a and Pi2[k℄ bi = b. Then, for every (p; q),we have V(p;q)(f 0) = V(p;q)(f). Note that the value of f 0 at any (a; b) and  2 f0; 1g an be writtenas 1 + (�1)2 � f 0(a; b; 0) + 1� (�1)2 � f 0(a; b; 1)= 12 � �f 0(a; b; 0) + f 0(a; b; 1)� + (�1)2 � �f 0(a; b; 0) � f 0(a; b; 1)�= g0(a; b) + g1(a; b) � (�1)where g0(a; b) = (f 0(a; b; 0) + f 0(a; b; 1))=2 and g1(a; b) = (f 0(a; b; 0) � f 0(a; b; 1))=2. Note thatg1(a; b) 2 [�0:5;+0:5℄ and that replaing g0(a; b) by 0:5 does not hange the value of V(p;q)(f 0).Thus, setting f 00(a; b; ) = (1 + 2g1(a; b) � (�1))=2, we obtain a anonial funtion that dominatesf (beause V(p;q)(f 00) = V(p;q)(f 0) = V(p;q)(f)).Conlusion and Notation. At this point we an limit our searh for good funtions (i.e., fun-tions that maximize Eq. (8)) to anonial funtions. That is, for every funtion g : N2 � f0; 1g ![�1;+1℄ and every k 2 N , we de�ne f (k)g as in Eq. (9), and onsider the value V(p;q)(f (k)g ). Toestimate V(p;q)(f (k)g ), we let X and Y be 0-1 random variables with E[X℄ = p and E[Y ℄ = q and getV(p;q)(f (k)g ) = 12 � E24g0�Xi2[k℄Xi ; Xi2[k℄Yi1A � (�1)X35� 12 � E24g0�Xi2[k℄Xi ; Xi2[k℄Yi1A � (�1)Y 35 (10)Using the independene of X;Y and the Xi's and Yi's, we rewrite Eq. (10) asV(p;q)(f (k)g ) = 12 � E24g0�Xi2[k℄Xi ; Xi2[k℄Yi1A35 � E h(�1)X � (�1)Y i : (11)Realling that E[(�1)X ℄ = (1� p)� p = 1� 2p and E[(�1)Y ℄ = 1� 2q, we get E[(�1)X � (�1)Y ℄ =2(q � p) and so V(p;q)(f (k)g ) = (q � p) � E[g(X 0; Y 0)℄; (12)where X 0 =Pi2[k℄Xi and Y 0 =Pi2[k℄ Yi. Denoting B(p; i; k) = �ki� � pi � (1� p)k�i, we getV(p;q)(f (k)g ) = (q � p) � Xi;j2f0;1;:::;kgB(p; i; k) �B(q; j; k) � g(i; j) (13)
5



2.2 Symmetri lassesWe fous on symmetri lasses of pairs, where C is symmetri if for every (p; q) 2 C it also holdsthat (q; p) 2 C. In ontrast, if C ontains only pairs (p; q) suh that p > q, then we may set k = 0and use the identity funtion (beause E[X℄�E[Y ℄ = p� q = StatDiff(X;Y )). We show that, forsymmetri lasses, the \sign of the di�erene" funtion (i.e., sd(a; b) = sign(b� a) 2 f�1; 0;+1g)is optimal as a funtion g.Proposition 2.3 (optimality): For every symmetri C and every k 2 N and g : N2 ! [�1;+1℄, itholds that VC(f (k)sd ) � VC(f (k)g ), where sd(a; b) = sign(b� a).Reall that sign(d) = �1 if d < 0 (resp., sign(d) = 1 if d > 0), and sign(0) = 0.Proof: Let (p; q) 2 C be suh that V(p;q)(f (k)sd ) = VC(f (k)sd ). Then, VC(f (k)g ) � (V(p;q)(f (k)g ) +V(q;p)(f (k)g ))=2 (by de�nition of VC(f (k)g ) and the fat that (q; p) 2 C [whih follows by the symmetryof C℄), whereas VC(f (k)sd ) � V(p;q)(f (k)sd ) (by the hoie of (p; q) 2 C). Also note that V(p;q)(f (k)sd ) =V(q;p)(f (k)sd ) (by the invariane of the funtion f (k)sd under of this swith, as seen in Eq. (12)). Thus,it suÆes to show thatV(p;q)(f (k)sd ) + V(q;p)(f (k)sd ) � V(p;q)(f (k)g ) + V(q;p)(f (k)g ): (14)For every a; b 2 f0; 1; :::; kg, we shall show that replaing g(a; b) by sign(b� a) may only inreaseV(p;q)(f (k)g ) + V(q;p)(f (k)g ). Let us start by realling Eq. (13), whih yieldsV(p;q)(f (k)g ) + V(q;p)(f (k)g ) = (q � p) � Xi;j2f0;1;:::;kgB(p; i; k)B(q; j; k) � g(i; j)+(p� q) � Xi;j2f0;1;:::;kgB(q; i; k)B(p; j; k) � g(i; j)= (q � p) � Xi;j2f0;1;:::;kg[B(p; i; k)B(q; j; k) �B(q; i; k)B(p; j; k)℄ � g(i; j):Clearly, for i = j we have B(p; i; k)B(q; j; k) = B(q; i; k)B(p; j; k). For i < j (resp., j < i), it holdsthat B(p; i; k)B(q; j; k) > B(q; i; k)B(p; j; k) if and only if p < q (resp., q < p). The latter laimseems self-evident, yet we provide a detailed proof next (for the ase p; q 2 (0; 1)).B(p; i; k)B(q; j; k) =  ki! � pi � (1� p)k�i �  kj! � qj � (1� q)k�j=  ki! � (1� p)k �  kj! � (1� q)k � (p=(1 � p))i � (q=(1 � q))jThus, B(p;i;k)B(q;j;k)B(q;i;k)B(p;j;k) equals (p=(1� p))i � (q=(1� q))j(q=(1� q))i � (p=(1� p))j = (q=(1� q))j�i(p=(1� p))j�iNote that we have p < q i� (p=(1�p)) < (q=(1�q)), and so p < q i� (p=(1�p))j�i < (q=(1�q))j�i.It follows that p < q i� B(p; i; k)B(q; j; k) > B(q; i; k)B(p; j; k).6



Reall that for i < j, it holds that B(p; i; k)B(q; j; k) � B(q; i; k)B(p; j; k) > 0 if and only ifq > p. Thus, in this ase, we maximize(q � p) � [B(p; i; k)B(q; j; k) �B(q; i; k)B(p; j; k)℄ � g(i; j) (15)by setting g(i; j) = 1 (beause the �rst two fators have the same sign). Similarly, for j > i, itholds that B(p; i; k)B(q; j; k)�B(q; i; k)B(p; j; k) > 0 if and only if q < p, and so the maximizationrequires g(i; j) = �1. Indeed, for i = j, any setting of g(i; j) will do. Thus, an optimal setting ofg(i; j) is sign(j � i), whih equals sd(i; j). The laim follows.2.3 The performane of the funtion f (k)sdWe now turn to evaluating the performane of the optimal funtion; that is, we evaluate V(p;q)(f (k)sd ).Reall that V(p;q)(f (k)sd ) = (q � p) � Xi;j2f0;1;:::;kgB(p; i; k)B(q; j; k) � sd(i; j)= (p� q) � Xi;j2f0;1;:::;kgB(p; i; k)B(q; j; k) � sign(i� j)whih yields V(p;q)(f (k)sd ) = (p� q) � vp;q, wherevp;q def= E24sign0�Xi2[k℄Xi �Xi2[k℄Yi1A35 (16)suh that the Xi's (resp., Yi's) are 0-1 i.i.d with expetation p (resp., q). Letting Ti = Xi � Yi, werewrite Eq. (16) as E[sign(Pi2[k℄ Ti)℄, whih equalsPr24Xi2[k℄Ti > 035� Pr24Xi2[k℄Ti < 035 : (17)Note that E[Ti℄ = p� q and Var[Ti℄ = p(1� p) + q(1� q).The ases of k = 1 and k = 2. For small k, we an write expliit expressions for Eq. (17); forexample, for k = 1 Eq. (17) yields Pr[T1 > 0℄ � Pr[T1 < 0℄ = p(1 � q) � q(1 � p) = p � q, and soV(p;q)(f (1)sd ) = (p� q)2. For k = 2, we havePr[T1 + T2>0℄� Pr[T1 + T2<0℄ = Pr[T1 + T2=2℄ + 2Pr[T1=1 ^ T2=0℄� (Pr[T1 + T2=�2℄ + 2Pr[T1=�1 ^ T2=0℄)= p2(1� q)2 + 2p(1� q)(pq + (1� p)(1� q))� �q2(1� p)2 + 2q(1 � p)(pq + (1� p)(1� q))�= (1 + (1� p)(1� q) + pq) � (p� q)and so V(p;q)(f (2)sd ) = (1+(1�p)(1�q)+pq)�(p�q)2 (see alternative proof following Proposition 2.4).Thus, the improvement of the ase of k = 2 over the ase of k = 1 is a fator of (1+(1�p)(1�q)+pq),whih is greater than 1 unless fp; qg = f0; 1g (where a single sample is as good as k samples, forany k > 1). 7



The general ase of k > 1. We now turn to a general analysis of Eq. (17) (and V(p;q)(f (k)sd )).Spei�ally, we onsider the inrease in the value of Eq. (17) when going from k to k + 1; that is,we de�ne �(p;q)(k) def= E24sign0� Xi2[k+1℄Ti1A35� E24sign0�Xi2[k℄Ti1A35 (18)and note that V(p;q)(f (k+1)sd ) = V(p;q)(f (k)sd ) + (p� q) ��(p;q)(k).Proposition 2.4 (the growth of V(p;q)(f (k)sd ) as a funtion of k): For every k � 1, it holds that�(p;q)(k) = (p� q) � Pr[Sk=0℄, where Sk def= Pi2[k℄ Ti.It follows that V(p;q)(f (k+1)sd ) = V(p;q)(f (k)sd )+(p� q)2 �Pr[Sk=0℄, and so V(p;q)(f (k+1)sd ) � V(p;q)(f (k)sd ),where equality holds if and only if fp; qg = f0; 1g (when ignoring the ase of p = q). Proposition 2.4an also be used to re-establish V(p;q)(f (2)sd ) = (1+ pq+ (1� p)(1� q)) � (p� q)2, sine V(p;q)(f (1)sd ) =(p� q)2 and Pr[S1=0℄ = pq + (1� p)(1� q).Proof: Starting with Eq. (18), we have�(p;q)(k) = E[sign(Sk + Tk+1)℄� E[sign(Sk)℄= Xs2f�1;0;1gPr[Sk=s℄ � E[sign(s+ Tk+1)� sign(s)℄= Pr[Sk=0℄ � (Pr[Tk+1=1℄� Pr[Tk+1=�1℄)+Pr[Sk=�1℄ � Pr[Tk+1=1℄� Pr[Sk=1℄ � Pr[Tk+1=�1℄By symmetry (e.g., onsider the ase of k = 1), it is rather self-evident that Pr[Sk=�1℄ �Pr[Tk+1=1℄ = Pr[Sk=1℄ � Pr[Tk+1=�1℄, yet we provide a detailed proof next.Pr[Sk=�1℄ � Pr[Tk+1=1℄ = p(1� q) � kXj=1B(p; j � 1; k)B(q; j; k)= p(1� q) � kXj=1 kj � 1!pj�1(1� p)k�j+1 kj!qj(1� q)k�j= kXj=1 kj � 1!pj(1� p)k+1�j kj!qj(1� q)k�j+1= (1� p)q kXj=1 kj � 1!pj(1� p)k�j kj!qj�1(1� q)k�j+1= (1� p)q � kXj=1B(p; j; k)B(q; j � 1; k)= Pr[Sk=1℄ � Pr[Tk+1=�1℄Hene, �(p;q)(k) = Pr[Sk = 0℄ � (Pr[Tk+1=1℄� Pr[Tk+1=�1℄), and the laim follows (beausePr[Tk+1=1℄� Pr[Tk+1=�1℄ = p� q). 8



Proposition 2.4 yields another expression for V(p;q)(f (k)sd ):V(p;q)(f (k)sd ) = V(p;q)(f (1)sd ) + (p� q) � k�1X̀=1�(p;q)(`) (19)= (p� q)2 + (p� q)2 � k�1X̀=1 Pr[S`=0℄ (20)Note that for fp; qg = f0; 1g this expression (i.e., Eq. (20)) equals 1 (for any k � 1), whereasfor p = q it equals 0. In all other ases (i.e., 0 < (p � q)2 < 1) Eq. (20) grows with k. UsingPr[S`=0℄ =Pj̀=0B(p; j; `)B(q; j; `), we getV(p;q)(f (k)sd ) = (p� q)2 + (p� q)2 � k�1X̀=1 X̀j=0 j̀!2(pq)j((1� p)(1� q))`�j (21)In the speial ase of p = 0, Eq. (21) yieldsV(0;q)(f (k)sd ) = q2 + q2 � k�1X̀=1(1� q)`= q2 + q � �(1� q)� (1� q)k�whih onverges to q = jp � qj when k ! 1. Similarly, V(1;q)(f (k)sd ) onverges to 1 � q = jp � qj(where p = 1). Note that in these ases onvergene ours with k � jp � qj�1. As we shall seenext, in the other ases (i.e., p; q 2 (0; 1)), onvergene ours with k � jp�qj�2. We note that theonstants in the approximation given next depend on the distane of p and q from the boundariesof (0; 1); that is, these onstants depends on min(p; q; 1 � p; 1� q).Proposition 2.5 (the approximate value of V(p;q)(f (k)sd )): For any �xed p; q 2 (0; 1) and everyk > 2, it holds that V(p;q)(f (k)sd ) = v � jp � qj, where v = �(pk) � jp � qj if k � 5(p � q)�2 andv � 1� exp(�(p� q)2k=3) otherwise.Proof: We shall approximate V(p;q)(f (k)sd ) by using Eq. (16) (rather than Eq. (21)). Reall thatby Eq. (16) we have V(p;q)(f (k)sd ) = (p� q) � E[sign(Sk)℄ (22)where Sk = Pki=1 Ti (and Ti = Xi � Yi). We assume, without loss of generality, that p > q andlower bound the value of E[sign(Sk)℄, using E[Ti℄ = p� q. We distinguish three ases aording tothe relation between k and p� q:Case 1: k � 5(p� q)�2. In this ase we use the (standard additive) Cherno� Bound, and deriveE[sign(Sk)℄ = Pr[Sk>0℄� Pr[Sk<0℄> 1� 2 � Pr[Sk�0℄> 1� 2 � exp �(p� q)2 � k2 !:This establishes the relevant part of the laim (i.e., V(p;q)(f (k)sd ) = v � jp � qj, where v =1� 2 exp(�(p� q)2k=2) > 1� exp(�(p� q)2k=3)).The following omplemantary two ases are distinguished aording to a onstant  � 5 thatdepends only on p;q def= pp(1� p) + q(1� q).9



Case 2: k 2 [ � (p� q)�1; 5(p � q)�2℄. In this ase we use the Berry{Esseen estimate of the Cen-tral Limit Theorem (f., e.g., [1, Se. XVI.5℄). Spei�ally, we approximate E[sign(Sk)℄ byE[sign( eSk)℄, where eSk is the normal distribution approximation of Sk; that is,eSk def= k � (p� q) +pk � p;q �N(0; 1); (23)where N(0; 1) denotes the normal distribution (with mean 0 and variane 1), and pk � p;qreplaes pVar[Sk℄ = pk �pp(1� p) + q(1� q). More formally, we use the fat that for everyr it holds that that jPr[Sk>r℄� Pr[ eSk>r℄j < � def= 3�p;q3pk (24)where � = E[jT1 � (p� q)j3℄ < 2 � p;q2. It follows thatE[sign(Sk)℄ = Pr[Sk>0℄� Pr[Sk<0℄ (25)= Pr[ eSk>0℄� Pr[ eSk<0℄� 2� (26)= 2Pr[ eSk>0℄� 1� 2�: (27)Now, we analyze Pr[ eSk>0℄ viaPr[(p� q)k +pkp;q �N(0; 1) > 0℄ = Pr "N(0; 1) > �p� qp;q � pk# (28)Setting r def= (p � q)pk � 1, it follows that Pr[N(0; 1) > �r=p;q℄ = 0:5 + �(r). So Eq. (27)yields �(pk � (p � q)) � �(k�1=2), whih is lower bounded by �(pk � (p � q)), when usingk �  � (p � q)�1 (where  is large enough w.r.t the above hidden onstants). It followsV(p;q)(f (k)sd ) = �(pk) � (p � q)2, whih establishes the other part of the laim for the urrentase.Case 3: k �  � (p� q)�1. It suÆes to establish that V(p;q)(f (k)sd ) = �(pk) � (p � q)2, for k �(p�q)�1. This is done by writing Ti as T 0i+(1�T 0i )�T 00i , where T 0i 2 f0; 1g and T 00i 2 f�1; 0; 1gare independent random variables satisfying Pr[T 0i = 1℄ = p � q and Pr[T 00i = 1℄ = Pr[T 00i =�1℄ = q�pq1�(p�q) . Letting S0k =Pi2[k℄ T 0i and S00k =Pi2[k℄ T 00i , we haveE[sign(Sk)℄ = kXj=0Pr[S0k = j℄ � E[sign(S00k�j + j)℄ (29)= kXj=0Pr[S0k = j℄ � �E[sign(S00k�j)℄ + 2 � Pr[0 � S00k�j < j℄� (30)where S00k�j represents the sum of the k� j variables T 00i that orrespond to the indies i thatsatisfy T 0i = 0 (i.e., S00k�j representsPi2I T 00i , where I = fi : T 0i = 0g). Sine E[sign(S00k�j)℄ = 0(beuase E[T 00i ℄ = 0), Eq. (30) simpli�es to2 � kXj=1Pr[S0k = j℄ � Pr[0 � S00k�j < j℄: (31)
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The lower bound in the laim (i.e., v = 
(pk � (p � q))) follows one we prove that Pr[S0k=1℄ � Pr[S00k�1=0℄ = 
(pk � (p� q)). We start by noting thatPr[S0k = 1℄ � Pr[S00k�1 = 0℄ = k � (p� q)(1� (p� q))k�1 � Pr[S00k�1 = 0℄ (32)> (p� q)k3 � Pr[S00k�1 = 0℄ (33)In order to estimate Pr[S00k�1 = 0℄, we write S00k�1 as the di�erene of Pi2[k�1℄X 00i andPi2[k�1℄ Y 00i , where the X 00i 's and Y 00i 's are iid 0-1 random valiables (i.e., p00 = Pr[X 00i = 1℄satis�es p00(1� p00) = (1�p)q1�(p�q)). We getPr[S00k�1 = 0℄ � Xj=(k�1)p00�pk�1Pr24 Xi2[k�1℄X 00i = j35 � Pr24 Xi2[k�1℄Y 00i = j35= Xj=(k�1)p00�pk�1Pr24 Xi2[k�1℄X 00i = j352> Pr hPi2[k�1℄X 00i = (k � 1)p00 �pk � 1i22pk � 1 + 1> Pr hq(k � 1)p00;p00 � N(0; 1) = �pk � 1i2 � o(1)2pk � 1 + 1where the last inequality uses the Berry{Esseen estimate of the Central Limit Theorem.Observing that Pr[N(0; 1) = �1=p00;p00 ℄ = 
(1), it follows that Pr[S00k�1 = 0℄ = 
(1=pk � 1),and so Eq. (32) is 
((p� q)k=pk � 1) (and the same holds w.r.t Eq. (31)). To upper boundEq. (31), we note that it an be upper bounded by2 � kXj=1Pr[S0k = j℄ � j � Pr[S00k�j = 0℄ < 2 � kXj=1 kj! � (p� q)j � j � Pr[S00k�j = 0℄= O((p� q)k � Pr[S00k�1 = 0℄)and the laim follows beause Pr[S00k�1 = 0℄ = O(1=pk). This establishes V(p;q)(f (k)sd ) =�(pk) � (p� q)2 also in the urrent ase.The proposition follows.3 ConlusionThe obvious way of using statistial information (e.g., a binary guess that is positively orrelatedwith the orret value) is to amplify the on�dene level of the information and use it as if it wereertainly orret. The urrent work studies an alternative method of using statistial informationand shows that in some settings using unreliable information diretly works quite well. This wasdemonstrated already in Setion 1.2, whereas the rest of this work studies the question of how tomake the best use of multiple independent opies of suh statistial information.11
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