
Software Protectionand Simulation on Oblivious RAMs�Oded Goldreichy Rafail OstrovskyzAbstractSoftware protection is one of the most important issues concerning computer prac-tice. There exist many heuristics and ad-hoc methods for protection, but the problemas a whole has not received the theoretical treatment it deserves. In this paper we pro-vide theoretical treatment of software protection. We reduce the problem of softwareprotection to the problem of e�cient simulation on oblivious RAM.A machine is oblivious if the sequence in which it accesses memory locations isequivalent for any two inputs with the same running time. For example, an obliviousTuring Machine is one for which the movement of the heads on the tapes is identicalfor each computation. (Thus, the movement is independent of the actual input.) Whatis the slowdown in the running time of a machine, if it is required to be oblivious?In 1979 Pippenger and Fischer showed how a two-tape oblivious Turing Machine cansimulate, on-line, a one-tape Turing Machine, with a logarithmic slowdown in therunning time. We show an analogous result for the random-access machine (RAM)model of computation. In particular, we show how to do an on-line simulation of anarbitrary RAM by a probabilistic oblivious RAM with a poly-logarithmic slowdown inthe running time. On the other hand, we show that a logarithmic slowdown is a lowerbound.� This paper uni�es and extends abstracts of [G] and [Ost].y Current Address: Department of Computer Science and Applied Mathematics, Weizmann Institute ofScience, Rehovot, Israel. e-mail: oded@wisdom.weizmann.AC.ILz University of California at Berkeley and International Computer Science Institute at Berkeley.Supported by an NSF postdoctoral fellowship and ICSI. Part of this work was done at MIT. e-mail:rafail@cs.berkeley.edu

Contents1 Introduction 31.1 Software Protection : 31.1.1 The Role of Hardware : 31.1.2 Learning by Executing the SH-package : : : : : : : : : : : : : : : : : 41.1.3 An E�cient CPU Which Defeats Experiments : : : : : : : : : : : : : 61.2 Simulations by Oblivious RAMs : 71.3 Notes Concerning the Exposition : 92 Model and De�nitions 112.1 RAMs as Interactive Machines : 112.1.1 The Basic Model : 112.1.2 Augmentations to the Basic Model : : : : : : : : : : : : : : : : : : : 142.2 De�nition of Software Protection : 152.2.1 Experimenting With a RAM : 162.2.2 Software Protecting Transformations : : : : : : : : : : : : : : : : : : 162.3 De�nition of Oblivious RAM and Oblivious Simulations : : : : : : : : : : : : 192.3.1 Oblivious RAMs : 192.3.2 Oblivious Simulation : 202.3.3 Time-labeled Simulations : 213 Reducing Software Protection to Oblivious Simulation of RAMs 223.1 Software Protection Against Non-Tampering Adversaries : : : : : : : : : : : 223.2 Software Protection Against Tampering Adversaries : : : : : : : : : : : : : : 234 Towards Oblivious Simulation: The \Square Root" Solution 254.1 Overview of The \Square Root" Algorithm : : : : : : : : : : : : : : : : : : : 254.2 Implementation of the \Square Root" Algorithm : : : : : : : : : : : : : : : : 274.3 Analysis of The \Square Root" Algorithm : : : : : : : : : : : : : : : : : : : 295 The Hierarchical Solution 305.1 Overview : 305.2 The Restricted Problem : 315.3 Algorithm for the General Case : 335.4 Obliviousness of Access Pattern : 375.5 How To Perform The Oblivious Hash : 385.6 Cost : 425.7 Making Hierarchical Simulation Time-Labeled : : : : : : : : : : : : : : : : : 435.8 Software protection : 446 A Lower Bound 461

7 Concluding Remarks 48

2

1 IntroductionIn this paper, we present a theoretical treatment of software protection. In particular, wedistill and formulate the key problem of learning about a program from its execution, andreduce this problem to the problem of on-line simulation of an arbitrary program on anoblivious RAM. We then present our main result: an e�cient simulation of an arbitrary(RAM) program on a probabilistic oblivious RAM. Assuming that one-way functions exist,we show how one can make our software protection scheme robust against a polynomial-timeadversary who is allowed to alter memory contents during execution in a dynamic fashion.We begin by discussing software protection.1.1 Software ProtectionSoftware is very expensive to create and very easy to steal. \Software piracy" is a majorconcern (and a major loss of revenue) to all software-related companies. Software piratesborrow/rent software they need, copy it to their computer and use it without paying anythingfor it. Thus, the question of software protection is one of the most important issues concerningcomputer practice. The problem is to sell programs that can be executed by the buyer, yetcannot be redistributed by the buyer to other users. Much engineering e�ort is put intotrying to provide \software protection", but this e�ort seems to lack theoretical foundations.In particular, there is no crisp de�nition of what the problems are and what should beconsidered as a satisfactory solution. In this paper, we provide a theoretic treatment ofsoftware protection, by distilling a key problem and solving it e�ciently.Before going any further, we distinguish between two \folklore" notions: the problem ofprotection against illegitimate duplication and the problem of protection against redistribution(or �ngerprinting software). Loosely speaking, the �rst problem consists of ensuring thatthere is no e�cient method for creating executable copies of the software; while the secondproblem consists of ensuring that only the software producer can prove in court that he hasdesigned the program. In this paper we concentrate on the �rst problem.1.1.1 The Role of HardwareLet us examine various options which any computer-related company has when consideringhow to protect its software. We claim that a purely software-based solution is impossible.This is so, since any software (no matter how encrypted) is just a binary sequence whicha pirate can copy (bit by bit) and run on his own machine. Hence, to protect against du-plication, some hardware measures must be used: mere software (which is not physicallyprotected) can always be duplicated. Carried to an extreme, the trivial solution is to relysolely on hardware. That is, to sell physically-protected special-purpose computers for eachtask. This \solution" has to be rejected as infeasible (in current technology) and contra-dictory to the paradigm of general purpose machines. We conclude that a real solution toprotecting software from duplication should combine feasible software and hardware mea-sures. Of course, the more hardware we must physically protect, the more expensive our3

solution is. Hence, we must also consider what is the minimal amount of physically protectedhardware that we really need.It has been suggested [Be, K] to protect software against duplication by selling a aSoftware-Hardware-package (SH-package) consisting of a physically shielded Central Process-ing Unit (CPU) and an encrypted program. The CPU will contain a small ROM (Read-OnlyMemory unit) which stores the corresponding decryption key. The SH-package will be in-stalled in a conventional computer system by connecting the shielded CPU to the addressand data buses of the system and loading the encrypted program into the memory devices.Once installed and activated, the (shielded) CPU will run the (encrypted) program usingthe memory, I/O devices and other components of the computer. An instruction cycle ofthe (shielded) CPU will consist of fetching the next instruction, decrypt ing the instruction(using the decryption key stored in the CPU), and execut ing the instruction. In case theexecution consists of reading from (resp., writing to) a memory location { the contents maybe decrypted after reading it (resp., encrypted before writing). It should be stressed thatthe CPU itself will contain only a small amount of storage space. In particular, the CPUcontains a constant number of registers, each capable of specifying memory addresses (i.e.,the size of each register is at least equal to the logarithm of the number of storage cells), anda special register with a cryptographic key. Only the CPU (with a �xed number of registers)is required to be physically shielded, while all the other components of the computer, includ-ing the memory in which the encrypted program and data are stored, need not be shielded.We note that the technology to physically shield (at least to some degree) the CPU (which,in practice, is a single computer chip) does already exist { indeed, every ATM bank machinehas such a protected chip. Thus, the SH-package employs feasible software and hardwaremeasures [Be, K].Using encryption to keep the contents of the memory secret is certainly a step in theright direction. However, as we will shortly see, this does not provide the protection onemay want. In particular, the addresses of the memory cells accessed during the executionare not kept secret. This may reveal to an observer essential properties of the program(e.g. its loop structure), and in some cases may even allow him to easily reconstruct it.Thus, we view the above setting (i.e. the SH-package) as the starting point for the study ofsoftware protection, rather than as a satisfactory solution. In fact, we will use this setting asthe framework for our investigations, which are concerned with the following key question:What can the user learn about the SH-package he bought?1.1.2 Learning by Executing the SH-packageOur setting consists of an encrypted program, a shielded CPU (containing a constant numberof registers), a memory module, and an \adversary" user trying to learn about the program.The CPU and memory communicate through a channel in the traditional manner. That is,in response to a FETCH(i) message the memory answers with the contents of the ith cell;while in response to a STORE(v; j) the memory stores value v in cell j. We consider anadversary that can read and alter the communication between CPU and memory, as well asinspect and modify the contents of the memory. However, the adversary cannot inspect or4

modify the contents of the CPU's registers.The adversary tries to learn by conducting experiments with the hardware-software con-�guration. An experiment consists of initiating an execution of the (shielded) CPU on theencrypted program and a selected (by the adversary) input, and watching (and possiblymodifying) both the memory contents and the communication between CPU and memory.Given the above setting the question is what information should the adversary be pre-vented from learning, when conducting such experiments? To motivate the answer to thisquestion, let us consider the following hypothetical scenario. Suppose you are a softwareproducer selling a protected program which took you an enormous e�ort to write. Yourcompetitor purchases your program, experiments with it widely and learns some partialinformation about your implementation. Intuitively, if the information he gains, throughexperimentation with your protected program, simpli�es his task of writing a competingsoftware package then the protection scheme has to be considered insecure. Thus, infor-mally, software protection should mean that the task of reconstructing functionally equiv-alent copies of the SH-package is not easier when given the SH-package than when onlygiven the speci�cation for the package. That is, software protection is secure if whatever anypolynomial-time adversary can do when having access to an (encrypted) program runningon a shielded CPU, he can also do when having access to a \speci�cation oracle" (such anoracle, on any input, answers with the \corresponding" output and running-time). Essen-tially, the protected program must behave like a black box which, on any input, \hums"for a while and returns an output such that no information except its I/O behavior andrunning time can be extracted. Jumping ahead, we note that in order to meet such securitystandards, not only the values stored in the general-purpose memory must be hidden (e.g.,by using encryption), but also the sequence in which memory locations are accessed duringprogram execution must be hidden. In fact, if the \memory access pattern" is not hiddenthen program characteristics such as its \loop structure" may be revealed to the adversary,and such information may be very useful in some cases for simplifying the task of writing acompeting program. To prevent this, the memory access pattern should be independent ofthe program which is being executed.Informally, we say that a CPU defeats experiments with corresponding encrypted programsif no probabilistic polynomial-time adversary can distinguish1 the following two cases whengiven an encrypted program as input:� The adversary is experimenting with the genuine shielded CPU, which is trying toexecute the encrypted program through the memory.� The adversary is experimenting with a fake CPU. The interactions of the fake CPUwith the memory are almost identical to those that the genuine CPU would have hadwith the memorywhen executing a (�xed) dummy program (e.g. while true do skip.)The execution of the dummy program is timed-out by the number of steps of the realprogram. When timed-out, the fake CPU (magically) writes to the memory the same1 In this paper, we shall use standard notion of computational indistinguishability, as de�ned in [GM]and [Y]. 5

output that the genuine CPU would have written on the \real" program (and the sameinput).We stress that, in the general case, the adversary may modify the communication betweenCPU and memory (as well as modify the contents of memory cells) in any way he wants.When we wish to stress that the SH-package defeats experiments by such adversaries, we saythat the SH-package defeats tampering experiments. A special case of interest consists ofadversaries restricted to only inspect the message exchange between CPU and memory, butnot to modify it. A SH-package defeating experiments by such adversaries is said to defeatnon-tampering experiments.1.1.3 An E�cient CPU Which Defeats ExperimentsThe problem of constructing a CPU which defeats experiments is not an easy one. There aretwo issues: The �rst issue is to hide from the adversary the values stored and retrieved frommemory, and to prevent the adversary's attempts to change these values. This is done byuse of traditional cryptographic techniques (e.g., probabilistic encryption [GM] and messageauthentication [GGM]). The second issue is to hide (from the adversary) the sequence ofaddresses accessed during the execution (hereafter referred as hiding the access pattern).Hiding the (original) memory access pattern is a completely new problem and traditionalcryptographic techniques are not applicable to it. The goal is to make it infeasible for theadversary to learn anything useful about the program from its access pattern. To this end,the CPU will not execute the program in the ordinary manner, but instead will replaceeach original fetch/store cycle by many fetch/store cycles. This will hopefully \confuse" theadversary and prevent him from \learning" the original sequence of memory-accesses (fromthe actual sequence of memory accesses). Consequently, the adversary can not improve hisability of reconstructing the program.Nothing comes without a price. What is the price one has to pay for protecting the soft-ware? The answer is \speed". The protected program will run slower then the unprotectedone. What is the minimal slowdown we can achieve without sacri�cing the security of theprotection? Informally, software protection overhead is de�ned as the number of steps theprotected program makes per each step of the source-code program. In this paper, we showthat this overhead is polynomially related to the security parameter of a one-way function.Namely,THEOREM A (Informal statement): Suppose that one-way functions exist, and let k bea security parameter. Then, there exists an e�cient way of transforming programs into pairsconsisting of a physically protected CPU, with k bits of internal-(\shielded")-memory, and acorresponding \encrypted" program, so that the CPU defeats poly(k)-time experiments with the\encrypted" program. Furthermore, t instructions of the original program are executed using lessthan t �kO(1) instructions (of the \encrypted" program), and the blowup in the size of the externalmemory is also bounded by a factor of k. (We stress that this scheme defeats tamperingexperiments.) 6

The above result is proved by reducing the problem of constructing a CPU which defeats(tampering) experiments to the problem of hiding the access pattern, and solving the laterproblem e�ciently. As a matter of fact, we formulate the latter problem as an on-linesimulation of arbitrary RAMs by an oblivious RAM (see below).1.2 Simulations by Oblivious RAMsA machine is oblivious if the sequence in which it accesses memory locations is equivalentfor any two inputs with the same running time. For example, an oblivious Turing Machineis one for which the movement of the heads on the tapes is identical for each computation(i.e., is independent of the actual input). We are interested in transformations of arbitrarymachines into equivalent oblivious machines (i.e., oblivious machines computing the samefunction). For every reasonable model of computation such a transformation does exist.The question is its cost: namely, the slowdown in the running time of the oblivious machine(when compared to the original machine). In 1979 Pippenger and Fischer [PF] showedhow a one-tape Turing Machine can be simulated, on-line, by a two-tape oblivious TuringMachine, with a logarithmic slowdown in the running time. We study an analogue questionfor random-access machine (RAM) model of computation.To see that it is possible to completely hide the access pattern consider the followingsolution: when a variable needs to be accessed, we read and rewrite the contents of everymemory cell (in some �xed order). If the program terminates after t steps, and the size ofmemory is m, the above solution runs for t � m steps, thus, having a factor m overhead .2Can the same level of \security" be achieved at a more moderate cost?The answer is no if the scheme is deterministic. That is, the simulation is optimal ifthe CPU is not allowed random moves (or if obliviousness is interpreted in a deterministicmanner). Fortunately, much more e�cient simulation exist when allowing CPU to be prob-abilistic3. Thus, in de�ning an oblivious RAM, we interpret obliviousness in a probabilisticmanner. Namely, we require that the probability distribution of certain actions (de�nedover the RAM's input and coin tosses) is independent of the input. Speci�cally, we de�nean oblivious RAM to be a probabilistic RAM for which the probability distribution of thesequence of (memory) addresses accessed during an execution depends only on the inputlength (i.e., is independent of the particular input.) In other words, suppose the inputs are2 If the running time of the original program is smaller than the total memory size then we can do better.Instead of storing data in memory \directly", we build an address-value look-up table of size n+ t, where nis the length of the input, and scan only this table. After i steps the table stores the original n input valuesas well as the (upto) i memory modi�cations which took place in these steps.. Thus, the scheme which wedescribed above does not need to scan the entire memory for each original access | it su�ces to scan thelook-up table which has size t+ n. (Moreover, the above algorithm need not know what t is. It may simplybuild a look-up table by adding a new entry for each original step, so that at any time i the table containsn+ i entries.) Assuming t > n, the modi�ed algorithm runs for O(t2) steps, and yields an O(t) overhead.3 By probabilistic CPU we mean a CPU which has access to a random oracle. Jumping ahead, we notethat assuming the existence of one-way functions enables to implement such a random oracle by using onlya short random seed, and hence our strong probabilistic machine model can be implemented by the ordinarymodel of a probabilistic machine. 7

chosen with some arbitrary �xed distribution D. Then for any D, the conditional probabilityfor a particular input given a sequence of memory accesses which occurs during an executionon that input, equals the a-priori probability for that particular input according to D.The solution of [PF] for making a single-tape Turing Machine oblivious heavily relieson the fact that the movement of the (single-tape Turing Machine) head is very \local"(i.e., immediately after accessing location i, a single-tape Turing-Machine is only able toaccess either location i � 1 or i + 1). On the other hand, the main strength of a random-access machine (RAM) model is its ability to instantaneously access arbitrary locations ofits memory. Nevertheless, we show an analogue result for the random-access machine modelof computation:THEOREM B (Main Result | Informal statement): Let RAM(m) denote a RAM with mmemory locations and access to a random oracle. Then t steps of an arbitrary RAM(m) programcan be simulated (on-line) by less than O(t � (log2 t)3) steps of an oblivious RAM(m � (log2m)2).That is, we show how to do an on-line simulation of an arbitrary RAM program by anOblivious RAM incurring only a poly-logarithmic slowdown. We stress that the slowdownis a (poly-logarithmic) function of the program's running time, rather than being a (poly-logarithmic) function of the memory size (which is typically much bigger than the program'srunning time).On the negative side, a simple combinatorial argument shows that any oblivious simula-tion of arbitrary RAMs should have an average
(log t) overhead:THEOREM C (Informal statement): Let RAM(m) be as in Theorem B. Every oblivioussimulation of RAM(m) must make at least maxfm; (t� 1) � logmg accesses in order to simulatet steps.So far, we have discussed the issue of oblivious computation in a setting in which the ob-server is passive. A more challenging setting, motivated by some applications (e.g., softwareprotection as treated in this paper), is one in which the observer (or adversary) is activelytrying to get information by tampering with (i.e., modifying) the memory locations duringcomputation. Clearly, such an active adversary can drastically alter the computation (e.g.,by erasing the entire contents of the memory). Yet, the question is whether even in such acase we can guarantee that the e�ect of the adversary is oblivious of the input. Informally,we say that the simulation of a RAM on an oblivious RAM is tamper-proof if the simulationremains oblivious (i.e. does not reveal anything about the input except its length) even incase when an arbitrary powerful adversary examines and alters memory contents.THEOREM D (Informal statement): Let RAM(m) be as in Theorem B. Then t steps of anarbitrary RAM(m) program can be tamper-proof simulated (on-line) by less than O(t � (log2 t)3)steps of an oblivious RAM(m � (log2m)2).We stress that there are no complexity-theoretic assumptions in Theorems B and D.However, these theorems refer to a RAM with access to a random oracle. To derive results8

for the more realistic model of a probabilistic RAM, we replace the random oracle used inthe above theorems, by a pseudorandom function. The latter can be implemented, assumingthe existence of one-way functions (cf. [BM, Y, ILL, H] and [GGM]), by using a shortrandomly chosen seed and the results remain valid with respect to adversaries running intime polynomial in the length of this seed.Our construction yields a technique of e�ciently hiding the access pattern into any data-structure. In addition to software protection, our technique can be applied to the problemof hiding the tra�c pattern of a distributed database and to the problem of data-structurechecking.1.3 Notes Concerning the ExpositionFor simplicity of exposition, we present all the de�nitions and results in the rest of the paperin terms of machines having access to a random oracle. In practice, such machines canbe implemented using pseudo-random functions, and the results will remain valid providedthat the corresponding adversary is restricted to e�cient computations. Detailed commentsconcerning such implementations will be given in the corresponding sections. Here, we merelyrecall that pseudo-random functions can be constructed using pseudo-random generators(cf. Goldreich et. al. [GGM]), and that the later can be constructed provided that one-wayfunctions exist (cf. Blum and Micali [BM], Yao [Y], Impagliazzo et. al. [ILL], and Hastad [H]).Speci�cally, assuming the existence of one-way functions, one can construct a collection ofpseudo-random functions with the following properties.� For every n, the collection contains 2n functions, each mapping n-bit strings to n-bitstrings, and furthermore each function is represented by a unique n-bit long string.� There exists a polynomial-time and linear-space algorithm that on input a representa-tion of a function f and an admissible argument x, returns f(x).� No probabilistic polynomial-time machine can, on input 1n and access to a functionf : f0; 1gn 7!f0; 1gn, distinguish the following two cases:1. The function f is uniformly chosen in the pseudo-random collection (i.e., amongthe 2n functions mapping n-bit strings to n-bit strings).2. The function f is uniformly chosen among all (2n2n) functions mapping n-bitstrings to n-bit strings.Another simplifying convention, used in this paper, is the association of the size of thephysically protected work space (internal to the CPU) with the structure of the mainmemory.Speci�cally, we commonly consider a CPU with O(k) bits of physically protected work spacetogether with a main memory consisting of 2k words, each holding O(k) bits. In practice,the gap, between the size of protected work space and the number of (unprotected) memorywords, may be smaller (especially since the protected space is used to store \cryptographic9

keys"). Speci�cally, we may consider a protected work space of size n and an physicallyunprotected memory consisting of 2k words, provided n � k (which guarantees that theCPU can hold pointers into the memory). It is easy to extend our treatment to this setting.In particular, all the transformations presented in the sequel do not depend on the size ofthe CPU (but rather on the size of the memory and on the running time).

10

2 Model and De�nitionsIn this chapter we de�ne the notions discussed in the Introduction. To this end, we �rstpresent a de�nition which regards the RAM model as a pair of (appropriately resourcebounded) interactive machines. This de�nition is presented in Subsection 2.1. Using thenew way of looking at the RAM model, we de�ne the two notions which are central to thispaper: the notion of software protection (see Subsection 2.2), and simulation by an obliviousRAM (see Subsection 2.3). Subsections 2.2 and 2.3 can be read independently of each other.2.1 RAMs as Interactive Machines2.1.1 The Basic ModelOur concept of a RAM is the standard one (e.g., as presented in [AHU]). However, wedecouple the RAM into two interactive machines, the CPU and the memory module, andexplicitly discuss the interaction between the two. We begin with a de�nition of InteractiveTuring-Machine (itm). The basic formulation is due to Manuel Blum (private communica-tion in[GMR]). We augment this basic formulation by adding explicit bounds on the lengthof \messages" and on the size of work tape.De�nition 1 (interactive machines with bounded messages and bounded workspace): An Interactive Turing Machine is a multi-tape Turing Machine having the followingtapes:� a read-only input tape;� a write-only output tape;� a read-and-write work tape;� a read-only communication tape; and� a write-only communication tape.By ITM(c; w) we denote a machine as speci�ed above with a work tape of length w, andcommunication tapes each partitioned into c-bit long blocks, which operates as follows. Theexecution of ITM(c; w) on input y starts with the itm copying y into the �rst jyj cells of itswork tape. (In case jyj > w, execution is suspended immediately.) Afterwards, the machineworks in rounds. At the beginning of each round, the machine reads the next c-bit block fromits read-only communication tape. The block is called the message received in the currentround. After some internal computation (utilizing its work tape), the round is completed withthe machine writing c bits (called the message sent in the current round) onto its write-onlycommunication tape. The execution of the machine may terminate at some point with themachine copying a pre�x of its work tape to its output tape.Now, we can de�ne both the CPU and the memory as Interactive Turing Machines which\interact" with each other. To this end, we de�ne both the cpu and the memory as itms,11

and associate the read-only communication tape of the cpu with the write-only communica-tion tape of the memory, and vice versa (cf. [GMR]). In addition, both cpu and memorywill have the same message length (i.e., the parameter c above), however they will havedrastically di�erent work-tape size and di�erent �nite control. The memory will have awork-tape of size exponential in the message length, whereas the cpu will have a work-tapeof size linear in the message length. Intuitively, the memory's work-tape corresponds toa \memory" module in the ordinary sense; whereas the work-tape of the cpu correspondsto a constant number of \registers", each capable of holding a pointer into the memory'swork-tape. Each message may contain an \address" in the memory's work-tape and/or thecontents of a cpu \register". The �nite control of the memory is unique, representing thetraditional responses to the cpu \requests", whereas the �nite control of the cpu varies fromone cpu to another. Intuitively, di�erent cpus correspond to di�erent universal machines.Finally, we use k as a parameter determining both the message length and work-tape sizeof both memory and cpu. Speci�cally, the message length is k + 2 + k0 and the size of thework-tape is 2k � k0, where k0 = O(k). (This allows a message to contain both an address inmemory and a contents for this address.)De�nition 2 (memory): For every k 2 IN, we de�ne MEM k as an ITM(k + 2 +O(k); 2k �O(k)) operating as hereby speci�ed. It partitions its work tape into 2k words, each of size O(k).After copying its input to its work tape, machine MEMk is message-driven. Upon receiving amessage (i; a; v), where i 2 f0; 1g2 � f\store"; \fetch"; \halt"g (an instruction), a 2 f0; 1gk(an address) and v 2 f0; 1gO(k) (a value), machine MEM k acts as follows:� if i = \store" then machine MEMk copies the value v from the current message intoword number a of its work tape. (For sake of uniformity, we postulate that MEM k sendsan an acknowledgment message in return.)� if i = \fetch" then machine MEM k sends a message consisting of the current contentsof word number a (of its work tape).� if i = \halt" then machineMEM k copies a pre�x of its work tape (until a special symbol)to its output tape, and halts.The 2k words of memory correspond to a \virtual memory" consisting of all possible 2kaddresses that can be speci�ed by a k-bit long \register". We remark that the \actual mem-ory" available in hardware may be much smaller (say, have size polynomial in k). Clearly,\actual memory" of size S su�ce in applications which do not require the concurrent storageof more than S items.De�nition 3 (cpu): For every k 2 IN we de�ne CPUk as an ITM(k + 2 + O(k); O(k))operating as hereby speci�ed. After copying its input to its work tape, machine CPUk conducts apoly(k)-time computation on its work tape, and sends a message determined by this computation.In subsequent rounds, CPUk is message driven. Upon receiving a new message, machine CPUkcopies the message to its work tape, and based on its computation on the work tape, sends a12

message. In case the CPUk sends a \halt" message, the CPUk halts immediately (with nooutput). The number of steps in each computation on the work tape is bounded by a �xedpolynomial in k.The only role of the input to cpu is to trigger its execution with cpu registers initialized,and this input may be ignored in the subsequent treatment.4 The (\internal") computationof the cpu, in each round, corresponds to elementary register operations. Hence, the numberof steps taken in each such computation is a �xed polynomial in the register length (whichin turn is O(k)). We can now de�ne the RAM model of computation. We de�ne ram as afamily of RAMk machines for every k:De�nition 4 (ram): For every k 2 IN we de�ne RAM k is a pair of (CPUk;MEM k), whereCPUk's read-only message tape coincides with MEM k's write-only message tape, and CPUk'swrite-only message tape coincides with MEM k's read-only message tape. The input to RAM kis a pair (s; y), where s is an (initialization) input for CPUk, and y is input toMEM k. (Withoutloss of generality, s may be a �xed \start symbol".) The output of RAMk on input (s; y),denoted RAMk(s; y), is de�ned as the output of MEM k(y) when interacting with CPUk(s).To view ram as a universal machine, we separate the input, y, to MEM k into \program"and \data". That is, the input y to the memory is partitioned (by a special symbol) intotwo parts, called the program (denoted by �) and the data (denoted x).De�nition 5 (running programs on ram): Let RAMk and s be �xed, and y = (�; x).We de�ne the output of program � on data x, denoted �(x), as RAMk(s; y). We de�nethe running time of � on x, denoted t�(x), as the sum of jyj+ j�(x)j and the number ofrounds in the computation RAMk(s; y). We de�ne the storage-requirement of program� on data x, denote s�(x), as the sum of jyj and the number of di�erent addresses appearingin messages sent by CPUk to MEM k during the computation RAM k(s; y).It is easy to see that the above formalization directly corresponds to Random-AccessMachine model of computation. Hence, the \execution of � on x" corresponds to the messageexchange rounds in the computation of RAM k(�; (�; x)). The additive term jyj+ j�(x)j int�(x) accounts for the time spent in reading the input and writing the output, whereas eachmessage exchange round represents a single cycle in the traditional RAM model. The termjyj in s�(x) accounts for the initial space taken by the input, whereas the other term accountsfor \memory cells accessed by cpu during the actual computation".Remark: Without loss of generality, we can assume that the running time, t(y), is alwaysgreater than the length of the input (i.e., jyj). Under this assumption, we may ignore the\loading time" (represented by jyj+ j�(x)j), and count only the number of machine cycles4 Thus, without loss of generality, we may assume that the input is any �xed string, say `00'. We stressthat the input is not used to feed cryptographic keys to the cpu. All the cryptographic machinery will beimplemented through the random oracle introduced below.13

in the execution of � on x (i.e., the number of rounds of message exchange between CPUkand MEM k).Remark: The memory consumption of � at a particular point during the execution on datax, is de�ned in the natural manner. Initially the memory consumption equals j(�; x)j, andthe memory consumption may grow as computation progresses. However, after executing tmachine cycles, the memory consumption is bounded by t+ j(�; x)j.2.1.2 Augmentations to the Basic ModelProbabilistic RAMsProbabilistic computations play a central role in this work. In particular, our results arestated for rams which are probabilistic in a very strong sense. Namely, the cpu in thesemachines has access to a random oracle. We stress that providing ram with access to arandom oracle is more powerful than providing it with ability to toss coins. Intuitively,access to a random oracle allows the cpu to \record" the outcome of its coin tosses \forfree"! However, as stated in the Introduction, assuming the existence of one-way functions,random oracles (functions) can be e�ciently implemented by pseudo-random functions (andthese can be constructed at the cost of tossing and storing in CPU registers only a smallnumber of coins).5De�nition 6 (oracle / probabilistic CPU): For every k 2 IN we de�ne an oracle-CPUk as a CPUk with two additional tapes, called the oracle tapes. One of these tapesis read-only, whereas the other is write-only. Each time the machine enters a special oracleinvocation state, the contents of the read-only oracle tape is changed instantaneously (i.e., ina single step), and the machine passes to another special state. The string written on the write-only oracle tape between two oracle invocations is called the query corresponding to the latterinvocation. We say that this CPUk has access to the function f if when invoked with query q, theoracle replies by changing the contents of the read-only oracle tape to f(q). A probabilistic-CPUk is an oracle CPUk with access to a uniformly selected function f : f0; 1gO(k) 7! f0; 1g.De�nition 7 (oracle / probabilistic RAM): For every k 2 IN we de�ne an oracle-RAMk as a RAM k in which CPUk is replaced by an oracle-CPUk. We say that this RAM khas access to the function f if its CPUk has access to the function f and we write RAM fk. Aprobabilistic-RAMk is aRAM k in which CPUk is replaced by a probabilistic-CPU k. (In otherwords, a probabilistic-RAMk is a oracle-RAMk with access to a uniformly selected function.)Remark: In the sequel, we take the liberty of utilizing random functions mapping stringsof various lengths (bounded by O(k)) into strings of possibly di�erent lengths. Clearly, allthese functions can be simultaneously implemented by a single uniformly selected functionf : f0; 1gO(k) 7! f0; 1g.5 In such a case, one may use the input to cpu in order to feed the cpu with the seed to such a pseudo-random function. When introducing multiple executions (as below), one has to postulate that this seedinitialization only takes place in the �rst execution. 14

Repeated Executions of RAMsFor our treatment of software protection, we use repeated execution of the \same" ramon several inputs. Our intention is that the ram starts its next execution with the worktapes of both cpu and memory having contents identical to their contents at termination ofthe previous execution. This is indeed what happens in practice, yet the standard abstractformulation usually ignores this point, which requires cumbersome treatment.De�nition 8 (repeated executions of ram): For every k 2 IN, by repeated exe-cutions of RAM k, on the inputs sequence y1; y2; :::, we mean a sequence of computations ofRAMk so that the �rst computation starts with input y1 when the work tapes of both CPUkand MEM k are empty, and the ith computation starts with input yi when the work tape of eachmachine (i.e., CPUk and MEM k) contains the same string it has contained at the terminationof the i� 1st computation.2.2 De�nition of Software ProtectionIn this section we de�ne software protection. Loosely speaking, a scheme for software pro-tection is a transformation of ram programs into functionally equivalent programs for acorresponding ram so that the resulting program-ram pair \foils adversarial attempts tolearn something substantial about the original program (beyond its speci�cations)". Ourformulation of software protection should answer the following questions:1. What can the adversary do (in the course of its attempts to learn)?2. What is substantial knowledge about a program?3. What is a speci�cation of a program?Our approach in answering the above questions is the most pessimistic (and hence conser-vative) one: among all possible malicious behavior, we consider the most di�cult, and mostmalicious, worst case scenario. That is, we assume that the adversary can run the trans-formed program on the ram on arbitrary data of its choice, and can modify the messagesbetween the cpu and memory in an arbitrary and adaptive manner6. Moreover, since weconsider the worst case scenario, we interpret the release of any information about the origi-nal program, which is not implied by its input/output relation and time/space complexity assubstantial learning. The input/output relation and time/space complexity of the programare not considered secret (as the software is purchased based on an announcement of thisinformation).6 Recall that in our model, even the worst-case adversary is not allowed to read the internal work tapeof the cpu since the cpu models a \physically shielded" CPU (see Introduction).15

2.2.1 Experimenting With a RAMWe consider two types of adversaries. Both can repeatedly initiate the ram on inputs oftheir choice. The di�erence between the two types of adversaries is in their ability to modifythe cpu-memory communication tapes during these computation (which correspond tointeractions of cpu with memory). A tampering adversary is allowed both to read and writeto these tapes (i.e., inspect and alter the messages sent in an adaptive fashion), whereas anon-tampering adversary is only allowed to read these tapes (i.e., inspect the messages).Remark: In both cases it is not necessary to allow the adversary to have the same accessrights to the memory's work tape, since the contents of this tape is totally determined bythe initial input and the messages sent by the cpu.We stress that in both cases the adversary has no access to the internal tapes of the cpu(i.e., the work tape and the oracle tape of the cpu).For the sake of simplicity, we concentrate on adversaries with exponentially boundedrunning-time. Speci�cally, the running-time of the adversary is bounded above by 2n, wheren is the size of the cpu's work tape. We note that the time bound on the adversary is usedonly in order to bound the number of steps taken by the ram with which the adversaryexperiments. In practice, the adversary will be even more restricted (speci�cally to workingin time polynomial in the length of the cpu's work tape).De�nition 9 (non-tampering adversary): A non-tampering adversary, denotedadv, is a probabilistic machine that, on input k (a parameter) and � (an \encrypted program"),is given the following access to an oracle-RAMk. Machine adv can initiate repeated executionsof RAM k on inputs of its choice, as long as its total running time is bounded by 2k. During eachof these executions, machine adv has read-only access to the communication tapes betweenCPUk and MEM k.De�nition 10 (tampering adversary): A tampering adversary, is de�ned analo-gously to a non-tampering adversary except that during the repeated executions it has read and write accessto the communication tapes between CPUk and MEM k.2.2.2 Software Protecting TransformationsWe de�ne transformations on programs (i.e., compilers) which given a program, �, producea pair (f;�f) so that f is a randomly chosen function and �f is an \encrypted program"which corresponds to � and f . Here, we have in mind an oracle-ram that on input (�f ; x)and access to oracle f , simulates the execution of � on data x, so that this simulation\protects" the original program �. At this point, the reader may be annoyed by the factthat the transformation produces a random function f which may have an unbounded (or\huge") description. However, in practice, the function f will be pseudo-random [GGM],and will have a succinct description as discussed in the Introduction.We start by de�ning compilers as transformations of programs into (program,oracle)-pairs, which when executed by an oracle-ram are functionally equivalent to executions ofthe original programs. 16

De�nition 11 (compiler): A compiler, denoted C, is a probabilistic mapping that on inputan integer parameter k and a program � for RAMk, returns a pair (f;�f), so that� f : f0; 1gO(k) 7! f0; 1g is a randomly selected function;� j�f j = O(j�j).� For k0 = k + O(log k) there exists an oracle-RAMk0 so that, for every �, every f andevery x 2 f0; 1g�, initiating RAMk0 on input (�f ; x) and access to the oracle f yieldsoutput �(x).The oracle-RAMk0 di�ers from RAMk in several aspects. Most noticeably, RAMk0 hasaccess to an oracle whereas RAMk does not. It is also clear that RAMk0 has a larger memory:RAMk0 's memory consists of 2k0 = poly(k) � 2k words, whereas RAM k's memory consists of2k words. In addition, the length of the memory words in the two rams may di�er (and infact will di�er in the transformations we present), and so may the internal computations ofthe cpu conducted in each round. Still, both rams have memory words of length linear inthe parameter (i.e., k0 and k, respectively), and conduct internal cpu computations whichare polynomial in this parameter.Compilers as de�ned above transform deterministic programs into \encrypted programs"which run on a probabilistic-ram (i.e., into \probabilistic programs"). It is worthwhileto note that we can extend the above de�nition so that compilers can be applied also toprograms which make calls to oracles, and in particular to programs which make calls torandom oracles. The results in this paper will remain valid for such probabilistic programsas well. However, for simplicity of exposition we restrict ourselves to compilers which areapplied only to deterministic programs.We now turn to de�ning software-protecting compilers. Intuitively, a compiler protectssoftware if whatever can be computed after experimenting with the \encrypted program" canbe computed, in about the same time, by a machine which merely has access to a speci�cationof the original program. We �rst de�ne what is meant by access to a speci�cation of aprogram.De�nition 12 (specification of programs): A speci�cation oracle for a program� is an oracle that on query x returns the triple (�(x); t�(x); s�(x)).Recall that t�(x) and s�(x) denote the running-time and space requirements of program� on data x. We are now ready for the main de�nition concerning software protection. Inthis de�nition adv may be either a tampering or a non-tampering adversary.De�nition 13 (software-protecting against a specific adversary): Given a com-piler (denoted C) and an adversary (denoted adv), we say that C protects software againstthe adversary adv if there exists a probabilistic oracle machine (in the standard sense), M ,satisfying the following. 17

� (M operates in about the same time as adv): There exists a polynomial p(�) so that, forevery string �, the running-time of M on input (k0; j�j) (and access to an arbitrary oracle)is bounded by p(k0) � T , where T denotes the running time of adv when experimentingwith RAMk0 on input �.� (M with access to a speci�cation oracle produces output almost identical to the outputof adv after experimenting with the result of the compiler): For every program, �, thestatistical distance between the following two probability distributions is bounded by 2�k0 .1. The output distribution of adv when experimenting with RAM fk0 on input �f , where(f;�f) C(�). Recall thatRAM fk0 denotes an interactive pair, (CPUk0;MEMk0),where CPUk0 has access to oracle f . The distribution is over the probability spaceconsisting of all possible choices of the function f , and all possible outcomes of thecoin tosses of adv, with uniform probability distribution.2. The output distribution of the oracle machineM on input (k0; O(j�j)) and access toa speci�cation oracle for �. The distribution is over the probability space consistingall possible outcomes of the coin tosses of machine M , with uniform probabilitydistribution.De�nition 14 (software-protecting compilers): A compiler, C, provides (weak)software protection if C protects software against any non-tampering adversary. The com-piler, C, provides tamper-proof software protection if C protects software against anytampering adversary.Next, we de�ne the cost of software protection. We remind the reader that for the sakeof simplicity, we are con�ning ourselves to programs � with running time, t�, satisfyingt�(x) > j�j+ jxj, for all x.De�nition 15 (overhead of compilers): Let C be a compiler, and g : IN 7! IN be afunction. We say that the overhead of C is at most g if for every �, every x 2 f0; 1g�, andevery randomly selected f , the expected running time of RAMk0 , on input (�f ; x) and accessto the oracle f , is bounded above by g(T) � T , where T = t�(x).Remark: An alternative de�nition of the overhead of compilers follows. We say that theoverhead of C is at most g if for every �, every x 2 f0; 1g�, and a randomly selected f , therunning time of RAMk0 , on input (�f ; x) and access to the oracle f , is greater than g(T) �Twith probability bounded above by 2�T , where T = t�(x). The results presented in thispaper hold for this de�nition as well. 18

2.3 De�nition of Oblivious RAM and Oblivious SimulationsThe �nal goal of this section is to de�ne oblivious simulations of rams. To this end we �rstde�ne oblivious rams. Loosely speaking, the \memory access pattern" in an oblivious ram,on each input, depends only on its running time (on this input). We next de�ne what ismeant by a simulation of one ram on another. Finally, we de�ne oblivious simulation ashaving a \memory access pattern" which depends only on the running time of the original(i.e., \simulated") machine.2.3.1 Oblivious RAMsWe begin by de�ning the access pattern as the sequence of memory locations which thecpu accesses during computation. This de�nition applies also to an oracle-cpu. (Recallthat by De�nitions 2 { 4, the cpu interaction with memory is a sequence of triples (i; a; v)of \instruction", \address" and \value" respectively.)De�nition 16 (access pattern): The access pattern, denoted Ak(y), of a (determinis-tic) RAMk on input y is a sequence (a1; : : : ; ai; : : :), such that for every i, the ith message sentby CPUk, when interacting with MEM k(y), is of the form (�; ai; �). (Similarly, we can de�nethe access pattern of an oracle-RAM k on a speci�c input y and access to a speci�c function f .)Considering probabilistic-rams, we de�ne a random variable which for every possible func-tion f assigns the access pattern which corresponds to computations in which the ram hasaccess to this function. Namely,De�nition 17 (access pattern of a probabilistic-ram): The access pattern, de-noted eAk(y), of a probabilistic-RAMk on input y is a random variable which assumes thevalue of the access pattern of RAM k on a speci�c input y and access to a uniformly selectedfunction f .Now, we are ready the de�ne an oblivious RAM. We de�ne an oblivious RAM to bea probabilistic RAM for which the probability distribution of the sequence of (memory)addresses accessed during an execution depends only on the running time (i.e., is independentof the particular input).De�nition 18 (oblivious ram): For every k 2 IN we de�ne an oblivious RAM k as aprobabilistic-RAM k satisfying the following condition. For every two strings, y1 and y2, if j eAk(y1)jand j eAk(y2)j are identically distributed then so are eAk(y1) and eAk(y2).Intuitively, the sequence of memory accesses of an oblivious RAMk reveals no informationabout the input (to the RAM k), beyond the running-time for the input.19

2.3.2 Oblivious SimulationNow, that we have de�ned both ram and oblivious ram, it is left only to specify what ismeant by an oblivious simulation of an arbitrary ram program on an oblivious ram. Ournotion of simulation is a minimal one: it only requires that both machines compute the samefunction. The ram simulations presented in the sequel are simulations in a much strongersense: speci�cally, they are \on-line". On the other hand, an oblivious simulation of a ramis not merely a simulation by an oblivious ram. In addition we require that inputs havingidentical running time on the original ram, maintain identical running-time on the obliviousram (so that the obliviously condition applies to them in a non-vacuous manner). For thesake of simplicity, we present only de�nitions for oblivious simulation of deterministic rams.De�nition 19 (oblivious simulation of ram): Given probabilistic-RAM 0k0, and RAMk,we say that a probabilistic-RAM 0k0, obliviously simulates RAM k if the following conditionshold.� The probabilistic-RAM 0k0 simulates RAMk with probability 1. In other words, for everyinput y, and every choice of a (oracle) function f , the output of oracle-RAM 0k0, on inputy and access to oracle f , equals the output of RAMk on input y.� The probabilistic-RAM 0k0 is oblivious. (We stress that we refer here to the accesspattern of RAM 0k0 on a �xed input and randomly chosen oracle function.)� The random variable representing the running-time of probabilistic-RAM 0k0 (on input y)is fully speci�ed by the running-time of RAM k (on input y). (Here again we refer tothe behavior of RAM 0k0 on a �xed input and a randomly chosen oracle function.)Hence, the access pattern in an oblivious simulation (which is a random variable de�nedover the choice of the random oracle) has a distribution depending only on the running-time of the original machine. Namely, let eAk0(y) denote the access pattern in an oblivioussimulation of the computation of RAMk on input y. Then, eAk0(y1) and eAk0(y2) are identicallydistributed if the running time of RAM k on these inputs (i.e., y1 and y2) is identical.We note that in order to de�ne oblivious simulations of oracle-rams, we have to supplythe simulatingram with two oracles (i.e., one identical to the oracle of the simulatedmachineand the other being a random oracle). Of course, these two oracles can be incorporated intoone, but in any case the formulation will be slightly more cumbersome.We now turn to de�ne the overhead of oblivious simulations.De�nition 20 (overhead of oblivious simulations): Given probabilistic-RAM 0k0 ,RAM k,and suppose that a probabilistic-RAM 0k0 obliviously simulates the computations of RAM k, andlet g : IN 7! IN be a function. We say that the overhead of the simulation is at most gif, for every y, the expected running time of RAM 0k0 on input y is bounded above by g(T) � T ,where T denotes the running-time of RAMk on input y.20

2.3.3 Time-labeled SimulationsFinally, we present a property of some ram simulations. This property is satis�ed by theoblivious simulations we present in the sequel, and is essential to our solution for tamper-proof software-protection7 (since this solution is reduced to oblivious simulations having thisextra property). Loosely speaking, the property requires that whenever retrieving a valuefrom a memory cell, the cpu \knows" how many times the contents of this cell has beenupdated.8 That is, given any memory address a, and the total number of instructions,denoted j, executed by the cpu so-far, the total number of times cpu executed a \store"command into location a can be e�ciently computed by an algorithm Q(j; a). Again, weconsider only simulation of deterministic rams.De�nition 21 (time-labeled simulation of ram): Given oracle-RAM 0k0 , RAMk, andsuppose that an oracle-RAM 0k0 , with access to oracle f 0, simulates the computations of RAMk.We say that the simulation is time-labeled if there exists an O(k0)-time algorithm Q(�; �) suchthat the following holds. Let (i; a; v) be the jth message sent by CPU 0k0 (during repeatedexecutions of RAM 0k0). Then, the number of previous messages of the form (store; a; �), sentby CPU 0k0 is exactly Q(j; a). In the sequel, we refer to Q(j; a) as to the version(a) numberat round j.Thus, in order to \know" the version number of any address at a particular time, it su�cesfor the cpu to keep count of the number of steps executed so far. We stress that the cpucould not a�ord keeping the version number of all memory addresses and so time-labeling isimportant for obtaining tamper-proof software-protection.9
7 Our solution to the problem of weak software-protection (i.e., protection against non-tampering adver-saries) does not rely on this extra property, since it is reduced to ordinary oblivious simulations (as de�nedabove).8 This is used in order to prevent a tampering adversary from replacing the current contents of a memorylocation by an old contents of the same location.9 Weaker versions of the time-labeling condition may su�ce for the latter purpose, yet they seem morecumbersome to state. 21

3 Reducing Software Protection to Oblivious Simula-tion of RAMsIn this section, we reduce the problem of software protection to the problem of simulating aRAM on an Oblivious RAM. Note that the problem of simulation of RAM on Oblivious RAMonly deals with the problem of hiding the access pattern, and completely ignores the factthat the memory contents and communication between CPU and memory is accessible to theadversary. To make matters worse, a tampering adversary is not only capable of inspectingthe interaction between CPU and memory during the simulation, but is also capable ofmodifying them. We start by reducing the problem of achieving weak software protection(i.e., protection against non-tampering adversaries) to the construction of oblivious ramsimulation. We latter augment our argument so that (tamper-proof) software protection isreduced to the construction of oblivious time-labeled simulation.3.1 Software Protection Against Non-Tampering AdversariesRecall that an adversary is called non-tampering if all it does is selects inputs, initiatesexecutions of the program on them and reads memory contents and communications betweenthe CPU and the memory in such executions. Without loss of generality, it su�ces to consideradversaries which only read the communication tapes (since the contents of memory cellsis determined by the input and the communication with the CPU). Using an oblivioussimulation of a universal ram, it only remains to hide the contents of the \value �eld" inthe messages exchanged between cpu and memory. This is done using encryption which inturn is implemented using the random oracle.Theorem 1 Let fRAMkgk2IN be a probabilistic ram which constitutes an oblivious simulationof a universal ram. Furthermore, suppose that t steps of the original ram are simulated by lessthan t � g(t) steps of the oblivious ram. Then there exists a compiler, that protects softwareagainst non-tampering adversaries, with overhead at most O(g(t)).Proof: The information available to a non-tampering adversary consists of the messagesexchanged between cpu and memory. Recall that messages from CPUk to MEM k havethe form (i; a; v), where i 2 ffetch; store; haltg, a 2 f1; 2; :::; 2kg and v 2 f0; 1gO(k),whereas the messages from MEM k to CPUk are of the form v 2 f0; 1gO(k). In an oblivioussimulation, by de�nition, the \address �eld" (i.e., a) yields no information about the inputy = (�f ; x). It is easy to eliminate the possibility that the \instruction �eld" (i.e., i) yieldsany information, by modifying the cpu so that it always accesses a memory location by �rstfetching it and next storing in it (possibly the same but \re-encrypted" value). Hence, allthat is left is to \encrypt" the contents of the value �eld (i.e. v), so that cpu can retrievethe original value. The idea is to implement an encryption, using the oracle available to thecpu. In particular, the \encrypted program" will consist of the original program encryptedin the same manner. 22

For encryption purposes, CPU k maintains a special counter, denoted encount, initializedto 0. We modify RAMk by providing it with an additional random oracle, denoted f .Clearly, the new random oracle can be combined with the random oracle used in the oblivioussimulation10. Whenever CPUk needs to store a value (either an old value which was just reador a new value) into memoryMEM k, the counter encount is incremented, and the value v isencrypted by the pair (v� f(encount); encount) (where � denotes the bit-by-bit exclusive-or operation). When retrieving a pair (u; j), the encrypted value is retrieved by computingu � f(j). We stress that both encryption and decryption can be easily implemented whengiven access to the oracle f .Hence, the software protecting compiler, C, operates as follows. On input a parameter kand a program �, consisting of a sequence of instructions �1; :::; �n, the compiler uniformlyselects a function f , and sets�f = (�1 � f(2k + 1); 2k + 1); : : : ; (�n � f(2k + n); 2k + n)Since the total running time of RAM k, in all experiments initiated by the adversary, is atmost 2k, we never use the same argument (to f) for two di�erent encryptions. It followsthat the encryption (which is via a \one-time pad") is perfectly secure (in the informationtheoretic sense), and hence the adversary gains no information about the original contentsof the value �eld.We remark that, in practice, one has to substitute the random oracle by a pseudo-randomone. Consequently, the result will hold only for adversaries restricted to polynomial-time.Speci�cally, the compiler on input parameter k and program � uniformly selects a pseudo-random function f , and the description of f is hard-wired into CPUk. Hence, CPUk isable to evaluate f on inputs of length k, and no poly(k)-time adversary can distinguish thebehavior of this cpu from the cpu described in the proof of the theorem above. Hence,whatever a poly(k)-time adversary can compute after a non-tampering experiment, can becomputed in poly(k)-time with access to only the speci�cation oracle (i.e., the two areindistinguishable in poly(k)-time). A similar remark will apply to the following theorem aswell.3.2 Software Protection Against Tampering AdversariesTheorem 2 Let fRAM kgk2IN be a probabilistic ram which constitutes an oblivious time-labeledsimulation of a universal ram. Furthermore, suppose that t steps of the original ram are simu-lated by less than t � g(t) steps of the oblivious ram. Then there exists a compiler, that protectssoftware against tampering adversaries, with overhead at most O(g(t)).Proof: In addition to the ideas used above, we have to prevent the adversary frommodifyingthe contents of the messages exchange between cpu and memory. This is achieved by using10E.g., to combine functions f1 and f2 de�ne f(i; x) def= fi(x).23

authentication. Without loss of generality, we may restrict our attention to adversaries thatonly alter messages in the memory-to-cpu direction.Authentication is provided by augmenting the values stored in memory with authenti-cation tags. The authentication tag will depend on the value to be stored, on the actualmemory location (in which the value is to be stored), and on the number of previous storeinstructions to this location. (Hence, the fact that the simulation is time-labeled is crucialto our solution.) Intuitively, such an authentication tag will prevent the possibility of modi-fying the value, substituting it by a value stored in a di�erent location, or substituting it bya value which has been stored in the past in the same location.The CPUk resulting from the previous theorem is hence further modi�ed as follows.The modi�ed CPUk has access to yet another random function, denoted f . (Again thisfunction can be combined with the other ones.) In case CPUk needs to store the (en-crypted) value v, in memory location a, it �rst determines the current version number oflocation a. (Notice that the version(a) number can be computed by the CPUk accordingto the de�nition of time-labeled simulation). The modi�ed CPUk now sends the message(store; a; (v; f(a; version(a); v))) (instead of the message (store; a; v) sent originally). Uponreceiving a message (v; t) from memory, in response to a (fetch; a; �) request, the modi�edCPUk determines the current version(a) number, and compares t against f(a; version(a); v).In case the two values are equal, CPUk proceeds as before. Otherwise, CPUk halts imme-diately (and \forever") notifying a tampering-attack. Thus, attempts to alter the messagesfrom memory to cpu will be detected with very high probability.

24

4 Towards Oblivious Simulation: The \Square Root"SolutionRecall that the trivial solution to oblivious simulation of a ram is to scan the entire actualRAMk memory for each virtual memory access (that needs to be implemented for the originalram). We now describe the �rst non-trivial oblivious simulation of RAM k on probabilisticRAM 0k0 in order to develop some intuition about the more e�cient solution. We furthersimplify our problem by assuming that we know, ahead of time, the amount of memory,denoted m, required by the program.11 We show below how to simulate such a RAM by anoblivious RAM of size m + 2pm, such that t steps of the original RAM are simulated by~O(t � pm) steps of the oblivious RAM.In the sequel, whenever we talk of virtual memory access we mean a memory accessrequired by the original ram being simulated. The memory accesses of the (oblivious)simulating ram are referred to as actual memory accesses. In addition we treat, withoutloss of generality, only virtual accesses which consists of updating the contents of a singlememory cell (i.e., a fetch(i) followed by store(i,�) commands, for some i).4.1 Overview of The \Square Root" AlgorithmIntuitively, to completely hide the virtual access pattern, we must hide the following(1) which virtual locations are accessed, and in what order?(2) how many times is a particular virtual location accessed (in case it were accessed)?Informally, to deal with the �rst problem, it is su�cient to somehow \shu�e" the memory,so that the adversary does not know which actual memory address corresponds to whichvirtual address. To deal with the second problem, we make sure that any (shu�ed) memorylocation is accessed at most once. The high-level steps of the simulation are as follows:� Initialization: The �rst m+pm words of the simulating RAM are allocated to holdthe contents of the m virtual addresses (which the original ram accesses during itsexecution) and pm \dummy" words. The remainingpm words are allocated to serveas auxiliary (\short-term") storage hereafter called shelter. See Figure 1.� Simulation of RAM Steps: until the simulated ram halts do beginThe simulation proceeds in epochs each consisting ofpm steps of the original/simulatedmachine. In each such epoch the following steps are taken.(1) Randomly permute the contents of locations 1 through m+pm. That is, uniformlyselect a permutation � over the integers 1 through m + pm and (obliviously)relocate the contents of (virtual) word i into the (actual) word �(i). (Later,we show how to do this e�ciently and obliviously.) We stress that the shelter11 This additional assumption is not needed for the �nal solution.25

m words m dummy words sheltered wordsm

permuted memoryFigure 1: Data structure for \square root" solution.(i.e., locations (m+pm+ 1) through (m+ 2pm)) does not participate in thisrandom shu�ing. Thus, the actual addresses 1 through m + pm are calledpermuted memory.(2) Simulate pm virtual memory accesses of the original RAM: During the simulationwe maintain the values (of virtual accesses) retrieved (and updated) during thecurrent epoch in the shelter. (Since the shelter size equals the number of virtualaccesses in one epoch we can maintain all values retrieved during the currentepoch in the shelter.) A memory access of the original RAM, say access tovirtual word i, is simulated as follows:{ First, we scan through the entire shelter and check whether the contents ofthe virtual word i is in one of the shelter's words. (We stress that here weaccess each shelter location in a predetermined order regardless of whetheror when we found the virtual word that we are looking for.){ In case the ith virtual word is not found in the shelter, we retrieve it fromthe actual word �(i) (which is the current location of the ith virtual wordduring this epoch).{ Otherwise (i.e., in case the ith virtual word is found in the shelter), we accessthe next \dummyword" in the permuted memory (e.g., we access the actualaddress �(m+ j), where j is the number of steps simulated in the currentepoch). 26

{ In any case the updated value for the ith virtual location is written (oblivi-ously) to the shelter, by scanning (again) all the shelter's words.(3) Update the permuted memory: At the end of an epoch, we use the values storedin the shelter to obliviously update the contents of the permuted memory.Before getting to the implementation details of the above steps, we provide some hints as towhy they constitute an oblivious simulation. We are going to show how to make memoryaccesses of Step (1) �xed and thus independent of the input and the (virtual) access patternof the original RAM. The memory accesses executed in Step (2) are of two types: scanningthrough the entire shelter (i.e., accessing each of its words twice per each virtual access12),and accessing pm locations in the permuted memory during each epoch. For each possiblepm virtual accesses, the latter pm actual accesses are uniformly distributed among all pm-subsets of f1; :::;m+ pmg, where the probability distribution is enduced by the choice ofthe permutation �. Thus, the actual accesses performed in Step (2) yield no informationabout the virtual accesses performed in this step. It is easy to see that Step (3) creates nonew di�culties, as it can be handled by performing the actual accesses of Steps (1) and (2)in reversed order.134.2 Implementation of the \Square Root" AlgorithmWe now turn to details. First, we show how to choose and store (in the cpu) a randompermutation over f1; 2; :::; ng, using O(log n) storage and a random oracle. The idea is touse the oracle in order to tag the elements with randomly chosen and distinct (with highprobability) integers from a set of tags, denoted Tn. The permutation is obtained by sortingthe elements according to their tags. It su�ces to have the tags being drawn at random fromthe set Tn = f1; 2; :::; n2=�g, provided that we are willing to tolerate a collision probability of� (i.e., for our application � = 2�2k). Let � : f1; 2; :::; ng ! Tn be a random function triviallyconstructed by the random oracle. Then �(i) = k if and only if � (i) is the kth smallest elementin f� (j) : 1 � j � ng. In our case n = m + pm; namely, the n elements consists of them virtual addresses, associated with the integers 1; :::;m, and the pm dummies associatedwith fm+ 1; :::;m+pmg.Now we face the problem of obliviously sorting n elements by tags. The crucial conditionis that the RAM which executes the sorting can store only a �xed number of values (say 2)at a time. The idea is to \implement" Batcher's Sorting Network [Bat], which allows one tosort n elements by performing n � dlog2 ne2 comparisons. Each comparison is \implemented"by accessing both corresponding words, reading their contents, and then writing these valuesback in the desired order. The sequence of memory accesses generated for this purpose is�xed and independent of the input. Note that the oblivious RAM can easily compute ateach point which comparison it needs to implement next. This is due to the simple structure12 I.e., once in the �rst substep of Step (2) and once in its last substep.13 An alternative procedure is presented below. 27

of Batcher's network, which is uniform with respect to logarithmic space14. All this works,provided we store the tag of each element together with the element (be it a virtual word ora dummy). Clearly, we can a�ord doing so and we indeed do so.Next we specify how to access a virtual location or a dummy i. Notice that after Step (1),the virtual locations 1 through m (as well as the dummiesm+1 through m+pm) are sortedaccording to their tags (i.e., � (�)). Thus, the actual accesses into the permuted memory atStep (2) are performed by binary search for the desired tag. Namely, suppose we want toaccess element i 2 f1; :::;m+ pmg. Then, instead of reaching directly to actual location�(i) as suggested by the high-level description, we perform a binary search for the tag � (i).This binary search terminates at the actual location �(i). Furthermore, the (possibly) otheractual accesses performed during the search are totally determined by �(i). Thus, theseadditional actual accesses yield no information to an observer.We now present two alternative implementations of Step (3). The �rst alternative is byreversing the access pattern of Step (2). The second alternative is sort the entire actualmemory (i.e., all m + 2pm words including the shelter) twice as is hereby described. The�rst sorting is performed according to the key (v; �), where v is the virtual address (1 fordummies) and � 2 f0; 1g indicates whether this word comes from the shelter or from thepermuted memory. Thus, the sorted list has virtual addresses appearing in order with someof them appearing in duplicate, one next to the other (one version from the shelter andthe other from the permuted memory). Next, we scan this list and for each virtual addressappearing in duplicate mark the second occurrence (originating from the permuted memory)as dummy (i.e.,1). Finally, we sort the entire memory again, this time by virtual addresses.(Actually, this additional sorting is unnecessary as the memory will be resorted anyhow bythe next execution of Step (1).)We conclude this subsection by providing a detailed description of Step (2). We remindthe reader that the main idea of this simulation is that we access each virtual memorylocation in the \permuted memory" only during each epoch step. Once we access somevirtual location, we keep a version of this virtual location in the shelter. Throughout Step (2),count maintains the number of virtual accesses simulated in the current epoch. The variablecount is initially 0 and is incremented until it reaches pm. The Boolean variable foundwill record whether the required value was found in the shelter. When the original RAMaccesses its ith virtual word, the oblivious RAM proceeds as follows:(2a) Scans through the shelter looking for virtual address i. Namely, for j = m+pm+ 1to m + 2pm, access actual memory location j setting found to true and stores thevalue in the cpu, if virtual address i is in actual location j. (The variable found isinitialized to false before this scanning and remains so if virtual address i was notfound.)(2b) If found = false then the oblivious RAM accesses the word with tag �(i), and storesits contents in the cpu. As explained above, this is implemented by binary search for14The simplicity of Batcher sorting network is the main reason we prefer it (in practice) upon the asymp-totically superior Ajtai-Komlos-Szemeredi sorting network [AKS].28

the tag � (i).(2c) If found = true then the oblivious RAM accesses the word with tag �(m + count)(which is a \dummy"). Also this is implemented by binary search for the tag � (m+count).(2d) It scans through shelter again and writes the (possibly) updated value of the virtualith word to the shelter. Namely, for j = m + pm + 1 to m + 2pm, access actualmemory location j storing in it the updated value of virtual address i if either addressj contains the (older) value of virtual address i (and found = true) or found = falseand j is the �rst empty word in the shelter. (Once can use found to avoid writing thevalue of the virtual address into several empty shelter words).� Increment count by 1.We stress that an observer cannot see whether cpu has stored a value or not and so it cannotdistinguish the execution of Step (2b) from the execution of Step (2c). Clearly, Steps (2a)and (2d) have a �xed access pattern and thus leak no information.4.3 Analysis of The \Square Root" AlgorithmAs argued above the sequence of actual memory accesses (of the oblivious RAM) indeed yieldsno information about the sequence of virtual memory accesses (of the original RAM). Thisis so, since during Steps (1), (2a), (2d) and (3), the actual access-pattern is �xed, whereasduring Steps (2b) and (2c) the actual access-patterns are indistinguishable and \random"15.It is left to calculate the overhead of the simulation (i.e the ratio of number of accessesdone by the oblivious RAM over the number of original accesses). To this end we calculate thetotal number of actual accesses performed per epoch (i.e.,pm virtual accesses). The numberof actual accesses in Step (1) is determined by the number of comparisons in Batcher's Sortingnetwork; namely,O(m�log2m). The same holds also for Step (3). As for Step (2), each virtualaccess is implemented by 2pm + log2(m + pm) = O(pm) actual accesses. This amountsto an amortized overhead of O(pm � log2m). Actually, the above choice of parameters (i.e.,the shelter size) is not optimal. Using a shelter of size s (and correspondingly an epoch of svirtual accesses), we obtain an amortized overhead ofO(m log2m)s + (2s+ 1 + logm)which is minimized by setting s = �(pm � logm).In the next section we present an exponential improvement over the above scheme, reducingthe overhead from a pm factor to a poly(logm) factor.15 That is, considering only the last access in each such step, we recall that it is uniformly distributedamong all permuted memory locations not accessed in the current epoch. As for the accesses done for thebinary search, thse are determined by the last access.29

5 The Hierarchical SolutionIn this section we prove the main result of the paper:Theorem 3 (MAIN RESULT:) For all k 2 IN, for any RAMk and for all y of length� 2k, any t � 2k steps of the computation of RAM k on y can be obliviously simulated byprobabilistic-RAM 0k+2 log logk with overhead O((log t)3). Furthermore, the simulation is on-lineand time-labeled.5.1 OverviewThe hierarchical solution presented in this section is a generalization of the solution presentedin the previous section. One can view the solution of the previous section as consisting oftwo parts: the random shu�ing and re-shu�ing of the actual memory contents every pmvirtual accesses (i.e., Steps (1) and (3)), and the very simulation of the virtual accessesthrough their randomized locations (i.e., Step (2)). Substeps (2a) and (2d) can be thoughtof as simulating a \powerful RAM"16 in which the CPU can hold up to pm values in itslocal registers at any time. In these terms the \Square Root" solution is as follows. TheCPU decides whether it already holds the required value in its pm registers (which we call a\bu�er"). If the answer is negative then the CPU fetches the value, else it reaches for a new\dummy" cell. When trying to generalize the solution, we want to decrease the amortizedcost of the random shu�ing. An over-simpli�ed approach is to �rst consider simulating aRAM by a \even more powerful RAM" which can hold f(m) words in its internal registers,where f is a suitably selected function, and then to recurse. This approach does improveover the pm overhead (cf., [G]), but falls short of obtaining a polylogarithmic overhead.Our polylogarithmic solution is based on storing the virtual memory in a random-hashtable, rather than as a randomly sorted array and to recurse more carefully. However, webelieve that an explicit presentation which avoids recursion is more clear. Using such apresentation, the idea is to have bu�ers (i.e., hash tables) of di�erent sizes according to thefrequency with which they are accessed. That is, we will have a small-size bu�er which wefrequently access and frequently shu�e. We will have bigger and bigger bu�ers which are notas frequently accessed and hence will not have to be shu�ed as frequently, striking a balancein the (amortized) cost. Thus, we introduce a hierarchy of bu�ers of di�erent sizes, whereessentially we are going to access and shu�e bu�ers with frequency inversely proportionalto their sizes.For exposition purposes, we again make a simplifying assumption about the possible accesspattern and �rst present a solution for this simpler problem. At �rst reading, it may not beclear why we select this particular solution for the simpli�ed problem. The reason, however,will become obvious, once we show how to extend it to the general case.16 Alas, such a \powerful RAM" is disallowed by our de�nitions.30

O
(
l
o
g

n
)

w
o
r
d
s

n "buckets"

in
 e

ac
h

bu
ck

et

1 2 n−1 n

A: x1 x2 x3 ... xn

 v1 v2 v3 ... vn

virtual block of
memory of size n

must store into a
"hash−table" with
n buckets of size
O(log n) each.

Figure 2: The restricted problem.5.2 The Restricted ProblemSuppose we are guaranteed that each memory location in a virtual memory containing nwords is going to be accessed at most once. For concreteness, let A = ((V1;X1); : : : ; (Vn;Xn))be a array/block of virtual memory locations, denoted by Vi's, together with their values,denoted by Xi's. We consider the problem of hiding the access pattern into A. Furtherassuming that each entry of A is to be accessed, we merely need to hide the order in whichwords in A are accessed. Instead of taking the approach of the previous section, we introducea new data-structure, which will prove to be useful for our general problem. In particular,instead of randomly permuting memory contents, we create a hash-table with n buckets,numbered from 1 to n, where each bucket contains O(log n) words (see Figure 2).We are going to map virtual memory addresses to the hash table, using the random oracleto compute our hash function, denoted h. The pre-processing step works as follows:(1) Allocate a block of memory of size n � O(log n) words. In this block, we call each31

consecutive sub-block of size O(log n) a bucket , and we number our buckets from 1 ton.(2) Oblivious hashing; For i = 1 to n, obliviously store the pair (Vi;Xi). into bucket h(Vi)(i.e. into the �rst available word in a bucket hs(Vi)).Remark: At this point, we do not describe how Step (2) could be implemented obliviouslyand e�ciently. We merely hint that extending techniques developed in the previous section,Step (2) can be implemented obliviously by O(n � (log n)2) actualy accesses.Remark: Notice that we store n items into a hash table with n entries according to a randommapping. Hence, the probability that any bucket will over
ow (taken over the choice of therandom mapping) is 1=poly(n). In case an over
ow occurs, we may select a new randomhash function and re-hash the items into the table. In the sequel we assume that the hashingis such that no bucket over
ows.Recall that we are dealing with the restricted problem, where we assume the virtual accesspattern is a permutation of f1; :::; ng. After the pre-processing step, we can easily hide theaccess pattern, utilizing this assumption. The solution is straightforward: when asked toaccess virtual address V we scan the entire bucket h(V) looking for a tuple (V; �). Weclaim that the actual access pattern is identically distributed for all virtual access patterns.Furthermore,Lemma 1 : Let h be uniformly selected among all functions mapping the items V1; :::;Vn intof1; :::; ng so that no range element has more than ` def= O(log n) preimages. A t-legal sequence isa virtual access pattern in which t virtual addresses are accessed and each is accessed once. Thenfor every t � n, and for every t-legal sequence, the actual access pattern of the above scheme isdistributed identically.Proof: The key observation is that for every integer ` and for every t � n and permutation� on f1; :::; ng, the sequence h(V�(1)); :::; h(V�(t)) and the sequence h(V1); :::; h(Vt) are iden-tically distributed.17 The lemma follows by observing that the actual access pattern for thevirtual access pattern V�(1); :::;V�(t) is determined by the sequence h(V�(1)); :::; h(V�(t)).Remark: We emphasize a crucial aspect of the above solution: our procedure is allowedto access the same bucket more than once. In fact, it will do so when collisions occur.Notice, however, that the distribution is the same as if we select (for n times) one of the nbuckets uniformly (conditioned on not selecting the same bucket more that O(log n) times)and sequentially scan it. We stress that the bucket size is set to be logarithmic in n fore�ciency purposes (i.e., in order to make the probability of over
ow small and consequently17 In fact the observation extends to an arbitrary sequence over fV1; :::;Vng (even if it contains repeations).The observation is due to the symmetry of the distribution of h's which do not over
ow (w.r.t. permutationsof the Vi's). 32

level (2) buffer
with 4 buckets

level (i) buffer with 2
buckets

i

level (3) buffer
8 buckets

level (N) buffer
with 2t buckets

LOWER LEVEL BUFFERS

HIGHER LEVEL BUFFERS

b
u
c
k
e
t
s

o
f

s
i
z
e

O
(
l
o
g

t
)

w
o
r
d
s

e
a
c
hFigure 3: Hierarchical data-structure.reduce the e�ect of re-hashing on the complexity). The bucket size has no bearing on thevalidity of lemma 1 (i.e., on the obliviousness of the actual access pattern once a randomnon-over
owing hash function is used).5.3 Algorithm for the General CaseWe now waive all the previous restrictions, and in particular allow multiple accesses to thesame location. In addition, we do not rely on the a-priori knowledge of the total virtualmemory size.Instead of a single hash-table introduced in the previous subsection, we use several hash-tables of di�erent sizes. With each hash-table, we associate a di�erent hash-function. We callthese hash-tables bu�ers and number them from 1 to N so that the ith bu�er (also referredto as level (i) bu�er) has 2i buckets; see Figure 3. We \obliviously hash" contents of bu�ersat di�erent frequencies, according to their sizes (for smaller bu�ers we do so more often33

than for bigger ones). Speci�cally, we (obliviously) re-hash the ith bu�er every 2i�1 virtualaccesses and this is done by using a new hash function for this bu�er. The idea is to ensurethat for each bu�er, no element in that bu�er is accessed more than once in between twoconsecutive \oblivious hashes", thus reducing the general problem to the simpli�ed problemof the previous subsection.Let t be the current length of the access sequence (i.e., the current running time ofthe program which is being simulated). Actually, we initialize t to equal the input lengthand increment it every time we perform a virtual access. We allocate memory for N =(1+ dlog2 te) distinct bu�ers, where the ith bu�er is a hash-table consisting of 2i buckets. i =1; : : : ; N . Each bucket, regardless of the bu�er to which it belongs, consists of m def= O(log t))actual memory words. With each bu�er we associate a partition of time into epochs so thatthe length of the epoch corresponds to the size of the bu�er. Speci�cally, the ith bu�er,holding 2i buckets, has an epoch of length 2i�1, so that its jth epoch is the time interval[(j�1)�2i�1+1; j �2i�1]. The bu�er parameters are tabulated below. For each bu�er and eachepoch we associate a (random) hash function mapping the set of all virtual addresses intothe buckets of this bu�er. Speci�cally, the hash function associated with the jth epoch of theith bu�er is denoted hi;j and has range f1; :::; 2ig. All these hash functions are de�ned andcomputed via the random oracle f ; for example, we can let hi;j(V) def= (f(i; j;V) mod 2i)+1.We stress that these hash functions are totally random and independent of one another.size epoch length moved \down" 18ith bu�er 2i buckets 2i�1 every 2i virtual accessesBefore we describe our algorithm, let us motivate it by stating how our simulation is going tolook to an \adversary" (i.e., what is the distribution of actual memory accesses). During thesimulation we will be adding more and more bu�ers at some predetermined intervals of time(i.e., the i+1st bu�er is introduced at time 2i). Furthermore, the size of the buckets in thesebu�ers will grow with time so that at time 2i all buckets are of size O(i). For any virtualmemory access, we scan all (i.e., both) buckets of the �rst bu�er, and for each the otherbu�er (currently existing) we scan a single bucket, which appears to be randomly chosen.By scanning a bucket we mean accessing all the m actual memory words associated with thebuckets.Initially, all the bu�ers are empty.19 In the beginning of the simulation we obliviouslyhash the program and the data into the N th bu�er (according to the hash function hN;1),where N equals the logarithm of the input (i.e., program+data) length. In addition, weinitialize t to 2N�1. The on-line simulation proceeds according to the epoch structure of allbu�ers. When treating the tth virtual memory access, we �rst perform some actual accesses18 See discussion and Step (4) below.19 An alternative description can be obtained by treating the placing of the input into the memory as anordinary execution of the original RAM. 34

in order to implement this virtual access and next re-hash (obliviously) all bu�ers the epochof which has just ended. Let us start by describing the �rst part.Suppose that at time t we need to access the virtual memory address V. Then, we �rstscan both buckets of the 1th bu�er (i.e., access all actual memory words belonging to the�rst bu�er), looking for (V; �). In case we have not found (V; �) in this bu�er, we scanbucket h2;dt=2e(V) of the second bu�er. If we have not found it there either, we scan bucketh3;dt=4e(V) of the third bu�er, and so on. Say we found the virtual memory address V in theith bu�er, then for all the bigger bu�ers (i.e., bu�ers i+ 1; i+ 2; :::; N), we scan a randomlychosen bucket. Actually, for every j > i, we scan bucket hj;dt=2j�1e(\dummy" t) of the jthbu�er. Having the contents of virtual address V, the cpu can store it in its registers andupdate it. In any case, at the end, we store the updated value of the virtual address V inthe �rst bu�er (e.g., in bucket h1;t(V)).20 We stress that we store in the 1st bu�er only the\address-value" pair we been looking for, and not the entire bucket in which we have foundit. Nor do we store any other information retrieved during the search (i.e., in the bucketswhich were scanned but did not contain the virtual address V).Following is a more detailed description of the actual accesses done in time t in order toimplement a virtual memory access to location V:� Reset the Boolean variable found to false. (We stress that found is an internalvariable of the cpu.)(1) Access all actual memory words associated with each of the two buckets of the 1stbu�er. In case a pair of the form (V;X) is found, store it in the cpu and set foundto true. (We stress that the adversary cannot see the internal actions of the cpu andthus it cannot tell if a pair has been stored in it or if found has been set.)(2) For i from 2 to N def= 1 + dlog2 te do:(2.1) if not found (i.e., the virtual address V has not been found yet) then accessall actual memory words associated with the hi;dt=2i�1e(V)th bucket of the ithbu�er. In case a pair of the form (V;X) is found, store it in the cpu and setfound to true.(2.2) if found (i.e., the virtual address V has already been found) then access allactual memory words associated with the hi;dt=2i�1e(0; t)th bucket of the ithbu�er. We assume that the the virtual addresses are encoded as integers andthus that they are disjoint of pairs of the form (0; t).(3) The cpu updates the contents of the virtual address V and stores the pair (V;X)in the �rst bu�er. This storing is done while accessing each actual memory wordsassociated with the 1st bu�er and so that if V appears in the 1th bu�er the new valueoverwrites on it.20 Actually, there is no need to use a hash function (and oblivious re-hsahing) for the �rst bu�er as itscontents is always accessed obliviously (i.e., by scanning all the words of both buckets). We have adoptedthe current description only for sake of uniformity. 35

Note that in the above description, the data is is always \moved up" to the 1th bu�er.Thus, after several accesses, the 1st bu�er may become full. To avoid potential \over
ow"we must frequently \move" the contents of the �rst bu�er to the second bu�er. Then (atlonger intervals) we must move contents of the second bu�er to the third bu�er, and so on.When we \move" contents of the ith bu�er into the i+ 1st bu�er, we \obliviously hash" thecontents of the ith bu�er and the contents of i+1st bu�er to the i+1st bu�er, according to anew, random hash function; namely, hi+1;j where j is an index of a new epoch for the i+1stbu�er. Further details for the oblivious hashing operation are postponed to Subsection 5.5.At this point we merely state that the contents of the ith bu�er is moved into the i + 1stbu�er and the latter bu�er is re-hashed every 2i virtual accesses (i.e., at the end of an epochof the i+ 1st bu�er). Thus, every time the ith bu�er becomes potentially21 full, we move itscontents into the next bigger bu�er. If this larger bu�er does not yet exist, we allocate it.Thus, the following actions take place (after implementing the tth virtual access as describedabove).(4) For i from 1 to maxfj : 2j divides tg,obliviously re-hash the current contents of the ith bu�er and the i+1st bu�er into thei+ 1st bu�er, using the hash function hi+1;(t=2i)+1.The implementation of Step (4) is given in Subsection 5.5. We stress that if the contents ofa virtual address appears in both the ith and the i+ 1st bu�ers then the value in the i+ 1stbu�er is to be ignored since it is older.RemarksAfter implementing exactly (2q+1) � 2i virtual accesses, the total number of virtual memorywords in the �rst i bu�ers is at most 2i, and hence merging their contents into the i + 1stbu�er (which also contains at most 2i virtual words) is unlikely to cause over
ow. We stressagain that when implementing the oblivious re-hash, we act as if these i+ 1 bu�ers containexactly 2i+1 virtual words. We remark that we could have merged the contents of all i smallerbu�ers directly into the i+1st bu�er, rather than merge the 1st bu�er into the 2nd, the mergethe 2nd into the 3rd and so on till merging the ith bu�er into the i+ 1st.When we move contents of a smaller bu�er into the larger bu�er, we pick a new hashfunction and place into the bigger bu�er the contents of the smaller bu�er and the contentsof the bigger bu�er according to this new hash function. Thus, the collisions which mighthave occurred in the smaller bu�er do not in
uence collisions which may occur in the biggerbu�er. That is, collisions do not accumulate.Note that we do not need to know a-priori the length of the virtual access sequence.Instead, we do an adaptive simulation, starting with twice the size of the input and adding21 To maintain obliviousness, our actions should be independent of the virtual access pattern and so wecannot take advantage of cases in which the same virtual addresses were being accessed. We merely usethe upper bound by which in 2i accesses at most 2i virtual locations are accessed and so the ith bu�er willcontain at most 2i virtual words in its 2i buckets. Although each bucket can contain logarithmically manywords, we better not �ll up this bu�er any more or else we risk increasing the probability of over
ow.36

more memory \as needed", (but obliviously of the real access.) That is, after t steps weuse O(t � (log t)2) memory. Notice that this does not reveal the rate at which the memory isactually used up by the program.Our scheme can be generalized as follows. For any integer b > 1, we may let the ithbu�er contain bi buckets (each of the same size as above). The epoch of the ith bu�er willhave length bi�1; that is, it will be obliviously re-hashed every bi�1 virtual accesses (eachtime using a new random hash function). Analogously, the contents of the ith bu�er will bemerged into the i + 1st bu�er every bi virtual accesses. In practice, using large values of bmay yield a reduced overhead; see Subsection 5.6.5.4 Obliviousness of Access PatternLet us start with an overview of our proof. The key observation underlying the proof of theobliviousness of the access pattern in Steps (1) through (3) is taken from the analysis of therestricted problem (see Subsection 5.2). The observation is that as long as we never try toaccess the same virtual memory address (or the same dummy) twice, from the same bu�erduring the same bu�er epoch, our actual access pattern in Step (2) reveals no informationto the adversary. As Steps (1) and (3) are clearly oblivious, as they amount to scanningall words in the �rst bu�er regardless of the virtual access request, we are done. A moreelaborate justi�cation, to the obliviousness of the actual accesses made in Step (2), follows.Lemma 2 : Let i > 1, j � 1, t def= (j � 1) � 2i and n def= 2i. Consider the jth epoch of the ithbu�er and suppose that at the beginning of this epoch the bu�er contains v � n virtual addresses,denoted V1; :::;Vv. Further suppose that hi;j is selected uniformly among all functions mappingthe items V1; :::;Vv; (0; t+1); :::; (0; t+2n�v) into f1; :::; ng so that no range element has morethan m def= O(log t) preimages. Then, the actual accesses made into the ith bu�er during the jthepoch are oblivious (i.e., do not reveal any information on the virtual access pattern).22Proof: The proof is analogous to the proof of Lemma 1. All that we need to do is prove thatduring Step (2), the same item (be it a virtual address Vu or a dummy (0; t + u)) is neverused twice as a target for access within the same epoch. That is, we claim that during thejth epoch of the ith bu�er we access the buckets hi;j(T1); :::; hi;j(Tn=2), where T1 through Tn=2are n=2 distinct elements from the 2n-item set fV1; :::;Vvg [f(0; t+ 1); :::; (0; t+ 2n� v)g.The claim is proven by reviewing Step (2). Firstly, if a virtual address Vu is ever used asa target during the jth epoch (i.e., if at some time t0, t < t0 < t+ n2 , we evaluate hi;j(Vu) andaccess the resulting bucket) then by Step (3) the (updated) contents of Vu is moved to the�rst bucket. Furthermore, according to Step (4), during the remaining t+ n2 � t0 < n2 virtualaccesses Vu may be moved upto the i� 1st bu�er (as i � 1 = log2(n=2)). It follows that inthe remaining t+ n2 � t0 virtual accesses, if sought at all, Vu may be found in one of the �rsti� 1 bu�ers and thus is never used again as a target in Step (2.1). This establishes that the22 That is, the actual access pattern considered are identically distributed for every possible virtual accesspattern being simulated. 37

same virtual address is used at most once as a target for search in the ith bucket during itsjth epoch.By de�nition the virtual addresses and the dummies (i.e., the items (t+ u)) are disjoint.Thus, it remains to show that no dummy is twice as a target for search in the ith bucketduring its jth epoch. But this is apparent from the description of Step (2.2) and so the claimfollows and so does the lemma.We stress that the above proof holds regardless of whether the virtual access made in Step (2)corresponds to a virtual word which resides in the ith bu�er during the jth epoch. In partic-ular, the argument does not depend on whether a virtual word which resides in the ith bu�eralso resides in smaller or larger bu�ers. Since for every bu�er and each of its epochs, theactual access pattern into this bu�er during this epoch reveals no information on the virtualaccess pattern being simulated, we getCorollary 3 : The actual access pattern in Steps (1), (2) and (3) is oblivious of the virtualaccess pattern.5.5 How To Perform The Oblivious HashIn this subsection we provide an e�cient implementation of Step (4) (of Subsection 5.3above); namely, we show how to perform oblivious hash.Recall that in our algorithm, the data is is always \moved up" to the smallest (level 1)bu�er. Thus, after several virtual accesses, the level 1 bu�er may become full. To avoidpotential \over
ow" we must \move" the contents of the �rst level bu�er to the second levelbu�er. Then (at longer intervals) we must move contents of the second level bu�er to thethird level bu�er, etc. When we \move" contents of bu�er level i to bu�er level i+ 1, every2i virtual accesses, we \obliviously hash" the contents of bu�er level i and the contents ofbu�er level i + 1 into bu�er i + 1 according to a new hashing function. We stress that ifthis is time to move the contents of bu�er i + 1 up (to bu�er i + 2) too, then we performthis latter activity after completing the re-hashing into level i + 1 (which in fact has beendone in vein).23 Thus, the problem is always as follows: we have 2 hash-tables, A and B.Table A has n buckets, while table B has 2n buckets, and each bucket has size m words.Jointly, both A and B contain no more than 2n values, where each (non-empty) value is apair (Vi;Xi):23 Nevertheless, we prefer the current description due to its simplicity.38

Buffer A with n buckets.

Buffer B with 2n buckets

m

w
o
r
d
s

i
n

e
a
c
h

b
u
c
k
e
t

m

w
o
r
d
s

i
n

e
a
c
h

b
u
c
k
e
t

Jointly, buckets in
both A and B contain
at most 2n words

Our goal is to e�ciently and obliviously transfer all these pairs into B, using a newrandom hash-function h, so that all non-empty entries (Vi;Xi) from both A or B end-up inthe corresponding buckets h(Vi). Before getting into details of how this is done let us discusstwo issues. The �rst issue is that we wish h to be a non-over
owing hash function in the sensethat no element in its range has more than m pre-images in the set of 4n elements mentionedin Lemma 2 (i.e., the upto 2n Vi's, residing in A and B, augmented by upto 4n elementsof the form (0; j)). The reader may wonder how we can know ahead of time whether h isnon-over
owing. The answer is that we do not know (a-priori whether h is over
owing ornot). Instead, h is a random mapping de�ned by the random oracle (as well as the bu�ernumber and its epoch number) and we try to use it. With very high probability (i.e., atleast 1 � 2n � 2�m=2 > 1 � 1=n), the function h is non-over
owing. Yet, with non-negligibleprobability, we �nd out, during the re-hashing that h is over
owing. In such a case, we selecta new hashing function and re-do the entire process. This does not increase the expectednumber of operations by much (since over
ow occurs with probability smaller than theinverse of the number of actions it causes). Finally, we remark that a new hashing functionis determined by (arti�cially) incrementing the epoch number (or equivalently, increasingthe counter of virtual accesses by the corresponding amount).The second issue to be addressed is that both A and B may contain an entry of the form(V; �) for the same virtual address V. In this case the value stored with V in A is newer thanthe value stored in B. Thus, during the re-hashing we need to get rid of the older value andthis should be done obliviously.Our Oblivious Hashing of A and B into B proceeds in 12 steps each employing one of thefollowing primitives. The �rst primitive, called scanning, consists of scanning all words in a39

memory array and possibly modifying their value. We stress that we scan all these wordsone by one (in a predetermined order) and thus this process is oblivious. In particular, eachword is accesses twice; the �rst time for reading its contents and the second time for writinga new contents (which may be identical to the old contents). Thus, the access pattern is thesame regardless of whether we have changed the contents of some words or not. The secondprimitive is oblivious sorting. Here we use the procedure introduced in the previous section(i.e., on the \Square-Root" Solution). In di�erent steps we will be sorting the array of wordsaccording to possibly di�erent sorting keys. Yet, each of these oblivious sorting procedurescan be implemented while making ` log22 ` actual accesses (to �xed locations independent ofthe sorted values), where ` is the number of words in the array. (We remark again that theabove uses the Batcher Sorting Network [Bat], whereas, for a asymptotically superior result,one may use the AKS Sorting Network [AKS] yielding O(` log `) actual accesses.)(H1) Write all words of both bu�ers into one (temporary) array of 3mn words, denoted C.(Recall the above two bu�ers contain n+ 2n = 3n buckets each containing m words.At most 2n of these words contain virtual words, i.e., have contents (V;X).) Whilecopying the words into C, mark the virtual words appearing in A by `N' (standingfor new) and mark the virtual words appearing in B by `O' (for old).(H2) Obliviously sort the words in array C giving priority to virtual words, among themby the virtual address, and among those with the same virtual address { putting theone labeled `N' �rst. (At the end of this step, the virtual addresses are in the �rstpart of the array and in case the same virtual address has appeared in both A and Bthese occurrences appear adjacent in the sorted array with the word originating in Aappearing �rst.)(H3) Scan array C, \erasing" each virtual word mark `O' which is preceded by the samevirtual word marked `N'. Namely, while dealing with a speci�c actual word, if thecurrent contents of this word is (V;X ; N) then update it to (V;X) (omitting themarking `N') and save V (in the cpu) as the last virtual address scanned. In case thecurrent contents of the actual word is (V;X 0; O) and the last virtual word scanned isV then update the actual memory word to `empty' (i.e., erase it). Finally, in case thecurrent contents of the actual word is (V;X 0; O) and the last virtual word scanned isnot V then update the actual memory word to (V;X 0) (omitting the marking `O').(At the end of this step, array C contains at most 2n virtual words each appearingexactly once. Furthermore, the virtual words in C are exactly the newest versions ofeach virtual word in either A or B, excluding the out-of-date versions which mightappear in B.)(H4) Add j < 4n dummies (i.e., words of the form (0; t+j), where t is the number of virtualaccesses simulated so far) to complete the number of non-empty words in C to 4n.All the other 3nm � 4n actual words are empty. This can be done as follows. First,scan the �rst 2n words of C counting the number of virtual words residing in them.(Here we take advantage of the fact that after Step (H2) only the �rst 2n actual wordsmay contain virtual words.) Next, without loss of generality, scan the last 4n actual40

words of C writing the necessary dummies into (some of) these locations. (Here weuse 4n � 3nm � 2n.)(H5) Scanning C, augment each of the 4n non-empty word by a tag obtained by applyingthe new hash function24, h, to the appropriate contents. Namely, if the word contain avirtual word (V;X) then the tag is h(V). Otherwise, the non-empty word has contents(0; t+ j) and the tag will be h(0; t+ j).(H6) Obliviously sort the array C giving priority to non-empty words and among them towords with lower tag (i.e., hash value). (At the end of this step, the non-empty wordsappear in the 4n-long pre�x of the array in order corresponding to their tags.)(H7) Scanning array C, check if some tag was given to more than m words. If so repeatStep (H5) (while increasing the value of t to t + n).25 Otherwise continue. (Notethat the outcome of the current step, namely the `bit' indicating whether over
owhas occurred or not, yields no information about the virtual words in array C.)(H8) Scanning array C, tag 2nm of the empty words, so that for i = 1; :::; 2n, exactly msuch words are tagged i. This can be done by tagging, for each i = 1; :::; 2n andj = 1; :::;m, the actual word (n + i � 1) � m + j with the value i. (Here we takeadvantage on the fact that only the �rst 4n < nm words are non-empty. At the endof the current step, for each i = 1; :::; 2n, there are at least m words having tag i andat most m virtual words have tag i.)(H9) Obliviously sort the array C giving priority to tagged words (regardless if they belongto the 4n non-empty words or not), among them to words with lower tag (i.e., hashvalue), and among those of the same tag { to non-empty words. (At the end of thisstep, the tagged words appear in the pre�x of the array in order corresponding totheir tags.)(H10) Scan array C, leaving exactly m words with tag i, per each i 2 f1; :::; 2ng. Thisis done by `erasing' some of the tags made at Step (H8). Furthermore, tags of non-empty words are never erased. Here we rely on the fact that C was sorted so thatnon-empty words appear �rst among all words of the same tag. Speci�cally, the aboveis implemented by scanning the array C and counting the number of occurrences of thecurrent tag. Once the count reaches the value m, the excess occurrences are erased.(At the end of the current step, for each i = 1; :::; 2n, there are exactly m wordshaving tag i. Furthermore, the words with tag i reside in locations j + 1; :::; j + m,where (i� 1) �m � j � (i� 1) � 2m. If fact we expect j � (i� 1) � (m+ 2).)(H11) Obliviously sort the array C (for the last time), giving priority to tagged words andamong them to words with lower tag (i.e., hash value). (At the end of the currentstep, the tagged words reside in the 2nm-pre�x of C and furthermore they appear inconsecutive blocks, each containing m words, so that the words of the ith block areall tagged by i.)24 The new hash function is de�ned as h(x) = f(i; j; x) mod 2n where f is the random oracle, i the levelof bu�er B and j = t=n.25 This increase guarantees that a new hash function will be de�ned next time Step (H5) is invoked.41

(H12) Scan array C, `removing' all tags and `erasing' the contents of actual words whichdo not contain a virtual word (and thus making them empty). Finally, move the2nm-pre�x of the array C into the 2n-bucket bu�er B (in the natural manner).Lemma 4 : Suppose that h is non-over
owing. Then, the above procedure obliviously movesthe 4n non-empty words into the 2n buckets speci�ed by the hash value (i.e., the virtual word V ismoved to bucket h(V) whereas the dummy (0; j) is moved to bucket h(0; j)). Furthermore, theprocedure can be implemented using O(nm log(nm)) actual memory accesses and a uniformlyselected h is over
owing with probability at most n � expf�mg.Proof: Correctness follows by observing that thing may go wrong in the above process onlyif some tag is assigned in Step (H5) to more than m virtual addresses. This cannot happen ifh is non-over
owing. The obliviousness of the entire process follows from the obliviousness ofeach of its 12 steps. The complexity estimate is obtained by using the AKS Sorting Networkas a basis for the oblivious sorting. Finally, the probability bound, for over
owing hashfunctions, is obtained by applying a multiplicative Cherno� Bound.5.6 CostLemmata 2 and 4 establish the obliviousness of the Hierarchical Simulation presented above.To complete the proof of the main part of Theorem 3, it remains to consider the overhead/costof this simulation. For sake of clarity, we analyze the cost of our simulation using thegeneralized construction in which the ith bu�er is of size bi, where b > 1 is some �xed integer(see remark at the end of Subsection 5.3). Our presentation above used b = 2.Using this notation, a computation of length t (i.e., involving t virtual accesses) is sim-ulated using N = 1 + dlogb te bu�ers. The bucket size at the last steps is m = O(log t).We now bound the number of actual accesses performed in each step of the simulation. ForSteps (1) and (3) (i.e., scanning the �rst bu�er) we use bm actual accesses per virtual ac-cess. For Step (2) (scanning one bucket in each bigger bu�er) we use at most N � m suchactual accesses. Now we get to the cost of re-hashing. Here we compute the amount of workdone per each re-hashing of each bu�er (and latter amortize by the length of the epoch ofthis bu�er). Considering the ith bu�er, we observe that the dominating cost is due to theoblivious hashing of a temporary array of (bi�1+ bi) �m entries. This cost, in turn, amountsto O(bim � log(bim)). Thus the amortized complexity of re-hashing the ith bu�er isO(bim � log2(bim))bi�1 = O(bm � (log2m+ i log2 b))Thus, we getLemma 5 The expected number of actual accesses performed by the above procedure for sim-ulating t virtual accesses is O(t log3 t). 42

Proof: The bound on the complexity of re-hashing was computed assuming that the hashingfunction is non-over
owing. However, since the probability of this event is at least 1=2,the expected complexity (for a uniformly selected hashing function) is at most twice thisbound. The lemma follows by summing-up together the contributions of Step (1{3) and thecontributions of all bu�ers to the complexity of Step (4). Speci�cally, we get the followingupper bound on amortized complexity2bm+Nm+ NXi+2O(bm log2m+ ibm log2 b) = 2bm+Nm+O(Nbm log2m)+O(N2bm log2 b)and the lemma follows by setting b = 2, N = 2 + log2 t, and m = O(log t).RemarksIf one uses Batcher's Sorting Network instead of the AKS Network used in the above com-plexity bounds then one gets an overhead factor of O(log42 t) (instead of the O(log32 t) factorstated in the lemma). However, the constant in the O-notation for the Batcher variant willbe of the order of 10 whereas the constant in the lemma has the AKS constant hidden in it.Our oblivious simulation uses a small number of cpu registers. Typically, we use onlythree registers { one for holding the number of steps simulated so far and two for holdingthe contents of at most two actual words recently retrieved. Clearly, if the cpu can holdmore data in its protected, internal memory then the simulation can be done while incurringlower overhead. One obvious thing is to keep some of the smaller bu�ers inside the cpurather than in unprotected memory. Another saving is possible when basing the ObliviousSorting on a sorting network with components that may sort several elements rather thantwo (cf., [AKS2]).5.7 Making Hierarchical Simulation Time-LabeledIn order to establish the Furthermore Claus of Theorem 3, we need to make our simulationtime-labeled. (This is needed in order to be able to invoke Theorem 2.) Recall that thesimulation is time-labeled if there exists a linear space computable function Q(�; �) so thatQ(w; t) is the number of times we've written a value into the actual word address w duringthe �rst t actual accesses done in the simulation.Lemma 6 The hierarchical simulation can be implemented in a time-labeled manner (whilepreserving its obliviousness and its complexity bounds).Proof: A key observation towards this goal is that, for any i > 1, during our (hierarchical)simulation, the contents of the ith bu�er is only changed during the oblivious hashing (i.e.,Step (4)). This observation is proven by inspecting the various steps of the simulation.Steps (1) and (3) only refer to the �rst bu�er. As to Step (2), during this step the contentsof some words in the ith bu�er may be read, but nothing is ever written to this bu�er.43

Another easy observation is that the access pattern to the words of the �rst bu�er, duringSteps (1) and (3) is �xed and easily computable (in linear space). Thus, Steps (1) through (3)are time-labeled.Next we note that if the hash function is non-over
owing then the accesses structure inStep (4) is �xed and linear space computable. It follows that if no hash function is everover
owing then the entire simulation would be time-labeled. Thus, it is left to deal withthe case in which Step (H7) detects that the hash function in use is over
owing. In orderto simplify the analysis, we modify the re-hashing procedure as follows. In the modi�edStep (H7) we will not return to Step (H5) in case over
ow is detected but rather proceedto Step (H8). The remaining Steps (H8) through (H12) will be executed with the followingmodi�cations. (We stress that these modi�cation apply only to the case we found the hashfunction to be over
owing.) In the modi�ed Step (H8) we scan the array but do not tagany word. In the modi�ed Step (H9) we sort the array giving priority to non-empty words.Likewise, in Step (H10) we scan the array but do nothing and in Step (H11) we sort againas in Step (H9). Note that the access pattern in all these modi�ed steps is exactly as inthe original steps (i.e., the access pattern in scanning and in sorting are oblivious to whatis being searched for or sorted by). Once the re-hashing is done for the ith bu�er, that isthe bu�er in which an over
ow has occurred, we perform 2i�1 dummy virtual accesses andsimulate them as usual. (The actual access pattern will be time-labeled here too.) This willno bring us to re-hash the ith bu�er again which was our original goal. Note that all theseredundant operations do not change the asymptotic cost of our oblivious simulation (due tothe low probability of over
ow and the moderate cost incurred in this case).The Furthermore Claus of Theorem 3 now follows,5.8 Software protectionWe can now combine Theorem 3 and 2 to establishTheorem 4 SOFTWARE PROTECTION (information-theoretic case): There ex-ists a software-protecting compiler C such that for any probabilistic-RAM C protects softwareagainst tampering adversaries with overhead O((log2)3).We stress that the above theorem holds in the information-theoretic sense on a probabilistic-RAM (which uses a random oracle.) As noted in the Introduction, instead of random oraclewe can use pseudo-random functions [GGM], and state a practical analogue of the abovetheorem. That is, assuming the existence of a one-way function, the above algorithm can beimplemented in practice using O(t�(log2 t)3 �poly(k)) steps, where k is the security parameteras well as the word length (note that the cpu registers should be able to hold keys of lengthequal to the security parameter). Thus, we getTheorem 5 SOFTWARE PROTECTION (polynomial case): Suppose one-way func-tions exist. Then there exists a �xed polynomial p and a software-protecting compiler C withoverhead p(k) which is secure against all poly(k)-time tampering adversaries. (Recall: k denotesthe size of the cpu's protected registers.) 44

Proof : We start by assuming, for simplicity, that there exists one-way functions which canbe computed in linear space. (This follows from the existence of arbitrary one-way functionsbut a trivial padding argument.) Next, we invoke the constructions of Hastad et. al. [H, ILL]and Goldreich et. al. [GGM] to obtain a family of pseudorandom functions. We note thatthe resulting pseudorandom functions will be also computable in linear space.Using the compiler of Theorem 4, we replace all calls to the random oracle by computa-tions of a uniformly selected (and �xed) pseudo-random function. We stress that the seedspecifying such a function will be uniformly selected in f0; 1gk, by the compiler and storedin the cpu. By de�nition, no poly(k)-time adversary can distinguish such a pseudorandomfunction from a truly random function and thus it cannot distinguish a simulation in which apseudorandom function is used from one in which a random function is used. The software-protection property of the new compiler thus follows from the software-protection propertyof the compiler of Theorem 4.The overhead of the new compiler is at most a factor poly(k) bigger than the overheadof the original compiler. (The extra factor comes from the time required to evaluate a pseu-dorandom function compared to the unit cost per an oracle access to the random function.)Finally, recalling that we have restricted (in our de�nitions) all adversaries to run no morethan 2k steps, we have log t � k and thus poly(k) � log3 t = poly(k), justifying the overheadclaim.

45

6 A Lower BoundTheorem 6 Every oblivious simulation of ram on input y by probabilistic-ram must make atleast (maxfjyj;
(t � log t)g accesses in order to simulate t steps.Proof : The task of simulating ram on an oblivious RAM can be modeled by the followinggame between three entities:� a player who, at each time, can hold at most b balls and who can take probabilisticmoves. (The player impersonates the cpu.)� a request sequence: (r1; : : : ; rt) of length t, where each ri is in [m] def= f1; :::;mg. (Therequest sequence models the virtual memory accesses required by the program. Incontrast to the situation in an on-line simulation, we consider an arbitrary, but �xed,request sequence and allow the player (cpu) to have full a-priori knowledge of therequest sequence.)� an observer.The game is played with m balls which are located in m non-transparent cells, each capableof holding a single ball. Initially ball i is in the ith cell. The actions that the player may takeat any time is stick its hand to a cell and either fetch the ball residing in it (in case suchexists) or place a ball in the cell (in case it is currently empty) or just leave things in thecell as they were. The observer sees to which cell the player sticks his hand, but cannot tellwhich action (i.e., `take ball', `place ball' or `nothing') was taken. (The balls model virtualwords and the cells actual memory locations. We relax the conditions of oblivious simulationby allowing the player to remember `for free' which ball is in which cell. For this reason wemay replace the cpu's access to a random oracle by merely allowing the player to toss coins{ he can record the outcome for free and thus simulate a random function.)The game proceeds for t rounds. In round i = 1; :::; t, the request sequence (secretly)speci�es to the player a request ri which is a ball number from 1 to m. (The observer is nottold this request.) The goal of the player is to end-up holding ball ri (at the end of the currentround), yet the player should achieve this goal without letting the observer gain informationon the value of ri. That is, the obliviousness condition requires that the observer can learnnothing about the request sequence from the sequence of cells accessed by the player. Westress that the player should be able to handle any request sequence. Our aim is to showthat in order to meet these requirements the player should take at least maxfm;
(t log t)gactions. The lower bound of m is obvious (by considering only the �rst round and recallingthat initially ball i resides in the ith cell). It thus remains to establish the lower bound of
(t log t).Consider a probabilistic mapping of t-element long sequence over [m] (i.e. all possiblerequest sequences) into a pair of two q-element sequences determining the behavior of theplayer as follows. The �rst sequence V = (v1; :::; vq) describes the visible access patternwhich is a sequence of cells to which the player has stick his hand. This sequence is visible46

by the observer. The second sequence H = (h1; :::; hq) describes the hidden actions that theplayer makes and the observer cannot see (i.e., taking a ball from the cell, placing a ballin the cell, or doing nothing). Note that there are, at most, b + 2 possibilities as in case aball is placed in the cell it can be one of the upto b balls held by the player at that time.Hence, in response to request sequence (r1; :::; rt) and possibly some probabilistic choices, theplayer conducts actions (v1; h1); : : : ; (vq; hq), where vi is a cell number (i.e., element of [m])and hi is one of the b + 2 (hidden) actions mentioned above. Clearly, this action sequencemust satisfy the request sequence. Namely, there exists a sequence 1 � j1 � j2 � jt = q(i.e., when rounds are \�nished") so that, for every (round) i (1 � i � t), after actions(v1; h1); :::; (vji; hji) the player holds ball rj in his hand. In such a case we say that theaction sequence (v1; h1); : : : ; (vq; hq) satis�es the request sequence r1; :::; rt.An important observation is that a �xed sequence of player actions (v1; h1); :::; (vq; hq)may satisfy at most bq request sequences, as after each step the player holds at most b balls.26Another important observation is that each visible q-long sequence, V , may be coupled withat most (b + 2)q possible hidden action sequences. Thus, each such V may satisfy at mostbq � (b+2)q request sequences, where we say that a visible access pattern V satis�es a requestsequence if there exists a hidden sequence H so that (V;H) is a legitimate action sequencesatisfying the request sequence. Finally, by the obliviousness condition, the visible sequenceV must be statistically independent of the particular request sequence (except for its length).It follows, in particular, that it must be able to satisfy all mt possible request sequences. Wethus get bq � (b+ 2)q > mtand so q > t logb(b+2)m. The lemma follows by considering m = t.Remark: The above bound does not rely on the fact that the simulation needs to be doneon-line. That is, the above lower bound holds even if the simulation is performed with theentire program request sequence given to the oblivious ram before the simulation begins.
26 An alternative bound which may is easier to understand is �qt� � bt.47

7 Concluding RemarksWe have presented a compiler which translates RAM-programs to equivalent programs whichdefeat attempts to learn anything about the program by executing it. The translation wascarried-out on the instruction level: namely, we have replaced the memory access of eachinstruction by a sequence of redundant memory accesses. Clearly, all statements and resultsappearing above, apply to any other level of execution granularity. For example, on the\paging" level this would mean dealing with \get page" and \store page" as atomic accessinstructions, and substituting single \page access" by a sequence of \page accesses". In gen-eral, we have provided a mechanism for obliviously accessing a large number of unprotectedsites when using a single protected site. The application to software protection was the onlyapplication discussed above, but other applications are possible as well. Below we discusstwo such applications.One possible application of our work is for a secure/private management of a distributeddatabase in a network of trusted sites connected by insecure channels. No site can holdthe entire database and so the database is distributed among the sites. Users connected tosingle sites which to retrieve information from the database in a way which does not allow anadversary (which monitors the channels) to learn which part of the database is more useful,or, more generally, learn the access pattern of any user to the database. In this applicationwe are not required to hide the fact that a database request was done by some site at sometime, we merely need to hide amy information regarding the piece of data required. We alsoassume that we are allowed to handle the users' requests one-by-one (rather than in parallel).It is easy to see that an oblivious simulation of a RAM can be applied to this applicationby associating the sites with memory cells. The role of the cpu will be played by the sitewhich currently requests data from the database, and information regarding the simulationcan be passed between the sites in an oblivious manner. We note that the above applicationdi�ers from the problem of Tra�c Analysis as treated by Simon and Racko� [SR]. A tellingspecial case of their setting consists of 2n parties wishing to communicate concurrently, inn disjoint pairs, and wanting to hide information regarding the matching (the pairing).Another application of our technique is for data-structure checking as treated in [BEGKN](which in turn follows Blum's notion of program checking as introduced in [B, BK]). In thissetting it is desirable to maintain a data-structure while using only a small amount of reliablememory. Most of the data-structure is to maintained on an unreliable memory which canbe thought of as being tampered with by an adversary. The goal is to provide a mechanismfor checking the integrity of the data so stored. As observed by Blum et. al. [BEGKN], anoblivious simulation of RAM certainly solves the general problem (i.e., protecting any \datastructure"), however it is somewhat of an over-kill and a more e�cient solution is givenin [BEGKN]. Further e�ciency improvements are possible for particular data structures,such as ques and stacks, and indeed Blum et. al. [BEGKN] provide such solutions.48

AcknowledgmentsThe authors wish to thank Leonid Levin for introducing them to one another. The secondauthor wishes to thank Silvio Micali, his Ph.D. advisor, for his generous help and his wisecounsel.We wish to thank many friends and colleagues for their contributions to this work andits presentation. In particular, we wish to thank Baruch Awerbuch, Alok Aggarwal, ManuelBlum, Benny Chor, Shimon Even, Sha� Goldwasser, Hugo Krawczyk, Mike Luby, SilvioMicali, Noam Nisan, Charlie Racko�, John Rompel, Ron Rivest, Yacov Yacobi, Moti Yung,and Ramarathanam Venkatesan.References[AHU] Aho, A.V., J.E. Hopcroft, and J.D. Ullman, \The Design and Analysis of ComputerAlgorithms" Addison-Wesley Publ. Co., 1974[AKS] Ajtai, M., J. Komlos, and E. Szemeredi \An O(n � log n) Sorting Network" STOC83.[AKS2] Ajtai, M., J. Komlos, and E. Szemeredi, \Halvers and Expanders", FOCS , 1992.[ACGS] Alexi, W., B Chor, O Goldreich, and C.P Schnorr, \RSA and Rabin Functions:Certain Parts Are As Hard As The Whole", SIAM Jour on Computing, ExtendedAbstract in Proc 25th FOCS, 1984.[Bat] Batcher, K. \Sorting Networks and their Applications" AFIPS Spring Joint Com-puter Conference 32, 1968, pp. 307-314.[Be] Best, R. \Microprocessor for Executing Encrypted Programs" US Patent 4,168396Issued September 1979.[B] M. Blum, \Designing programs to check their work" manuscript.[BK] M. Blum., and S. Kannan., \Program correctness checking... and the design ofprograms that check their work" STOC 89[BEGKN] M. Blum, W. Evans, P. Gemmell, S. Kannan M. Naor \Checking the Correctnessof Memories" FOCS 91.[BM] Blum, M., and S. Micali, \How to Generate Cryptographically Strong Sequencesof Pseudorandom Bits", SIAM J. on Comput., Vol. 13, 1984, pp. 850-864.[CW] J.L. Carter J.L. and M. N. Wegman \Universal Classes of Hash Functions" Journalof Computer and System Sciences 18 (1979), pp. 143-154.49

[G] Goldreich, O. \Towards a Theory of Software Protection and simulation by Obliv-ious RAMs" STOC 87 .[GO] Goldreich, O. and R. Ostrovsky \Comprehensive Software Protection System" U.S.Patent, Serial No. 07/395.882.[GGM] Goldreich, O., S. Goldwasser, and S. Micali, \How To Construct Random Func-tions," Journal of the Association for Computing Machinery, Vol. 33, No. 4 (Octo-ber 1986), 792-807.[GM] Goldwasser S., and S. Micali, \Probabilistic Encryption" Jour. of Computer andSystem Science, Vol. 28, No. 2, 1984, pp. 270-299.[GMR] S. Goldwasser, S. Micali and C. Racko�, The Knowledge Complexity of InteractiveProof-Systems, STOC 1985, ACM, pp. 291-304.[H] Hastad, J., \Pseudo-Random Generators under Uniform Assumptions", STOC 90 .[ILL] R. Impagliazzo, R., L. Levin, and M. Luby \Pseudo-Random Generation from One-Way Functions," STOC 89.[K] Kent, S.T., \Protecting Externally Supplied Software in Small Computers" Ph.D.Thesis, MIT/LCS/TR-255 1980.[LR] Luby, M., and C. Racko�, \Pseudo-Random Permutation Generators and Crypto-graphic Composition" Proc. of 18'th SOTC, 1986, pp. 356-363.[PF] Pippengerr, N., and M.J. Fischer, \Relations Among ComplexityMeasures" JACM,Vol 26, No. 2, 1979, pp. 361-381.[Ost] Ostrovsky, R. \E�cient Computation on Oblivious RAMs" STOC, 1990.[SR] Simon M., and C. Racko�, \Cryptographic Defense Against Tra�c Analysis", Stoc,1993.[Y] Yao, A.C., \Theory and Applications of Trapdoor Functions", 23rd FOCS, 1982,pp. 80-91.
50

