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{ 2 {1. INTRODUCTIONThe notion of randomness is central to the theory of computation. Thus the question of whether and howrandomness can be implemented in a computer is of major importance. Our intention is not to address themetaphysical aspect of the above question. We rather assume that there are physical phenomenon whichappear to be \somewhat random", and study the consequences of such assumption.In reality, there is a variety of physical sources, the output of which appears to be unpredictable in somesense (e.g. noise diodes, Geiger counters, etc.). However, these sources do not seem to be perfect (i.e. theydo not output a uniform distribution). This phenomena is ampli�ed when trying to convert the analoguesignal to a digital one, and in particular when sampling the physical source very frequently.The main contribution of this paper is in presenting a general model for sources of weak randomness.This model not only generalizes previous models, but is also very convenient to manipulate and analyze.The new model provides a new viewpoint on several problems studied previously, and enables us to obtaininteresting new results:� Extracting almost perfect bits from sources of weak randomness: It is shown that almost all functions canbe used for extracting many \almost unbiased" bits from two independent sources of \weak" randomness.An explicit function which performs almost as good is also presented. These results yield an extractionscheme which is e�cient both in terms of output entropy and computational complexity.� Probabilistic Communication Complexity: It is shown that most Boolean functions have linear commu-nication complexity in a very strong probabilistic sense. This resolves an open problem of Yao [29].� Robustness of BPP with respect to sources of weak randomness. It is shown that any probabilisticpolynomial-time algorithm can be modi�ed so that it works with bits supplied by a single source of weakrandomness.1.1 Previous ModelsPrevious works on extracting unbiased bits from non-perfect sources have implicitly or explicitly proposedmodels of \weak randomness". Von Neumann's classic algorithm [16] deals with sequences of bits generatedby independent tosses of a single coin with �xed bias. This model is totally memoryless. Blum [4] modelsphysical sources as �nite state markov chains (with unknown transition probabilities). In this model, onecan describe a dependency of the next bit (output by the source) on the previous c bits (for any �xed c).Santha and Vazirani [24] have further relaxed the restrictions on the physical source. Their model,hereafter referred to as the SV-model, is the start point for our investigations. In the SV-model each bitin the output sequence is \slightly random" in the sense that it is 0 with probability at least � and 1 withprobability at least �, where � � 1=2 is a constant. This allows to model a probabilistic dependency of the nextbit (output by the source) on all previous bits. However, no bit of the output may be totally determinedby the previous bits. It follows that in the SV-model, every bit sequence is output with some positiveprobability. This restriction could be violated by some \random" physical sources, which are constrained ina way that prevents certain bit sequences.



{ 3 {1.2 The New ModelWe introduce and study a general model for physical sources, hereafter referred to as the model of Probability-Bounded sources (PRB-sources). Loosely speaking, the probability that a PRB-source will output a partic-ular string is bounded above by some parameter. This allows the source to be very imperfect, still it maynot concentrate its probability mass on too few strings.The PRB-model is formalized using two constants l (length parameter) and b (probability bound). Aphysical source S is a device which outputs an in�nite sequence of bits. We say that S is a (l; b)-source iffor every pre�x � of the output sequence, and every l-bit string �, the conditional probability that the nextl bits output by S equal � is at most 2�b (i.e. Pr(�j�) � 2�b).The PRB-model is a strict generalization of the SV-model. To see the inclusion, note that any SV-sourcewith parameter � is a (1; log2(1 � �)�1)-source. To see that the inclusion is proper, consider the (2; 1)-source which outputs 11 with probability 1=2 and 10 with probability 1=2. Clearly, this source is not aSV-source. Thus, all positive results (with respect to the PRB-model) presented in this paper { apply alsoto the SV-model.1.3 Extracting Unbiased Bits From Sources of Weak RandomnessAlgorithms for extracting unbiased bits from non-perfect sources depend on the underlying source model.Von Neumann's algorithm [16] for generating a sequence of unbiased bits by using a coin with �xed bias, isa well-known classic:1) Toss the biased coin twice. Denote the outcome by �� 2 fHH;HT; TH; TTg.2) If � = � then goto step (1). (nothing is output.)3) If �� = HT output 0; If �� = TH output 1; Goto step (1).Elias [8] improved upon von Neumann algorithm, showing how to nearly achieve the entropy of the one coinsource. He also considered special type of visible �nite Markov chains. His algorithm produces perfect bitsfrom such sources.Blum [4] has considered extracting (perfect) unbiased bits from general �nite Markov chains with unknownstructure and transition probabilities. He gave algorithms which work in linear expected time. Using Elias'stechniques [8], the extracted bits reach the entropy of the source in the limit.It seems that as far as extracting perfect unbiased bits, Blum schemes are optimal. However, as pointedout by Santha and Vazirani [24], for practical purposes one may lower the standards and settle for \almost"unbiased bits. Having this goal in mind, they further relaxed the restrictions on the physical source andintroduced the SV-model (see sec 1.1). Santha and Vazirani showed that a single SV-source cannot be usedto extract almost unbiased bits, while su�ciently many independent SV-sources can be used for this purpose.Vazirani [26] showed that by applying inner-product mod 2 to strings of length C� � log2 "�1 output by twoindependent SV-sources, a bit with bias � 12 + " is produced.Summarizing the results in [24] and [26], we conclude that the SV-model presents a su�cient conditionfor the extraction of almost unbiased bits from two independent physical sources. We substantially relaxthis condition.In this paper we show that almost all functions can be used to extract many independent unbiased bitsfrom the output of any two independent (l; b)-sources. To be more speci�c, let m = (b � 3 � log l)=3 > 0,



{ 4 {and consider extraction functions from l + l bits to m bits. The m extracted bits are almost unbiased andindependent in the sense that each m-bit string appears with probability at least (1� 12m ) � 2�m and at most(1 + 12m ) � 2�m. This is achieved by a 1� 2�2b fraction of all functions from 2l-bit strings to m-bit strings.Notice that the number of bits we extract from the two sources is within a constant factor (� 16) of theinformation theoretic bound, a feature not achieved in previous works [24, 26].We also prove that, for all b1 + b2 � l + 2+ 2 log2 "�1, all functions corresponding to 2l-by-2l Hadamardmatrices can be used to extract a single bit with bias � " from any two independent PRB-sources which are(l; b1) and (l; b2) distributed respectively.A new result contained in this paper, resolves a problem left open in the preliminary version of this work[7]: an extraction scheme which is e�cient both in terms of information rate and computation complexity.The core of the new method is the discrete logarithm function, and its analysis is based on the method oftrigonometric sums.1.4 Probabilistic Communication ComplexityVazirani pointed out that \good" bit-extraction functions have high communication complexity [26]. Weestablish further connections between the two notions. We show that functions which can be used for ex-tracting an almost unbiased bit from two probability-bounded sources have linear communication complexityin a very strong sense. It follows that almost all functions, and in particular all functions corresponding toHadamard matrices, have linear communication complexity. This resolves Yao's open problem [29] regardingthe probabilistic communication complexity of random functions and of the set intersection function. (Re-lated lower bounds on the communication complexity of random functions were presented independently byAlon, Frankl and R�odl [3] and by Orlitsky and El-Gamal [18]. Our linear (
(n)) lower bound on the innerproduct modulo 2 function, improves over Vazirani's 
(n= logn) bound presented in [26].)Another contribution in the �eld of communication complexity is the presentation of de�nitions andresults for the case that the inputs are taken from probability-bounded distributions (i.e. distributionsin which no string is too likely). This contribution is in the spirit of Vazirani's suggestion to analyzethe communication complexity with respect to inputs chosen by a SV-model [26]. However, we feel thatprobability-bounded distributions are more natural in the context of communication complexity. We considerrandomized protocols where the objective is to guess the value of the function with average success probabilityexceeding 12 + ". Both the average length of a run and the average success probability are taken with respectto the \best" (for the protocol) probability-bounded distribution. We show that, even with respect to suchprotocols and distributions, the average communication complexity of almost all functions is linear in theprobability bound b (where no input appear with probability greater than 2�b).



{ 5 {1.5 On the Robustness of BPPThe class R [1] and its symmetric version BPP [10] consist of problems which can be solved with highprobability in polynomial time. The probability is taken over the tosses of an unbiased coin. Umesh Vaziraniraised the question whether BPP problems can be e�ciently solved if a (single) SV-source is producing thecoin tosses. Recently, Vazirani and Vazirani have answered this question a�rmatively [27]. In this paper,we generalize their result by showing that BPP problems can be e�ciently solved if a (single) PRB-source isproducing the coin tosses. The underlying principles of our proof originate from Vazirani and Vazirani [27],but our proof is signi�cantly simpler.The main idea of the proof is that while a single PRB-source is useless for producing a single unbiasedbit, it can nevertheless be used for producing polynomially many bits, most of which are unbiased. Our keyobservation is that any function which extracts almost unbiased bits from any two independent PRB-sources,can be used for this purpose.1.6 OrganizationIn Section 2, we present our basic de�nitions and results concerning the extraction of unbiased bits fromsources of weak randomness. These results are the basis for the rest of the paper. Subsection 2.1 consistsof de�nitions. In subsection 2.2 we present impossibility results. In subsection 2.3 we introduce the notionof 
at distributions and demonstrate its importance. In subsection 2.4 we show that almost all functionsextract unbiased bits from any two independent PRB-sources, and in subsection 2.5 we show that functionscorresponding to Hadamard matrices also perform well.Each of the next three sections is based on Section 2 only, and can be read indepedently of the others.In Section 3, we further study the problem of extracting unbiased bits from probability-bounded sources. Insubsection 3.1 we analyze extraction schemes with respect to two e�ciency measures: rate and computationcomplexity. In subsection 3.2 we present and analyze the \discrete logarithm" extraction scheme. In sub-section 3.3 we consider extraction from slightly dependence sources. In subsection 3.4 we consider variousextensions of our model and results.In Section 4, we present results concerning probabilistic communication complexity. In subsection 4.1we present old ans new de�nitions of probabilistic communication complexity. In subsection 4.2 we provelinear lower bounds on the communication complexity of functions, and in subsection 4.3 we present almostmatching upper bounds. In subsection 4.4 we suggest and investigate a robust notion of communicationcomplexity.In Section 5, we deal with the robustness of BPP with respect to probability-bounded sources. Conclusionsand open problems appear in Section 6.
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