
Strong Proofs of Knowledge(preliminary version)Oded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.May 31, 1998AbstractThe concept of proofs-of-knowledge, introduced in the seminal paper of Goldwasser, Micaliand Racko�, plays a central role in various cryptographic applications. An adequate formulation,which enables modular applications of proofs of knowledge inside other protocols, was presentedby Bellare and Goldreich. However, this formulation depends in an essential way on the notionof expected (rather than worst-case) running-time. Here we present a seemingly more restrictednotion which maintains the main feature of the prior de�nition while referring only to machinesrunning in strict probabilistic polynomial-time (rather than to expected polynomial-time).1 IntroductionThe reader is referred to [1] for a discussion of the intuitive notion of a proof-of-knowledge (cf., [6]),and the previous attempts to de�ne it [2, 7], cumlinating in the de�nition presented in [1]. We alsoassume that the reader is familiar with the de�nition given in [1].The de�nition given in [1] relies in a fundamental way on the notion of expected running-time.Throughout the years we remained bothered by this feature, and recently { while working on [4] {we have decided to look for an alternative. Speci�cally, we present a more stringent de�nition inwhich the knowledge extractor is required to run in strict polynomial-time (rather than in expectedpolynomial-time). We call proof systems for which this more stringent de�nition holds, strongproofs of knowledge (in contrast to ordinary proofs of knowledge as de�ned in [1]).There are two reasons to prefer strong proofs of knowledge over ordinary ones. Firstly, wefeel more comfortable with the notion of strict polynomial-time than with the notion of expectedpolynomial-time. For example, it is intuitively unclear why a machine which runs for time 2n onan 2�n fraction of its coin-tosses (and in linear time otherwise) should be considered fundamentallydi�erent than a machine which runs for time 2n2 on the same fraction. Secondly, it seems much moreconvinient to work (i.e., to compose) strict polynomial-time computations rather than expectedpolynomial-time ones.However, there seems to be a loss in going from ordinary proofs of knowledge to strong ones:Not all proofs of knowledge are known to be strong proofs of knowledge. Furthermore, we conjecturethat their are proofs of knowledge which are not strong proofs of knowledge. Still, zero-knowledgestrong-proofs-of-knowledge do exist for all NP-relations, provided that one-way functions exist.1

2 The De�nitionRecall, we assume that the reader is familiar with the de�nition given in [1], as well as its underlyingmotivation.De�nition 1 (System of strong proofs of knowledge): Let R be a binary relation. We say that ane�cient strategy V is a strong knowledge veri�er for the relation R if the following two conditionshold.� Non-triviality: There exists an interactive machine P so that for every (x; y) 2 R all possibleinteractions of V with P on common-input x and auxiliary-input y are accepting.� Strong Validity: There exists a negligible function � : N 7! [0; 1] and a probabilistic (strict)polynomial-time oracle machine K such that for every strategy P and every x; y; r 2 f0; 1g�,machine K satis�es the following condition:Let Px;y;r be a prover strategy, in which the common input x, auxiliary input yand random-coin sequence r have been �xed, and denote by p(x) the probability thatthe interactive machine V accepts, on input x, when interacting with the proverspeci�ed by Px;y;r. Now, if p(x) > �(jxj) then, on input x and access to oraclePx;y;r, with probability at least 1 � �(jxj), machine K outputs a solution s for x.That is, If p(x) > �(jxj) then Pr[(x;KPx;y;r(x))2R] > 1� �(jxj) (1)The oracle machine K is called a strong knowledge extractor.An interactive pair (P; V) so that V is a strong knowledge veri�er for a relation R and P is amachine satisfying the non-triviality condition (with respect to V and R) is called a system forstrong proofs of knowledge for the relation R.Thus, it is required that whenever p(x) > �(jxj) (i.e., unless the prover convinces the veri�erwith negiligible probability), the extractor fails with negligible probability. Our choice to boundthe failure probability of the extractor by the speci�c negligible function � (which serves mainlyas bound on p(x)) is rather arbitrary. What is important is to have this failure probability bea negligible function of jxj. Actually, in case membership in the relation R can be determinedin polynomial-time, one may reduce the failure probability from 1 � 1poly(n) to 2�poly(n), whilemaintaining the polynomial running-time of the extractor. Finally, we note that the extractorpresented below has failure probability 0.3 On the existence of strong proofs of knowledgeSome zero-knowledge proof (of knowledge) systems for NP are in fact strong proofs of knowledge. Inparticular, consider n sequential repetitions of the following basic proof system for the HamiltonianCycle (HC) problem (which is NP-complete). We consider directed graphs (and the existence ofdirected Hamiltonian cycles), and employ a commitment scheme fCng as above.Construction 2 (Basic proof system for HC):� Common Input: a directed graph G = (V;E) with n def= jV j.2

� Auxiliary Input to Prover: a directed Hamiltonian Cycle, C � E, in G.� Prover's �rst step (P1): The prover selects a random permutation, �, of the vertices of G, andcommits to the entries of the adjacency matrix of the resulting permuted graph. That is, itsends an n-by-n matrix of commitments so that the (�(i); �(j))th entry is Cn(1) if (i; j) 2 E,and Cn(0) otherwise.� Veri�er's �rst step (V1): The veri�er uniformly selects � 2 f0; 1g and sends it to the prover.� Prover's second step (P2): If � = 0 then the prover sends � to the veri�er along with therevealing (i.e., preimages) of all n2 commitments. Otherwise, the prover reveals to the veri�eronly the commitments to n entries (�(i); �(j)) with (i; j) 2 C. (By revealing a commitmentc, we mean supply a preimage of c under Cn; that is, a pair (�; r) so that c = Cn(�; r).)� Veri�er's second step (V2): If � = 0 then the veri�er checks that the revealed graph is indeedisomorphic, via �, to G. Otherwise, the veri�er just checks that all revealed values are 1 andthat the corresponding entries form a simple n-cycle. (Of course in both cases, the veri�erchecks that the revealed values do �t the commitments.) The veri�er accepts if and only if thecorresponding condition holds.The reader may easily verify that sequentially repeating the above for n times yields a zero-knowledge proof system for HC, with soundness error 2�n. We argue that the resulting systemis also a strong proof of knowledge of the Hamiltonian cycle. Intuitively, the key observation isthat each application of the basic proof system results in one of two possible situations dependingon the veri�er choice, �. In case the prover answers correctly in both cases, we can retrieve anHamiltonian cycle in the input graph. On the other hand, in case the prover fails in both cases, theveri�er will reject regardless of what the prover does from this point on. This observation suggeststhe following construction of a strong knowledge extractor (where we refer to repeating the basicproof systems n times and set �(n) = 2�n).Strong knowledge extractor for Hamiltonian cycle: On input G and access to the prover-strategy oracle P �, we proceed in n iterations, starting with i = 1. Initially, T (the transcript sofar), is empty.1. Obtain the matrix of commitments, M , from the prover strategy (i.e., M = P �(T)).2. Extract the prover's answer to both possible veri�er moves. Each of these answers may becorrect (i.e., passing the corresponding veri�er check) or not.3. If both answers are correct then we recover a Hamiltonian cycle. In this case the extractoroutputs the cycle and halts.4. In case a single answer, say the one for value �, is correct and i < n, we let T (T; �), andproceed to the next iteration (i.e., i i+ 1). Otherwise, we halt with no output.It can be easily veri�ed that if the extractor halts with no output in iteration i < n then the veri�er(in the real interaction) accepts with probability zero. Similarly, if the extractor halts with nooutput in iteration n then the veri�er (in the real interaction) accepts with probability 2�n. Thus,whenever p(G) > 2�n, the extractor succeeds in recovering a Hamiltonian cycle (with probability1). 3

References[1] M. Bellare and O. Goldreich. On De�ning Proofs of Knowledge. In Crypto92, Springer-VerlagLNCS (Vol. 740), pages 390{420.[2] U. Feige, A. Fiat and A. Shamir. Zero-Knowledge Proofs of Identity. J. of Crypto., Vol. 1,1988, pages 77{94.[3] O. Goldreich. Foundation of Cryptography { Fragments of a Book. February 1995. Availablefrom http : ==theory:lcs:mit:edu= � oded=frag:html.[4] O. Goldreich. Secure Multi-Party Computation. In preparation, 1998.[5] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity orAll Languages in NP Have Zero-Knowledge Proof Systems. J. of the ACM, Vol. 38, No. 1,pages 691{729, 1991. Preliminary version in 27th FOCS, 1986.[6] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive ProofSystems. SIAM J. on Comput., Vol. 18, pages 186{208, 1989. Preliminary version in 17thSTOC, 1985.[7] M. Tompa and H. Woll. Random Self-Reducibility and Zero-Knowledge Interactive Proofs ofPossession of Information. University of California (San Diego), Computer Science and En-gineering Department, Technical Report Number CS92-244, June 1992. Preliminary versionin 28th FOCS, pages 472{482, 1987.

4

