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1 IntroductionIn the �rst edition of Vol. 2, Knuth lists 8 empirical statistical tests. In the second edition, 11tests are listed. There is no apparent rhyme or reason to the test selection, and future editionsmay well have even more tests. A comment, at the end of Section 3.3.2 in [10], asserts that atleast some of the given statistical tests are \independent of the others" in the sense that thereexists a sequence that passes all but the one test. Knuth o�ers no clues to a theory which maygovern one's decision of which test one should use.It would be desirable to have one \universal" statistical test with the following property. If asequence fails any \reasonable" statistical test, be it a test in the 1st edition, 2nd edition, or anyfuture edition of Knuth, then the sequence will fail the universal test. The question, of course, iswhat is a \reasonable" statistical test.In this work we suggest to develop a theory of statistical tests based on the computationalcomplexity of the tests (as algorithms).1.1 MotivationStatistical tests are the focus of considerable attention in many scienti�c disciplines. Hence, onemay feel that there is little need to justify an attempt to present a theory of such tests. However,we feel that one should ask what are statistical tests good for, and in fact answering this questionis a �rst step towards understanding the nature of these objects.The need for statistical tests arises in a context where \randomness" is required (e.g., samplingprocedures, randomized algorithms, randomized constructions). In such a context, \randomness"is supplied by a random source and statistical tests are used to check whether the source is\good". Why should one check the source? There are several reasons and they all boil down tothe possibility that the source is faulty (and the need to detect such faults).We �rst point out that one rarely has access to a \perfect" source (i.e., a source of independentand uniformly distributed random bits). What one can do is merely observe some physicalphenomenon (e.g., a noise diode) which is considered to be \somewhat random". Typically, oneconverts, transforms, and/or expands measurements of the physical phenomenon into a source of\almost unbiased" bits. Faults may occur on several di�erent conceptual levels:� wrong physical hypothesis: The hypothesis concerning (the \randomness" of) the physicalphenomenon may be wrong, and consequently the outcome of our source may be very farfrom uniform. In light of the di�culty of coming-up with reasonable hypotheses concerningthe randomness of physical phenomena, a wrong hyothesis is quite likely.� wrong algorithmic assumptions: Even if the hypothesis is correct, the transformation (ofthe physical phenomena into a bit sequence) may be wrong. Typically, the transformationconsists of two phases. In the �rst phase the physical phenomena (being an analog signal) isconverted into a bit sequence, whereas in the second phase this bit sequence is expanded intoa much longer bit sequence (using a pseudorandom generator). In many cases these phases1



are implemented based on algorithmic assumptions which may turn out to be wrong. Inparticular, with respect to polynomial-time applications, the second phase can be performedonly if one-way functions exist (a conjecture which is likely to remain an open questions formany years). Furthermore, it is likely that a pseudorandom generator used in practice willbe based on either1. a concrete and stronger intractability assumption, or2. an assumption restricting the type of application (in which the random bit sequence isto be used).Either type of assumptions are commonly made in order to allow more e�cient expansionprocedures (i.e., \pseudorandom generators"). In light of the poor understanding of suchassumptions, wrong assumptions are quite likely.� programming bugs: Finally, even if our physical hypothesis and algorithmic transformationare correct, the implementation of the transformation may contain a bug. Testing and/orchecking a program that is supposed to produce a random output amounts to a statisticaltest!What is needed is a test guaranteeing that if the source output passes the test then it (i.e.,the source output) can be safely used in our application. Furthermore, it would be useful tohave a single fast statistical test which accepts only bit sequences which can be safely used inany application belonging to some general \class" (of applications). Of particular interest is theclass of all e�cient (i.e., polynomial-time) algorithms, and the \simpler" subclass containing onlylog-space algorithms.1.2 Statistical testsLoosely speaking, a statistical test is an algorithm that accepts all but a negligible fraction ofthe strings. To convert this intuitive concept into a de�nition we need to say what is a negligiblefraction. Following are three popular alternatives. A function �(�) is called negligible ifN1) � is smaller than any constant (i.e., for every constant � > 0 and all su�ciently large nit holds that �(n) < �). This interpretation is popular in statistics and other \classic"investigations.N2) � is smaller than any polynomial fraction (i.e., for every positive polynomial p(�) and allsu�ciently large n it holds that �(n) < 1p(n)). This interpretation seems most adequate inthe context of e�cient computation (speci�cally in the context of either polynomial-timeor log-space algorithms).N3) � is exponentially decreasing (i.e., there exists � > 0 so that for all su�ciently large n itholds that �(n) < 2��n). This interpretation is popular in some investigations in informationtheory and speci�cally in the area of classi�cation theory.2



The results of this paper are presented with respect to alternative (N2). The results applyalso for some other de�nitions of negligence, and in particular the other alternatives presentedabove. Yet not all results hold with respect to all alternatives. Remarks concerning this issueare scattered throughout the paper.1.3 Speci�c classes of statistical testsWe believe that two classes of statistical tests are of special interest. The class of (deterministic)polynomial-time statistical tests, and the class of log-space statistical tests. The importance ofthe �rst class is self-evident in light of the acceptable association of e�cient procedures withpolynomial-time algorithms. The interest in the second class is motivated by two facts. First,many applications in which randomness is used can be modelled by log-space machines. Secondly,all the \statistical tests" used in practice, and in particular all the tests mentioned by Knuth canbe implemented by log-space machines.Many of the results in this paper relate to two subclasses of the class of log-space statisticaltests: the class of �nite state machines, and the class of counter machines. The investigation ofthese classes may be considered a �rst step in an attempt to understand the class of log-spacestatistical tests. In addition, these classes are of some interest for their own right as they containnatural variants of all the tests mentioned by Knuth. We remark that the empirical tests presentedby Knuth are not fully speci�ed in the sense that the choice of the threshold (determining whetherto reject or accept a sequence) is left open. Typically, setting the threshold to be a constant causesthese tests to reject a constant fraction of the sequences, whereas setting the threshold to be linear(in the length of the sequence) causes these tests to reject an exponentially small fraction of thesequences as well as to be implemented by counter machines (see below).1.4 Universal statistical testsLoosely speaking, a statistical test is called universal for a particular class of statistical tests if itaccepts only bit sequences which are accepted by all tests in the class. Universal tests promiseto be very useful in practice, since they provide a way of replacing an in�nite class of tests bya single test. The question, of course, is whether universal statistical tests exists with respectto interesting classes of tests, and furthermore whether such universal tests can be reasonablye�cient.Some of our ResultsWe shall see in the sequel that one must allow such a universal test to use (slightly) more\resources" than any test in the class. In particular, no reasonable class of statistical tests, maycontain a statistical test which is universal for the class. Furthermore, for su�ciently powerfulclasses (e.g., any class containing all on-line log-space tests), there must exist a gap between therejection rate of the tests in the class and the rejection rate of any recursive statistical test that3



is universal for the class. We believe that it su�ces to make the universal test slightly more\powerful" only in these two respects (i.e., higher computational complexity and higher rejectionrate). For example, we present a quasi-polynomial-time universal test for the class of on-linelogspace machines with exponentially decreasing rejection rate.The universal test just mentioned (i.e., for the class of logspace tests) is neither \natural" nor\practical". We believe that presenting such a universal test is an important research goal.The Lempel-Ziv algorithm [11] may seem as a plausible candidate. Unfortunately,this algorithm is not universal for the class of log-space machines (since it accepts anyde-Bruijn sequence [11, Thm. 5], whereas there exists de-Bruijn sequences that canbe constructed and thus recognized and rejected by a log-space machine [4]). Yet,this example should at least give an idea of what is wanted.We believe that the ability to present reasonable universal tests for a class of statistical tests islinked to a good understanding of the structure of the algorithms in the class. We were ableto characterize the statistical tests in two natural subclasses of the class of logspace tests. Inparticular� We present a necessary and su�cient condition for a �nite state machine to be a statisticaltest. We use this condition to present a simple and natural test that is universal for theclass of �nite state statistical tests. These results hold for all alternatives of de�ning anegligible fraction.� We present a necessary and su�cient condition for a weak counter machine (de�ned insection 5) to be a statistical test. The condition depends on the way one de�nes a negligiblefraction. For alternatives (N2) and (N3) above, we present a simple and natural test whichis universal for the class of statistical tests which are weak counter machines. For alternative(N1) we know only of a universal test which amounts to running all admissible tests.We remark that the Lempel-Ziv algorithm [11] can be shown to be universal for the class of�nite state tests (under alternatives (N1) and (N2)), and for the class of weak counter machines(under alternative (N2)). (The �rst statement is obvious whereas the second statement followsfrom the characterization of statistical tests which are weak counter machines.) However, theuniversal tests we present for these classes are much simpler. We also note that, under alternative(N1), the Lempel-Ziv algorithm is not universal for the class of weak counter machines.1.5 Pseudorandomness and passing statistical testsThe ability of a probability ensemble to pass, with high probability, statistical tests of somecomplexity is even more useful in case such ability can be linked to pseudorandom propertiesof the ensemble. Loosely speaking, an ensemble is called pseudorandom with respect to somecomplexity class if no algorithm in the class can distinguish this ensemble from the uniform one.We stress that the distinguishing algorithm need not be a statistical test (e.g., it may reject halfof the strings of each length). 4



Some of our ResultsWe consider the relation between the set of probability ensembles that are accepted by statisticaltests of a particular complexity class and the set of ensembles which are pseudorandom withrespect to arbitrary algorithms (not necessarily statistical tests) with the same complexity.When putting no restrictions on the \algorithms" (i.e., allowing any function to be consid-ered), there is a simple relation between these sets. We ask whether the same relation remainsvalid when restricting the class of algorithms. A positive result is presented for the class ofconstant-space on-line (i.e., �nite state) machines, whereas a negative result is presented for theclass of log-space on-line machines. Hence, much remains to be understood.Finally, we use a construction of Levin [13] to prove that the existence of one-way function isa necessary condition for the existence of \non-trivial" ensembles (see section 7) which pass allprobabilistic polynomial-time statistical tests. In light of the results in [1, 19, 7], this conditionis also su�cient.1.6 OrganizationGeneral de�nitions and observations are presented in sections 2 and 3, respectively. The othersections are devoted to speci�c classes of statistical tests. Section 4 deals with �nite state ma-chines, section 5 with (weak) counter machines, section 6 with (on-line) log-space machines, andsection 7 with (probabilistic) polynomial-time machines.2 De�nitionsWe start with the following standard conventions. By negligible we call any function � : IN 7! INwhich satis�es, for every constant c and all su�ciently large n,�(n) < 1ncBy non-negligible we call any function � : IN 7! IN which satis�es, for some constant c and allsu�ciently large n, �(n) > 1nc(Note that a function may be neither negligible nor non-negligible, as the notion of non-negligibleis a \strong negation" of the notion of negligible.)Remark 1 : The de�nition of negligence plays a pivotal role in the de�nition of a statistical testand in the de�nition of pseudorandomness. The above de�nition of negligence is particularlyjusti�ed for the polynomial-time and/or logspace statistical tests and pseudorandomness. Yet,even in case the test is much weaker (or much stronger) it makes sense to de�ne negligibleprobabilities this way since, in \natural" applications, the output of the test is latter used bya polynomial-time and/or logspace algorithm. Nevertheless, the theory can be developed using5



di�erent notions of negligence. Most of the results presented in this work hold also for othernatural de�nitions of negligence. Yet, some of the results (speci�cally, those concerning countermachines) are very sensitive to the de�nition of negligence (see remarks in Section 5).Notational Conventions: By Xn; Yn; Zn we denote random variables ranging over f0; 1gn. ByUn we denote the random variable uniformly distributed over f0; 1gn. An ensemble is a sequenceof random variables fXngn2IN, such that Xn ranges over f0; 1gn.2.1 Statistical TestsDe�nition 1 (acceptance/rejection of individual strings): Let A be a (probabilistic) algorithm.� We say that A accepts string � (denoted A(�) = ACC) ifProb(A(�)=1) � 23where the probability is taken over A's internal coin tosses.� We say that A rejects string � (denoted A(�) = REJ) ifProb(A(�)=1) � 13� In case 13 < Prob(A(�)=1) < 23 we say that A is undecided about �.Deterministic algorithms are never undecided (i.e. they either accept or reject each string).Also, algorithms which recognize some language with error probability which is bounded-awayfrom one half (by some � > 0), can be easily modi�ed into algorithms which are never undecided1 .In general, it may be hard to get rid of the fact that a probabilistic algorithm is undecided onsome strings without trivializing the algorithm (i.e., making it accept languages in an appropriatedeterministic complexity class).A statistical test is an algorithm which accepts all but a negligible fraction of the strings ofa particular length.De�nition 2 (statistical test): We say that algorithm A is a statistical test if the functionr(n) def= Prob(A(Un) 6=ACC) is negligible. (Here the probability is taken over the probability spaceof Un.)De�nition 3 (acceptance/rejection of ensembles):� We say that an ensemble fXngn2IN is accepted by a statistical test T if Prob(T(Xn) 6=ACC)is negligible.1The latter run the original algorithm O(1=�) times, and take a majority vote.6



� We say that an ensemble fXngn2IN is rejected by a statistical test T if Prob(T (Xn) 6=REJ)is negligible.Clearly, the uniform ensemble fUngn2IN is accepted by all statistical tests. Of course, statis-tical tests may neither accept nor reject speci�c ensembles.A statistical test is called universal for some class of statistical tests if it rejects all but a�nite number of the strings rejected by each test in the class. The universal test need not beitself a member of the class (and in fact no \reasonable" class has a universal test residing insidethe class).De�nition 4 (universal statistical test): A statistical test, A, is called universal for a class ofstatistical tests T if for every test T in T and all su�ciently long �, if T rejects � then so doesA (i.e., the set f� : (T (�) = REJ) ^ (A(�) 6= REJ)g is �nite).The de�nition of a universal statistical test encompasses two con
icting requirements. On onehand the universal test is required to accept all but a negligible fraction of the strings, whereason the other hand it is required to reject all but �nitely many of the strings rejected by any othertest (in the class).2.2 Computational IndistinguishabilityFollowing are the two standard de�nitions of computational indistinguishability and pseudoran-domness.De�nition 5 [5, 19]: The ensembles fXngn2IN and fYngn2IN are computationally indistinguish-able by a class of (probabilistic) algorithms A if for every algorithm, A 2 A, the di�erencejProb(A(Xn)=1)� Prob(A(Yn)=1)jis negligible.De�nition 6 [19]: An ensemble is called A-pseudorandom if it is computationally indistinguish-able from the uniform ensemble by algorithms of the class A.2.3 DominationDe�nition 7 [12]: The ensemble fXngn2IN is said to (strongly) dominate the ensemble fYngn2INif the function r(n) def= min�2f0;1gnfProb(Xn=�)Prob(Yn=�) g is non-negligible.A more liberal notion of domination only requires that sets assigned negligible probability bythe �rst ensemble are also assigned negligible probability by the second.De�nition 8 : The ensemble fXngn2IN is said to dominate the ensemble fYngn2IN if for everysequence of sets fSngn2IN if the function p(n) def= Prob(Xn 2 Sn) is negligible so is the functionq(n) def= Prob(Yn 2 Sn).Clearly, both notions of domination are re
exive and transitive.7



3 General Observations and ProblemsIn this section we present general observations and problems concerning statistical tests. We �rstaddress the relation between the set of ensembles accepted by all statistical tests of particularcomplexity and the pseudorandom ensembles with respect to this complexity class. Next, weaddress the existence of universal statistical tests for various complexity classes.To simplify the discussion, we assume without loss of generality, that all algorithms alwaysoutput a Boolean value.3.1 Pseudorandomness and Acceptance by Statistical TestsClearly, every pseudorandom ensemble is accepted by all statistical tests of the same complexityclass. However, also ensembles which are not pseudorandom, for example ensemble f0Un�1gn2IN,are accepted by all statistical tests. Furthermore,Proposition 1 : Let fXngn2IN be an A-pseudorandom ensemble, for some complexity class A,and let fYngn2IN be an ensemble which is dominated by fXngn2IN. Then, fYngn2IN is acceptedby all statistical tests in A. .proof: Suppose to the contradiction that Y is not accepted by some test A 2 A. Hence theprobability that A does not accept Yn is not negligible. Since the probabilities assigned by Xnare not negligibly smaller than those assigned by Yn, it follows that the probability that A doesnot accept Xn is not negligible (� a contradiction). 2It is worthwhile noting that the ensembles satisfying the conditions of Proposition 1 may befar from pseudorandom. In particular,Observation 1 : Let A be a class of algorithms containing (but not necessarily equal to) theclass of all �nite state machines. Let c > 0 be an integer, and suppose that fXngn2IN is a A-pseudorandom ensemble. Then, the ensemble fXn�c0cgn2IN, which is not A-pseudorandom, isaccepted by all statistical tests in A.The proof is a simpli�cation of the proof of the next observation.Observation 2 : Let c > 0 be a constant, and fXngn2IN be a logspace-pseudorandom ensemble.(By logspace we mean the class of on-line algorithms which use logarithmic space.) Then, theensemble Y def= fXn�cdlog2 ne0cdlog2 negn2IN, which is not logspace-pseudorandom, is accepted by alllogspace statistical tests.proof: For simplicity let c = 1. To show that the ensemble Y is not logspace-pseudorandom weuse the following algorithm D. The algorithm counts (in binary) the number of bits read so far,denoted m, and keeps the last k def= dlog2me bits read (note that k is the current length of the8



binary counter). When reading the last bit of the input, algorithm D outputs 0 i� all the lastk = dlog2 ne bits are 0.To establish that Y is accepted by all logspace statistical tests we use a simulation argument.Suppose that T is a logspace test which does not accept Y . We construct a logspace test T 0which does not accept X reaching a contradiction to X 's pseudorandomness. Intuitively, oninput x, the test T 0 simulates the execution of T on input x0log2 jxj. This is done by initiating theexecution of the test T on input with pre�x x. In \parallel", the test T 0 computes k satisfyingk = dlog2(jxj + k)e. When T reaches the end of x, the test T 0 appends 0k at x's ends andcontinues the execution of T . When T stops after reading also these k zero's, T 0 stops with thesame output. Hence, T 0 does not accept X . It is left to show that T 0 is a statistical test. To thisend we use the fact that T 0(Un�k) = T (Un�k0k) (where k is � log2 n as above) and hypothesisthat T is a statistical test. 2Hence, for all natural classes of algorithms, the set of ensembles which are accepted by sta-tistical tests is much richer than the set of pseudorandom ensembles. An intriguing problemis whether this richness is captured by Proposition 1 (i.e., whether the accepted ensembles areexactly those dominated by pseudorandom ones). An a�rmative answer is obtained in case onetrivializes the notion of an algorithm as done in the next observation.Observation 3 : Let F be the class of all Boolean functions 2. Then, Y def= fYngn2IN is acceptedby all statistical tests in F if and only if Y is dominated by some F -pseudorandom ensemble.Proof: Using Proposition 1, it remains to show that if Y is accepted by all statistical tests thenit is dominated by some F -pseudorandom distribution. We shall show that if Y is accepted by allstatistical tests (in F) then Y is dominated by the uniform ensemble. We prove this statementby proving the counter-positive.Suppose that Y is not dominated by the uniform ensemble. Then, using the liberal de�nitionof domination, there exists a sequence of sets fSng so that the function �(n) def= Prob(Un 2Sn)is negligible while the function �(n) def= Prob(Yn 2 Sn) is not negligible. Consider the functionf 2 F de�ned by letting f(�) = 0 if �2 Sn and f(�) = 1 otherwise. Clearly, f is a statisticaltest, yet f does not accept the ensemble Y . The observation follows. 2Hence, if the set of ensembles accepted by statistical tests in A contains more than the ensemblesdominated by A-pseudorandom ones, then this is due to intrinsic algorithmic reasons and not topure probabilistic ones. In section 4, we show that such \algorithmic reasons" are not supplied by�nite automata. Namely, the ensembles accepted by �nite state statistical tests are exactly thosedominated by ensembles which are pseudorandom with respect to �nite automata. On the otherhand, in section 6 we show that there exists ensembles which are accepted by logspace statisticaltests, and yet are not dominated by (logspace-)pseudorandom one. The problem remains openfor other interesting complexity classes. In particular2In this case, all \pseudorandom" ensembles are statistically close to the uniform one.9



Open Problem 1 :Do there exist ensembles accepted by polynomial-time statistical tests whichare not dominated by polynomial-time-pseudorandom ensembles?3.2 Universal Statistical TestsOne can show that, for any natural class of statistical tests, a test universal for the class can notbe itself in the class. Namely,Theorem 1 Let A be a class of algorithms satisfying the following three conditions:1. A is not trivial: There exists A 2 A so for every � 2 f0; 1g the set f� : A(�) = �g isin�nite.2. A is closed under last bit omission: For every A 2 A there exists A0 2 A so that, for every� 2 f0; 1g� and � 2 f0; 1g, it holds that A0(��) = A(�).3. A is closed under binary operation: For every A1; A2 2 A and every b : f0; 1g2 7! f0; 1g,there exists A0 2 A so that for every � 2 f0; 1g�, it holds that A0(�) = b(A1(�); A2(�)).Then A contains no statistical test which is universal for A.proof: Suppose on the contrary that T 2 A is a statistical test which is universal for A. Considerthe algorithm T 0 that, on input ��, outputs 0 if either T (��) or T (�) is 0. By conditions (2)and (3), T 0 is also in A. Furthermore, T 0 is also a statistical test, since the number of strings notaccepted by T 0 is at most 3 times the number of strings not accepted by T . Yet, it can be shownthat the universality of T implies that the fraction of strings rejected by T can be bounded belowby a constant, and hence T can not be a statistical test (in contradiction to our hypothesis).Details follows.By condition (1), the class A contains a test, denoted T0, that rejects in�nitely many strings.Using the universality of T , with respect to the subclass containing T 0 and T0, it follows thatthere exists an integer k so that the test T rejects all strings of length � k which are rejected byeither T 0 or T0. It follows that there exists a string � (rejected by T0) so that the test T rejects� as well as all strings of length � j�j which are rejected by T 0. By induction on the lengthof � 2 f0; 1g�, it can be shown that T must reject �� (since if �� is rejected by T then ���is rejected by T 0 and hence also by T ). It follows that a constant fraction (i.e. at least a 12j�jfraction) of the strings are rejected by T , in contradiction to our hypothesis that T is a statisticaltest. 2In the next two subsections we present universal statistical tests for two low complexity classes.These universal tests are quite e�cient, although they are not in the corresponding classes. Withrespect to higher complexity classes, such as logspace, there exist no universal statistical tests atall. Namely, 10



Theorem 2 There exists no recursive statistical test that is universal for the class of logspacestatistical tests.proof: Assume, to the contrary, that T is a recursive statistical test that is universal for theclass of logspace statistical tests. We reach a contradiction, by constructing a logspace statisticaltest T 0, which rejects much more strings than T . The test T 0 is constructed using traditionalrecursive theoretic techniques. Details follow.Let s(�) denote an arbitrary space-constructible bound on the space used by algorithm T (i.e.,on each input of length n, algorithm T uses at most s(n) space). Let f(n) denote the largestinteger m so that m+ s(m) � log2 n. Intuitively, f(n) represents the largest integer m so that Tcan be run on all m-bit strings within space bound log2 n.Consider the standard lexicographic order of strings, and let Rn;k denote the set of the �rstd 2nnk e strings of length n. The algorithm T 0 accepts a string x if an only if x 62 Rjxj;k(jxj), wherethe function k(�) is de�ned iteratively as follows. We say that c > 0 is admissible for n if forsome m � f(n), it holds that k(m) = c� 1 and the test T rejects at most b2mmc c� 1 of the stringsof length m. In addition 0 is considered admissible for all n's. We de�ne k(n) to be the largestinteger c that is admissible for n.The reader can easily verify that the algorithm T 0 works in logspace, that the function k(�) isnon-decreasing, and that k(n) � k(n�1)+1 for all n's. Furthermore, if k(n) > k(n�1) = c thenthere exists an m � f(n) so that k(m) = c � 1 (and thus the fraction of m-bit strings rejectedby T 0 is 1mc�1 ), whereas the number of m-bit strings rejected by T is at most a 2mmc � 1. Hence,if k(�) is unbounded then T 0 rejects in�nitely many strings not rejected by T (since for each cthe m mentioned above satis�es 2mmc�1 � (2mmc � 1) � 1). It is also easy to see that if the functionk(�) is unbounded then T 0 constitutes a statistical test. Hence, once we prove that the functionk(�) is unbounded, we derive a contradiction (to the hypothesis that T is universal for the classof logspace statistical tests).Suppose to the contradiction that the function k(�) is bounded by the integer c, and let Nbe an integer so that c = k(N). By the hypothesis that T is a statistical test, it follows thatthere exists an integer M so that, for every m � M , the test T rejects at most 1mc+1 of thestrings of length m. By de�nition of the function k(�) it follows that k(n + s(n)) � c + 1, forn = maxfN;Mg, in contradiction to the hypothesis that k(�) is bounded by c. The theoremfollows. 2In light of the above result we must relax the requirements of universal statistical tests forcomplexity classes such as logspace and higher. One possible direction is to establish a \gap"between the accepting rate of the algorithms in the class and the accepting rate required of theuniversal algorithm. Two approaches are possible:1. Allow the universal algorithm to reject a small yet non-negligible fraction of the strings.The rejection rate of such universal algorithms can be speci�ed. For example, one canpresent a universal algorithm for the class of probabilistic polynomial-time statistical testsso that this universal algorithm rejects a 1n3 fraction of the strings of length n.11



2. Investigate universal tests for subclasses of statistical tests which have a speci�ed negligiblerejection rate. For example, one can present a universal statistical test for the class ofprobabilistic polynomial-time statistical tests which accept all but an exponential fractionof all strings (i.e., the class contains algorithms which accept all but an exponential frac-tion, whereas the universal algorithm accept all but a negligible fraction of the strings).More generally, for any negligible function �, there exists a universal statistical test forthe class of probabilistic polynomial-time (resp., log-space) algorithms which accept allbut at most a �(n) fraction of the strings of length n. In case � is polynomial-time com-putable, the universal test for the polynomial-time class can be implemented in probabilisticsuper-polynomial-time (e.g., time nlog�2 n). An analogous result for logspace is presented inSubsection 6, with the advantage that the universal test is deterministic.We prefer the second approach.4 Finite Automata as Statistical TestsThe simplest (and most restricted) class of algorithms we consider are �nite automata. Accordingto De�nition 2, we say that a �nite automaton, A, is a statistical test if the fraction of strings oflength n that A rejects3 is negligible. We start by characterizing the set of �nite state statisticaltests and then propose a statistical test (outside this set) which is universal for this set.4.1 Characterization of Finite State Statistical TestsWe consider the directed graph (digraph), G, de�ned by a �nite automaton A (ignoring thebinary labelling of edges). Note that G may have parallel, anti-parallel and self-loop edges. Weconsider the strongly connected components4 of the digraph G. Let fCi : i2Ig be the partitionof G's vertices to strongly connected components. We consider the directed acyclic graph (dag),DG, in which the Ci's are vertices and there is an edge from Ci to Cj if and only if there existsu2Ci, v2Cj so that (u; v) is an edge in G. A sink is a strongly connected component which hasoutdegree zero in this dag. Using the de�nition of a statistical test it follows thatProposition 2 Let A be a �nite state statistical test. Then the states appearing in its sinks mustbe accepting. Furthermore, there exists a �nite state statistical test A0 which is identical to Aexcept (possibly) that the states of A0 which are not in a sink are rejecting.proof sketch: We consider a random walk of length n on the digraph G (associated with theautomaton A) starting in the vertex corresponding to A's initial state (this walk represents thecomputation of A on a random n-bit input string).3Since A is deterministic, it is never undecided.4A digraph is called strongly connected if there is a directed path between every (ordered) pair of vertices.The strongly connected components of a digraph are the maximal sets of vertices inducing a strongly connectedsub(di)graph. 12



Let v be a vertex in a sink S. With constant probability (i.e., at least 2�q where q is thenumber of states in A) this walk enters S after a constant number of steps (i.e. q). From thatpoint on, the walk never leaves S. The \location" of the walk after m �n� q steps is a randomvariable, denoted Ps(m), depending on s the �rst vertex of S reached in the n-step walk. Thebehaviour of Ps(m) converges to a random variable Q(m mod k), where k, 1�k�q is an integer(see [8] proof of Thm. 4.1.4 which refers to the convergence of a regular Markov Chain to thestationary distribution). The rate of convergence is exponential in mk , and for some i (1� i�k)the probability that Q(i) equals v (in which we are interested) is a positive constant dependingonly on A (and again being at least 2�q). Hence, for n � i (mod k), a random walk of length nends in v with constant probability. It follows by De�nition 2 that v must be accepting.Using an even simpler argument (cf. [8] proof of Thm. 3.1.1) it follows that the probabilitythat a n-long random walk does not end in a sink is bounded above by 2�n=q. Hence, all non-sinkvertices may be made rejecting without violating the conditions of De�nition 2. 2Remark 2 : By the above proof it follows that the characterization of �nite state statistical testsis not e�ected if the de�nition of negligible is changed either to \smaller than any constant" or to\exponentially small". Hence, also the results of the next two subsections remain valid also if thede�nition of negligence is changed to \smaller than any constant". More generally, all the resultshold as long as negligible is de�ned as smaller than any function in a recursively enumerable setof functions which do not have a maximum element (i.e., a function in the enumeration which isgreater/equal than all other functions on all but �nitely many points).4.2 A Universal Test for the Class of Finite AutomataFollowing is a description of a very simple test which is universal for the class of �nite statestatistic tests. Let k : IN 7! IN be any easy to compute function which is both monotonically non-decreasing, unbounded (by a constant) and bounded above by the function log2 n� 3 log2 log2 n.The test checks whether all k(n)-bit long strings appear as substrings in the n-bit long input.Namely, the test accepts the string if and only if all possible k(n)-bit long substrings appear init. We call this test the occurrence test.Theorem 3 The occurrence test is universal for the class of �nite state statistical tests.proof sketch: Let T be an arbitrary �nite state statistical test. A homing sequence for T isany string � satisfying the following: for every state s of T an execution starting at state s andfollowing the edges labelled by � ends in a sink of T . It is well known that every �nite automatonwith q states has a homing sequence of length q2. Hence, su�ciently long strings accepted by theoccurrence test must contain the homing sequence of T as a substring, and thus are also acceptedby T . Finally, it is left to show that the occurrence test is indeed a statistical test. This is doneby a straightforward calculation of the probability that some k-bit long string does not appearas substring in a uniformly chosen n-bit long string. This probability is easily bounded above by(1� 12k )nk � 2k < 2�n�k2 �2kk�2k13



The proposition follows. 2Clearly, the occurrence test cannot be implemented by a �nite automata. Furthermore, usingTheorem 1, it is easy to see that no �nite automata can be universal for the class of �nite statestatistical tests.5 In particular, if the function k is chosen to be a constant then the resulting test(is a �nite automata but) is not universal for the class.4.3 Pseudorandomness and Acceptance by Statistical TestsBy Proposition 1, all ensembles dominated by (Finite Automata)-pseudorandom ensembles areaccepted by all �nite state statistical tests. We now show that these are all the ensembles whichare accepted by all �nite state statistical tests. Namely,Theorem 4 An ensemble is accepted by all �nite state statistical tests if and only if it is domi-nated by an ensemble that is pseudorandom with respect to all �nite automata.proof: Let X def= fXngn2IN an ensemble which is accepted by all �nite state statistical tests. Wewill construct an ensemble Y def= fYngn2IN and show that for each i the function gi : IN 7! IN,de�ned by gi(n) def= jProb(Ai(Yn) = 1) � Prob(Ai(Un) = 1)j where Ai is the ith automaton (in astandard enumeration of �nite automata), is negligible. The theorem will follow.The idea behind the construction of the distributions Yn is to rescale the distributions Xnso that they exhibit the same statistic pro�le as the uniform ones with respect to leading a�nite automata to terminate at a particular state residing in its sink. The rescaling satis�es thedomination condition and guarantees that no �nite automata can distinguish Yn from uniform.The part of the distribution which does not lead an automata to a sink remains unchanged. Usingthe fact that Xn is accepted by all �nite state statistical tests, this later part is shown to carrya negligible probability mass. Details follow.For every integer k, let Pk be the cross-product of the �rst k �nite state machines. Fixing k,we consider, for every integer m, the execution of Pk on input Xm (i.e., we consider a randomvariable with sample space Xm). Consider a modi�cation of Pk in which all sink states areaccepting and all other states are rejecting. Since this modi�cation is a �nite state statisticaltest which accepts the ensemble X , it follows that the probability that the computation ofPk on input Xm does not terminate in a sink is a negligible function (in m). Let mk be thelargest integer, m, for which the probability that the computation of Pk on input Xm does notterminate in a sink is greater than 1mk (by the previous assertion this integer does exist!). LetMk def= maxfmj : j � kg. Clearly, the sequence M1;M2; ::: is non-decreasing. De�ne a functionk : IN 7! IN so that k(n) = minfplog2 log2 n;maxfj : Mj <ngg. Clearly the function k is both5An alternative proof proceeds as follows. Consider a �nite automata A with q states, and let � 2 f0; 1gq bea string \leading" A from its initial state to any of its sink. If A is a statistical test then, by Proposition 2, allits sinks must be accepting. Hence, A must accept all strings of the form �n. Such strings are rejected by a �nitestate statistical test with q+1 states, hence A cannot be universal for the class of �nite automata statistical tests.14



monotonically non-decreasing, unbounded (by a constant) and bounded above by the functionplog2 log2 n.For each state, s, de�ne the set of inputs In(s) � f0; 1gn so that on input �2In(s) automataPk(n) terminates in state s. Let xn(s) def= Prob(Xn 2 In(s)) and Xn(s) be Xn conditioned on itbeing in In(s) (i.e., Prob(Xn=�) = xn(s) �Prob(Xn(s)=�)). Let un(s) def= Prob(Un2In(s)) (i.e.,the probability that on uniformly chosen input the automata terminates in state s). Let xn (resp.un) denote the sum of the xn(s)'s (resp. un(s)'s) taken over states s residing in the sinks of Pk(n).We are now ready to de�ne the distribution Yn. De�ne Zn so that Prob(Zn=s) = xn � un(s)un , foreach state s residing in a sink of Pk(n), and Prob(Zn= s) = xn(s) otherwise (i.e., for each s notresiding in a sink). Set Yn = Xn(Zn).We �rst argue that Yn dominates Xn. Clearly, for any state s not residing in a sink of Pk(n),we have Prob(Zn= s) = xn(s) and Prob(Yn=�) = Prob(Xn=�), for every �2 In(s). Also, forany state s residing in a sink of Pk(n), we have Prob(Zn=s) = xn � un(s)un andProb(Yn=�) = (xn� un(s)un ) �Prob(Xn(s)=�) � (xn� un(s)un ) �Prob(Xn=�)for every �2In(s). Clearly, xnun > 12 (since xn > 1� 1nk(n) and un�1). By the proof of Proposition2, it follows that for every s residing in a sink un(s) > 2�2q, where q < k(n)! < 122k(n)2 is thenumber of states in Pk(n). Using k(n) < plog2 log2 n, we get xn � un(s)un > 12n , and dominationfollows.We now turn to show that Yn is pseudorandom with respect to all �nite state machines. Weshow that for every �nite state machine, Ai, and every constant c, the function gi de�ned above(as the \distinguishing gap" of Ai) is bounded above by the function 1nc (i.e., for all su�cientlylarge n: gi(n) < 3nc ). Let N be an integer satisfying k(n) � i and k(n) � c, for each n > N(by de�nition of the function k such N necessarily exists). Clearly, the computation of Ai oninput of length n > N is re
ected by the computation of the product automata Pk(n) (on inputsof length n). Let yn(s) denote the probability that on input Yn machine Ai terminates in states (i.e., yn(s) = Prob(Zn= s)). For each n > N , and every state s residing in a sink (of Pk(n)),yn(s) = xnun � un(s). Using the fact that n > mc it follows that xn > 1 � 1nc . On the other hand,by the proof of Proposition 2, un > 1� 2�nq (with q < 122k(n)2). It follows that, for every state sresiding in a sink of Pk(n) and all su�ciently large n, we have jun(s)�yn(s)j < un(s)nc . Furthermore,using the above mentioned bounds on xn and un, the probability that Ai terminates in a non-sinkon input drawn from either Yn or Un is smaller than 1nc . It follows that, for all su�ciently largen, the sum of jun(s) � yn(s)j taken over all states s not residing in a sink of Pk(n) is boundedabove by 2nc . Hence, gi(n) �Ps jun(s)� yn(s)j < 3nc , and the theorem follows. 25 Counter Machines as Statistical TestsWe now consider a wider class of tests. The algorithms we consider are counter machines withon-line access to the input. (Hence, these machines are not equivalent to Turing machines.) We15



start by considering machines with one counter. Once a new input symbol (i.e., bit) is read, anddepending on its current state and on whether the counter is empty or not, the machine maychange its state and increment/decrement its counter by a �xed number of units. Allowing thecounter to assume negative values does not add to the power of such machines (since the signmay be encoded by the state).To simplify the analysis even further, we consider only weak 1-counter machines. In thesemachines, the next transition is not e�ected by whether the counter is empty or not. Hence, wemust allow the counter to assume negative values (otherwise the power of this model is furtherreduced). On the other hand, the �nal verdict (\accept" or \reject") may depend on the signof the counter (i.e., negative, zero, or positive). Again, as in previous section, the machines aredeterministic and hence are never undecided about an input. We start by characterizing the setof weak 1-counter statistical tests, and next propose a statistical test (outside this set) which isuniversal for this set.5.1 Characterization of Weak 1-Counter Statistical TestsWe consider again the directed graph (digraph), G, de�ned by a �nite automaton A. This timethe edges are labelled by binary input symbols and by the corresponding counter modi�cations(which without loss of generality are 0, +1 or �1).The characterization of weak 1-counter statistical test consists of a characterization of theaccepting con�gurations. The possible con�gurations at the end of the computation are pairs,(s; �), where s is a state of the �nite control and � 2 fP;Z;Ng indicate the sign of the counter(i.e., � = P indicates positive counter value, � = Z indicates zero counter value, and � = Nindicates negative counter value).The characterization of con�gurations depends not only on the component structure of thedigraph G, but also on the expected value of the counter modi�cation in a random walk insideeach sink of G. To this end we recall that a random walk in each sink de�nes an ergodic MarkovChain. Assume for a moment that this Markov Chain is regular (i.e., that the gcd of set oflegths of all directed circuits in G is 1), and let � be the stationary distribution of this chain.Then, the average of a sink is de�ned as Pe �(e)m(e), where �(e) is the probability of passingon edge e and m(e) is the counter modi�cation on this edge. In general, the Markov Chain maybe cyclic (i.e., the gcd of cycle lengths is d > 1) meaning that only for some d > 1 (but d � q)making d random steps in a row yields a regular Markov Chain. In this general case, d di�erent\limit distributions" are de�ned (depending on the equivalent class of the starting vertex) andthe average of the sink is de�ned as the average of the expected counter modi�cations for eachof the corresponding limit distributions.A con�guration is called reachable if it can be reached in a computation on some input.Proposition 3 Let A be a weak 1-counter statistical test, and (s; �) be an (end) con�guration.Then, the con�guration must be accepting if one of the following conditions hold:1. s resides in a sink with positive average and � = P.16



2. s resides in a sink with negative average and � = N.3. s resides in a sink with zero average, and (s; �) is a reachable con�guration.Furthermore, there exists a weak 1-counter statistical test A0 which is identical to A except (pos-sibly) that all the con�gurations not mentioned in items (1-3) are rejecting.proof sketch: As in the proof of Proposition 2 we show that for n � i (mod k), k < q,and every state s residing in a sink, a random walk of length n terminates at s with constantprobability. The question is what is the value of the counter at termination. For states s residingin sinks in which all cycles have zero sum the value in the counter equals its value at the �rsttime during computation in which s is visited. Hence, reachable (s; �) con�gurations, for s is sucha sink, are reached with constant probability, at the end of the computation. It is also clear thatcon�gurations which are not reachable can be made rejecting without a�ecting the acceptancepro�le of the machine. It is left to deal with sinks in which not all cycles have zero sum.Using the Central Limit Theorem for Markov Chains (cf. [8] Thm. 4.6.9) it follows that thesum of counter modi�cations in a random walk is unlikely to deviate linearly from the expectation(i.e., the CLT guarantees that such deviation occurs with probability tending to zero). Hence,items (1) and (2) above follow. For the justi�cation of (the rest of) item (3) we rely on a LocalLimit Theorem for Markov Chains (cf. [6] Section 20 for a general exposition and [17] for aresult implying what we need). The Local Limit Theorem guarantees that the probability thatthe sum of counter modi�cations in an n-step long random walk equals its expectation, up toan additive term of q, is �(1=pn). Hence, item (3) follows. To prove the \furthermore clause"referring to items (1) and (2), we need a Large Deviation Theorem for Markov Chains (cf. [3]Section 2.4). This theorem guarantees that only with exponentially small probability the sum ofcounter modi�cations in a random walk may deviate linearly from its expectation6. Hence, the\furthermore" clause follows and so does the entire proposition. 2Remark 3 :Unlike the situation with �nite state statistical tests, the characterization does de-pend on the particular de�nition of a negligible fraction. In particular, if negligible is interpretedas \smaller than any constant" then (�;Z) con�gurations need not be accepting (and may withoutloss of generality be rejecting).6Actually the quoted result can be derived using more elementary methods as follows. Partition the randomwalk to su�ciently long blocks and consider the average of these short random walks which start at arbitrarystates, as done in the proof of Theorem 5. To each block associate a random variable representing the countermodi�cation in a random walk along the block starting in the worst possible state. These random variables haveexpectation close to the average of the sink (de�ned as expected counter modi�cation with respect to the limitdistributions associated with the sink). Now analyze the sum of these random variables using Cherno� bound.The application of Large Deviation Theorem yields a better constant in the exponent as well as a matching lowerbound, both irrelevant for our purposes. 17



5.2 A Universal Test for the Class of Weak 1-Counter MachinesFollowing is a description of a very simple test which is universal for the class of �nite statestatistic tests. Let k : IN 7! IN be any easy to compute function which is both monotonically non-decreasing, unbounded (by a constant) and bounded above by the function log2 n� 5 log2 log2 n.The test partitions the input string � into j�jk(j�j) blocks of length k(�j) each, and checks whether allk(j�j)-bit long strings appear approximately as frequently in these blocks. More speci�cally, thefrequency test computes, ��(�) which equals jfi : � = �igj, where k def= k(j�j) and � = �1 � � ��n=kwith �i 2 f0; 1gk. The test accepts � if and only if j �� (�)n=k(n)� 12k(n) j < 1k(n) � 12k(n) for all � 2 f0; 1gk(n).We call this test the frequency test.Theorem 5 The frequency test is universal for the class of weak 1-counter statistical tests.proof: Let T be an arbitrary weak 1-counter statistical test with q states. We start by provingthe followingClaim: For every � > 0 and all su�ciently long �, if � is accepted by the frequencytest then the test T enters a sink after reading at most �j�j bits of its input.proof: Let n = j�j. Assume on the contrary that the test T does not enter a sink afterreading an � fraction of the input bits. Repeating the argument used in the proof ofTheorem 3, it follows that this fraction of the input does not contain an occurrence ofa homing sequence for T . Let us denote by 
 any q2-bit long homing sequence of T ,and h def= j
j. We �rst compute the fraction of k(n)-bit blocks, in a n-bit long randomstring, which do not contain 
 as a substring. This fraction is certainly bounded by(1� 2�h)k(n)=h < 2�k(n)=h2. Hence, the fraction of such blocks in � (which is acceptedby the frequency test) is at most (1 + 1k(n)) � 2�k(n)=h2. This fraction is smaller thanany constant � and hence it cannot be the case that 
 does not appear in the �n pre�xof �.Let � be a su�ciently long string passing the frequency test. We consider the computationof T on input � from the moment in which T entered a sink (which by the above Claim happensafter making at most �n steps). If all of T 's sinks have average (counter modi�cation) zero thena computation of T which enters a sink always terminates in an accepting con�guration (see item(3) in the characterization). Similarly, we can discard all sinks with zero average, and concentrateon sinks with non-zero average. Let � be the minimum deviation from zero of the average ofany non-zero sink of T (i.e. of either positive or negative average). The Central Limit Theoremfor Markov Chains (cf. [8] Thm. 4.6.9) guarantees that for any p and for su�ciently large K(depending only on the sink of T ) the probability that a random walk of length K starting fromany location in the sink yields total counter modi�cation of less than �K2 (towards the expecteddirection) is at most p. Let c � 1 be the maximum counter modi�cation in a single transitionof T . Then for su�ciently large K a random walk of length K starting from any location in the18



sink has expected counter modi�cation of at least �K2 � pcK > �K4 (as p can be chosen smallenough). Recall that for su�ciently large n, indeed k(n) is greater than the minimal K requiredabove. Set � < 116c � �. By the above Claim, it is guaranteed that the computation of T on ann-bit string, �, accepted by the frequency test enters a sink of T after at most �n steps. If this isa zero-average sink - we are done. Otherwise, assume without loss of generality that we entered anegative-average sink. Clearly, upon entering the sink there are at most c�n units in the counter.We will show next, that in the remaining (1� �)n > n2 steps the counter is decreased so that attermination it holds a negative value. Using item (2) of the characterization it follows that Taccepts the string �.To show that in the remaining steps the counter is decreased by at least �cn units, we �rstassume that in these steps all k(n)-bit long substrings appear with equal frequency. By theabove, we are guaranteed that the average counter decrease per k(n)-bit long block is at least�k(n)4 . Hence, in (1 � �)n > n2 steps of equal block frequency we get a decrease of at least �n8 .However, the frequencies of occurrence of the various the k(n)-bit long substrings may deviatefrom being equal. Yet, the maximum possible deviation is bounded by maxf�; 1k(n)g, which forsu�ciently large n yields a bound of �cn on the possible deviation of the sum of modi�cations.Hence, in the (1� �)n steps we get a decrease of at least �n8 � �cn > �cn (since � < 116c � �).Finally, it is left to show that the frequency test is indeed a statistical test. This is doneby application of Cherno� bound. The probability that a particular k(n)-bit string appears in tblocks, where t 62 [(1� 1k(n)) � nk(n)2k(n) ; (1+ 1k(n)) � nk(n)2k(n) ], is bounded above by an exponential in�O( nk32k ). The proposition follows. 2Remark 4 : The frequency test cannot be implemented by a weak 1-counter machine. Moregenerally, by Theorem 1, the class of weak 1-counter machines does not have a universal testwhich resides in the class itself. Also, setting the function k, in the de�nition of the frequencytest, to be a constant yields a test which is not universal for the class of weak 1-counter machines.Remark 5 :Under an appropriate choice of parameters, it can be shown that a test based onthe Lempel-Ziv algorithm [11] dominates the frequency test (i.e., rejects all the strings that arerejected by the frequency test). Hence, the LZ algorithm can be viewed as a universal statisticaltest for the class of weak 1-counter machines.Remark 6 :Under the liberal interpretation of \negligence" (by which any non-increasing func-tion tending to zero is negligible), the frequency test is not universal for weak 1-counter machineswhich are statistical tests. Augmenting the frequency test so that it is universal also under theliberal interpretation of \negligence" boils down to an algorithm that is very close to one that runsall possible statistical tests in the class. We also mention that under the liberal interpretationof \negligence" the Lempel-Ziv algorithm is not universal either. In particular the LZ algorithmaccepts de-Bruijn sequences whereas such sequences can be rejected by a weak 1-counter machinewhich compares the number of 1's to the number of 0's (and rejects the string if their di�erenceis zero). 19



5.3 ExtensionsWe believe that the results of the two previous subsections can be extended to weak countermachines possessing any constant number of counters. The di�cult is not in the algorithmicpart, but rather in our knowledge of probability theory (speci�cally Local Limit Theorems forMarkov Chains). To be more speci�c, we need a Local Limit Theorem referring to a �nite MarkovChain with states associated with d-dimensional vectors, and to the (vector) sum of the statesvisited in an n-long random walk on the chain. We believe that, under some non-degeneracyconditions, the probability that the sum over such a walk equals the expect value (which is ad-dimensional vector) is related to 1n d2 . We refer to this conjecture as LLT (d). We point out thatLLT (1) is known to hold, and this fact has been used in subsection 5.1. However, we failed inour attempts to trace such a proof of LLT (d), for d > 1. Hence, all we can say isTheorem 6 Suppose that for some d > 1, conjecture LLT (d) holds. Then the frequency test,presented in subsection 5.2, is universal for the class of weak d-counter statistical tests.We believe that the frequency test is universal also with respect to the class of (general)d-counter statistical tests, for every d � 1. Proving such a result, even for d = 1 requires amuch more cumbersome characterization. Again, the di�culty is in the analysis of the behaviourMarkov Chains. Further details are omitted.6 LogSpace Machines as Statistical TestsBy a logspace machine we mean a machine which have online access to its input and work inspace logarithmic in the length of its input.6.1 Characterization of LogSpace Statistical TestsIn light of the fair amount of understanding gained in the study of logspace pseudorandomness,it is not outrageous to propose the following open problem.Open Problem 2 : Try to �nd a useful characterization of logspace statistical tests.By a useful characterization, we mean one which would lead to a \simple" and \natural"universal test for the class of logspace statistical tests which accept all but a speci�ed fraction ofthe strings. We do not consider the universal test of the proceeding subsection as being \natural"or \simple".6.2 Universal Tests for Subclasses of LogSpace TestsFollowing is a description of a universal test for the subclass of logspace statistical tests whichaccept all but a speci�ed negligible fraction of the strings. Unlike the tests presented in previoussections, the current universal test does not have a natural description, but rather consists of20



executing all relevant tests. In other words, the universal test presented below uses the \diago-nalization paradigm". Namely, it enumerates all Turing Machines (up to a bound depending onthe input length), and simulating the execution of each machine on the given input with a speci�cspace-bound. The space bound is a function which also depends on the input length and has theproperty that it is bigger than the logarithm of the input length (to any base). The verdict of asimulated test on the given input is taken into consideration (as grounds for rejecting) only if thetest is found to accept all but a speci�ed negligible fraction of the strings of the given length (i.e.,the length of the given input). Using the results of Nisan [15, 16], it is possible to implement theabove universal test in slightly more than polynomial-time and in polylogarithmic space. Namely,Proposition 4 Let f : IN 7! IN be any polynomial-time computable function which is unboundedand monotonically non-decreasing (e.g., f(n) = log� n). Then there exists a deterministic univer-sal test for the class of logspace statistical tests which accept all but a 1nf(n) fraction of the stringsof length n. Furthermore, on input of length n, the universal test runs for at most O(nf(n)) stepsand uses at most O(f(n) logn)2 space.6.3 Pseudorandomness and Acceptance by Statistical TestsBy Proposition 1, all ensembles dominated by (logspace)-pseudorandom ensembles are acceptedby all logspace statistical tests. We now show that these are not all the ensembles which areaccepted by logspace tests. Namely,Proposition 5 Let l(n) def= log2 n, and t(n) def= 2n + 4 + 2 log2 n. Let X = fXt(n)gn2IN be anensemble so that for each � 2 f0; 1gn we have Prob(Xn = 01l(n)0�01l(n)0�) = 2�n. Then theensemble X is accepted by all logspace statistical tests and yet is not dominated by any logspace-pseudorandom ensemble.proof sketch: We �rst show that the ensemble X is indeed accepted by all logspace statisticaltests. Let T be an arbitrary logspace statistical test. To show that T must accept X , we usea standard \crossing sequence" argument. Denote by Pn(
) the set of n-bit strings � such thatafter reading the pre�x 01l(n)0� (of the input) machine T is in con�guration 
. Likewise, denoteby Sn(
) the set of n-bit long strings � such that starting from con�guration 
 and reading theinput su�x 01l(n)0� the machine T rejects. Now, assume to the contradiction that T does notaccept X . Then there exists a c > 0 such that for in�nitely many n's Prob(T (Xt(n))=REJ) > 1nc .It follows that for these n'sjf� : 9
 s.t �2Pn(
) and �2Sn(
)gj> 2nncSince on inputs of length t(n) the algorithm T can assume only polynomially (in n) many con-�gurations, there must exists a sequence of 
n's such that for some d > 0 and for in�nitely manyn's jf� : �2Pn(
n) and �2Sn(
n)gj > 2nnd21



However, it follows that every input of the form 01l(n)0�01l(n)0�, with �2Pn(
n) and �2Pn(
n),is rejected by T . Since the fraction of these inputs (among all t(n)-bit long inputs) is at least(2�(l(n)+2) � 1nd )2 = 116�n2d+2 , we derive a contradiction to the hypothesis that T is a statistical test.We now show that X cannot be dominated by any pseudorandom ensemble. Assume to thecontrary that X is dominated by Y and Y is logspace pseudorandom. Even under the weakde�nition of dominance (i.e., De�nition 8) the probability mass assigned by Yt(n) to strings of theform 01l(n)0�01l(n)0�, where � is an n-bit long string which does not contain the substring 1l(n),cannot be negligible (since such strings are assigned constant probability mass by X and hencecannot be assigned negligible probability by Y ). Hence for some c > 0 and in�nitely many n'sProb(Yt(n)2St(n)) > 1nc , whereSt(n) def= f01l(n)0�01l(n)0� : �2Gng ;where Gn � f0; 1gn is the set of all n-bit long strings which do not contain the substring 1l(n). Us-ing this fact we present a logspace algorithm, A, (which is not a statistical test) that distinguishesthe ensemble Y from the uniform ensemble. Algorithm A tries to compare 2c log2 n positions inthe pre�x of the input with the corresponding positions in the su�x, and outputs 1 if and onlyif the bits in these positions match. Following is an oversimpli�ed implementation (of this idea)which does not work: on input �1 � � ��t(n) (�i 2 f0; 1g), the algorithm outputs 1 if and only if forall j 2 f1; :::; 2c log2 ng we have �j = � t(n)2 +j . The problem with this oversimpli�ed algorithm isthat it cannot be implemented in logspace. Yet the algorithm has the desirable property of dis-tinguishing Y from the uniform ensemble (since on input taken from Yt(n) the algorithm outputs1 with probability at least 1nc , whereas on a uniformly chosen input the algorithm outputs 1 withprobability exactly 1n2c ).We now present a modi�ed implementation of the above idea. Let p1; p2; ::: be a binarysequence such that pi = 1 if and only if there exists an integer j so that i = b2 j2c c. Clearly pican be determined in logarithmic space in i. Furthermore, for every m the cardinality of theset fi : i�mV pi = 1g is at most 2c log2m and at least (2c log2m) � 4c. On input �1 � � ��t(n)(�i 2 f0; 1g), algorithm A operates in three phases. In the �rst phase, it scans the input until�nding a pre�x of the form 01L0. The algorithm records L (in binary). In the second phase thealgorithm scans the next substring of the input and records the bits in the positions for whichpi = 1 (i.e., bit �L+2+i is recorded i� pi = 1). The second phase is terminate once another 01L0substring is found. The algorithm records (again in binary) the number of bits, M , scanned inthe second phase. In the third phase the algorithm scans the rest of the input and checks whetherthe bits in this substring, with positions having pi = 1, equal to the corresponding recorded bits.Namely, for pi = 1, the algorithm checks whether �L+2+i (recorded in the second phase) equals�L+2+M+i (currently being scanned). If one of these checks yields a negative result, the algorithmhalt immediately outputting 0. In case the third stage is completed successfully, the algorithmchecks whether the number of bits scanned in the third phase equals N def= M � (L + 2), andwhether N = 2L. If either checks yields a negative result then the algorithm halts outputting 0else the output is 1. 22



One can easily verify that the above algorithm A can be implemented in logarithmic space(i.e. it uses space (c + O(1)) � log2 n on inputs of length n). Clearly algorithm A outputs 1 onevery input in St(n). Using Prob(Yt(n) 2St(n)) � 1nc it follows that Prob(A(Yt(n)) = 1) � 1nc . Onthe other hand, on input �1 � � ��t(n), the algorithm outputs 1 only if �l(n)+2+i = �2l(n)+4+n+i forevery i �n satisfying pi = 1 (and there are at least 2c log2m�4c such i's). Hence, for the uniformdistribution Ut(n) we have Prob(A(Ut(n))=1) < 24c�2c log2 n < 16cn2c . The proposition follows. 2Open Problem 3 : Suppose that the ensemble X passes all logspace statistical tests. What canbe said about X in terms of pseudorandomness with respect to logspace distinguishers.7 Probabilistic Polynomial-Time Statistical TestsIt would be more natural to consider deterministic polynomial-time statistical tests, ratherthan probabilistic polynomial-time ones. Unfortunately, we have results only for probabilisticpolynomial-time statistical tests. Our main result relates pseudorandom generators and \genera-tors" which generate ensembles which are accepted by all probabilistic polynomial-time statisticaltests. We �rst recall the de�nition of a pseudorandom generator.De�nition 9 (pseudorandom generator [1, 19]): A (deterministic) polynomial-time algorithm Gis called a pseudorandom generator (prg) if the following two conditions hold:1. jG(�)j � j�j+ 1, for all �2f0; 1g�.2. The ensemble fGngn2IN de�ned by letting Gn = G(Un) is pseudorandom (with respect toprobabilistic polynomial-time algorithms).It is well known that if pseudorandom generators exist then for, every polynomial p, there existspseudorandom generators G satisfying jG(�)j = p(j�j), for all � 2 f0; 1g�. By a sequence ofresults, culminating in [7], pseudorandom generators exist if and only if one-way functions exist.Interestingly, this condition is also equivalent to the existence of statistically-accepted generatorsde�ned below.De�nition 10 (statistically-accepted generator): A (deterministic) polynomial-time algorithmG is called a statistically-accepted generator if the following two conditions hold:1. jG(�)j � 2 � j�j, for all �2f0; 1g�.2. The ensemble fGngn2IN de�ned by letting Gn = G(Un) is accepted by all probabilisticpolynomial-time statistical tests.Theorem 7 Pseudorandom generators exist if and only if statistically-accepted generator exist.23



Proof: Clearly, every pseudorandom generator with su�cient expansion (i.e., with jG(�)j � 2j�jfor all �) is a statistically-accepted generator. The theorem follows by proving that the existenceof a statistically-accepted generator implies the existence of a one-way function (and hence theexistence of pseudorandom generators). To this end, we note that the construction used by Levin[13], to prove that the existence of pseudorandom generators implies the existence of one-wayfunctions, proves in fact the stronger statement we just made. For sake of self-containment, thisconstruction is repeated below.Let G be an arbitrary statistically-accepted generator. Without loss of generality, assumethat jG(�)j = 2j�j, for all � 2 f0; 1g�. De�ne the function f so that f(��) def= G(�), wherej�j = j�j. We now claim that f is a one-way function. Assume on the contrary, that a probabilisticpolynomial-time algorithm, A, can invert f with probability that is not negligible7 . Hence, ona fraction which is not negligible of the strings, s, the algorithm A on input f(s) outputs withnon-negligible probability a string y so that f(s) = f(y). Algorithm A can be easily modi�ed sothat on a fraction which is not negligible of the strings, A can invert successfully with probabilityat least 23 . Consider the following algorithm T . On input x, algorithm T �rst computes y def= A(x),next checks whether f(y) = x, and �nally outputs 1 if and only if the answer is negative. Clearly,T constitutes a probabilistic polynomial-time statistical test (since all but a negligible fractionof the strings do not have an inverse under f). However, the probability that T rejects a stringtaken from Gn, is not negligible. Hence, T does not accept the ensemble generated by G, incontradiction to the hypothesis that G is a statistically-accepted generator. 2Remark 7 : The above theorem holds also if a statistically-accepted generator is only requiredto expand strings of length n into strings of length n + l(n), where l is an arbitrary functiongrowing faster than any logarithm in n. However, expansion of strings of length n into strings oflength n+O(logn) does not su�ce (since, for example, G(�) = �10log2 j�j generates an ensembleaccepted by all probabilistic polynomial-time statistical tests and yet this does not imply theexistence of one-way functions)!Remark 8 : Clearly, if statistically-accepted generators exist then for, every polynomial p, thereexists statistically-accepted generators G satisfying jG(�)j = p(j�j), for all �2f0; 1g�.Remark 9 :We stress that the above theorem sheds no light on the open problem mentionedin Section 3. Namely, are all ensembles accepted by (probabilistic) polynomial-time tests alsodominated by pseudorandom ensembles?Acknowledgements7Recall, that a function f is one-way if all probabilistic polynomial-time algorithms invert it with only negligibleprobability. Namely, for every such algorithm A, the sequence of probabilities fpngn2IN is negligible, wherepn def= Prob(A(f(X))2f�1f(X)jX = Un). 24
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