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Abstract – We study the question of determining whether an un-
known function has a particular property or is �-far from any function
with that property. A property testing algorithm is given a sample
of the value of the function on instances drawn according to some
distribution, and possibly may query the function on instances of its
choice. First, we establish some connections between property test-
ing and problems in learning theory. Next, we focus on testing graph
properties, and devise algorithms to test whether a graph has proper-
ties such as being k-colorable or having a �-clique (clique of density�w.r.t the vertex set). Our graph property testing algorithms are prob-
abilistic and make assertions which are correct with high probability,
utilizing only poly(1=�) edge-queries into the graph, where � is the
distance parameter. Moreover, the property testing algorithms can
be used to efficiently (i.e., in time linear in the number of vertices)
construct partitions of the graph which correspond to the property
being tested, if it holds for the input graph.

1. Introduction

We are interested in the following general question of Prop-

erty Testing: Let P be a fixed property of functions, and f
be an unknown function. Our goal is to determine (possibly
probabilistically) if f has property P or if it is far from any
function which has property P, where distance between func-
tions is measured with respect to some distribution D on the
domain of f . Towards this end, we are given examples of the
form (x; f(x)), where x is distributed according to D. We
may also be allowed to query f on instances of our choice.

The problem of testing properties emerges naturally in the
context of program checking and probabilistically checkable
proofs as applied to multi-linear functions or low-degree poly-
nomials [14, 7, 6, 19, 21, 36, 5, 4, 10, 11, 8, 9]. Property testing
per se was considered in [36, 35]. Our definition of property
testing is inspired by the PAC learning model [37]. It allows
the consideration of arbitrary distributions rather than uniform
ones, and of testers which utilize randomly chosen instances
only (rather than being able to query instances of their own
choice).�Full version available from http://theory.lcs.mit.edu/~oded/yDept. of Computer Science and Applied Math., Weizmann Institute of
Science, ISRAEL. E-mail: oded@wisdom.weizmann.ac.il. On sabbatical
leave at LCS, MIT.zLaboratory for Computer Science, MIT, 545 Technology Sq., Cambridge,
MA 02139. E-mail: shafi@theory.lcs.mit.edu.xLaboratory for Computer Science, MIT, 545 Technology Sq., Cambridge,
MA 02139. E-mail: danar@theory.lcs.mit.edu. Supported by an NSF
postdoctoral fellowship.

We believe that property testing is a natural notion whose
relevance to applications goes beyond program checking, and
whose scope goes beyond the realm of testing algebraic prop-
erties. Firstly, in some cases one may be merely interested
in whether a given function, modeling an environment, (resp.
a given program) possesses a certain property rather than be
interested in learning the function (resp. checking that the pro-
gram computes a specific function correctly). In such cases,
learning the function (resp., checking the program) as means
of ensuring that it satisfies the property may be an over-kill.
Secondly, learning algorithms work under the postulation that
the function (representing the environment) belongs to a par-
ticular class. It may be more efficient to test this postulation
first before trying to learn the function (and possibly failing
when the postulation is wrong). Similarly, in the context of
program checking, one may choose to test that the program
satisfies certain properties before checking that it computes a
specified function. This paradigm has been followed both in
the theory of program checking [14, 36] and in practice where
often programmers first test their programs by verifying that
the programs satisfy properties that are known to be satisfied
by the function they compute. Thirdly, we show how to ap-
ply property testing to the domain of graphs by considering
several classical graph properties. This, in turn, offers a new
perspective on approximation problems as discussed below.

THE RELEVANT PARAMETERS. Let F be the class of functions
which satisfy property P. Then, testing property P corre-
sponds to testing membership in the class F . The two param-
eters relevant to property testing are the permitted distance, �,
and the desired confidence, �. We require the tester to accept
each function in F and reject every function which is further
than � away from any function in F . We allow the tester to
be probabilistic and make incorrect positive and negative as-
sertions with probability at most �. The complexity measures
we focus on are the sample complexity (the number of exam-
ples of the function’s values that the tester requires), the query
complexity (the number of function queries made – if at all),
and the running time of the tester.

1.1. Property Testing and Learning Theory

As noted above, our formulation of testing mimics the stan-
dard frameworks of learning theory. In both cases one is given
access to an unknown target function (either in the form of
random instances accompanied by the function values or in
the form of oracle access to the function). A semantic differ-



ence is that, for sake of uniformity, even in case the functions
are Boolean, we refer to them as functions rather than con-
cepts. However, there are two important differences between
property testing and learning. Firstly, the goal of a learning al-
gorithm is to find a good approximation to the target functionf 2 F , whereas a testing algorithm should only determine
whether the target function is in F or is far away from it. This
makes the task of the testing seem easier than that of learning.
On the other hand, a learning algorithm should perform well
only when the target function belongs to F whereas a testing
algorithm must perform well also on functions far away fromF . Furthermore, (non-proper) learning algorithms may output
an approximation ~f of the target f 2 F so that ~f 62 F .

We show that the relation between learning and testing is
non-trivial. On one hand, proper (representation dependent)
learning implies testing. On the other hand, there are function
classes for which testing is harder than (non-proper) learning,
provided NP 6� BPP . Nonetheless, there are also function
classes for which testing is much easier than learning. Further
details are given in Subsection 2.2. In addition, the graph
properties discussed below provide a case where testing (with
queries) is much easier than learning (also with queries).

1.2. Testing Graph Properties

In the main technical part of this paper, we focus our atten-
tion on testing graph properties. We view graphs as Boolean
functions on pairs of vertices, the value of the function repre-
senting the existence of an edge. We mainly consider testing
algorithms which use queries and work under the uniform dis-
tribution. That is, a testing algorithm for graph property P
makes queries of the form “is there an edge between verticesu and v” in an unknown graph G. It then decide whether G
has property P or is “�-away” from any graph with property P,
and is allowed to err with probability 1=3. Distance between
two N -vertex graphs is defined as the fraction of vertex-pairs
which are adjacent in one graph but not in the other.

We present algorithms of poly(1=�) query-complexity and
running-time1 at most exp( ~O(1=�3)) for testing the following
graph properties:k-Colorability for any fixed k � 2. (Here the query-

complexity is poly(k=�), and for k = 2 the running-time
is ~O(1=�3).)�-Clique for any � > 0. That is, does the N -vertex graph
has a clique of size �N .�-CUT for any � > 0. That is, does the N -vertex graph has
a cut of size at least �N2. A generalization to k-way cuts
works within query-complexity poly((log k)=�).�-Bisection for any � > 0. That is, does the N -vertex graph
have a bisection of size at most �N2.1 Here and throughout the paper, we consider a RAM model in which trivial

manipulation of vertices (e.g., reading/writing a vertex name and ordering
vertices) can be done in constant time.

Furthermore:� For all the above properties, in case the graph has the de-
sired property, the testing algorithm outputs some auxiliary
information which allows to construct, in poly(1=�) �N -
time, a partition which approximately obeys the property.
For example, for �-CUT, we can construct a partition with
at least (� � �)N2 crossing edges.� Except for Bipartite (2-Colorability) testing, running-time
of poly(1=�) is unlikely, as it will implyNP � BPP .� None of these properties can be tested without queries when
using o(pN ) random examples.� The k-Colorability tester has one-sided error: it always
accepts k-colorable graphs. Furthermore, when rejecting
a graph, this tester always supplies a poly(1=�)-size sub-
graph which is not k-colorable. All other algorithms have
two-sided error, and this is unavoidable within o(N ) query-
complexity.� Our algorithms for k-Colorability, �-Clique and �-Cut can
be easily extended to provide testers with respect to product
distributions: that is, distributions � : V(G)2 7! [0; 1] of
the form �(u; v) = �(u) � �(v), where � : V(G) 7! [0; 1]
is a distribution on the vertices. In contrast, it is not possible
to test any of the graph properties discussed above in a
distribution-free manner.

GENERAL GRAPH PARTITION. All of the above properties are
special cases of the General Graph k-Partition property, parame-
terized by a set of lower and upper bounds. The parameterized
property holds if there exists a partition of the vertices into k
disjoint subsets so that the number of vertices in each subset
as well as the number of edges between each pair of subsets
is within the specified lower and upper bounds. We present
a testing algorithm for the above general property. The algo-
rithm uses ~O(k2=�)k+5 queries, runs in time exponential in its
query-complexity, and makes two-sided error. Approximating
partitions, if they exist, can be efficiently constructed in this
general case as well. We note that the specialized algorithms
perform better than the general algorithm with the appropriate
parameters.

OTHER GRAPH PROPERTIES. Going beyond the general graph
partition problem, we remark that there are graph properties
which are very easy to test (e.g., Connectivity, Hamiltonicity,
and Planarity). On the other hand, there are graph properties
in NP which are extremely hard to test; namely, any testing
algorithm must inspect at least 
(N2= logN ) of the vertex
pairs. In view of the above, we believe that providing a char-
acterization of graph properties according to the complexity of
testing them may not be easy.

OUR TECHNIQUES. Our algorithms share some underlying
ideas. The first is the uniform selection of a small sample and
the search for a suitable partition of this sample. In case of

2



k-Colorability certain k-colorings of the subgraph induced by
this sample will do, and these are found byk-coloring a slightly
augmented graph. In the other algorithms we exhaustively try
all possible partitions. This is reminiscent of the exhaustive
sampling of Arora et. al. [3], except that the partitions con-
sidered by us are always directly related to the combinatorial
structure of the problem. We show how each possible partition
of the sample induces a partition of the entire graph so that the
following holds. If the tested graph has the property in ques-
tion then, with high probability over the choice of the sample,
there exists a partition of the sample which induces a partition
of the entire graph so that the latter partition approximately
satisfies the requirements established by the property in ques-
tion. For example, in case the graph has a �-cut, there exists a2-way-partition of the sample inducing a partition of the entire
graph with (� � �)N2 crossing edges. On the other hand,
if the graph should be rejected by the test, then by definition
no partition of the entire graph (and in particular none of the
induced partitions) approximately obeys the requirements.

The next idea is to use an additional sample to approxi-
mate the quality of each such induced partition of the graph,
and discover if at least one of these partitions approximately
obeys the requirements of the property in question. An im-
portant point is that since the first sample is small (i.e., of
size poly(1=�)), the total number of partitions it induces is
only exp poly(1=�). Thus, the additional sample must ap-
proximate only these many partitions (rather than all possible
partitions of the entire graph) and it suffices that this sample
be of size poly(1=�),

The difference between the various algorithms is in the way
in which partitions of the sample induce partitions of the entire
graph. The simplest case is in testing Bipartiteness. For a
partition (S1; S2) of the sample, all vertices in the graph which
have a neighbor in S1 are placed on one side, and the rest of the
vertices are placed on the other side. In the other algorithms
the induced partition is less straightforward. For example, in
case of �-Clique, a partition (S1; S2) of the sample S withjS1j � �jSj, induces a candidate clique roughly as follows.
Consider the set T of graph vertices each neighboring all ofS1. Then the candidate clique consists of the �N vertices with
the highest degree in the subgraph induced by T. In the, �-
Cut, �-Bisection and General Partition testing algorithms, we
use auxiliary guesses which are implemented by exhaustive
search.

1.3. Testing Graph Properties and Approximation

The relation of testing graph properties to approximation
is best illustrated in the case of Max-CUT. A tester for the
class �-Cut, working in time T (�;N ), yields an algorithm for
approximating the maximum cut in an N -vertex graph, up to
additive error �N2, in time 1� �T (�;N ). Thus, for any constant� > 0, we can approximate the size of the max-cut to within�N2 in constant time. This yields a constant time approxi-

mation scheme (i.e., to within any constant relative error) for
dense graphs, improving on Arora et. al. [3] and de la Vega [17]
who solved this problem in polynomial-time (O(N1=�2)–time
and exp( ~O(1=(�2)))�N2–time, respectively). In both works
the problem is solved by actually constructing approximate
max-cuts. Finding an approximate max-cut does not seem to
follow from the mere existence of a tester for �-Cut; yet, as
mentioned above, our tester can be used to find such a cut in
time linear in N (i.e., ~O(1=�3)�N + exp( ~O(1=�3))–time).

One can turn the question around and ask whether approxi-
mation algorithms for dense instances can be transformed into
corresponding testers as defined above. In several cases this is
possible. For example, using some ideas from our work, the
Max-CUT algorithm of [17] can be transformed into a tester
of complexity comparable to ours. We do not know whether
the same is true with respect to the algorithms in [3]. Results
on testing graph properties can be derived also from work
by Alon et. al. [1]. That paper proves a constructive version
of the Regularity Lemma of Szemerédi, and obtains from it
a polynomial-time algorithm that given an N -vertex graph,� > 0 and k � 3, either finds a subgraph of size f(�; k) which
is not k-colorable, or omits at most �N2 edges and k-colors
the rest. Noga Alon has observed that the analysis can be mod-
ified to yield that almost all subgraphs of size f(�; k) are notk-colorable, which in turn implies a tester for k-Colorability.
In comparison with our k-Colorability Tester, which takes a
sample ofO(k2 log k=�3)vertices, the k-colorability tester de-
rived (from [1]) takes a much bigger sample of size equaling a
tower of (k=�)20 exponents (i.e., log� f(�; k) = (k=�)20).

A DIFFERENT NOTION OF APPROXIMATION FOR MAX-CLIQUE.
Our notion of �-Clique Testing differs from the traditional no-
tion of Max-Clique Approximation. When we talk of testing
“�-Cliqueness”, the task is to distinguish the case in which anN -vertex graph has a clique of size �N from the case in which
it is �-far from the class of N -vertex graphs having a clique
of size �N . On the other hand, traditionally, when one talks
of approximating the size of Max-Clique, the task is to distin-
guish the case in which the max-clique has size at least �N
from, say, the case in which the max-clique has size at most�N=2. Whereas the latter problem is NP-Hard, for � � 1=64
(see [9, Sec. 3.9]), we’ve shown that the former problem can be
solved in exp(O(1=�2))-time, for any �; � > 0. Furthermore,
Arora et. al. [3] showed that the “dense-subgraph” problem, a
generalization of �-cliqueness, has a polynomial-time approx-
imation scheme (PTAS) for dense instances.

TESTING k-COLORABILITY VS. APPROXIMATING k-
COLORABILITY. Petrank has shown that it is NP-Hard to
distinguish 3-colorable graphs from graphs in which every
3-partition of the vertex set violates at least a constant fraction
of the edges [30]. In contrast, our k-Colorability Tester im-
plies that solving the same promise problem is easy for dense
graphs, where by dense graphs we mean N -vertex graphs

3



with 
(N2) edges. This is the case since, for every � > 0,
our tester can distinguish, in exp(k2=�3)-time, between k-
colorable N -vertex graphs and N -vertex graphs which remain
non-k-colorable even if one omits at most �N2 of their edges.2

We note that deciding k-colorability even for N -vertex
graphs of minimum degree at least k�3k�2 �N is NP-complete
(cf., Edwards [18]). On the other hand, Edwards also gave
a polynomial-time algorithm for k-coloring k-colorable N -
vertex graphs of minimum degree at least�N , for any constant� > k�3k�2 .

1.4. Other Related Work

PROPERTY TESTING IN THE CONTEXT OF PCP: Property testing
plays a central role in the construction of PCP systems. Specif-
ically, the property tested is being a codeword with respect to
a specific code. This paradigm explicitly introduced in [6] has
shifted from testing codes defined by low-degree polynomials
[6, 19, 5, 4] to testing Hadamard codes [4, 10, 11, 8], and
recently to testing the “long code” [9].

PROPERTY TESTING IN THE CONTEXT OF PROGRAM CHECKING:
There is an immediate analogy between program self-testing
[14] and property-testing with queries. The difference is that
in self-testing, a function f (represented by a program) is
tested for being close to a fully specified function g, whereas
in property-testing the test is whether f is close to any function
in a function class G. Interestingly, many self-testers [14, 36]
work by first testing that the program satisfies some prop-
erties which the function it is supposed to compute satisfies
(and only then checking that the program satisfies certain con-
straints specific to the function). Rubinfeld and Sudan [36]
defined property testing, under the uniform distribution and
using queries, and related it to their notion of Robust Char-
acterization. Rubinfeld [35] focuses on property testing as
applied to properties which take the form of functional equa-
tions of various types.

PROPERTY TESTING IN THE CONTEXT OF LEARNING THEORY:
Departing from work in Statistics regarding the classification
of distributions (e.g., [24, 16, 41]), Ben-David [12] and Kulka-
rni and Zeitouni [28] considered the problem of classifying an
unknown function into one of two classes of functions, given
labeled examples. Ben-David studied this classification prob-
lem in the limit (of the number of examples), and Kulkarni and
Zeitouni studied it in a PAC inspired model. For any fixed �, the
problem of testing the class F with distance parameter � can
be casted as such a classification problem (with F and the set
of functions �-away fromF being the two classes). A different
variant of the problem was considered by Yamanishi [39].

TESTING GRAPH PROPERTIES. Our notion of testing a graph
property P is a relaxation of the notion of deciding the graph2 As noted by Noga Alon, similar results, alas with much worse dependence
on �, can be obtained by using the results of Alon et. al. [1].

property P which has received much attention in the last two
decades [29]. In the classical problem there are no margins
of error, and one is required to accept all graphs having prop-
erty P and reject all graphs which lack it. In 1975 Rivest and
Vuillemin [33] resolved the Aanderaa–Rosenberg Conjecture
[34], showing that any deterministic procedure for deciding
any non-trivial monotone N -vertex graph property must ex-
amine 
(N2) entries in the adjacency matrix representing the
graph. The query complexity of randomized decision proce-
dures was conjectured by Yao to be 
(N2). Progress towards
this goal was made by Yao [40], King [27] and Hajnal [23] cul-
minating in an 
(N4=3) lower bound. Our results, that some
non-trivial monotone graph properties can be tested by exam-
ining a constant number of random locations in the matrix,
stand in striking contrast to all of the above.

APPROXIMATION IN DENSE GRAPHS. As stated previously,
Arora et. al. [3] and de la Vega [17] presented PTAS for dense
instances of Max-CUT. The approach of Arora et. al. uses
Linear Programming and Randomized Rounding, and applies
to other problems which can be casted as a “smooth” Inte-
ger Programs.3 The methods of de la Vega [17] are purely
combinatorial and apply also to similar graph partition prob-
lems. Following the approach of Alon et. al. [1], but using
a modification of the regularity Lemma (and thus obtaining
much improved running times), Frieze and Kannan [20] devise
PTAS for several graph partition problems such as Max-Cut
and Bisection. We note that compared to all the above re-
sults, our respective graph partitioning algorithms have better
running-times. Like de la Vega, our methods use elemen-
tary combinatorial arguments related to the problem at hand.
Still our methods suffice for dealing with the General Graph
Partition Problem.

Important Note: In this extended abstract, we present
only two of our results on testing graph properties: the k-
Colorability and the �-Clique testers. The definition and theo-
rem regarding the General Graph Partition property appears in
Subsection 3.3. All other results as well as proofs and further
details can be found in our report [22].

2. General Definitions and Observations

2.1. Definitions

Let F = fFng be a parameterized class of functions,
where the functions4 in Fn are defined over f0; 1gn and letD = fDng be a corresponding class of distributions (i.e., Dn
is a distribution on f0; 1gn). We say that a function f defined
on f0; 1gn is �-close to Fn with respect to Dn if there exists
a function g 2 Fn such that3 In [2], the approach of [3] is extended to other problems, such as Graph
Isomorphism, using a new rounding procedure for the Assignment Problem.4 The range of these functions may vary and for many of the results and
discussions it suffices to consider Boolean function.
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Probx�Dn [f(x) 6= g(x)] � � : (1)

Otherwise, f is �-far from Fn (with respect to Dn).
We shall consider several variants of testing algorithms, where
the most basic one is defined as follows.

Definition 2.1 (property testing): Let A be an algorithm
which receives as input a size parametern, a distance parame-
ter 0 < � < 1, and a confidence parameter0 < � < 1=2. Fix-
ing an arbitrary function f and distribution Dn over f0; 1gn,
the algorithm is also given access to a sequence of f -labeled
examples, (x1; f(x1)); (x2; f(x2)); :::, where each xi is in-
dependently drawn from the distribution Dn. We say that A
is a property testing algorithm (or simply a testing algorithm) for
the class of functions F if for every n, � and � and for ev-
ery function f and distribution Dn over f0; 1gn the following
holds� if f 2 Fn then with probability at least 1 � � (over the

examples drawn from Dn and the possible coins tosses
ofA), A accepts f (i.e., outputs 1);� if f is �-far from Fn (with respect to Dn) then with
probability at least 1� �, A rejects f (i.e., outputs 0).

The sample complexity of A is a function of n; � and � bound-
ing the number of labeled examples examined by A on input(n; �; �).
Though it was not stated explicitly in the definition, we shall
also be interested in bounding the running time of a property
testing algorithm (as a function of the parameters n; �; �, and
in some case of a complexity measure of the class F). We
consider the following variants of the above definition: (1) Dn
may be a specific distribution which is known to the algorithm.
In particular, we shall be interested in testing with respect to the
uniform distribution; (2)Dn may be restricted to a known class
of distributions (e.g., product distributions); (3) The algorithm
may be given access to an oracle for the function f , which
when queried on x 2 f0; 1gn, returns f(x). In this case we
refer to the number of queries made by A (which is a function
of n, �, and �), as the query complexity ofA.

2.2. Property Testing and PAC Learning

A Probably Approximately Correct (PAC) learning algo-
rithm [37] works in the same framework as that described in
Definition 2.1 except for the following (crucial) differences:
(1) It is given a promise that the unknown function f (referred
to as the target function) belongs to F ; (2) It is required to
output (with probability at least 1 � �) a hypothesis func-
tion h which is �-close to f , where closeness is as defined in
Equation (1) (and � is usually referred to as the approxima-
tion parameter). Note that the differences pointed out above
effect the tasks in opposite directions. Namely, the absence
of a promise makes testing potentially harder than learning,
whereas deciding whether a function belongs to a class rather
than finding the function may make testing easier.

In the learning literature, a distinction is made between
proper (or representation dependent) learning and non-proper
learning [31]. In the former model, the hypothesis output
by the learning algorithm is required to belong to the same
function class as the target function f , i.e. h 2 F , while in
the latter model, no such restriction is made. We stress that
a proper learning algorithm (for F) may either halt without
output or output a function inF , but it may not output functions
not in F .5 There are numerous variants of PAC learning
(including learning with respect to specific distributions, and
learning with access to an oracle for the target function f).
Unless stated otherwise, whenever we refer in this section to
PAC learning we mean the distribution-free no-query model
described above. The same is true for references to property
testing. In addition, apart from one example, we shall restrict
our attention to classes of Boolean functions.

TESTING IS NOT HARDER THAN PROPER LEARNING.

Proposition 2.1 If a function class F has a proper learning
algorithm A, then F has a property testing algorithm A0
such thatmA0(n; �; �) = mA(n; �=2; �=2)+O(log(1=�)=�).
Furthermore, the same relation holds between the running
times of the two algorithm.

The proof of this proposition, as well as of all other proposi-
tions in this section, can be found in our report [22]. The above
proposition implies that if for every n, Fn has polynomial (inn) VC-dimension [38, 15], then F has a tester whose sample
complexity is poly(n=�)�log(1=�). The reason is that classes
with polynomial VC-dimension can be properly learned from
a sample of the above size [15]. However, the running time of
such a proper learning algorithm, and hence of the resulting
testing algorithm might be exponential in n.

Corollary 2.2 Every class which is learnable with apoly(n=�) sample is testable with a poly(n=�) sample (in
at most exponential time).

TESTING MAY BE HARDER THAN LEARNING. In contrast to
Proposition 2.1 and to Corollary 2.2, we show that there are
classes which are efficiently learnable (though not by a proper
learning algorithm) but are not efficiently testable. This is
proven by observing that many hardness results for proper
learning (cf. [31, 13, 32]) actually establish the hardness of
testing (for the same classes). Furthermore, we believe that
it is more natural to view these hardness results as referring
to testing. Thus, the separation between efficient learning
and efficient proper learning translates to a separation between
efficient learning and efficient testing.5We remark that in case the function is F have an easy to recognize
representation, one can easily guarantee that the algorithm never outputs a
function not in F . Standard classes considered in works on proper learning
typically have this feature.
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Proposition 2.3 If NP 6� BPP then there exist func-
tion classes which are not poly(n=�)-time testable but arepoly(n=�)-time (non-properly) learnable.

We stress that while Proposition 2.1 generalizes to learning and
testing under specific distributions, and to learning and testing
with queries, the proof of Proposition 2.3 uses the premise
that the testing (or proper learning) algorithm works for any
distribution and does not make queries.

TESTING MAY BE EASIER THAN LEARNING.

Proposition 2.4 There exist function classes F such that F
has a property testing algorithm whose sample complexity and
running time are O(log(1=�)=�), yet any learning algorithm
for F must have sample complexity exponential in n.

The impossibility of learning the function class in Proposi-
tion 2.4 is due to its exponential VC-dimension, (i.e., it is a pure
information theoretic consideration). We now turn to function
classes of exponential (rather than double exponential) size.
Such classes are always learnable with a polynomial sample,
the question is whether they are learnable in polynomial-time.
We present a function class which is easy to test but cannot
be learned in polynomial-time (even under the uniform distri-
bution), provided trapdoor one-way permutations exist (e.g.,
factoring is intractable).

Proposition 2.5 If there exist trapdoor one-way permutations
then there exists a family of functions which can be tested inpoly(n=�)-time but can not be learned in poly(n=�)-time,
even with respect to the uniform distribution. Furthermore,
the functions can be computed by poly(n)-size circuits.

The class presented in Proposition 2.5 consists of multi-valued
functions. We leave it as an open problem whether a similar
result holds for a class of Boolean functions.

LEARNING AND TESTING WITH QUERIES (under the uniform
distribution). Invoking known results on linearity testing [14,
7, 19, 10, 11, 8] we conclude that there is a class of2n functions
which can be tested within query complexity O(log(1=�)=�),
and yet learning it requires at least n queries. Similarly, using
results on low-degree testing [7, 6, 21, 36], there is a class ofexp(2n) function which can be tested within query complexityO( log(1=�)� � n), and yet learning it requires exp(n) many
queries.

AGNOSTIC LEARNING AND TESTING. In a variant of PAC learn-
ing, called Agnostic PAC learning [26], there is no promise
concerning the target function f . Instead, the learner is re-
quired to output a hypothesis h from a certain hypothesis classH, such that h is �-close to the function in H which is clos-
est to f . The absence of a promise makes agnostic learning
closer in spirit to property testing than basic PAC learning. In
particular, agnostic learning with respect to a hypothesis class

H implies proper learning of the class H and thus property
testing of H.

LEARNING AND TESTING DISTRIBUTIONS. The context of
learning (cf., [25]) and testing distributions offers a dramatic
demonstration to the importance of a promise (i.e., the fact that
the learning algorithm is required to work only when the target
belongs to the class, whereas the testing algorithm needs to
work for all targets which are either in the class or far away
from it).

Proposition 2.6 There exist distribution classes which are ef-
ficiently learnable (in both senses mentioned above) but can-
not be tested with a subexponential sample (regardless of the
running-time).

3. Testing Graph Properties

We concentrate on testing graph properties using queries
and with respect to the uniform distribution.

We consider undirected, simple graphs (no multiple edges
or self-loops). For a simple graph G, we denote by V(G)
its vertex set and assume, without loss of generality, thatV(G) = f1; :::; jV(G)jg. The graph G is represented by
the (symmetric) Boolean function g :V(G)�V(G) 7!f0; 1g
where g(u; v) = 1 if and only if there is an edge between u
and v in G. This brings us to associated undirected graphs
with directed graphs, where each edge in the undirected graph
is associated with a pair of anti-parallel edges. Specifically,
for a graph G, we denote by E(G) the set of ordered pairs
which correspond to edges in G (i.e., (u; v) 2 E(G) iff there
is an edge between u and v in G). The distance between
two N -vertex graphs, G1 and G2, is defined as the number of

entries (u; v) 2 [N ]2 ([N ] def= f1; :::; Ng) which are in the
symmetric difference of E(G1) and E(G2). We denotedist(G1;G2) def= j(E(G1) n E(G2)) [ (E(G2) n E(G1))jN2
This notation is extended naturally to a set, C, of N -vertex

graphs; that is, dist(G; C) def= minG02Cfdist(G;G0)g.
3.1. Testing k-Colorability

In this subsection we present an algorithm for testing thek-Colorability property for any given k. Namely, we are inter-
ested in determining if the vertices of a graphG can be colored
by k colors so that no two adjacent vertices are colored by the
same color, or if any k-partition of the graph has at least �N2
violating edges (i.e. edges between pairs of vertices which
belong to the same side of the partition).

The test itself is straightforward. We uniformly select a

sample, denoted X, of O �k2(log(k=�)�3 �
vertices of the graph,

query all pairs of vertices in X to find which are edges inG, and check if the induced subgraph is k-Colorable. In
lack of efficient algorithms for k-Colorability, for k � 3, we
use the obvious exponential-time algorithm on the induced
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subgraph. The resulting algorithm is called the k-Colorability
Testing Algorithm. Towards analyzing it, we define violating
edges and good k-partitions.6
Definition 3.1.1 (violating edges and good k-partitions): We
say that an edge (u; v) 2 E(G) is a violating edge with respect
to a k-partition � : V(G) ! [k] if �(u) = �(v). We shall
say that a k-partition is �-good if it has at most �N2 violating
edges (otherwise it is �-bad). The partition is perfect if it has
no violating edges.

Theorem 3.1 The k-Colorability Testing Algorithm is a property
testing algorithm for the class of k-Colorable graphs whose
query complexity is poly(k log(1=�)=�) and whose running
time is exponential in its query complexity. If the tested graphG is k-Colorable, then it is accepted with probability 1, and
with probability at least 1� � (over the choice of the sampled
vertices), it is possible to construct an �-good k-partition ofV(G) in time poly(k log(1=�)=�) � jV(G)j.
Proof: If G is k-Colorable then every subgraph of G is k-
Colorable, and hence G will always be accepted. The crux
of the proof is to show that every G which is �-far from the
class of k-Colorable graphs, denoted Gk, is rejected with prob-
ability at least 1 � �. We establish this claim by proving its
counter-positive. Namely, that every Gwhich is accepted with
probability greater than �, must have an �-good k-partition
(and is thus �-close to Gk). This is done by giving a (construc-
tive) proof of the existence of an �-good k-partition of V(G).
Hence, in case G 2 Gk, we also get an efficient probabilistic
procedure for finding an �-good k-partition of V(G). Note
that if the test rejects G then we have a certificate thatG =2 Gk,
in form of the (small) subgraph induced by X which is notk-colorable.

We view the set of sampled vertices X as a union of two
disjoint sets U and S, where U is a union of ` (disjoint) setsU1; : : : ;U`, each of sizem. The size of S ism as well, wherem = O((` log(k=�))=�) and ` = 4k=�. The set U (or rather
a k-partition of U) is used to define a k-partition of V(G).
The set S ensures that with high probability, the k-partition ofU which is induced by the perfect k-partition of X = U [ S,
defines an �-good partition of V(G).

In order to define a k-partition of V(G) given a k-partition
ofU, we first introduce the notion of a clustering of the vertices
in V(G) with respect to this partition of U. More precisely,
we define the clustering based on the k-partition of a subsetU0 � U, where this partition, denoted (U01; : : : ;U0k), is the
one induced by the k-partition of U. The clustering is defined
so that vertices in the same cluster have neighbors on the6k-partitions are associated with mappings of the vertex set into the canon-
ical k-element set [k]. The partition associated with � : V(G) ! [k] is(V1 def= ��1(1); : : : ;Vk def= ��1(k)). We shall use the mapping nota-
tion �, and the explicit partition notation (V1; : : : ;Vk), interchangeably.

same sides of the partition of U0. For every A � [k], the A-
cluster, denotedCA, contains all vertices in V(G) which have
neighbors in U0i for every i 2 A (and do not have neighbors in
the other U0i’s). The clusters impose restrictions on possible
extensions of the partition of U0 to partitions (V1; : : : ;Vk)
of all V(G), which do not have violating edges incident to
vertices in U0. Namely, vertices in CA should not be placed
in any Vi such that i 2 A. As a special case, C; is the set of
vertices that do not have any neighbors in U0 (and hence can
be put on any side of the partition). In the other extreme, C[k]
is the set of vertices that in any extension of the partition of U0
will cause violations. For each i, the vertices in C[k]nfig are
forced to be put in Vi, and thus are easy to handle. It is more
difficult to deal with the the clusters CA where jAj < k� 1.7
Definition 3.1.2 (clusters): Let U0 be a set of vertices, and

let �0 be a perfect k-partition of U0. Define U 0i def= fv2U :�0(v) = ig. For each subset A � [k] we define the A-cluster

with respect to �0 as follows:CA def=  \i2A�(U0i)! n  [i=2A�(U0i)! : (2)

The relevance of the above clusters becomes clear given the
following definitions of extending and consistent partitions.

Definition 3.1.3 (consistent extensions): Let U0 and �0 be as
above. We say that a k-partition � of V(G) extends a k-
partition �0 of U0 if �(u) = �0(u) for every u 2 U0. An
extended partition � is consistent with �0 if �(v) 6= �0(u) for
everyu 2 U0 andv 2 �(u)nC[k], whereC[k] is the [k]-cluster
w.r.t �0.
Thus, each vertex v in the cluster CA (w.r.t �0 defined onU0) is forced to satisfy �(v) 2 �A def= [k] n A, for every k-
partition � which extends �0 in a consistent manner. There
are no restrictions regarding vertices in C; and vertices inC[k] (the latter is guaranteed artificially in the definition and
the consequences will have to be treated separately). Forv 2 C[k]�fig the consistency condition forces �(v) = i.

We now focus on the main problem of the analysis. Given
a k-partition of U, what is a good way to define a k-partition
of V(G)? Our main idea is to claim that with high probability
the set U contains a subsetU0 so that the clusters with respect
to the induced k-partition of U0 determine whatever needs
to be determined. That is, if these clusters allow to place
some vertex on a certain side of the partition, then doing so
does not introduce too many violating edges. The first step in
implementing this idea is the notion of a restricting vertex.

Definition 3.1.4 (restricting vertex): A pair (v; i), wherev =2 C[k] and i 2 [k], is said to be restricting with respect
to a k-partition �0 (of U0) if v has at least �4N neighbors7In the Bipartite case, this is easy too (since C; is likely to contain few
vertices of high degree).
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in [B:i=2BCB. Otherwise, (v; i) is non-restricting. A vertexv 2 CA, where A 6= [k], is restricting with respect to �0 if
for every i 2 �A the pair (v; i) is restricting. Otherwise, v is
non-restricting. As always, the clusters are with respect to �0.
Thus, a vertex v 2 CA is restricting if for every i 2 �A, addingv to U0i (and thus to U0) will cause may of its neighbors to
move to a cluster corresponding to a bigger subset. That is,v’s neighbors in the B-cluster (w.r.t (U01; : : : ;U0k)) move to
the (B [ fig)-cluster (w.r.t (U 01; : : : ; U 0i [ fvg; : : : ;U0k)).

Given a prefect k-partition of U, we construct U0 in steps
starting with the empty set. At step j we add to U0 a vertexu 2 Uj (recall that U = U1[ � � �[U `), which is a restricting
vertex with respect to the k-partition of the current set U0. If
no such vertex exists, the procedure terminates. When the
procedure terminates (and as we shall see it must terminate
after at most ` steps), we will be able to define, based on thek-partition of the final U0, an �-good k-partition ofV(G). The
procedure defined below is viewed at this point as a mental
experiment. Namely, it is provided in order to show that with
high probability there exists a subset U0 of U with certain
desired properties (which we later exploit).

Restriction Procedure (Construction of U0)
Input: a perfect k-partition of U = U1 [ � � � [U`.

1. U0  ;.
2. For j = 1; 2; : : : do the following. Consider the current

set U0 and its partition �0 (induced by the perfect k-
partition of U).� If there are less than (�=8)N restricting vertices with

respect to �0 then halt and output U0.� If there are at least (�=8)N restricting vertices but
there is no restricting vertex in Uj , then halt and output
error.� Otherwise (there is a restricting vertex in Uj), add the
first (by any fixed order) restricting vertex to U0.

Claim 3.1.5 For everyU and a perfect k-partition of U, after
at most ` = 4k=� iterations, the Restriction Procedure halts
and outputs either U0 or error.

The proof of this claim, as well as all other missing proofs, can
be found in our report [22]. Before we show how U0 can be
used to define a k-partition � of V(G), we need to ensure that
with high probability, the restriction procedure in fact outputs
a setU0 and not error. To this end, we first define the notion of
a covering set.

Definition 3.1.6 (covering sets – for k-coloring): We say thatU is a covering set for V(G), if for every perfect k-partition
of U, the Restriction Procedure, given this partition as input,
halts with an output U0 � U (rather than an error message).

In other words, U is such that for every perfect k-partition ofU and for each of the at most ` iterations of the procedure, if
there exist at least (�=8)N restricting vertices with respect to
the current partition of U0, then Uj will include at least one
such restricting vertex.

Lemma 3.1.7 With probability at least 1 � �2 , a uniformly

chosen set of size ` �m = O�k2 log(k=�)�3 �
is a covering set.

Definition 3.1.8 (closed partitions): Let U0 be a set and �0 ak-partition of it. We call (U0; �0) closed if there are less than(�=8)N restricting vertices with respect to �0.
Clearly, if the Restriction Procedure outputs a set U0 then this
set together with its (induced) partition are closed. If (U0; �0)
is closed, then most of the vertices inV(G) are non-restricting.
Recall that a non-restricting vertex v, belonging to a clusterCA, A 6= [k], has the following property. There exists at least
one index i 2 �A, such that (v; i) is non-restricting. It follows
from Definition 3.1.4 that for every consistent extension of �0
to � which satisfies �(v) = i there are at most �2N violating
edges incident to v.8 However, even if v is non-restricting
there might be indices i 2 �A such that (v; i) is restricting, and
hence there may exist a consistent extensions of �0 to � which
satisfies �(v) = i in which there are more than �2N violating
edges incident to v. Therefore, we need to define for each
vertex its set of forbidden indices which will not allow to have�(v) = i for a restricting pair (v; i).
Definition 3.1.9 (forbidden sets): Let (U0; �0) be closed and
consider the clusters with respect to �0. For each v 2 V(G) nU0 we define the forbidden set of v, denotedFv, as the smallest
set satisfying� Fv � A, where v 2 CA.� For every i 2 �A, if v has at least (�=4)N neighbors in

the clustersCB for which i =2 B, then i is in Fv.

For u 2 U0, define Fu = [k] n f�0(u)g.
Lemma 3.1.10 Let (U0; �0) be an arbitrary closed pair andFv’s be as in Definition 3.1.9. Then:

1. jfv : (v =2 C[k]) ^ (Fv = [k])gj � �8N .

2. Let � be any k-partition of V(G) n fv : Fv = [k]g such
that �(v) =2 Fv, for every v 2 V(G). Then, the number
of edges (v; v0) 2 E(G) for which �(v) = �(v0) is at
most (�=2)N2.8First note that by definition of a consistent extension no vertex in clusterCB , where i 2 B, can have �-value i. Thus, all violated edges incident to v

are incident to vertices in clusters CB so that i =2 B. Since the pair (v; i) is
non-restricting, there are at most �2N such edges.
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The lemma can be thought of as saying that any k-partition
which respects the forbidden sets is good (i.e., does not have
many violating edges). However, the partition applies only
to vertices for which the forbidden set is not [k]. The first
item tells us that there cannot be many such vertices which
do not belong to the cluster C[k]. We next show that, with
high probability over the choice of S, the k-partition �0 of U0
(induced by the k-partition ofU[S) is such thatC[k] is small.
This implies that all the vertices in C[k] (which were left out
of the partition in the previous lemma) can be placed in any
side without contributing too many violating edges (which are
incident to them).

Definition 3.1.11 (useful k-partitions): We say that a pair(U0; �0) is �-useful if jC[k]j < �8N . Otherwise it is �-unuseful.

The next claim directly follows from our choice of m and the
above definition.

Claim 3.1.12 Let U0 be a fixed set of size ` and �0 be a fixedk-partition of U0 so that (U0; �0) is �-unuseful. Let S be a
uniformly chosen set of size m. Then, with probability at
least �2k�`, there exists no perfect k-partition of U0[ Swhich
extends �0.
The following is a corollary to the above claim and to the fact
that the number of possible closed pairs (U0; �0) determined
by all possible k-partitions of U is at most k`.
Corollary 3.1.13 If all closed pairs (U0; �0) which are deter-
mined by all possible k-partitions of U are unuseful, then with
probability at least 1 � �=2 over the choice of S, there is no
perfect k-partition of X = U [ S.

We can now wrap up the proof of Theorem 3.1. If G is
accepted with probability greater than �, then by Lemma 3.1.7,
the probability that it is accepted and U is a covering set is
greater than �=2. In particular, there must exist at least one
covering set U, such that if U is chosen then G is accepted
with probability greater than �=2 (with respect to the choice
of S). That is, (with probability greater than �=2) there exists
a perfect partition of U [ S. But in such a case (by applying
Corollary 3.1.13), there must be a useful closed pair (U0; �0)
(where U0 � U). If we now partition V(G) as described in
Lemma 3.1.10, where vertices with forbidden set [k] are placed
arbitrarily, then from the two items of Lemma 3.1.10 and the
usefulness of (U0; �0) it follows that there are at most �N2
violating edges with respect to this partition. This completes
the main part of the proof. (Theorem 3.1)

3.2. Testing Max-Clique

Let !(G) denote the size of the largest clique in graph G,

and C� def= fG : !(G) � � � jV(G)jg be the set of graphs
having cliques of density at least �. The main result of this
subsection is:

Theorem 3.2 Let ` def= O(log(1=��)). There exists a property
testing algorithm,A, for the class C� whose edge-query com-
plexity isO(`2�2=�6) and whose running time is exp(`�=�2).
In particular, A uniformly selects O(`2�2=�4) vertices in G
and queries the oracle only on the existence of edges between
these vertices. In case G 2 C�, one can also retrieve in timeO(`2�2=�4) � jV(G)j a set of � � jV(G)j vertices in G which
is almost a clique (in the sense that it lacks at most � � jV(G)j2
edges to being a clique).

Theorem 3.2 is proven by presenting a seemingly unnatural
algorithm/tester (see below). However, as a corollary, we
observe that “the natural” algorithm, which uniformly selectspoly(log(1=�)=�)many vertices and accepts iff they induce a
subgraph with a clique of density �� �2 , is a valid C�-tester as
well.

Corollary 3.3 Let m = poly(1=�) and let R be a uniformly
selected set of m vertices in V (G). Let GR be the subgraph
(of G) induced by R. Then,� if G 2 C� then ProbR[!(GR) > (� � �2 ) �m] > 23 .� ifdist(G; C�)>� thenProbR[!(GR) � (�� �2)�m] > 23 .

In the rest of this subsection we provide a motivating discussion
to the algorithm asserted in Theorem 3.2. Recall that N =jV(G)j denotes the number of vertices in G.

Our first idea is to select at random a small sample U
of V(G) and to consider all subsets U0 of size �2 � jUj ofU where jUj = poly(1=�). For each U0 let T(U0) be the
set of all vertices which neighbor every vertex in U0 (i.e.,T(U0) = \u2U0�(u)). In the subgraph induced by T(U0),
consider the set Y(U0) of �N vertices with highest degree in
the induced subgraph. Clearly, if G is �-far from C�, thenY(U0) misses at least �N2 edges to being a clique (for every
choice ofU andU0). On the other hand, we show that ifG has a
cliqueC of size �N then, with high probability over the choice
of U, there exists a subset U0 � U such that Y(U0) misses at
most (�=3)N2 to being a clique (in particular, U0 � C \ U
will do).

Assume that for any fixed U0 we could sample the vertices
in Y(U0) and perform edge queries on pairs of vertices in this
sample. Then, a sample of O(t=�2) vertices (where t = jUj)
suffices for approximating the edge density in Y(U0) to within
an �=3 fraction with probability 1 � O(2�t). In particular a
sample can distinguish between a set Y(U0) which is far from
being a clique and a set Y(U0) which is almost a clique. The
point is that we need only consider

� jUjjU0j� < 2t possible setsY(U0), where t is only a polynomial in 1=�.
The only problem which remains is how to sample fromY(U0). Certainly, we can sample T = T(U0), by samplingV(G) and testing membership in T, but how do we decide

which vertex is among those of highest degree? The first idea
is to estimate the degrees of vertices in T using an additional
sample, denoted W. Thus, instead of considering the �N
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vertices of highest degree in T, we consider the �N vertices
in T having the most neighbors in T\W. The second idea is
that we can sample T, order vertices in this sample according
to the number of neighbors in T \W, and take the � fraction
with the most such neighbors.

3.3. The General Partition Problem

The following General Graph Partition property generalizes
all properties considered in previous subsections. In particular,
it captured any graph property which requires the existence of
partitions satisfying certain fixed density constraints. These
constraints may refer both to the number of vertices on each
side of the partition and to the number of edges between each
pair of sides.

Let � def= ��lbj ; �ubj 	kj=1 [ �%lbj;j0; %ubj;j0	kj;j0=1 be a set of

non-negative parameters so that �lbj � �ubj (8j) and %lbj;j0 �%ubj;j0 (8j; j0). Let GP� be the class of graphs which have ak-way partition (V1; : : : ;Vk) such that8j; �lbj �N � jVjj � �ubj �N ; (3)8j; j0; %lbj;j0 �N2 � jE(Vj;Vj0)j � %ubj;j0 �N2 ; (4)

where E(Vj ;Vj0) denotes the set of edges with one endpoint
in Vj and one in Vj0 . That is, Eq. (3) places lower and
upper bounds on the relative sizes of the various parts; whereas
Eq. (4) imposes lower and upper bounds on the density of edges
among the various pairs of parts. For example, k-colorability is
expressed by setting %ubj;j = 0 for every j (and setting �lbj = 0,�ubj = 1, and similarly setting the %xxj;j0’s for j0 6= j).

Theorem 3.4 There exists an algorithm A such that for ev-
ery given set of parameters �, algorithm A is a prop-
erty testing algorithm for the class GP� with query com-
plexity (O(k2)=�)k+5 � k2 log(k=��), and running timeexp�(O(k2)=�)k+2 � log(k=��)�.
Recall that better complexities for Max-CUT and Bisection
(as well as for k-Colorability and �-Clique), are obtained by
custom-made algorithms.
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