Property Testing and its connection to L earning and Approximation*

Oded Goldreichf

Abstract — We study the question of determining whether an un-
known function has aparticular property or is e-far from any function
with that property. A property testing algorithm is given a sample
of the value of the function on instances drawn according to some
distribution, and possibly may query the function on instances of its
choice. First, we establish some connections between property test-
ing and problems in learning theory. Next, we focus on testing graph
properties, and devise algorithms to test whether a graph has proper-
ties such as being k-colorable or having a p-clique (clique of density
p w.r.t thevertex set). Our graph property testing algorithms are prob-
abilistic and make assertions which are correct with high probability,
utilizing only poly (1/€) edge-queries into the graph, where € is the
distance parameter. Moreover, the property testing algorithms can
be used to efficiently (i.e., in time linear in the number of vertices)
construct partitions of the graph which correspond to the property
being tested, if it holds for the input graph.

1. Introduction

Weare interested in the following general question of Prop-
erty Testing: Let P be a fixed property of functions, and f
be an unknown function. Our goal is to determine (possibly
probabilistically) if f has property P or if it is far from any
function which has property P, where distance between func-
tions is measured with respect to some distribution D on the
domain of f. Towardsthis end, we are given examples of the
form (x, f(x)), where x is distributed according to D. We
may also be allowed to query f on instances of our choice.

The problem of testing properties emerges naturally in the
context of program checking and probabilistically checkable
proofs as applied to multi-linear functions or low-degree poly-
nomials[14,7,6,19, 21, 36,5, 4, 10, 11, 8, 9]. Property testing
per se was considered in [36, 35]. Our definition of property
testing is inspired by the PAC learning model [37]. It allows
the consideration of arbitrary distributions rather than uniform
ones, and of testers which utilize randomly chosen instances
only (rather than being able to query instances of their own
choice).

*Full version available fromhttp: //theory. | cs. nit.edu/ ~oded/

tDept. of Computer Science and Applied Math., Weizmann Institute of
Science, ISRAEL. E-mail: oded@ii sdom wei znmann. ac. il . On sabbatical
leaveat LCS, MIT.

4 Laboratory for Computer Science, MIT, 545 Technology Sq., Cambridge,
MA 02139. E-mail: shafi@heory.lcs.nit. edu.

§ Laboratory for Computer Science, MIT, 545 Technology Sq., Cambridge,
MA 02139. E-mail: danar @heory. | cs. m t.edu. Supported by an NSF
postdoctoral fellowship.

Shafi Goldwasser?

Dana Ron®

We believe that property testing is a natural notion whose
relevance to applications goes beyond program checking, and
whose scope goes beyond the realm of testing algebraic prop-
erties. Firstly, in some cases one may be merely interested
in whether a given function, modeling an environment, (resp.
a given program) possesses a certain property rather than be
interested in learning the function (resp. checkingthat the pro-
gram computes a specific function correctly). In such cases,
learning the function (resp., checking the program) as means
of ensuring that it satisfies the property may be an over-kill.
Secondly, learning algorithms work under the postulation that
the function (representing the environment) belongs to a par-
ticular class. It may be more efficient to test this postulation
first before trying to learn the function (and possibly failing
when the postulation is wrong). Similarly, in the context of
program checking, one may choose to test that the program
satisfies certain properties before checking that it computes a
specified function. This paradigm has been followed both in
the theory of program checking [14, 36] and in practice where
often programmers first test their programs by verifying that
the programs satisfy properties that are known to be satisfied
by the function they compute. Thirdly, we show how to ap-
ply property testing to the domain of graphs by considering
several classical graph properties. This, in turn, offers a new
perspective on approximation problems as discussed below.

THE RELEVANT PARAMETERS. Let F be the class of functions
which satisfy property P. Then, testing property P corre-
sponds to testing membership in the class F. The two param-
etersrelevant to property testing are the permitted distance, ¢,
and the desired confidence, 6. We require the tester to accept
each function in F and reject every function which is further
than ¢ away from any function in 7. We alow the tester to
be probabilistic and make incorrect positive and negative as-
sertions with probability at most 6. The complexity measures
we focus on are the sample complexity (the number of exam-
ples of thefunction’s valuesthat the tester requires), the query
complexity (the number of function queries made — if at al),
and the running time of the tester.

1.1. Property Testing and Learning Theory

Asnoted above, our formulation of testing mimicsthe stan-
dard frameworks of learning theory. In both casesoneisgiven
access to an unknown target function (either in the form of
random instances accompanied by the function values or in
the form of oracle accessto the function). A semantic differ-



enceisthat, for sake of uniformity, even in case the functions
are Boolean, we refer to them as functions rather than con-
cepts. However, there are two important differences between
property testing and learning. Firstly, the goal of alearning al-
gorithm is to find a good approximation to the target function
f € F, whereas a testing algorithm should only determine
whether the target functionisin F or isfar avay fromit. This
makesthe task of the testing seem easier than that of learning.
On the other hand, a learning algorithm should perform well
only when the target function belongsto F whereas a testing
algorithm must perform well also on functions far away from
F. Furthermore, (non-proper) learning algorithms may output
an approximation f of thetarget f € F sothat f ¢ F.

We show that the relation between learning and testing is
non-trivial. On one hand, proper (representation dependent)
learning impliestesting. On the other hand, there are function
classesfor which testing is harder than (non-proper) learning,
provided N'P ¢ BPP. Nonetheless, there are also function
classesfor which testing is much easier than learning. Further
details are given in Subsection 2.2. In addition, the graph
properties discussed below provide a case where testing (with
gueries) is much easier than learning (also with queries).

1.2. Testing Graph Properties

In the main technical part of this paper, we focus our atten-
tion on testing graph properties. We view graphs as Boolean
functions on pairs of vertices, the value of the function repre-
senting the existence of an edge. We mainly consider testing
algorithms which use queries and work under the uniform dis-
tribution. That is, a testing algorithm for graph property P
makes queries of the form “is there an edge between vertices
u and v” in an unknown graph (. It then decide whether G
has property P oris*e-away” from any graph with property P,
and is allowed to err with probability 1/3. Distance between
two N -vertex graphs is defined as the fraction of vertex-pairs
which are adjacent in one graph but not in the other.

We present algorithms of poly(1/¢) query-complexity and
running-time' at most exp(O(1/¢3)) for testing the following
graph properties:

k-Colorability for any fixed £ > 2. (Here the query-
complexity ispoly(k/¢), andfor k = 2 therunning-time

isO(1/€3).)
p-Clique for any p > 0. That is, does the N -vertex graph
hasacliqueof size pN.

p-CUT forany p > 0. That is, doesthe N -vertex graph has
acut of sizeat least pN 2. A generalizationto k-way cuts
works within query-complexity poly((log k)/¢).

p-Bisection forany p > 0. That is, doesthe /V-vertex graph
have a bisection of size at most p N 2.

1 Hereand throughout the paper, we consider aRAM model inwhichtrivial
manipulation of vertices (e.g., reading/writing a vertex name and ordering
vertices) can be donein congtant time.

Furthermore:

e For al the above properties, in case the graph has the de-
sired property, the testing algorithm outputs some auxiliary
information which allows to construct, in poly(1/¢)- N-
time, a partition which approximately obeys the property.
For example, for p-CUT, we can construct a partition with
at least (p — €)N'? crossing edges.

e Except for Bipartite (2-Colorability) testing, running-time
of poly(1/e¢) isunlikely, asit will imply NP C BPP.

+ Noneof these propertiescan betested without querieswhen
using o(v/N') random examples.

e The k-Colorability tester has one-sided error: it aways
accepts k-colorable graphs. Furthermore, when rejecting
agraph, this tester aways supplies a poly(1/¢)-size sub-
graph which is not k-colorable. All other algorithms have
two-sided error, and thisis unavoidablewithin o( V') query-
complexity.

e Our agorithms for k£-Colorability, p-Clique and p-Cut can
be easily extended to provide testerswith respect to product
distributions: that is, distributions IT : V(G)? — [0, 1] of
theform Il(u, v) = n(u) - 7(v), where 7 : V(G)—[0, 1]
isadistribution onthevertices. Incontrast, itisnot possible
to test any of the graph properties discussed above in a
distribution-free manner.

GENERAL GRAPH PaRTITION. All of the above properties are
special casesof the General Graph k-Partition property, parame-
terized by a set of lower and upper bounds. The parameterized
property holds if there exists a partition of the verticesinto &
disjoint subsets so that the number of vertices in each subset
as well as the number of edges between each pair of subsets
is within the specified lower and upper bounds. We present
atesting algorithm for the above general property. The algo-
rithm uses O (k2 /¢)**5 queries, runsin time exponential iniits
guery-complexity, and makestwo-sided error. Approximating
partitions, if they exist, can be efficiently constructed in this
general case aswell. We note that the specialized algorithms
perform better than the general algorithm with the appropri ate
parameters.

OTHER GRAPH PROPERTIES. Going beyond the general graph
partition problem, we remark that there are graph properties
which are very easy to test (e.g., Connectivity, Hamiltonicity,
and Planarity). On the other hand, there are graph properties
in A”P which are extremely hard to test; namely, any testing
algorithm must inspect at least (N?/log N) of the vertex
pairs. In view of the above, we believe that providing a char-
acterization of graph properties according to the complexity of
testing them may not be easy.

OuUR TECHNIQUES. Our algorithms share some underlying
ideas. Thefirst is the uniform selection of a small sample and
the search for a suitable partition of this sample. In case of



k-Colorability certain &-colorings of the subgraph induced by
thissamplewill do, and these arefound by k-coloring aslightly
augmented graph. In the other algorithms we exhaustively try
all possible partitions. This is reminiscent of the exhaustive
sampling of Arora et. al. [3], except that the partitions con-
sidered by us are always directly related to the combinatori al
structure of the problem. We show how each possible partition
of the sampleinduces a partition of the entire graph so that the
following holds. If the tested graph has the property in ques-
tion then, with high probability over the choice of the sample,
there exists a partition of the sample whichinduces a partition
of the entire graph so that the latter partition approximately
satisfies the requirements established by the property in ques-
tion. For example, in casethe graph has a p-cut, there exists a
2-way-partition of the sampleinducing apartition of the entire
graph with (p — ¢)N? crossing edges. On the other hand,
if the graph should be rejected by the test, then by definition
no partition of the entire graph (and in particular none of the
induced partitions) approximately obeys the requirements.

The next idea is to use an additional sample to approxi-
mate the quality of each such induced partition of the graph,
and discover if at least one of these partitions approximately
obeys the requirements of the property in question. An im-
portant point is that since the first sample is small (i.e., of
size poly(1/¢)), the total number of partitions it induces is
only exp poly(1/¢). Thus, the additional sample must ap-
proximate only these many partitions (rather than all possible
partitions of the entire graph) and it suffices that this sample
beof sizepoly(1/e),

Thedifference between thevarious algorithmsisin the way
inwhich partitions of the sampleinduce partitions of theentire
graph. The simplest case is in testing Bipartiteness. For a
partition (S, S2) of thesample, al verticesin the graph which
haveaneighborin S; are placed on oneside, and therest of the
vertices are placed on the other side. In the other algorithms
the induced partition is less straightforward. For example, in
case of p-Clique, a partition (S1,S2) of the sample S with
|S1] & p|S|, induces a candidate clique roughly as follows.
Consider the set T of graph vertices each neighboring all of
S;. Then the candidate clique consists of the p N vertices with
the highest degree in the subgraph induced by T. In the, p-
Cut, p-Bisection and General Partition testing algorithms, we
use auxiliary guesses which are implemented by exhaustive
search.

1.3. Testing Graph Properties and Approximation

The relation of testing graph properties to approximation
is best illustrated in the case of Max-CUT. A tester for the
class p-Cut, workingin time 7'(e, N), yields an algorithm for
approximating the maximum cut in an N -vertex graph, up to
additive error ¢ N2, intime 2-T'(¢, N'). Thus, for any constant
e > 0, we can approximate the size of the max-cut to within
¢N? in constant time. This yields a constant time approxi-

mation scheme (i.e., to within any constant relative error) for
densegraphs, improving on Aroraet. al. [3] and delaVega[17]
who solved this problem in polynomial-time (O( N */ ¢ )-time
and exp(O(1/(¢?)))- N 2-time, respectively). In both works
the problem is solved by actually constructing approximate
max-cuts. Finding an approximate max-cut does not seem to
follow from the mere existence of a tester for p-Cut; yet, as
mentioned above, our tester can be used to find such a cut in
timelinearin N (i.e., O(1/¢3)-N + exp(O(1/€%))~time).
One can turn the question around and ask whether approxi-
mation algorithmsfor denseinstances can be transformed into
corresponding testers as defined above. In several casesthisis
possible. For example, using some ideas from our work, the
Max-CUT agorithm of [17] can be transformed into a tester
of complexity comparable to ours. We do not know whether
the same s true with respect to the algorithmsin [3]. Results
on testing graph properties can be derived also from work
by Alon et. al. [1]. That paper proves a constructive version
of the Regularity Lemma of Szemerédi, and obtains from it
a polynomial-time algorithm that given an N-vertex graph,
¢ > 0and k > 3, either findsasubgraph of size f(¢, k) which
is not k-colorable, or omits at most ¢ N2 edges and k-colors
therest. NogaAlon has observed that the analysis can be mod-
ified to yield that almost all subgraphs of size f(e, k) are not
k-colorable, which in turn implies a tester for k-Colorability.
In comparison with our k-Colorability Tester, which takes a
sampleof O(k? log k /€?) vertices, the k-colorability tester de-
rived (from [1]) takes amuch bigger sample of sizeequaling a
tower of (k/¢)?° exponents (i.e., log* f(e, k) = (k/€)?°).

A DIFFERENT NOTION OF APPROXIMATION FOR MAX-CLIQUE.
Our notion of p-Clique Testing differs from the traditional no-
tion of Max-Clique Approximation. When we talk of testing
“ p-Cliqueness”, the task is to distinguish the casein which an
N -vertex graph hasacliqueof size p N from the casein which
it is e-far from the class of /V-vertex graphs having a clique
of size pN. On the other hand, traditionally, when one talks
of approximating the size of Max-Clique, the task isto distin-
guish the case in which the max-clique has size at least p N
from, say, the case in which the max-clique has size at most
pN/2. Whereasthe |atter problem is NP-Hard, for p < 1/64
(see9, Sec. 3.9]), we've shownthat the former problem can be
solvedin exp(O(1/€?))-time, for any p, ¢ > 0. Furthermore,
Aroraet. al. [3] showed that the “ dense-subgraph” problem, a
generalization of p-cliqueness, has a polynomial-time approx-
imation scheme (PTAS) for dense instances.

TESTING %-COLORABILITY VS, APPROXIMATING k-
COLORABILITY. Petrank has shown that it is NP-Hard to
distinguish 3-colorable graphs from graphs in which every
3-partition of the vertex set violates at least a constant fraction
of the edges [30]. In contrast, our k-Colorability Tester im-
plies that solving the same promise problem is easy for dense
graphs, where by dense graphs we mean N-vertex graphs



with Q(N?) edges. This is the case since, for every ¢ > 0,
our tester can distinguish, in exp(k?/e)-time, between k-
colorable N -vertex graphsand N -vertex graphswhich remain
non-k-colorable even if one omitsat most ¢ V2 of their edges.?

We note that deciding k-colorability even for N -vertex
graphs of minimum degree at least % - N is NP-complete
(cf., Edwards [18]). On the other hand, Edwards also gave
a polynomial-time algorithm for k-coloring k-colorable N -
vertex graphs of minimum degreeat least « V, for any constant

k-3
o > I—a-

1.4. Other Related Work

PROPERTY TESTING IN THE CONTEXT OF PCP: Property testing
playsacentral rolein the construction of PCP systems. Specif-
ically, the property tested is being a codeword with respect to
aspecific code. This paradigm explicitly introducedin [6] has
shifted from testing codes defined by |ow-degree polynomials
[6, 19, 5, 4] to testing Hadamard codes [4, 10, 11, 8], and
recently to testing the “long code” [9].

PROPERTY TESTING IN THE CONTEXT OF PROGRAM CHECKING:
There is an immediate analogy between program self-testing
[14] and property-testing with queries. The difference is that
in self-testing, a function f (represented by a program) is
tested for being closeto a fully specified function ¢, whereas
in property-testing the test iswhether f isclosetoany function
inafunction classG. Interestingly, many self-testers[14, 36]
work by first testing that the program satisfies some prop-
erties which the function it is supposed to compute satisfies
(and only then checking that the program satisfies certain con-
straints specific to the function). Rubinfeld and Sudan [36]
defined property testing, under the uniform distribution and
using queries, and related it to their notion of Robust Char-
acterization. Rubinfeld [35] focuses on property testing as
applied to properties which take the form of functional equa-
tions of varioustypes.

PROPERTY TESTING IN THE CONTEXT OF LEARNING THEORY:
Departing from work in Statistics regarding the classification
of distributions (e.g., [24, 16, 41]), Ben-David [12] and Kulka-
rni and Zeitouni [28] considered the problem of classifying an
unknown function into one of two classes of functions, given
labeled examples. Ben-David studied this classification prob-
leminthelimit (of the number of examples), and Kulkarni and
Zeitouni studieditinaPAC inspiredmodel. Forany fixed ¢, the
problem of testing the class F with distance parameter ¢ can
be casted as such a classification problem (with F and the set
of functions e-away from F being the two classes). A different
variant of the problem was considered by Yamanishi [39].

TESTING GRAPH PROPERTIES. Our notion of testing a graph
property P isarelaxation of the notion of deciding the graph

2 Asnoted by NogaAlon, similar results, alaswith much worse dependence
on ¢, can be obtained by using the results of Alon et. al. [1].

property P which has received much attention in the last two
decades [29]. In the classical problem there are no margins
of error, and oneis required to accept al graphs having prop-
erty P and reject all graphs which lack it. In 1975 Rivest and
Vuillemin [33] resolved the Aanderaa—Rosenberg Conjecture
[34], showing that any deterministic procedure for deciding
any non-trivial monotone NV -vertex graph property must ex-
amine (N ?) entriesin the adjacency matrix representing the
graph. The query complexity of randomized decision proce-
dures was conjectured by Yao to be (N 2). Progresstowards
thisgoal wasmadeby Yao [40], King [27] and Hajnal [23] cul-
minating in an Q(N*/) lower bound. Our results, that some
non-trivial monotone graph properties can be tested by exam-
ining a constant number of random locations in the matrix,
stand in striking contrast to all of the above.

APPROXIMATION IN DENSE GRAPHS. As stated previously,
Aroraet. al. [3] and delaVega[17] presented PTAS for dense
instances of Max-CUT. The approach of Arora et. al. uses
Linear Programming and Randomized Rounding, and applies
to other problems which can be casted as a “smooth” Inte-
ger Programs.? The methods of de la Vega [17] are purely
combinatorial and apply also to similar graph partition prob-
lems. Following the approach of Alon et. al. [1], but using
a modification of the regularity Lemma (and thus obtaining
much improved running times), Frieze and Kannan[20] devise
PTAS for severa graph partition problems such as Max-Cut
and Bisection. We note that compared to all the above re-
sults, our respective graph partitioning algorithms have better
running-times. Like de la Vega, our methods use elemen-
tary combinatorial arguments related to the problem at hand.
Still our methods suffice for dealing with the General Graph
Partition Problem.

Important Note: In this extended abstract, we present
only two of our results on testing graph properties: the k-
Colorabhility and the p-Clique testers. The definition and theo-
rem regarding the General Graph Partition property appearsin
Subsection 3.3. All other results as well as proofs and further
details can be found in our report [22].

2. General Definitions and Observations
2.1. Definitions

Let F = {F,} be a parameterized class of functions,
where the functions® in F,, are defined over {0,1}" and let
D = {D,,} beacorresponding class of distributions (i.e., D,,
isadistribution on {0, 1}"). We say that afunction f defined
on {0, 1}™ ise-close to F,, with respect to D,, if there exists
afunction g € F,, such that

3 In[2], the approach of [3] is extended to other problems, such as Graph
Isomorphism, using a new rounding procedure for the Assignment Problem.

4 The range of these functions may vary and for many of the results and
discussions it suffices to consider Boolean function.



Probyp, [f(2) # g(z)] < €. 1)
Otherwise, f ise-far from F,, (with respectto D,,).
We shall consider several variants of testing algorithms, where
the most basic one is defined as follows.

Definition 2.1 (property testing): Let .A be an algorithm
whichreceivesasinput a size parameter n, a distance parame-
ter 0 < ¢ < 1, and aconfidenceparameter 0 < § < 1/2. Fix-
ing an arbitrary function f and distribution D,, over {0, 1},
the algorithm is also given access to a sequence of f-labeled
examples, (21, f(#1)), (z2, f(x2)), ..., where each z; isin-
dependently drawn from the distribution D,,. We say that .4
is a property testing algorithm (or simply atesting algorithm) for
the class of functions F if for every n, ¢ and é and for ev-
ery function f and distribution D,, over {0, 1}" the following
holds

e if f € F, then with probability at least 1 — 6 (over the
examples drawn from D,; and the possible coins tosses
of A), A accepts f (i.e., outputs 1);

e if f is e-far from F,, (with respect to D,,) then with
probability at least 1 — ¢, A rejects f (i.e., outputs 0).

The sample complexity of .4 isa function of n, ¢ and é bound-
ing the number of labeled examples examined by .4 on input
(n,€,é).

Though it was not stated explicitly in the definition, we shall

also be interested in bounding the running time of a property
testing algorithm (as a function of the parameters n, é, ¢, and
in some case of a complexity measure of the class F). We
consider the following variants of the above definition: (1) D,

may be a specific distribution which isknown to the algorithm.
In particular, we shall beinterested intesting with respect tothe
uniformdistribution; (2) DD,, may berestricted to aknown class
of distributions (e.g., product distributions); (3) The al gorithm
may be given access to an oracle for the function f, which
when queried on z € {0, 1}", returns f(x). In this case we
refer to the number of queries made by .A (whichisafunction
of n, ¢, and §), asthe query complexity of A.

2.2. Property Testing and PAC Learning

A Probably Approximately Correct (PAC) learning algo-
rithm [37] works in the same framework as that described in
Definition 2.1 except for the following (crucial) differences:
(1) Itisgiven apromisethat the unknown function f (referred
to as the target function) belongs to F; (2) It is required to
output (with probability at least 1 — §) a hypothesis func-
tion h whichis e-closeto f, where closenessis as defined in
Equation (1) (and ¢ is usualy referred to as the approxima-
tion parameter). Note that the differences pointed out above
effect the tasks in opposite directions. Namely, the absence
of a promise makes testing potentially harder than learning,
whereas deciding whether a function belongs to a class rather
than finding the function may make testing easier.

In the learning literature, a distinction is made between
proper (or representation dependent) learning and non-proper
learning [31]. In the former model, the hypothesis output
by the learning algorithm is required to belong to the same
function class as the target function f, i.e. A € F, whilein
the latter model, no such restriction is made. We stress that
a proper learning agorithm (for F) may either halt without
output or output afunctionin F, butit may not output functions
not in F.> There are numerous variants of PAC learning
(including learning with respect to specific distributions, and
learning with access to an oracle for the target function f).
Unless stated otherwise, whenever we refer in this section to
PAC learning we mean the distribution-free no-query model
described above. The same is true for references to property
testing. In addition, apart from one example, we shall restrict
our attention to classes of Boolean functions.

TESTING IS NOT HARDER THAN PROPER LEARNING.

Proposition 2.1 If a function class F has a proper learning
algorithm A, then F has a property testing algorithm A’
suchthatma:(n, €,6) = ma(n,e/2,6/2)+0(log(1/6)/¢).
Furthermore, the same relation holds between the running
times of the two algorithm.

The proof of this proposition, as well as of all other proposi-
tionsin thissection, can befoundin our report [22]. Theabove
proposition impliesthat if for every n, F,, haspolynomial (in
n) VC-dimension [38, 15], then F has a tester whose sample
complexity ispoly(n/e)-log(1/6). Thereasonisthat classes
with polynomial VC-dimension can be properly learned from
asample of the above size [15]. However, the running time of
such a proper learning algorithm, and hence of the resulting
testing algorithm might be exponential in n.

Corollary 2.2 Every class which is learnable with a
poly(n/e) sample is testable with a poly(n/¢) sample (in
at most exponential time).

TESTING MAY BE HARDER THAN LEARNING. In contrast to
Proposition 2.1 and to Corollary 2.2, we show that there are
classeswhich are efficiently learnable (though not by a proper
learning algorithm) but are not efficiently testable. This is
proven by observing that many hardness results for proper
learning (cf. [31, 13, 32]) actually establish the hardness of
testing (for the same classes). Furthermore, we believe that
it is more natural to view these hardness results as referring
to testing. Thus, the separation between efficient learning
and efficient proper learning translates to a separation between
efficient learning and efficient testing.

5We remark that in case the function is F have an easy to recognize
representation, one can easily guarantee that the algorithm never outputs a
function not in F. Standard classes considered in works on proper learning
typically have this feature.



Proposition 2.3 If NP ¢ BPP then there exist func-
tion classes which are not poly(n/¢)-time testable but are
poly(n/e)-time (non-properly) learnable.

Westressthat while Proposition 2.1 generalizesto learning and
testing under specific distributions, and to learning and testing
with queries, the proof of Proposition 2.3 uses the premise
that the testing (or proper learning) algorithm works for any
distribution and does not make queries.

TESTING MAY BE EASIER THAN LEARNING.

Proposition 2.4 There exist function classes F such that F
has a property testing algorithmwhose sample compl exity and
running time are O(log(1/4)/¢), yet any learning algorithm
for F must have sample complexity exponential in n.

The impossibility of learning the function class in Proposi-
tion2.4isduetoitsexponential VC-dimension, (i.e., itisapure
information theoretic consideration). We now turn to function
classes of exponential (rather than double exponential) size.
Such classes are always learnable with a polynomial sample,
the question iswhether they are learnable in polynomial-time.
We present a function class which is easy to test but cannot
be learned in polynomial-time (even under the uniform distri-
bution), provided trapdoor one-way permutations exist (e.g.,
factoring isintractable).

Proposition 2.5 If thereexist trapdoor one-way permutations
then there exists a family of functions which can be tested in
poly(n/e)-time but can not be learned in poly(n/e)-time,
even with respect to the uniform distribution. Furthermore,
the functions can be computed by poly(n)-size circuits.

The classpresentedin Proposition 2.5 consists of multi-valued
functions. We leave it as an open problem whether a similar
result holds for a class of Boolean functions.

LEARNING AND TESTING WITH QUERIES (under the uniform
distribution). Invoking known results on linearity testing [14,
7,19, 10, 11, 8] weconcludethat thereisaclassof 2" functions
which can be tested within query complexity O(log(1/48)/¢),
and yet learning it requires at least n» queries. Similarly, using
results on low-degree testing [7, 6, 21, 36], there is a class of
exp(2") function which can be tested within query complexity
O(M - n), and yet learning it requires exp(n) many
gueries.

AGNOSTICLEARNING AND TESTING. Inavariant of PAC learn-
ing, called Agnostic PAC learning [26], there is no promise
concerning the target function f. Instead, the learner is re-
quired to output a hypothesis A from acertain hypothesis class
'H, such that & is e-close to the function in  which is clos-
est to f. The absence of a promise makes agnostic learning
closer in spirit to property testing than basic PAC learning. In
particular, agnostic learning with respect to ahypothesis class

‘H implies proper learning of the class H and thus property
testing of .

LEARNING AND TESTING DISTRIBUTIONS. The context of
learning (cf., [25]) and testing distributions offers a dramatic
demonstration to theimportance of apromise(i.e., thefact that
thelearning algorithm s required to work only when the target
belongs to the class, whereas the testing algorithm needs to
work for all targets which are either in the class or far away
from it).

Proposition 2.6 Thereexist distribution classeswhich are ef-
ficiently learnable (in both senses mentioned above) but can-
not be tested with a subexponential sample (regardless of the
running-time).

3. Testing Graph Properties

We concentrate on testing graph properties using queries
and with respect to the uniform distribution.

We consider undirected, simple graphs (no multiple edges
or self-loops). For a simple graph G, we denote by V(G)
its vertex set and assume, without loss of generality, that
V(G) = {1,...,]V(G)|}. The graph G is represented by
the (symmetric) Boolean function ¢ : V(G) x V(G) — {0, 1}
where g(u, v) = 1 if and only if there is an edge between u
and v in G. This brings us to associated undirected graphs
with directed graphs, where each edge in the undirected graph
is associated with a pair of anti-parallel edges. Specifically,
for a graph G, we denote by E(G) the set of ordered pairs
which correspond to edgesin G (i.e., (u, v) € E(Q) iff there
is an edge between « and v in G). The distance between
two N -vertex graphs, G, and G, is defined as the number of
entries (u,v) € [N]2 (N] &' {1, ..., N'}) which are in the
symmetric difference of E(G1) and E(G»). We denote

dist(Gy, G F LG\ BUG2)) U (F(G) A FIG)

This notation is extended naturally to a set, C, of N-vertex
graphs; that is, dist(G, €) % mingec{dist(G, G')}.
3.1. Testing k-Color ability

In this subsection we present an algorithm for testing the
k-Colorability property for any given k. Namely, weareinter-
ested in determining if the vertices of agraph G can be colored
by & colors so that no two adjacent vertices are colored by the
same color, or if any k-partition of the graph has at |east e N 2
violating edges (i.e. edges between pairs of vertices which
belong to the same side of the partition).

The test itself is straightforward. We uniformly select a
sample, denoted X, of O (M) vertices of the graph,
query al pairs of vertices in X to find which are edges in
G, and check if the induced subgraph is k-Colorable. In

lack of efficient algorithms for %-Colorability, for & > 3, we
use the obvious exponential-time algorithm on the induced




subgraph. The resulting algorithm is called the &-Colorability
Testing Algorithm. Towards analyzing it, we define violating
edges and good k-partitions.®

Definition 3.1.1 (violating edges and good k-partitions): We
say that an edge (u, v) € E(G) isaviolating edgewith respect
to a k-partition 7 : V(G) — [k] if 7(u) = 7(v). We shall
say that a k-partition is e-good if it has at most ¢ V2 violating
edges (otherwise it is e-bad). The partition is perfect if it has
no violating edges.

Theorem 3.1 The k-Colorability Testing Algorithm is a property
testing algorithm for the class of k-Colorable graphs whose
query complexity is poly(k log(1/6)/¢) and whose running
timeis exponential in its query complexity. If the tested graph
G is k-Colorable, then it is accepted with probability 1, and
with probability at least 1 — & (over the choice of the sampled
vertices), it is possible to construct an ¢-good k-partition of
V(G) intimepoly(klog(1/6)/¢) - |[V(G)|.

Proof: If G is k-Colorable then every subgraph of G is k-
Colorable, and hence G will always be accepted. The crux
of the proof is to show that every G which is e-far from the
classof k-Colorable graphs, denoted G, is rejected with prob-
ability at least 1 — 6. We establish this claim by proving its
counter-positive. Namely, that every G whichis acceptedwith
probability greater than 6, must have an ¢-good k-partition
(and isthus e-closeto Gy,). Thisisdone by giving a(construc-
tive) proof of the existence of an e-good k-partition of V(G).
Hence, in case G € Gj, we aso get an efficient probabilistic
procedure for finding an e-good k-partition of V(). Note
that if thetest rejects G then we have acertificatethat G ¢ Gy,
in form of the (small) subgraph induced by X which is not
k-colorable.

We view the set of sampled vertices X as a union of two
disoint sets U and S, where U is a union of ¢ (digjoint) sets
U, ..., Ut eachof sizem. Thesizeof S ism aswell, where
m = O((Llog(k/é))/e) and £ = 4k /e. Theset U (or rather
a k-partition of U) is used to define a k-partition of V().
The set S ensures that with high probability, the k-partition of
U which isinduced by the perfect %-partition of X = U U S,
defines an e-good partition of V().

In order to define a k-partition of V(G) given ak-partition
of U, wefirst introduce the notion of aclustering of the vertices
in V(G) with respect to this partition of U. More precisely,
we define the clustering based on the k-partition of a subset
U’ C U, where this partition, denoted (U, ..., U}), isthe
oneinduced by the k-partition of U. The clustering is defined
so that vertices in the same cluster have neighbors on the

6 -partitions are associ ated with mappings of the vertex set i nto the canon-
ical k-element set [k]. The partition associated with = : V(G) — [k] is

(V1 def 771 (1),..., Vi def 7~1(k)). We shall use the mapping nota-

tion 7, and the explicit partition notation (V1, . .., V), interchangeably.

same sides of the partition of U’. For every A C [k], the A-
cluster, denoted C'4, containsall verticesin V(G) which have
neighborsin U for every ¢ € A (and do not have neighborsin
the other U.’s). The clusters impose restrictions on possible
extensions of the partition of U’ to partitions (Vy,..., Vy)
of al V(&), which do not have violating edges incident to
vertices in U’. Namely, verticesin C'4 should not be placed
inany V; suchthat : € A. Asaspecial case, ( isthe set of
vertices that do not have any neighborsin U’ (and hence can
be put on any side of the partition). In the other extreme, CTy;
isthe set of verticesthat in any extension of the partition of U’
will cause violations. For each 7, the vertices in Cz\ 57 are
forced to be put in V;, and thus are easy to handle. It is more
difficult to deal with the the clusters C'4 where |A| < k — 1.7

Definition 3.1.2 (clusters): Let U’ be a set of vertices, and

let 7' be a perfect k-partition of U’. Define U/ Lt {velU:

w'(v) =1i}. For each subset A C [k] we define the A-cluster
with respect to 7’ as follows:

Ca = ( N r(U;>) \ (U r(U;>) @
icA igA

The relevance of the above clusters becomes clear given the
following definitions of extending and consistent partitions.

Definition 3.1.3 (consistent extensions): Let U’ and =’ be as
above. We say that a k-partition 7 of V(G) extends a k-
partition 7' of U’ if 7(u) = #'(u) for every uw € U’. An
extended partition 7 is consistent with @’ if w(v) # «’(u) for
everyu € U’ andv € I'(u)\ Cpp), whereCly; isthe[k]-cluster
wrt @',

Thus, each vertex v in the cluster C'y (w.r.t 7' defined on

U’) is forced to satisfy 7(v) € A ' [k] \ A, for every k-

partition = which extends 7/ in a consistent manner. There
are no restrictions regarding vertices in Cy and vertices in
Cly (the latter is guaranteed artificially in the definition and
the consequences will have to be treated separately). For
v € Clp]-14) the consistency condition forces 7(v) = .

We now focus on the main problem of the analysis. Given
a k-partition of U, what is a good way to define a k-partition
of V((G')? Our mainideaisto claim that with high probability
the set U contains a subset U’ so that the clusters with respect
to the induced k-partition of U’ determine whatever needs
to be determined. That is, if these clusters allow to place
some vertex on a certain side of the partition, then doing so
does not introduce too many violating edges. Thefirst stepin
implementing thisideais the notion of arestricting vertex.

Definition 3.1.4 (restricting vertex): A pair (v,¢), where
v ¢ Cpppand @ € [k], is said to be restricting with respect
to a k-partition 7’ (of U’) if v has at least N neighbors

7In the Bipartite case, thisis easy too (since CYy is likely to contain few
vertices of high degree).



inUpg.;¢pCp. Otherwise, (v, ) is non-restricting. A vertex
v € C4, where A # [k], is restricting with respect to =’ if
for every i € A the pair (v, i) isrestricting. Otherwise, v is
non-restricting. As always, the clusters are with respect to 7.

Thus, avertex v € C'4 isrestrictingif for every i € A, adding
v to U} (and thus to U’) will cause may of its neighbors to
move to a cluster corresponding to a bigger subset. That is,
v's neighbors in the B-cluster (w.rt (U, ..., U} )) move to
the (B U {i})-cluster (w.rt (U7, ..., U/ U{v}, ..., UL)).

Given a prefect k-partition of U, we construct U’ in steps
starting with the empty set. At step j we add to U’ a vertex
u € UJ (recall that U = UU- - - UU*), whichisarestricting
vertex with respect to the k-partition of the current set U”. If
no such vertex exists, the procedure terminates. When the
procedure terminates (and as we shall see it must terminate
after at most ¢ steps), we will be able to define, based on the
k-partition of thefinal U’, an e-good k-partition of V(G). The
procedure defined below is viewed at this point as a mental
experiment. Namely, it is provided in order to show that with
high probability there exists a subset U’ of U with certain
desired properties (which we later exploit).

Restriction Procedure (Construction of U’)
Input: a perfect k-partitionof U= U U ... U U

1. U — 0.

2. Forj = 1,2,...dothefollowing. Consider the current
set U’ and its partition 7’ (induced by the perfect k-
partition of U).

o If therearelessthan (¢/8) N restricting vertices with
respect to ' then halt and output U’.

o If there are at least (¢/8)N restricting vertices but
thereisno restricting vertex in U/, then halt and output
error.

¢ Otherwise (thereis arestricting vertex in U7), add the
first (by any fixed order) restricting vertex to U’.

Claim 3.1.5 For every U and a perfect k-partition of U, after
at most £ = 4k /e iterations, the Restriction Procedure halts
and outputs either U’ or error.

The proof of thisclaim, aswell asall other missing proofs, can
be found in our report [22]. Before we show how U’ can be
used to define a k-partition = of V(G), we need to ensure that
with high probability, the restriction procedure in fact outputs
aset U’ and not error. To this end, we first define the notion of
acovering set.

Definition 3.1.6 (covering sets—for k-coloring): We say that
U is a covering set for V(G), if for every perfect k-partition
of U, the Restriction Procedure, given this partition as input,
haltswith an output U’ C U (rather than an error message).

In other words, U is such that for every perfect k-partition of
U and for each of the at most ¢ iterations of the procedure, if
there exist at least (¢/8) N restricting vertices with respect to
the current partition of U’, then U/ will include at least one
such restricting vertex.

Lemma 3.1.7 With probability at least 1 — % a uniformly
chosenset of sizel - m = O (mofak—/él) isa covering set.

Definition 3.1.8 (closed partitions): Let U’ beasetand =’ a
k-partition of it. Wecall (U’, 7') closed if thereare lessthan
(e/8)N restricting vertices with respect to =’

Clearly, if the Restriction Procedure outputs aset U’ then this
set together with its (induced) partition are closed. If (U’, #’)
isclosed, then most of theverticesin V(G ) arenon-restricting.
Recall that a non-restricting vertex », belonging to a cluster
Ca, A # [k], hasthefollowing property. There exists at |east
oneindex i € A, suchthat (v, i) is non-restricting. It follows
from Definition 3.1.4 that for every consistent extension of 7’
to = which satisfies 7(v) = ¢ there are at most $V violating
edges incident to v.* However, even if v is non-restricting
there might beindices: € A suchthat (v, i) isrestricting, and
hencethere may exist a consistent extensions of 7/ to = which
satisfies 7(wv) = ¢ in which there are more than $ V' violating
edges incident to v. Therefore, we need to define for each
vertex its set of forbidden indiceswhich will not allow to have
7(v) = ¢ for arestricting pair (v, 7).

Definition 3.1.9 (forbidden sets): Let (U’, #') be closed and
consider the clusterswith respectto #’. For eachv € V(G) \
U’ we define the forbidden set of v, denoted F),, asthe smallest
set satisfying

e F, D A wherev € (4.

e Foreveryi € A, if v hasat least (¢/4)N neighborsin
the clustersC'g for whichi ¢ B, theni isin F;,.

For v € U’, define Fy, = [k]\ {7'(u)}.
Lemma3.1.10 Let (U’, #') be an arbitrary closed pair and
F,’sbeasin Definition 3.1.9. Then:

L Ho:(vé Cpp) A(Fy = [kD} < §N.

2. Let w beany k-partition of V(G) \ {v : F,, = [k]} such
that 7(v) ¢ F,, for everyv € V(G). Then, the number
of edges (v, v") € E(G) for which 7(v) = 7(v') isat
most (¢/2) N 2.

®First note that by definition of a consistent extension no vertex in cluster
C'p,where: € B, can have w-value:. Thus, all violated edgesincident to v
areincident to verticesin clusters C' so that ¢ ¢ B. Sincethe pair (v, 1) is
non-restricting, there are at most %N such edges.



The lemma can be thought of as saying that any k-partition
which respects the forbidden setsis good (i.e., does not have
many violating edges). However, the partition applies only
to vertices for which the forbidden set is not [k]. The first
item tells us that there cannot be many such vertices which
do not belong to the cluster C|;;. We next show that, with
high probability over the choice of .S, the k-partition =’ of U’
(induced by the k-partition of U U S) issuch that Czj issmall.
This implies that all the verticesin Cf;) (which were left out
of the partition in the previous lemma) can be placed in any
side without contributing too many violating edges (which are
incident to them).

Definition 3.1.11 (useful k-partitions): We say that a pair
(U’, 7"} ise-useful if [C[y)| < §N. Otherwiseit is e-unuseful.

The next claim directly follows from our choice of m and the
above definition.

Claim 3.1.12 Let U’ be a fixed set of size ¢ and 7’ be a fixed
k-partition of U’ so that (U’, 7’) is e-unuseful. Let S be a
uniformly chosen set of size m. Then, with probability at
least %k—‘, there exists no perfect k-partition of U’ U S which
extends 7.

The following is a corallary to the above claim and to the fact
that the number of possible closed pairs (U’, #’) determined
by all possible k-partitions of U is at most k*.

Corollary 3.1.13 If all closed pairs (U’, ') which are deter-
mined by all possible k£-partitions of U are unuseful,, then with
probability at least 1 — /2 over the choice of S, thereis no
perfect k-partition of X = U U S.

We can now wrap up the proof of Theorem 3.1. If G is
accepted with probability greater than é, then by Lemma3.1.7,
the probability that it is accepted and U is a covering set is
greater than é/2. In particular, there must exist at least one
covering set U, such that if U is chosen then G is accepted
with probability greater than §/2 (with respect to the choice
of S). That is, (with probability greater than §/2) there exists
a perfect partition of U U S. But in such a case (by applying
Corollary 3.1.13), there must be a useful closed pair (U’, 7’)
(where U’ C U). If we now partition V((7) as described in
Lemma3.1.10, whereverticeswithforbidden set [£] areplaced
arbitrarily, then from the two items of Lemma 3.1.10 and the
usefulness of (U’, #') it follows that there are at most e N2
violating edges with respect to this partition. This completes
the main part of the proof. I (Theorem 3.1)

3.2. Testing Max-Clique

Let w((G) denote the size of the largest clique in graph G,

andC, € {G : w(G) > p- [V(G)|} be the set of graphs

having cliques of density at least p. The main result of this
subsectionis:

Theorem 3.2 Let¢ O(log(1/€é)). Thereexistsaproperty

testing algorithm, A, for the class C, whose edge-query com-
plexity isO(¢?p? /€°) and whoserunning timeisexp(£p/e?).
In particular, .A uniformly selects O(¢%p? /e*) verticesin G
and queries the oracle only on the existence of edges between
these vertices. In case G € C,, one can also retrievein time
O(2p?[e*) - [V(G)| asetof p - |[V(G)| verticesin G which
isalmost a clique (in the sensethat it lacksat most e - [V(G)|?
edgesto being a clique).

Theorem 3.2 is proven by presenting a seemingly unnatural
algorithm/tester (see below). However, as a corollary, we
observe that “the natural” algorithm, which uniformly selects
poly(log(1/6)/¢) many vertices and acceptsiff they induce a
subgraph with aclique of density p — 5, isavalid C,-tester as
well.

Corollary 3.3 Let m = poly(1/¢) and let R be a uniformly
selected set of m verticesin V(G). Let Gg be the subgraph
(of ) induced by R.. Then,

e ifG € C, thenProbgr[w(Gr) > (p — £) - m] > 2.

2
o ifdist(G,C,)>ethenProbg[w(Gr) < (p—5)-m] > 2.

Intherest of thissubsection we provideamotivating discussion
to the algorithm asserted in Theorem 3.2. Recall that N =
|V(G)| denotes the number of verticesin G.

Our first idea is to select at random a small sample U
of V(G) and to consider all subsets U’ of size £ - |U| of
U where |U| = poly(1/¢). For each U’ let T(U’) be the
set of all vertices which neighbor every vertex in U’ (i.e,
T(U’) = NuewT'(w)). In the subgraph induced by T(U’),
consider the set Y(U’) of pV vertices with highest degree in
the induced subgraph. Clearly, if G is e-far from C,, then
Y(U’) misses at least e N2 edgesto being a clique (for every
choiceof U and U’). Onthe other hand, we show that if G hasa
cliqueC of sizep N then, with high probability over the choice
of U, there existsasubset U’ C U such that Y(U’) misses at
most (¢/3)N? to being a clique (in particular, U/ C CN U
will do).

Assumethat for any fixed U’ we could sample the vertices
in Y(U’) and perform edge queries on pairs of verticesin this
sample. Then, asample of O(t/e?) vertices (where ¢ = |U])
sufficesfor approximating the edge density in Y (U”’) towithin
an /3 fraction with probability 1 — O(27%). In particular a
sample can distinguish between aset Y(U’) whichisfar from
being a clique and a set Y(U’) which is aimost a clique. The
point is that we need only consider (Ilg’ll) < 2! possible sets
Y(U’), wheret isonly apolynomial in 1/e.

The only problem which remains is how to sample from
Y(U’). Certainly, we can sample T = T(U’), by sampling
V(G) and testing membership in T, but how do we decide
which vertex is among those of highest degree? The first idea
is to estimate the degrees of verticesin T using an additional
sample, denoted W. Thus, instead of considering the pN



vertices of highest degree in T, we consider the p N vertices
in T having the most neighborsin T N W. The second ideais
that we can sample T, order vertices in this sample according
to the number of neighborsin T N W, and take the p fraction
with the most such neighbors.

3.3. The General Partition Problem

Thefollowing General Graph Partition property generalizes
all propertiesconsideredin previous subsections. In particular,
it captured any graph property which requires the existence of
partitions satisfying certain fixed density constraints. These
constraints may refer both to the number of vertices on each
side of the partition and to the number of edges between each

pair of sides.
d_ef LB UB k LB UB k
Let® = 1p" ;) Fioy Ui ol beasetof
non-negative parameters so that pi* < pi® (V) and g%, <

075, (V5,5'). Let GP4 be the class of graphs which have a

k-way partition (Vy, ..., V) such that
Vjaj/a Q‘??]’ 'NZ S |E(V]aV]’)| S Q}JE’ 'Nza (4)

where E(V;, V) denotes the set of edges with one endpoint
in V; and one in V;.. That is, Eq. (3) places lower and
upper bounds on the relative sizes of the various parts; whereas
Eq. (4) imposeslower and upper bounds onthe density of edges
among thevarious pairsof parts. Forexample, k-colorability is
expressed by setting ¢/ = 0 forevery j (and setting p;* = 0,
p;® =1, and similarly setting the 3%, ’sfor j* # j).

Theorem 3.4 There exists an algorithm .4 such that for ev-
ery given set of parameters ®, algorithm A is a prop-
erty testing algorithm for the class GPs with query com-
plexity (O(k?)/e)**> - k?log(k/es), and running time
exp((O(k?)/e)k+2 - log(k/eb)).

Recall that better complexities for Max-CUT and Bisection
(as well asfor k-Colorability and p-Clique), are obtained by
custom-made algorithms.

Acknowledgments

We wish to thank Noga Alon, Ravi Kannan, David Karger
and Madhu Sudan for useful discussions.

References

[1] N.Alon,R. A. Duke, H. Lefmann, V. Rodl, and R. Yuster. Theagorithmic aspects
of the regularity lemma. Journal of Algorithms, 16:80-109, 1994.

S. Arora, A. Frieze, and H. Kaplan. A new rounding procedure for the assign-
ment problem with applications to dense graph arrangement problems. In these
proceedings, 1996.

S. Arora, D. Karger, and M Karpinski. Polynomial time approximation schemes
for dense instances of NP-hard problems. In 27th STOC, pages 284293, 1995.

S. Arorg, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and
intractability of gpproximation problems. In 33rd FOCS, pages 14-23, 1992.

S. Aroraand S. Safra Probabilistic checkable proofs: A new characterization of
NP. In 33rd FOCS, pages 1-13, 1992.

12

[3

4
(9]

10

(6l

(8l
[
[10

(11
[12]
[13]

(14

[19]
[16]
(17
(18]
[19]
[20]

[21]

[22]

[23]
[24]

[29]

[26]
[27
[28]

[29]

[30]
(31
[32
[33]
[34]
[39]
[36]
[37
[38]

[39]
[40]

[41]

L. Baba, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in
polylogarithmic time. In 23nd STOC, pages 21-31, 1991.

L. Babal, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-
prover interactive protocols. Computational Complexity, 1(1):3-40, 1991.

M. Bellare, D. Coppersmith, J. Hastad, M. Kiwi, and M. Sudan. Linearity testing
in characteristic two. In 36th FOCS, pages 432441, 1995.

M. Bélare, O. Goldreich, and M. Sudan. Free bits, pcps and non-approximability
—towards tight results. In 36th FOCS, pages 422-431, 1995.

M. Béllare, S. Goldwasser, C. Lund, and A. Russdll. Efficient probabilistically
checkable proofs and applications to approximation. In 25th STOC, pages 294—
304, 1993.

M. Bellare and M. Sudan. Improved non-gpproximability results. In 26th STOC,
pages 184-193, 1994.

S. Ben-David. Can finite samples detect singularities of real-vaued functions? In
24th STOC, pages 390-399, 1992.

A. Blum and R. Rivest. Training a 3-node neura network is NP-complete. In
Advances in Neural Information Processing Systems |, pages 494-501, 1989.

M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of Computer and System Sciences, 47:549-595,
1993.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the
Vapnik-Chervonenkis dimension. JACM, 36(4):929-965, October 1989.

T. M. Cover. On determining the rationdity of the mean of a random variable.
Annals of Satistics, 1:862-871, 1973.

W. F. delaVega MAX-CUT has a randomized approximation scheme in dense
graphs. To gppear in Random Structures and Algorithms, 1994.

K. Edwards. The complexity of colouring problems on dense graphs. Theoretical
Computer Science, 43:337—343, 1986.

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating
cliqueis amost NP-complete. In 32nd FOCS, pages 2-12, 1991.

A. Frieze and R. Kanan. The regularity lemma and approximation schemes for
dense problems. In these proceedings, 1996.

P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-
testing/correcting for polynomias and for approximate functions. In 23nd STOC,
pages 3242, 1991.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection
to learning and approximation. Available from
http://theory.lcs.nit.edu/ “oded/ ggr.htm .

P. Hand. An Q(n4/3) lower bound on the randomized complexity of graph
properties. Combinatorica, 11(2):131-144, 1991.

W. Hoeffding and J. Wolfowitz. Distinguishability of sets of distributions. Annals
of Mathematical Statistics, 29:700-718, 1958.

M. J. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. E. Schapire, and L. Sellie. On
the learnability of discrete distributions. In The 25th Annual ACM Symposium on
Theory of Computing, pages 273-282, 1994.

M. J. Kearns, R. E. Schapire, and L. M. Sellie. Toward efficient agnostic learning.
In 5th COLT, pages 341-352, 1992.

V. King. An Q(n5/4) lower bound on the randomized complexity of graph
properties. Combinatorica, 11(1):23-32, 1991.

S. R. Kulkarni and O. Zeitouni. On probably correct classification of concepts. In
6th COLT, pages 111-116, 1993.

L. LoVasz and N. Young. Lecture notes on evasiveness of graph properties. Tech-
nica Report TR-317-91, Princeton University, Computer Science Department,
1991.

E. Petrank. The hardness of approximations: Gap location. Computational Com-
plexity, 4:133-157, 1994.

L. Pittand L. G. Vdiant. Computational limitations on learning from examples.
JACM, 35(4):965-984, October 1988.

L. Pitt and M. K. Warmuth. The minimum consistent DFA problem cannot be
gpproximated within any polynomial. JACM, 40(1):95-142, January 1993.

R. L. Rivest and J. Vuillemin. On recognizing graph properties from adjacency
matrices. Theoretical Computer Science, 3:371-384, 1976.

A. L. Rosenberg. On the time required to recognize properties of graphs: A
problem. SSIGACT News, 5:15-16, 1973.

R. Rubinfeld. Robust functional equationsand their applicationsto program testing.
In 35th FOCS, 1994.

R. Rubinfeld and M. Sudan. Robust characterization of polynomialswith applica
tions to program testing. SAM Journal on Computing, 25(2):252-271, 1996.

L. G. Vdiant. A theory of the learnable. CACM, 27(11):1134-1142, November
1984.

V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative fre-
quencies of eventsto their probabilities. Theory of Probability and itsapplications,
17(2):264-280, 1971.

K. Yamanishi. Probably almost discriminativelearning. Machine Learning, 18:23—
50, 1995.

A. C.C. Yao. Lower bounds to randomized agorithms for graph properties. In
28th FOCS, pages 393-400, 1987.

O. Zeitouni and S. R. Kulkarni. A genera classification rule for probability mea-
sures. To appear in Annals of Statistics, 1991.



