
Property Testing and Its Connection to Learning andApproximationOded Goldreich� Sha� Goldwassery Dana RonzFebruary 13, 1998AbstractIn this paper, we consider the question of determining whether a function f has property Por is �-far from any function with property P. A property testing algorithm is given a sampleof the value of f on instances drawn according to some distribution. In some cases, it is alsoallowed to query f on instances of its choice. We study this question for di�erent propertiesand establish some connections to problems in learning theory and approximation.In particular we focus our attention on testing graph properties. Given access to a graph Gin the form of being able to query whether an edge exists or not between a pair of vertices, wedevise algorithms to test whether the underlying graph has properties such as being bipartite,k-Colorable, or having a �-Clique (clique of density � with respect to the vertex set). Ourgraph property testing algorithms are probabilistic and make assertions that are correct withhigh probability, while making a number of queries that is independent of the size of the graph.Moreover, the property testing algorithms can be used to e�ciently (i.e., in time linear in thenumber of vertices) construct partitions of the graph that correspond to the property beingtested, if it holds for the input graph.1 IntroductionProperty Testing is concerned with the computational task of determining whether a given object hasa predetermined property or is \far" from any object having the property. A notion of PropertyTesting was �rst formulated in [RS96]. In their formulation, a property testing algorithm forproperty P is given oracle access to the tested function f . The algorithm must distinguish the casethat f has property P from the case that f is far from any function having the property. Distancebetween functions is measured in terms of the fraction of arguments in the domain on which thefunctions disagree. Note that property testing so de�ned is a relaxation of the standard decisiontask (of distinguishing the case that f has property P from the case f does not have propertyP). Here we are interested in testers that are far more e�cient than the corresponding decisionprocedure.Property testing emerges naturally in the context of program checking and probabilisticallycheckable proofs (pcp). Speci�cally, in the context of program checking, one may choose to test that�Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.E-mail: oded@wisdom.weizmann.ac.il. On sabbatical leave at LCS, MIT.yLaboratory for Computer Science, MIT, 545 Technology Sq., Cambridge, MA 02139. E-mail:shafi@theory.lcs.mit.edu.zLaboratory for Computer Science, MIT, 545 Technology Sq., Cambridge, MA 02139. E-mail:danar@theory.lcs.mit.edu. Supported by an NSF postdoctoral fellowship.1



the program satis�es certain properties before checking that it computes a speci�ed function. Thisparadigm has been followed both in the theory of program checking [BLR93, RS96], and in practicewhere often programmers �rst test their programs by verifying that the programs satisfy propertiesthat are known to be satis�ed by the function they compute. In the context of probabilisticallycheckable proofs, the property tested is being a codeword with respect to a speci�c code. Thisparadigm, explicitly introduced in [BFLS91], has shifted from testing codes de�ned by low-degreepolynomials [BFL91, BFLS91, FGL+91, AS92, ALM+92] to testing Hadamard codes [ALM+92,BGLR93, BS94, BCH+95, Kiw96, Tre97], and recently to testing the \long code" [BGS95, H�as96b,H�as97, Tre97]. All the above has focused on property testing in the sense of [RS96], and on testingalgebraic properties such as linearity, multi-linearity and being a low-degree polynomial.In this work we extend the scope of property testing in two ways:1. Working within the above framework, we venture into the domain of combinatorial objects .In particular, we study property testing as applied to graph properties, demonstrating itsrelevance to standard and dual notions of approximation, and derive extremely fast algorithmsfor testing several natural graph properties. These in turn yield results such as a constant-timeapproximation scheme for Max-CUT in dense graphs. We believe that, in general, propertytesting o�ers a new perspective on approximation problems.2. We generalize the above de�nition so as to allow an arbitrary probability distribution D overarguments to the function f , as well as the consideration of algorithms that only obtainrandom labeled examples, of the form (x; f(x)), where x is selected according to D. Distancebetween functions is measured, accordingly, with respect to D. This formulation is inspiredby the PAC learning model [Val84], and we indeed relate property testing so formulated tovarious variants of the PAC model. We believe that property testing o�ers new perspectivewith respect to computational learning theory.We start with the second item.1.1 General Property TestingWe are interested in the following general question of Property Testing:Let P be a �xed property of functions, and f be an unknown function. Our goal is todetermine (possibly probabilistically) if f has property P or if it is far from any functionthat has property P, where distance between functions is measured with respect to somedistribution D on the domain of f . Towards this end, we are given examples of the form(x; f(x)), where x is distributed according to D. We may also be allowed to query f oninstances of our choice.Let F be the class of functions that satisfy property P. Then, testing property P corresponds totesting membership in the class F . The two most relevant parameters to property testing are thepermitted distance, hereafter denoted �, and the desired con�dence, denoted �. We require the testerto accept each function in F and reject every function that is further than � away from any functionin F . We allow the tester to be probabilistic, and make incorrect positive and negative assertionswith probability at most �. The complexity measures we focus on are the sample complexity (thenumber of examples of the function's values that the tester requires), the query complexity (thenumber of function queries made { if at all), and the running time of the tester.We believe that property testing is a natural notion whose relevance to applications goes beyondprogram checking, and whose scope goes beyond the realm of testing algebraic properties. Firstly,2



in some cases one may be merely interested in whether a given function, modeling an environment,(resp., a given program) possess a certain property rather than be interested in learning the function(resp., checking that the program computes a speci�c function correctly). In such cases, learningthe function (resp., checking the program) as means of ensuring that it satis�es the property maybe an over-kill. Secondly, theoretical analysis of learning algorithms typically works under thepostulation that the function (representing the environment) belongs to a particular class.1 It maybe more e�cient to test this postulation �rst before trying to learn the function (and possiblyfailing when the postulation is wrong).2 We stress that the generalization of property testing toarbitrary distributions and to algorithm that only obtain random labeled examples is essential tothe potential applications mentioned above.Property Testing and Learning Theory. Our formulation of testing mimics the standardframeworks of learning theory. In both cases one is given access to an unknown target function(either in the form of random instances accompanied by the function values or in the form of oracleaccess to the function). (An insigni�cant semantic di�erence is that, for sake of uniformity, even incase the functions are Boolean, we refer to them as functions rather than concepts.) However, thereare two important di�erences between property testing and learning. Firstly, the goal of a learningalgorithm is to �nd a good approximation to the target function f 2 F , whereas a testing algorithmshould only determine whether the target function is in F or is far away from it. This makes thetask of the testing seem easier than that of learning. On the other hand, a learning algorithmshould perform well only when the target function belongs to F whereas a testing algorithm mustperform well also on functions far away from F .We show that the relation between learning and testing is non-trivial. On one hand, properlearning (i.e., when the hypothesis of the learning algorithm must belong to the same class as thetarget function) implies testing. On the other hand, there are function classes for which testing isharder than (non-proper) learning (i.e. when the hypothesis is not required to belong to the sameclass as the target function), provided NP 6� BPP. Nonetheless, there are also function classesfor which testing is much easier than learning. In addition, the graph properties discussed belowprovide a case where testing (with queries) is much easier than learning (also with queries).The above results as well as additional results regarding the relations between property testingand learning appear in Section 3.1.2 Testing Graph PropertiesProperty testing is a natural notion of approximation, and furthermore it is related to standardnotions of approximation. This holds even with respect to the restricted notion of property testingwhere one considers only the uniform distribution and allows the algorithm to make queries ofits choice [RS96]. The above assertion is demonstrated within one of the most basic domains ofapproximation algorithms { the one of graph algorithms. But let us start with a general high leveldiscussion.1 Here and throughout the introduction we refer to the standard PAC learning model. We shortly discuss agnosticlearning [KSS92], where no assumption is made on the target function, towards the end of Section 3.2 Similarly, in the context of program checking, one may choose to test that the program satis�es certain propertiesbefore checking that it computes a speci�ed function. As mentioned above, this paradigm has been followed both inthe theory and practice of program checking. 3



1.2.1 Motivating DiscussionThroughout the rest of the introduction, we refer to property testing in the restricted sense of[RS96]. Recall that the de�nition of property testing is a relaxation of the standard de�nition of adecision task: The tester is allowed arbitrary behavior when the object does not have the property,and yet is \close" to an object having the property. Thus, a property tester may be far moree�cient than a standard decision procedure (for the same property).In case the object is huge, as when one thinks of a function and algorithms which operate in timepolynomial in the length of the arguments to the function, there is actually no other alternativeto approximation. That is, it is typically infeasible (i.e., requires exponential time in the lengthof the arguments) to decide whether such a function has the desired property. A property testingalgorithm which operates in time polynomial in the length of the arguments thus o�ers a feasibleapproximation to a problem which is intractable in the exact formulation.Property testers are valuable also in case one deals with objects of feasible size (i.e., size forwhich scanning the entire object is feasible): If a property tester is much faster than the exactdecision procedure then it makes sense to run it before running the decision procedure. In case theobject is far from having the property, we may obtain an indication towards this fact, and savethe time we might have used running the decision procedure. In case the tester supplies proofsof violation of the property (as in some of the testers discussed below), we obtain an absolutelycorrect answer without running the decision procedure at all. Thus, we may only need to run thedecision procedure on objects which are close to having the property. In some setting where typicalobjects are either good (i.e., have the property) or very bad (i.e., are very far from objects havingthe property), we may gain a lot. Furthermore, if it is guaranteed that objects are either goodor very bad then we may not even need to run the decision procedure at all. The gain in such asetting is enormous.Being close to an object which has the property is a notion of approximation which, in certainapplications, may be of great value. In some cases, being close to an object having the propertytranslates to a standard notion of approximation. In other cases, it translates to a notion of \dualapproximation". This point is clari�ed and exempli�ed below (by referring to speci�c properties).In both cases, a fast property tester which is more e�cient than the decision procedure is of value,both if the decision procedure is feasible and more so if it is not.Alternatively, we may be forced to take action, without having time to run a decision procedure,while given the option of modifying the object in the future, at a cost proportional to the numberof modi�cations of the object. For example, suppose you are given a graph which represents somedesign problem, where Bipartite graphs corresponds to a good design and changes in the designcorrespond to edge additions/omissions. Using a Bipartiteness tester you always accept a gooddesign, and reject with high probability designs which will cost a lot to modify. You may stillaccept bad designs, but then you know that it will not cost you much to modify them later.1.2.2 Representing graphs as functions.We view graphs as Boolean functions on pairs of vertices, the value of the function representing theexistence of an edge. We mainly consider testing algorithms which use queries and work under theuniform distribution. That is, a testing algorithm for graph property P makes queries of the form\is there an edge between vertices u and v" in an unknown graph G. Accordingly, distance betweentwo N -vertex graphs is de�ned as the fraction (over N2) of vertex-pairs that are adjacent in onegraph but not in the other. A testing algorithm for property P is required to decide whether G hasproperty P or is \�-away" from any graph with property P, and is allowed to err with probability,4



say, � = 1=3. (For simplicity, we assume throughout the introduction that � = 1=3. Standard error-reduction techniques are obviously applicable to property testing. However, better dependencieson � may be obtained in special cases as can be seen in the rest of the paper.)A few comments are in place. Firstly, we note that this representation, as well as our results,are applicable both in case the graph is huge and in case it is of feasible size. The reader may thuschoose whether to think of the graph as being huge and so accessible only by such queries, or asbeing explicitly given and inspected in an random-access manner. Secondly, the above adjacencypredicate representation is most appropriate for dense graphs, and so the reader may think of thegraph as being dense (e.g., having at least �N2 edges). An alternative representation, appropriatefor bounded-degree graphs, has been subsequently considered in [GR97a].1.2.3 Our AlgorithmsWe present algorithms of poly(1=�) query-complexity and running-time3 at most exp( eO(1=�3)) fortesting the following natural graph properties:k-Colorability for any �xed k � 2. (Here the query-complexity is poly(k=�), and for k = 2 therunning-time is eO(1=�3).)�-Clique for any � > 0. That is, does the N -vertex graph have a clique of size �N .�-Cut for any � > 0. That is, does the N -vertex graph have a cut of size at least �N2. Ageneralization to k-way cuts works with query-complexity poly((logk)=�), and has runningtime exp(poly(logk=�)).�-Bisection for any � > 0. That is, does the N -vertex graph have a bisection of size at most �N2.Furthermore:1. For all the above properties, in case the graph has the desired property, the testing algorithmoutputs some auxiliary information which allows to construct, in poly(1=�)�N -time, a partitionwhich approximately obeys the property. For example, for �-Cut, we can construct a partitionwith at least (�� �)N2 crossing edges.2. The k-Colorability tester has one-sided error: it always accepts k-Colorable graphs. Further-more, when rejecting a graph, this tester always supplies a poly(1=�)-size subgraph which isnot k-Colorable. All other algorithms have two-sided error, and this is unavoidable withino(N) query-complexity.3. Our algorithms for k-Colorability, �-Clique and �-Cut can be easily extended to providetesters with respect to product distributions: that is, distributions 	 : V(G)2 7! [0; 1] of theform 	(u; v) =  (u) �  (v), where  : V(G) 7! [0; 1] is a distribution on the vertices, which ispoly-time sampleable (by the tester). In contrast, it is not possible to test any of the graphproperties discussed above in a distribution-free manner.We comment that, except for Bipartite (2-Colorability) testing, running-time of poly(1=�) is un-likely, as it will imply NP � BPP. Also, none of these properties can be tested without querieswhen using o(pN) random examples.3 Here and throughout the paper, we consider a RAM model in which trivial manipulation of vertices (e.g.,reading/writing a vertex name and ordering vertices) can be done in constant time.5



General Graph Partition. All the above property testing problems are special cases of theGeneral Graph Partition Testing Problem, parameterized by a set of lower and upper bounds. In thisproblem one needs to determine whether there exists a k-partition of the vertices so that the numberof vertices in each component of the partition as well as the number of edges between each pair ofcomponents falls between the corresponding lower and upper bounds (in the set of parameters). Wepresent an algorithm for solving the above problem. The algorithm uses eO(k2=�)2k+O(1) queries, runsin time exponential in its query-complexity, and makes two-sided error. Approximating partitions, ifexisting, can be e�ciently constructed in this general case as well. We comment that the specializedalgorithms perform better than the general algorithm with the appropriate parameters.Other Graph Properties. Going beyond the general graph partition problem, we remarkthat there are graph properties that are very easy to test (e.g., Connectivity, Hamiltonicity, andPlanarity). The reason being that for these properties either every N -vertex graph is at distanceat most O(1=N) from a graph having the desired property (and so for � = 
(1=N) the trivialalgorithm which always accepts will do), or the property holds only for sparse graphs (and so for� = 
(1=N) one may reject any non-sparse graph). On the other hand, there are graph propertiesin NP that are extremely hard to test; namely, any testing algorithm must inspect at least 
(N2)of the vertex pairs. In view of the above, we believe that providing a characterization of graphproperties, according to the complexity of testing them, may be very challenging.1.2.4 Testing versus deciding and approximatingWe shortly discuss the relation between testing graph properties and some well-known compu-tational tasks.Relation to deciding (recognizing) graph properties: Our notion of testing a graphproperty P is a relaxation of the notion of deciding (recognizing) the graph property P which hasreceived much attention in the last three decades [LY91]. In the classical problem there are nomargins of error, and one is required to accept all graphs having property P and reject all graphswhich lack it. In 1975, Rivest and Vuillemin resolved the Aanderaa{Rosenberg Conjecture [Ros73],showing that any deterministic procedure for deciding any non-trivial monotone N -vertex graphproperty must examine 
(N2) entries in the adjacency matrix representing the graph. The querycomplexity of randomized decision procedures was conjectured by Yao to be also 
(N2). Progresstowards proving this conjecture was made in [Yao87], [Kin91] and [Haj91] culminating in an 
(N4=3)lower bound. This stands in striking contrast to the results mentioned above, by which some non-trivial monotone graph properties can be tested by examining a constant number of locations inthe matrix.Application to the standard notion of approximation: The relation of testing graphproperties to the standard notions of approximation is best illustrated in the case of Max-CUT.Any tester for the class �-Cut, working in time T (�; �; N), yields an algorithm for approximatingthe maximum cut in an N -vertex graph, up to additive error �N2, in time 1� � T (�; �; N). Thus, forany constant � > 0, using the abovementioned tester we can approximate the size of the max-cut towithin �N2 in constant time.4 This yields a constant time approximation scheme (i.e., to within anyconstant relative error) for dense graphs, improving over previous work of Arora et. al. [AKK95]4 We comment that due to the speci�c structure of our tester, the value of the maximum cut is actually approxi-mated in time T (�; �;N)poly(1=�), rather than 1� � T (�; �;N).6



and de la Vega [dlV94] who solved this problem in polynomial-time (i.e., in O(N1=�2){time and�exp( eO(1=�2)) �N2�{time, respectively). In the latter works the problem is solved by actuallyconstructing approximate max-cuts. Finding an approximate max-cut does not seem to followfrom the mere existence of a tester for �-cut; yet, as mentioned above, our tester can be used to�nd such a cut in time linear in N (i.e., � eO(1=�2) �N + exp( eO(1=�3))�{time).One can turn the question around and ask whether approximation algorithms for dense instancescan be transformed into corresponding testers as de�ned above. In several cases this is possible.For example, using some ideas of this work, the Max-CUT algorithm of [dlV94] can be transformedinto a tester of complexity comparable to ours. We do not know whether the same is true withrespect to the algorithms in [AKK95]. Results on testing graph properties can be derived also from[ADL+94].Relation to \dual approximation" (cf., [HS87, HS88]): To illustrate this relation, we con-sider the �-Clique Tester mentioned above. The traditional notion of approximating Max{Cliquecorresponds to distinguishing the case in which the max-clique has size at least �N from, say, thecase in which the max-clique has size at most �N=2. On the other hand, when we talk of testing\�-Cliqueness", the task is to distinguish the case in which an N -vertex graph has a clique of size�N from the case in which it is �-far from the class of N -vertex graphs having a clique of size �N .This is equivalent to the \dual approximation" task of distinguishing the case in which an N -vertexgraph has a clique of size �N from the case in which any �N subset of the vertices misses at least�N2 edges. To demonstrate that these two tasks are vastly di�erent we mention that whereas theformer task is NP-Hard, for � < 1=4 (see [BGS95, H�as96b, H�as96a]), the latter task can be solvedin exp(O(1=�2))-time, for any �; � > 0. We believe that there is no absolute sense in which one ofthese approximation tasks is more important than the other: Each of these tasks may be relevantin some applications and irrelevant in others.As another illustration of the applicability to \dual approximation" problems, we discuss ourresults regarding testing k-Colorability. It is known that it is NP-Hard to distinguish 3-Colorablegraphs from graphs in which every 3-partition of the vertex set violates at least a constant fractionof the edges [Pet94]. In contrast, our k-Colorability Tester implies that solving the same promiseproblem is easy for dense graphs, where by dense graphs we mean N -vertex graphs with 
(N2)edges. This is the case since, for every � > 0, our tester can distinguish, in exp(k2=�3)-time, betweenk-Colorable N -vertex graphs and N -vertex graphs which remain non-k-Colorable even if one omitsat most �N2 of their edges.5Another application of our 3-Colorability Tester uses the fact that, for every � > 0, in case theN -vertex graph is 3-colorable, the tester may retrieve in linear time a 3-partition which violates atmost �N2 edges. Thus, we may reduce the general problem of coloring 3-Colorable graphs with fewedges to the same problem restricted to non-dense graphs (i.e., N -vertex graphs with o(N2) edges).(The reduction produces a coloring for dense graphs with 3 times more colors than the numberused by the coloring of the non-dense graphs, but a factor of 3 seems small at the current stateof art for this problem [KMS94].) We remark that some known algorithms for this task, seem toperform better when the maximum degree of vertices in the graph is smaller [KMS94]. Furthermore,deciding k-Colorability even for N -vertex graphs of minimum degree at least k�3k�2 �N is NP-complete(cf., [Edw86]). On the other hand, Edwards also gave a polynomial-time algorithm for k-coloringk-colorable N -vertex graphs of minimum degree at least �N , for any constant � > k�3k�2 .5 As noted by Noga Alon, similar results, alas with much worse dependence on �, can be obtained by using theresults of [ADL+94]. 7



1.2.5 Our TechniquesOur algorithms share some underlying ideas. The �rst is the uniform selection of a small sampleof vertices and the search for a suitable partition of this sample. In case of k-Colorability certaink-Colorings of the subgraph induced by this sample will do, and are found by k-Coloring a slightlyaugmented graph. In case of the other algorithms we exhaustively try all possible partitions. Thisis reminiscent of the exhaustive sampling iof [AKK95], except that the partitions considered byus are always directly related to the combinatorial structure of the problem. We show how eachpossible partition of the sample induces a partition of the entire graph so that the following holds.If the tested graph has the property in question then, with high probability over the choice ofthe sample, there exists a partition of the sample which induces a partition of the entire graph sothat the latter partition approximately satis�es the requirements established by the property inquestion. For example, in case the graph has a �-Cut there exists a 2-way-partition of the sampleinducing a partition of the entire graph with at least (�� �)N2 crossing edges. On the other hand,if the graph should be rejected by the test, then by de�nition no partition of the entire graph (andin particular none of the induced partitions) approximately obeys the requirements.The next idea is to use an additional sample to approximate the quality of each such inducedpartition of the graph, and discover if at least one of these partitions approximately obeys therequirements of the property in question. An important point is that since the �rst sample is small(i.e., of size poly(1=�)), the total number of partitions it induces is only exp(poly(1=�)). Thus, theadditional sample must approximate only these many partitions (rather than all possible partitionsof the entire graph) and it su�ces that this sample be of size poly(1=�).The di�erence between the various algorithms is in the way in which partitions of the sampleinduce partitions of the entire graph. The simplest case is in testing Bipartiteness. For a partition(S1; S2) of the sample, all vertices in the graph that have a neighbor in S1 are placed on one side, andthe rest of the vertices are placed on the other side. In the other algorithms the induced partitionis less straightforward. For example, in case of �-Clique, a partition (S1; S2) of the sample S withjS1j � �jSj, induces a candidate clique roughly as follows. Consider the set T of graph verticeseach neighboring all of S1. Then the candidate clique consists of the �N vertices with the highestdegree in the subgraph induced by T. In the Bisection and General Partition testing algorithms,auxiliary guesses that are implemented by exhaustive search are used (to induce a partition on theentire graph).A simple observation which is useful in our analysis is that we do not need the sample toapproximate well all relevant quantities (e.g., the degree of all vertices in the graph). It su�ces toapproximate well most of these quantities. This observation may explain how we can manage witha sample of size independent of the size of the graph.1.3 Other related workProperty testers implicit in previous works. As mentioned above, results on testing graphproperties can be derived from [ADL+94]. That paper proves a constructive version of the Regular-ity Lemma of Szemer�edi, and obtains from it a polynomial-time algorithm that given an N -vertexgraph, � > 0 and k � 3, either �nds a subgraph of size f(�; k) which is not k-Colorable, or omits atmost �N2 edges and k-Colors the rest. Noga Alon has observed that the analysis can be modi�ed toyield that almost all subgraphs of size f(�; k) are not k-Colorable, which in turn implies a tester withquery complexity f(�; k)2 for k-Colorability. In comparison with our k-Colorability Tester, whichtakes a sample of O(��3k2 log k) vertices, the k-Colorability tester derived from [ADL+94] takes a8



much bigger sample { of size equaling a tower of (k=�)20 exponents (i.e., log� f(�; k) = (k=�)20).Property Testing in the context of Program Checking: There is an immediate analogybetween program self-testing [BLR93] and property-testing with queries. The di�erence is that inself-testing, a function f (represented by a program) is tested for being close to a fully speci�edfunction g, whereas in property-testing the test is whether f is close to any function in a functionclass G. Interestingly, many self-testers [BLR93, RS96] work by �rst testing that the programsatis�es some properties which the function it is supposed to compute satis�es (and only thenchecking that the program satis�es certain constraints speci�c to the function). Rubinfeld andSudan [RS96] de�ned property testing, under the uniform distribution and using queries, and relatedit to their notion of Robust Characterization. Rubinfeld [Rub94] focuses on property testing asapplied to properties which take the form of functional equations of various types.Property Testing in the context of Learning Theory: Departing from work in Statisticsregarding the classi�cation of distributions (e.g., [HW58, Cov73, ZK91]), Ben-David [BD92] andKularni and Zeitouni [KZ93] considered the problem of classifying an unknown function into oneof two classes of functions, given labeled examples. Ben-David studied this classi�cation problemin the limit (of the number of examples), and Kulkarni and Zeitouni studied it in a PAC inspiredmodel. For any �xed �, the problem of testing the class F with distance parameter � can be castedas such a classi�cation problem (with F and the set of functions �-away from F being the twoclasses). A di�erent variant of the problem was considered by Yamanishi [Yam95].Approximation in Dense Graphs. As stated previously, [AKK95] and [dlV94] presented polynomial-time approximation schemes (PTAS) for dense instances of Max-Cut. The approach of Arora et. al.uses Linear Programming and Randomized Rounding, and applies to other problems which can becasted as a \smooth" Integer Programs.6 The methods of de la Vega [dlV94] are purely combinato-rial and apply also to similar graph partition problems. Following the approach of [ADL+94], butusing a relaxation of the regularity Lemma (and thus obtaining much improved running times),Frieze and Kanan [FK96] devise PTAS for several graph partition problems such as Max-Cut andBisection. We note that compared to all the above results, our respective graph partitioning al-gorithms have better running-times (not to mention that we obtain constant-time approximationschemes for approximating only the value of the partition). Like de la Vega, our methods useelementary combinatorial arguments related to the problem at hand. Still our methods su�ce fordealing with the General Graph Partition Problem.We note that [AKK95] showed that the \dense subgraph" problem, a generalization of �-Clique,has a PTAS for dense instances. Our General Graph Partition algorithm (with the appropriatesetting of the parameters) improves on their result.1.4 Subsequent workAs mentioned above, our representation of graphs by their adjacency predicate is most adequatefor dense graphs. Another natural representation, most adequate for bounded-degree graphs wassubsequently suggested in [GR97a]: An N -vertex graph of degree bound d is represented there bythe incidence function, g :V�[d] 7!V [ f0g, so that g(u; i) = v if v is the ith vertex incident at u,and g(u; i) = 0 62 V if u has less than i neighbors.As usual, the choice of representation has a fundamental impact on the potential algorithm.6 In [AFK96], the approach of [AKK95] is extended to other problems, such as Graph Isomorphism, using a newrounding procedure for the Assignment Problem. 9



Here the impact is even more dramatic since we seek algorithms which only inspect a relativelysmall fraction of the object (graph represented by a function). Furthermore, there is anotherfundamental impact of the choice of representation on the task of property testing. This has todo with our de�nition of distance, which is relative to the size of the domain of the function. Inparticular, distance � in the adjacency predicate representation (adopted in this paper) means asymmetric di�erence of 2� �N2 edges, whereas in the incident function representation (of [GR97a])this means a symmetric di�erence of 2� � dN edges. (In both cases, the extra factor 2 is due to theredundant representation which is adopted for sake of simplicity.)In contrast to our poly(1=�)-query Bipartite tester (for the adjacency predicate representation),it was proven in [GR97a] that testing Bipartiteness in the incident function representation re-quires 
(pN) queries. Interestingly, this bound is tight up to a polylogarithmic factor, as shownin [GR97b] which presents a Bipartite tester for the incident function representation working intime O(poly(��1 logN) � pN). We mention that [GR97a] also presents poly(1=�)-time algorithmsfor testing k-Connectivity, for k � 1, Planarity and other properties (all in the incident functionrepresentation).In recent work, Kearns and Ron [KR98] generalize our de�nition of property testing, and presenttesting algorithms that use only random examples for classes of functions that have been studiedin the learning literature.We also mention the work of Ergun et al. [EKK+98], in which they propose the study of SpotChecker , which in some contexts coincides with property testing.1.5 OrganizationThe paper is organized in two parts. The �rst part focuses on property testing in general: Ade�nition is given and discussed in Section 2. In Section 3 we explore the relations between propertytesting and learning. General observations regarding property testing appear in Section 4.The second part of the paper focuses on testing graph properties: The basic framework ispresented in Section 5. In Section 6 we present the Bipartiteness tester, and its generalization toa k-Colorability Tester. In Section 7 we present our tester for �-Clique. In Section 8 we presentour tester for �-CUT, and its generalization to Bisection. The general graph-partition problemis treated in Section 9. We conclude, in Section 10, with comments regarding extensions andlimitations of the above algorithms and problems, as well as discuss other graph propertiesAppendix A contains a list of some recurring notation, and Appendix B recalls standard prob-abilistic inequalities which are extensively used.Part IGeneral Property Testing2 De�nitionsLet F = fFng be a parameterized class of functions, where the functions7 in Fn are de�ned overf0; 1gn and let D = fDng be a corresponding class of distributions (i.e., Dn is a distribution onf0; 1gn). We use x � Dn to denote that x is distributed according to the distribution Dn. We say7 The range of these functions may vary and for many of the results and discussions it su�ces to consider Booleanfunctions. 10



that a function f de�ned on f0; 1gn is �-close to Fn with respect to Dn if there exists a functiong 2 Fn such that Prx�Dn [f(x) 6= g(x)]� � : (1)Otherwise, f is �-far from Fn (with respect to Dn).We shall consider several variants of testing algorithms, where the most basic one is de�ned asfollows.De�nition 2.1 (property testing): Let A be an algorithm which receives as input a size parametern, a distance parameter 0 < � < 1, and a con�dence parameter 0 < � < 1=2. Fixing an arbitraryfunction f and distribution Dn over f0; 1gn, the algorithm is also given access to a sequence off -labeled examples, (x1; f(x1)); (x2; f(x2)); :::, where each xi is independently drawn from the distri-bution Dn. We say that A is a property testing algorithm (or simply a testing algorithm) for the classof functions F if for every n, � and � and for every function f and distribution Dn over f0; 1gn thefollowing holds� if f 2 Fn then with probability at least 1 � � (over the examples drawn from Dn and thepossible coins tosses of A), A accepts f (i.e., outputs 1);� if f is �-far from Fn (with respect to Dn) then with probability at least 1� �, A rejects f (i.e.,outputs 0).The sample complexity of A is a function of n; � and � bounding the number of labeled examplesexamined by A on input (n; �; �).Though it was not stated explicitly in the de�nition, we shall usually also be interested inbounding the running time of a property testing algorithm (as a function of the parameters n; �; �,and in some case of a complexity measure of the class F). We consider the following variants ofthe above de�nition:1. Dn may be a speci�c distribution which is known to the algorithm. In particular, we shall beinterested in testing with respect to the uniform distribution.2. Dn may be restricted to a known class of distributions (e.g., product distributions).3. The algorithm may be given access to an oracle for the function f , which when queried onx 2 f0; 1gn, returns f(x). In this case we refer to the number of queries made by A (which isa function of n, �, and �), as the query complexity of A.4. In some cases the algorithm might have the additional feature that whenever it outputs failit also provides a certi�cate to the fact that f =2 F . Certi�cates are de�ned with respect toa veri�cation algorithm which accepts a sequence of labeled examples whenever there existsf 2 Fn which is consistent with the sequence. (We do not require that the algorithm rejecteach sequence which is not consistent with some f 2 Fn.) A certi�cate for f 62 Fn is anf -labeled sequence which is rejected by the veri�cation algorithm.5. The algorithm may have only one-sided error . Namely, in case f 2 Fn, the algorithm alwaysaccepts f .6. The algorithm is given two distance parameters, �1 and �2, and is required to pass with highprobability every f which is �1-close to Fn, and fail every f which is �2-far from Fn.11



3 On the Relation between Property Testing and PAC LearningA Probably Approximately Correct (PAC) learning algorithm [Val84] works in the same frameworkas that described in De�nition 2.1 except for the following (crucial) di�erences:1. It is given a promise that the unknown function f (referred to as the target function) belongsto F ;2. It is required to output (with probability at least 1 � �) a hypothesis function h which is�-close to f , where closeness is as de�ned in Equation (1) (and � is usually referred to as theaccuracy parameter).Note that the di�erences pointed out above e�ect the tasks in opposite directions. Namely, theabsence of a promise makes testing potentially harder than learning, whereas deciding whether afunction belongs to a class rather than �nding the function may make testing easier.In the learning literature, a distinction is made between proper (or representation dependent)learning and non-proper learning [PV88]. In the former model, the hypothesis output by thelearning algorithm is required to belong to the same function class as the target function f , i.e.h 2 F , while in the latter model, h 2 H, for some hypothesis class H such that F � H. We assumethat a proper learning algorithm (for F) either halts without output or outputs a function in F , butit never outputs any function not in F .8 There are numerous variants of PAC learning (includinglearning with respect to speci�c distributions, and learning with access to an oracle for the targetfunction f (which in the case of boolean functions is referred to as a membership oracle)). Unlessstated otherwise, whenever we refer in this section to PAC learning we mean the distribution-freeno-query non-proper model described above. The same is true for references to property testing. Inaddition, apart from one example, we shall restrict our attention to classes of Boolean functions.Testing is not Harder than Proper Learning.Proposition 3.1 If a function class F has a proper learning algorithm A, then F has a propertytesting algorithm A0 with sample complexitymA0(n; �; �) = mA(n; �=2; �=2)+O� log(1=�)� �where mA(�; �; �) is the sample complexity of A. Furthermore, the same relation holds between therunning times of the two algorithm.Proof: In order to test if f 2 F or is �-far from any function in F , we �rst run the learningalgorithm A with con�dence parameter �=2, and accuracy parameter �=2, using random exampleslabeled by f . If A does not output a hypothesis, then we reject f . If A outputs a hypothesis h(which must be in F since A is a proper learning algorithm), then we approximate the distancebetween h and f by drawing an additional sample of size O(��1 log(1=�)). If the approximateddistance is less than 3�=4 then we accept, otherwise we reject.In case f 2 F , with probability at least 1��=2, A's output, h, is �=2-close to f , and an additiveCherno� bound (see Appendix B), tells us that with probability at least 1��=2 over the additional8We remark that in case the functions in F have an easy to recognize representation, one can easily guaranteethat the algorithm never outputs a function not in F , by simply checking the hypothesis' representation. Standardclasses considered in works on proper learning (e.g. Decision-Trees) typically have this feature.12



sample, we shall not reject it. In case f is �-far from F , any hypothesis h 2 F is at least �-far fromf , and with probability at least 1� �=2 over the additional sample, f is rejected.In particular, the above proposition implies that if for every n, Fn has polynomial (in n) VC-dimension [VC71, BEHW89]9, then F has a tester whose sample complexity is polynomial in n, 1=�,and log(1=�). The reason is that classes with polynomial VC-dimension can be properly learnedfrom a sample of the above size [BEHW89]. However, the running time of such a proper learningalgorithm, and hence of the resulting testing algorithm might be exponential in n.Corollary 3.2 Every class that is learnable with constant con�dence using a sample of size poly(n=�)(and thus has a poly(n) VC dimension [BEHW89]), is testable with a poly(n=�) � log(1=�) sample(in at most exponential time).Testing may be Harder than Learning. In contrast to Proposition 3.1 and to Corollary 3.2,we show that there are classes which are e�ciently learnable (though not by a proper learningalgorithm) but are not e�ciently testable. This is proven by observing that many hardness resultsfor proper learning (cf. [PV88, BR89, PW93]) actually establish the hardness of testing (for thesame classes). Furthermore, we believe that it is more natural to view these hardness resultsas referring to testing and derive the hardness for proper learning via Proposition 3.1. Thus, theseparation between e�cient learning and e�cient proper learning translates to a separation betweene�cient learning and e�cient testing.Proposition 3.3 If NP 6� BPP then there exist function classes which are not poly(n=�)-timetestable but are poly(n=�)-time (non-properly) learnable.Proof: The proposition follows from the fact that many of the representation dependent hardnessresults (cf. [Gol78, Ang78, PV88, BR89, PW93]) have roughly the following form. An NP-completeproblem is reduced to the following decision problem: Given a set S of labeled examples, does thereexist a function in F which is consistent with S? A learning algorithm is forced to �nd a consistentfunction if one exists by letting the support of the distribution D (which is allowed to be arbitrary)lie solely on S, and setting � to be smaller than 1=jSj. Actually, since the consistency problem isthat of deciding if there exists a consistent function and not necessarily of �nding such a function,it follows that the corresponding testing problem (using the same D and �) is hard as well. Detailsfollow.Let F be a �xed class of functions and suppose that the following decision problem is NP-completeinput a sequence (x1; �1); :::; (xt; �t), where xi 2 f0; 1gn, �i 2 f0; 1g, and t = poly(n).question is there a function f 2 Fn so that f(xi) = �i, for all i 2 [t] def= f1; : : : ; tg.Assuming that there exists a poly(n=�){time property testing algorithm, denoted A, for the classF , we construct a polynomial-time decision procedure for the above problem (contradicting theassumption that NP =2 BPP). We invoke A with parameters n, � and �, where � < 1=t (say� = 1=(2t)) and say � = 1=3. Suppose that A requires m def= mA(n; �; �) samples. We uniformly9 The Vapnik Chervonenkis (VC) dimension of a class Fn is de�ned to be the size d of the largest set X 2 f0; 1gnfor which the following holds. For each (of the 2d) partitions (X0;X1) of X there exists a function f 2 Fn such thatfor every x 2 X0, f(x) = 0, and for every x 2 X1, f(x) = 1. A set X that has this feature is said to be shattered byFn. 13



select m indices, denoted i1; :::; im, (possibly with repetitions) out of [t] and feed A with the labeledsample (xi1; �i1); :::; (xim; �im). We decide according to A's output.We analyze the performance of our algorithm by relating it to the performance of the propertytesting algorithm on the uniform distribution over the set fxi : i 2 [t]g. Suppose �rst that thereexists f 2 Fn so that f(xi) = �i, for all i 2 [t]. In this case, we provide A with a random samplelabeled by a function in Fn and thus with probability at least 1 � � the test must accept. Thus,our decision procedure accepts yes-instances with probability at least 1� �.Suppose now that there exists no function f 2 Fn such that f(xi) = �i, for all i 2 [t]. Thisimplies that the function f de�ned by f(xi) def= �i, for all i 2 [t] (and f(x) = 0 for x =2 fxi : i2 [t]g),is at distance at least 1t > � from F (with respect to the uniform distribution over fxi : i2 [t]g).Since we provide A with a random sample labeled by this f , the test must reject with probabilityat least 1� �. Hence, our decision procedure rejects no-instances with probability at least 1� �.This establishes, in particular, that testing the class of k-Term DNF (where k is a constant) isNP-Hard (see [PV88]). On the other hand, k-Term DNF (for constant k) is e�ciently learnable(using the hypothesis class of k-CNF) [Val84, PV88].We stress that whereas Proposition 3.1 generalizes to learning and testing under speci�c distribu-tions, and to learning and testing with queries, the proof of Proposition 3.3 uses the premise thatthe testing (or proper learning) algorithm works for any distribution and does not make queries.Testing may be Easier than Learning. We start by presenting a function class that is easyto test but cannot be learned with polynomial sample complexity, regardless of the running-time.Proposition 3.4 There exist function classes F such that:� F has a property testing algorithm whose sample complexity and running time are O(��1 �log(1=�)) (i.e., independent of n);� Any learning algorithm for F must have sample complexity exponential in n.Proof: It is possible to come up with quite a few examples of functions classes for which the aboveholds. We give one example below. For each n let Fn include all functions f over f0; 1gn, such thatfor every y 2 f0; 1gn�1, f(1y) = 1 (and if the �rst bit of the input is 0 then no restriction is made).Given m = O(��1 log(1=�)) examples, labeled by an unknown f and drawn according to anarbitrary distribution Dn, the testing algorithm will simply verify that for all examples x whose�rst bit is 1, f(x) = 1. If f 2 Fn, it will always accept it, and if f is �-far from Fn (with respectto Dn) then the probability that it does not observe even a single example of the form (1y; 0) (andas a consequence, accepts f), is bounded by (1� �)m < �. On the other hand, the VC-dimensionof Fn is 2n�1 (since the set f0y : y 2 f0; 1gn�1g is shattered by Fn). By [BEHW89], learning thisclass requires a sample of size 
(2n).The impossibility of learning the function class in Proposition 3.4 is due to its exponential VC-dimension, (i.e., it is a pure information theoretic consideration). We now turn to function classesof exponential (rather than double exponential) size. Such classes are always learnable with apolynomial sample, the question is whether they are learnable in polynomial-time. We present afunction class that is easy to test but cannot be learned in polynomial-time (even under the uniformdistribution), provided certain trapdoor one-way permutations exist (e.g., factoring is intractable).We start by de�ning this assumption, which in some sense is weaker than the standard one (cf.,[Gol95, Sec. 2.4]). (We comment that the standard term \trapdoor permutation" is somewhatmisleading since what is being de�ned is a collection of permutations.)14



De�nition 3.5 (weak trapdoor permutations with dense domains): Let fp� : D� 7! D�g�2f0;1g� bea family of permutations. We say that this family has dense domains if for some positive polynomialq(�) and all �'s, both D� � f0; 1gj�j and jD�j � 2j�jq(j�j) hold. The family is one-way if it satis�es1. (easy to evaluate) There exists a polynomial-time algorithm which given � and x outputsp�(x).2. (hard to invert) No probabilistic polynomial-time algorithm can, given uniformly chosen �and x, output p�1� (x) with, say, success probability at least 1=n (where the probability is takenuniformly over the coin tosses of the algorithm and all possible choices of � 2 f0; 1gn andx 2 D�).The family is said to have weak trapdoors if for each � 2 f0; 1g� (equivalently, for each p�) thereexists a poly(j�j)-size circuit which inverts p�.The weak trapdoor condition is a relaxation of the standard condition which requires also that onecan e�ciently generate (�,trapdoor)-pairs. The dense domain condition is indeed non-standard, butdoes hold for all popular candidates (e.g., RSA and Rabin functions). See discussion in [CFGN96].Another non-standard aspect of the de�nition is associating a permutation with each string, whereasthe standard de�nition associates permutations only with a subset of all strings. Again, we notethat in case of the popular candidates, permutations are associated with a polynomial fraction ofall strings of certain length, and so we can modify these constructions so that a permutation isassociated with each string.10Proposition 3.6 If there exist weak trapdoor one-way permutations with dense domains then thereexists a family of functions that can be tested in poly(n=�)-time but can not be learned in poly(n=�)-time, even with respect to the uniform distribution. Furthermore, the functions can be computed bypoly(n)-size circuits.Proof: By [CFGN96], any collection of trapdoor one-way permutations with dense domains can beconverted into a collection trapdoor one-way permutations where the domain of each p� is f0; 1gj�j.Thus, we use such a collection fp� : f0; 1gj�j 7! f0; 1gj�jg�2f0;1g�We consider the function class OW = fOWng, where OWn consists of the multi-valued functionsf�, so that f�(x) def= (�; p�1� (x)) for every �; x 2 f0; 1gn. Using the weak trapdoor condition, weknow that the functions in OWn can be computed by poly(n)-size circuits.To test if f 2 OW , we merely examine su�ciently many f -labeled examples. Speci�cally,m def= O(��1 log(1=�)) examples will do. For each labeled example, (x; (�; y)), if p�(y) 6= x then wereject f . In addition we also reject if we see two examples, (x1; (�1; y1)) and (x2; (�2; y2)), so that�1 6= �2. Otherwise we accept f .We show that this test works for any distribution on the examples and so the class OW ise�ciently testable (in a distribution-free sense). Clearly, the test always accepts f� 2 OWn.Assuming that f is �-far from OWn, with respect to some distribution D, we wish to show that fis rejected by the test with high probability. We consider two cases.10One way of doing so proceeds in two steps, and is analogous to the [CFGN96] transformation mentioned sub-sequently. First one introduces dummy permutations for each string that is not associated with a permutation inthe original construction. This may weaken the one-way property but still some \one-wayness" remains. Next, oneampli�es the one-wayness by taking a \direct product" { that is, for each �1; :::;�t and x1; :::; xt, we de�ne a newfunction indexed by the �-sequence that consists of the concatenation of the values of each function associated withan �i evaluated at the corresponding xi. 15



Case 1 Suppose there exists an � such that the probability that the �rst element of f(x) equals� is at least 1� �2 , where the probability is taken over x � D. Since f is �-far from OWn, wehave in particular Prx�Dn [f(x) = f�(x)] < 1� �and so q def= Prx�Dn [x 6= p�(y) where f(x) = (�; y)]= Prx�Dn [f(x) = (�; y) for some y]� Prx�Dn [f(x) = f�(x)]> �1� �2�� (1� �) = �2Hence, the test accepts with probability at most (1� q)m < �.Case 2 Suppose that for every � the probability that the �rst element of f(x) equals � is at most1� �2 . Then, the probability that all m examples have a label starting with the same � is atmost X� Prx�Dn [9y s.t. f(x) = (�; y)]mwhich is bounded above by (1� �2)m�1 < �.Thus, in both cases, the test rejects �-far functions with su�ciently high probability. We now turnto show that it is infeasible to learn the class OW under the uniform distribution. This is doneby using any e�cient learning algorithm, A, in order to construct an algorithm that contradictsthe one-way condition. The inverting algorithm operates as follows, on input �; p�(x). First ituniformly generates an f�-labeled sample f(xi; (�; yi))g for A. This is done by uniformly selectingyi and setting xi = p�(yi). (Here we use the e�cient evaluation property of the collection.) Notethat indeed f�(xi) = (�; p�1� (xi)) = (�; yi), and that xi is uniformly distributed. When the learningstage of A is over, the inverter supplies A with x, asking for its label. With probability at least(1 � �) � (1 � �) > 1 � � � �, taken uniformly over all possible x 2 f0; 1gj�j and the internal cointosses of both the inverter and A, algorithm A returns the correct label; that is, (�; p�1� (x). Thus,an e�cient learning algorithm is transformed into and e�cient inverting algorithm for the family,in contradiction to the one-wayness condition.11The class presented in Proposition 3.6 consists of multi-valued functions. We leave it as an openproblem whether a similar result holds for a class of Boolean functions.Learning and Testing with queries (under the uniform distribution). Let the class of parityfunctions, PAR = fPARng, where PARn def= ffS : S � f1; : : : ; ngg and fS : f0; 1gn 7! f0; 1g sothat fS(x) =Pi2S xi mod 2. Work on linearity testing [BLR93, BFL91, FGL+91, BGLR93, BS94],culminating in the result of Bellare et al. [BCH+95], implies that there exists a testing algorithmfor the class PAR, under the uniform distribution, whose query complexity is O(��1 log(1=�)). Therunning-time is a factor n bigger, merely needed to write down the queries. On the other hand,any learning algorithm for this class must use at least n queries (or examples). The reason beingthat any query (or example) gives rise to a single linear constraint on the coe�cients of the linearfunction, and with less than n such constraints the function is not uniquely de�ned. Furthermore,every two linear functions disagree with probability 1=2 on a uniformly chosen input.11 Actually, the inverter is stronger than what is required to contradict one-wayness: It can invert any p� on allbut a small fraction of the range elements. 16



An example of a poly(n=�){time testable (with queries) class which is not learnable withpoly(n=�) queries is the class of multi-variate (i.e., n{variate) polynomials. Speci�cally, let POLY =fPOLYng, where POLYn consists of n-variate polynomials of total degree n over the �eld GF(q),where q is the �rst prime in the interval [n4; 2n4]. Work on low-degree testing [BFL91, BFLS91,GLR+91], culminating in the result of Rubinfeld and Sudan [RS96]. implies that there exists atesting algorithm for the class POLY , under the uniform distribution, whose query complexity isO(minfn3; n� g � log(1=�)). The running-time is a factor O(n logn) bigger, merely needed to writedown the queries and do some simple algebra. It is not hard to show that one cannot possibly learnPOLYn, under the uniform distribution, using only poly(n) queries. Again, the reason is that anyquery (or example) gives rise to a single linear constraint on the coe�cients of the polynomial. Sincethere are exponentially (in n) many coe�cients, this leaves the polynomial not uniquely de�ned.Finally, one invokes Schwarz's Lemma [Sch80], by which two such degree n polynomials can agreeon at most nq < 1n3 fraction of the domain.Agnostic Learning and Testing. In a variant of PAC learning, called Agnostic PAC learn-ing [KSS92], there is no promise concerning the target function f . Instead, the learner is requiredto output a hypothesis h from a certain hypothesis class H, such that h is �-close to the functionin H which is closest to f . The absence of a promise makes agnostic learning closer in spirit toproperty testing than basic PAC learning. However, we were not able to translate this similarityin spirit to anything stronger than the relation between testing and proper learning. Namely, sinceagnostic learning with respect to a hypothesis class H implies proper learning of the class H, it alsoimplies property testing of H.Learning and Testing Distributions. A distribution learning algorithm for a class of distribu-tions, D = fDng, receives (in addition to the parameters n, � and �) an (unlabeled) sample of stringsin f0; 1gn, distributed according to an unknown distribution D 2 Dn. The algorithm is required tooutput a distribution D0 (either in form of a machine which generates strings according to D0, orin form of a machine that on input x 2 f0; 1gn outputs D0(x)), such that with probability at least1 � �, the variation distance between D and D0 is at most �. (For further details see [KMR+94].)In contrast, a distribution testing algorithm, upon receiving a sample of strings in f0; 1gn drawnaccording to an unknown distribution D, is required to accept D, with probability at least 1� �, ifD 2 Dn, and to reject (with probability � 1� �) if D is �-far from Dn (with respect to the variationdistance).The context of learning and testing distributions o�ers another demonstration to the importanceof a promise (i.e., the fact that the learning algorithm is required to work only when the targetbelongs to the class, whereas the testing algorithm needs to work for all targets which are either inthe class or far away from it).Proposition 3.7 There exist distribution classes which are e�ciently learnable (in both sensesmentioned above) but cannot be tested with a subexponential sample (regardless of the running-time).Proof: Consider the class of distributions D = fDng consisting of all distributions, Dpn, whichare generated by n independent tosses of a coin with bias p. Clearly, this class can be e�cientlylearned (by merely approximating the bias p of the target distribution). However, a tester cannotdistinguish the case in which a sample of subexponential size is taken from the uniform distributionD1=2n (and thus should be accepted), and the case in which such a sample is taken from a `typicallybad' distribution BSn which is uniform over S � f0; 1gn, where jSj = 2n�1. Formally, we consider17



the behavior of the test when given a sample from D1=2n versus its behavior when given a samplefrom BSn, where S is uniformly chosen among all subsets of size 2n�1.We note that the above proof holds for any distribution class that contains the uniform distributionand is far from distributions such as the BSn's.4 General ObservationsProperty Testing may be Very Hard.Proposition 4.1 There exists a function class F = fFng for which any testing algorithm mustinspect the value of the function at a constant fraction of the inputs (i.e., on 
(2n) inputs). Thisholds even for testing with respect to the uniform distributions, for any constant distance parameter� < 1=2 and con�dence parameter � < 1=2, and even when allowing the algorithm to make queriesand use unlimited computing time.Proof: Suppose for simplicity that � = 1=4 and � = 1=5. The proof easily generalizes to generalconstant �; � < 1=2 by appropriately modifying the size of Fn (which is de�ned below). We will usethe Probabilistic Method to demonstrate the existence of a function class, F = fFng, satisfying theclaim, so that Fn consists of 2 110 �2n Boolean functions operating on f0; 1gn. We'll show that thereexists a class F so that a uniformly selected function is both far from it and indistinguishable fromit when observing o(2n) values.First we show that, with high probability, a uniformly selected function g : f0; 1gn 7! f0; 1gis �-far from any set, Fn, of 2 110 �2n functions. Let N def= 2n and UN be uniformly distributed onf0; 1gN . Then,Prg[g is �-close to Fn] � Prg[9f 2 Fn s.t. g(x) 6= f(x) for less than �N x's]� jFnj � Pr[UN has at most �N 1's]� 2N=10 � 2 exp(�N=8)= exp(�
(N))Thus, with overwhelmingly high probability (over the choices of g), the function g is �-far fromthe class Fn. We now consider any �xed sequence, S, of T def= N=20 inputs and compare thevalues assigned to them by (a random) g versus the values assigned to them by a uniformly chosenfunction in Fn. Clearly, in the �rst case the values are uniformly distributed. Let �S(Fn) denotethe statistical di�erence between the uniform distribution and the distribution of function-values(on the inputs in S) induced by a uniformly selected function in Fn. That is,�S(Fn) def= 12 � X�2f0;1gT jPrf2Fn [f(S) = �]� 2�T jwhere for a sequence S = x1; : : : ; xT , f(S) = f(x1) � � �f(xt). We consider the probability, takenover all possible choices of Fn (consisting of 2 110 �2n functions), that �S(Fn) > 1=2. By using amultiplicative Cherno� bound (with multiplicative factors 1=2 and 3=2 { see Appendix B), we getPrFn [�S(Fn) > 1=2]� PrFn [9� 2 f0; 1gT s.t. jPrf2Fn(f(S)=�)� 2�T j > 2�(T+1)]18



� 2T � 2 exp��13 � (12)2 � 2�T jFnj�= 2N=20 � 2 exp�� 112 � 2N=20�= exp ��2
(N)�Summing the probabilities over all possible �NT � < 2N sequences we conclude that with overwhelm-ingly high probability, over the choice of Fn, all �S's are bounded above by 1=2. Consequently, thedi�erence between the acceptance probability of a truly random g and the acceptance probabilityof a uniformly selected f 2 Fn is at most 1=2. This does not allow one to both accept every f 2 Fnwith probability at least 0:8 and accept a random g with probability at most 0:21 (and so to reject�-far functions with probability at least 0:8 { the extra 0.01 over-compensates for the case that arandom g is �-close to Fn).The Algebra of Property Testing. Suppose that two function classes are testable withincertain complexity. What can we infer about their intersection, union and complement?Unfortunately, in general, we can only say that their union is testable within comparable complexity.That is,Proposition 4.2 Let F 0 = fF 0ng and F 00 = fF 00ng be function classes testable within complexitiesc0(n; �; �) and c00(n; �; �), respectively. Then, the class F = fFng, where Fn = F 0n [ F 00n , is testablewithin complexity c(n; �; �) = c0(n; �; �2) + c00(n; �; �2).Proof: The testing algorithm for F consists of testing for membership in both F 0 and F 00 andaccepting if and only if one of the tests has accepted. The validity of this test relies on the factthat if f is �-far from F = F 0 [ F 00 then it is �-far from both F 0 and F 00.The fact that a claim analogous to the one used in the above proof does not hold for intersection isthe reason that an analogous tester does not work for the intersection class. That is, it may be thecase that f is far from F = F 0 \ F 00 and yet it is very close to both F 0 and F 00. Thus, a function(close to both F 0 and F 00), may pass both the corresponding property tests, but still may be farfrom F . In particularProposition 4.3 There exist function classes F 0 = fF 0ng and F 00 = fF 00ng such that both aretrivially testable under the uniform distribution (i.e., by an oblivious algorithm that always acceptsprovided � > 2�n), whereas the class F = fFng, where Fn = F 0n \ F 00n is not testable under theuniform distribution with query complexity o(2n) even for constant �; � < 12 .Proof: Let F = fFng be as guaranteed in Proposition 4.1, and let F 0n def= Fn [ ff : f(0n) = 0g,F 00n def= Fn [ ff : f(0n) = 1g. Clearly both F 0 and F 00 are testable as claimed since every functionis 2�n-close to both F 0 and F 00. On the other hand, F 0n \ F 00n = Fn, and so the negative result ofProposition 4.1 applies.Finally, we observe that property testing is not preserved under complementation. That is,Proposition 4.4 There exists a function class G = fGng such that for every � � 12n�1 the algorithmthat accepts every function is a tester for G, while the class of functions not in G is not testable insubexponential complexity.Proof: Consider the function class F used in the proof of Proposition 4.1. As shown there, thisclass is not testable in subexponential complexity. Furthermore, as we show subsequently, F can19



be chosen so that for every n and for every function f 2 Fn, there exists at most one functionf 0 2 Fn, such that f and f 0 di�er on exactly one input. In other words, there exist at least 2n � 1functions not in Fn that di�er from f on exactly one input. Let G = fGng consists of all functionsnot in F . Based on our additional claim (concerning di�erences between functions in Fn), as longas � � 1=(2n�1), the trivial algorithm which accepts all functions constitutes a tester for G. This istrue since for every f =2 Gn (that is, f 2 Fn), and for every distribution, there exists some functiong 2 Gn that is at distance less than 12n�1 from f . Namely, the total probability mass of the x's forwhich there exists g 2 Gn such that g and f di�er only on x is at most 1, and there are at least2n � 1 such x's.To prove the claim regarding di�erences between functions in F , we again use the probabilisticmethod. Observe �rst that the probability that a particular function f belongs to Fn, is 2N=102N =2�0:9�N , where N def= 2n. Thus, for any �xed function f , the probability that there exist twofunctions f1 and f2 in Fn such that both f1 and f2 di�er from f on exactly one input is boundedby N2 � (2�0:9�N)2 < 2�1:7�N . Finally the probability that this event occurs for some f is at most2N � 2�1:7�N = 2�0:7�N , which is extremely small. By adding the negligible probability (bounded inProposition 4.1) that the uniformly chosen Fn is not hard to test, Proposition 4.4 follows.Part IITesting Graph Properties5 Testing Graph Properties { PreliminariesIn the following sections we concentrate on testing graph properties using queries and with respectto the uniform distribution. In Section 10.1, we discuss some extensions beyond this basic model.We start by de�ning the basic model and giving an overview of our results.5.1 General Graph Notation.We consider undirected, simple graphs (no multiple edges or self-loops). For a simple graph G, wedenote by V(G) its vertex set and assume, without loss of generality, that V(G) = f1; :::; jV(G)jg.Graphs are represented by their (symmetric) adjacency matrix. Thus, graphs are associated withthe Boolean function corresponding to this matrix (i.e., the value of a pair (u; v) 2 V(G)� V(G)indicates whether (u; v) 2 E(G)). This brings us to associated undirected graphs with directedgraphs where each edge in the undirected graph is associated with a pair of anti-parallel edges.Speci�cally, for a graph G, we denote by E(G) the set of ordered pairs which correspond to edgesin G (i.e., (u; v) 2 E(G) i� there is an edge between u and v in G). In the sequel, whenever we say`edge' we mean a directed edge, and the degree of a vertex is the total number of edges incident toit (i.e., the sum of its in-degree and out-degree). For two (not necessarily disjoint) sets of vertices,X1 and X2, we letE(X1;X2) def= f(u; v) 2 E(G) : u 2 X1; v 2 X2 or u 2 X2; v 2 X1gThe distance between two N -vertex graphs, G1 and G2, is de�ned as the fraction of entries(u; v) 2 [N ]2 ([N ] def= f1; :::; Ng), among all N2 entries, which are in the symmetric di�erence ofE(G1) and E(G2). Namely,dist(G1;G2) def= j(E(G1) n E(G2))[ (E(G2) n E(G1))jN220



Property Testing PartitioningQuery Time Time (on top of testing)Bipartiteness O ��2�3 � O ��2�3 � O(�� ) �Nk-Colorability O�k4��2k�6 � exp�O�k2��2k�3 �� O��k�2 � �N�-Clique O��2��2�6 � exp�O�����2 �� O��2�2 � �N�-Cut O��2�7 � exp�O���3 �� O���2 � �N�-k-Cut O��2k�7 � exp�O��2k�3 �� O��k�2 � �N�-Bisection O��2�8 � exp�O���3 �� O���2 � �NGeneral k-Partition �2 ��O(k2)� �2k+8 exp����O(k2)� �k+1� O ��k�2 � �NFigure 1: Summary of Results. Here � and �k denote logarithmic factors. Speci�cally, � def=log(1=(��)) and �k def= log(k=(��)). For simplicity we use �k also in cases where the dependency isslightly better (e.g. in k-Colorability). We also note that in some of the cases and for certain valuesof �, one can obtain slightly better complexities (in terms of the dependence on �). This is doneby considering the complexity for constant �, and then amplifying the con�dence by repeating theexecution of the algorithm log(1=�) times.This notation is extended naturally to a set, C, of N -vertex graphs; that is,dist(G; C) def= minG02Cfdist(G;G0)gAnother notation used extensively in subsequent sections is the set of neighbors of a vertex v; thatis, �(v) def= fu : (v; u)2E(G)g. This notation is extended to sets of vertices in the natural manner;i.e., �(S) def= [v2S�(v).5.2 Our Algorithms and their Analyses.We present testers for Bipartiteness, k-Colorability (for k � 3), �-Clique, �-Cut (and �-k-Cut),�-Bisection and the General Graph Partition property. The latter generalizes all the former ones,but yields worse complexity bounds for the special cases. Also, the testers for �-Cut and �-k-Cut, which actually work by approximating the size of the maximum cut, generalize Bipartitenessand k-Colorability, respectively. However, the former have two-sided error probability and highercomplexity, whereas the latter can be directly tested with one-sided error probability.For all properties we also present linear (in N) time algorithms that, given a graph that hasthe property, �nd a partition that is approximately-good with respect to that property (e.g., inthe case of �-Clique, the algorithm �nds a set of size �N that misses few edges to being a clique).While these algorithm are clearly bene�cial when the corresponding approximation problems areknow to be hard, they are also meaningful in the case of Bipartiteness (where an exact e�cientalgorithm is known). This is true since in order to partition a dense bipartite graph, one has towork in time quadratic in N (i.e., linear in the number of edges), while we o�er an approximationalgorithm that works in time linear in N . The complexities of our algorithms are summarized inFigure 1.Common Themes. As mentioned in the introduction, our algorithms and their analyses share afew themes. In particular, all algorithms uniformly select a set of vertices and perform edge-queries21



only on pairs of vertices in the sample. In all cases the natural algorithm for the property, whichchecks whether the property (approximately) holds on the subgraph induced by the sample ofvertices, is indeed a testing algorithm for the property. However, only in the case of Bipartitenessand k-Colorability do we analyze directly the natural algorithm. For the other properties, wepresent and analyze more complex algorithms. However the correctness of the natural algorithmsfollows from the correctness of the algorithms that we present, and the resulting complexities ofthe former are only slightly higher than those of the latter.For all our testers, the sample of vertices is viewed as consisting of two parts { one part, denotedU, has the role of inducing partitions on V(G) (i.e., all graph vertices), and the other part, denotedS, evaluates these partitions. In the Bipartiteness and k-Colorability testers this view of the sampleis only taken in the analysis. In the other algorithms we explicitly use these two parts of the sampledi�erently. In particular, the latter algorithms consider all possible partitions of U. For each suchpartition of U, the second part of the sample, S, is partitioned according to a property-speci�c rulethat uses the neighborhood relations between vertices in S and vertices in U.12In all cases we want U to be representative of certain good partitions of V(G), which existwhenever G has the property that is being tested. The notion of a good partition depends on theproperty being tested, and the sense in which U is representative varies accordingly. For example,when testing �-Clique, a good partition of a graph G is (C;V(G) n C), where C is a clique of size�N . In this case U is representative if for almost all vertices v in the graph, if v neighbors allvertices in U\C, then it neighbors almost all neighbors in C. Note that we do not require that theabove hold for all vertices v, and this feature is common to all our de�nitions of a representativesample U. Consequently, U need be only of size poly(��1 log(1=�)), and so independent of N . Thisis especially important since most of our algorithms run in time exponential in jUj.Specific Themes. Though the algorithms and their analyses have much in common, there areseveral themes that are only shared by some of the algorithms. Consider �rst the Bipartite and thek-Colorability testers. As noted above, for both properties we directly analyze the natural algo-rithms, which uniformly select a small sample of vertices and check whether the induced subgraphis Bipartite (respectively, k-Colorable). These two algorithms have one-sided error as they alwaysaccept graphs that have the property. To show that with high probability the algorithms rejectgraphs that are far from having the property, we prove the counterpositive. Namely, that if a graphis accepted with probability greater than � then it is close to having the property. We do so byshowing that the partition of the sampled vertices found by the algorithm when accepting the graphcan be used to de�ne a good partition of all graph vertices (where this de�nition is constructive.)For all other properties we �rst describe an algorithm that actually partitions V(G). This graph-partitioning algorithm produces several (i.e., exp�poly� log(1=�)� ��) partitions of V(G) and outputsthe best one. The corresponding tester runs the graph-partitioning algorithm on a small sampleS and evaluates the resulting partitions of S. Thus S serves as a sample which approximates thequality of the graph-partitions (determined by the corresponding graph-partitioning algorithm).Let us hence focus in this introductory discussion on the graph-partitioning algorithms.In the case of �-Clique, the graph-partitioning algorithm tries to �nd an approximate �-clique(i.e., a set of vertices of size �N that is close to being a clique). To this end it selects a small sampleof vertices U, and for each subset U0 of U having size �2 � jUj, it considers all vertices that neighborevery vertex in U0. Assume �rst that G in fact has a clique C of size �N . The idea is that in sucha case, with high probability over the choice of U, the intersection of U and C will be of size at12In the �-Clique tester we slightly deviate from the above formula by using an additional sample of vertices thataids in partitioning S. 22



least �2 � jUj. Therefore, for some subset U0 of U, the set of vertices, T, that neighbor every vertexin U0 contains the clique C. However, T might contain many other vertices. Nonetheless, we canshow that if we order the vertices in T roughly according to their degree in the subgraph inducedby T, then the �rst �N vertices in this order will be close to being a clique. The above impliesthat if G has a clique of size �N then with high probability the algorithm �nds an approximateclique. On the other hand, if every subset of size �N in G is far from having a clique then no suchapproximate-clique exists.The graph-partitioning algorithms for �-Cut, �-Bisection and the General Partition propertywork in ` = O(1=�) stages, and consider a �xed (standard) equal-partition V1; : : : ;V` of V(G).13In the ith stage, the set Vi is partitioned. The partition of Vi is determined by a partition of Ui(which is part of the sample U), and possibly other varying parameters. For example, in the caseof �-Cut (where the partitioning algorithm actually �nds a close-to-maximum cut) the vertices inVi are partitioned as follows: The vertices that have more neighbors on side 1 of the partition ofUi are put on side 2 of the partition of Vi, and vica-versa. The fact that the algorithms partitiononly a set of size O(�N) in each stage (using a di�erent sample Ui) is essential to the proofs ofcorrectness of the algorithms.5.3 Two Technical ConventionsAs noted above, we representN -vertex graphs by theirN�N adjacency matrix. This representationis redundant and means that each edge appears twice. In some places this convention simpli�es theanalysis, but in others it results in the need to arti�cially double certain natural quantities. Stillwe believe we made the right choice.Our algorithms are presented as uniformly selecting sets of vertices of certain sizes (withoutrepetitions). However, the analysis refers to uniform and independent selection of a number ofvertices (with possible repetitions). Formally-inclined readers are thus encouraged to consider thealgorithms as selecting multisets (rather than sets) of the prescribed size. Other readers may justignore this point.6 Testing Bipartiteness and Vertex{ColorabilityIn Subsection 6.1 we describe an algorithm for testing the class, B, of bipartite graphs. This is aspecial case of testing k-Colorability, considered in the Subsection 6.2. We choose to present thecase of k = 2 separately because it is both simpler to describe, and it served as a good prelude tothe general case. Moreover, the algorithm presented fork = 2 has lower complexity (in terms of itsdependence on the distance parameter, �) than the one described in the Subsection 6.2.6.1 Testing BipartitenessWe start by describing a testing algorithm whose query complexity is O � log2(1=(��))�4 �. We laterpoint out how this algorithm can be slightly modi�ed so that its query complexity decreases toO � log2(1=(��))�3 �.Bipartite Testing Algorithm13In particular, this partition is de�ned according to lexicographical order (i.e. where each vertex is represented bya string of length log2N). We stress that this partition is arbitrary and has nothing to do with the desired partitiondetermined by the property being tested. 23



1. Choose uniformly a set, denoted X, of O� log(1=(��))�2 � vertices.2. For every pair of vertices v1; v2 2 X, query if (v1; v2) 2 E(G). Let GX be the induced subgraph.3. If GX is a bipartite graph then output accept, otherwise output reject .Before stating the main theorem of this subsection, we introduce the following de�nitions. Recallthat N is the number of vertices of G.De�nition 6.1 (violating edges and good partitions): We say that an edge (u; v) 2 E(G) is aviolating edge with respect to a partition (V1;V2) of V(G) if either u; v 2 V1 or u; v 2 V2. If apartition (V1;V2) has at most �N2 violating edges then we say that it is �-good. Otherwise, it is�-bad. A partition that has no violating edges is called perfect.Thus, if G is bipartite, then there exists a perfect partition of V(G), and if G is �-far from bipartitethen every partition of V(G) is �-bad.Theorem 6.2 The Bipartite Testing Algorithm is a property testing algorithm for the class of bi-partite graphs whose query complexity and running time are O� log2(1=(��))�4 �. Furthermore, if thetested graph G is bipartite then it is accepted with probability 1, and, with probability at least 1� �(over the choice of the sampled vertices), it is possible to construct an �-good partition of V(G) in(additional) time O� log(1=(��))� �N�,Proof: It is clear that if G is bipartite then any subgraph of G is bipartite and hence G willalways be accepted. Since it is possible to determine if GX is bipartite by simply performing abreadth-�rst-search (BFS) on GX, the bound on the running time of the testing algorithm directlyfollows. Note that if GX is bipartite then the BFS provides us with a perfect partition of X, whileif it is not bipartite, then it gives a certi�cate that G =2 B. This certi�cate is in form of a cycle ofodd length in GX, (which is also a cycle in G). Thus the heart of this proof is to show that if G is�-far from bipartite then the test will reject it with probability at least 1� �. To this end we provethe counter-positive of the previous statement: For any graph G, if the Bipartite Testing Algorithmaccepts G with probability greater than � then V(G) must have an �-good partition.We view the set of sampled vertices X as a union of two disjoint sets U and S, where t def= jUj =O � log(1=(��)� �, and m def= jSj = O � t+log(1=�)� �. The role of U, or more precisely of a given partition(U1;U2) of U, is to de�ne a partition of all of V(G). In particular, if the test accepts G, then weknow that X has a perfect partition, and we will be interested in the partition of U induced by thisperfect partition of X. The role of S is to test the partitions of V(G) de�ned by the partition of U inthe following sense. If a certain partition (V1;V2) of V(G), de�ned by a partition (U1;U2) of U, is�-bad, then with very high probability there is no partition (S1; S2) of S such that (U1[S1;U2[S2)is a perfect partition of X. We next make the above notions more precise.Given a partition (U1;U2) of U we de�ne the following partition (V1;V2) of V(G): let V1 def=�(U2), and V2 def= V(G) n �(U2). That is, V1 is the set of neighbors of U2, and V2 contains allneighbors of U1 (which are not neighbors of U2), as well as the rest of the vertices { namely thosewhich do not have a neighbor in U. Note that the partition of U is not relevant to the placement ofvertices which have no neighbor in U. Thus, we �rst ensure that most vertices in V(G) (or actuallymost \in
uential" vertices in V(G)) have a neighbor in U.24



De�nition 6.3 (in
uential vertices and covering sets): We say that a vertex v 2 V(G) is in
uentialif it has degree at least �3N . Recall that a degree of a vertex is the sum of its in-degree and its out-degree (which is twice its degree in the undirected representation of the graph). We call U a coveringset for V(G) if all but at most �6N of the in
uential vertices in V(G) have a neighbor in U (hereeach neighbor from which there is one outgoing edge, and one ingoing edge, is counted once).Note that in the above de�nition, we did not require of U that every in
uential vertex have aneighbor in U, but rather that this hold for almost all in
uential vertices. This slackness (whichappears in various form in our other algorithms as well) is what allows our algorithm to use asample size that is independent of the size of the graph.Claim 6.4 With probability at least 1� �=2, a uniformly chosen set U of size t = O � log(1=(��))� � isa covering set for V(G).Proof: Let t = �6�log(12=(��))� �. For a given in
uential vertex v, the probability that v does nothave any neighbor in a uniformly chosen set U of size t is at most�1� �6�t � exp��t � �6� = � � �12 : (2)Hence, the expected number of in
uential vertices that do not have a neighbor in a random set Uis ���12 �N , and by Markov's inequality (see Appendix B), the probability that there are more than�6N such vertices is less than �=2.Given a covering set U and a partition of U, we can concentrate on the violating edges betweenvertices in �(Ui), for i = 1; 2. The reason being that the total number of edges incident to verticesnot in �(U) is small. This motivates the following de�nition, where a useful partition of U impliesthat G has a good partition (see Lemma 6.8).De�nition 6.5 (useful partitions): Let U � V(G). A partition (U1;U2) of U is called �-useful (orjust useful) if jf(v; v0) 2 E(G) : 9i 2 f1; 2g s.t. v; v0 2 �(Ui)gj < �3 �N2 : (3)Otherwise it is �-unuseful.In other words, a partition of U is unuseful if there are too many violating edges among theneighbors either of U1 or of U2 in the corresponding partition de�ned on V(G). As the followingclaim shows, if (U1;U2) is an unuseful partition, then with high probability we shall see evidenceto its unusefulness in the sample S. The evidence is in form of an edge (v; v0) 2 S � S betweenneighbors of vertices in, say, U1. Let u 2 U1 (resp., u0 2 U1) be a neighbor of v (resp., v0). In caseu = u0 there is a triangle in GX (which means that the test would reject). In case u 6= u0, due tothe edge (v; v0), in any perfect partition of X = U [ S, u and u0 must belong to di�erent sides ofthe partition (and so (U1;U2) cannot be used in the partition of X = U [ S).Claim 6.6 Let U be a set of size t and let (U1;U2) be a �xed �-unuseful partition of U. Then fora uniformly chosen set S � V(G) of cardinality m = O � t+log(1=�)� �,PrS [8v; v0 2 S; i 2 f1; 2g : (v; v0) =2 E(�(Ui);�(Ui))] < � � 2�(t+1) :25



The claim says that if (U1;U2) is an �-unuseful partition of U then with very high probability thereexists no partition of S so that the combined partition of X = U [ S (respecting (U1;U2)) is aperfect partition of the subgraph induced by X.Proof: If (U1;U2) is an �-unuseful partition, then by Eq. (3):Prv;v0 [9i 2 f1; 2g s.t. (v; v0) 2 E(�(Ui);�(Ui))] � �3 : (4)Since S can be chosen by drawing m2 independent random pairs of vertices (v; v0),PrS[8v; v0 2 S; i 2 f1; 2g : (v; v0) 62 E(�(Ui);�(Ui))] � �1� �3�m=2= exp (�
(t+ log(1=�)))< � � 2�(t+1)Since there are 2t possible partitions of U, using Claim 6.6, we haveCorollary 6.7 For every set U of size t, if all partitions of U are �-unuseful, then with probabilityat least 1� �=2 there is no perfect partition of X = U[ S, where S is chosen uniformly. (In such acase GX is found to be non-bipartite, and the test rejects G).On the other hand, if U has a useful partition, denoted (U1;U2), and U is a covering set for V(G),then this partition induces a good partition of the entire graph. More precisely,Lemma 6.8 For every graph G, if there exists a covering set U of V(G), which has an �-usefulpartition (U1;U2), then G is �-close to bipartite. In particular, the following partition (V1;V2) ofV(G) is �-good: V1 def= �(U2), V2 def= V(G) n �(U2).Proof: Let us count the number of violating edges with respect to the partition (V1;V2):� Edges incident to non-in
uential vertices: There are at mostN such vertices and by de�nitioneach has at most �3N incident edges, giving a total of �3N2.� Edges incident to in
uential vertices which do not have neighbors in U: Since U is a coveringset, there are at most �6N such vertices and each has at most 2N incident edges, totaling to�3N2.� Violating edges which are incident to neighbors of U. We consider two cases{ Edges of the form (v; v0) 2 E(V1;V1). Since V1 = �(U2), these edge have both end-pointsin �(U2).{ Edges of the form (v; v0) 2 E(V2;V2). By de�nition of V2, both v and v0 are not in�(U2). However, since v; v0 2 �(U) it follows that these edges have both end-points in�(U1).By the �-usefulness of (U1;U2), there are at most �3N2 such vertices.26



Thus we have a total of at most �N2 violating edges, as required.Combining Lemma 6.8 with Claim 6.4 and Corollary 6.7, we complete the proof of Theorem 6.2 asfollows. If G is accepted with probability greater than �, then, by Claim 6.4, the probability that Gis accepted and U is a covering set is greater than �=2. Thus, there exists a covering set U 2 V(G),such that if U is chosen, then G is accepted with probability greater than �=2 (where here theprobability is taken only over the choice of S). But in such a case it follows from Corollary 6.7 that(the covering set) U must have a useful partition, and we can apply Lemma 6.8 to show that Gmust be �-close to bipartite.Finally, let G be a bipartite graph, and let (V1;V2) be a perfect partition of V(G). Then,for every covering set U of V(G) (where such a set is chosen with probability at least 1 � �=2),there exists a partition (U1;U2) of U, such that U1 � V1 and U2 � V2. Thus, necessarily,(U1;U2) is a useful partition of U which by Lemma 6.8 de�nes an �-good partition of V(G).Furthermore, given such a partition of a covering set U, for every set S there exists a perfectpartition of U [ S, of the form (U1 [ S1;U2 [ S2). On the other hand, by Claim 6.6, for anyset U, with probability at least 1 � �=2 over the choice of S, there will be no perfect parti-tion of U [ S which induces an unuseful partition of U. Therefore, with probability at least1 � � over the choice of U and S, the testing algorithm (using BFS) will �nd a perfect parti-tion of U [ S that induces a useful partition of U, which can then be used to construct an �-good partition of V(G) (as de�ned in Lemma 6.8) in time O(jUj � N) = O(��1 log(1=(��))) � N .(Theorem 6.2)Improving the Query Complexity. We can save a factor of 1=� in the query complexity andin the running time of the testing algorithm. This is done simply by observing that we do notneed to perform queries for all pairs of vertices in S. Instead we can choose S to be a uniformlydistributed random sample of m=2 pairs of vertices . We then need only to query which of thesem2 = O� log(1=(��))�2 � pairs are edges, as well as query all m � t = O� log2(1=(��))�3 � pairs (u; v) whereu 2 U and v 2 S. Note that the proof of Theorem 6.2 does not refer to any edges between verticesin S, except for the m2 pairs mentioned above (which are used for establishing Claim 6.6).Impossibility of Testing Without Queries. A natural question that may arise is whetherqueries are really necessary for testing bipartiteness, or perhaps it might be possible to test thisproperty from a random labeled sample (of pairs of vertices) alone. We show that queries are infact necessary in the sense that any testing algorithm which uses only a random sample (of pairsof vertices) must have very large sample complexity. More precisely:Proposition 6.9 Any property testing algorithm for the class of bipartite graphs which observesonly a random labeled sample, must have sample complexity 
(pN).Proof: Consider the following two classes of graphs: G1 is the class of all complete bipartite graphsG in which both sides are of equal cardinality. That is, V(G) = V1 �[ V2, jV1j = jV2j = N=2, andE(G) = f(v1; v2) : v1 2 Vi; v2 2 Vj; i 6= jg. G2 is the class of graphs which consist of two disjointcliques of size N=2. That is, V(G) = V1 �[ V2, jV1j = jV2j = N=2, and E(G) = f(v; v0) : v; v0 2V1 or v; v0 2 V2g. Clearly, all graphs in G2 are 14 -far from bipartite. Note that all graphs in bothclasses have the same edge density, since every vertex has degree N . Intuitively, we want to showthat if the edge-labeled sample is not large enough then a hypothetical property testing algorithmcannot distinguish between random samples labeled by graphs in G1 and random sample labeledby graphs in G2. 27



For simplicity, let us �x � to be 1=4. Then, by de�nition, a property testing algorithm for theclass of bipartite graphs should accept each G 2 G1 with probability at least 3=4, and should accepteach G 2 G2 with probability less than 1=4. Therefore, the di�erence in acceptance probabilitybetween an arbitrary G 2 G1 and an arbitrary G 2 G2 must be greater than 1=2. Since the aboveshould be true for any pair of graphs taken from the two classes, it should hold for a random pair ofgraphs chosen from the two classes. Suppose we �rst draw an unlabeled random sample of m pairsof vertices, and then label it by a graph G chosen randomly either from the class G1 or from theclass G2. Assume �rst that the sample is such that no vertex appears in more than one pair in thesample. Then, regardless of whether G was chosen uniformly in G1 or in G2, each of the 2m possiblelabeling of the sample has equal probability. If the sample does include two pairs that share avertex, then we cannot make such a claim. Let us say in this case that the sample is informative.However, the probability that a random sample of size m is informative is at most �m2 � � 2N < m2N .By the argument made above on non-informative samples, the di�erence between the acceptanceprobability of a random graph in G1 and the acceptance probability of a random graph in G2 is atmost the probability that a random sample is informative. But in order that this probability begreater than 1=2, the size of the random sample must be greater than pN=2.6.2 Testing k-Colorability (k > 2)In this subsection we present an algorithm for testing the k-Colorability property for any given k.Namely, we are interested in determining if the vertices of a graph G can be colored by k colors sothat no two adjacent vertices are colored by the same color, or if any k-partition of the graph hasat least �N2 violating edges (i.e. edges between pairs of vertices which belong to the same side ofthe partition).The test itself is analogous to the bipartite test described in the previous subsection: We samplefrom the vertices of the graph, query all pairs of vertices in the sample to �nd which are edgesin G, and check if the induced subgraph is k-Colorable. The query complexity of the algorithmis polynomial in 1=�, log(1=�) and k. In lack of e�cient algorithms for k-Colorability, for k � 3,we use the obvious exponential-time algorithm on the induced subgraph (which is typically small).Note that the number of queries made is larger than in the (improved) Bipartite Tester (i.e., by afactor of eO(k4=�3)).k-Colorability Testing Algorithm1. Choose uniformly set of O �k2(log(k=�)�3 � vertices, denoted X.2. For every pair of vertices v1; v2 2 X, query if (v1; v2) 2 E(G). Let GX be the induced subgraph.3. If GX is k-Colorable then output accept , otherwise output reject .Similarly to the bipartite case, we de�ne violating edges and good k-partitions.14De�nition 6.10 (violating edges and good k-partitions): We say that an edge (u; v) 2 E(G) isa violating edge with respect to a k-partition � : V(G) ! [k] if �(u) = �(v). We shall say that ak-partition is �-good if it has at most �N2 violating edges (otherwise it is �-bad). The partition isperfect if it has no violating edges.14k-partitions are associated with mappings of the vertex set into the canonical k-element set [k]. The partitionassociated with � : V(G) ! [k] is (V1 def= ��1(1); : : : ;Vk def= ��1(k)). We shall use the mapping notation �, and theexplicit partition notation (V1; : : : ;Vk), interchangeably.28



Theorem 6.11 The k-Colorability Testing Algorithm is a property testing algorithm for the class ofk-Colorable graphs whose query complexity and running time areO k4 � log2(k=�)�6 ! and exp O k2 � log2(k=�)�3 !!respectively. If the tested graph G is k-Colorable, then it is accepted with probability 1, and withprobability at least 1 � � (over the choice of the sampled vertices), it is possible to construct an�-good k-partition of V(G) in (additional) time O � log(k=�)�2 � �N .Proof: If G is k-Colorable then every subgraph of G is k-Colorable, and hence G will always beaccepted. As in the bipartite case, the crux of the proof is to show that every G which is �-far fromthe class of k-Colorable graphs, denoted Gk, is rejected with probability at least 1� �. Again, weestablish this claim by proving its counter-positive. Namely, that every G which is accepted withprobability greater than �, must be �-close to Gk. This is done by giving a (constructive) proofof the existence of an �-good k-partition of V(G). Hence, in case G 2 Gk, we also get an e�cientprobabilistic procedure for �nding an �-good k-partition of V(G). Note that if the test rejects Gthen we have a certi�cate that G =2 Gk, in form of the (small) subgraph induced by X which is notk-Colorable.We view the set of sampled vertices X as a union of two disjoint sets U and S, where U is a unionof ` (disjoint) sets U1; : : : ;U`, each of size m. The size of S ism as well, wherem = O(`���1 log(k=�))and ` = d4k=�e. The roles of U and S are analogous to their roles in the bipartite case. The set U(or rather a k-partition of U) is used to de�ne a k-partition of V(G). The set S ensures that withhigh probability, the k-partition of U which is induced by the perfect k-partition of X = U [ S,de�nes an �-good partition of V(G).In order to de�ne a k-partition of V(G) given a k-partition of U, we �rst introduce the notionof a clustering of the vertices in V(G) with respect to this partition of U. More precisely, we de�nethe clustering based on the k-partition of a subset U0 � U (which is determined later), where thispartition, denoted (U01; : : : ;U0k), is the one induced by the k-partition of U. The clustering is de�nedso that vertices in the same cluster have neighbors in the same components of the partition of U0.For every A � [k], the A-cluster, denoted CA, contains all vertices in V(G) which have neighbors inU0i for every i 2 A (and do not have neighbors in the other U0i's). The clusters impose restrictionson possible extensions of the partition of U0 to partitions (V1; : : : ;Vk) of V(G), which do not haveviolating edges incident to vertices in U0. Namely, vertices in CA should not be placed in any Visuch that i 2 A. As a special case, C; is the set of vertices that do not have any neighbors in U0(and hence can be put in any component of the partition). In the other extreme, C[k] is the set ofvertices that in any extension of the partition of U0 will cause violations. For each i, the vertices inC[k]nfig are forced to be put in Vi, and thus are easy to handle. In the bipartite case we focused onthe clusters Cf1g and Cf2g, where vertices in Cfig were forced to the side opposite to i. (The clusterC; was explicitly shown to be unimportant and the cluster C1;2 was dealt with implicitly.) In thecase of k-Coloring the situation is more complex. In particular, the clusters CA where jAj < k � 1do not force a placement of vertices.De�nition 6.12 (clusters): Let U0 be a set of vertices, and let �0 be a perfect k-partition of U0.De�ne U0i def= fv2U : �0(v)= ig. For each subset A � [k] we de�ne the A-cluster with respect to �0as follows: CA def=  \i2A�(U0i)! n  [i=2A�(U0i)! : (5)29



The relevance of the above clusters becomes clear given the following de�nitions of extendingand consistent partitions.De�nition 6.13 (consistent extensions): Let U0 and �0 be as above. We say that a k-partition �of V(G) extends a k-partition �0 of U0 if �(u) = �0(u) for every u 2 U0. An extended partition � isconsistent with �0 if �(v) 6= �0(u) for every u 2 U0 and v 2 �(u) n C[k], where C[k] is the [k]-clusterwith respect to �0.Thus, each vertex v in the cluster CA (with respect to �0 de�ned on U0) is forced to satisfy �(v) 2�A def= [k] n A, for every k-partition � which extends �0 in a consistent manner. There are norestrictions regarding vertices in C; and vertices in C[k] (the latter is guaranteed arti�cially inthe de�nition and the consequences will have to be treated separately). For v 2 C[k]�fig theconsistency condition forces �(v) = i, but unlike the bipartite case we cannot ignore the A-clusterswith jAj < k � 1.We now focus on the main problem of the analysis. Given a k-partition of U, what is a goodway to de�ne a k-partition of V(G)? Our main idea is to claim that with high probability the setU contains a subset U0 so that the clusters with respect to the induced k-partition of U0 determinewhatever needs to be determined. That is, if these clusters allow to place some vertex in a certaincomponent of the partition, then doing so does not introduce too many violating edges. The �rststep in implementing this idea is the notion of a restricting vertex. A vertex v 2 CA is restrictingif for every i 2 �A, adding v to U0i (and thus to U0) will cause many of its neighbors to move toa cluster corresponding to a bigger subset. That is, v's neighbors in the B-cluster (with respectto (U01; : : : ;U0k)) move to the (B [ fig)-cluster (with respect to (U01; : : : ;U0i [ fvg; : : : ;U0k)). Moreprecisely,De�nition 6.14 (restricting vertex): A pair (v; i), where v 2 CA, A 6= [k] and i 2 �A is saidto be restricting with respect to a k-partition �0 of U0 if v has at least �4N neighbors in [B:i=2BCB.Otherwise, (v; i) is non-restricting. A vertex v 2 CA, A 6= [k], is restricting with respect to �0 if forevery i 2 �A, the pair (v; i) is restricting. Otherwise, v is non-restricting. As always, the clustersare with respect to �0.Given a perfect k-partition of U, we construct U0 � U in steps starting with the empty set. At stepj we add to U0 a vertex u 2 Uj (recall that U = U1 �[ : : : �[ U`), which is a restricting vertex withrespect to the k-partition of the current set U0. If no such vertex exists, the procedure terminates.When the procedure terminates (and as we shall see it must terminate after at most ` steps), wewill be able to de�ne, based on the k-partition of the �nal U0, an �-good k-partition of V(G). Theprocedure de�ned below is viewed at this point as a mental experiment. Namely, it is provided inorder to show that with high probability there exists a subset U0 of U with certain desired properties(which we later exploit). We later discuss how to implement this procedure when we are actuallyinterested in choosing U0 for the purposes of partitioning all of V(G) e�ciently.Restriction Procedure (Construction of U0)Input: a perfect k-partition of U = U1; : : : ;U`.1. U0  ;.2. For j = 1; 2; : : : do the following. Consider the current set U0 and its partition �0 (induced bythe perfect k-partition of U).� If there are less than �8 �N restricting vertices with respect to �0 then halt and outputU0. 30



� If there are at least �8 �N restricting vertices but there is no restricting vertex in Uj , thenhalt and output an error symbol.� Otherwise (there is a restricting vertex in Uj), add the �rst (by any �xed order) restrict-ing vertex to U0 (and proceed to the next iteration).Claim 6.15 For every U and every perfect k-partition of U, after at most ` = d4k=�e iterations,the Restriction Procedure halts and outputs either U0 or error.Proof: If the procedure has not halted (and output an error symbol), then in each iterationa restricting vertex is added to U0 causing at least �4 � N vertices in V(G) to move to a clustercorresponding to a bigger subset. Since each vertex can be moved at most k times (before itbelongs to C[k]), the maximal number of iterations before the procedure halts is 4k=�.Before we show how U0 can be used to de�ne a k-partition � of V(G), we need to ensure that withhigh probability, the restriction procedure in fact outputs a set U0 and not an error symbol. To thisend we �rst extend the notion of covering set to the context of k-Coloring. Though the notion heremay seem somewhat remote from the one used in the Bipartite case, it can be shown that the twoare related.De�nition 6.16 (covering sets { for k-Coloring): We say that U is a covering set for V(G), if forevery perfect k-partition of U, the Restriction Procedure, given this partition as input, halts withan output U0 � U (rather than an error symbol).In other words, U is such that for every perfect k-partition of U and for each of the at most `iterations of the procedure, if there exist at least �8 � N restricting vertices with respect to thecurrent partition of U0, then Uj will include at least one such restricting vertex.Lemma 6.17 With probability at least 1��=2, a uniformly chosen set U of size `�m = O �k2 log(k=�)�3 �is a covering set.Proof: Let us �rst consider a single iteration of the Restriction Procedure. If there are at least�8 �N restricting vertices with respect to the partition �0 of the current U0, then the probability thatin a uniformly chosen sample of size m (= jUjj) there will be no restricting vertex with respect to�0, is at most (1� �8)m. By our choice of m = O(` � ��1 log(k=�)), the latter is bounded by �2k�`.Thus, the lemma reduces to proving that, for every j, the number of possible pairs (U0; �0) that weneed to consider for the jth iteration is at most kj�1.We shall prove the above claim inductively. Let the set U0 at the start of iteration j (beforeadding a new restricting vertex to it) be denoted by U0(j � 1), and let its partition be denoted by�0j�1. For the base case, j = 1, the set U0(0) is empty and the claim trivially holds. Assumingthe claim holds for j � 1, we now prove it for j. In the jth iteration, for each of the possiblepairs (U0(j � 1); �0j�1), such that there exist at least �8 �N restricting vertices with respect to �0j�1,the vertex uj 2 Uj which is the �rst restricting vertex in Uj , is uniquely de�ned.15 Hence, foreach such pair (U0(j � 1); �0j�1), there is a single possible extension U0(j) of U0(j � 1), namely,U0(j) = U0(j � 1) [ fujg. The new partition, �0j which extends �0j�1 can be one of at most kpossibilities (depending only on �0j(uj)).De�nition 6.18 (closed partitions): Let U0 be a set and �0 a k-partition of it. We call (U0; �0)closed if there are less than �8 �N restricting vertices with respect to �0.15It may be the case that no such restricting vertex exists in Uj, but the probability for this event has been boundedabove. 31



Clearly, if the Restriction Procedure outputs a set U0 then this set together with its (induced)partition are closed. If (U0; �0) is closed, then most of the vertices in V(G) are non-restricting. Recallthat a non-restricting vertex v, belonging to a cluster CA, A 6= [k], has the following property. Thereexists at least one index i 2 �A, such that (v; i) is non-restricting. It follows from De�nition 6.14that for every consistent extension of �0 to � which satis�es �(v) = i there are at most �2N violatingedges incident to v.16 However, even if v is non-restricting there might be indices i 2 �A such that(v; i) is restricting, and hence there may exist a consistent extensions of �0 to � which satis�es�(v) = i in which there are more than �2N violating edges incident to v. Therefore, we needto de�ne for each vertex its set of forbidden indices which will not allow to have �(v) = i for arestricting pair (v; i).De�nition 6.19 (forbidden sets): Let (U0; �0) be closed and consider the clusters with respect to�0. For each v 2 V(G)nU0 we de�ne the forbidden set of v, denoted Fv, as the smallest set satisfying� Fv � A, where v 2 CA.� For every i 2 �A, if v has at least �4 �N neighbors in the clusters CB for which i =2 B, then i isin Fv.For u 2 U0, de�ne Fu = [k] n f�0(u)g.Lemma 6.20 Let (U0; �0) be an arbitrary closed pair and Fv's be as in De�nition 6.19. Then:1. jfv : (v =2 C[k]) ^ (Fv = [k])gj � �8N .2. Let � be any k-partition of V(G) n fv : Fv = [k]g such that �(v) =2 Fv, for every v 2 V(G).Then, the number of edges (v; v0) 2 E(G) for which �(v) = �(v0) is at most �2 �N2.The lemma can be thought of as saying that any k-partition which respects the forbidden sets isgood (i.e., does not have many violating edges). However, the partition applies only to vertices forwhich the forbidden set is not [k]. The �rst item tells us that there cannot be many such verticeswhich do not belong to the cluster C[k]. We deal with vertices in C[k] at a later stage.Proof: The �rst item follows from the closeness of (U0; �0). Namely, if Fv = [k] and v =2 C[k] thenby the second item of De�nition 6.19 it follows that for every i 2 �A, vertex v has at least �4 � Nneighbors in clusters CB such that i =2 B. But in this case, it is a restricting vertex with respect to�0. By De�nition 6.18 as applied to (U0; �0), there are at most �8 �N such vertices.For the second item, consider a vertex v such that �(v) = i and so v 2 CA where i =2 Fv � A.All edges (v; u) and (u; v) such that u 2 CB and i 2 B cannot be violating edges since i 2 Fu (bythe �rst item in De�nition 6.19). As for edges (v; u) and (u; v) where u 2 CB and i =2 B, vertex vcan have at most �2 �N such edges (according to the second item in De�nition 6.19). The total ofviolating edges is hence at most �2 �N2.We next show that with high probability over the choice of S, the k-partition �0 of U0 (inducedby the k-partition of U [ S) is such that C[k] is small. This implies that all the vertices in C[k](which were left out of the partition in the previous lemma) can be placed in any component of thepartition without contributing too many violating edges (which are incident to them).16First note that by de�nition of a consistent extension, no vertex in cluster CB, where i 2 B, can have �-value i.Thus, all violated edges incident to v are incident to vertices in clusters CB so that i =2 B. Using the de�nition of arestricting pair (v; i), we are done. 32



De�nition 6.21 (useful k-partitions): We say that a pair (U0; �0) is �-useful if jC[k]j < �8N . Oth-erwise it is �-unuseful.The next claim follows from our choice of m and the above de�nition.Claim 6.22 Let U0 be a �xed set of size ` and �0 be a �xed k-partition of U0 so that (U0; �0) is�-unuseful. Let S be a uniformly chosen set of size m. Then, with probability at least 1 � �2k�`,there exists no perfect k-partition of U0 [ S which extends �0.Proof: By de�nition, for C[k] de�ned based on (U0; �0), we have jC[k]j � �8 �N , and so a uniformlychosen S contains a vertex in C[k] with the claimed probability, in which any extension of �0 to Sis non-perfect.By the same argument applied in the proof of Lemma 6.17, we have that the number of possibleclosed pairs (U0; �0) determined by all possible k-partitions of U is at most k`. Therefore we getthe following corollary to the above claim:Corollary 6.23 If all closed pairs (U0; �0) which are determined by all possible k-partitions of Uare unuseful, then with probability at least 1��=2 over the choice of S, there is no perfect k-partitionof X = U [ S.We can now wrap up the main pair of the proof of Theorem 6.11. If G is accepted withprobability greater than �, then by Lemma 6.17, the probability that it is accepted and U is acovering set is greater than �=2. In particular, there must exist at least one covering set U, suchthat if U is chosen then G is accepted with probability greater than �=2 (with respect to the choiceof S). That is, (with probability greater than �=2) there exists a perfect partition of U [ S. But insuch a case (by applying Corollary 6.23), there must be a useful closed pair (U0; �0) (where U0 � U).If we now partition V(G) as described in Lemma 6.20, where vertices with forbidden set [k] areplaced arbitrarily, then from the two items of Lemma 6.20 and the usefulness of (U0; �0) it followsthat there are at most �N2 violating edges with respect to this partition. This completes the mainpart of the proof and the rest refers to the e�cient procedure for �nding �-good partitions.Similar to the bipartite case, if G 2 Gk, then with probability at least 1� � (over the choice ofU and S), the k-Coloring of GX (recall that X = U [ S) is such that the induced (perfect) coloringof U determines a useful pair (U0; �0) which can be used to determine a partition of V(G). Detailsfollow.Efficient Construction of an �-Good k-Partition of V(G). For the e�cient implementa-tion, we assume the testing algorithm is run with distance parameter �=2 and con�dence parameter�=2. The main point we need to address is the question of e�ciently implementing the Restrict-ing Procedure (i.e., constructing U0 given U and a perfect k-partition of U), and the de�nition offorbidding sets. We �rst observe, that in the Restricting Procedure we do not actually need todetermine (in each iteration) if there are more or less than �8 �N restricting vertices. Since we knowthat with high probability Uj contains a restricting vertex if many such vertices exist, we needonly scan Uj in search for such a vertex. Note that no harm is done when despite the fact thatthere are too few restricting vertices in iteration j nevertheless Uj contains one. This is true sincethe bound on the number of iterations performed by the Restriction Algorithm, is unrelated to theactual number of restricting vertices in each iteration.In order to recognize restricting vertices, we do the following. We uniformly select ` sets ofvertices, W1; : : : ;W`, each of size � �k log(k=(��))�2 �. Consider the jth iteration of the restricting33



procedure, where we search for a restricting vertex in Uj (with respect to the current U0 and �0).Using Wj we approximate, for each u 2 Uj , and each i 2 �A (where u 2 CA), how many neighborsdoes u have in B-clusters such that i =2 B. To do so we simply perform queries on all pairs ofvertices in U0 �Wj, and all pairs in Uj �Wj. For each u 2 Uj , let R(u; i) be the set of neighborsof u in Wj that belong to B-clusters such that i =2 B. If for some u 2 Uj, jR(u; i)j=jWjj � 3�=8for every i 2 �A, then we conclude that u is a restricting vertex, and we select the �rst such vertexin Uj to add to U0. By our choice of the size of each Wj and an additive Cherno� bound, withprobability at least 1� �=4, for every j, if Uj contains a restricting vertex then it will be detected.Furthermore, any vertex in Uj that is considered as restricting in fact has at least �8 �N neighbors(in V(G)) that belong to B-clusters such that i =2 B, for every i 2 �A. Note that the �rst such vertexis uniquely determined by the set Wj, and that the time for implementing the restriction procedureis negligible with respect to the running time of the testing algorithm.Once U0 is constructed, we cluster all vertices in V(G) according to U0 and �0. To do so we simplyperform all queries between vertices in V(G) and U0. As for implementing the de�nition of forbiddensets, here each vertex v 2 V(G) samples its neighbors to determine Fv. Namely, for each vertex vwe select a sample of � � log(k=(��))�2 � vertices, and approximate, for each i 2 �A (where v 2 CA), thenumber of neighbors that v has in B-clusters such that i =2 B. The expected number of vertices v forwhich these approximations di�er signi�cantly from the expected value is O(�� �N), and hence withprobability at least 1� �=4, there are �4 �N vertices for which these approximations are in fact farfrom correct. Adding the contribution of these vertices to the number of violating edges accountedby Lemma 6.20 and Claim 6.22, we get an �-good partition. The running time is hence governedby the implementation of the forbidden sets, and is O � log(k=(��))�2 � �N . (Theorem 6.11)7 Testing Max-CliqueLet !(G) denote the size of the largest clique in graph G, and C� def= fG : !(G) � � � jV(G)jg be theset of graphs having cliques of density at least �. Recall that N def= jV(G)j. The main result of thissection is:Theorem 7.1 There exists a property testing algorithm, A, for the class C� whose query complexityand running time areO log2(1=(��))�2�6 ! and exp�O� log(1=(��))��2 ��respectively. In particular, A uniformly selects O � log(1=(��))��4 � vertices in G and queries the oracleonly on the existence of edges between (some of) these vertices. In case G 2 C�, one can alsoretrieve in time O � log(1=(��))��2 � �N a set of � �N vertices in G which is almost a clique (in the sensethat it lacks at most � �N2 edges to being a clique).Theorem 7.1 is proven by presenting a seemingly unnatural algorithm/tester (see below). However,as a corollary, we observe that the \natural" algorithm, which uniformly selects poly(��1 log(1=�))many vertices and accepts i� they induce a subgraph with a clique of density � � �2 , is a validC�-tester as well.Corollary 7.2 Let q(�; �) be the query complexity of algorithm A guaranteed by Theorem 7.1 (i.e.,q(�; �) = poly(��1 log(1=�))), and let �; �; � > 0. Let R be a uniformly selected set of m def= 20 �q(�=2; �=5) vertices in V (G), and GR be the subgraph (of G) induced by R. Then,34



� if G 2 C� then PrR[!(GR) � (�� �=2) �m] < �.� if dist(G; C�) > � then PrR[!(GR) � (�� �=2) �m] < �.Proof: Our presentation presupposes that A is given oracle access to a graph whose vertices maybe an arbitrary subset of [V(G)]. If one insists that A only tests graphs with jV(G)j vertices thenanother auxiliary trick is needed. Instead of providing A with oracle access to GR (as done below),we provide it with oracle access to a graph in which each vertex of GR is duplicated jV(G)jjRj timesand edges are duplicated in the natural manner.With the above technicality being settled, let us present the underlying ideas of the proof. The�rst item follows easily from the fact that q(�; �) = 
(��2 log(1=�)) (as such a sample is likely tohit enough vertices of the clique). The issue is the second item. The basic idea is that if GR hasa clique of size �0 def= �� �2 and we were to run A on it (with density parameter �0), then A wouldaccept with high probability. On the other hand, when A is invoked on G (with density parameter�0 and distance parameter �=2), algorithm A rejects with high probability. Loosely speaking, thesetwo facts stand in contradiction since the samples that A sees in the two cases are statistically close.Actually, the above would be true if we were to set m = O(q(�=2; �=5)2) (as done in preliminaryversions of this paper), as in both cases A would be likely to see a uniformly distributed set ofq(�=2; �=5) distinct vertices. This however does not happen with m = O(q(�=2; �=5)), since whensampling GR algorithmA is likely to see several occurrences of some vertices (whereas this is unlikelywhen sampling G). Thus, we start by presenting an interface between the graph and algorithm A.Loosely speaking, the interface obtains a sample 10 times bigger than what is required by A, andpasses to A a uniformly chosen subset of the required size consisting of distinct vertices.Interface to A: We use the fact that q(�=2; �=5) > 2 log(5=�) (otherwise we would have needed toincrease the size of m). Let q def= q(�=2; �=5), and suppose that q < N=2 (as otherwise we can justscan the entire graph). Given a sample of 10q vertices (with possible repetitions), the interfacepasses on the �rst q distinct vertices, and aborts if such elements do no exists. We adopt theconvention by which whenever the interface aborts, the (modi�ed) algorithm accepts.Comment: Actually, we need to further modify the above interface so that collisions may occurwith small probability, as would be the case when sampling independently q elements from V(G).This is easy to do (e.g., one always passes the �rst vertex, and for i = 2; :::; q and j = 1; :::; i� 1,one repeats the jth element in the ith location with probability 1=N and otherwise passes the ithelement). In the rest of the proof we ignore this modi�cation of the interface.Claim 1: Suppose that q � m=2, and that S is a set of m distinct elements. Then, the probabilitythat the interface aborts when given a sample of 10q elements uniformly and independently selectedin S is smaller than �=5.Proof: It su�ces to upper bound the probability that a random multiset of 10q elements selectedin a set of size 2q contains less than q distinct elements. Let �i represent the event that eitherthe i � 1 �rst multiset elements contain at least q distinct elements or the ith element in themultiset is di�erent from each of the previous ones. Clearly, Pr[�i = 1jPj<i �j < q] � 1=2, whereasPr[�i = 1jPj<i �j � q] = 1. Note that Pr[P10qi=1 �i < q] represents the probability of aborting.Pr"10qXi=1 �i < q# < q�1Xs=1 10qs ! � 0:510q�s< 2q�1 � exp ��2 � (0:5� 0:1)2 � 10q�< 2�q=235



which is at most �=5 as required.Claim 1 will be applied both with respect to the set V(G), and with respect to the subset R as inthe statement of the corollary. The next claim refers to the latter set R, and is quite obvious.Claim 2: Suppose that q � m=2, and suppose that the interface is given a uniformly selected setR � V(G) of size m. Then conditioned on not having aborted, the interface passes on a set of qvertices which is uniformly distributed among all such subsets of V(G).We now turn to the actual claims of the corollary. As stated above, the �rst item is obvious(given that q(�=2; �=5) = 
(��2 log(1=�))). Our aim is to prove the second item. Suppose thatdist(G; C�) > �, and consider what happens if we were to run A, through the interface, on GR withdensity parameter �0 = � � �=2, distance parameter �0 = �=2 and con�dence parameter �0 = �=5.In such a case, algorithm A requires a sample of size q = q(�0; �0), which is supplied by taking arandom sample of 10q vertices of R and passing them through the interface to A. By Claim 1, theinterface aborts with probability less than �=5. By Claim 2, for a uniformly selected R, conditionedon the abort event not happening, algorithm A obtains a sample which is identically distributedto the sample it obtains when testing G under the same set of parameters, denoted �0 def= (�0; �0; �0).Denoting by B the composition of the interface with A, we conclude that��PrR[BGR(�0) = 1]� Pr[BG(�0) = 1]�� < �5 (6)Observe that dist(G; C�0) > �=2 (as otherwise there exists G0 2 C�0 so that dist(G;G0) � �=2,whereas dist(G0; C�) � ��=2 for all G0 2 C�0 = C��(�=2)). Using this fact, Eq. (6) and the fact thatthe interface increases the success probability of A by at most �5 , we havePrR[BGR(�0) = 1] < Pr[BG(�0) = 1] + �5< Pr[AG(�0) = 1] + 2 � �5< �5 + 2�5On the other hand, using the fact that B's accepting probability is lower bounded by that of A, wehave, PrR[BGR(�0) = 1] � PrR[!(GR) > �0 �m] � minG0:!(G0)>�0�mfPr[BG0(�0) = 1]g> PrR[!(GR) > �0 �m] � �1� �5�We conclude that PrR[!(GR) > �0 �m] < PrR[BGR(�0) = 1]1� (�=5)< 2�5 + 3�5as required. This completes the proof of Corollary 7.2.We start by presenting and analyzing an algorithm that, given a graph G that has a clique ofsize �N , �nds a set of vertices of size �N that is close to being a clique Namely, for any given �36



and �, with probability at least 1 � �, the algorithm �nds a set of vertices of size �N , such thatthere are at most �N2 pairs of vertices in this set that are not connected by an edge. Our testingalgorithm builds on this algorithm, which we call the Approximate-Clique Finding algorithm. TheApproximate-Clique Finding algorithm (described in Figure 2) runs in time proportional toN2. Welater show how an approximate clique can be found in time linear in N as asserted in Theorem 7.1.Throughout the analysis we assume that � < �2 (as otherwise dist(G; C�) � �2 � � for every graphG).Notation: Let C�N denote the class of N -vertex graphs consisting of a clique of size �N and(1 � �) �N isolated vertices. In the sequel, we denote by dist(G0; C�N) the relative distance (as afraction of N2) between a graph G0 and C�N . In case G0 contains less than N vertices we augmentit by N � jV(G0)j isolated vertices. In all cases jV(G0)j � N . With slight abuse of notation, for aset X � V(G), we let dist(X; C�N) denote the relative distance between the subgraph of G inducesby X and C�N .7.1 The Approximate-Clique FinderA Mental Experiment. To motivate our algorithm we start with the following mental exper-iment. Assume that G has a clique C of size �N . Suppose we had an oracle that would tell usfor every given vertex v whether v is a neighbor of every vertex in C. By querying the oracle oneach vertex in the graph, we could determine the set of vertices, denoted T(C), that neighbor everyvertex in C. Note that since C is a clique, C is a subset of T(C). Unfortunately there might bemany other vertices in T(C) that do not belong to C. However, assume that we order the vertices inT(C) according to their degree in the subgraph induced by T(C) (breaking ties arbitrarily), and letC0 be �rst �N vertices according to this order. Then we claim that C0 is a clique (though it mightbe di�erent from C). To see this, observe that by de�nition of T(C), each vertex in C neighborsevery vertex T(C) (except itself). Thus, each vertex in C has degree 2(jT(C)j� 1) in the subgraphinduced by T(C), which is the maximum possible. (Recall that according to our convention, thedegree of a vertex is the sum of its in-degree and its out-degree, which is twice its degree in theundirected representation of the graph.) Since jCj = �N , every vertex in C0 must have degree2(jT(C)j� 1) as well (because the vertices in C are all candidates for the set C0 whose size is �N aswell). In other words, every vertex in C0 neighbors every (other) vertex in T(C), and in particularit neighbors every other vertex in C0, making C0 a clique.Suppose next that instead of having an oracle to C, we were given a uniformly chosen set U0 inC of su�cient size (i.e., of size �(��2 � log(1=(��)))). Let T(U0) be the set of vertices that neighborevery vertex in U0. Then, with high probability over the choice of U0, almost every vertex in T(U0)neighbors almost all vertices in C. Similarly to the above, we could order the vertices in T(U0)according to their degree in the graph induced by T(U0), and take the �rst �N vertices. It can beshown (and we prove something slightly stronger later) that the resulting set is close to being aclique.The Actual Algorithm. Since a uniformly chosen set in C is not provided to the algorithm, itinstead \guesses" such a set. More precisely, it uniformly selects a set U from all graph vertices,and it considers all its subsets U0 of size �2 jUj. Since with high probability jU \ Cj � �2 jUj, thereexists a subset U0 contained in C. Furthermore, with high probability, for this U0, almost all verticesin T(U0) (the set of vertices that neighbor every vertex in U0), neighbor almost every vertex in C.The next idea is to approximate the degree of each v 2 T(U0) in the subgraph induced by T(U0),instead of computing it exactly. While this is not necessary for the e�ciency of the Approximate-37



Clique Finding algorithm (as it runs in time quadratic in N anyhow), it will be useful to apply thismodi�cation here so as to simplify the analysis of the tester (which is presented later).To approximate the degree of vertices in T(U0), we uniformly select an additional set, W, and letW(U0) �W contain all vertices in W that neighbor every vertex in U0. Thus, W(U0) is e�ectivelysampling from T(U0). We now order the vertices in T(U0) according to the number of neighborsthey have in W(U0), and take the �rst �N vertices according to this order (if jT(U0)j < �N thennecessarily U0 6� C and we don't need to consider this U0). Thus for every subset U0 we obtain aset of �N vertices, and we output the one that misses the fewest edges to being a clique. (We notethat U and W together play the role that the subset U of the sampled vertices plays in our otheralgorithms. Namely, U and W together are used to determined partitions of V(G).)Approximate-Clique Finding AlgorithmLet t = �� log(1=(��))���2 �, and r = �( log(1=(��))���2 ).1. Uniformly select two independent samples, U, W of sizes t and r, respectively.2. For each U0 � U of cardinality �2 � t, perform the following steps:(a) Let T(U0) � V(G) be the subset of vertices in G which neighbor all vertices in U0 (i.e.,T(U0) def= fv2V : �(v) � U0g = V \ (Tu2U0 �(u))).If jT(U0)j < �N then continue with the next subset U0.(b) Let W(U0) �W be the subset of vertices in W which neighbor all vertices in U0(i.e., W(U0) def= fv2W : �(v) � U0g =W \ (Tu2U0 �(u))).(c) For each v 2 T(U0), compute d̂(v) def= 2 � j�(v) \W(U0)j. Let C(U0) � T(U0) be the set of �Nvertices of the highest d̂(�) value in T(U0). (Ties are broken by lexicographic order).3. Among all sets C(U0), let eC be the one for which dist(C(U0); C�N ) is minimizes.Output eC. Figure 2: Approximate-Clique Finding AlgorithmThe resulting Approximate-Clique Finding algorithm is given in Figure 2. In order to establishthe correctness of the algorithm, we �rst show that with high probability, the set U has certaindesired properties.As before, let C be a clique of size �N in G. For �1 2 [0; 1], we say that a set U0�C�V(G) is�1-clique-representative with respect to C, if for all but �1N of the vertices, v 2 V(G),if j�(v) \ Cj < (�� �1)N then �(v) \U0 6= U0 (7)That is, for most vertices v for which �(v) \ U0 = U0, it holds that j�(v) \ Cj � (� � �1)N . Notethat for every v 2 C the above condition holds for all �1 � 0 (since �(v) � C � U0).Claim 7.3 Let t = 
( log(1=(�1�))�1� ), where �1 2 [0; 1]. Let U be a uniformly chosen set of t verticesin G. Then, with probability at least 1 � �=2, the set U contains an �1-clique-representative subsetof size �2 t.Proof: Using a multiplicative Cherno� Bound (see Appendix B) we obtain that jU\Cj � 12�t withprobability at least 1 � exp(�
(�t)) > 1 � �=4. Let us now consider a uniformly selected subsetU0 � C of cardinality t0 def= �2 t. Clearly, for each v 2 C Equation (7.3) holds. For each v 2 V(G) nCPrU0 [Eq. (7) does not hold for v] = (1� �1)t0 < �1�4 (8)38



where the last inequality is due to t0 = � t and the hypothesis regarding t. Thus, the expectednumber of vertices which violate Eq. (7) is bounded by �4 � �1N . Applying Markov's Inequality (seeAppendix B) we conclude that with probability at least 1 � �=4 there are at most �1N verticeswhich violate Eq. (7). The lemma follows.We next show that for an �1-clique-representative U0, if we take a subset of T(U0) of size �Nwhich approximately contains the vertices that have highest degree in the subgraph induces byT(U0), then we obtain an approximate clique.Lemma 7.4 Let �2 < �=� and �1 = �22. Let U0 be �1-clique-representative (with respect to C) andT = T(U0) def= \u2U0�(u). Let � be such that �N is the degree of the (�� �2) �N th vertex of highestdegree in T. (We stress that we consider degrees in the subgraph of G induced by T.) Let eC � T bea set of size � �N that contains at least (�� 3�2) �N vertices of degree at least (�� 2�2) �N (in thesubgraph induced by T). Then, eC satis�es dist(eC; C�N) = 8�2�.The somewhat complicated formulation of the lemma is meant to �t its application in theanalysis of the Approximate-Clique Finding Algorithm. Speci�cally, it addresses the fact that thealgorithm uses approximations to the degrees of vertices in T, and that these approximations areslightly inaccurate for most vertices, and very inaccurate for few vertices.Proof: Clearly T � C (as U0 is a subset of the clique C). Let H def= fv 2 V(G) n C : j�(v) \ Cj �(�� �1) �Ng be the set of vertices outside of C having many neighbors in C. Let R def= T n (C [H)(i.e., the rest of T). Since U0 is �1-clique-representative, it follows that jRj < �1N (since a vertexnot in C[H may enter T only if it is adjacent to all vertices in U0 whereas it is adjacent to less than(�� �1)N vertices in C). Let the degree of vertex v in the subgraph induced by T be denoted bydegT(v). (Recall that according to our convention, the degree of a vertex is the sum of its in-degreeand its out-degree, which is twice its degree in the undirected representation of the graph.) Wehave, Xv2CdegT(v) � 2 � jf(u; v) : u; v 2 Cgj+ 2 � jf(u; v) : u 2 C; v 2 Hgj� 2 � �jCj2 + jHj � (�� �1) �N�> 2�N � ��N + jHj � �1� N� (9)Thus, the average value of degT(v) for v 2 C is at least 2 � ��N + jHj � �1� N�. On the otherhand, the maximum value of degT(v) for v 2 C is bounded above by 2jTj = 2(jCj+ jHj + jRj) �2(�N + jHj + �1N). Therefore, the di�erence between the maximum value and the average valueof degT(v) for v 2 C is 2 � (�1 + �1=�) �N . By a simple counting argument (which is essentially avariant of Markov's Inequality) we have that for every k,�����v 2 C : degT(v) < 2��N + jHj � �1� N�� k �2�1 � (1 + ��1) �N������ < jCjkSetting k = �=�2, we get jCj=k = �2N , and k � 2�1(1 + 1=�) � 4�2. Thus, at least (� � �2) � Nvertices in C have degree (in the subgraph induced by T) of at least 2�N+2jHj� 2�1� �4�2N . Since2�1� = 2�22� , �2 < �� , and � < �2, we have that �, as de�ned in the lemma, satis�es� � 2�+ 2jHjN � 6�2 = 2�+ 2(jTj � (jRj+ jCj))N � 6�2 � 2jTjN � 8�2 (10)39



By the lemma's hypothesis, we have jeCj = � �N . Also, denoting by Z � eC the set of vertices v forwhich degT(v) � (�� 2�2) �N , we have by the lemma's hypothesis jZj � (�� 3�2) �N . By Eq. (10)we also have, for each v 2 Z,degeC(v) � degT(v)� 2 � jT n eCj� [(2jTj � 8�2N)� 2�2N ]� 2 [jTj � � �N ]= 2(�� 5�2) �NSumming up the degrees (in eC) of all vertices in eC, we obtainXv2eCdegeC(v) � Xv2ZdegeC(v)� 2 � jZj � ((�� 5�2) �N)� 2 � (�� 3�2) � (�� 5�2) �N2> 2 � (�2 � 8�2�) �N2= 2jeCj2 � 16�2� �N2It follows that eC is 8�2�-close to being a clique and so the subgraph induced by it satis�es the claimof the lemma.For a �xed U0 (of cardinality �2 �t), let T = T(U0) (def= \u2U0�(u)). We �rst prove that degW(U0)(�)(= d̂(�)) provides a good estimate of degT(�) (where recall that W0(U) = W\T). For �2 2 [0; 1], wesay that a set W is �2-representative (with respect to T), if for all but �2N of the vertices, v 2 V(G),����degW\T(v)r � degT(v)N ���� < �2 (11)where for set of vertices Q, degQ(v) is the degree of v in the subgraph of G induced by Q.Claim 7.5 Let r = 
( log(1=�2�)�22� ), where �2 2 [0; 1]. Suppose that jTj � �N and that W is auniformly selected subset of r vertices in V(G). Then, with probability at least 1� �4 , the set W is�2-representative of T.Proof: By applying a multiplicative Cherno� Bound, we getPrW �jW \ Tj < �2r� = exp(�
(�r)) < �8We now consider a uniformly chosen W0 � T of size r0 � �2r. By applying an Cherno� Bound, weget for any �xed v 2 V(G),PrW0 �����degW0(v)r � degT(v)N ���� � �2� = exp(�
(�22�r)) < �2�8Applying Markov's Inequality, the claim follows.As a corollary to Lemma 7.4 we have,Corollary 7.6 Let C be a �N -Clique in G, let �2 < �=� and �1 = �22. Suppose that U0 � C is �1-clique-representative with respect to C, and that W is �2-representative with respect to T(U0). Then,the set of �N vertices of highest d̂(�) value (in T(U0) � C) is 8�2�-close to being a �N -Clique. Recallthat d̂(v) def= 2 � j�(v) \W(U0)j = dW(U0)(v), and that W(U0) = W \ T(U0).40



Proof (of Corollary 7.6). Let eC be the set of �N vertices with highest d̂(�) value in T = T(U0)(where ties are broken arbitrarily). Let � be as de�ned in Lemma 7.4 (i.e., degT(v) � �N for atleast (�� �2)N vertices in T). By the hypothesis that W is �2-representative of T, it follows thatat least (�� 2�2)N of the vertices v of T satisfy1r d̂(v) � 1N degT(v)� �2 � � � �2Since eC contains vertices with highest d̂(�) value, it must contain at least (� � 2�2)N vertices ofd̂(�) value at least (� � �2)r. Using the hypothesis regarding W, we conclude that eC contains atleast (�� 3�2)N vertices of degT (�) value at least (� � 2�2)N . Using the hypothesis that U0 is �1-clique-representative with respect to C, we may now invoke Lemma 7.4 and the corollary follows.The correctness of the Approximate-Clique Finding Algorithm follows from Claims 7.3 and 7.5,and Corollary 7.6, where �2 = �=(8�). Note that W need be �2-representative only with respect toT(U0) where U0 is �1-clique-representative with respect to C.7.2 The Clique-Degree TesterGiven the correctness of the Approximate-Clique Finding algorithm, if we could sample from eachC(U0) to tests whether it is close to being a clique, then we would obtain a testing algorithm forC�. Namely, if G 2 C�, then from the previous subsection we know that with high probabilityover the choice of U and W, one of the sets C(U0) is close to being a clique, and if G is far fromC�, then every set of size �N , and in particular every C(U0), is far from being a clique. What wewould like to do is test each C(U0) without actually �rst constructing it, that is without orderingall (the 
(�N)) vertices in T(U0). To this end, we uniformly choose an additional set of vertices,S, and essentially run the Approximate-Clique Finding algorithm on S. Namely, for every subsetU0 of U (of size �2 jUj) we let S(U0) be the subset of vertices in S that neighbor every vertex inU0 (so that S(U0) = S \ T(U0)). We then order the vertices in S(U0) according to the number ofneighbors they have in W(U0). Finally we check whether for some U0 the �rst �jSj vertices in S(U0)(according the the above order) are close to being a clique. The resulting testing algorithm, calledthe Clique-Degree Tester, is described in Figure 3.The correctness of the Clique-Degree Tester follows by two observations: (1) with high probabilitythere exist an iteration where the sets U and W are as required in Corollary 7.6; and (2) the set Sis a \good" sample of T(U0). We start by formulating the second observation in the lemma below.We note that when the lemma is applied, X is set to be T(U0), and the order on X is as determinedby d̂(�) (which is computed based on the number of neighbors each vertex has in W(U0) | seeFigure 3).Lemma 7.7 Let X be any subset of V, and assume jXj � (�� �=40)N . Consider a �xed orderingx1; : : : ; xjXj of the vertices in X, and let X0 be the �rst min(�N; jXj) vertices in X according to theabove ordering. Let S = fs1; :::; smg be a uniformly selected set in V of size m = 
( t+log(1=�)�2 ), andlet S0 � S be the �rst min(b�mc; jS\Xj) vertices in S\X according to the order de�ned on X. ThenPrS ����� jf(s2k�1; s2k) 2 E(S0; S0)gjm=2 � jE(X0;X0)jN2 ���� > �3� < �8 � 2�tBefore proving Lemma 7.7 we state a simple claim that follows directly from an additive Cherno�bound. 41



Clique-Degree TesterLet t = �� log(1=(��))���2 �, r = �( log(1=(��))���2 ), and m = �( t+log(1=�)�2 ).1. Uniformly select three independent samples, U, W and S = fs1; :::; smg, of sizes t, r and m,respectively.2. For each U0 � U of cardinality �2 � t, perform the following steps:(a) Let S(U0) � S be the subset of vertices which neighbor all vertices in U0 (i.e., S(U0) def= fv2S : �(v) � U0g = S \ (Tu2U0 �(u))).(b) Let W(U0) �W be the subset of vertices which neighbor all vertices in U0(i.e., W(U0) def= fv2W : �(v) � U0g =W \ (Tu2U0 �(u))).(c) For each v 2 S(U0), compute d̂(v) def= 2 � j�(v)\W(U0)j. Let bC(U0) � S(U0) be the set of b�mcvertices of the highest d̂(�) value in S(U0). (Ties are broken by lexicographic order, and incase jS(U0)j < b�mc we let bC(U0) def= S(U0).)(d) If the following two conditions hold then accept and halt.Condition (a): jbC(U0)j � (� � �=80)m.Condition (b): jf(s2k�1; s2k) 2 (bC(U0) � bC(U0)) n E(G)gj � 2�3 � m2 .3. If none of these iterations made the algorithm accept G then it halts and rejects G.Figure 3: Clique-Degree TesterClaim 7.8 Let S = fs1; :::; smg be a uniformly selected set of vertices of size m � t+log(32=�)2�23 , where�3 2 [0; 1]. Then for any �xed set of vertices X, PrS h��� jS\Xjm � jXjN ��� > �3i < �16 � 2�t.Proof of Lemma 7.7. Let �3 def= �=40, and let X00 be the �rst (���3)N vertices in X. (Throughoutthe proof, whenever we refer to a number of vertices such that the number is not an integer, wemean the 
oor of that number.) By Claim 7.8,PrS ����� jS \X00jm � (�� �3)���� > �3� < �16 � 2�tThus, assume from now on that S is such that:1. jS \X00j � �m, from which it follows (by de�nition of S0) that S0 \X00 = S \ X00;2. jS \X00j � (�� 2�3)m, from which it follows that jS0 \X00j � (�� 2�3)m.Next observe thatf(s2k�1; s2k) 2 E(S0; S0)g = f(s2k�1; s2k) 2 E(S0 \ X00; S0 \ X00)g (12)S f(s2k�1; s2k) 2 E(S0 nX00; S0)g(Recall that for two sets of vertices A and B, we let E(A;B) denote the set of edges with one endpoint in A and the other in B). By Item (1) above, and a Cherno� bound to get thatPrS ����� jf(s2k�1; s2k) 2 E(S0 \X00; S0 \X00)gjm=2 � jE(X00;X00)jN2 ���� > �9� (13)= PrS ����� jf(s2k�1; s2k) 2 E(S \ X00; S \X00)gjm=2 � jE(X00;X00)jN2 ���� > �9� < �16 � 2�t42



By de�nition of X0 and X00, we have thatjE(X0;X0)jN2 � jE(X00;X00)jN2 � 2�3� < �9 (14)By Item (2) above, we know that jS0 nX00j � 2�3m, and sojf(s2k�1; s2k) 2 E(S0 nX00; S0)gjm=2� jfsk 2 S0 nX00gjm=2 � 4�3 < �9 (15)Summing up the probabilities of errors and substituting the bounds of Equations (14){(15) inEquation (13), the lemma follows.Corollary 7.9 Let A be the algorithm of Figure 3.1. If G 2 C� then Pr[A(G) = accept] > 1� �.2. If dist(G; C�) > � then Pr[A(G) = accept] < �.The main part of Theorem 7.1 follows from Corollary 7.9. The construction of an approximateclique in time linear in N is discussed following the proof of the corollary.Proof (of Corollary 7.9). Let �2 = �=(24�) and let �1 = �22. In proving Part (1), we let C bean arbitrary �N -Clique in G. By Claim 7.3 (and our choice of �1 and t), with probability at least1 � �2 , the set U contains an �1-clique-representative (with respect to C) subset of size �2 t. Let usdenote this subset by U0 and recall that U0 � C. We now consider the execution of Steps (1){(4)with this U0. By Claim 7.5 (and our choice of �2 and r), with probability at least 1� �4 , the set Wis �2-representative of T(U0). Let eC denote the set of �N vertices of highest d̂(�) value in T(U0).By Corollary 7.6 and 8�2� = �=3, the set eC is �3-close to being a �N -Clique. Applying Claim 7.8 toT(U0) with �3 = �80 , Condition (a) of Step (4) holds with probability greater than 1� �8 . ApplyingLemma 7.7 (with X = T(U0) and the order on X determined by d̂(�)), Condition (b) of Step (4)also holds with probability greater than 1� �8 (as the fraction of missing edges is at most �3 morethan the �3 loss of eC). Summing up the error probabilities Part (1) of this corollary follows.We now turn to prove Part (2). For any �xed choice of U0 and W, we consider the set, denotedC(U0), of min(�N; jT(U0)j) vertices of highest d̂(�) value in T = T(U0). If jC(U0)j < (� � �=40)Nthen necessarily T = C(U0). Applying Claim 7.8 to T, Condition (a) of Step (4) is violated withprobability greater than 1 � 2�t � �. Otherwise, we apply Lemma 7.7 (again (with X = T(U0)and the order on X determined by d̂(�)). Since dist(C(U0); C�N) � �, with probability greater than1� 2�t � �, Condition (b) of Step (4) is violated. We conclude that for every possible choice of U0and W, Step (4) accepts with probability bounded by 2�t � �. Recalling that U and W are selectedat random and less than 2t possible U0 � U are tried, Part (2) follows.A Linear (in N) Time Algorithm for Finding an Approximate Clique. Given a graphG having a clique of size �N , we can �nd an approximate clique (with high probability) as follows.We �rst run the Clique-Degree Tester (which with high probability accepts G), and record the setsU0 and W(U 0) which gave rise to the set bC(U0) � S(U0) that was close to being a clique. We thendetermine the set T(U0) of vertices that neighbor every vertex in U0 and order them according tod̂(�) (i.e. according to the number of neighbors they have in W(U0). Finally, we take the �rst �N43



vertices according to this order. Thus the running time of this algorithm is the running time of theClique-Degree Tester plusO(jU0j �N + jWj �N) = O(��2� log(1=(��)) �N)as desired. The correctness of this algorithm follows by combining the arguments used above inthe proof of Corollary 7.9. this completes the proof of Theorem 7.1.8 Cut ProblemsIn this section we present algorithms for testing �-Cut and �-Bisection. In both cases we start bydescribing an algorithm that actually �nds a partition that approximately maximizes the numberof edges crossing the cut. In the case of the Bisection algorithm, the two sides of the partitionare of equal size. We then show how these algorithms can be modi�ed so as to approximate thesize of the maximum cut. These modi�cations directly yield testing algorithms for the respectiveproperties. Finally, we show how to achieve improved partitioning algorithms by �rst running theapproximation algorithms. In the Bisection Subsection we also describe how the algorithms can beeasily modi�ed to deal with the case in which one seeks a bisection that minimizes the number ofedges crossing the cut.8.1 Testing Max-CutFor a given partition (V1;V2) of V(G), let �(V1;V2) denote the edge density of the cut de�ned by(V1;V2). Namely,�(V1;V2) def= jf(v; v0) 2 E(G) : for j 6= j 0; v 2 Vj & v0 2 Vj0gjjV(G)j2Let �(G) denote the edge density of the largest cut in G. Namely, it is the maximum of �(V1;V2)taken over all partitions (V1;V2) of V(G). The main results of this subsection are summarizedbelow.Theorem 8.11. There exists an algorithm that on input � and � and oracle access to a graph G, with probabilityat least 1��, outputs a value b� such that jb���(G)j � �. The algorithm has query complexityand running time O log2(1=(��))�7 ! and exp�O� log(1=(��))�3 ��respectively.2. There exists an algorithm that on input � and �, and oracle access to G, runs in timeexp�O� log(1=(��))�3 ��+ O� log(1=(��))�2 � �Nand with probability at least 1� � outputs a partition (V1;V2) of V(G) such that �(V1;V2) ��(G)� �. 44



For any given �, letMC� def= fG : �(G) � �g be the class of graphs with cuts of density �. Notethat for � > 12 , the class MC� is empty, and so the problem of testing �-Cut for � > 12 is trivial.For � < 12 we get the following as a corollary to Item (1) of Theorem 8.1.Corollary 8.2 For every constant 0 � � < 12 , there exists a property testing algorithm for the classMC� whose query complexity and running time areO log2(1=(��))�7 ! and exp�O� log(1=(��))�3 ��respectively.Although very appealing, an approximation of �(G) does not directly translate to a tester forthe class MC�, for any �. The following proof provides the slightly more subtle connection. Inparticular, the complexity of the property testing algorithm asserted in Corollary 8.2 increases asa function of the inverse of 12 � � (which is assumed to be a constant). When � is arbitrarily closeto 12 then we need to run a variant of the Bisection testing algorithm described in Subsection 8.2.4.Proof: Let 
 def= p1� 2�. The testing algorithm runs the approximation algorithm referred toin Item (1) of Theorem 8.1 with approximation parameter �0 def= 
��3 and con�dence parameter �(where � and � are the distance parameter and con�dence parameter, respectively, of the testingalgorithm). It accepts G if and only if b� � �� �0.If �(G) � �, then by Item (1) of Theorem 8.1, G is accepted with probability 1� �, as required.Conversely, if the graph is accepted with probability greater than �, then �(G) � �� 2�0. We claimthat this implies that G is �-close to some graph G0 in the classMC�. Details follow.Let (V1;V2) be a partition of V(G) such that �(V1;V2) � ��2�0. Then necessarily, 2jV1j�jV2j �(� � 2�0)N2. If 2jV1j � jV2j � �N2, then to obtain G0 we can simply add edges between verticesin V1 and vertices in V2 until �(V1;V2) = �. In this case, dist(G;G0) � 2�0 < �. Otherwise, wecannot obtain G0 by simply adding edges between V1 and V2, as the total possible number of edgesbetween V1 and V2 is less than �N2. Instead, we �rst move a su�cient number of vertices fromthe larger set among V1 and V2 to the smaller set so as to \make room" for the needed number ofadded edges. Assume without loss of generality that jV1j < jV2j, and consider a partition (V01;V02)such that V01 � V1, and jV01j has the minimum value such that 2jV01j � jV02j � �N2. It is not hard toverify (by solving two quadratic equations) that jV01j � jV1j � �
 �N , and so�(V01;V02) � �(V1;V2)� �0
 � �� �We can now proceed as in the �rst case by adding edges between V01 and V02 until we obtain a cutof the desired density.A more natural property tester follows as in the case of �-Clique:Corollary 8.3 Let � be any non-negative constant smaller than 12. Let m = poly(��1 log(1=�))and let R be a uniformly selected set of m vertices in V(G). Let GR be the subgraph (of G) inducedby R. Then,� if G 2 MC� then PrR[�(GR) > �� �2 ] > 1� �.� if dist(G;MC�) > � then PrR[�(GR) � �� �2 ] > 1� �.45



Our algorithms can be easily generalized to approximate and test Max-k-way-Cut for k > 2 (seeSubsection 8.1.4). Furthermore, since maximizing the density of cut edges e�ectively minimizes thedensity of edges inside the di�erent components of the partition, the approximation algorithm forMax-Cut (and Max-k-way-Cut) can be used to test Bipartiteness (and respectively k-Colorability)as well. However, as opposed to our Bipartite (resp., k-Colorability) testing algorithm, here weachieve a two-sided error (rather one-side error). That is, even if the input graph is bipartite (resp.,k-Colorable) it might be rejected (here) with probability greater than 0. Furthermore, for constantk, the sample complexity and running time of the algorithms presented here are also worse thanthose speci�cally intended to test bipartiteness and k-Colorability.Organization: We start by presenting a quadratic-time partitioning algorithm, which given agraph G constructs a cut (i.e. a partition the vertices of the graph into two disjoint sets) of edgedensity at least �(G)� 34�. This algorithm runs in time exp �poly � log(1=�)� �� �N2 and is the basis forthe approximation algorithm of Item (1) of Theorem 8.1. The algorithm claimed in Item (2) followsby combining the two algorithms. The extension to k-way cuts is presented in Subsection 8.1.4.8.1.1 A Preliminary Graph Partitioning AlgorithmLet ` = d4� e, and let �V1; : : : ;V`� be a �xed partition of V(G) into ` sets of (roughly) equal size(say, according to the order of the vertices in V(G)). In the Graph Partitioning Algorithm givenbelow we describe how to construct a partition (V1; V2) of V(G) in ` iterations, where in the ithiteration we construct a partition (Vi1;Vi2) of Vi. The algorithm is essentially based on the followingobservation.Let (H1;H2) be any �xed partition of V(G). (In particular, we may consider a partition that de�nesa maximum cut). Let v 2 H1 and assume that v has at least as many neighbors in H1 as it has inH2 (i.e., j�(v) \H1j � j�(v)\H2j). Then by moving v from H1 to H2 we cannot decrease the edgedensity of the cut (and we might even increase it). Namely,� (H1 n fvg;H2 [ fvg) � �(H1;H2)Furthermore,� (H1 n fvg;H2 [ fvg) � �(H1;H2) = 2 � (j�(v) \H1j � j�(v) \H2j)N2 : (16)The Plan. Taking this observation one step further, we next show how we can de�ne a newpartition of V based on some (little) information concerning (H1;H2), where we move �(�N) verticesbetween the components of the partition. While we can not ensure that the size of the cut doesnot decrease, as was the case when moving a single vertex, we can show that the the size of thecut decreases by O(�2N2). (Note that in the worst case, by moving �(�N) vertices, the size ofa cut may decrease by �(�N2).) We then show how such a process could be used by a graphpartitioning algorithm given such information (which can be viewed as access to certain oracles).The oracle-aided algorithm will work in O(1=�) stages. It will be viewed as starting from a partitioncorresponding to a maximum cut and moving O(�N) vertices in each stage. The total decrease inthe size of the cut will hence be bounded by O((1=�) � �2N) = O(�N). Finally we show how theprocess can be implemented approximately (without any additional information).An \Ideal" Procedure. Let X be a subset of V(G) of size Ǹ , (where we assume for simplicitythat ` divides N), let W def= V n X, and let (W1;W2) be the partition of W induced by (H1;H2).46



That is, W1 def= H1 \W, and W2 def= H2 \W. Recall that (H1;H2) is some �xed partition of V(G),and that in particular, we may consider a partition which de�nes a maximum cut. Assume we knewfor every vertex x 2 X how many neighbors it has on each side of the partition (W1;W2). In sucha case, de�ne XUB to be the set of unbalanced vertices in X with respect to (W1;W2). That is, XUBis the set of vertices which have signi�cantly (say 18�N) more neighbors on one side of the partitionthan it has in the other. Analogously, de�ne XB = X nXUB to be the set of balanced vertices withrespect to (W1;W2).Assume we partition X into (X1;X2) as follows: Vertices in XUB which have more neighborsin W1, are put in X2; vertices in XUB which have more neighbors in W2, are put in X1; andvertices in XB are placed arbitrarily. Based on this partition of X we de�ne a new partition of V:(H01;H02) = (W1 [X1;W2 [X2), which di�ers from (H1;H2) only in the placement of vertices in X.Then the di�erence between �(H01;H02) and �(H1;H2), is only due to the change in the number ofedges between vertices in X and vertices in W, and between pairs of vertices in X. By de�nition ofXUB, and the way it was partitioned, the number of cut edges between vertices in XUB and verticesin W could not have decreased. By de�nition of XB, the arbitrary placement of these verticesdecreased the number of cut edges between XB and W by at most jXBj � 2 � 18�N � �4`N2, and thenumber of cut edges between pairs of vertices in X decreased by at most jXj2 = 1̀2N2 � �4`N2.Now, let X be V1 (i.e. the �rst N=` vertices in lexicographical order), let (H1;H2) de�ne amaximum cut, and let the partition resulting from the process de�ned above be denoted by (H11;H12).Assume we continue iteratively, where in stage i we perform the above partitioning process for Vi,given the partition �Hi�11 ;Hi�12 � determined in stage i� 1. That is, in stage i we assume we knowwhich vertices in Vi are unbalanced with respect to the partition of V nVi induced by �Hi�11 ;Hi�12 �.Then we can apply the same argument used above to each pair of consecutive partitions (Hi1;Hi2)and �Hi+11 ;Hi+12 �, and get that � �H1̀;H2̀� is smaller than �(H1;H2) = �(G) by no more than andadditive factor of ` � �2` = �2 .Graph Partitioning Algorithm (for Max-Cut)1. Choose ` = d4� e sets U1; : : : ;U` each of size t = � � 1�2 log 1�� �, where Ui is chosen uniformly inV nVi. Let U = hU1; : : : ;U`i.2. For each sequence of partitions �(U) = 
(U11;U12); : : : ; (U1̀;U2̀)� (where for each i, (Ui1;Ui2) is apartition of Ui) do(a) For i = 1 : : : `, partition Vi into two disjoint sets Vi1 and Vi2 as follows:For each v 2 Vi,i. If ���(v) \Ui1�� � ���(v) \Ui2�� then put v in Vi2.ii. Otherwise put v in Vi1.(b) Let V�(U)1 = Sì=1Vi1, and let V�(U)2 = Sì=1Vi2.3. Among all partitions �V�(U)1 ;V�(U)2 �, created in Step (2), let �Ve�(U)1 ;Ve�(U)2 � be the one whichde�nes the largest cut, and output it.Figure 4: Graph Partitioning Algorithm for Max-CutThe Actual Algorithm. The graph partitioning algorithm, depicted in Figure 4, approximatelyimplements the iterative procedure described above, starting from a partition (H01;H02) which de�nesa maximum cut. Clearly, we do not have a clue as to what (H01;H02) is, and hence, in particular, wehave no direct way of determining for a given vertex v in V1 whether it is balanced or unbalanced47



with respect to the partition (W01;W02) of W0 def= V n V1 induced by this partition. However, wecan approximate the number of neighbors v has on each side of (W01;W02) by sampling. Namely,if we uniformly choose a set of vertices U1 of size t = poly � log(1=�)� � in W0, then (as we laterprove formally), with high probability over the choice of U1 there exists a partition (U11;U12) of U1,which is representative with respect to (W01;W02) and V1 in the following sense. For all but a smallfraction of vertices v in V1, the number of neighbors v has in U11 (U12), relative to the size of U1,is approximately the same as the number of neighbors v has in W01 (W02), relative to the size ofV(G). Clearly such an approximation su�ces since what is important when deciding where to putthe vertices in V1 is to determine where to put the unbalanced vertices. If U1 has a representativepartition, then we say that U1 is good . Since we do not know which of the 2t partitions of U1 isthe representative one (assuming one exists), we simply try them all.The choice of U1 together with each of its partitions determines a partition of V1. While wemust consider all partitions (U11;U12) of U1, we are only interested in the (hopefully representative)partition for which U11 � W01 and U12 � W02. Denote this partition by (U11;U12). Let (V11;V12) bethe partition of V1 which is determined by this partition of U1, and let (H11;H12) be the resultingpartition of V(G). Namely, (H11;H12) is the same as (H01;H02) except for the placement of the verticesin V1, which is as in (V11;V12). If in fact (U11;U12) is representative (with respect to (W01;W02) andV1), then � (H11;H12) is not much smaller than � (H01;H02) = �(G). We continue in the same manner,where in stage i we randomly pick a set Ui, and for each of its partitions we determine a partitionof Vi. Therefore, we are actually constructing (2t)` = 2`�t possible partitions of V(G), one for eachpartition of all the Ui's. However, in order to show that at least one of these partitions de�nes a cutwhich is not much smaller than the maximum cut, we only need to ensure that for each i, with highprobability, Ui is good with respect to �Wi�11 ;Wi�12 �, where the latter partition is determined by thechoice of U1; : : : ;Ui�1, and their representative partitions, (U11;U12) ; : : : ; �Ui�11 ;Ui�12 �. The actualcode is depicted in Figure 4. In the following lemma we formalize the intuition given previously asto why the partitioning algorithm works.Lemma 8.4 Let (H1;H2) be a �xed partition of V(G). Then with probability at least 1� �=2 overthe choice of U = hU1 : : :U`i, there exists a sequence of partitions �(U), such that �(V�(U)1 ;V�(U)2 ) ��(H1;H2)� 34�.Proof: For a given sequence of partitions �(U), we consider the following `+ 1 hybrid partitions.The hybrid (H01;H02) is simply (H1;H2). The ith hybrid partition, (Hi1;Hi2), has the vertices inVi+1; : : : ;V` partitioned as in (H1;H2) and the vertices in V1; : : : ;Vi as placed by the algorithm.More precisely, The hybrid partition (Hi1;Hi2) is de�ned as follows:Hi1 def= Wi�11 [ Vi1and Hi2 def= Wi�12 [ Vi2where for j 2 f1; 2g,Vij def= V�(U)j \Wi; Wi�1j def= Hi�1j \Wi�1; and Wi�1 def= V nViNote, that in particular, �H1̀;H2̀� is the partition �V�(U)1 ;V�(U)2 �. Since the partition of each Viis determined by the choice of Ui and its partition, the ith hybrid partition is determined by thechoice of U1; : : : ;Ui and their partitions, but not by the choice nor the partitions of Ui+1; : : : ;U`.48



We shall show that for every 1 � i � `, for any �xed choice and partitions of U1; : : : ;Ui�1, withprobability at least 1� �2` over the choice of Ui, there exists a partition (Ui1;Ui2) of Ui such that� �Hi1;Hi2� � � �Hi�11 ;Hi�12 �� 3�4`The lemma will directly follow.For the i � 1 hybrid partition �Hi�11 ;Hi�12 �, or more precisely, for the partition it induces onWi�1, and a sample set Ui, let Ui1 def= Wi�11 \Uiand Ui2 def= Wi�12 \Ui :We say that Ui is good with respect to �Wi�11 ;Wi�12 � and Vi if (Ui1;Ui2) is representative withrespect to �Wi�11 ;Wi�12 � and Vi. That is, (Ui1;Ui2) is such that for all but a fraction of 18� of thevertices v in Vi the following holds:For each j 2 f1; 2g; ����(v) \Uij���t = ���(v) \Wi�1j ��N � �32 (17)(Recall that a = b� c is a shorthand for b� c � a � b+ c.) Assume that in fact for each i, the setUi is good with respect to �Wi�11 ;Wi�12 � and Vi. As was previously de�ned, we say that a vertexv is unbalanced with respect to �Wi�11 ;Wi�12 � iffor j; j 0 2 f1; 2g; j 6= j 0 ����(v) \Wi�1j ��� � ����(v) \Wi�1j0 ���+ 18�N : (18)Thus, if v 2 Vi is an unbalanced vertex with respect to �Wi�11 ;Wi�12 � for which Equation (17) issatis�ed, then ����(v) \Uij��� � ����(v) \Uij0��� + 116�t. We are hence guaranteed (by Steps (2.a.i) and(2.a.ii) of the algorithm) that when the partition (Ui1;Ui2) is used then v is put opposite the majorityof its neighbors in Wi�1 (according to their position in �Wi�11 ;Wi�12 �). If v is balanced then it mightbe placed on either side of the partition. The same is true for the (at most �8 � Ǹ ) vertices for whichEquation (17) does not hold.As was noted previously, the decrease in the size of the cut is only due to changes in thenumber of edges between vertices in Vi and vertices in Wi�1, and between pairs of vertices in Vi.In particular:1. The number of cut edges between unbalanced vertices in Vi for which Equation (17) is satis�edand vertices in Wi�1 can not decrease.2. The number of cut edges between unbalanced vertices in Vi for which Equation (17) is notsatis�ed and vertices in Wi�1 decreases by at most �8 � jVij � 2N � �4`N2.3. The number of cut edges between balanced vertices in Vi and vertices in Wi�1 decreases byat most jVij � 2 � 18�N � �4`N2.4. The number of cut edges between pairs of vertices in Vi decreases by at most jVij2 = 1̀2N2 ��4`N2. 49



The total decrease is bounded by 3�4`N2.It remains to prove that with high probability a chosen set Ui is good (with respect to�Wi�11 ;Wi�12 � and Vi). We �rst �x a vertex v 2 Vi. Let Ui = fu1; : : : ; utg. Recall that Ui ischosen uniformly in Wi�1 def= V n Vi. For j 2 f1; 2g, and for 1 � k � t, de�ne a 0=1 randomvariable, �kj , which is 1 if uk is a neighbor of v and uk 2 Wi�1j , and is 0 otherwise. By de�nition.for each j, the sum of the �kj 's is simply the number of neighbors v has in Uij (= Ui \Wi�1j ) andthe probability that �kj = 1 is 1N ���(v) \Wi�1j ��. By an additive Cherno� bound (see Appendix B),and our choice of t, for each j 2 f1; : : : ; kg,PrUi 24����������(v) \Uij���t � ���(v) \Wi�1j ��N ������ > �3235 = exp(�
(�2t)) � ��32` :By Markov's inequality (see Appendix B), for each j 2 f1; 2g, with probability at least 1� �4` overthe choice of Ui, for all but 18� of the vertices in Vi, Equation (17) holds (for that j), and thus withprobability at least 1� �2` , Ui is good as required.Applying Lemma 8.4 to a maximum cut of G, we getCorollary 8.5 With probability at least 1 � �2 over the choice of U we have, �(Ve�(U)1 ;Ve�(U)2 ) ��(G) � 34�, where (Ve�(U)1 ;Ve�(U)2 ) is as de�ned in Step (3) of the Graph Partitioning Algorithm(Figure 4).8.1.2 The Max-Cut Approximation AlgorithmGiven the graph partitioning algorithm described above, the Max-Cut approximation algorithmis quite straightforward. We uniformly choose a set S of vertices of size m = � �`�t+log(1=�)�2 �,and run the graph partitioning algorithm restricted to this set. The only small di�erence fromwhat might be expected is that we do not necessarily output the size of largest cut among thecuts de�ned by the resulting partitions of S (i.e. those determined by the sequences of partitions�(U)). Instead, we view S = fs1; : : : ; smg as a multiset of m=2 (ordered) pairs of vertices, (i.e.,f(s1; s2); : : : ; (sm�1; sm)g) and we choose the cut that maximizes the number of such pairs that areedges in the cut. This is done for technical reasons since it ensures a certain independence in theprobabilistic analysis. The exact code is given in Figure 5.Lemma 8.6 For any �xed U, with probability at least 1 � �=2 over the choice of S,b��Se�(U)1 ; Se�(U)2 � = ��Ve�(U)1 ;Ve�(U)2 � � 14�, where �Se�(U)1 ; Se�(U)2 � and b�(�; �) are as de�ned in step4 of the Max-Cut approximation algorithm.Proof: Consider �rst a particular sequence of partitions, �(U). The key observation is that forevery s 2 S, and for j 2 f1; 2g, s 2 S�(U)j if and only if s 2 V�(U)j . Thus for each sequenceof partitions �(U) we are e�ectively sampling from �V�(U)1 ;V�(U)2 �. Furthermore, by viewing S asconsisting of m=2 pairs of vertices (s2k�1; s2k), and counting the number of such pairs which are onopposite sides of the partition and have an edge in between, we are able to approximate the densityof the cut edges. For 1 � k � m=2, let �k be a 0=1 random variable which is 1 if (s2k�1; s2k) 2 E(G),and for j 6= j 0, s2k�1 2 S�(U)j and s2k 2 S�(U)j0 . Then, by de�nition, b� �S�(U)1 ; S�(U)2 � = 2m Pm=2k �k,50



Max-Cut Approximation Algorithm1. As Step (1) of Figure 4.2. Uniformly choose a set S = fs1; : : : ; smg of size m = �� `�t+log(1=�)�2 �. For 1 � i � `, let Si def= Vi\S.3. Analogously to Step (2) of Figure 4, for each of the sequences of partitions �(U) =
(U11;U12); : : : ; (U1̀;U2̀)�, partition each Si into two disjoint sets Si1 and Si2, and let S�(U)j = Sì=1 Sij(for j = 1; 2).4. For each partition �S�(U)1 ; S�(U)2 �, compute the fraction of cut edges between pairs of vertices(s2k�1; s2k). More precisely, de�neb��S�(U)1 ; S�(U)2 � def= ���n(s2k�1; s2k) 2 E�(S�(U)1 ; S�(U)2 � [ E�S�(U)2 ; S�(U)1 �o���m=2Let �Se�(U)1 ; Se�(U)2 � be a partition for which this fraction is maximized, and output b��Se�(U)1 ; Se�(U)2 �.Figure 5: Max-Cut Approximation Algorithmand the probability that �k = 1 is � �V�(U)1 ;V�(U)2 �. Hence, by an additive Cherno� bound and ourchoice of m, Pr S ����b� �S�(U)1 ; S�(U)2 �� � �V�(U)1 ;V�(U)2 ���� > 18�� = exp(�
(�2m))= O �� � 2�`�t� (19)Since there are 2`�t sequences of partitions of U, with probability at least 1 � �=2, for every se-quence of partitions �(U), b� �S�(U)1 ; S�(U)2 � = � �V�(U)1 ;V�(U)2 � � 18�, and hence b��Se�(U)1 ; Se�(U)2 � =��Ve�(U)1 ;Ve�(U)2 �� 14�,Combining Corollary 8.5 and Lemma 8.6, Part (1) of Theorem 8.1 follows. Part (2) of the theoremis proved below.8.1.3 An Improved Graph Partitioning AlgorithmThe improved (in terms of running time) graph partitioning algorithm starts by invoking the Max-Cut approximation algorithm of Figure 5, and recording the sequence of sets U uniformly selectedin Step (1) and the sequence of partitions e�(U) selected in Step (4). Using this speci�c sequencee�(U), the algorithm executes a single iteration of Step (2) of the Graph Partitioning Algorithm ofFigure 4 and obtains the partition �Ve�(U)1 ;Ve�(U)2 �. Since this improved algorithm only partitionsall vertices according to e�(U) and does not even compute the size of the resulting cut (as theoriginal algorithm did), its running time is linear in N instead of quadratic. More precisely, itis O(t � N) = O(log(1=(��)=e2)) � N . As for its correctness, by Lemma 8.4, we have that withprobability at least 1 � �=2 over the choice of U, there exists a sequence of partitions �(U), suchthat �(V�(U)1 ;V�(U)2 ) � �(G)� 34�. From the proof of Lemma 8.6 we have that for a �xed U, withprobability at least 1� �=2 over the choice of S, b� �S�(U)1 ; S�(U)2 � is within �8 from � �V�(U)1 ;V�(U)2 �51



for every sequence of partitions �(U). It follows that with probability at least 1 � �, the recordedpartition e�(U) is such that ��Ve�(U)1 ;Ve�(U)2 � � �(G)� �, as required.8.1.4 Generalization to k-way CutsFor a k-way partition (V1; : : : ;Vk) of V(G), we denote by �k(V1; : : : ;Vk) the edge density of thecut de�ned by (V1; : : : ;Vk). Namely,�k(V1; : : : ;Vk) def= jf(v; v0) 2 E(G) : for j 6= j 0; v 2 Vj & v0 2 Vj0gjN2Let �k(G) denote the edge density of the largest k-way cut in G.Theorem 8.71. There exists an algorithm that on input k, � and �, and oracle access to a graph G, withprobability at least 1 � �, outputs a value b�k such that jb�k � �k(G)j � �. The algorithm hasquery complexity an running timeO log2(k=(��))�7 ! and exp O log2(k=(��))�3 !!respectively.2. There exists an algorithm that on input k, �, and �, and oracle access to G, runs in timeexp O log2(k=(��))�3 !!+O� log(k=(��))�2 � �Nand with probability at least 1 � � outputs a k-way partition (V1; : : : ;Vk) of V(G) such that�k(V1; : : : ;Vk) � �k(G)� �.The graph k-way partitioning algorithm (resp., Max-k-way-Cut approximation algorithm and test-ing algorithms), are obtained from the 2-way partitioning algorithm by the following simple modi-�cations� Instead of considering all two-way partitions of each Ui, we consider all its k-way partitions.� For each such partition, (Ui1; : : : ;Uik), we partition Vi (into k disjoint sets) as follows. Foreach vertex v 2 Vi, and for 1 � j � k, let dij(v) = ����(v) \Uij���, and let jmin = argminjfdij(v)g.Then we put v in Vijmin .The following (minor) changes su�ce for the adapting the analysis to the modi�ed algorithm.Let (H01; : : : ;H0k) be a k-way partition of V(G) which de�nes a maximum k-way cut. For a givenchoice and k-way partitions of U1; : : : ;Ui�1, let �Hi�11 ; : : : ;Hi�1k � be the i�1 hybrid k-way partition(de�ned analogously to the two-way cut case) which is determined by this choice and partitionsof U1; : : : ;Ui�1. Using the same notation introduced in the two-way cut case, for a set Ui and foreach j 2 f1; : : : ; kg let Uij def= Wi�1j \Ui where Wi�1j def= Hi�1j nVi. We shall say that Ui is good withrespect to �Wi�11 ; : : : ;Wi�1k � and Vi, if for all but 18� of the vertices v in Vi,For each j 2 f1; : : : ; kg; ����(v) \ Uij���t = ���(v) \Wi�1j ��N � �32 (20)52



It follows that in order to ensure that each Ui be good (with respect to �Wi�11 ; : : : ;Wi�1k � and Vi),we need to choose t = jUij to be log k times larger than in the two-way cut case.The notion of balanced and unbalanced vertices is generalized as follows. Consider a partition�Wi�11 ; : : : ;Wi�1k � of V. For vertex v and j 2 f1; : : : ; kg, let �j(v) def= �(v) \Wi�1j be the subset ofv's neighbors that belong to Wi�1j . Let min(v) def= minjfj�j(v)jg be the minimum size among theseneighbor sets, and let J(v) def= �j 2 f1; : : : ; kg : j�j(v)j � min(v) + �16N�be the balanced (index) set of v. Note that in particular, for k = 2, either jJ(v)j = 1, so that v isunbalanced , or jJ(v)j = k (= 2), so that v is balanced . Consider the case in which Equation (20)holds for v. In such a case, v is placed in a component j0 of the partition such that j 0 2 J(v).Namely, it is placed in a component in which its number of neighbors is not much far from theminimum min(v). The key point is that if v is moved from component j (in �Hi�11 ; : : : ;Hi�1k � tocomponent j 0 (in (Hi1; : : : ;Hik)), all edges that it has with vertices in components j 00 6= j; j 0 remaincut edges, and only the number of cut-edges between v and vertices in components j and j 0 mightchange. Thus, when j0 2 J(v), the number of cut edges between v and vertices in V nVi does notdecrease by much. As in the case of k = 2, we are essentially \giving up" on all cut edges betweenpairs of vertices in Vi, and cut edges that are incident to vertices for which Equation (20) does nothold. Finally, since the number of k-way partitions of all the Ui's is kt�`, we must choose m (thesize of S in the Max-k-way-Cut approximation algorithm) to be � �( `t�2 � log k) rather than � �( `t�2 )(as our choice in the case of two-way cuts).8.2 Testing BisectionIn this subsection we study a variant of the Max-Cut problem in which both sides of the partitionare required to be of equal size. Namely, using the notation presented in Subsection 8.1, let�( 12 )(G) def= maxV1�V(G);jV1j=N=2�(V1;V(G) n V1) :A partition (V1;V2) of V(G), such that jV1j = jV2j = N=2 is called a bisection.17 For sake ofthe exposition (due to the similarity to Max-Cut), we �rst consider the less standard problem ofmaximizing the (number of edges crossing the) bisection. The (more standard) case of minimizationis handled analogously (see Subsection 8.2.4). The main result of this subsection isTheorem 8.81. There exists an algorithm that on input � and � and oracle access to a graph G, with probabilityat least 1 � �, outputs a value b�( 12 ) such that jb�( 12 ) � �( 12 )(G)j � �. The algorithm has querycomplexity and running timeO log2(1=(��))�8 ! and exp�O� log(1=(��))�2 ��respectively.17 We assume throughout this subsection that N is even. In case N is odd, one may require jV1j = jV2j + 1 =(N + 1)=2. 53



2. There exists an algorithm that on input � and �, and oracle access to a graph G, runs in timeexp�O� log(1=(��))�3 ��+ O� log(1=(��))�3 � �Nand with probability at least 1� � outputs a bisection (V1;V2) of V(G) such that �(V1;V2) ��( 12 )(G)� �.Item (1) yields a property tester for the classMC( 12 )� def= fG : �( 12 )(G) � �g, for every 0 � � � 1, withquery complexity O � log2(1=(��))�8 � and running time exp �O � log(1=(��))�3 ��. If � > 12 then the testerrejects G since for � > 12 the class MC( 12 )� is empty. Otherwise the tester runs the approximationalgorithm referred to in Item (1) with approximation parameter �2 and con�dence parameter �(where � and � are the distance and con�dence parameters, respectively, of the testing algorithm).The tester accepts G if an only if b�( 12 ) � �� �2 . If G 2 MC( 12 )� (i.e., �( 12 )(G) � �), then by Item (1)it is accepted with probability at least 1� �. Conversely, if G is accepted with probability greaterthan �, then �( 12 )(G) � � � �. That is, there exists an equal partition (V1;V2) of G such that�(V1;V2) � �� �. Therefore, dist(G;MC( 12 )� ) � � since by adding at most �N2 edges between V1and V2 we can obtain a graph G0 2 MC( 12 )� .A more natural property tester follows as in previous cases:Corollary 8.9 Let m = poly(��1 log(1=�)) and let R be a uniformly selected set of m vertices inV(G). Let GR be the subgraph (of G) induced by R. Then,� if G 2 MC( 12 )� then PrR[�(12 )(GR) > �� �2 ] > 1� �.� if dist(G;MC( 12 )� ) > � then PrR[�( 12 )(GR) � �� �2 ] > 1� �.Our proof of Theorem 8.8 follows the outline of the proof of Theorem 8.1 (i.e., the analysis of theMax-Cut algorithms). However, there is one crucial di�erence between the problem of constructing(resp., approximating the size of) a maximum cut and the problem of constructing (resp., approxi-mating the size of) a bisection: In a bisection both sides of the cut must be of equal size. This hasthe following consequence. Recall that in case of Max-Cut, it is always bene�cial (and possible)to relocate a vertex so that it is on the side opposite the majority of its neighbors. In contrast,when restricted to bisections, this property no longer holds: a maximum size bisection may havevertices which belong to the same side of the bisection as the majority of their neighbors. Thus,when partitioning a subset Vi, we can not simply put all vertices (or all unbalanced vertices) onthe side opposite the majority of their neighbors.However, we can still use information concerning the unbalance of vertices with respect to agiven bisection (and some additional information) in order to de�ne a new bisection whose cut isnot much smaller. Consider an arbitrary bisection (H1;H2), and and arbitrary set of vertices X ofsize O(�N). Assume we are told how many neighbors each vertex in X has in W1 def= H1 n X andhow many in W2 def= H2 n X. Further assume that we know jH1 \ Xj and jH2 \ Xj. Let us relatewith each vertex in X an unbalance value, which is simply the fraction of neighbors it has in W2(among all N possible neighbors) minus the fraction of neighbors it has in W1. This value (whichranges from 1 to �1) tries to capture our \preference" of placing a vertex on side 1.Assume we now repartition the vertices in X so that there are jH1 \Xj vertices on side 1 (andjH2 \Xj on side 2) and all vertices on side 1 have unbalance value which is greater or equal to theunbalance value of any vertex on side 2. Then the resulting partition is clearly a bisection and the54



size of the cut decreases by at most jXj2 = O(�2N2). The latter is due to the fact that for anyother partition of X with jH1 \ Xj vertices on one side (and the rest on the other), there cannotbe more cut edges between vertices in X and vertices in V nX than in the partition de�ned above.The decrease in the size of the cut is hence due to the decrease in the number of cut edges betweenpairs of vertices in X. Our graph bisection algorithm is based on this observation.8.2.1 A High Level Description of the Bisection AlgorithmAs was done in Subsection 8.1, we start by describing an algorithm which is aided by certain oracles,and then show how to simulate these oracles. Similarly to the (oracle aided) graph partitioningalgorithm for Max-Cut, the (oracle aided) graph bisection algorithm proceeds in ` = O(1=�) iter-ations where in the ith iteration the vertices in Vi are partitioned into two subsets, Vi1 and Vi2.Here too we think of the algorithm as de�ning hybrid partitions. Starting from the zero hybridpartition H0 = (H01;H02), which is a maximum bisection, the ith hybrid partition Hi = (Hi1;Hi1)is a hybrid of the partition (Vi1;Vi2) of Vi (constructed in the ith iteration), and the partitionW i�1 = �Wi�11 ;Wi�12 � of Wi�1 def= VnVi induced by the i�1 hybrid partition, Hi�1 = �Hi�11 ;Hi�12 �.However, di�erently from the Max-Cut graph partitioning algorithm, here we might place verticesof Vi which are unbalanced with respect to W i�1 on the same side of the partition as the majorityof their neighbors. This is done so to maintain the desired proportion (of vertices belonging to Vi)on each side of the new hybrid. That is, for each i 2 f1; : : : ; `g, let�i def= ��Vi \ Hi�11 ��N=` (21)be the fraction of vertices in Vi which belong to Hi�11 . Assume we knew all �i's. If in each iteration,i, we make sure to put �i of the vertices in Vi on side 1 and (1� �i) on side 2, then since H0 is abisection, so will be each hybrid partition, and in particular the �nal partition which the algorithmoutputs. Indeed, we assume here that we know the �i's.Further assume that in each iteration of the algorithm we knew exactly how many neighborseach vertex in Vi has on each side of the partition. In such a case we could compute for each vertexv its unbalance value: ub(v) def= ���(v) \Wi�12 ��� ���(v) \Wi�11 ��N : (22)Let L def= N=` (where for simplicity we assume ` divides N), and v1; : : : ; vL be an ordering ofthe vertices in Vi according to their unbalance value; that is, ub(vk) � ub(vk+1). Consider thefollowing partition (Vi1;Vi2) of Vi: Vi1 def= fv1; : : : ; v�iLg, and Vi2 def= Vi n Vi1. Let (Hi1;Hi2) def=�Wi�11 [Vi1;Wi�12 [Vi2�. Then the number of cut edges in (Hi1;Hi2) between vertices in Vi andvertices in Wi�1 is at least as large as in �Hi�11 ;Hi�12 �. This is true since our partition of Vi, byde�nition, maximizes the number of such cut edges among all partitions which are a hybrid between�Wi�11 ;Wi�12 � and a partition of Vi into two subsets of size �iL and (1 � �i)L respectively. Thedecrease in the size of the cut is hence at most jVij2 = (N=`)2 = O( �̀N2).We next remove the assumptions that we know �i as well as ub(v), for every i 2 f1; :::; `gand v 2 Vi. Firstly, we note that approximations (up to O(�)) to these values are good enough.Actually, we can a�ord having bad approximations of ub(v) for an O(�) fraction of the vertices in Vi.Similarly to the Max-Cut partitioning algorithm, we use sample sets Ui to obtain approximationscub(v) to ub(v). Namely, for v 2 Vi and for a partition (Ui1;Ui2) of Ui (where we consider all suchpartitions), we let cub(v) def= j�(v) \Ui1j � j�(v) \ Ui2jt (23)55



where t is the size of each Ui. The approximations b�i = �i�O(�) are obtained by simply trying allinteger multiples of �=8 which sum up to 1=2.18 Each possible setting of b�1; : : : ; b�` and sequence ofpartitions of U1; : : : ;U` gives rise to a di�erent bisection of V, and we choose the resulting bisectionwhose cut is maximized.We show that with high probability over the choice of the Ui's, there exist partitions of thesesets, and there always exists a setting of the b�i's, so that at least one of the resulting bisectionis close to having the maximum number of crossing edges. In particular, let v̂1; : : : ; v̂L be anordering of the vertices in Vi according to cub(v). As we prove in Lemma 8.10, if we put the verticesfv̂1; : : : ; v̂bb�iLc)g on side 1, and the vertices fv̂bb�iLc+1; : : : ; v̂Lg on side 2, then the number of crossingedges in the resulting hybrid partition is not much smaller than that de�ned by the previous hybridpartition.A detailed description of the graph bisection algorithm is given in Figure 6, and its formalanalysis is provided in Lemma 8.10.Graph Bisection Algorithm1. Choose ` = d4� e sets U1; : : : ;U` each of size t = �� 1�2 log 1(��)�, where Ui is chosen uniformly inV nVi.2. For each sequence of partitions � = 
(U11;U12); : : : ; (U1̀;U2̀)� and for each of the `-tuples b� =�b�1; : : : ; b�`�, where each b�i 2 [0; 1] is an integer multiple of �8 , and Pi b�i = 12 , construct abisectiona �V�;b�1 ;V�;b�2 � as follows:(a) For i = 1 : : : ` do:i. For each v 2 Vi let cub(v) def= 1t ����(v) \Ui2��� ���(v) \Ui1���;ii. Let v̂1; : : : ; v̂L be an ordering of the vertices in Vi such that cub(v̂k) � cub(v̂k+1) (ties arebroken according to lexicographical order).iii. Vi1  fv̂1; : : : ; v̂bb�iLcg, and Vi2  fv̂bb�iLc+1; : : : ; v̂Lg(b) Let V�;b�1 = Sì=1Vi1, and let V�;b�2 = Sì=1Vi2.3. Among all bisections, �V�;b�1 ;V�;b�2 �, let �Ve�;e�1 ;Ve�;e�2 � be the one with maximum number ofcrossing edges.aDue to questions of integrability (i.e. b�iL not being an integer) we might not get an exact bisection. Howeverthis can easily be treated by moving (at most `) vertices between sides once the partition is constructed.Figure 6: Graph Bisection algorithmLemma 8.10 Let (H1;H2) be a �xed bisection of V(G). Then, with probability at least 1 � �=2over the choice of U, there exists a sequence of partitions � of U, and an `-tuple b�, such that�(V�;b�1 ;V�;b�2 ) � �(H1;H2)� 34�.Proof: Let b� be such that for every i, b�i = �i� �=16, where �i def= jH1 \Vij: The existence of suchb�i follows from the resolution of the values taken by b�i and the fact that all possibilities (to within18This is always possible in case 1=� is an integer. Otherwise, we can try all integer multiples of �0=8 which sumup to 1=2, where �0 = 1=(d1=�e). Since �0 > �=2, for simplicity we assume that 1=� is in fact an integer.56



this resolution) were tried. For a �xed U, a �xed sequence of partitions � of U, and the abovechoice of b�, let the ith hybrid partition (Hi1;Hi2) determined by � and b� be de�ned as follows. Fori = 0, the partition (H01;H02) equals (H1;H2). For i > 0 and j 2 f1; 2g, let Wi�1j def= Hi�1j n Vi. Asdone in the Graph Bisection Algorithm (see Figure 6), let v̂1; : : : ; v̂L be an ordering of the verticesin Vi according to their cub(�) values. Let Vi1 def= fv̂1; : : : ; v̂bb�iLcg, and Vi2 def= fv̂bb�iLc+1; : : : ; v̂Lg. ThenHij def= Wi�1j [ Vij.Similarly to what was observed in Lemma 8.4, for b� �xed as above, an ith hybrid partitionis actually determined by the partitions of U1; : : : ;Ui (which determine the cub(�) values as inEquation (23)), and does not depend on the partitions of Ui+1; : : : ;U`. Similarly to the analysis ofthe graph partition algorithm for Max-Cut, we shall show that for every 1 � i � `, and for a �xedchoice and partitions of U1; : : : ;Ui�1, with probability at least 1 � �2` over the choice of Ui, thereexists a partition (Ui1;Ui2) of Ui such that� �Hi1;Hi2� � � �Hi�11 ;Hi�12 � � 3�4` : (24)By induction on i we have that the `th hybrid partition (which is necessarily a bisection sincePi b�i = 1=2) has a cut whose size is at most 3�4N2 smaller than the 0th hybrid partition.Let us de�ne a good sample set Ui and a representative partition (Ui1;Ui2), similarly to the waythey were de�ned in Lemma 8.4 except that here we make the stronger quantitative requirementthat for all but �32 of the vertices v in ViFor each j 2 f1; 2g; ����(v) \Uij���t = ���(v) \Wi�1j ��N � �64 (25)As was shown in the proof of Lemma 8.4, for our choice of t = jUij, with probability at least 1��=2,U1; : : : ;U` are good with respect to the respective partitions. Assume from now on that U1; : : : ;U`are good, and for each i let cub(v) be de�ned with respect to the representative partition of Ui.For a �xed i, we shall bound the di�erence between the size of the cut determined by theith hybrid partition and that determined by the (i � 1) hybrid partition via two auxiliary hybridpartitions. Let v1; : : : ; vL be the ordering of the vertices in Vi according to their (correct) unbalancevalue ub(v) with respect to �Wi�11 ;Wi�12 �. Consider �rst the \ideal" partition (Vi1;id;Vi2;id) of Vi,where Vi1;id def= fv1; : : : ; v�iLg, and Vi2;id def= Vi nVi1;id. (Namely, this partition uses both the correctunbalance values and the correct �i). Let (Hi1;id;Hi2;id) be the corresponding ideal hybrid partition(namely, Hij;id def= Wi�1j [ Vij;id). As was noted previously, the size of the cut determined by thisideal hybrid partition is at most jVij2 = �4`N2 smaller than the cut determined by the previoushybrid partition (Hi�11 ;Hi�12 ).Next consider the following \almost-ideal" partition (Vi1;id0 ;Vi2;id0) of Vi, where Vi1;id0 def=fv1; : : : ; vbb�iLcg, and Vi2;id0 def= Vi n Vi1;id0 . Let (Hi1;id0 ;Hi2;id0) be the corresponding almost-idealhybrid partition (namely, Hij;id0 def= Wi�1j [ Vij;id0). Since jb�i � �ij � �16 , then the only di�erencebetween (Hi1;id0 ;Hi2;id0) and (Hi1;id;Hi2;id) is the placement of at most �16L vertices. By the above,and applying what we know about the ideal hybrid partition we have,�(Hi1;id0 ;Hi2;id0) � �(Hi1;id;Hi2;id)� �16L � 2N � �(Hi�11 ;Hi�12 )� 3�8`N2 (26)In what follows we bound the di�erence between the size of the cut determined by the ith hybridpartition (in which Vi is partitioned by the algorithm), and the size of the cut determined by the57



almost-ideal hybrid partition. This di�erence is due to the algorithm's use of approximate unbalancevalues (i.e., the values cub(�) used by the algorithm induce a di�erent order on Vi than the \correct"order used in the almost-ideal partition). Let Yi be the set of misplaced vertices in Vi which areput on a di�erent side in (Hi1;Hi2) than in (Hi1;id0 ;Hi2;id0). Namely, Yi def= fVi1;id0 \Vi2gSfVi2;id0 \Vi1g.Claim: There exists a value y 2 [�1; 1] such that for all but at most �16L of the vertices v in Yi,ub(v) = y � �16 .We prove the claim momentarily, and �rst derive a bound on �(Hi1;id0 ;Hi2;id0)��(Hi1;Hi2) based onthe claim. By de�nition of the almost-ideal hybrid partition, we know that in the actual algorithmwe put exactly the same number of vertices from Vi on each side of the partition as in the almost-ideal partition. It follows that the number of misplaced vertices on each side of the partition isthe same, and we can pair the misplaced vertices and view these pairs as having switched sides.Whenever we switch sides between pairs of vertices whose unbalance value di�ers by at most �8 , thedecrease in the number of cut edges between these two vertices and vertices in Wi�1 is at most �4N .The contribution of all such pairs is at most L2 � �4N = �8`N2. The number of cut edges betweenWi�1 and the at most �16L vertices in Yi which di�er signi�cantly in their unbalance value fromthe rest, decreases by at most �16L � 2N = �8`N2. Thus,�(Hi1;Hi2) � �(Hi1;id0 ;Hi2;id0)� 2 � �8`N2 (27)Combining Equation (26) and Equation (27), we have�(Hi1;Hi2) � �(Hi�11 ;Hi�12 )� 3�8`N2 � �4`N2 = �(Hi�11 ;Hi�12 )� 5�8`N2 (28)and the lemma follows.Proof of Claim: Consider a grouping of the vertices in Vi into 2=�0 unbalance bins according totheir (correct) unbalance value, where �0 = �=32. For k = � 1�0 ; : : : ; 1�0 � 1, the kth bin, denoted Bk,is de�ned as follows: Bk def= �v 2 Vi : ub(v) 2 [k � �0N; (k+ 1) � �0N)	 :Let g be the index of the bin which vbb�iLc belongs to. By de�nition of the bins, all vertices in Bghave approximately the same unbalance value. Since we only have approximations of the unbalancevalues we also group the vertices according to their approximated unbalance values. Namely, Fork = � 1�0 ; : : : ; 1�0 � 1, bBk def= nv 2 Vi : cub(v) 2 [k � �0N; (k+ 1) � �0N)o ;By our assumption on the representativeness of (Ui1;Ui2), at most �32 of the vertices in Vi belong toa bin bBk0 whose index di�ers by more than 1 from their correct bin Bk (and vertices in the same,or in neighboring bins have approximately the same unbalance value).Let v̂1; : : : ; v̂L be an ordering of the vertices in Vi according to their approximate unbalancevalue cub(v), and let ĝ be the index of the bin which v̂b�iL belongs to. We consider two cases. Case1: ĝ = g�1. In this case all but at most �16L of the misplaced vertices have unbalance value rangingbetween g � �0N� �32N and (g+1) � �0 �N+ �32N = g � �0 �N+ �16N , as required. Case 2: ĝ � g+2 (thecase ĝ � g � 2 is analogous). In such a case, necessarily, all but �32L of the vertices v1; : : : ; vbb�iLc(which belong to bins B1; : : : ;Bg), are put on side 1 (as they should). But since we put exactlybb�iLc vertices on side 1, the total number of misplaced vertices is bounded by 2 � �32L, and the claimfollows.Applying Lemma 8.10 to a maximum cut of G, we get58



Corollary 8.11 With probability at least 1 � �2 over the choice of U, there exists a sequence ofpartitions � of U, and an `-tuple b� such that��V�;b�1 ;V�;b�2 � � �( 12 )(G)� 34�Thus, with probability at least 1� �2 , the Graph Bisection Algorithm (described in Figure 6) outputsa bisection �Ve�;e�1 ;Ve�;e�2 � such that ��Ve�;e�1 ;Ve�;e�2 � � �( 12 )(G)� 34�.Bisection Approximation Algorithm1. As Step (1) of Figure 6.2. Uniformly choose a set S = fs1; : : : ; smg of size m = �� `2t+`2�log(1=(��)))�2 �. For 1 � i � `, letSi def= Vi \ S.3. Analogously to Step (2) of Figure 6, for each of the sequence of partitions � and for each of the`-tuples b� = �b�1; : : : ; b�`�, (where each b�i 2 [0; 1] is an integer multiple of �16` , and Pi b�i = 1=2),construct a partition �S�;b�1 ; S�;b�2 � of S. Speci�cally, in the ith iteration of Substep (a), Si1 isassigned the bb�ijSijc vertices with the biggest cub(�) value.4. For each resulting partition �S�;b�1 ; S�;b�2 �, compute the fraction of cut edges between pairs ofvertices (s2k�1; s2k). More precisely, de�neb��S�;b�1 ; S�;b�2 � def= �����(s2k�1; s2k) 2 E�S�;b�1 ; S�;b�2 � [ E�S�;b�2 ; S�;b�1 ������m=2 :Let �Se�;e�1 ; Se�;e�2 � be a partition of S for which this fraction is maximized, and output b�( 12 )(G) =b��Se�;e�1 ; Se�;e�)2 �. Figure 7: Bisection Approximation Algorithm8.2.2 The Bisection Approximation AlgorithmSimilarly to the Max-Cut approximation algorithm, the Bisection Approximation Algorithm (de-scribed in Figure 7) performs the same steps as the algorithm described in Figure 6, but doesso only on a small sample S. The analysis of this Bisection approximation algorithm, given thecorrectness of the graph bisection algorithm, is similar to that of the Max-Cut approximation al-gorithm (Lemma 8.6) except for the following detail. Here we need to take into account that it isnot necessarily the case that for a given U, a sequence of partitions � of U and b�, for each s 2 S,s 2 S�;b�j , if and only if s 2 V�;b�j . This unfortunate phenomena is due to the possibility that forsome vertices v 2 Si, vertex v appears before (resp., after) the b�iN th vertex in the ordering ofVi, but after (resp., before) the b�imth vertex in the ordering of Si. To deal with this we provethe following lemma using arguments analogous to Lemma 7.7 (which deals with an analogousphenomena in the analysis of the �-Clique tester).59



Lemma 8.12 For a �xed U, �, and b�, let (V1;V2) = (V�;b�1 ;V�;b�2 ) be as de�ned in the GraphBisection Algorithm. Let S be a uniformly chosen sample of size m = 
 �`(`t+log(1=(��))�2 � such thatthat for each i, jSij � m=(2`), and let (S1; S2) = (S�;b�1 ; S�;b�2 ) and b�(S1; S2) be as de�ned in theBisection Approximation Algorithm. ThenPrS �jb�(S1; S2)� �(V1;V2)j > �4� < �2 � 2�`�t � � �16�`Proof: Let �0 def= �2 � 2�`�t � � �16�`. For each i 2 f1; : : : ; `g, let Vi1 and Vi2 be as de�ned in the GraphBisection Algorithm, and let Si1 and Si2 be as de�ned in the Bisection Approximation Algorithm (forthe �xed U, � and b� considered in the lemma). Let �1 def= �=40, and let Vi1 be the �rst b(b�i� �1)Lcvertices in Vi, and Vi2 the last d(1� b�i � �1)Le vertices in Vi. For each i, let mi def= jSij, where bythe lemma's hypothesis, mi � m=(2`). By Claim 7.8, for each i,PrS "����� jSi \ Vi1jmi � (b�i � �1)����� > �1# < �04`and similarly, PrS "����� jSi \ Vi2jmi � (1� b�i � �1)����� > �1# < �04`Note that the e�ects of rounding quantities such as b�i � L (and b�i �mi) are negligible since theye�ect the placement of at most one vertex from each Vi (respectively, Si), and since 1=mi (andcertainly 1=L) are much smaller than �1 we may ignore these e�ects. Thus, putting aside an errorprobability of �2 , assume from now on that for each i:1. jSi \Vi1j � b�i �mi, and jSi \Vi2j � (1� b�i) �mi from which it follows (by de�nition of Si1 andSi2) that for each j 2 f1; 2g, Sij \ Vij = Si \Vij;2. jSi \Vi1j � (b�i � 2�1) �mi, and jSi \ Vi2j � (1� b�i � 2�1) �mi. Combining this with Item (1)it follows that jSi1 \ Vi1j � (b�i � 2�1) �mi and jSi2 \Vi2j � (1� b�i � 2�1) �mi.Let V1 be the union of the Vi1's and let V2 be the union of the Vi2's. Thenf(s2k�1; s2k) 2 E(S1; S2)g = f(s2k�1; s2k) 2 E(S1 \V1; S2 \V2)g (29)S f(s2k�1; s2k) 2 (E(S1 nV1; S2) [ E(S1; S2 nV2))gBy Item (1) above and an additive Cherno� bound we get thatPrS 24������ ���f(s2k�1; s2k) 2 E(S1 \ V1; S2 \ V2)g���m=2 � ���E(V1;V2)���N2 ������ > �1035 < �02 (30)By de�nition of V1 and V2, we have thatjE(V1;V2)jN2 � jE(V1;V2)jN2 � 2�1 = �20 (31)60



By Item (2) above, we know that for each i 2 f1; : : : ; `g and j 2 f1; 2g, jSij nVij j � 2�1 �mi, and so���f(s2k�1; s2k) 2 (E(S1 nV1; S2) [ E(S1; S2 nV2))���m=2� ���fk : s2k�1 2 S1 nV1 or s2k 2 S2 nV2)���m=2 � 4�1 = �10 (32)Summing up the probabilities of errors and combining the bounds of Equations (30){(32), thelemma follows.Part (1) of Theorem 8.8 follows by combining Corollary 8.11 and Lemma 8.12. We only needto observe that: (1) by a multiplicative Cherno� Bound, with very high probability in fact jSij �m=(2`) for each i; and (2) the number of sequences of partitions � is 2`t and the number of settingsof b� is less than (16=�)`).8.2.3 The Improved Graph-Bisection AlgorithmSimilarly to the improved graph-partitioning algorithm for Max-Cut, The improved graph-bisectionalgorithm (whose running time is as stated in Theorem 8.8, Part (2)) starts by invoking the Bisectionapproximation algorithm of Figure 7, and recording the sequence of sets U uniformly selected inStep (1), and the sequence of partitions e� and the `-tuple e�, selected in Step (4). Using these speci�ce� and e�, the algorithm executes a single iteration of Step (2) of the Graph Bisection Algorithm inFigure 6. Since it does not check the resulting partition it saves a multiplicative factor of N in itsrunning time. More precisely, it has running time O(t �N) = O(log(1=(��)=e2)) �N (on top of therunning time of the testing algorithm).As for its correctness, by Corollary 8.11, we have that with probability at least 1� �=2 over thechoice of U, there exists � and b� such that �(V�;b�1 ;V�;b�2 ) � �(G)� 34�. From Lemma 8.12 we havethat for a �xed U, with probability at least 1 � �=2 over the choice of S, b��S�;b�1 ; S�;b�2 � is within�4 from ��V�;b�1 ;V�;b�2 � for every sequence of partitions � of U, and every b�. It follows that withprobability at least 1 � � over the choice of U and S, the recorded e� and e� (from the BisectionApproximation Algorithm) are such that ��Ve�;e�1 ;Ve�;e�2 � � �(G)� �, as required.8.2.4 VariationsBisection Minimization. An easy modi�cation su�ces for �nding (resp., approximating thesize of) a nearly minimum bisection rather than a nearly maximum one. In each iteration of thealgorithm(s), instead of placing in side 1 the �rst b�i vertices in decreasing order of (approximate)unbalance, we would do the opposite. Namely, since we would like to minimize the size of the cut,we try and put vertices on the size opposite the minority of their neighbors. While we might notbe able to do so for all vertices (since we are restricted to constructing a bisection), analogouslyto the maximization problem, there exists one side in which all vertices have a smaller (i.e., morenegative) unbalance value than all those on the other side. Thus, in the ith iteration we order allvertices in Vi (or Si in the approximation algorithm) according to increasing unbalance value cub(v)61



(where cub(v) is as de�ned in the maximization algorithms), and put the �rst b�i vertices on side 1and the rest on side 2.Other Restrictions on the Partition. We can also easily generalize the algorithms to con-struct (resp., approximate the size of) partitions with other predetermined proportion of vertices oneach side. A key observation is that the main steps of our algorithms are oblivious of the bisectionrequirement other than in asking that Pi b�i = 12 . In fact, the main steps can produce partitionswith maximum (resp., minimum) number of crossing edges per each proportion of vertices on eachside (up to some resolution). Therefore all we need to do is modify the restriction on the sum of theb�i's to allow either a di�erent �xed proportion or a range of proportions. Thus, for example, we canapproximate quantities such as optjV1j=N=3f�(V1;V(G) nV1)g, or optN3 �jV1j�2N3 f�(V1;V(G) nV1)g,where opt 2 fmax;ming.Testing algorithms for properties corresponding to the above optimization problems essentiallyfollow from the approximation algorithms. In particular, consider �rst properties corresponding tominimization problems. When the property is de�ned as having a cut of density at most � (subjectto certain constraints on the partition de�ning the cut) then the corresponding class is never empty(in particular, the empty graph belongs to the class). Furthermore, for any �, if a graph G hasa partition (V1;V2) such that jV1j = �N and �(V1;V2) � � + �, then we can always remove atmost �N2 edges to obtain �(V1;V2) = �. Therefore, in the case of cut-minimization problems ofthe type discussed in this subsection, the corresponding testing algorithms follow directly from theapproximation algorithms.The situation is slightly more involved when dealing with maximization problems. For 0 � � � 12and a graph G, let �(�)(G) denote the maximum edge density among all cuts (V1;V(G) nV1) suchthat jV1j = �N . LetMC(�)� def= fG : �(�)(G) � �g. To test whether a graph G belongs to the classMC(�)� , we �rst check whether the class is empty, in which case we reject G. Namely, if 2�(1��) < �then the class must be empty, since the maximum number of edges connecting vertices in a setof size �N to vertices in a set of size (1 � �)N is 2�(1 � �)N2. If 2�(1 � �) � � (and so theclass is not empty), the testing algorithm follows from the approximation algorithm mentionedabove, analogously to the way the �-Bisection algorithm follows from the Bisection approximationalgorithm (see discussion following Theorem 8.8).When the sizes of sides of the partition are not required to be �xed but rather are allowed to bewithin a certain range, the testing algorithm is a little less straightforward. For 0 � �1 < �2 � 12and a graph G, let �(�1;�2)(G) denote the maximum edge density among all cuts (V1;V(G)nV1) suchthat �1N � jV1j � �2N . Let MC(�1;�2)� def= fG : �(�1;�2)(G) � �g. Note that the class of graphshaving a cut of size at least � (i.e., MC� = MC(0;12 )� ), which was considered in Subsection 8.1,is indeed a special case. If 2�2(1 � �2) < � then the class MC(�1;�2)� is empty. Otherwise, let�01 � �1 be the minimum value such that 2�01(1��01) � �. We run the algorithm for approximating�(�1;�2)(G) as described above with approximation parameter �2 (where � is the distance parameterof the testing algorithm), while requiring that �01 �Pi b�i � �2. We accept the graph if only if theapproximate value obtained is at least �� �2 .The following example best illustrates why we introduce the restriction thatPi b�i � �01 insteadof just using Pi b�i � �1. Consider the case in which �1 = 0, �2 = 12 , and � = 12 (and so weare simply asking whether the graph G has any cut of density 12). Suppose that G is a completebipartite graph between a set of vertices V1, and a set of vertices V2, such that jV1j = (12�p�=2) andjV2j = (12 +p�=2). Thus, �(0;12 )(G) = �� �, and so with fairly high probability the approximationalgorithm would output an approximate value that is close to �. However, G is p�-far from62



having the desired property, and should be rejected. Note that the di�culty is not with theapproximation algorithm but rather with the relation between approximation and testing. In thiscase, setting�01 = �2 = 12 (as suggested above, since 2�01 � (1� �01) � 12 implies �01 = 12), we restrictour algorithm to consider only partitions for which Pi b�i � �01, and so the algorithm will detectthat the graph should be rejected.9 The General Partition ProblemThe following framework of a general partition problem generalizes all properties considered inprevious sections. In particular, it captures any graph property which requires the existence ofpartitions satisfying certain �xed density constraints. These constraints may refer both to thenumber of vertices in each component of the partition and to the number of edges between eachpair of components.Let � def= n�lbj ; �ubj okj=1 [ n%lbj;j0; %ubj;j0okj;j0=1 be a set of non-negative parameters so that �lbj � �ubj(8j) and %lbj;j0 � %ubj;j0 (8j; j 0). (lb stands for Lower Bound, and ub stands for Upper Bound.) LetGP� be the class of graphs which have a k-way partition (V1; : : : ;Vk) with the following conditionsbeing satis�ed. 8j �lbj �N � jVjj � �ubj �N (33)and 8j; j 0 %lbj;j0 �N2 � jE(Vj;Vj0)j � %ubj;j0 �N2 (34)where recall that E(Vj;Vj0) is the set of edges between vertices in Vj and vertices in Vj0 (wherewe include edges going in both directions). That is, Eq. (33) places lower and upper bounds onthe relative sizes of the various components of the partition; whereas Eq. (34) imposes lower andupper bounds on the density of edges among the various pairs of components.Remark. (A tedious one.) To avoid integrability problems, we consider generalized (or frac-tional) k-way partitions in which up to k � 1 vertices may be split among several parts. Had wenot followed this convention, the set of N -vertex graphs in GP� could be empty for some values ofN and non-empty for others. For example, if �lb1 = �ub1 = 1=3 then only graphs with 3M verticesmay be in GP�. In such a case, the tester must reject any graph with 3M +1 vertices (as the classof graphs with 3M + 1 vertices having the property de�ned by the parameters in empty), whereasit must accept some 3M -vertex graphs. Consequently, such a tester must count the number ofvertices in the graph. These integrability problems have nothing to do with the combinatorialstructure which we wish to investigate and thus we avoid them by taking this somewhat unnaturalconvention.In this section we describe a testing algorithm for the class GP� (for any given set of parameters� = f�ubj ; �lbj g[ f%ubj;j0; %lbj;j0g). Similarly to the testing algorithms described in Sections 7 and 8, thetesting algorithm of this section is based on a randomized partitioning algorithm for the relatedpartition problem. Namely, given a graph G, a set of parameters �, an approximation parameter �and a con�dence parameter �, so that G has a k-way partition which obeys Equations (33) and (34),the partitioning algorithm constructs a partition (V1; : : : ;Vk) of G for which the following hold withprobability at least 1� �: 8j; (�lbj � �) �N � jVjj � (�ubj + �) �N; (35)and 8j; j0; (%lbj;j0 � �) �N2 � jE(Vj;Vj0)j � (%ubj;j0 + �) �N2 ; (36)63



A partition obeying (35) and (36) is called an �-approximation for the partitioning problem de�nedby the set of parameters �.As already indicated in the special case of �-Cut, and in the generalization of the Bisectionstesting algorithm (Subsection 8.2.4), the relationship between having an �-approximation for thegeneral partitioning problem, and being �-close to the class of graphs having the property is notcompletely straightforward. In particular, a graph may have a partition that is an �-approximationfor the partitioning problem de�ned by the set of parameters �, but is 
(p�)-far from the classGP�. We shall deal with this di�culty when designing the testing algorithm. Jumping aheadwe mentioned that instead of checking whether the tested graph has a partition that is an �-approximation for the partitioning problem (or an f(�; k)-approximation, for some function f of �and k), we directly check whether the graph is �-close to GP�.As stated above, all properties considered in previous subsections can be casted as special casesof the general partition problem. For example, k-Colorability is expressed by setting %ubj;j = 0 forevery j (and placing no other constraints which means setting �lbj = 0, �ubj = 1, and similarlysetting the %ubj;j0's and %lbj;j0's for j0 6= j). In case we are interested in maximizing or minimizinga parameter (e.g. maximizing E(V1;V2) in the case of Max-Cut) we can simply run the generalpartitioning (resp., testing) algorithm on all values of this parameter which are multiples of �, and�nd the maximum/minimum value attainable.19 However, as can be seen from our theorems below(and the table in Figure 1), this generality has a price: The query complexity and running timesof our algorithms (for the general partition problem) are quite large. More e�cient algorithmsfor speci�c problems such as k-Coloring, Max-Clique, and Max-Cut, were presented in previoussections. While we cannot exploit the problem-speci�c properties as done in the previous sections,we nonetheless apply some of the ideas used in the above algorithms.Theorem 9.1 There exists an algorithm A such that for every given set of parameters �, algorithmA is a property testing algorithm for the class GP� with query complexity and running timelog2� 1��� � �O(k2)� �2k+8 and exp log� 1��� � �O(k2)� �k+1!respectively.We note that in the running time of the algorithm, we ignore a factor that is polynomial in thelength of the description of �, as we view this length as a �xed constant and not a parameter tothe problem. Furthermore, in any reasonable application, it is much smaller than all other factors.As in previous sections, we also obtain an analogous graph partitioning algorithm.Theorem 9.2 There exists a graph partitioning algorithm that on input �, �, and �, and oracleaccess to a graph G, runs in timeexp log(1=(��)) � �O(1)� �k+1!+ O� log(k=(��))�2 � �Nand if G has a k-way partition satisfying Equations (33) and (34) then with probability at least 1��the graph partitioning algorithm outputs a partition which satis�es Equations (35) and (36).19Actually, our partitioning algorithm works by producing a set of partitions of the graph vertices and then searchingamong them for one which is an �-approximation of the partitioning problem. The testing algorithm runs a similarprocedure on a sample set of vertices. The procedure for producing these partitions depends on k, �, and �, but noton the particular set of parameters �, and therefore we do not actually need to run the algorithm more than once.64



We start by describing a less e�cient graph partitioning algorithm with running timeexp�log(1=(��) � �O(1)� �k+1� �N2. Based on this algorithm we shall obtain the tester postulatedin Theorem 9.1 and �nally derive the (more e�cient) graph partitioning algorithm (postulated inTheorem 9.2).9.1 High Level Description of the Partitioning AlgorithmThe algorithm is based on the following observation, which generalizes an observation applied inthe Bisection algorithm (Subsection 8.2). Let H = (H1; : : : ;Hk) be any �xed partition of V. Inparticular, we may want to consider a partition which obeys Equations (33) and (34). Let X bea set of vertices of small size (i.e., of size O(�N)) and suppose that all but O(�jXj) of the verticesin X have approximately the same (i.e., �O(�N)) number of neighbors in each individual Hj nX.Namely, for each j 2 f1; : : : ; kg, there exists a value �j such that for all but O(�jXj) of the verticesv in X, we have j�(v) \ (Hj nX)jN = �j � O(�) (37)(Recall that a = b� c is a shorthand for b� c � a � b+ c.) The observation is that if we arbitrarilyredistribute the vertices of X among the k components (i.e., Hj's) while maintaining the numberof vertices in each component, then the number of edges between every pair of components isapproximately maintained.More precisely, let (X1; : : : ;Xk) be an arbitrary partition of X so that jXjj = jX\Hj j�O(�jXj),and let H0j = (Hj nX)[Xj. Let H0 def= (H01; : : : ;H0k). Then by our assumption on the Xj 's, we have���jHjj � jH0jj��� = O(�jXj) for every j. Furthermore, by our assumption concerning the \neighbor-pro�le" of vertices in X (Equation (37)), for every j; j0,���jE(Hj;Hj0)j � jE(H0j;H0j0)j��� = O(jXj2 + jXj � �N) = O(jXj � �N) (38)where the second equality is due to the size of X. The �rst equality, namely the bound on thedi�erence of the number of edges, is proved in detail in Lemma 9.3. The �rst crucial observationis that edges with both endpoints not in X are in the same component in H0 as they were in H,and thus are not e�ected by the redistribution of X. As for edges with at least one endpoint in X,there are O(jXj2) edges with both endpoints in X (accounted for in the �rst term of Equation (38)),and the changes in the number of edges with exactly one endpoint in X (due to Equation (37) andjXjj = jXj \Hj j � O(�jXj)) can be bounded by O(jXj � �N).So far we have dealt with a single set of vertices such that all vertices in the set have approx-imately the same \neighborhood pro�le" with respect to a given partition. In general we wish tohandle the case where vertices have arbitrary neighborhood pro�le with respect to the partition.The idea is to pack vertices into clusters according to their neighborhood pro�le. Speci�cally, letH be as de�ned above, let Y be any given set of vertices of size O(�N), and let W = (W1; : : : ;Wk)be de�ned by Wj def= Hj n Y (for each j). We �rst cluster the vertices in Y according to theapproximate number of neighbors they have in each Wj . That is, in each (disjoint) cluster allvertices have approximately the same number of neighbors in each Wj. Suppose we now partitionthe vertices in each cluster X into k parts, (X1; : : : ;Xk) in an arbitrary way so that the number ofvertices in each Xj is approximately jX\Hj j, and add each Xj to Wj, de�ning a hybrid partition,H0 = (H01; : : : ;H0k). Then by the above discussion, which may be viewed as concerning a single65



cluster, for every j,���jHjj � jH0jj��� = Xclusters X�YO(�jXj) = O(�jYj) = O(�2N) (39)and for every j; j 0,���jE(Hj;Hj0)j � jE(H0j;H0j0)j��� = Xclusters X�YO(jXj � �N) = O(�2N2) (40)Similarly to the analysis of the graph partitioning algorithms for Max-Cut and Bisection, we shalluse the above observation to de�ne a sequence of O(1=�) hybrid partitions. It will follow that forthe �nal hybrid, the di�erences in vertex and edge densities as compared to the initial one (whichobeys Equations (33) and (34)) is at most �.The Oracle Aided Procedure. In view of the above observation, we are almost ready todescribe the partitioning algorithm. Similarly to the graph-partitioning algorithms for Max-Cutand Bisection, we �rst describe a mental experiment in which we assume the algorithm has accessto certain oracles (which it actually does not have direct access to). We later show how we canapproximately simulate these oracles. The algorithm works in ` iterations, using as before a �xedpartition into ` equal-size sets V1; : : : ;V`, where ` = 4� . In the ith iteration the algorithm partitionsthe set Vi into (Vi1; : : : ;Vki ). LetH0 = (H01; : : : ;H0k) be a k-way partition which obeys Equations (33)and (34), and for each i > 0, let Hi = (Hi1; : : : ;Hik) be the ith hybrid partition, where Hij def=(Hi�1j nVi) [Vij . Let W i�1 = �Wi�11 ; : : : ;Wi�1k � be the partition induced on V nVi by Hi�1. Thatis, for each j, Wi�1j def= Hi�1j n Vi. For any given vertex v 2 Vi and for every j 2 f1; : : : ; kg, let
j(v) def= j�(v)\Wi�1j jN . The k-tuple (
1(v); : : : ; 
k(v)) is called the neighborhood pro�le of v, referredto in the above discussion.We assume that the algorithm has an oracle that for each i, given a vertex v 2 Vi and j 2f1; : : : ; kg, returns a value 
̂j(v) so that for all but O(�L) of the vertices v in Vi it holds that forevery j, 
̂j(v) = 
j(v)� �=32. Using this oracle, the algorithm clusters the vertices in Vi accordingto the number of neighbors they have in each component of W i�1 as approximated by the oracle:For every possible ~� = h�1; : : : ; �ki where each �j ranges over all integer multiples of �=16, letVi;~� def= �v 2 Vi : 8j; �j � �32 < 
̂j(v) � �j + �32�We refer to the ~�'s as the cluster names , since each ~� uniquely de�nes a di�erent cluster of Vi.Assume further that the algorithm also had access to an oracle which for every cluster Vi;~� andfor each j, returns an approximation, up to an error of �16 , of the fraction of vertices in Vi;~� whichbelong to Hi�1j . Let this approximate fraction be denoted �i;~�j . That is,�i;~�j = jVi;~� \ Hi�1j jjVi;~�j � �16We refer to h�i;~�1 ; : : : ; �i;~�k i as the quantitative partition of Vi;~�, since it only determines how manyvertices from Vi;~� should be in each component of the partition (and does not specify which verticesshould be in each component). However, by our observation concerning redistribution of verticesbelonging to the same cluster, the quantitative partition of Vi;~� is all that matters, and we may66



as well partition Vi;~� in an arbitrary way as long as the quantitative partition is satis�ed. Let�Vi;~�1 ; : : : ;Vi;~�k � be such a partition; that is, b�i;~�j jVi;~�jc � jVi;~�j j � d�i;~�j jVi;~�je, for every j.Let (Vi1; : : : ;Vik) be de�ned by Vij def= S~�Vi;~�j , for each j. By our previous discussion we knowthat for each i, the changes in vertex and edge densities between the i�1 and ith hybrid partitions isO(�2) (see Equation (39) and (40)). Combining this with our hypothesis concerning H0 (i.e., thatH0obeys Equations (33) and (34)) we conclude that H` = f[iVi1; : : : ;[iVikg is an O(�)-approximationof the partitioning problem (as de�ned by Equations (33) and (34)).Simulating the Oracles. We next get rid of the oracles used in each iteration. It is not hardto see that we do not actually need an oracle to give us the �i;~�j 's. Instead, we try all possibilities.Recall that i takes on ` = O(1=�) values, and for each i, there are O(1=�)k possible values of ~� (i.e.,clusters). Finally, for each i, ~�, and j 2 f1; : : : ; kg, there are O(1=�) possible values of �i;~�j . Thus,we simply try all possibleO �1��k!O((1=�)k�`) < exp O �1��k+1 � k log(1=�)!!< exp �1��k+1 � log(1=�)! (41)(vectors of) values for the quantitative partitions of the clusters. Each one gives rise to a di�erentpartition of V, and we can search among these partitions for an �-approximation of the partitioningproblem.In order to approximately simulate the oracles for 
j(v), we apply the same technique used inprevious sections. Namely, we uniformly select ` sets, U1; : : : ;U`, where Ui � V nVi (each of sizet = �(��2 log(k=(��))), and for each i we consider all k-way partitions (Ui1; : : : ;Uik), of Ui. For eachpossible sequence of partitions (i.e., one partition per Ui), when we partition Vi, for each v 2 Viwe use the approximation 
̂j(v) def= j�(v) \ Uij j=t for 
j(v). As we prove in detail in Lemma 9.3,with high probability over the choice of U1; : : : ;U`, there exist representative partitions of the Ui,such that 
̂j(v) is in fact a good approximation of 
j(v) for almost all vertices.9.2 The Preliminary Partitioning AlgorithmA detailed description of the graph partitioning algorithm is given in Figure 8, and its formalanalysis is provided in Lemma 9.3.Lemma 9.3 Let H = (H1; : : : ;Hk) be a �xed partition of V(G). Then with probability at least 1��over the choice of U, there exists a partition � = (U1; : : : ;U`) of U, and a setting of ~�, such that8j; ������ jV�;~�j j � jHj jN ������ � � ;and 8j; j 0; ������ jE �V�;~�j ;V�;~�j0 � j � jE(Hj;Hj0)jN2 ������ � � :67



Graph Partitioning Algorithm for GP�Let � = f~� : ~� = h�1; : : : ; �ki; �i 2 [0; 1] is an integer multiple of �=16 g.1. Choose ` = d4� e sets U1; : : : ;U` each of size t = � � 1�2 log k�� �, where Ui is chosen uniformly inV nVi. Let U = hU1; : : : ;U`i.2. For every setting of ~� = D~�1; : : : ; ~�`E, where ~�i = D�i;~�1 ; : : : ; �i;~�k E~�2� and �i;~�j 2 [0; 1] is an integermultiple of �=8, and for each of the sequence of partitions � = 
(U11;U1k); : : : (U1̀;Uk̀)�, constructa partition V�;~� = �V�;~�1 ; : : : ;V�;~�k � as follows:(a) For i = 1 : : : ` do:i. For each v 2 Vi, and for j 2 f1; : : : ; kg, let 
̂j(v) def= 1t � ���(v) \Uij��.ii. For each ~� 2 � let the ~�-cluster of Vi, denoted Vi;~�, be de�ned as follows:Vi;~� def= �v 2 V i : 8j; �j � �=32 < 
̂j(v) � �j + �=32	.iii. For each cluster Vi;~�, ~� 2 �, let Vi;~�1 be the �rst �i;~�1 � jVi;~�j vertices in Vi;~�, let Vi;~�2be the next �i;~�2 � jVi;~�j vertices in Vi;~�, and in general, let Vi;~�j be the �rst �i;~�j � jVi;~�jvertices in Vi;~� nSj0<j Vi;~�j0 (where in case the resulting numbers are not integers, theyare rounded, alternating between rounding up and down).That is, the ~�-cluster of Vi is partitioned according to the (guess of the) correspondingquantitative partition (i.e., the �i;~�j 's).iv. For each j 2 f1; : : : ; kg, let Vij = S�2�Vi;~�j .(b) For each j 2 f1; : : : ; kg, let Vj = Sì=1Vij .Since each Vj actually depends on � and ~� we denote it by V�;~�j .(c) If the partition V�;~� obeys Equations (35) and (36) then Output V�;~�.Figure 8: Graph Partitioning Algorithm
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Proof: For a �xed partition � of U and a �xed setting ~� = D~�1; : : : ; ~�`E, we consider the following` + 1 hybrid partitions: The hybrid H0 = (H01; : : : ;H0k) is simply H; The hybrid partition Hi =(Hi1; : : : ;Hik) is de�ned as follows: Hij def= Wi�1j [ Vijwhere the partition W i�1 = �Wi�11 ; : : : ;Wi�1k � of V nVi, is de�ned by Wi�1j def= Hi�1j nVi, and Vij'sare determined as in Figure 8. We shall show that for every 1 � i � `, for a given choice andpartitions of U1; : : : ;Ui�1, and for a given setting of ~�1; : : : ; ~�i�1, there always exists a setting of ~�i(referred to as the correct setting), and with probability at least 1� �̀ over the choice of Ui, thereexists a partition (Ui1; : : : ;Uik) of Ui such that8j; ������ ���Hij���� ��Hi�1j ��N ������ � �16` ; (42)and 8j; j 0; ������ ���E �Hij;Hij0����� ���E �Hi�1j ;Hi�1j0 ����N2 ������ � �̀ : (43)The lemma follows by induction on i.Let (Ui1; : : : ;Uik) be the partition of Ui induces by W i�1. Namely, for each j, Uij def= Wi�1j \Ui.We say that Ui is good with respect to �Wi�11 ; : : : ;Wi�1k � and Vi if the following holds. For all butat most an �8 fraction of the vertices v in Vi,For each j 2 f1; : : : ; kg ����(v) \ Uij���t = ���(v) \Wi�1j ��N � �32 (44)If the above holds then we say that (Ui1; : : : ;Uik) is representative with respect to �Wi�11 ; : : : ;Wi�1k �and Vi.Proving Eq. (42) and (43) for a Good Ui. Assume �rst that (Ui1; : : : ;Uik) is representativewith respect to �Wi�11 ; : : : ;Wi�1k � and Vi, and let the clusters Vi;~� be as de�ned in Figure 8,Step (2.a.ii), where 
̂j(v) (for every v 2 Vi and j) is de�ned based on Vij as in Step (2.a.i). Let~�i = D�i;~�1 ; : : : ; �i;~�k E~�2� be such that for every � 2 �, and for each j, �i;~�j = jHi�1j \Vi;~�jjVi;~�j � �16 . Sinceeach �i;~�j takes on all values which are multiples of �8 , there is such a setting of ~�i's. It follows thatwhen the vertices in Vi are partitioning using this (approximately correct) ~�i, then Equation (42)holds. That is, ���jHijj � jHi�1j j��� = �����X~� ���Hi�1j \Vi;~�����X~� �i;~�j � ���Vi;~���������� X~� �16 � jVi;~�j= �16 � NLWe now show that Equation (43) holds as well. Towards this end we �x arbitrary j; j0 and considerthe contribution of three types of edges to the left hand side of Equation (43):69



1. The contribution of edges with both endpoints not in Vi. Since v 2 Hij i� v 2 Hi�1j , forevery v 62 Vi, such edges do not contribute to the di�erence (i.e., to the left hand side ofEquation (43)).2. The contribution of edges with both endpoints in Vi. There are at most jVij2 such edges.Using jVij = Ǹ = �4N , the potential contribution of these edges is bounded by �4`N2.3. The contribution of edges with exactly one endpoint in Vi. We distinguish two cases.(a) Edges incident to vertices in Vi for which Equation (44) does not hold. Since(Ui1; : : : ;Uik) is representative with respect to �Wi�11 ; : : : ;Wi�1k � and Vi, there are atmost �8`N such vertices. Thus, the contribution of these edges to the left hand side ofEquation (43) is bounded above by �8`N � 2N = �4`N2(b) Edges incident to vertices in Vi for which Equation (44) does hold. The contribution ofthese edges is due to two types of approximation errors. The �rst approximation erroris due to the clustering itself. That is, vertices in Vi which belong to the same cluster,might di�er by �8N in the number of neighbors they have in each Wi�1j . Speci�cally, forevery v; v0 which belong to the same cluster Vi;~� and for each j, we havej
j(v)� 
j(v0)j � j
̂j(v)� 
̂j(v0)j+ j
̂j(v)� 
j(v)j+ j
̂j(v0)� 
j(v0)j� �16 + 2 � �32= �8The second approximation error is due to the fact that the fractional partition is speci�edwith bounded precision (i.e., �i;~�j = jVi�1j \Vi;~�jjVi;~�j � �=16), and so at most �16` �N verticesmight be misplaced, contributing at most �8` �N2 edges. Thus, the contribution of bothcases to the left hand side of Equation (43) is bounded above by 3�8`N2.Summing all cases we get a contribution bounded above by �14 + 14 + 38� � �̀N2 < �̀N2.Bounding the Probability that Ui is not Good. We �rst �x a vertex v 2 Vi. Let Ui =fu1; : : : ; utg. For j 2 f1 : : : ; kg, and for 1 � s � t, de�ne a 0=1 random variable, �sj , which is 1 ifus is a neighbor of v and us 2 Wi�1j , and is 0 otherwise. By de�nition, for each particular j, thesum of the �sj 's is simply the number of neighbors v has in Uij , and the probability that �sj = 1 is1N ���(v) \Wi�1j ��. By an additive Cherno� bound (see Appendix B) and our choice of t, for eachj 2 f1; : : : ; kg,PrUi 24������ ����(v) \Uij���t � ���(v) \Wi�1j ��N ������ > �3235 = exp(�
(�2t)) = ��8k` :By Markov's inequality (see Appendix B), for each j 2 f1; : : : ; kg, with probability at least 1� �k`over the choice of Ui, for all but 18� of the vertices in Vi, Equation (44) holds (for that j), and thuswith probability at least 1� �̀ , Ui is good as required. This concludes the proof of Lemma 9.3.By considering a partition H for which Equations 33 and 34 hold, Lemma 9.3 implies that ifG 2 GP�, then with high probability the Graph Partitioning Algorithm described in Figure 8 will �ndan �-approximation for the partitioning problem de�ned by �. As noted previously, the number70



of sequences of partitions considered is bounded by k`t = exp(`t log k) = exp �O � log k�3 log(k=��)��,and the number of settings of ~� is exp �O �(1=�)k+1 � log(1=�)�� (see Equation (41). Hence, thenumber of iterations (in Step (2)), is exp �O �(1=�)k+1 � log(1=(��)��. In each iteration, the runningtime is governed by Step (2.c), that takes O(N2) time. As was mentioned previously, we later showhow to produce such a partitioning in a more e�cient way by �rst running the testing algorithmfor GP�.9.3 The Testing AlgorithmThe testing algorithm for GP� (described in Figure 9) essentially performs the same steps asthe graph partitioning algorithm on a small sample, S, and it is analyzed below. An importanttechnical detail is that (in Step (4)) the tester checks whether the sampled densities are close to anadmissible set of densities (de�ned below), rather than test if they satisfy inequalities analogousto Equations (35) and (36) hold. As noted previously, a graph may have a partition that satis�esEquations (35) and (36), but still be more than �-far from the class GP�. By checking whether thesampled densities are close to an admissible set we are verifying directly whether the tested graphis close to the class GP�.In the following de�nition, for each j, aj corresponds to the fraction of vertices in the jthcomponent of the partition (so in particular the aj 's must sum to 1), and for each j; j0, bj;j0corresponds to the fraction of edges (among all vertex pairs) between components j and j0. The�rst two items in the de�nition merely state conditions on these aj 's and bj;j0's that must hold inany graph. The last item refers to the desired bounds with respect to � itself.Admissible Set of Densities: A set of (non-negative) reals, fajg [ fbj;j0g, is called admissiblewith respect to � ( = f�lbj ; �ubj g [ f%lbj;j0; %ubj;j0g) if it satis�es the following inequalitieskXj=1 aj = 1 and kXj;j0=1 bj;j0 � 1 (45)bj;j � a2j (8j ) and bj;j0 � 2 � aj � aj0 (8j 6= j 0 ) (46)and �lbj � aj � �ubj (8j ) and %lbj;j0 � bj;j0 � %ubj;j0 (8j; j 0 ) (47)In Step (4) of Figure 9 we check that a set of densities f��;~�j g [ f%�;~�j;j0 g is 2�0-close to an admissibleset where �0 def= �3k2 . That is, given the ��;~�j 's and %�;~�j;j0 's, we ask whether there are non-negative aj'sand bj;j0's which, in addition to the above admissibility conditions, also satisfyjaj � ��;~�j j � 2�0 (8j) and jbj;j0 � %�;~�j;j0 j � 2�0 (8j; j 0)We note that the problem of whether a set of densities is 2�0-close to an admissible set for � canbe solved in exp(poly(k) � L)-time, where L is the length of the encoding (in binary) of � and �(see Appendix C). Note that this time-bound is dominated by the number of partitions examinedin Step (4) (of Figure 9).Proof of Theorem 9.1. Recall that �0 = �3k2 . We �rst note that if G 2 GP�, then byLemma 9.3, with probability 1� �2 over the choice of U, there exist � and ~� such that V�;~� is an�0-approximation of the partition problem. Furthermore, the densities related to this partition are�0-close to an admissible set for � (that is, to the set of densities de�ned by a partition (H1; : : : ;Hk)71



Testing Algorithm for GP�Let �0 def= �3k2 .1. Choose ` = 4�0 sets U1; : : : ;U` each of size t = ��� 1�0 �2 log k�0��, where Ui is chosen uniformly inV nVi. Let U = hU1; : : : ;U`i.2. Uniformly choose a set S = fs1; : : : ; smg of size m = ���O(1)�0 �2k+5 � log(1=(�0�))�.For 1 � i � `, let Si def= Vi \ S.3. For every setting of ~� = D~�1; : : : ; ~�`E and for each of the sequence of partitions � =
(U11;U1k); : : : (U1̀;Uk̀)� (as in Figure 8),construct a partition S�;~� = �S�;~�1 ; : : : ; S�;~�k � as follows:(a) For i = 1 : : : ` do:i. For each v 2 Si, and for j 2 f1; : : : ; kg, let 
̂j(v) def= 1t ����(v) \Uij���.ii. For each ~� 2 � let the ~�-cluster of Si, denoted Si;~� be de�ned as follows:Si;~� def= �v 2 Si : 8j; �j � �0=32 < 
̂j(v) � �j + �0=32	.iii. For each cluster Si;~�, ~� 2 �, let Si;~�1 be the �rst �i;~�1 � jSi;~�j vertices in Si;~�, let Si;~�2 be thenext �i;~�2 � jSi;~�j vertices in Si;~� and in general, for j < k let Si;~�j be the �rst �i;~�j � jSi;~�jvertices in Si;~� nSj0<j Si;~�j0 , and let Si;~�k be the remaining vertices in Si;~� (where in casethe resulting numbers are not integers, they are rounded, alternating between roundingup and down).iv. For each j 2 f1; : : : ; kg, let Sij = S�2� Si;~�j .(b) For each j 2 f1; : : : ; kg, let Sj = Sì=1 Sij.4. For each partition, S�;~�, let ��;~�j def= 1m � jS�;~�j (8j)and %�;~�j;j0 def= 1m=2 � ���f(s2r�1; s2r) 2 E(S�;~�j ; S�;~�j0 [ E(S�;~�j0 ; S�;~�j g��� (8j; j0).If for some �; ~� the set of densities f��;~�j g [ f%�;~�j;j0 g is 2�0-close to an admissible set w.r.t. � thenoutput Accept, otherwise output Reject.Figure 9: Testing Algorithm for GP�
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for which Equations (33) and (34) hold). On the other hand, if G is �-far from GP�, then no k-waypartition of V has densities which are 3�0-close to an admissible set w.r.t. �.20Suppose, on the contrary, that V has a k-way partition with densities that are 3�0-close to anadmissible set w.r.t. �. Then we can modify this partition in two steps as follows. Step 1: Wemove up to 3k�0 � N vertices (according to the guaranteed admissible vertex densities), so thattwo conditions hold. First, the number of vertices in each component of the partition is betweenthe required lower and upper bounds. Second, for each j; j 0, the number of vertex pairs, one incomponent j and one in component j0 is at least as required by the edge-density lower bound %lbj;j0.Step 2: We omit/add up to 3k2�0 �N2 = �N2 edges (according to the required edge-densities upperand lower bounds). Hence, we obtain a graph in GP� in contradiction to the hypothesis. The �rstpart of Theorem 9.1 follows from the lemma below, which analogously to Lemmas 7.7 and 8.12 dealswith the performance of the partitions of S as an \approximation" to the corresponding partitionsof V.For a �xed U (which we assume is good, as de�ned in Lemma 9.3), we now consider the partitionsV�;~�'s which would result in running the Graph Partitioning Algorithm with an approximationparameter �0 = �=3k2, and a con�dence parameter �=2. We relate these partitions to the partitionsS�;~�'s that are generated by the Testing Algorithm when using the same U. Let np, na and nbbe upper bounds on the number of sequences of partitions �, number of clusters (one per each iand each setting of ~�), and number of settings of ~�, respectively. Thus np = k`t, na = ` � �16�0 �k =�O(1)�0 �k+1, and nb = � 8�0 �k�na = exp�log(1=�0) � �O(1)�0 �k+1�,Lemma 9.4 For a �xed U, �, and ~�, let V�;~� be as de�ned in the Graph Partitioning algorithm,when executed with approximation parameter �0 = �=3k2. Let S be a uniformly chosen sample ofsize m = 
�na�0 � log(k � np � na � nb)=�)(�0)2 �and let S�;~�, f��;~�j g and f%~�j;j0g be as de�ned by the Testing algorithm. ThenPrS 249j : ��������;~�j � jV�;~�j jN ������ > �035 < �4 � np � nband PrS 249j; j 0 : %�;~�j;j0 � ���E �V�;~�j ;V�;~�j0 ����N2 > �035 < �4 � np � nbProof: Let �0 def= �4�np�nb . and let �1 def= �0=24. For each i 2 f1; : : : ; `g and ~�, let Vi;~� and Vi;~�j beas de�ned in the Graph Partitioning Algorithm, and let Si;~� and Si;~�j be as de�ned in the Testingalgorithm (for the �xed U, � and ~� considered in the lemma). By an additive Cherno� bound, foreach cluster, PrS "����� ��Si;~���m � ��Vi;~���N ����� > �02 # < exp ��
(m � (�0)2)� < �04na (48)20 Here is where the notion of admissible solution plays an important role. As noted in the beginning of this section,it would not su�ce to check whether no k-way partition of V is an O(�=k2)-good approximation (of the partitionproblem). This is true since the existence of a good approximation does not ensure that the distance of G to theclass is of the same order as the approximation. 73



Let Vj be the union of the Vi;~�j 's and let Sj be the union of the Si;~�j 's (as de�ned by the algorithm).Recall that for each j, b~�i;~� � jVi;~�jc � jVi;~�j j � d~�i;~� � jVi;~�je, and similarly, b~�i;~� � jSi;~�jc � jSi;~�j j �d~�i;~� � jVi;~�je. Thus the e�ects of rounding can be taken into account by assuming an arbitraryplacement of 2 � na vertices. Equation (48) together with this bound on the rounding e�ects implythat for every j, with probability at least 1� �04 ,jSj jm = Xi;~� �i;~�j � jSi;�jm � nam = Xi;~� �i;~�j � � jVi;�jN � �02�� 2nam = jVj jN � �0so we have proved the �rst part of the lemma.We say that a cluster Vi;~� is signi�cant , if it contains at least �1 �N=na vertices. Otherwise it isinsigni�cant. Note that the total number of vertices belonging to insigni�cant clusters is at most�1 �N . For each signi�cant cluster and each j, let Vi;~�j be the same as Vi;~�j except that it does notcontain the �rst and the last �1 � jVi;~�j j vertices in the cluster (where �rst and last are with respectto the lexicographic order on vertices). For each i and ~�, let mi;~� def= jSi;~�j. By a multiplicativeCherno� bound, with probability at least 1� �0=12, for every signi�cant cluster,mi;~� � 12 �m � ��Vi;~���N � 12 �m � �1na = 
� log(k � nb=�0)(�0)2 �Therefore, by an additive Cherno� bound, for each signi�cant cluster, and each j,PrS 24������ ���Si;~�j \ Vi;~�j ���mi;� � (~�ij � 2�1)������ > 2�135 < �012 � k � na (49)Thus, putting aside an error probability of �012 , assume from now on that in fact for every signi�cantcluster and every j,1. jSi;~�j \Vi;~�j j � ~�i;�j �mi;~� from which it follows (by de�nition of Si;~�j ) that for every j, Si;~�j \Vi;~�j =Si;~� \ Vi;~�j ;2. jSi;~�j \Vi;~�j j � (~�i;~�j � 4�1) �mi;~�, from which it follows that jSi;~�j \ Vi;~�j j � (~�i;~�j � 4�1) �mi;~�.Next observe that for each j; j0,f(s2k�1; s2k) 2 E(Sj ; Sj0)g = f(s2k�1; s2k) 2 E(Sj \ Vj; Sj0 \ Vj0)g (50)S f(s2k�1; s2k) 2 (E(Sj nVj; Sj0) [ E(Sj; Sj0 nVj0))gBy Item (1) above and an additive Cherno� bound we get that for each j; j 0PrS 24������ ���f(s2k�1; s2i) 2 E(Sj \ Vj ; Sj0 \ Vj0)g���m=2 � ���E(Vj;Vj0)���N2 ������ > �0435 < �012k2 (51)By de�nition of Vj and Vj0, we have thatjE(Vj;Vj0)jN2 � jE(Vj ;Vj0)jN2 � 4�1 < �04 (52)74



By Item (2) above, we know that for every signi�cant cluster and every j, jSi;~�j nVi;~�j j � 4�1mi;~�.By a multiplicative Cherno� bound, with probability at least 1� �012 , the sum of mi;~� taken over allinsigni�cant clusters is at most 2�1 �m. Thus,Xi;~� ���Si;~�j nVi;~�j ��� � r�1 �Xi;~� mi;~� + 2�1 �m = 6�1mTherefore, ���f(s2k�1; s2k) 2 (E(Sj nVj ; Sj0) [ E(Sj ; Sj0 nVj0))���m=2� ���fk : s2k�1 2 Sj nVj or s2k 2 Sj0 nVj0)���m=2 � 12�1 = �02 (53)Summing up all the probabilities of errors and combining the bounds of Equations (51){(53), thelemma follows.Proof of Theorem 9.2. In order to get a partitioning algorithm whose running time is as statedin the theorem, we �rst run the Testing Algorithm and �nd a choice of � and ~� (in time independentof N) for which Step (4) of the Testing Algorithm accepts. Next we use this choice to partition allof V by running Step (2) of the Partition Algorithm only on this choice.. As we have shown in theproof of Theorem 9.1, with high probability, a partition S�;~� will cause the test to accept if V�;~�is an �0-approximation of the partitioning problem, and if V�;~� is not an 3�0-approximation, thenS�;~� will cause the test to reject. Thus, with high probability if the testing algorithm accepted Gdue to a certain setting of � and ~�, then V�;~� is an �-approximation of the partitioning problem.10 Extensions, Limitations and Beyond10.1 Extensions and Limitations of the Above AlgorithmsWe have presented several Graph Property Testers which use queries and are evaluated with respectto the uniform distribution (on pairs of vertices). We now comment on several extensions, variationsand considerations.Impossibility of Testing Without Queries. Proposition 6.9 shows that (edge) queries areessential for testing Bipartiteness. The construction used in the proof actually establishes the samefor testing the class of graphs having cliques of density at least 1=2, and for approximating theMax-Cut (of dense graphs up to an N2=8 additive term). Furthermore, the proof can be easilymodi�ed to yield the same result for testing k-Colorability, for any k � 3.Extension to Directed Graphs. Some of the problems we study have analogies in directedgraphs. In particular this is true for a directed version of �-Cut, where we are interested intesting whether a directed graph has a two-way partition (V1;V2) such that the number of edgescrossing from V1 to V2 is at least �N2. Note that directed graphs in general do not have asymmetric adjacency matrix and the existence of a directed edge from v1 to v2 does not necessarilyimply the existence of an edge from v2 to v1. For any two disjoint sets of vertices, W1 and W2,let �(W1;W2) denote density of the edges crossing from W1 to W2 (i.e., the number of edgescrossing divided by N2). Similarly to the undirected case, the algorithm is essentially based on75



the following observation. Consider a vertex v and a partition (W1;W2) of V n fvg. Let E(v;W2)be the set of edges going from v to vertices in W2, and let E(W1; v) be the set of edges goingfrom vertices in W1 to v. In case jE(v;W2)j > jE(W1; v)j, it is preferable to put v on side 1, i.e.�(W1 [ fvg;W2) > �(W1;W2 [ fvg), and in case jE(W1; v)j > jE(v;W2)j, we should put v on side2. The notion of unbalance is hence slightly modi�ed, but as in the case of undirected cuts, theabove observation generalizes to sets of vertices of size O(�N). Thus the �-Directed-Cut testingalgorithm is very similar to the �-Cut testing algorithm, the only di�erence is that when decidingwhere to put a vertex v 2 Vi given a �xed partition (U1;U2) of the uniformly selected set U, wecompare the number of edges going from v to vertices in U2 to the number of edges going from U1to v. The algorithms for k-way-Cut and Bisection are modi�ed similarly.It is also possible to extend the de�nition of the general partition problem to directed graphs byallowing the bounds %lbj;j0 and %ubj;j0 to di�er from %lbj0;j and %ubj0;j, respectively for j 6= j 0. That is, thereare separate requirements on the number of edges crossing from Vj to Vj0 and the number of edgescrossing from Vj0 to Vj. In such a case, the graph partitioning and testing algorithms for directedgraphs di�er from the algorithms for undirected graphs only in their de�nition of clusters (but theclusters are partitioned by the algorithms as in the undirected case). A cluster of vertices, de�nedwith respect to a �xed partition (W1; : : : ;Wk), is a set of vertices Z such that for all v1; v2 2 Z, andfor every j 2 f1; : : : ; kg, E(v1;Wj) � E(v2;Wj), and E(Wj; v1) � E(Wj; v2).Extension to Product Distributions. Our algorithms for k-Colorability, �-Clique and �-Cutcan be easily extended to provide testers with respect to \product distributions". We call thedistribution 	 : V(G)2 7! [0; 1] a product distribution if there exists a distribution on vertices : V(G) 7! [0; 1] so that 	(u; v) =  (u) � (v). Recall that each of our algorithms takes a uniformsample of vertices, and queries the graph only on the existence of edges between these vertices.Instead, in case we need to test G w.r.t the product distribution 	, we sample V(G) according tothe distribution  . Note that the algorithm need not \know"  ; it su�ces that the algorithm hasaccess to a source of vertices drawn from this distribution (or to a source of pairs drawn accordingto 	). To prove that this extension is valid consider an auxiliary graph G0 consisting of vertex-components so that each component correspond to a vertex in G. Complete bipartite graphs will beplaced between pairs of components which correspond to edges in G. The size of the component willbe related to the probability measure of the corresponding vertex in G. Thus, uniform distributionon V(G0) is almost the same as distribution 	 on V(G). For the analysis of the �-Clique tester,we add also edges between vertices residing in the same component. (This is certainly not donein analyzing the k-Colorability and Max-Cut testers.) It can be shown that testing G for any ofthe above mentioned properties with respect to the product distribution 	 corresponds to testingG0 (for the respective property) under the uniform distribution. Suppose, for example, that Gis k-Colorable. Then so is G0 and thus the k-Colorability Tester will always accept G0 (and thusalways accept G). On the other hand, if the k-Colorability Tester, run with parameters �; �, acceptsG0 with probability 1� �, then there is a k-Coloring of G0 which violates less than an � fraction ofvertex pairs. To obtain a k-Coloring of G we randomly assign each vertex in G a color according tothe proportions of colors assigned to the corresponding vertices in G0. It follows that the expectedprobability mass (according to 	) assigned to violated edges is less than �.Impossibility of Distribution-Free Testing. In contrast to the above extension, it is notpossible to test any of the graph properties discussed above in a distribution-free manner (evenwith queries). For simplicity, let us consider the case of Bipartite Testing. Consider the followingclass of distributions on pairs of vertices of an N -vertex graph. Each distribution is de�ned by apartition of f1; : : : ; Ng into N4 4-tuples. The distribution assigns probability 13N to each (ordered)76



pair of distinct vertices which belong to the same 4-tuple. Pairs residing in di�erent 4-tuples areassigned probability 0. For each distribution, we consider two graphs. The �rst graph consists ofN=4 paths of length 3, each residing in a di�erent 4-tuple; whereas the second graph consists ofN=4 triangles, each residing in a di�erent 4-tuple. Clearly, the �rst graph is bipartite whereas thesecond is not. Furthermore, the second graph is 1=6-far (w.r.t the above distribution) from beingbipartite. Still, no tester which works in o(pN) time can tell these two graphs apart, even if itgets samples drawn from the distribution and is allowed queries. The reason being, that t samplesdrawn from the distribution will, with probability at least 1� 4t2=N , come from di�erent 4-tuples.Furthermore, in this case, any query made by the tester, unless if it is on a pair which has appearedin the sample, is likely to be on a pair which is not from the same 4-tuple and thus a non-edge (inboth graphs).On the Possibility of Working in poly(1=�) Time. The algorithm for Bipartite Testingworks in poly(1=�)-time (see Theorem 6.2), whereas all the other testers presented in this paperwork in time exponential in poly(1=�). In fact, it seems that one cannot hope for much better. Forexample, we claim that if one can test 3-Colorability with distance parameter � in time poly(1=�)then NP � BPP. To test if a graph G is 3-Colorable, simply set � = 1=jV(G)j2 (and � = 1=3) andrun the property testing. Clearly, if G is 3-Colorable then the test will accept with probability atleast 2=3, whereas if G is not 3-Colorable it must be �-far from being 3-Colorable and thus be rejectedby the test with probability at least 2=3. We remark that a similar argument can be made whenusing a relatively bigger value of �. For example, to decide if G is 3-Colorable consider an auxiliarygraph, G0, with 2jV(G)j vertices which are grouped into n def= jV(G)j components each consistingof 2n=n vertices. These huge components will correspond to vertices in G and complete bipartitegraphs will be placed between pairs of components which correspond to edges in G. Thus, we canset � = 1=n2 and apply the same reduction as above this time showing that deciding 3-Colorabilityof G reduces to 3-Colorability testing of G0 with distance parameter � = 1=poly log jV(G0)j.On One-Sided Failure Probability. The testers for Bipartite and k-Colorability always acceptgraphs which have the property. In contrast, all other testers presented in this paper may fail toaccept a yes-instance (yet, with probability at most �). We claim that non-zero failure probability,in these cases, is inevitable. Consider for example the execution of a potential Clique Tester givenaccess to a graph with no edges at all. Clearly, the tester must reject with probability at least 1��.Fix any sequence of coin tosses (for the tester) which makes it reject. This determines a sequenceof queries into the graph (all queries are answered by 0). Assuming that the number of queriesis less than (1 � �)N , there exists an N -vertex graph having a clique of size �N in which all thequeried pairs are non-edges. It follows that the Clique Tester rejects this yes-instance with positiveprobability.21 We conclude that there is a fundamental di�erence between testing k-Colorabilityand testing �-Clique.Impossibility of Learning With Queries. All the above classes of (graph-)functions are notlearnable, not even under uniform distribution and when allowing (membership) queries. Further-more, this holds also if we allow unlimited computing power as long as we restrict the numberof queries to o(N). Intuitively, there are \too" many graphs (functions) in each class. Formally,we may consider attempts to learn a random bipartite N -vertex graph and may even �x the 2-partition, say, place vertices f1; :::; N=2g on one side. Then, each uninspected pair (i; j), withi � N=2 and j > N=2, is equally likely to be either an edge or a non-edge (i.e., be labeled 1 or 021An analogous argument can be used to show that any Clique Tester must accept some no-instance with positiveprobability. (Start by considering an execution on the complete graph.)77



by the corresponding function).Extension to Weighted Graphs (with bounded weights). Let G = (V;E) be a (simpleundirected) graph, and ! : E 7! [0; B] be a weight function assigning each edge e 2 E a non-negativevalue (bounded by B). We assume that B, the bound on the weights of the edges, is known. Weassociate with G a function fG;! : V � V ! [0; B], where fG;!(v1; v2) = 0 if (v1; v2) =2 E and is!(v1; v2) otherwise. When performing a query on a pair of vertices, (v1; v2), our testing algorithmsreceive the value of fG(v1; v2). The notion of distance between graphs is slightly di�erent fromthe unweighted case: We de�ne the distance between two weighted graphs (G; !) and (G0; !0), orequivalently between fG;! and fG0;!, to be 1N2 Pv1;v22V jfG;!(v1; v2) � fG0;!(v1; v2)j. The distancebetween a weighted graph and a class of weighted graphs is de�ned in the obvious manner. Thegeneralization to weighted graphs may a�ect the testing problems in two ways:A�ect on the objective: Consider, for example, a generalization of �-Cut to weighted graphs. Aweighted graph G = (V;E; !) has a cut of weight at least �, if there exists a partition (V1;V2) ofV such that 1N2 Pv12V1;v22V2 2fG(v1; v2) � �. Thus, the class �-Cut is a class of weighted graphs(rather than of graphs). Still, our algorithms for unweighted �-Cut are easily adapted to theweighted case; yet, the query complexity (resp., running-time) of our tester will depend polynomially(resp., exponentially) on the bound B.22 The k-Cut, Bisection, and General Partition properties andalgorithms generalize similarly.A�ect on distance: Consider, for example, testing k-Colorability of weighted graphs. Clearly, theproperty of being k-Colorable has nothing to do with the weights of the edges; yet, the distancefrom the class of k-Colorable graph does depend on these weights. However, the latter dependencycan be easily waived by replacing each non-zero weighted edge by an edge with weight B. Notethat this replacement does not a�ect k-Colorability and that it only increases the distance of non-k-Colorable weighted graph from the class of k-Colorable weighted graphs. We stress that in theresulting graph all edges have weight B. Thus, testing a weighted graph for k-Colorability withdistance parameter �, reduces to testing the underlying (unweighted) graph (for k-Colorability)with distance parameter �B . Again, the bound B turns out to a�ect the query complexity andrunning-time as in the �rst case.10.2 Testing Other Graph PropertiesThe following remarks and observations are meant to indicate that providing a characterization ofgraph properties according to the complexity of testing them may be quite challenging.We �rst recall that testing k-Colorability seems to be fundamentally di�erent from testing �-Clique since the �rst can be done without ever rejecting yes-instances whereas the second cannotbe done without two-sided failure probability.Easy to Test Graph Properties. Next, we observe that any graph property which can bemade to hold by adding or omitting few edges from any graph can be tested very easily. Namely,Proposition 10.1 (testing almost trivial classes): Let � > 0 be a constant and C a class of graphs22Speci�cally, all that need be changed is the notion of balanced vertices: We say that a vertex v is unbalancedwith respect to a partition (W1;W2) if 1N jPw12W1 fG(v;w1) �Pw22W2 fG(v;w2)j is non-negligible. Similarly tothe unweighted case we shall use partitions (U1;U2) of a uniformly selected sample U to approximate this di�erence(and use an additional sample S to approximate weights of cuts). The only di�erence in the analysis is that insteadof using sums of 0=1 random variables to approximate expected values, we are using sums of random variables whosevalue lies in [0; B], and hence we'll get a polynomial dependence on B in the sample complexity, and an exponentialdependency in the running time. 78



so that for every graph, G, dist(G; C)� jV(G)j��Then, C can be tested by using at most poly(��1 log(1=�)) labeled random examples, where � is thedistance parameter. Furthermore, the test always accepts graphs in C.Classes which satisfy the hypothesis of the proposition include: Connected Graphs (add � jV(G)j�1edges), Eulerian Graphs (make connected and add � jV(G)j=2 edges), Hamiltonian Graphs (add� jV(G)j � 1 edges), Graphs with �(�)-vertex Dominating Set, for a given �(�) (add � jV(G)j ��(jV(G)j) edges), Graphs having Perfect Matching (add � jV(G)j=2 edges), and Graphs containinga subgraph H (add � jE(H)j edges).23 We remark that the above also holds with respect to some ofthe complementing classes such as UnConnected Graphs, Non-Hamiltonian Graphs, Non-EulerianGraphs, Graphs without �(�)-vertex Dominating Set and Graphs not having Perfect Matching (e.g.,by removing edges to make one vertex isolated).Proof: Let �(N) def= maxG:jV(G)j=Nfdist(G; C)g and suppose that �(N) or a good upper boundon it is known. (One may always use �(N) = N��.) Given oracle access to an N -vertex graph G(and a distance parameter �), if � > �(N) then the tester always accepts. Otherwise, the testerinspects all N2 = poly(1=�) edges and decides accordingly. Actually, we may take a sample ofO(log(N=�) � N2) labeled random examples and accept i� either the sample does not cover allpossible vertex pairs or the sample \reveals" a graph in C. The main point is that in case � > �(N)every N -vertex graph is �-close to C.We stress that as long as the distance parameter (i.e., �) is not too small, the tester is trivial (i.e.,it accepts any graph without performing any checking). Slightly more is required in order to checkany graph property which holds only on very sparse graphs. Here, as long as � is not too small, thetester need only check that random examples of vertex-pairs have no edge between them (i.e., thegraph is su�ciently sparse).Proposition 10.2 (testing classes of sparse graphs): Let � > 0 be a constant and C a classof graphs so that C � fG : jE(G)j < jV(G)j2��g. Then, C can be tested by using at mostpoly(��1 log(1=�)) labeled random examples, where � and � are the distance and con�dence pa-rameters.Classes which satisfy the hypothesis of the proposition include: Trees, Forests and Planar Graphs(all with jE(G)j = O(jV(G))j).Proof: Let �(N) def= maxG2C:jV(G)j=NfjE(G)j=N2g and suppose that �(N) or a good upper boundon it is known. (One may always use �(N) = N��.) Given oracle access to an N -vertex graph G(and parameters �; �), if � > 3�(N) then the tester takes a sample of t def= O(��2 log(1=�)) labeledrandom examples and accepts i� it has seen at most (�(N)+ (�=3)) � t edges. Otherwise, the testerinspects all N2 = poly(1=�) edges and decides accordingly. (Again, the actual implementation isby a sample of O(log(N=�) � N2) edges which is very likely to cover all vertex pairs.) The mainpoint is that the graphs in C have edge density at most �(N), whereas graphs that are �-away fromC have edge density at least �� �(N) which for � > 3�(N) is more than �(N)+ 2�=3. We concludeby noting that, with probability at least 1 � � the number of edges seen by the tester provides agood estimate (i.e., �=3 deviation) to the density of the graph.23The latter can be generalized to Graphs containing a subgraph which can be contracted to one of the graphs infH1; :::;Htg. The Non-Planar Graphs are a special case. 79



We stress that both the above testers make no queries. In contrary, the following slightly moreinvolved tester does make queries in order to check that vertices drawn at random have about thesame degree. This algorithm is a tester for the class of Regular Graphs, and its correctness isestablished based on a theorem due to Noga Alon (private communication, 13th April 1996).Proposition 10.3 (testing regular graphs): The class of regular graphs can be tested by using atmost poly(��1 log(1=�)) queries, where � and � are the distance and con�dence parameters.Proof: Given oracle access to an N -vertex graph G (and parameters �; �), the test takes a sample,S, of O(��1 log(1=�)) many vertices and for each v 2 S makes O(��2 log(1=(��))) queries of the form\is (v; w) 2 E(G)", where w 2 V(G) is uniformly chosen. Thus, the test estimates the degrees ofall vertices in S. The test accept i� all the estimated degrees (divided by N) are within �=3 of oneanother.Clearly, if G is regular then, with probability at least 1 � �, the test accepts it. Assume,on the other hand, that the test accepts with probability greater than �. Then, for some � and�0 = �=13, it must be the case that all but an �0 fraction of the vertices in G have degree (�� �0)N .By omitting/adding edges to the few vertices with degree outside the above interval, we obtain agraph G0 so that1. dist(G;G0) � �0.2. every vertex in G0 has degree (�� 2�0)N .At this point we invoke a theorem due to Noga Alon (see Appendix D) which asserts that a graph G0in which the di�erence between the maximum and minimum degree is bounded above by �00jV(G0)jis at most (3+ o(1)) � �00-away from the class of regular graphs. Thus, G is at most �-away from thisclass, and the proposition follows.Estimating vertex degree also su�ces to test that the minimum cut in the graph is above somethreshold. That is,Proposition 10.4 (testing min-cut): The class of graphs G with minimum cut at least � =�(jV(G)j) can be tested by using at most poly(��1 log(1=�)) queries, where � and � are the dis-tance and con�dence parameters.Proof: If � = O(log(N)=N) then we examine the entire graph. Otherwise, we merely test via apoly(1=�) log(1=�) sample that all vertices seem to have degree (approximately) above � = �(N).That is, to test that the minimum cut is at least � we sample su�ciently many vertices, approximatetheir degree according to the sample, and accept i� all estimated degrees are above, say, � � �2N .The analysis utilizes the observation that at most O(N logN) edges must be added to an N -vertexgraph of minimum degree d in order to make it have min-cut at least d. This observation is provedby a random construction.The basic idea is to consider the immediate neighborhoods of each of the N vertices in thegraph. We get a collection of subsets, each having cardinality at least d. Thus, all that is needed isto guarantee d edge-disjoint paths between each pair of such subsets. This can be done easily, bydesignating d special vertices in the graph, and randomly connecting each vertex in the graph tothe designated set by O(logN) random edges. Consider one speci�c neighborhood (out of the N).With probability greater than 1 � 1N , the random edges (from its vertices to the designated set)contain a d-matching. Thus, we obtain d edge-disjoint paths between each pair of neighborhoods,which implies that the augmented graph is d-edge-connected.80



Testing Graph Properties Using the Regularity Lemma. As noted above, much less e�-cient testers for k-Colorability and other graph properties can be obtained by using the RegularityLemma of Szemer�edi [Sze78]. Interestingly, the Regularity Lemma yields the following result abouttesting, which we do not know to obtain without it. Let H be an arbitrary �xed graph (e.g., thetriangle K3) and consider the class of graphs which have no H subgraphs. Using the RegularityLemma, Noga Alon (private communication) observed that there exist testers for H-freeness, withquery complexity which is a tower of poly(1=�) exponents. Recall that � is our distance parameter(i.e., Alon's tester rejects a graph if it is �-far from being H-free). Alon expressed the opinionthat proving a result like this without the Regularity Lemma (and hence probably getting betterbounds) would be, indeed, very challenging, and would probably have some very nice combinatorialapplications.Hard to Test Graph Properties. Analogously to Proposition 4.1, we show that there aregraph properties requiring inspection of a constant fraction of all possible vertex-pairs.Proposition 10.5 There exists a class of graphs, G, for which any testing algorithm must inspecta constant fraction of the vertex pairs. This holds even for testing with respect to the uniformdistributions, for any distance parameter � < 1=2 and con�dence parameter � < 1=2, and whenallowing the algorithm to make queries and use unlimited computing time.Proof: In adapting the proof of Proposition 4.1, we introduce for each N a random subset of 2 120N2N -vertex graphs. Each graph is speci�ed by the lower triangle of the corresponding adjacencymatrix. This allows at most N ! representations of the same graph (i.e., all its automorphism). Themultiple representation only e�ects the �rst part of the proof; that is, the bound on the probabilitythat a uniformly selected graph is �-close to G. However, the extra factor of N ! is easily eliminatedby the probability exp(�
(N2)) that a random graph is �-close to a speci�c graph. The second partof the proof (i.e., the distance between the two observed distributions) remains almost unchanged.Actually, a similar result holds with respect to graph properties which are in NP ; that is, classesof graphs which constitute NP sets.Proposition 10.6 There exists an NP set of graphs, G, for which any testing algorithm mustinspect at least 
(N2) of the vertex pairs, where N is the number of vertices in the graph. Thisholds even for testing with respect to the uniform distributions, for any constant distance parameter� < 1=2 and con�dence parameter � < 1=2, and when allowing the algorithm to make queries anduse unlimited computing time.This proposition subsumes Proposition 10.5.Proof: We adapt the proof of Proposition 10.5, by considering, for each N , all graphs whicharise for particular \pseudorandom" sequences. Speci�cally, we consider �N2 �-long sequences takenfrom a 12 � 2�t-biased sample space (cf., [NN93] or [AGHP92]), where t def= 1100N2. E�cientlyconstructible sample spaces of size (2t � N)5 having the above property can be found in [NN93,AGHP92]. Graphs are now speci�ed, as before, by letting each such sequence de�ne (the lowertriangle of) the corresponding adjacency matrix, and so there are there are exp � 120N2� such graphsand each graph is speci�ed by a sequence of length O(t+ logN) = poly(N). The �rst part of theproof remains unchanged (since all that matters is the number of graphs in the class). The secondpart of the proof is actually simpli�ed since any t observed bits in the a random sequence as abovedeviates from the uniform distribution by at most 12 (i.e., using the notation of Proposition 4.1,81



�S(G) < 12 for every S of size t). All which remains is to be convinced that we have constructedan NP set. This follows by letting the NP-witness of the membership of a graph in the set be theisomorphism to the canonical representation (i.e., the representation corresponding to the almostunbiased sequence).
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A Recurring NotationFor an integer b, we let [b] def= f1; : : : ; bg.For any three rational number, �, � and 
, we let � = � � 
 stand for � � 
 � � � � + 
.A graph is typically denoted G = (V;E) and N typically denotes the number of vertices in G.Furthermore, typically V = f1; 2; :::;Ng.B Useful InequalitiesBelow are several important inequalities that are used throughout the paper.Theorem B.1 (Markov's Inequality) Let X be a random variable assuming only non-negativevalues. Then for all k 2 <+, Pr[X � k �Exp[X ]] � 1kTheorem B.2 (Cherno� Bounds) Let X1; X2; :::Xm be m independent random variables whereXi 2 [0; 1]. Let p def= 1m PiExp[Xi]. Then, for every 
 2 [0; 1], the following bounds hold:� (Additive Form) Pr " 1m � mXi=1Xi > p+ 
# < exp ��2
2m�and Pr " 1m � mXi=1Xi < p� 
# < exp ��2
2m�� (Multiplicative Form) Pr " 1m � mXi=1Xi > (1 + 
)p# < exp ��
2pm=3�and Pr " 1m � mXi=1Xi < (1� 
)p# < exp ��
2pm=2�C Determining Closeness to an Admissible SetIn this appendix we consider the computational problem of determining whether a sequence ofdensities is 2�0-close to an admissible set for �. That is,Input: � parameters �lb1 ; :::; �lbk , �ub1 ; :::; �ubk , %lb1;1; :::; %lbk;k, %ub1;1; :::; %ubk;k, and �0.� densities: �1; :::; �k and %1;1; :::; %k;k.Question: Does the following system of inequalities in xi's and yi;j's have a solution?kXi=1 xi = 1 and kXi;j=1 yi;j � 1 (54)88



�lbi � xi � �ubi (8i ) and %lbi;j � yi;j � %ubi;j (8i; j ) (55)yi;i � x2i (8i ) and yi;j � 2 � xi � xj (8i 6= j ) (56)jxi � �ij � 2�0 and jyi;j � %i;jj � 2�0 (8i; j ): (57)We �rst observe that the corresponding lower and upper bounds in Eq. (55) and Eq. (57) can becombined. We also observe that the above system has a solution if and only if it has a solutionin which the yi;j are set to be as small as possible. That is, a solution in which each yi;j has theminimum value that obeys the lower bounds in Equations Eq. (55) and Eq. (57). This yields thefollowing system of inequalities, where Li = maxf�lbi ; �i � 2�0g, Ui = minf�ubi ; �i + 2�0g, Li;i =maxf%lbi;i; %i;i� 2�0g, and Li;j = 12 �maxf%lbi;j; %i;j � 2�0g (i 6= j):kXi=1 xi = 1 (58)Li � xi � Ui (8i ) (59)xi � xj � Li;j (8i; j ) (60)We �rst observe that Eq. (58){(60) constitute a Convex Program; furthermore, its feasibility region,in case it is not empty, is a t-dimensional convex set, where t � k � 1. Next, we observe that thisconvex set contains any simplex de�ned by t + 1 points of general position inside the convex set.This holds, in particular, for points which are on the intersection of t of the boundaries/inequalities(i.e., \vertices" of the body). It can be easily veri�ed that for any such two points and for anycoordinate, if the points are di�erent along this coordinate then their di�erence is bounded belowby 2�k�L, where L is the length of the encoding (in binary) of � and �. It follows that the feasibilityregion, if not empty, contains a t-dimensional ball of radius 2�poly(k)�L (and is contained in [0; 1]t).Thus, the feasibility problem can be solved by exhaustive search in exp(poly(k) � L)-time: First,we reduce the problem to t dimensions, by guessing k � t (\independent") inequalities which aresatis�ed at equality. Next, we search the resulting t-dimensional space for a feasible solution, byexamining all points which reside on a cubic integer lattice spanned by vectors of length 2�poly(k)�L.Remark: The feasibility problem can be solvable by the Ellipsoid Method (cf., [GLS88]) in poly(k �L)-time, but this saving has little a�ect on our application.D A Note on Regular Graphs (by Noga Alon)The following theorem is due to Noga Alon. We stress that the theorem refers to simple undirectedgraphs (i.e., with no self-loops and no parallel edges).Theorem D.1 Let G = (V;E) be a graph on N vertices with maximum degree D and minimumdegree d, where D � d � �N . Then there is a regular graph on N vertices obtained from G byomitting and adding at most 3�N2 + 2N edges.Proof: By replacing G, if needed, with its complement, we may and will assume that D �12(1 + �)N . It is convenient to �rst reduce to the case in which the maximum degree is a bitsmaller than 0:5N . This can be done as follows. Delete the maximum possible number of edgesfrom G subject to keeping its minimum degree d. Let us denote the resulting graph by G0 and themaximum degree in it by D0. In case D0 = d we are done. Otherwise, we consider the set of vertices89



of degree D0 and observe that it is an independent set (since the existence of an edge between twovertices of degree greater than d violates the maximality of G0). Thus, for each set A of vertices ofdegree D0 in G0, j�(A)j > jAj, since the number of edges from A to �(A) equals jAj �D0 as well asis bounded above by j�(A)j � (D0� 1). Therefore, by Hall's theorem, there is a matching in G0 thatsaturates all vertices of degree D0. Omitting such a matching, we obtain a graph, denoted G1, ofmaximum degree D1 = D0�1 and minimum degree d1 2 fd; d�1g. Iterating this procedure (of �rstomitting edges between vertices of maximum degree and then omitting an appropriate matching)we obtain a sequence of graphs G1;G2; :::;Gt, stopping if either Gt is regular or if t = �2N + 2. Let(D1; d1); :::; (Dt; dt) be the corresponding sequence of maximum and minimum degrees in the Gi's.Clearly, Dt � D � t, and Dt � dt � �N . Since dt � d� t we conclude that during this process wehave omitted at most (D � (d� t)) �N � 1:5�N2 + 2N edges. In case Gt is regular, we are done.Otherwise, we have Dt � 0:5N � 2. We let H def= Gt, D0 def= Dt, d0 def= dt, and let D00 be the smallesteven integer which is at least D0 (i.e., D00 = D0 + (dD0=2e � bD0=2c) 2 fD0; D0 + 1g).To complete the proof we show how to modify H by omitting and adding to it at most O(�n2)edges so that the resulting graph will be D00-regular. For each vertex v ofH , de�ne s(v) = D00�d(v),where d(v) is the degree of v in H . Thus the sum S =Pv2V s(v) is even, and we have to increasethe degree of each vertex v by s(v). We do so in S=2 steps, where in each step we increase by 1 thedegrees of two (not necessarily distinct) vertices with positive s values, and keep the other degreesinvariant. Speci�cally, in each step we either add one edge or add two edges and remove one edge.In either case, we update the relevant s values. Since S � (D00 � d0)N � �N2 the desired resultfollows. Following is a description of a typical step:Case 1 There is a vertex v for which s(v) � 2. Let Y denote the set of all its non-neighbors.If some member of Y has a positive s value, we connect it to v and update their s valuesto complete the step. Else, each member of Y has degree D00. Note that jY j > N=2 (sincejY j � N � (D00 � 2) � N �D0 + 1 � 0:5N � 1). Hence there must be an edge between twomembers of Y , since otherwise jY j �D00 � (N � jY j) �D00. Let (u; w) be such an edge. Thenwe omit (u; w) from the graph, add the two edges (v; u) and (v; w) to the graph, update thes value of v, and complete the step.Case 2 The only vertices v with positive s values have s(v) = 1. Since the sum of the s-values iseven, there are at least two such vertices, say, u and v. Let Y be the set of all non-neighborsof u and Z the set of all non-neighbors of v. Note that, as before, if some vertex in either Yor Z has a positive s value the we can connect it to either u or v and complete the step. Wenow claim that there must be an edge yz in the graph with y 2 Y and z 2 Z, since otherwiseall edges from Y lead to vertices in V n Z, implying that jY j �D00 � (N � jZj) �D00, which isimpossible, since both jY j and jZj are greater than N=2. We can now add the edges uy andzv, remove the edge yz, and update the s values of u and v, completing the step.Observing the the maximum number of edge modi�cations in these S=2 steps is 32S � 32�N2, thetheorem follows.
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