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1 Introdu
tionIn the last de
ade, the area of property testing has attra
ted mu
h attention (see the surveysof [F01, R℄, whi
h are already out-of-date). Loosely speaking, property testing typi
ally refers tosub-linear time probabilisti
 algorithms for de
iding whether a given obje
t has a predeterminedproperty or is far from any obje
t having this property. Su
h algorithms, 
alled testers, obtain bitsof the obje
t by making adequate queries, whi
h means that the obje
t is seen as a fun
tion andthe testers get ora
le a

ess to this fun
tion (and thus may be expe
ted to work in time that issub-linear in the length of the des
ription of this obje
t).Mu
h of the aforementioned work (see, e.g., [GGR, AFKS, AFNS℄) was devoted to the studyof testing graph properties in the adja
en
y matrix model, whi
h is also the setting of the 
urrentwork. In this model, introdu
ed in [GGR℄, graphs are viewed as (symmetri
) Boolean fun
tions overa domain 
onsisting of all possible vertex-pairs (i.e., an N -vertex graph G = ([N ℄; E) is representedby the fun
tion g : [N ℄�[N ℄! f0; 1g su
h that fu; vg 2 E if and only if g(u; v) = 1). Consequently,an N -vertex graph represented by the fun
tion g : [N ℄� [N ℄! f0; 1g is said to be �-far from somepredetermined graph property more than � � N2 entries of g must be modi�ed in order to yield arepresentation of a graph that has this property. We refer to � as the proximity parameter, and the
omplexity of testing is stated in terms of � and the number of verti
es in the graph (i.e., N).Interestingly, many natural graph properties 
an be tested within query 
omplexity that de-pends only on the proximity parameter; see [GGR℄, whi
h presents testers with query 
omplexitypoly(1=�), and [AFNS℄, whi
h 
hara
terizes the 
lass of properties that are testable within query
omplexity that depends only on the proximity parameter (where this dependen
e may be an ar-bitrary fun
tion of �). However, a 
ommon phenomenon in all the aforementioned works is thatthey utilize quite naive algorithms and their fo
us is on the (often quite sophisti
ated) analysis ofthese algorithms. This phenomenon is no 
oin
iden
e: As shown in [AFKS, GT℄, when ignoring aquadrati
 blow-up in the query 
omplexity, property testing (in this model) redu
es to sheer 
om-binatori
s. Spe
i�
ally, without loss of generality, the tester may just inspe
t a random indu
edsubgraph (of adequate size) of the input graph.In this paper we demonstrate that a more re�ned study of property testing (in this model)reveals the importan
e of algorithmi
 design (also in this model). This is demonstrated both bystudying the advantage of adaptive testers over non-adaptive ones as well as by studying the 
lassof properties that 
an be tested within 
omplexity that is inversely proportional to the proximityparameter.1.1 Two Related StudiesWe start by reviewing the two related studies 
ondu
ted in the 
urrent work.Adaptivity vs. Non-adaptivity. A tester is 
alled non-adaptive if it determines all its queriesindependently of the answers obtained for previous queries, and otherwise it is 
alled adaptive.Indeed, by [AFKS, GT℄, the bene�t of adaptivity (or, equivalently, the 
ost of non-adaptivity)is polynomially bounded: Spe
i�
ally, any (possibly adaptive) tester (for any graph property)of query 
omplexity q(N; �) 
an be transformed into a non-adaptive tester of query 
omplexityO(q(N; �)2). But is this quadrati
 gap an artifa
t of the known proofs (of [AFKS, GT℄) or does itre
e
t something inherent?A re
ent work by [GR07℄ suggests that the latter 
ase may hold: For every � > 0, they showedthat the set of N -vertex bipartite graphs of maximum degree O(�N) is �-testable (i.e., testable1



with respe
t to proximity parameter �) by eO(��3=2) queries, while (by [BT℄) a non-adaptive testerfor this set must use 
(��2) queries. Thus, there exists a 
ase where non-adaptivity has the 
ostof in
reasing the query 
omplexity; spe
i�
ally, for any 
 < 4=3, the query 
omplexity of thenon-adaptive tester is greater than a 
-power of the query 
omplexity of the adaptive tester (i.e.,eO(��3=2)
 = o(��2)). We stress that the result of [GR07℄ does not refer to property testing inthe \proper" sense; that is, the 
omplexity is not analyzed with respe
t to a varying value ofthe proximity parameter for a �xed property. It is rather the 
ase that, for every value of theproximity parameter, a di�erent property (whi
h depends on this parameter) is 
onsidered and the(upper- and lower-) bounds refer to this 
ombination (of a property tailored for a �xed value of theproximity parameter). Thus, the work of [GR07℄ leaves open the question of whether there existsa single graph property su
h that adaptivity is bene�
ial for any value of the proximity parameter(as long as � > N�
(1)). That is, the question is whether adaptivity is bene�
ial for the standardasymptoti
-
omplexity formulation of property testing.Complexity inversely proportional to the proximity parameter. As shown in [GGR℄,many natural graph properties 
an be tested within query 
omplexity that is polynomial in there
ipro
al of the proximity parameter (and independent of the size of the graph). We ask whether alinear 
omplexity is possible at all, and if so whi
h properties 
an be tested within query 
omplexitythat is linear (or almost linear) in the re
ipro
al of the proximity parameter.1The �rst question is easy to answer (even when avoiding trivial properties).2 Note that theproperty of being a 
lique (equiv., an independent set) 
an be tested by O(1=�) queries, even whenthese queries are non-adaptive (e.g., make O(1=�) random queries and a

ept if and only if allreturn 1). Still, we ask whether \more interesting"3 graph theoreti
al properties 
an also be testedwithin similar 
omplexity (either only adaptively or also non-adaptively).1.2 Our ResultsWe address the foregoing questions by studying a sequen
e of natural graph properties (de�nedformally in Se
tion 2.2). The �rst property in the sequen
e, 
alled 
lique 
olle
tion and denotedCC, is the set of graphs su
h that ea
h graph 
onsists of a 
olle
tion of isolated 
liques. Testingthis property 
orresponds to the following natural 
lustering problem: 
an a set of possibly relatedelements be partitioned into \perfe
t 
lusters" (i.e., two elements are in the same 
luster if andonly if they are related)? For this property (i.e., CC), we prove a gap between adaptive and non-adaptive query 
omplexity, where the adaptive query 
omplexity is almost linear in the re
ipro
alof the proximity parameter. That is:Theorem 1.1 (the query 
omplexity of 
lique 
olle
tion):1. There exists an adaptive tester of query 
omplexity eO(��1) for CC. Furthermore, this testerruns in time eO(��1).42. Any non-adaptive tester for CC must have query 
omplexity 
(��4=3).1Note that 
(1=�) queries are required for testing any of the graph properties 
onsidered in the 
urrent work; fora more general statement see the beginning of Se
tion 6.2A graph property � is trivial for testing if for every � > 0 there exists N0 > 0 su
h that for every N � N0 eitherall N -vertex graphs belong to � or all of them are �-far from �.3A more arti
ulated reservation towards the foregoing properties may refer to the fa
t that these graph properties
ontain a single N -vertex graph (per ea
h N) and are represented by mono
hromati
 fun
tions.4We refer to a model in whi
h elementary operations regarding pairs of verti
es are 
harged at unit 
ost.2



3. There exists a non-adaptive tester of query 
omplexity O(��4=3) for CC. Furthermore, thistester runs in time O(��4=3).Note that the 
omplexity gap (between Parts 1 and 2) of Theorem 1.1 mat
hes the gap establishedby [GR07℄ (for \non-proper" testing). A larger gap is established for a property of graphs, 
alledbi-
lique 
olle
tion and denoted BCC, where a graph is in BCC if it 
onsists of a 
olle
tion ofisolated bi-
liques (i.e., 
omplete bipartite graphs). We note that bi-
liques may be viewed as thebipartite analogues of 
liques (w.r.t. general graphs), and indeed they arise naturally in (
lustering)appli
ations that are modeled by bipartite graphs over two types of elements.Theorem 1.2 (the query 
omplexity of bi-
lique 
olle
tion):1. There exists an adaptive tester of query 
omplexity eO(��1) for BCC. Furthermore, this testerruns in time eO(��1).2. Any non-adaptive tester for BCC must have query 
omplexity 
(��3=2). Furthermore, thisholds even if the input graph is promised to be bipartite.The furthermore 
lause (in Part 2 of Theorem 1.2) holds also for the model studied in [AFN℄, wherethe bi-partition of the graph is given.Theorem 1.2 asserts that the gap between the query 
omplexity of adaptive and non-adaptivetesters may be a power of 1:5 � o(1). Re
all that the results of [AFKS, GT℄ assert that the gapmay not be larger than quadrati
. We 
onje
ture that this upper-bound 
an be mat
hed.Conje
ture 1.3 (an almost-quadrati
 
omplexity gap): For every positive integer t � 5, thereexists a graph property � for whi
h the following holds:1. There exists an adaptive tester of query 
omplexity eO(��1) for �.2. Any non-adaptive tester for � must have query 
omplexity 
(��2+(2=t)).Furthermore, � 
onsists of graphs that are ea
h a 
olle
tion of \super-
y
les" of length t, wherea super-
y
le is a set of t independent sets arranged on a 
y
le su
h that ea
h pair of adja
entindependent sets is 
onne
ted by a 
omplete bipartite graph.We were able to prove Part 2 of Conje
ture 1.3, but failed to provide a full analysis of an algorithmthat we designed for Part 1. However, we were able to prove a promise problem version of Con-je
ture 1.3; spe
i�
ally, this promise problem (stated in Theorem 5.5) refers to inputs promised toreside in a set �0 � � and the tester is required to distinguish graphs in � from graphs that are�-far from �.In 
ontrast to the foregoing results that aim at identifying properties with a substantial gapbetween the query 
omplexity of adaptive versus non-adaptive testing, we also study 
ases inwhi
h no su
h gap exists. Sin
e query 
omplexity that is linear in the re
ipro
al of the proximityparameter is minimal for many natural properties (and, in fa
t, for any property that is \non-trivial for testing" (see Footnote 2)), we fo
us on non-adaptive testers that (approximately) meetthis bound. Among the results obtained in this dire
tion, we highlight the following one.Theorem 1.4 (the query 
omplexity of 
olle
tions of O(1) 
liques): For every positive integer 
,there exists a non-adaptive tester of query 
omplexity eO(��1) for the set of graphs su
h that ea
hgraph 
onsists of a 
olle
tion of up to 
 
liques. Furthermore, this tester runs in time eO(��1).3



Dis
ussion. The foregoing results demonstrate that a �ner look at property testing of graphs inthe adja
en
y matrix model reveals the role of algorithm design in this model. In parti
ular, insome 
ases (see, e.g., Theorems 1.1 and 1.2), 
arefully designed adaptive algorithms outperform anynon-adaptive algorithm. Indeed, this 
on
lusion stands in 
ontrast to [GT, Thm. 2℄, whi
h suggeststhat a less �ne view (whi
h ignores polynomial blow-ups)5 deems algorithm design irrelevant tothis model. We also note that, in some 
ases (see, e.g., Theorem 1.4 and Part 3 of Theorem 1.1),
arefully designed non-adaptive algorithms outperform 
anoni
al ones.As dis
ussed previously, one of the goals of this work was to study the relation between adaptiveand non-adaptive testers in the adja
en
y matrix model. Our results demonstrate that, in thismodel, the relation between the adaptive and non-adaptive query-
omplexities is not �xed, butrather varies with the 
omputational problem at hand. In some 
ases (e.g., Theorem 1.4) the
omplexities are essentially equal (indeed, as in the 
ase of sampling [CEG℄). In other 
ases (e.g.,Theorem 1.1), these 
omplexities are related by a �xed power (e.g., 4=3) that is stri
tly between1 and 2. And, yet, in other 
ases (e.g., Theorem 5.5) the non-adaptive 
omplexity is quadrati
in the adaptive 
omplexity, whi
h is the maximum gap possible (by [AFKS, GT℄). Furthermore(by Theorem 5.5), for any t � 4, there exists a promise problem for whi
h the aforementioned
omplexities are related by a power of 2� (2=t).Needless to say, the fundamental relation between adaptive and non-adaptive algorithms wasstudied in a variety of models, and the 
urrent work studies it in a spe
i�
 natural model (i.e.,of property testing in the adja
en
y matrix representation). In parti
ular, this relation has beenstudied in the 
ontext of property testing in other domains. Spe
i�
ally, in the setting of testingthe satis�ability of linear 
onstraints, it was shown that adaptivity o�ers absolutely no gain [BHR℄.A similar result holds for testing monotoni
ity of sequen
es of positive integers [F04℄. In 
ontrast,an exponential gap between the adaptive and non-adaptive 
omplexities may exist in the 
ontextof testing other properties of fun
tions [F04℄. Lastly, we mention that an even more dramati
gap exists in the setting of testing graph properties in the bounded-degree model (of [GR02℄);see [RS06℄.1.3 Open ProblemsIn addition to the resolution of Conje
ture 1.3, our study raises many other open problems; themost evident ones are listed next.1. What is the non-adaptive query 
omplexity of BCC? Note that Theorem 1.2 only establishesa lower-bound of 
(��3=2). We 
onje
ture that an eÆ
ient non-adaptive algorithm of query
omplexity eO(��3=2) 
an be devised.2. For whi
h 
onstants 
 2 [1; 2℄ does there exist a property that has adaptive query 
omplexityof q(�) and non-adaptive query 
omplexity of e�(q(�)
)? Note that Theorem 1.1 shows that4=3 is su
h a 
onstant, and the same holds for the 
onstant 1 (see, e.g., Theorem 1.4). We
onje
ture that, for any t � 2, it holds that the 
onstant 2� (2=t) also satis�es the foregoingrequirement. It may be the 
ase that these 
onstants are the only ones that satisfy thisrequirement.3. Chara
terize the 
lass of graph properties for whi
h the query 
omplexity of non-adaptivetesters is almost linear in the query 
omplexity of adaptive testers.5Re
all that [GT, Thm. 2℄ asserts that 
anoni
al testers, whi
h merely sele
t a random subset of verti
es and rulea

ording to the indu
ed subgraph, have query-
omplexity that is at most quadrati
 in the query-
omplexity of thebest tester. We note that [GT, Thm. 2℄ also ignores the time-
omplexity of the testers.4



4. Chara
terize the 
lass of graph properties for whi
h the query 
omplexity of non-adaptivetesters is almost quadrati
 in the query 
omplexity of adaptive testers.5. Chara
terize the 
lass of graph properties for whi
h the query 
omplexity of adaptive (resp.,non-adaptive) testers is almost linear in the re
ipro
al of the proximity parameter.Finally, we re
all the well-known open problem (partially addressed in [AS℄) of providing a 
har-a
terization of the 
lass of graph properties that are testable within query 
omplexity that ispolynomial in the re
ipro
al of the proximity parameter.1.4 OrganizationSe
tion 2 
ontains a review of the basi
 notions underlying this work as well as formal de�nitionsof the graph properties that we study. In Se
tion 3 we present an adaptive tester for CliqueColle
tion that has almost-linear query 
omplexity. This result stands in 
ontrast to the (tight)lower-bound on the query 
omplexity of non-adaptive testers for Clique Colle
tion, presented inSe
tion 4. Theorem 1.1 follows by 
ombining the results in these se
tions. Larger gaps between thequery 
omplexity of adaptive versus non-adaptive testers (i.e., Theorems 1.2 and 5.5) are presentedin Se
tion 5. On the other hand, in Se
tion 6, we present non-adaptive testers of query 
omplexitythat is almost linear in the re
ipro
al of the proximity parameter.2 PreliminariesIn this se
tion we review the de�nition of property testing, when spe
ialized to graph properties inthe adja
en
y matrix model. We also de�ne several natural graph properties, whi
h will serve asthe pivot of our study.2.1 Basi
 notionsFor an integer n, we let [n℄ = f1; : : : ; ng. A generi
 N -vertex graph is denoted by G = ([N ℄; E),where E � ffu; vg : u; v 2 [N ℄g is a set of (unordered) pairs of verti
es. Any set of (su
h) graphsthat is 
losed under isomorphism is 
alled a graph property. By ora
le a

ess to su
h a graphG = ([N ℄; E) we mean ora
le a

ess to the Boolean fun
tion that answers the query fu; vg (orrather (u; v) 2 [N ℄� [N ℄) with the bit 1 if and only if fu; vg 2 E.De�nition 2.1 (property testing for graphs in the adja
en
y matrix model): A tester for a graphproperty � is a probabilisti
 ora
le ma
hine that, on input parameters N and � and a

ess to anN -vertex graph G = ([N ℄; E), output a binary verdi
t that satis�es the following two 
onditions.1. If G 2 � then the tester a

epts with probability at least 2=3.2. If G is �-far from � then the tester a

epts with probability at most 1=3, where G is �-farfrom � if for every N -vertex graph G0 = ([N ℄; E0) 2 � it holds that the symmetri
 di�eren
ebetween E and E0 has 
ardinality that is greater than �N2.6If the tester a

epts every graph in � with probability 1, then we say that it has one-sided error. Atester is 
alled non-adaptive if it determines all its queries based solely on its internal 
oin tosses(and the parameters N and �); otherwise it is 
alled adaptive.6Indeed, it is more natural to require that this symmetri
 di�eren
e should have 
ardinality that is greater than� � �N2 �. The 
urrent 
onvention is adopted for the sake of 
onvenien
e.5



The query 
omplexity of a tester is the number of queries it makes to any N -vertex graph ora
le,as a fun
tion of the parameters N and �. We say that a tester is eÆ
ient if it runs in time that ispolynomial in its query 
omplexity, where basi
 operations on elements of [N ℄ are 
ounted at unit
ost. We note that all testers presented in this paper are eÆ
ient, whereas the lower-bounds holdalso for non-eÆ
ient testers.We shall fo
us on properties that 
an be tested within query 
omplexity that only depends onthe proximity parameter, �. Thus, the query-
omplexity upper-bounds that we state hold for anyvalues of � and N , but will be meaningful only for � > 1=N2 or so. In 
ontrast, the lower-bounds(e.g., of 
(1=�)) 
annot possibly hold for � < 1=N2, but they will indeed hold for any � > N�
(1).Alternatively, one may 
onsider the query-
omplexity as a fun
tion of �, where for ea
h �xed valueof � > 0 the value of N tends to in�nity.Notation and a 
onvention. For a �xed graph G = ([N ℄; E), we denote by �(v) = fu :fu; vg2Eg the set of neighbors of vertex v. At times, we look at E as a subset of V � V ; that is, we oftenidentify E with f(u; v) : fu; vg 2Eg. If a graph G = ([N ℄; E) is not �-far from a property � thenwe say that G is �-
lose to �; this means that at most �N2 edges should be added and/or removedfrom G su
h to yield a graph in �.2.2 The graph properties to be studiedThe set of graphs that 
onsists of a 
olle
tion of isolated 
liques is 
alled 
lique 
olle
tion and isdenoted CC; that is, a graph G = ([N ℄; E) is in CC if and only if the vertex set [N ℄ 
an be partitionedinto (C1; : : : ; Ct) su
h that the subgraph indu
ed by ea
h Ci is a 
lique and there are no edges withendpoints in di�erent Ci's (i.e., for every u < v 2 [N ℄ it holds that fu; vg 2 E if and only if thereexists an i su
h that u; v 2 Ci). If t � 
 then we say that G is in CC�
; that is, CC�
 is the subsetof CC that 
ontains graphs that are ea
h a 
olle
tion of up-to 
 isolated 
liques.A bi-
lique is a 
omplete bipartite graph (i.e., a graph G = (V;E) su
h that V is partitionedinto (S; V n S) su
h that fu; vg 2 E if and only if u 2 S and v 2 V n S). Note that a graph is abi-
lique if and only if its 
omplement is in CC�2. The set of graphs that 
onsists of a 
olle
tion ofisolated bi-
liques is 
alled bi-
lique 
olle
tion and denoted BCC; that is, a graph G = ([N ℄; E) is inBCC if and only if the vertex set [N ℄ 
an be partitioned into (V1; : : : ; Vt) su
h that the subgraphindu
ed by ea
h Vi is a bi-
lique and there are no edges with endpoints in di�erent Vi's (i.e., ea
hVi is partitioned into (Si; Vi n Si) su
h that for every u < v 2 [N ℄ it holds that fu; vg 2 E if andonly if there exists an i su
h that (u; v) 2 Si � (V n S)).Generalizations of BCC are obtained by 
onsidering 
olle
tions of \super-paths" and \super-
y
les" respe
tively. A super-path (of length t) is a sequen
e of disjoint sets of verti
es, S1; : : : ; St,su
h that verti
es u; v 2 Si2[t℄ Si are 
onne
ted by an edge if and only if for some i 2 [t�1℄ it holdsthat u 2 Si and v 2 Si+1. Note that a bi-
lique 
an be viewed as a super-path of length two. Wedenote the set of graphs that 
onsists of a 
olle
tion of isolated super-paths of length t by SPtC(e.g., SP2C = BCC). Similarly, a super-
y
le (of length t) is a sequen
e of disjoint sets of verti
es,S1; : : : ; St, su
h that verti
es u; v 2 Si2[t℄ Si are 
onne
ted by an edge if and only if for some i 2 [t℄it holds that u 2 Si and v 2 S(imodt)+1. Note that a bi-
lique that has at least two verti
es on ea
hside 
an be viewed as a super-
y
le of length four (by partitioning ea
h of its sides into two parts).We denote the set of graphs that 
onsists of a 
olle
tion of isolated super-
y
les of length t by SCtC(e.g., SC4C � BCC, where the stri
t 
ontainment is due to the pathologi
al 
ase of bi-
liques havingat most one node on one side). 6



2.3 Annoying te
hni
alitiesWe allowed ourselves various immaterial ina

ura
ies. For example, various quantities (e.g.,log2(1=�)) are treated as if they are integers, whereas one should a
tually use some rounding and
ompensate for the rounding error. At times, we ignore events that o

ur with probability that isinversely proportional to the number of verti
es; for example, when we sele
t a random sample ofs = O(1) (or s = eO(1=�)) verti
es, we often analyze it as if sampling was done with repetitions.In some pla
es, we do not spe
ify the \high" (
onstant) probability with whi
h some events o

ur;but su
h missing details are easy to �ll-up. In other pla
es, we spe
ify high 
onstants that are notthe best ones possible.3 The Adaptive Query Complexity of Clique Colle
tionIn this se
tion we study the (adaptive) query 
omplexity of 
lique 
olle
tion, presenting an almostoptimal (adaptive) tester for this property. Loosely speaking, the tester starts by �nding a fewrandom neighbors of a few randomly sele
ted start verti
es, and then examines the existen
e ofedges among the neighbors of ea
h start vertex as well as among these neighbors and the non-neighbors of ea
h start vertex.We highlight the fa
t that adaptivity is used in order to perform queries that refer only to pairsof neighbors of the same start vertex. To demonstrate the importan
e of this fa
t, 
onsider the
ase that the N -vertex graph is partitioned into O(1=�) 
onne
ted 
omponents ea
h having O(�N)verti
es. Suppose that we wish to tell whether the 
onne
ted 
omponent that 
ontains the vertexv is indeed a 
lique. Using adaptive queries we may �rst �nd two neighbors of v, by sele
tingt def= O(1=�) random verti
es and 
he
king whether ea
h su
h vertex is adja
ent to v, and then
he
k whether these two neighbors are adja
ent. In 
ontrast, intuitively, a non-adaptive pro
edure
annot avoid making all �t2� possible queries.The foregoing adaptive pro
edure is tailored to the 
ase that the N -vertex graph is partitionedinto O(1=�) (\strongly 
onne
ted") 
omponents, ea
h having O(�N) verti
es. In su
h a 
ase, itsuÆ
es to 
he
k that a 
onstant fra
tion of these 
omponents are in fa
t 
liques (or rather 
lose tobeing so) and that there are no edges (or rather relatively few edges) from these 
liques to the restof the graph. However, if the 
omponents (and potential 
liques) are larger, then we should 
he
kmore of them. Fortunately, due to their larger size, �nding neighbors requires less queries, and thetotal number of queries remains invariant. These 
onsiderations lead us to the following algorithm.Algorithm 3.1 (adaptive tester for CC): On input N and � and ora
le a

ess to a graph G =([N ℄; E), set t1 = �(1) and t2 = �(log3(1=�)), and pro
eed in ` def= log2(1=�) + 2 iterations asfollows: For i = 1; : : : ; `, sele
t uniformly t1 � 2i start verti
es and for ea
h sele
ted vertex v 2 [N ℄perform the following sub-test, denoted sub-testi(v):1. Sele
t at random a sample, S, of t2=(2i�) verti
es.2. Determine �S(v) = S \ �(v), by making the queries (v; w) for ea
h w 2 S.3. If j�S(v)j � qt2=2i� then 
he
k that for every u;w 2 �S(v) it holds that (u;w) 2 E. Otherwise(i.e., j�S(v)j > qt2=2i�), sele
t a sample of t2=(2i�) pairs in �S(v)��S(v) and 
he
k that ea
hsele
ted pair is in E.4. Sele
t a sample of t2=(2i�) pairs in �S(v)� (S n�S(v)) and 
he
k that ea
h sele
ted pair is notin E. 7



The sub-test (i.e., sub-testi(v)) a

epts if and only if all 
he
ks were positive (i.e., no edges weremissed in Step 3 and no edges were dete
ted in Step 4). The tester itself a

epts if and only if allPì=1 t1 � 2i invo
ations of the sub-test a

epted.The query 
omplexity of this algorithm is Pì=1 t12i � O(t2=2i�) = O(` � t1t2=�) = eO(1=�), andevidently it is eÆ
ient. Clearly, this algorithm a

epts (with probability 1) any graph that is inCC. It remains to analyze its behavior on graphs that are �-far from CC.Lemma 3.2 If G = ([N ℄; E) is �-far from CC, then on input N; � and ora
le a

ess to G, Algo-rithm 3.1 reje
ts with probability at least 2=3.Part 1 of Theorem 1.1 follows.Proof: We shall prove the 
ontrapositive statement; that is, that if Algorithm 3.1 a

epts withprobability at least 1=3 then the graph is �-
lose to CC. The proof evolves around the followingnotion of i-good start verti
es (for i 2 [`℄). We �rst show that if Algorithm 3.1 a

epts withprobability at least 1=3 then the number of \important" verti
es that are not i-good is relativelysmall, and next show how to use the i-good verti
es in order to 
onstru
t a partition of the verti
esthat demonstrates that the graph is �-
lose to CC. The following de�nition refers to a parameter
2, whi
h will be set to �(1=t2).De�nition 3.2.1 A vertex v is i-good if the following two 
onditions hold.1. The number of missing edges in the subgraph indu
ed by �(v) is at most 
2 � 2i� � j�(v)j �N .2. For every positive integer j � j0 def= log2(j�(v)j=(
2 � 2i�N)), the number of verti
es in �(v)that have at least 
2 � 2i+j� �N edges going out of �(v) is at most 2�j � j�(v)j.Note that Condition 1 holds va
uously whenever j�(v)j < 
2 � 2i� � N . However, when j�(v)j �
2 � 2i� �N , Condition 1 implies that at least 99% of the verti
es in �(v) have at least 0:99 � j�(v)jneighbors in �(v). Condition 2 implies that, when ignoring at most 2�j0 � j�(v)j < 
2 �2i� �N verti
es(in �(v)), the number of edges going out of �(v) is at most Pj0j=1 2�(j�1)j�(v)j � 
22i+j�N , whi
h isless than 4` � 
22i� � j�(v)j �N , sin
e j0 � log2(1=
22i�) � log2(1=
2�) < 2 log2(1=�).Claim 3.2.2 If v has degree at least 
2�2i��N and is not i-good, then the probability that sub-testi(v)a

epts is less than 5%.Proof: Intuitively, the lower-bound on j�(v)j implies that the violation of any of the two 
onditions ofDe�nition 3.2.1 is dete
ted with high probability by sub-testi(v). For example, if 1% of the verti
esin �(v) have less than 0:99 � j�(v)j neighbors in �(v), then the residual sample �S(v) (
reated bysub-testi(v)) is likely to 
ontain a 
onstant fra
tion of verti
es that miss a 
onstant fra
tion ofneighbors in �S(v). The a
tual proof, whi
h refers to the two 
onditions of i-goodness, follows.Assume that Condition 1 of i-goodness does not hold for v, and let � def= 
2�2i��j�(v)j�Nj�(v)j2 = 
2�2i��Nj�(v)jdenote (the lower bound on) the fra
tion of missing edges in �(v). (Note that this event mayhappen only if j�(v)j � 
2 �2i� �N .) Then, with probability at least 0:9, it holds that j�S(v)j > m=2,where m def= t2�2i � j�(v)jN � t2 � 
2 � 1. Also note that the members of �S(v) are distributed uniformlyin �(v). Now, 
onsider n = m=2 uniformly distributed verti
es in �(v), and let �i;j = 1 if there isno edge between the ith and jth verti
es in the sample. Then, Exp(�i;j) � �. Applying Chebyshev's8



Inequality7 it follows that, with probability at least 0:9, the fra
tion of edges that are missing in thesubgraph indu
ed by the said sample is at least �=2. It follows that Step 3 of sub-testi(v) reje
tswith probability at least 0:92 (regardless if it examines all pairs in �S(v) � �S(v) or just examinesa random sample of t22i� � t2
2� pairs).Assume that Condition 2 of i-goodness does not hold for v; that is, there exists a j � j0 su
hthat more than 2�j � j�(v)j verti
es in �(v) have ea
h at least 
2 � 2i+j� � N edges going out of�(v). Using the same setting of m and n as in the previous paragraph (as well as the hypothesisj�(v)j � 
2 � 2i� � N), we note (again) that with high probability j�S(v)j > n, and that �S(v) isexpe
ted to 
ontain n � 2�j = t2
2 � 2j0�j � t2
2 verti
es of \high out-degree" (and it will 
ontainapproximately su
h a number, with high probability). It follows that the number of pairs in�S(v) � ([N ℄ n �(v)) that are edges is at least n2�j � 
2 � 2i+j�N=2, whi
h means an edge densityof at least �0 def= 
2 � 2i�=2. Sin
e jSj = t22i� � 1=�0, with high probability, approximately the sameedge density is maintained also in �S(v) � (S n �S(v)). Thus, a sample of t22i� random pairs in�S(v)�(S n�S(v)) will hit an edge with high probability and 
ause Step 4 (of sub-testi(v)) to reje
t.The 
laim follows. 2Claim 3.2.3 If Algorithm 3.1 a

epts with probability at least 1=3, then for every i 2 [`℄ the numberof verti
es of degree at least 
2 �2i� �N that are not i-good is at most 
1 �2�i �N , where 
1 def= �(1=t1).Claim 3.2.3 follows by 
ombining Claim 3.2.2 with the fa
t that Algorithm 3.1 invokes sub-testi ont1 � 2i random verti
es (and using (1 � 
1 � 2�i)t1�2i + 0:05 < 1=3). Next, using the 
on
lusion ofClaim 3.2.3, we turn to 
onstru
t a partition (C1; : : : ; Ct) of [N ℄ su
h that the following holds: thetotal number of missing edges (in G) within the Ci's is at most � � N2=2 and the total number of(super
uous) edges between the Ci's is at most � �N2=2. The partition is 
onstru
ted in iterations.We start with a motivating dis
ussion.Note that any i-good vertex, v, yields a set of verti
es (i.e., �(v)) that is \
lose" to being a 
lique,where \
loseness" has a stri
ter meaning when i is smaller. Spe
i�
ally, by Condition 1, the numberof missing edges between pairs of verti
es in this set is at most 
2 �2i� � j�(v)j �N . But we should also
are about how this set \intera
ts" with the rest of the graph, whi
h is where Condition 2 
omesinto play. Letting Cv 
ontain only the verti
es in �(v) that have less than j�(v)j neighbors outsideof �(v), we upper-bound the number of edges going out of Cv as follows: We �rst note that theseedges are either edges between Cv and �(v) nCv or edges between Cv and [N ℄ n �(v). The numberof edges of the �rst type is upper-bounded by jCvj � j�(v) n Cvj, whi
h (by using Condition 2 andj0 = log2(j�(v)j=(
2 �2i�N))) is upper-bounded by jCvj �2�j0 j�(v)j = jCv j �
22i�N � 
22i� � j�(v)j �N .The number of edges of the se
ond type is upper-bounded byj0Xj=1 2�(j�1)j�(v)j � 
2 � 2i+j� �N = 2j0 � 
22i� � j�(v)j �N; (1)by assigning ea
h vertex u 2 Cv the smallest j 2 [j0℄ su
h that j�(u) n �(v)j < 
2 � 2i+j� � N ,and using 
22i+j0� � N = j�(v)j. Thus, the total number of these edges is upper-bounded by(2j0+1)�
22i��j�(v)j�N , whi
h is upper-bounded by 3`�
22i��j�(v)j�N (sin
e j0 � log2(1=(
2 �2i�)) �log2(1=
2�) = (1 + o(1)) � `).7Here we have �n2� random variables, whi
h are partially pairwise independent (i.e., �i;j is independent of �i0;j0if jfi; j; i0; j0gj = 4). Furthermore, these random variables assume values in f0; 1g (and so �2i;j = �i;j) and it holdsthat n � � = t2
2=2 � 1 (rather than merely n2 � 1=�). Assume, for simpli
ity that Exp(�i;j) = �. It follows thatExp(Pi<j �i;j) = �n2� � � > n2�=3 and Var(Pi<j �i;j) < 4 � Exp(Pi<j;k �i;j�i;k) = 4n � Exp(Pi<j �i;j) < 2n3�. Thus,VarExp2 < 18n� = 36t2
2 , whi
h 
an be made an arbitrary small 
onstant (by an adequate 
hoi
e of t2 = �(1=
2)).9



The foregoing paragraph identi�es a single (good) 
lique, while we wish to identify all 
liques.Starting with i = 1, the basi
 idea is to identify new 
liques by using i-good verti
es that are not
overed by previously identi�ed 
liques. If we are lu
ky and the entire graph is 
overed this waythen we halt. But it may indeed be the 
ase that some verti
es are left un
overed and that they arenot i-good. At this point we invoke Claim 3.2.3 and 
on
lude that these verti
es either have lowdegree (i.e., have degree at most 
2 �2i� �N) or are relatively few in number (i.e., their number is atmost 
1 � 2�i �N). Ignoring (for a moment) the verti
es of low degree, we deal with the remainingverti
es by invoking the same reasoning with respe
t to an in
remented value of i (i.e., i i+ 1).The key observation is that the number of violations, 
aused by 
liques identi�ed in ea
h iterationi, is upper-bounded by the produ
t of the number of verti
es 
overed in that iteration (whi
h islinearly related to 2�i) and the \density" of violations 
aused by ea
h identi�ed 
lique (whi
h islinearly related to 2i�). Thus, intuitively, ea
h iteration 
ontributes O(`
2� � N2) violations, andafter the last iteration (i.e., i = `) we are left with at most 
1 � 2�i �N < 
1�N verti
es, whi
h we
an a�ord to identify as a single 
lique (or alternatively as isolated verti
es).Two problems, whi
h were ignored by the foregoing des
ription, arise from the fa
t that verti
esthat are identi�ed as belonging to the 
lique Cv (of some i-good vertex v) may belong either topreviously identi�ed 
liques or to the set of verti
es 
ast aside as having low degree. Our solution isto use only i-good verti
es for whi
h the majority of neighbors do not belong to these two 
ategories(i.e., verti
es v su
h that most of �(v) belongs neither to previously identi�ed 
liques nor have lowdegree). This leads to the following des
ription.The partition re
onstru
tion pro
edure. The iterative pro
edure is initiated with C = L0 = ;,R0 = [N ℄ and i = 1, where C denotes the set of verti
es \
overed" (by 
liques) so far, Ri�1 denotesthe set of \remaining" verti
es after iteration i� 1 and Li�1 denotes the set of verti
es 
ast aside(as having \low degree") in iteration i� 1. The pro
edure refers to a parameter � = �(1=`)� 
2,whi
h determines the \low degree" threshold (for ea
h iteration). The ith iteration pro
eeds asfollows, where i = 1; : : : ; ` and Fi is initialized to ;.1. Pi
k an arbitrary vertex v 2 Ri�1 n C that satis�es the following three 
onditions(a) v is i-good.(b) v has suÆ
iently high degree; that is, j�(v)j � � � 2i� �N .(
) v has relatively few neighbors in C; that is, j�(v) \ Cj � j�(v)j=4.If no su
h vertex exists, de�ne Li = fv 2 Ri�1nC : j�(v)j < � �2i��Ng and Ri = Ri�1n(Li[C).If i < ` then pro
eed to the next iteration, and otherwise terminate.2. For vertex v as sele
ted in Step 1, let Cv = fu 2 �(v) : j�(u) n �(v)j < j�(v)jg. Form a new
lique with the vertex set C 0v  Cv n C, and update Fi  Fi [ fvg and C  C [ C 0v.Note that by Condition 1
, for every v 2 Fi, it holds that jC 0vj � jCvj � (j�(v)j=4), whereas by i-goodness8 (and j0 = log2(j�(v)j=(
2 �2i�N)) � log2(�=
2) = !(1)) we have jCv j > (1�o(1)) � j�(v)j.Thus, quality guarantees that are quanti�ed in terms of j�(v)j translate well to similar guaranteesin terms of jC 0vj. This fa
t, 
ombined with the fa
t that Cv 
annot 
ontain many low degree verti
es(i.e., verti
es 
ast aside (in prior iterations) as having low degree), plays an important role in thefollowing analysis.8Every v 2 Fi is i-good and thus satis�es jCvj > (1� 2�j0 ) � j�(v)j.10



Claim 3.2.4 Referring to the partition re
onstru
tion pro
edure, for every i 2 [`℄, the followingholds.1. The number of missing edges inside the 
liques formed in iteration i is at most 8
2� �N2; thatis, ������ [v2Fif(u;w) 2 C 0v � C 0v : (u;w) 62 Eg������ � 8
2� �N2:2. The number of (\super
uous") edges between 
liques formed in iteration i and either Ri orother 
liques formed in the same iteration is 24` � 
2� �N2; a
tually,������ [v2Fif(u;w) 2 C 0v � (Ri�1 n C 0v) : (u;w) 2 Eg������ � 24` � 
2� �N2:3. jRij � 2�i �N and jLij � 2�(i�1) �N .Thus, the total number of violations 
aused by the 
liques that are formed by the foregoing pro
e-dure is upper-bounded by (24+o(1))`2 �
2� �N2 = o(�N2). (We mention that the setting 
2 = o(`2)is used for establishing Item 3.)Proof: We prove all items simultaneously, by indu
tion from i = 0 to i = `. Needless to say, allitems hold va
uously for i = 0, and thus we fo
us on the indu
tion step.Starting with Item 1, we note that every v 2 Fi is i-good and thus the number of edges missing inC 0v�C 0v � �(v)��(v) is at most 
22i��j�(v)j�N < 2
22i��jC 0v j�N , where the inequality follows fromjC 0vj > j�(v)j=2 (whi
h follows by 
ombining jC 0vj � jCvj � (�(v)j=4) and jCvj � (1� 2�j0) � j�(v)j,where j0 = log2(j�(v)j=(
2 � 2i�N)) > 2). Re
all that the i-goodness of v (
ombined with j�(v)j �� � 2i� �N) implies that �(v) 
ontains at least 0:99 � j�(v)j verti
es of degree ex
eeding 0:99 � j�(v)j.This implies that j�(v) \ (Sj2[i�1℄Lj)j < jCvj=4, be
ause j�(v)j � �2i� �N whereas every vertex inSj2[i�1℄Lj has degree at most �2i�1� �N . Observing that C 0v = (C 0v \Ri�1)[ (C 0v \Sj2[i�1℄Lj), itfollows that jSv2Fi C 0v \Ri�1j > jSv2Fi C 0vj=2, and thus Pv2Fi jC 0vj � 2jRi�1j. Combining all thesebounds, we obtain������ [v2Fif(u;w) 2 C 0v � C 0v : (u;w) 62 Eg������ = Xv2Fi jf(u;w) 2 C 0v � C 0v : (u;w) 62 Egj� 2
22i� � Xv2Fi jC 0vj �N� 2
22i� � 2jRi�1j �N:Using the indu
tion hypothesis regarding Ri�1 (i.e., jRi�1j < 2�(i�1) �N), Item 1 follows.Item 2 is proved in a similar fashion. Here we use the fa
t9 that i-goodness of v (whi
h followsfrom v 2 Fi) implies that the number of edges in C 0v � (Ri�1 n C 0v) � Cv � ([N ℄ n Cv) is at most3` �
22i� � j�(v)j �N , whi
h is upper-bounded by 6` �
22i� � jC 0v j �N . Using againPv2Fi jC 0vj < 2jRi�1jand jRi�1j < 2�(i�1) �N , we establish Item 2.9This fa
t was established in the motivating dis
ussion that pre
edes the des
ription of the pro
edure (see Eq. (1)and its vi
inity). Spe
i�
ally, re
all that the number of edges in Cv � ([N ℄ n Cv) is upper-bounded by the sum ofjCv � (�(v) n Cv)j and the number of edges in Cv � ([N ℄ n �(v)). Using Condition 2 of i-goodness, we upper-boundboth j�(v) n Cvj and the number of edges of the se
ond type, and the fa
t follows.11



Turning to Item 3, we �rst note that Li � Ri�1 and thus jLij � jRi�1j � 2�(i�1) � N . As forRi, it may 
ontain only verti
es that are neither in Li nor in Sv2Fi C 0v. It follows that for everyv 2 Ri either v is not i-good (although it has degree at least � � 2i� �N) or it has at least j�(v)j=4neighbors in previously identi�ed 
liques (whi
h implies j�(v) \ (Sw2Sj2[i℄ Fj C 0w)j � j�(v)j=4).By Claim 3.2.3, the number of verti
es of the �rst type is at most 
12�i � N . As for verti
es ofthe se
ond type, ea
h su
h vertex v (in Ri) requires at least j�(v)j=4 � � � 2i� � N=4 edges fromC 0 def= Sw2Sj2[i℄ Fj C 0w to it (be
ause C 0 is the set of verti
es 
overed by previously identi�ed 
liquesat the time iteration i is 
ompleted). By Item 2, the total number of edges going out from C 0 toRi is at most i � 24` � 
2� � N2 � 24`2 � 
2� � N2. On the other hand, as noted above, ea
h vertexof the se
ond type has at least � � 2i� �N=4 edges in
ident to verti
es in C 0. Hen
e, the number ofverti
es of the se
ond type is upper-bounded by24`2 � 
2� �N2� � 2i� �N = 24`2 � 
2� � 2�iN; (2)Thus, jRij � (
1+24`2
2��1) � 2�i �N . By the foregoing setting of 
1; 
2 and � (e.g., 
1 = 1=2 and
2 = �=(48`2)), it follows that jRij � 2�i �N . 2Completing the re
onstru
tion and its analysis. The foregoing 
onstru
tion leaves \unassigned" theverti
es in R` as well as some of the verti
es in L1; : : : ; L`. (Note that some verti
es in S`�1i=1 Limay be pla
ed in 
liques 
onstru
ted in later iterations, but there is no guarantee that this a
tuallyhappens.) We now assign ea
h of these remaining verti
es to a singleton 
lique (i.e., an isolatedvertex). The number of violation 
aused by this assignment equals the number of edges with bothendpoints in R0 def= R`[Sì=1 Li, be
ause edges with a single endpoint in R0 were already a

ountedfor in Item 2 of Claim 3.2.4. Nevertheless, we upper-bound the number of violations by the totalnumber of edges adja
ent at R0, whi
h in turn is upper-bounded byXv2R`[Si2[`℄ Li j�(v)j � jR`j �N + X̀i=1 Xv2Li j�(v)j� �N4 �N + X̀i=1 2�(i�1)N � �2i�N= �4 �N2 + 2` � � � �N2:By the foregoing setting of � (i.e., � � 1=8`), it follows that the number of these edges is smallerthan �N2=2. Combining this with the bounds on the number of violating edges (or non-edges) asprovided by Claim 3.2.4, the lemma follows.4 The Non-Adaptive Query Complexity of Clique Colle
tionIn this se
tion we study the non-adaptive query 
omplexity of 
lique 
olle
tion. We �rst establishthe lower-bound 
laimed in Part 2 of Theorem 1.1, and next show that this lower-bound is tight.4.1 The Lower BoundIn this se
tion we establish Part 2 of Theorem 1.1. Spe
i�
ally, for every value of � > 0, we 
onsidertwo di�erent sets of graphs, one 
onsisting of graphs in CC and the other 
onsisting of graphs that12



are �-far from CC, and show that a non-adaptive algorithm of query 
omplexity o(��4=3) 
annotdistinguish between graphs sele
ted at random in these sets.The �rst set, denoted CC�, 
ontains all N -vertex graphs su
h that ea
h graph 
onsists of (3�)�1
liques, and ea
h 
lique has size 3� �N . It will be instru
tive to partition these (3�)�1 
liques into(6�)�1 pairs (ea
h 
onsisting of two 
liques). The se
ond set, denoted BCC�, 
ontains all N -vertexgraphs su
h that ea
h graph 
onsists of (6�)�1 bi-
liques, and ea
h bi-
lique has 3� �N verti
es onea
h side. Indeed, CC� � CC, whereas ea
h graph in BCC� is �-far from CC (be
ause ea
h of thebi-
liques must be turned into a 
olle
tion of 
liques).In order to motivate the 
laim that a non-adaptive algorithm of query 
omplexity o(��4=3)
annot distinguish between graphs sele
ted at random in these sets, 
onsider the (seemingly bestsu
h) algorithm that sele
ts o(��2=3) verti
es and inspe
ts the indu
ed subgraph. Consider thepartition of a graph in CC� into (6�)�1 pairs of 
liques, and 
orrespondingly the partition of a graphin BCC� into (6�)�1 bi-
liques. Then, the probability that a sample of o(��2=3) verti
es 
ontainsat least three verti
es that reside in the same part (of 6� � N verti
es) is o(��2=3)3 � (6�)2 = o(1).On the other hand, if this event does not o

ur, then the answers obtained from both graphsare indistinguishable (be
ause in ea
h 
ase a random pair of verti
es residing in the same partis 
onne
ted by an edge with probability 1=2). As is outlined next, this intuition extends to anarbitrary non-adaptive algorithm.Spe
i�
ally, by an averaging argument, it suÆ
es to 
onsider deterministi
 algorithms, whi
h arefully spe
i�ed by the sequen
e of queries that they make and their de
ision on ea
h 
orrespondingsequen
e of answers. Re
all that these (�xed) queries are elements of [N ℄� [N ℄. We shall show that,for every sequen
e of o(��4=3) queries, the answers provided by a randomly sele
ted element of CC�are statisti
ally 
lose to the answers provided by a randomly sele
ted element of BCC�. We shall usethe following notation: For an N -vertex graph G and a query (u; v), we denote the 
orrespondinganswer by ansG(u; v); that is, ansG(u; v) = 1 if fu; vg is an edge in G and ansG(u; v) = 0 otherwise.Lemma 4.1 Let G1 and G2 be random N -vertex graphs uniformly distributed in CC� and BCC�, re-spe
tively. Then, for every sequen
e (v1; v2); : : : ; (v2q�1; v2q) 2 [N ℄� [N ℄, where the vi's are not ne
-essarily distin
t, it holds that the statisti
al di�eren
e between ansG1(v1; v2); : : : ; ansG1(v2q�1; v2q)and ansG2(v1; v2); : : : ; ansG2(v2q�1; v2q) is O(q3=2�2).Part 2 of Theorem 1.1 follows.Proof: We 
onsider a 1-1 
orresponden
e, denoted �, between the verti
es of an N -vertex graphin CC� [ BCC� and triples in [(6�)�1℄� f1; 2g � [2� �N ℄. Spe
i�
ally, �(v) = (i; j; w) indi
ates thatv resides in the jth \side" of the ith part of the graph, and it is vertex number w in this set. Thatis, for a graph in CC� the pair (i; j) indi
ates the jth 
lique in the ith pair of 
liques, whereas for agraph in BCC� the pair (i; j) indi
ates the jth side in the ith bi-
liques. Consequently, the answersprovided by uniformly distributed G1 2 CC� and G2 2 BCC� 
an be emulated by the following two
orresponding random pro
esses.1. The pro
ess A1 sele
ts uniformly a bije
tion � : [N ℄! [(6�)�1℄�f1; 2g� [3� �N ℄ and answersea
h query (u; v) 2 [N ℄ � [N ℄ by 1 if and only if �(u) and �(v) agree on their �rst two
oordinates (and di�er on the third). That is, for �(u) = (i1; j1; w1) and �(v) = (i2; j2; w2),it holds that A1(u; v) = 1 if and only if both i1 = i2 and j1 = j2 (and w1 6= w2).2. The pro
ess A2 sele
ts uniformly a bije
tion � : [N ℄! [(6�)�1℄�f1; 2g� [3� �N ℄ and answersea
h query (u; v) 2 [N ℄ � [N ℄ by 1 if and only if �(u) = (i; j; w1) and �(v) = (i; 3 � j; w2).That is, for �(u) = (i1; j1; w1) and �(v) = (i2; j2; w2), it holds that A2(u; v) = 1 if and onlyif i1 = i2 but j1 6= j2. 13



Let us denote by �0(v) (resp., �00(v) and �000(v)) the �rst (resp., se
ond and third) 
oordinates of�(v); that is, �(v) = (�0(v); �00(v); �000(v)). Then, both pro
esses answer the query (u; v) with 0 if�0(u) 6= �0(v), and the di�eren
e between the pro
esses is 
on�ned to the 
ase that �0(u) = �0(v).Spe
i�
ally, 
onditioned on �0(u) = �0(v) (and �000(u) 6= �000(v)), it holds that A1(u; v) = 1 if andonly if �00(u) = �00(v), whereas A2(u; v) = 1 if and only if �00(u) 6= �00(v). However, sin
e the(random) value of �00 is not present at the answer, the forgoing di�eren
e may go unnoti
ed. Theforegoing 
onsiderations apply to a single query, but things may 
hange in 
ase of several queries.For example, if �0(u) = �0(v) = �0(w) then the answers to (u; v); (v; w) and (w; v) will indi
atewhether we are getting answers from A1 or from A2 (sin
e A1 will answer positively on an oddnumber of these queries whereas A2 will answer positively on an even number). In general, theevent that allows distinguishing the two pro
esses is an odd 
y
le of verti
es that have the same �0value. Minor di�eren
es may also be due to equal �000 values, and so we also 
onsider these in our\bad" event. For sake of simpli
ity, the bad event is de�ned more rigidly as follows, where the �rst
ondition represents the essential aspe
t and the se
ond is a te
hni
ality.De�nition 4.1.1 We say that � is bad (w.r.t. the sequen
e (v1; v2); : : : ; (v2q�1; v2q) 2 [N ℄� [N ℄),if one of the following two 
onditions hold:1. For some i 2 [(6�)�1℄, the subgraph Qi = (Vi; Ei), where Vi = fvk : k 2 [2q℄ ^ �0(v) = ig andEi = ffv2k�1; v2kg : v2k�1; v2k 2 Vig, 
ontains a simple 
y
le.2. There exists i 6= j 2 [2q℄ su
h that �000(vi) = �000(vj).Indeed, the query sequen
e (v1; v2); : : : ; (v2q�1; v2q) will be �xed throughout the rest of the proof,and so we shall omit it from our terminology.Claim 4.1.2 The probability that a uniformly distributed bije
tion � is bad is at most6000 � q3=2�2 + 2q23�NProof: We start by upper-bounding the probability that the se
ond event in De�nition 4.1.1 holds.This event is the union of �2q2 � sub-events, and ea
h sub-event holds with probability 1=(3� � N).Thus, we obtain a probability (upper) bound of 2q2=3�N . As for the �rst event, for every t � 3, weupper-bound the probability that some Qi 
ontains a simple 
y
le of length t. We observe that thequery graph Q = (VQ; EQ), where VQ = fvk : k2 [2q℄g and EQ = ffv2k�1; v2kg : k2 [q℄g), 
ontainsat most (2q)t=2 
y
les of length t (
f. [A, Thm. 3℄), whereas the probability that a spe
i�
 simplet-
y
le is 
ontained in some Qi is (6�)t�1. Thus, the probability of the �rst event is upper-boundedby Xt�3(2q)t=2 � (6�)t�1 <Xt�3 �p2q � 6 � �(t�1)=t�t <Xt�3 �9pq � �2=3�t ;whi
h is upper-bounded by 2 � (9pq � �2=3)3 < 1500q3=2�2, provided 9pq � �2=3 < 1=2 (and the 
laimholds trivially otherwise). 2Claim 4.1.3 Conditioned on the bije
tion� not being bad, the sequen
es (A1(v1; v2); : : : ; A1(v2q�1; v2q)) and (A2(v1; v2); : : : ; A2(v2q�1; v2q))are identi
ally distributed. 14



Proof: Noting that De�nition 4.1.1 only refers to �0 and �000, we �xed any 
hoi
e of �0 and �000 thatyields a good � and 
onsider the residual random 
hoi
e of �00. Referring to the foregoing subgraphsQi's, re
all that pairs with endpoints in di�erent Qi's are answered by 0 in both pro
esses. Notethat (by the se
ond 
ondition in De�nition 4.1.1) the hypothesis implies that �000 assigns di�erentvalues to the di�erent verti
es in fvk : k 2 [2q℄g, and it follows that �00 assigns these verti
esvalues that are uniformly and independently distributed in f1; 2g. Now, using the �rst 
onditionin De�nition 4.1.1, the hypothesis implies that ea
h Qi is a forest, whi
h implies that (in ea
hof the two pro
esses) the answer assigned to ea
h edge in Qi is independent of the answer givento other edges of Qi. That is, we assert that (in ea
h of the two pro
esses) the edges of ea
hforest Qi = (Vi; Ei) are assigned a sequen
e of answers that is uniformly distributed in f0; 1gjEij.To formally prove this assertion, 
onsider the 
onstraints on the �00-values (of Vi) that arise fromany possible sequen
e of answers. These 
onstraints form a system of jEij linear equations overGF (2) with variables 
orresponding to the possible �00-values and 
onstant terms en
oding possibleequality and inequality 
onstraints.10 Note that the (
oeÆ
ients of the) linear systems are nota�e
ted by the identity of the pro
ess, whi
h does e�e
t the free terms. Furthermore, this linearsystem is of full rank; and thus, for ea
h of the two pro
esses and ea
h sequen
e of answers, the
orresponding system has 2jVij�jEij = 2 solutions (i.e., possible assignments to �00 restri
ted toVi). Thus, in ea
h of the two pro
esses, ea
h query is answered by the value 1 with probabilityexa
tly 1=2, independently of the answers to all other queries. The 
laim follows. 2Combining Claims 4.1.2 and 4.1.3, it follows that the statisti
al distan
e between the sequen
es(A1(v1; v2); : : : ; A1(v2q�1; v2q)) and (A2(v1; v2); : : : ; A2(v2q�1; v2q)) is at most O(q3=2�2+q2(�N)�1),and the lemma follows for suÆ
iently large N .4.2 A Mat
hing Upper-BoundIn this se
tion we establish Part 3 of Theorem 1.1. We mention that this improves over the eO(��2)bound of [AS, Thm. 2℄ (whi
h is based on inspe
ting the subgraph indu
ed by a random set ofO(��1 log(1=�)) verti
es).Algorithm 4.2 (non-adaptive test for CC): On input N and � and ora
le a

ess to a graph G =([N ℄; E), set ` = log2(1=�) and pro
eeds as follows.1. Sele
t a random sample of s def= �(��2=3) verti
es, denoted S, and examine all vertex pairs (inS � S).2. For i = 1; : : : ; (2`=3) + �(1), uniformly sele
t a subset Si � S of 
ardinality si def= �(2i) anda sample of e�(��1)=si verti
es, denoted Ri, and examine all the vertex pairs in Si �Ri.3. The tester a

epts if and only if its view of the graph as obtained in Steps 1-2 is 
onsistentwith some graph in CC. Namely, let g0 : ((S � S) [ S`0i=1(Si � Ri)) ! f0; 1g be the fun
tiondetermined by the answers obtained in Steps 1-2. Then the tester a

epts if and only if g0 
anbe extended to a fun
tion over S0�S0, where S0 = S [S`0i=1Ri, that represents a graph in CC.The query 
omplexity of Algorithm 4.2 is dominated by Step 1, whi
h uses O(��2=3)2 = O(��4=3)queries. Clearly, this algorithm a

epts (with probability 1) any graph that is in CC. It remains toanalyze its behavior on graphs that are �-far from CC.10The 
ondition A1(u; w) = 1 i� �00(u) = �00(v) is en
oded by �00(u)+�00(v) = A1(u; w)+ 1, whereas the 
onditionA2(u;w) = 1 i� �00(u) 6= �00(v) is en
oded by �00(u) + �00(v) = A2(u;w).15



Lemma 4.3 If G = ([N ℄; E) is �-far from CC, then on input N; � and ora
le a

ess to G, Algo-rithm 4.2 reje
ts with probability at least 2=3.Part 3 of Theorem 1.1 follows.Proof: We say that a triple (v; u; w) of verti
es (resp., a 3-set fv; u; wg � [N ℄) is a witness (forreje
tion) if the subgraph of G indu
ed by fv; u; wg 
ontains exa
tly two edges. Indeed, Algorithm 4.2reje
ts if (and only if), for some witness (v; u; w), the algorithm has made all three relevant queries(i.e., the queries (v; u), (u;w), and (w; v)).11 A suÆ
ient 
ondition for this to happen is that eitherfv; u; wg � S or for some i both jfv; u; wg \ Sij = 2 and jfv; u; wg \ Rij = 1 hold. Thus, we saythat a witness is e�e
tive with respe
t to the said samples (i.e., S and the Ri's) if the foregoingsuÆ
ient 
ondition holds. We shall show that, with probability at least 2=3, the samples 
ontainan e�e
tive witness.Let G0 = (V;E0) be a graph in CC that is 
losest to G = (V;E), and let (V1; : : : ; Vt) be itspartition into 
liques. For the sake of simpli
ity, we shall refer to the Vi's as 
liques, even thoughthey are not (ne
essarily) 
liques in G, and we shall refer to the partition (V1; : : : ; Vt) as the bestpossible partition for G. Two main observations regarding this partition follow.Observation 1: For every i 2 [t℄ and every S � Vi, it holds that jE\(S�(VinS))j � jS�(VinS)j=2,sin
e otherwise repla
ing the 
lique Vi by two 
liques, S and Vi n S yields a better partitionfor G.Observation 2: For every i 6= j 2 [t℄, it holds that jE \ (Vi � Vj)j � jVi � Vj j=2, sin
e otherwiserepla
ing the two 
liques Vi and Vj by a single 
lique Vi [ Vj yields a better partition for G.Now, sin
e G is �-far from CC, either there are either at least �2 � N2 missing edges (in G) withinthese Vi's or there are at least �2 �N2 super
uous edges between distin
t Vi's. We show that in either
ase, with high 
onstant probability, the samples produ
ed by Algorithm 4.2 
ontain an e�e
tivewitness.The pivot of the analysis is relating the fra
tion of bad vertex pairs (i.e., either missing \internal"edges or super
uous \external" edges) to the fra
tion of witnesses. Spe
i�
ally, we shall show thatthe existen
e of �2 � N2 missing internal edges (resp., �2 � N2 super
uous \external" edges) impliesthe existen
e of 
(�2N3) witnesses. Furthermore, using additional features of the stru
ture ofthe set of witnesses, we shall show that with high probability the random sample (as produ
edby Algorithm 4.2) 
ontains an e�e
tive witness. Spe
i�
ally, these additional features, whi
h areestablished in the elaborate parts of Claims 4.3.1 and 4.3.2, are instrumental to the dete
tion of awitness (as argued in Claim 4.3.3).To fa
ilitate the exposition, for every two sets A;B � [N ℄, we let E(A;B) denote the set ofedges with one endpoint in A and another endpoint in B (i.e., E(A;B) def= E \ (A�B)). For ea
hvertex v and j 2 [t℄, let �j(v) def= Vj \ �(v) = fu2Vj : (u; v) 2 Egand �j(v) def= Vj n (�(v) [ fvg) = fu2(Vj n fvg) : (u; v) 62 Eg :If v 2 Vi, then we use the shorthand: �(v) = �i(v). Indeed, �(v) 
orresponds to the set of internaledges that are missed by vertex v.Claim 4.3.1 (using missing internal edges):11We note that only the (easy to establish) suÆ
ien
y of the foregoing reje
tion 
ondition is used in the analysis.16



Basi
 
laim: For every vertex v, the number of witnesses that 
ontain v is 
(j�(v)j2).Elaborate 
laim: For every (possibly empty)12 set F of \forbidden" (non-adja
ent) vertex-pairs, thefollowing holds:1. For every v 2 [N ℄ there exists a set Wv � �(v) n fu : (v; u) 2 Fg su
h thatXv2[N ℄ jWvj > 0� Xv2[N ℄ j�(v)j4 1A � 2 � jF jand for every u 2Wv there exists a set Wv;u � (�(v) \ �(u)) su
h thatXu2Wv jWv;uj � jWvj2=4:Moreover, if F = ; then for every v it holds that jWvj � j�(v)j=4.(Indeed, ea
h triple (u; v; w) su
h that u 2 Wv and w 2 Wv;u 
onstitutes a witness,be
ause fu; vg 62 E whereas w 2 �(v) \ �(u); see illustration in Figure 1.)2. For the sets Wv and Wv;u as in Part 1 of the 
laim, letting U (2)w def= f(v; u) : w2Wv;ug itholds that if ea
h set Wv has 
ardinality at most �2=3N=2 then ea
h U (2)w has 
ardinalityat most �4=3N2.It follows that the total number of witnesses is 
(Pv2[N ℄ j�(v)j2). In parti
ular, if the number ofmissing internal edges is at least �2 � N2 (i.e., Pv2[N ℄ j�(v)j � � � N2), then the total number ofwitnesses is at least N � 
((�N)2) = 
(�2 �N3).
�i(v) [ fvgvVi �(v)uw

Figure 1: An Illustration for the proof of Claim 4.3.1.Proof: Using Observation 1, we note that for any 
hoi
e of i 2 [t℄ and for every v 2 Vi it holds thatj�(v)j = jVi n fvgj � jE(fvg; Vi n fvg)j � jVij � 12 � j�i(v)j (3)and jE(�(v);�i(v)j = jE(�(v);�i(v) [ fvg)j > 12 j�(v)j � j�i(v)j : (4)12Indeed, in �rst reading, the reader is en
ouraged to think of the 
ase F = ;. In fa
t, this 
ase is one of the two
ases that will be a
tually used in the sequel. 17



Letting Tv = f(v; u; w) : (u;w)2�(v) � �i(v)g, it follows that at least half of the triples (v; u; w)in Tv are witnesses (i.e., (u;w) 2 E, (u; v) 62 E, and (w; v) 2 E), whereas jTvj � j�(v)j2. Thisestablishes the basi
 
laim.Let us �rst establish the elaborate 
laim for the spe
ial 
ase of F = ;. In this 
ase, for every v 2 Vi,we 
onsider the set Wv def= fu2�(v) : jE(fug;�i(v)j � j�i(v)j=4g : (5)By Eq. (4), Pu2�(v) jE(fug;�i(v))j � j�(v)j � j�i(v)j=2. It follows that jWvj � j�(v)j=4. We notethat (by Eq. (5)), for every u 2 Wv, it holds that j�i(v) \ �(u)j � j�i(v)j=4 � jWvj=4. Next, forevery u 2Wv, let Wv;u be an arbitrary subset of jWvj=4 elements in �i(v)\�(u). Note that, indeedWv � �(v) and for every u 2 Wv it holds that Wv;u � �(v) \ �(u). Re
alling that jWvj � j�(v)j=4and jWv;uj = jWvj=4, Part 1 follows.To establish Part 2, we �rst note that if we sele
t Wv;u uniformly among all jWvj=4-subsets of�i(v) \ �(u), then, for any w 2 Vi, the expe
ted size of U (2)w is upper-bounded byXv2Vi Xu2Wv jWvj=4j�i(v) \ �(u)j � Xv2Vi Xu2Wv jWvj=4jVij=8 = 2jVij �Xv2Vi jWvj2where the inequality uses j�i(v)\�(u)j � j�i(v)j=4 � jVij=8. Thus, if 2jVij �Pv2Vi jWvj2 � �4=3N2=2then, with overwhelmingly high probability, it holds that jU (2)w j � �4=3N2. Pi
king the sets (i.e.,the Wv;u's) su
h that none of the negligible probability events (asso
iated with w 2 Vi) o

urs, weinfer that jU (2)w j > �4=3N2 implies that Pv2Vi jWvj2 > �4=3N2jVij=4 (whi
h implies the existen
e ofv su
h that jWvj > �2=3N=2). Part 2 follows.Note that so far we have established the (elaborate) 
laim for the spe
ial 
ase of F = ;. We nowestablish the general 
ase by redu
tion to the former spe
ial 
ase. We �rst modify the sets Wv, byomitting from ea
h Wv ea
h vertex u su
h that fv; ug 2 F . This modi�
ation de
reasesPv jWvj byat most 2jF j. Next, we modify the sets Wv;u by omitting from ea
h Wv;u a few elements, sele
tedat random, su
h that jWv;uj = jWvj=4 holds (for the modi�ed sets). Clearly, Part 1 holds for themodi�ed sets. To see that Part 2 holds too, we note that the foregoing argument only relies on thefa
t that Wv;u is a random (jWvj=4)-size subset of �i(v) \ �(u). The 
laim follows. 2Another pie
e of notation. For every i 2 [t℄ and every v 2 Vi, let�0(v) def= �(v) n Videnote the set of verti
es outside of Vi that have a super
uous edge to v. That is, �0(v) = Sj 6=i �j(v).Claim 4.3.2 (using super
uous external edges):Basi
 
laim: For every vertex v, the number of witnesses that 
ontain v is 
(j�0(v)j2).Elaborate 
laim: IfPv2[N ℄ j�0(v)j > 500�Pv2[N ℄ j�(v)j, then there exist 
onstants 
1; : : : ; 
4 for whi
hthe following holds:1. For every v 2 [N ℄ there exists a set Wv � �0(v) su
h that letting V 0 = fv : jWvj �j�0(v)j=
1g it holds that Xv2V 0 j�0(v)j � 34 Xv2[N ℄ j�0(v)j : (6)18



In addition, for every u 2 Wv there exists a set Wv;u, whi
h is either a subset of �(v) n�(u) or a subset of �(u) n �(v), su
h that jWv;uj � jWvj=
2.(Indeed, ea
h (v; u; w) su
h that u 2Wv and w 2Wv;u 
onstitutes a witness.)2. For the sets Wv;u as in Part 1 of the 
laim, let U (2)w def= f(v; u) : w2Wv;ug. If for everyv it holds that j�0(v)j � �2=3N=2 then ea
h U (2)w has 
ardinality at most 10�4=3N2.3. Let F be any set of \forbidden" vertex-pairs in Si 6=j E(Vi; Vj), and for a vertex v letF (v) def= fu : (v; u) 2 Fg. Then, for ea
h vertex v, there exist modi�ed subsets Wv andWv;u (for every u 2Wv) that satisfy the following modi�ed versions of Parts 1 and 2:� For Part 1 it holds that Wv � �0(v) n F (v), and Eq. (6) is repla
ed byXv2[N ℄ jWvj > 1
3 0� Xv2[N ℄ j�0(v)j1A � 
4 � jF j : (7)The other features of the subsets Wv and Wv;u hold as stated in Part 1.� For Part 2 we have that if for every v it holds that j�0(v)nF (v)j � �2=3N=2 then ea
hmodi�ed U (2)w (i.e., U (2)w def= f(v; u) : w2Wv;ug) has 
ardinality at most 10�4=3N2.It follows that the total number of witnesses is 
(Pv2[N ℄ j�0(v)j2). In parti
ular, if the number ofsuper
uous external edges is at least �2 �N2 (i.e., Pv2[N ℄ j�0(v)j � � �N2), then the total number ofwitnesses is at least N � 
((�N)2) = 
(�2 �N3).Proof: We �rst prove Parts 1 and 2, and later present the modi�
ations required for Part 3. The
laim is proved by a (rather tedious) 
ase analysis. In all but one of the 
ases, the basi
 
laim (i.e.,for every vertex v, the number of witnesses that 
ontain v is 
(j�0(v)j2)) follows from the elaborate
laim, and so in those 
ases it suÆ
es to prove the latter. In the ex
eptional 
ase, the basi
 
laimfollows by invoking Claim 4.3.1.Ea
h 
ase deals with a di�erent subset of verti
es of V . With the ex
eption of the aforementioned
ase, Part 1 is proved by presenting, for every relevant vertex v (i.e., v that satis�es the 
asehypothesis), a subset Wv � �0(v) of size at least �0(v)=
1 and adequate sets Wv;u for ea
h u 2Wv.Furthermore, it will be shown that the verti
es 
overed by these (non-ex
eptional 
ases) a

ountfor at least three fourths of the sum Pv j�0(v)j.In order to prove Part 2, for ea
h of the foregoing 
ases, we 
onsider the restri
tion of U (2)w topairs (v; u) su
h that v obeys the 
ase hypothesis. We show that if j�0(v)j � �2=3N=2 for every su
hv, then the total 
ontribution to U (2)w of the 
orresponding pairs (v; u) is at most �4=3N2. Sin
ethere are less than ten 
ases, Part 2 follows.In the following analysis we 
onsider possible 
ases that may apply to a generi
 vertex v.However, we a
tually 
onsider the set of all verti
es that satisfy the hypothesis of ea
h of these
ases. Hen
e, when we say that Part 1 (resp., Part 2) is established for the verti
es that satisfy aparti
ular 
ase hypothesis, we mean that the 
ondition is established in the sense des
ribed in theforegoing dis
ussion. We now turn to the a
tual 
ase analysis.Case 1: Mu
h of �0(v) is 
ontained in a single Vj; that is, there exists an index j su
h that j�j(v)j >j�0(v)j=10. Fixing su
h an index j, we distinguish two sub
ases regarding the fra
tion of Vj that isnot 
overed by �0(v) (i.e., the relative density of �j(v) in Vj).19



Case 1.1: j�j(v)j � jVjj=10. In this 
ase, we let Wv be a subset of the neighbors that v has in Vj ,that is, a subset of �j(v). For ea
h u 2 Wv we let Wv;u be a subset of the non-neighbors ofv in Vj that are neighbors of w, that is, a subset of �j(v) \ �j(u). Thus, for every u 2 Wvand w 2 Wv;u, the triple (v; u; w) is a witness. For an illustration, see Figure 2. Combiningthis 
ase hypothesis (whi
h asserts that v has many non-neighbors in Vj) with Observation 1(whi
h guarantees many edges between neighbors and non-neighbors of v in Vj), we obtainmany (i.e., 
(j�0(v)j2)) su
h witnesses, and the basi
 
laim follows.
v

j�j(v)j � jVjj=10
j�j(v)j � j�0(v)j=10Vj u

w
Figure 2: An Illustration for the proof of Claim 4.3.2, Case 1.1.In order to a
tually prove Parts 1 and 2, we now provide a more detailed des
ription of the
hoi
e of Wv and Wv;u. Let the subset of verti
es for whi
h the 
ase (1.1) hypothesis holdsbe denoted by V 1:1. For ea
h vertex v 2 V 1:1, let �(v) def= j if j is the smallest integer su
hthat j�j(v)j > j�0(v)j=10. Next, we de�ne the setWv def= fu2��(v)(v) : j�(u) \ (��(v)(v))j � j��(v)(v)j=4g;and note that (by the 
ase hypothesis) for every u 2 Wv it holds that j�(u) \ (��(v)(v))j �jV�(v)j=40. By Observation 1, jE(��(v)(v);��(v)(v))j � j��(v)(v)j � j��(v)(v)j=2. Noting thatjE(��(v)(v);��(v)(v))j =Pu2��(v)(v) j�(u)\ (��(v)(v))j and referring to the de�nition of Wv, itfollows that jWvj � j��(v)(v)j=4 � j�0(v)j=40.Now, for every u 2 Wv, let Wv;u be a random subset of jWvj=40 elements in ��(v)(v) \ �(u),while re
alling that the latter set has size at least j��(v)(v)j=4 � jV�(v)j=40. Observe thatindeed, for every u 2 Wv and w 2 Wv;u, it holds that Wv � �0(v) and Wv;u � �(u) n �(v).(We note that for every w 2 Wv;u it holds that w 62 �(v) and w 2 �(u) n �0(u) (sin
e bothu 2 V�(v) and Wv;u � V�(v)).) Part 1 is thus established for this 
ase (for any v 2 V 1:1).To establish Part 2, we �rst note that, for any j 2 [t℄ and w 2 Vj, the expe
ted size of U (2)wis upper-bounded byXv2V 1:1:�(v)=j Xu2Wv jWvj=40j�j(v) \ �(u)j � 1jVj j � Xv2V 1:1:�(v)=j jWvj2where the inequality uses j�j(v)\�(u)j � jVj j=40. As in the proof of Claim 4.3.1, it is possibleto 
hoose the subsets Wv;u so that the sizes of the sets U (2)w are not mu
h larger than (the20



upper bounds on the value of) their expe
ted sizes. It follows that if some w 2 Vj satis�esjU (2)w j > �4=3N2, then Pv2V 1:1:�(v)=j jWvj2 > �4=3N2jVj j=2. We now 
onsider two 
ases. Inthe easy 
ase there exists a vertex v for whi
h �(v) = j and su
h that jWvj > �2=3N=2, andPart 2 follows (sin
e Wv � �0(v)). Otherwise, letting V 0 = fv 2 V 1:1 : �(v) = jg, we notethat jE(V 0; Vj)j � Xv2V 0 jWvj � Xv2V 0 jWvj2�2=3N=2 > jVj j � �2=3N (8)and it follows that there exists a vertex u 2 Vj su
h that j�0(u)j � j�(u)\V 0j > �2=3N . Thus,Part 2 follows in this 
ase.Case 1.2: j�j(v)j � jVjj=10 (i.e., j�j(v)j � 0:9jVj j). We �rst note that j�i(v)j � 0:8j�j(v)j, be
auseotherwise we would obtain a better partition by moving the vertex v from Vi to Vj (sin
ethe gain from su
h a move is at least (j�j(v)j � j�j(v)j)� j�i(v)j, whereas j�j(v)j � j�j(v)j �0:8jVj j � 0:8j�j(v)j). We 
onsider two sub
ases regarding the 
ardinality of the set �i(v):1. If j�i(v)j � 0:9 � jVij, then we let Wv be a subset of �j(v), and for ea
h u 2 Wv, we letWv;u be a subset of �i(v) n �(u). Thus ea
h triple (v; u; w) where u 2Wv and w 2Wv;uis a witness. For an illustration, see Figure 3. Combining the 
ase hypotheses (whi
hasserts that Vj � Vi is essentially 
overed by �j(v) � �i(v)) with Observation 2 (whi
hguarantees many non-edges in Vj � Vi), we obtain 
(j�0(v)j2) su
h witnesses. Detailsfollow. Vjv
w uj�i(v)j � 0:9jVij

j�i(v)j � j�0(v)j=20 j�j(v)j � j�0(v)j=10
j�j(v)j � 0:9jVj j

Vi

Figure 3: An Illustration for the proof of Claim 4.3.2, 1st sub
ase of Case 1.2.Let the subset of verti
es for whi
h the 
ase hypothesis holds be denoted by V 1:2, andfor ea
h v 2 V 1:2 de�ne �(v) as in Case 1.1. LetWv def= fu2�j(v) : j�i(v) n �(u)j � j�i(v)j=10g :21



Note that for any u 2 Wv it holds that j�i(v) n �(u)j � 0:1j�i(v)j � 0:08j�j(v)j. UsingObservation 2 we have thatjE(�j(v);�i(v))j � jE(Vj ; Vi)j� 12 � jVjj � jVij� 12 � j�j(v)j0:9 � j�i(v)j0:9< 0:7 � j�j(v)j � j�i(v)j :Hen
e there are at least 0:3 � j�j(v)j � j�i(v)j pairs (u;w) where u 2 �j(v) and w 2 �i(v)su
h that w =2 �(u). It follows that jWvj > j�j(v)j=5, where by the hypothesis of Case 1this value is greater than j�0(v)j=50.Next, re
alling that for any u 2Wv it holds that j�i(v)n�(u)j � 0:08j�j(v)j, we let Wv;ube a 0:08jWv j-size random subset of �i(v) n �(u) � �(v) n �(u), and note that indeedfor every u 2 Wv and w 2 Wv;u it holds that u;w 2 �(v) and (u;w) 62 E. Thus, Part 1follows in this 
ase. (We note that for every w 2 Wv;u it holds that w 62 �(u) andw 2 �(v) n �0(v) (sin
e v; w 2 Vi).)As for Part 2, we �rst note that for every w 2 Vi the expe
ted size of U (2)w (in this 
ase)is upper-bounded byXv2Vi Xu2Wv 0:08jWv jj�i(v) n �(u)j � 0:080:09jVij �Xv2Vi jWvj2where the inequality uses j�i(v) n �(u)j � 0:1j�i(v)j � 0:09jVij. Again, we may sele
tthe sets Wv;u su
h that for ea
h w 2 Vi it holds that jU (2)w j < Pv2Vi jWvj2=jVij. Thus,if some w 2 Vi satis�es jU (2)w j > �4=3N2, then Pv2Vi jWvj2 > �4=3N2jVij. It follows thatthere exists a vertex v 2 Vi su
h that jWvj > �2=3N , and Part 2 follows.2. If j�i(v)j � 0:9 � jVij, then we pro
eed somewhat di�erently than in the other 
ases(this is the ex
eptional 
ase mentioned at the preamble of the proof). Re
all that�(v) = �i(v) = Vi n �(v), and so j�(v)j � 0:1 � jVij � 0:008 � j�0(v)j (be
ause jVij �j�i(v)j � 0:8j�j(v)j and j�j(v) � j�0(v)j=10). For the basi
 
laim, we invoke Claim 4.3.1,translating the lower-bound in terms of j�(v)j (provided by Claim 4.3.1) into a lower-bound in terms of j�0(v)j. For the elaborate 
laim, we set Wv = ; for every v as inthe 
ase hypothesis. Thus we trivially have that jWv;uj � jWvj=
2 for every u 2 Wv,and Part 2 of the 
laim holds trivially as well. Finally, we use the premise of the
laim that Pv2[N ℄ j�0(v)j > 500Pv2[N ℄ j�(v)j to infer that the 
urrent sub
ase (in whi
hj�0(v)j � 125j�(v)j) may a

ount for less than one fourth of the sum Pv2[N ℄ j�0(v)j.This 
ompletes the treatment of the 
urrent 
ase (i.e., Case 1.2), whi
h in turn 
ompletes thetreatment of Case 1. (We thus pro
eed to the following 
omplementary Case 2.)Case 2: No single Vj 
ontains mu
h of �0(v); that is, for every j it holds that j�j(v)j �j�0(v)j=10. As in Case 1, we 
onsider two sub
ases regarding the relative part of ea
h Vj
overed by �0(v), but in the 
urrent 
ase we 
onsider a partition of the set J def= fj : j�j(v)j �1g and distinguish 
ases regarding the interse
tion of �0(v) with the sets Vj in ea
h part.13Spe
i�
ally, we let J 0 def= fj : j�j(v)j > 0:9jVj jg, and 
onsider the following two sub
ases.13We note that the threshold for relative density is also di�erent in the 
urrent 
ase.22



Case 2.1: Pj2J 0 j�j(v)j � 0:5 � j�0(v)j. In this 
ase J 0 has 
ardinality at least �ve (sin
ePj2J 0 j�j(v)j � 0:5 � j�0(v)j and j�j(v)j � 0:1 � j�0(v)j for every j). Let Cv = Sj2J 0 �j(v)(note that the verti
es in Cv belong to several 
liques Vj). In this 
ase we let Wv bea subset of Cv, and for ea
h u 2 Cv we let Wv;u be a subset of Cv n �(u). We shallshow that the 
ase hypothesis implies that there are many missing edges between pairsof verti
es in Cv. Intuitively, this holds be
ause Cv essentially 
overs Sj2J 0 Vj, whereas(by Observation 2) for any j1 6= j2 there are many non-edges in Vj1 � Vj2 . This ensuresthat we have many witnesses of the form (v; u; w), where u 2Wv and w 2Wv;u. Detailsfollow.

...

v w Cv
j�j(v)j > 0:9jVj juseveral sets Vj su
h that j�j(v)j < j�0(v)j=10

Figure 4: An Illustration for the proof of Claim 4.3.2, Case 2.1.For every j1 6= j2 2 J 0, by Observation 2 (and sin
e j�j(v)j > 0:9jVj j for every j 2 J 0),it holds that jE(�j1(v);�j2(v))j � 12 � jVj1 j � jVj2 j < 0:7 � j�j1(v)j � j�j2(v)j :Letting M def= Pj1 6=j22J 0 j(�j1(v)� �j2(v)) nEj, we �rst observe thatM = Xj1 6=j22J 0 (j�j1(v)j � j�j2(v)j � jE(�j1(v);�j2(v))j)� Xj1 6=j22J 0(1� 0:7) � j�j1(v)j � j�j2(v)j= 0:3 �0B�0�Xj2J 0 j�j(v)j1A2 �Xj2J 0 j�j(v)j21CA� 0:3 � �(0:5 � j�0(v)j)2 � 0:1 � j�0(v)j2� ;23



where the last inequality uses the hypotheses of Cases 2 and 2.1. Therefore, j(Cv�Cv)nEj �M > 0:04 � j�0(v)j2.De�ning Wv def= fu2Cv : jCv n �(u)j � 0:02 � j�0(v)jg ;we note that jWvj � 0:02 � j�0(v)j. Next, we let Wv;u be a 0:02 � jWvj-size random subsetof Cv n �(u) � �0(v) n �(u). As in the previous 
ases, Part 1 follows by the de�nitionof these sets. (However, unlike in the other 
ases, here we have w 2 �0(v) (and it alsoholds that w 62 �(u)).)To establish Part 2, we �rst note that, for any �xed w, the expe
ted size of U (2)w isupper-bounded byXv2[N ℄:Cv3w Xu2Wv 0:02 � jWvjjCv n �(u)j � Xv2[N ℄:�0(v)3w Xu2Wv 0:02 � jCvj0:02 � jCvj (9)= Xv2�0(w) jWvjwhere the inequality uses jCv n �(u)j � 0:02 � j�0(v)j and Wv � Cv � �0(v). Analo-gously to the previous 
ases, it follows that if some w satis�es jU (2)w j > �4=3N2, thenPv2�0(w) jWvj > �4=3N2=2. This implies that either j�0(w)j > �2=3N=2 or there existsv 2 �0(w) su
h that jWvj > �2=3N . Thus, Part 2 holds in Case 2.1.Case 2.2: Pj2JnJ 0 j�j(v)j � 0:5 � j�0(v)j. Let J 00 def= J n J 0 = fj : 1 � j�j(v)j � 0:9jVj jg, andnote that for j 2 J 00 (as 
onsidered in this 
ase) it may be that j�j(v)j � jVjj and
onsequently for j1 6= j2 2 J 00 it may hold that E(�j1(v);�j2(v)) � j�j1(v)j � j�j2(v)j.More generally, rede�ning Cv def= Sj2J 00 �j(v), it may be that jE(Cv ; Cv)j � �jCvj2 �, andso the approa
h of Case 2.1 may not work in general (although it will work in the �rstsub
ase). Letting J 000 def= fj 2 J 00 : jVj j � j�0(v)j=10g, we 
onsider two sub
ases:1. If Pj2J 000 j�j(v)j � 0:4 � j�0(v)j then we rede�ne Cv def= Sj2J 000 �j(v) and show thatjE(Cv ; Cv)j � 0:99�jCv j2 �. On
e the latter fa
t is established, we rea
h a situationas in Case 2.1 and pro
eed exa
tly as in that 
ase. To show that jE(Cv ; Cv)j �0:99�jCv j2 �, we note that otherwise one obtains a 
ontradi
tion to the optimality ofthe partition (by repla
ing the sub-partition (Vj)j2J 000 with (Cv; (VjnCv)j2J 000), whereVj n Cv = �j(v)). Details follow.Assuming, towards the 
ontradi
tion that jE(Cv; Cv)j > 0:99�jCv j2 �, we lowerboundthe gain from the aforementioned repla
ement as follows. The gain from edges insideCv that do not 
onne
t verti
es in the same Vj is lower-bounded by 0:99 � �jCv j2 � �jCvj0:1j�0(v)j � �0:1j�0(v)j2 �, whi
h is lower-bounded by 0:36 � jCvj2 (when using j�0(v)j �2:5 � jCvj). On the other hand, we upper-bound the loss from missing edges insideCv and from super
uous edges introdu
ed between Cv and the various sets Vj by0:01 � �jCvj2 � + jCv j � maxj2J 000fjVj jg, whi
h is upper-bounded by 0:26 � jCvj2 (whenusing jVj j � 0:1 � j�0(v)j � 0:25 � jCvj).2. IfPj2J 00nJ 000 j�j(v)j � 0:1 � j�0(v)j then we pro
eed similarly to Case 1.1. Spe
i�
ally,we de�ne Wv def= [j2J 00nJ 000(u 2 �j(v) : j�j(u) \ �j(v)j � j�j(v)j4 )24



and note that Wv � �0(v) and that for every j 2 J 00 n J 000 it holds that jWv \ Vj j �j�j(v)j=4 (sin
e E(�j(v); Vj n �j(v)) � j�j(v)j � jVj n �j(v)j=2). Using the sub
asehypothesis, it follows that jWvj � Pj2J 00nJ 000 j�j(v)j=4 � j�0(v)j=40, and using j 2J 00 n J 000 every u 2 Wv satis�es j�j(u) \ �j(v)j � j�j(v)j=4 � jVj j=40 � j�0(v)j=400.Next, for every j 2 J 00 n J 000 and every u 2Wv \ Vj , we de�ne Wv;u to be a randomsubset of size j�0(v)j=400 of �j(u)\�j(v). Indeed, for every u 2Wv and w 2Wv;u itholds that w 62 �0(v) and w 2 �(u) n �0(u). For an illustration, see Figure 5. Giventhe lower bounds on the sizes of the sets Wv and Wv;u, Part 1 follows.

...

C(v)v u w j�j(v)j � jVjj=10
(jVj j > j�0(v)j=10)several sets Vj

Figure 5: An Illustration for the proof of Claim 4.3.2, 2nd sub
ase of Case 2.2.To establish Part 2, we �rst note that, for any �xed w 2 Vj , the expe
ted size ofU (2)w is upper-bounded byXv2[N ℄nVj Xu2Wv\Vj j�0(v)j=400j�j(u) \ �j(v)j � Xv2[N ℄nVj Xu2�j(v) j�0(v)j10jVj j= Xv2[N ℄nVj j�j(v)j � j�0(v)j10jVj jwhere the inequality uses j�j(u) n �j(v)j � jVj n �j(v)j=4 � jVj j=40. Analogouslyto the previous 
ases, it follows that if some w 2 Vj satis�es jU (2)w j > �4=3N2,then Pv2[N ℄nVj j�0(v)j � j�j(v)j > 5�4=3N2jVj j, whi
h implies that either for somev 2 [N ℄ n Vj it holds that j�0(v)j > �2=3N or that Pv2[N ℄nVj j�j(v)j > �2=3N jVj j. Inthe latter 
ase, there must be a vertex u 2 Vj su
h that j�0(u)j > �2=3N . Thus,Part 2 holds in this sub
ase of Case 2.2.Thus, we have established the 
laim for all sub
ases of Case 2.2.25



Having 
ompleted the treatment of the two 
omplementary 
ases of Case 2 (i.e., Cases 2.1and 2.2), we 
omplete the treatment of Case 2.This 
ompletes the proof of Parts 1 and Part 2. Note that in ea
h of the various 
ases we hadjWv;uj � jWvj=400 (with the minimum lowerbound established in the se
ond sub
ase of Case 2.2,where we used jWv;uj � j�0(v)j=400).We now turn to proving Part 3. Ex
ept for Case 2.1, the modi�
ations of the sets Wv and Wv;uare analogous to those performed in the proof of Claim 4.3.1. Spe
i�
ally, we �rst modify the setsWv, by omitting from ea
h Wv all verti
es in F (v) (re
all that F (v) = fu : (v; u) 2 Fg). Note thatwe have de
reased Pv jWvj by at most 2jF j. The only 
ase in whi
h we make further modi�
ationsto the sets Wv is in Case 2.1. As we show subsequently, this 
auses a further de
rease inPv jWvj ofat most 98jF j. Hen
e, Eq. (7) follows by using the fa
t that Eq. (6) holds for the original sets Wv.Next, we modify the sets Wv;u, by omitting from ea
h Wv;u a few elements, sele
ted at random,su
h that jWv;uj = jWvj=400 holds (for the modi�ed sets). (This modi�
ation is done in order toallow the extension of the argument used in Part 2.)To see that the generalized Part 2 holds too, we note that in all 
ases (in
luding Case 2.1) theargument relies on the fa
t that Wv;u is a random 
(jWvj)-size subset of some (
ase-spe
i�
) subsetof �0(v) and on identifying a vertex v0 for whi
h �0(v0) is large (if some U (2)w is large). The sameapplies to the modi�ed sets (i.e., Wv's andWv;u's), however here we need to show that �0(v0)nF (v0)is large. Inspe
ting the various 
ases, we note that in all 
ases (ex
ept for Case 2.1) the originalargument goes through. Spe
i�
ally:In Case 1.1 we showed that the existen
e of w 2 Vj su
h that jU (2)w j > �4=3N2 implies either theexisten
e of v 2 V 0 (i.e., v satisfying �(v) = j) su
h that jWvj > �2=3N=2 or the existen
e ofu 2 Vj su
h that j�0(u)j > �2=3N . The same argument 
an be applied to the modi�ed setsWv and Wv;u, when repla
ing E(V 0; Vj) by E(V 0; Vj) n F in Eq. (8). Thus, the �rst sub
aseimplies that jWvj > �2=3N=2 (for some v 2 V 0 (and we are done sin
e j�0(v) n F (v)j � jWvj)),whereas the se
ond sub
ase implies the existen
e of u 2 Vj su
h that j�0(u) n F (u)j > �2=3N(by using jE(V 0; Vj) n F j > jVjj � �2=3N , whi
h implies the existen
e of u 2 Vj su
h thatj(�0(u) n F (u)) \ V 0j > �2=3N).In Case 1.2 we showed that the existen
e of w 2 Vi su
h that jU (2)w j > �4=3N2 implies the existen
eof v 2 Vi su
h that jWvj > �2=3N . The same argument applies to the modi�ed sets Wv andWv;u.In Case 2.2 we redu
ed the �rst sub
ase to Case 2.1, whereas the se
ond sub
ase was similar toCase 1.1. The adaptation is a

ordingly.Indeed, this leaves us with Case 2.1, whi
h is di�erent from the other 
ases in the sense that itrefers to sets �0(w) su
h that the vertex w is not ne
essarily in some set Wv. Spe
i�
ally, re
allthat in Case 2.1 we showed that the existen
e of w 2 Vj su
h that jU (2)w j > �4=3N2 implies thatPv2�0(w) jWvj > �4=3N2=2, whi
h in turn implies that either j�0(w)j > �2=3N=2 or jWvj > �2=3N forsome v 2 �0(w). However, unlike in Case 1.1,14 we 
annot repla
e �0(w) by �0(w) n F (w), be
ause(v; u) 2 U (2)w does not imply that v 2 �0(w) n F (w). The sour
e of trouble is that Wv;u is sele
tedwith no referen
e to F .14The 
ru
ial di�eren
e is that in Case 1.1 we 
onsidered �0(u) for (v; u) 2 U (2)w , whi
h means that the modi�
ationof Wv allows repla
ing �0(u) by �0(u) n F (u) (be
ause (v; u) 2 U (2)w for the modi�ed sets Wv implies that v 2�0(u) n F (u)). 26



The problem is resolved by modifying the sele
tion of Wv;u as follows. If jF (v)j > jWvj=98 thenWv is reset to an empty set, and otherwise Wv;u is sele
ted as a random (jWvj=100)-size subset of(Cv n�(u))nF (v) � �0(v)nF (v) (rather than as a random (jWvj=50)-size subset of Cv n�(u)). Thisallows for repla
ing �0(v) 3 w by (�0(v) n F (v)) 3 w in Eq. (9), and so we getXv2[N ℄:Cv3w Xu2Wv 0:01 � jWvjj(Cv n �(u)) n F (v)j � Xv2[N ℄:(�0(v)nF (v))3w Xu2Wv 0:01 � jCvj0:01 � jCvj= Xv2�0(w)nF (w) jWvjwhere the inequality uses j(Cv n �(u)) n F (v)j � 0:01 � j�0(v)j and Wv � Cv � �0(v) n F (v). We
on
lude that the existen
e of w 2 Vj su
h that jU (2)w j > �4=3N2 implies that Pv2�0(w)nF (w) jWvj >�4=3N2=2, whi
h in turn implies that either j�0(w) n F (w)j > �2=3N=2 or jWvj > �2=3N for somev 2 �0(w)nF (w). Thus, Part 2 follows. We need, however, to examine the e�e
t of this modi�
ation(of the sets Wv;u) on Part 1. The key observation is that the sum of the sizes of the Wv's de
reasesat most by 98jF j, be
ause the 
ase of jF (v)j > jWvj=98 (where Wv is reset to empty) 
auses a lossof at most jWvj < 98jF (v)j, whereas the 
ase of jF (v)j � jWvj=98 (in whi
h we avoid F (v)) 
auses(as usual) a loss of at most jF (v)j). This 
ompletes the treatment of general F , and the 
laimfollows. 2On the existen
e of e�e
tive witnesses. Combining the lemma's hypothesis with (the basi
 partsof) Claims 4.3.1 and 4.3.2, we infer the existen
e of 
(�2N3) witnesses. Moreover, the elaborateparts of these 
laims provide us with some stru
ture that will be useful towards proving that (withhigh probability) the sample taken by Algorithm 4.2 
ontains at least one e�e
tive witness (i.e.,a witness whose three vertex-pairs are inspe
ted by the algorithm). Spe
i�
ally, by the lemma'shypothesis, either Pv2[N ℄ j�(v)j � 0:001 � � �N2 or Pv2[N ℄ j�0(v)j � 0:999 � � � N2. We �rst analyzethe former 
ase (i.e., Pv2[N ℄ j�(v)j � 0:001 � � � N2) and the treatment of the latter 
ase (i.e.,Pv2[N ℄ j�0(v)j � 0:999 � � �N2) will follow (and be analogous). We 
onsider two sub
ases:1. If Pv2[N ℄:j�(v)j��2=3N=2 j�(v)j � 0:0001 � � �N2 then applying Claim 4.3.1 with F = ; we obtainsets Wv's and Wv;u's su
h that Part 1 of Claim 4.3.1 holds. In parti
ular, it follows thatXv2[N ℄:jWvj��2=3N=8 jWvj � Xv2[N ℄:j�(v)j��2=3N=2 j�(v)j4� 0:0001 � � �N24 = 
(� �N2):Re
all that ` = log2(1=�). Thus, there exists k 2 f1; : : : ; (2`=3) + 3g su
h that for V 0 def= fv 2[N ℄ : 2�kN � jWvj < 2�k+1Ng it holds that Pv2V 0 jWvj = 
(� �N2=`). Fixing this k, we notethat jV 0j = 
(2k� �N=`) and thus Pr[Rk \ V 0 6= ;℄ > 8=9, where Rk is as sele
ted in Step 2 ofAlgorithm 4.2 (i.e., Rk is a random set of size 
((2k�=`)�1)). Fixing any v 2 Rk\V 0, we havejWvj � 2�kN and so Pr[Sk\Wv 6= ;℄ > 8=9, where Sk is also as sele
ted in Step 2 (i.e., Sk is arandom set of size 
(2k)). Finally, �xing any u 2 Sk \Wv, we have Pr[Sk \Wv;u 6= ;℄ > 8=9.Noting that all pairs (Rk �Sk)[ (Sk�Sk) are inspe
ted by Algorithm 4.2, the 
laim follows.2. If Pv2[N ℄:j�(v)j��2=3N=2 j�(v)j < 0:0001 � � � N2 then applying Claim 4.3.1 with F = ffu; vg :j�(v)j � �2=3N=2g we obtain sets Wv's and Wv;u's su
h that Claim 4.3.1 holds. In parti
ular27



(by Part 1), it follows thatXv2[N ℄ jWvj � Xv2[N ℄:j�(v)j<�2=3N=2 jWvj� Xv2[N ℄:j�(v)j��2=3N=2 j�(v)j4 � 2jF j� �0:001 � 0:00014 � 2 � 0:0001� � � �N2 = 
(� �N2);whereas jWvj � j�(v) n F (v)j < �2=3N=2 holds for every v 2 [N ℄. Note that we may assume,without loss of generality, that jWv;uj � jWvj holds for every u 2 Wv. (A
tually, jWv;uj =jWvj=4 holds for the sets 
onstru
ted in the proof of Claim 4.3.1.)Letting U (1)w def= fv : w 2Wvg, for every w it holds that jU (1)w j < �2=3N=2 (be
ause v 2 U (1)wimplies w 2 �(v) and (v; w) 62 F ). Also, by Part 2, we get jU (2)w j < �4=3N for every w. Usingthe following Claim 4.3.3, we shall show that in su
h a 
ase (with high probability) the sampleS sele
ted in Step 1 (of Algorithm 4.2) 
ontains a witness (i.e., a triple (v; u; w) su
h thatu 2 Wv and w 2 Wv;u). Loosely speaking, the expe
ted number of witnesses ex
eeds any
onstant, whereas the upper-bounds on the sets jWvj, jU (1)v j and jU (2)v j guarantees suÆ
ient
on
entration around the expe
ted value.The treatment of the 
ase in whi
h Pv2[N ℄ j�0(v)j � 0:999 � � � N2 is analogous. Spe
i�
ally, we
onsider analogous sub
ases (with di�erent 
onstants in the di�erentiating thresholds) and invokeClaim 4.3.2. Either way, the analysis of the se
ond sub
ase (above) relies on the following 
laim.Claim 4.3.3 (sampling triples via a 3-way Cartesian produ
t of samples): Suppose that the fol-lowing 
onditions hold:1. Pv2[N ℄Pu2Wv jWv;uj = 
(�2 �N3)2. For every v 2 [N ℄, it holds that max(jWvj; jU (1)v j; jU (2)v j) < �2=3N , where U (1)v def= fx : v 2Wxgand U (2)v def= f(x; y) : v 2Wx;yg.3. For every v 2 [N ℄ and u 2Wv, it holds that jWv;uj < �2=3N .Then, for a suÆ
iently large 
onstant 
 that depends only on the 
onstant in the O-notation, withprobability at least 2=3, a uniformly sele
ted sample of 
 � ��2=3 verti
es 
ontains a triple (v; u; w)su
h that u 2Wv and w 2Wv;u.Re
all that we only invoke Claim 4.3.3 in the se
ond forgoing 
ase, and whenever we do so all the
onditions in the hypothesis hold. Spe
i�
ally, we have Pv2[N ℄Pu2Wv jWv;uj =Pv2[N ℄
(jWvj2) =
(�2 � N3) (sin
e Pv2[N ℄ jWvj = 
(� � N2)) as well as jWvj; jWv;uj; jU (1)v j < ��2=3N (sin
e Wv ��(v) n F (v) (or Wv � �0(v) n F (v)) and the same holds for U (1)v ). Furthermore, Claim 4.3.1 (resp.,Claim 4.3.2) implies that in this 
ase (where j�(v) n F (v)j < ��2=3N=2 (resp., j�0(v) n F (v)j <��2=3N=2), it holds that jU (2)v j � 10��4=3N2. By repla
ing � with �=10, the hypothesis holds.Proof: We may assume, without loss of generality, that for any v and u 2 Wv it holds thatjWv;uj � jWvj. (Note that this is the 
ase anyhow in the proofs of Claims 4.3.1 and 4.3.2.) We28



denote the verti
es of the sample S by v1; : : : ; vs; u1; : : : ; us; w1; : : : ; ws. We shall prove that, withprobability at least 1 � O(s�1��2=3), there exists a triple (i; j; k) 2 [s℄3 su
h that uj 2 Wvi andwk 2 Wvi;wj . The proof boils down to applying Chebyshev's Inequality to Pi;j;k2[s℄ �i;j;k, where�i;j;k = 1 if uj 2Wvi and wk 2Wvi;uj , and �i;j;k = 0 otherwise. We �rst note that� def= ExpS 24 Xi;j;k2[s℄�i;j;k35= s3 � Prv;u;w2[N ℄[u 2Wv ^ w 2Wv;u℄= s3 � 1N3 � Xv2[N ℄ Xu2Wv jWv;uj= 
(s3 � �2)where the last line follows by the �rst 
ondition in the hypothesis. By Chebyshev's Inequality itfollows thatPr24 Xi;j;k2[s℄ �i;j;k = 035 � Var[Pi;j;k2[s℄ �i;j;k℄Exp[Pi;j;k2[s℄ �i;j;k℄2= ��2 �0B�Exp2640� Xi;j;k2[s℄ �i;j;k1A2375 � Exp24 Xi;j;k2[s℄ �i;j;k3521CA= ��2 �0B�0B� X`2[s℄6 Exp[�i1;j1;k1 � �i2;j2;k2 ℄1CA � �21CA (10)where ` = (i1; i2; j1; j2; k1; k2). The upper bounds on jWvj; jWv;uj; jU (1)w j and jU (2)w j will be used inupper-bounding the large sum (i.e., P`2[s℄6 Exp[�i1;j1;k1 � �i2;j2;k2 ℄). We de
ompose the latter suminto partial sums that 
orrespond to the following 
ases (regarding the relations between i1-vs-i2,j1-vs-j2, and k1-vs-k2).Case of i def= i1 = i2, j def= j1 = j2, and k def= k1 = k2. There are s3 su
h terms, ea
h having valueExp[�2i;j;k℄ = Exp[�i;j;k℄, whi
h equals Prv;u;w2[N ℄[u 2Wv ^ w 2Wv;u℄ = �=s3. Thus, the total
ontribution of this 
ase is �.Case of i def= i1 = i2, j def= j1 = j2, and k1 6= k2. There are less than s4 su
h terms, ea
h havingvalue Exp[�i;j;k1 � �i;j;k2℄, whi
h equalsPrv;u;w1;w22[N ℄[u 2Wv ^ w1; w2 2Wv;u℄� Prv;u;w12[N ℄[u 2Wv ^ w1 2Wv;u℄ � maxv;u;w12[N ℄nPrw22[N ℄[w2 2Wv;u℄o< �s3 � �2=3where the inequality is due to jWv;uj < �2=3N . Thus, the total 
ontribution of this 
ase issmaller than (s�2=3) � �. 29



Case of i def= i1 = i2, j1 6= j2, and k def= k1 = k2. There are less than s4 su
h terms, ea
h havingvalue Exp[�i;j1;k � �i;j2;k℄, whi
h equalsPrv;u1;u2;w2[N ℄[u1; u2 2Wv ^ w 2Wv;u1 \Wv;u2 ℄� Prv;u1;w2[N ℄[u1 2Wv ^ w 2Wv;u1 ℄ � maxv;u1;w2[N ℄nPru22[N ℄[u2 2Wv℄o< �s3 � �2=3where the inequality is due to jWvj < �2=3N . Thus, the total 
ontribution of this 
ase issmaller than (s�2=3) � �.Case of i def= i1 = i2, j1 6= j2, and k1 6= k2. There are less than s5 su
h terms, ea
h having valueExp[�i;j1;k1 � �i;j2;k2 ℄, whi
h equalsPrv;u1;u2;w1;w22[N ℄[u1; u2 2Wv ^ w1 2Wv;u1 ^ w2 2Wv;u2 ℄� Prv;u1;w12[N ℄[u1 2Wv ^ w1 2Wv;u1 ℄ � maxv;u1;w12[N ℄nPru2;w22[N ℄[u2 2Wv ^ w2 2Wv;u2 ℄o< �s3 � (�2=3)2where the inequality is due to jWvj < �2=3N and jWv;u2 j < �2=3N . Thus, the total 
ontributionof this 
ase is smaller than (s�2=3)2 � �.Case of i1 6= i2, j def= j1 = j2, and k def= k1 = k2. There are less than s4 su
h terms, ea
h havingvalue Exp[�i1;j;k � �i2;j;k℄, whi
h equalsPrv1;v2;u;w2[N ℄[u 2Wv1 \Wv2 ^ w 2Wv1;u \Wv2;u℄� Prv1;u;w2[N ℄[u 2Wv1 ^ w 2Wv1;u℄ � maxv1;u;w2[N ℄nPrv22[N ℄[u 2Wv2 ℄o< �s3 � �2=3where the inequality is due to jU (1)u j < �2=3N (and u 2 Wv2 i� v2 2 U (1)u ). Thus, the total
ontribution of this 
ase is smaller than (s�2=3) � �.Case of i1 6= i2, j1 6= j2, and k def= k1 = k2. There are less than s5 su
h terms, ea
h having valueExp[�i1;j1;k � �i2;j2;k℄, whi
h equalsPrv1;v2;u1;u2;w2[N ℄[u1 2Wv1 ^ u2 2Wv2 ^ w 2Wv1;u1 \Wv2;u2 ℄� Prv1;u1;w2[N ℄[u1 2Wv1 ^ w 2Wv1;u1 ℄ � maxv1;u1;w2[N ℄nPru2;v22[N ℄[w 2Wv2;u2 ℄o< �s3 � �4=3where the inequality is due to jU (2)w j < �4=3N2 (and w 2Wv2;u2 i� (v2; u2) 2 U (2)w ). Thus, thetotal 
ontribution of this 
ase is smaller than s2�4=3 � �.
30



Case of i1 6= i2, j def= j1 = j2, and k1 6= k2. There are less than s5 su
h terms, ea
h having valueExp[�i1;j;k1 � �i2;j;k2 ℄, whi
h equalsPrv1;v2;u;w1;w22[N ℄[u 2Wv1 \Wv2 ^ w1; w2 2Wv1;u \Wv2;u℄� Prv1;u;w12[N ℄[u 2Wv1 ^ w1 2Wv1;u℄ � maxv1;u;w12[N ℄nPrv2;w22[N ℄[u 2Wv2 ^ w2 2Wv2;u℄o< �s3 � �2=3where the inequality is due to jU (1)u j < �2=3N and jWv2;uj < �2=3N . Thus, the total 
ontribu-tion of this 
ase is smaller than (s�2=3)2 � �.Case of i1 6= i2, j1 6= j2, and k1 6= k2. There are less than s6 su
h terms, ea
h having valueExp[�i1;j1;k1 � �i2;jj;k2 ℄ = Exp[�i;j;k℄2, whi
h equals (�=s3)2. Thus, the total 
ontribution ofthis 
ase is smaller than �2.Thus, we have one 
ase (i.e., the �rst one) 
ontributing �, three 
ases (ea
h) 
ontributing s�2=3 � �,three 
ases (ea
h) 
ontributing (s�2=3)2 � �, and one 
ase (i.e., the last one) 
ontributing �2. Usingthese upper bounds in Eq. (10), we obtainPr24 Xi;j;k2[s℄ �i;j;k = 035 < ��2 � ���+ 3 � s�2=3 � �+ 3 � (s�2=3)2 � �+ �2�� �2�= ��1 � �1 + 3s�2=3 + 3(s�2=3)2�:Using � = 
(s3�2) and a suÆ
iently large s = O(��2=3), we obtain an error bound ofO((s�2=3)2=(s3�2)) = O(s�1��2=3) < 1=3, and the 
laim follows. 2This 
ompletes the proof of Lemma 4.3.5 Larger Adaptive vs Non-adaptive Complexity GapsWe start by establishing Theorem 1.2, whi
h refers to the adaptive vs non-adaptive 
omplexity gapof testing Bi-Clique Colle
tions. We believe that the ideas underlying the adaptive algorithm andthe non-adaptive lower-bound (presented in Se
tions 5.1 and 5.2) 
an serve as a basis for establishingthe larger gap stated in Conje
ture 1.3. Indeed, as shown in Se
tion 5.3, this is the 
ase with respe
tto the non-adaptive lower-bound (whi
h indeed establishes Part 2 of Conje
ture 1.3). In Se
tion 5.4we outline an adaptive algorithm that we believe to be suitable for Part 1 of Conje
ture 1.3.5.1 The Adaptive Query Complexity of Bi-Clique Colle
tionThe tester for BCC is obtained by extending the ideas that underly the tester for CC (i.e., Al-gorithm 3.1). The extension is relatively straightforward, but the analysis will have to addressadditional diÆ
ulties (i.e., beyond those en
ountered in the analysis of Algorithm 3.1).Algorithm 5.1 (adaptive tester for BCC): On input N and � and ora
le a

ess to a graph G =([N ℄; E), set ` = log2(1=�) + 2, t1 = �(`) and t2 = �(`4), and pro
eed in ` iterations as follows:For i = 1; : : : ; `, uniformly sele
t t1 � 2i start verti
es and for ea
h sele
ted vertex v 2 [N ℄ performthe following sub-test, denoted sub-testi(v): 31



1. Sele
t, uniformly at random, a sample, S, of t2=(2i�) verti
es, and determine �S(v) = S\�(v)by making the queries (v; w) for ea
h w 2 S. If �S(v) 6= ; then sele
t u at random in �S(v)and 
ontinue to the following steps. (Otherwise, halt and a

ept v.)2. Determine �S(u) = S \ �(u) by making the queries (u;w) for ea
h w 2 S.3. If j�S(v) � �S(u)j � t2=2i� then 
he
k that for every (w1; w2) 2 �S(v) � �S(u) it holds that(w1; w2) 2 E. Otherwise (i.e., j�S(v)� �S(u)j > t2=2i�), uniformly sele
t a sample of t2=(2i�)pairs in �S(v)� �S(u) and 
he
k that ea
h sele
ted pair is in E.4. Let B = (�S(v)��S(v))[(�S(u)��S(u)). If jBj � t2=2i� then 
he
k that for every (w1; w2) 2 Bit holds that (w1; w2) 62 E. Otherwise (i.e., jBj > t2=2i�), uniformly sele
t a sample of t2=(2i�)pairs in B and 
he
k that ea
h sele
ted pair is in not E.5. Sele
t a sample of t2=(2i�) pairs in (�S(v)[�S(u))� (S n (�S(v)[�S(u))) and 
he
k that ea
hsele
ted pair is not in E.The sub-test (i.e., sub-testi(v)) a

epts if and only if all 
he
ks were positive (i.e., no edges weremissed in Step 3 and no edges were dete
ted in Steps 4 and 5). The tester itself a

epts if and onlyif all Pì=1 t1 � 2i invo
ations of the sub-test a

epted.The query 
omplexity of this algorithm isPì=1(t1 �2i) �O(t2=2i�) = O(` � t1t2=�) = eO(1=�). Clearly,this algorithm a

epts (with probability 1) any graph that is in BCC. It remains to analyze itsbehavior on graphs that are �-far from BCC.Lemma 5.2 If G = ([N ℄; E) is �-far from BCC, then on input N; � and ora
le a

ess to G, Algo-rithm 5.1 reje
ts with probability at least 2=3.Part 1 of Theorem 1.2 follows.Proof: We pro
eed as in the proof of Lemma 3.2; that is, we will show that if Algorithm 5.1a

epts with probability at least 1=3 then the graph is �-
lose to BCC. The proof evolves around arevised notion of i-good start verti
es, whi
h is de�ned on top of the notion of i-good edges. Thede�nition refers to the parameters 
2 and 
3, whi
h will be determined su
h that 
2 = �(1=t2) and
1 � 
3 = �(1=t1).De�nition 5.2.1 An edge (v; u) is i-good if the following three 
onditions hold.1. The number of missing edges in �(v) � �(u) is at most 
2 � 2i� � j�(v; u)j � N edges, where�(v; u) def= �(v) [ �(u); that is, j(�(v)� �(u)) n Ej � 
2 � 2i� � j�(v; u)j �N .2. The number of edges in (�(v)� �(v)) [ (�(u)� �(u)) is at most 
2 � 2i� � j�(v; u)j �N .3. For every positive integer j � j0 def= log2(j�(v; u)j=(
2 � 2i�N)), the number of verti
es in�(v; u) that have at least 
2 � 2i+j� �N edges going out of �(v; u) is at most 2�j � j�(v; u)j.A vertex v is i-good if at least (1 � 
3) � j�(v)j of its neighbors yield a edge that is i-good; that is,if jfu 2 �(v) : (v; u) is i-goodgj � (1� 
3) � j�(v)j.Claim 5.2.2 If v has degree at least 
2�2i��N and is not i-good, then the probability that sub-testi(v)reje
ts is at least 
3=2. 32



Proof: By the hypothesis j�(v)j � 
2 � 2i� � N , with probability at least 0:9, Step 1 of sub-testi(v)generates a non-empty sample of verti
es in �(v). Conditioned on this event (and using the hy-pothesis that v is not i-good), with probability at least 
3, the vertex u 2 �(v) sele
ted in thissample is su
h that (v; u) is not i-good. We �x su
h an edge (v; u) for the rest of this proof.Assume that Condition 1 of i-goodness does not hold for (v; u), and let � def= 
2�2i��j�(v;u)j�Nj�(v)j�j�(u)j �
2�2i��Nmin(j�(v)j;j�(u)j) denote (the lower bound on) the fra
tion of missing edges in �(v)��(u). (Note thatthis event may happen only if min(j�(v)j; j�(u)j) � 
2 � 2i� � N .) Then, with probability at least0:9, it holds that min(j�S(v)j; j�S(u)j) > m=2, where m def= t2�2i � min(j�(v)j;j�(u)j)N � t2 � 
2 � 1. Alsonote that the members of �S(v) and �S(u) are distributed uniformly in �(v) and �(u), respe
tively.Considering n = m=2 uniformly distributed verti
es in �(v) and n uniformly distributed verti
esin �(u), it follows (as in the proof of Claim 3.2.2) that, with probability at least 0:9, the fra
tion ofedges that are missing in the subgraph indu
ed by the said sample is at least �=2. It follows thatStep 3 reje
ts with probability at least 0:92 > 0:8 (regardless if it examines all pairs in �S(v)��S(u)or just examines a random sample of t22i� � t2
2� pairs).The treatment of Condition 2 is similar, ex
ept that here we refer to the number of edges (in(�(v) � �(v)) [ (�(u) � �(u))) over j�(v)j2 + j�(u)j2 = �(j�(v; u)j2). Indeed, treating �(v; u) as awhole fa
ilitates the streamlining of the proof with the treatment of Condition 1 in Claim 3.2.2.We 
on
lude that if Condition 2 (of i-goodness of (v; u)) is violated, then Step 4 of the test reje
tswith probability at least 0:8.Finally, we turn to Condition 3 of i-goodness. Assuming that this 
ondition does not hold for(v; u), we show that Step 5 of the test reje
ts with probability at least 0:8. The proof is analogousto the analysis of Condition 2 in Claim 3.2.2, ex
ept that �(v; u) repla
es �(v). Thus, sub-testi(v)reje
ts with probability at least 0:9 � 
2 � 0:8, and the 
urrent 
laim follows. 2Claim 5.2.3 If Algorithm 5.1 a

epts with probability at least 1=3 then for every i 2 [`℄ the numberof verti
es of degree at least 
2 �2i��N that are not i-good is at most 
1 �2�i �N , where 
1
3 = �(1=t1).Proof: Assuming to the 
ontrary that the number of these verti
es ex
eeds 
1 � 2�i �N , Claim 5.2.2implies that a single invo
ation of sub-testi reje
ts with probability at least 
12�i � 
3=2. Re
allingthat Algorithm 5.1 invokes sub-testi on t1 � 2i random verti
es (and using t1 � 2 � (
1
3)�1), the
laim follows. 2Additional diÆ
ulties. As stated up-front, the 
urrent proof fa
es additional diÆ
ulties that werenot en
ountered in the proof of Lemma 3.2. These diÆ
ulties refer to the partition re
onstru
tionpro
edure, whi
h is supposed to provide an approximately good partition of the graph to bi-
liques.The �rst problem refers to the 
ase that (v; u) is i-good, but most of �(v; u) belongs to previouslyidenti�ed bi-
liques and furthermore these verti
es reside in �(u) (rather than in �(v)). Thus, we
annot \
harge" these verti
es to edges that are adja
ent to v, but rather develop a 
harging rulethat allows us to 
harge v indire
tly via its typi
al neighbors u. The se
ond problem refers tothe treatment of low-degree verti
es, and it arises from the fa
t that verti
es in �(v; u) may havevastly di�erent degrees (whi
h, indeed, o

urs in the 
ase that �(v) has a signi�
antly di�erent
ardinality than �(u)). Our solution is based on using two di�erent degree thresholds (dependingon the relation between the degree of a vertex and the degree of most of its neighbors). With thismotivation in mind, we turn to the a
tual des
ription of the (iterative) partition-re
onstru
tionpro
edure.The partition re
onstru
tion pro
edure. The iterative pro
edure is initiated with C = L0 = L(1)0 =L(2)0 = L(I)0 = ;, R0 = [N ℄ and i = 1, where C denotes the set of verti
es \
overed" (by bi-
liques)33



so far, Ri�1 denotes the set of \remaining" verti
es after iteration i � 1 and Li�1 denotes the setof verti
es 
ast aside (as having \low degree") in iteration i� 1. The set Li�1 is the union of threesets, L(1)i�1, L(2)i�1, and L(I)i�1, where the �rst two sets 
orrespond to two degree thresholds, denoted �1and �2, and the third set 
onsists of many subsets that use intermediate thresholds (for avoidinga non-smooth transition). (We shall set �1 = �(1=`) and �2 = �(�1=`) � 
2.) The ith iterationpro
eeds as follows, where i = 1; : : : ; ` and Fi is initialized to ;.1. Pi
k an arbitrary vertex v 2 Ri�1 n C that satis�es the following three 
onditions(a) v is i-good.(b) v has suÆ
iently high degree in the following sense: either j�(v)j � �1 �2i� �N or for somek 2 [`0℄, where `0 = log0:9(�2=�1) = O(log `), both j�(v)j � 0:9k � �1 � 2i� � N and �k(v)hold, where �k(v) represents the 
ondition that a signi�
ant fra
tion of v's neighborshave a signi�
antly higher degree than v itself; spe
i�
ally, �k(v) holds if�����w2�(v) : j�(w)j > �1:1 + k10`0� � j�(v)j����� > j�(v)j100` : (11)Note that �`0(v) holds if jfw 2 �(v) : j�(w)j > 1:2 � j�(v)jgj is greater than j�(v)j=100`,and the 
orresponding degree bound is �2 � 2i� �N (be
ause 0:9`0 = �2=�1).(
) There exists u 2 �(v) n C su
h that the edge (v; u) is i-good and������(�(v; u) n C) n0� [j�i�1Lj1A������ � j�(v; u)j5(i.e., relatively few verti
es of �(v; u) are 
overed by C or 
ast aside in previous iterationsdue to having low degree).If no su
h vertex v exists, then de�neL(1)i = fv 2 Ri�1 n C : :�1(v) ^ (j�(v)j<�1 � 2i� �N)g;L(I)i = [k2[`0�1℄fv 2 Ri�1 n C : �k(v) ^ :�k+1(v) ^ (j�(v)j<0:9k�1 � 2i� �N)g;L(2)i = fv 2 Ri�1 n C : �`0(v) ^ (j�(v)j<�2 � 2i� �N)g;Li = L(1)i [ L(I)i [ L(2)i , and Ri = Ri�1 n (Li [ C).If i < ` then pro
eed to the next iteration, and otherwise terminate.2. For vertex v as sele
ted in Step 1, pi
k an arbitrary u 2 �(v) nC satisfying Condition 1
. LetCv;u = fw 2 �(v; u) : j�(w) n �(v; u)j < j�(v; u)jg. Form a new bi-
lique with the vertex setC 0v;u  Cv;u n C, and update Fi  Fi [ f(v; u)g and C  C [ C 0v;u. This bi-
lique will have�0(v) def= �(v) \ C 0v;u on one side and �0(u) def= �(u) \ C 0v;u on the other side.Note that by Condition 1
 (and the de�nition of i-goodness), for every (v; u) 2 Fi, it holds thatjCv;uj > (1� o(1)) � j�(v; u)j and j�(v; u) n Cj � j�(v; u)j=5. Thus, jC 0v;uj � jCv;uj � j�(v; u) \ Cj �j�(v; u)j=6, whi
h allows translating quality guarantees that are quanti�ed in terms of j�(v; u)jto similar guarantees in terms of jC 0v;uj. In fa
t, jC 0v;u n (Sj�i�1 Lj)j � j�(v; u)j=6, whi
h enablesfurther translation of these guarantees to quanti�
ation in terms of jC 0v;u \Ri�1j.34



Claim 5.2.4 Referring to the partition re
onstru
tion pro
edure, for every i 2 [`℄, the followingholds.1. The number of missing edges inside the bi-
liques formed in iteration i is at most 12
2� �N2;that is, ������ [(v;u)2Fif(w1; w2) 2 �0(v) � �0(u) : (w1; w2) 62 Eg������ � 12
2� �N2:2. The number of (\super
uous") edges inside the bi-
liques formed in iteration i is at most12
2� �N2; that is,������ [(v;u)2Fif(w1; w2) 2 (�0(v) � �0(v)) [ (�0(u)� �0(u)) : (w1; w2) 2 Eg������ � 12
2� �N2:3. The number of (\super
uous") edges between bi-
liques formed in iteration i and either Rior other bi-
liques formed in the same iteration is at most 36` � 
2� �N2; a
tually,������ [(v;u)2Fif(w1; w2) 2 C 0v;u � (Ri�1 n C 0v;u) : (u;w) 2 Eg������ � 36` � 
2� �N2:4. jRij � 2�i �N and jLij � 2�(i�1) �N .Thus, the total number of violations 
aused by the bi-
liques that are formed by the foregoingpro
edure is upper-bounded by (36 + o(1))`2 � 
2� �N2 = o(�N2).Proof: We prove all items simultaneously, by indu
tion from i = 0 to i = `. Needless to say, allitems hold va
uously for i = 0, and thus we fo
us on the indu
tion step.Starting with Item 1, we note that every (v; u) 2 Fi is i-good and thus the number of edgesmissing in �0(v)��0(u) � �(v)��(u) is at most 
22i� � j�(v; u)j �N . As in the proof of Claim 3.2.4,we need to relate j�(v; u)j to jC 0v;u \ Ri�1j (in order to upper-bound the 
ontribution of all pairsin Fi). We re
all that C 0v;u = Cv;u n C, where C is the set of verti
es that are already 
overedwhen this bi-
lique �(v; u) is identi�ed. Also re
all that j�(v; u) n Cv;uj = o(1) � j�(v; u)j andj(�(v; u) nC) nLj � j�(v; u)j=5, where L def= Sj2[i�1℄Lj . Using C 0v;u = (C 0v;u \Ri�1)[ (C 0v;u \L), weget that C 0v;u\Ri�1 = (Cv;unC)nL and it follows that jC 0v;u\Ri�1j � j(�(v; u)nC)nLj�o(j�(v; u)j) >j�(v; u)j=6. Combining all the above (and re
alling that the sets C 0v;u are disjoint), we obtain������ [(v;u)2Fif(w1; w2) 2 �0(v) � �0(u) : (w1; w2) 62 Eg������ � 
22i� � X(v;u)2Fi j�(v; u)j �N� 
22i� � 6jRi�1j �N:Using the indu
tion hypothesis regarding Ri�1 (i.e., jRi�1j < 2�(i�1) �N), Item 1 follows.Item 2 is proved in a similar fashion. As for Item 3, we adapt the proof of Item 2 of Claim 3.2.4.Spe
i�
ally, the number of edges in Cv;u � ([N ℄ n Cv;u) is upper-bounded by the sum of jCv;u �(�(v; u) nCv;u)j and the number of edges in Cv;u� ([N ℄ n �(v; u)). Using Condition 3 of i-goodness(of (v; u)), we upper-bound both j�(v; u)nCv;uj and the number of edges of the se
ond type. Hen
e,35



the number of edges in C 0v;u � (Ri�1 nC 0v;u) � Cv;u � ([N ℄ nCv;u) is at most 3` � 
22i� � j�(v; u)j �N .Using again P(v;u)2Fi j�(v; u)j < 6jRi�1j and jRi�1j < 2�(i�1) �N , we establish Item 3.Turning to Item 4, we �rst note that Li � Ri�1 and thus jLij � jRi�1j � 2�(i�1) � N . As forRi, let us 
onsider all the 
ases that might lead to pla
ing a vertex v in Ri; that is, the variousviolations of the three 
onditions in Step 1.Violation of Condition (b): not having suÆ
iently high degree. We observe that verti
es that violateCondition (b) do not 
ontribute to Ri, be
ause ea
h su
h vertex is either 
overed in iterationi or ends-up in Li. Spe
i�
ally, let v be an arbitrary vertex that violates Condition (b), andlet k(v) 2 f0; 1; : : : ; `0g be the largest index k su
h that �k(v) holds (where �0 is �
titiouslyde�ned su
h that it always holds). Then, Condition (b) is equivalent to requiring that j�(v)j �0:9k(v) � �1 � 2i� �N holds. Indeed, if the latter 
ondition does not hold, then v is pla
ed in Li(and the 
onverse holds as well).In the subsequent 
ases, we shall assume that Condition (b) does hold with respe
t to thevertex v.Violation of Condition (a): not being i-good. Here we refer to verti
es that are not i-good althoughthey have degree at least �2 � 2i� �N > 
2 � 2i� �N . By Claim 5.2.3, the number of verti
es ofthis type is at most 
12�i �N .Violation of Condition (
). Here we refer to verti
es that satisfy both Conditions (a) and (b) butviolate Condition (
), whi
h refers to the existen
e of a good edge that yields a bi-
liquewith suÆ
iently many new verti
es. The rest of the proof is devoted to upper-bounding thenumber of su
h verti
es. Loosely speaking, this is done by using the upper bound establishedin Item 3, while relying on the hypothesis that these verti
es satisfy both Conditions (a)and (b).Re
alling that we refer to verti
es that satisfy both Conditions (a) and (b), we �rst upper-boundthe number of verti
es that have relatively many neighbors in the 
urrent C (i.e., verti
es v su
hthat j�(v) \ Cj � j�(v)j=8). As in the proof of Claim 3.2.4, ea
h su
h vertex v requires at leastj�(v)j=8 � �2 � 2i� �N=8 edges from C 0 def= S(v0 ;u0)2Sj2[i℄ Fj C 0v0;u0 to it, whereas by Item 3 the totalnumber of edges going out from C 0 to Ri is at most i � 36` � 
2� �N2. Hen
e, the number of verti
esof this type is upper-bounded by36`2 � 
2� �N2�2 � 2i� �N = 36`2 � 
2�2 � 2�iN < 0:1 � 2�iN; (12)where the last inequality uses 
2 < �2=(360`2).In the rest of the proof we 
onsider only verti
es that have have relatively few neighbors in the
urrent C (i.e., j�(v) \ Cj � j�(v)j=8). In parti
ular, by the 
ase hypothesis (i.e., v is i-good),there exist u 62 C su
h that (v; u) is i-good (be
ause the fra
tion of \non-good" pairs is at most
3 < 1=2). Thus, we fo
us on the 
ondition j(�(v; u) n C) n Lj > j�(v; u)j=5, where L def= Sj�i�1 Ljand C denotes the 
urrent set of 
overed verti
es. We distinguish three 
ases with respe
t to therelation between j�(v)j and j�(u)j.Case of j�(v)j � j�(u)j (i.e., j�(v)j > 1:3j�(u)j). Using the 
ase hypothesis (whi
h implies j�(v)j >j�(v; u)j=2), it suÆ
es to show that j(�(v) n C) n Lj > j�(v)j=2. Sin
e j�(v) \ Cj � j�(v)j=8,we fo
us on upper-bounding j�(v)\Lj for typi
al v. The intuition is that in the 
urrent 
ase36



:�1(v) holds and so (v 62 Li implies) j�(v)j � �1 � 2i�N , whereas ea
h vertex in �(v) \ Ljhas at most �2 � 2j�N neighbors of degree at least �1 � 2i�N (whi
h yields a total 
ount of2�2�N2 edges in Lj � (Ri�1 n Li)). Thus, the number of verti
es v 2 Ri�1 n Li for whi
hj�(v) \ Lj > j�(v)j=8 holds is suÆ
iently small. Details follow.Using the hypothesis that (v; u) is i-good (and referring to Condition 2 of De�nition 5.2.1),we note that the number of edges with both endpoints in �(v) is at most 
2 �2i� � j�(v; u)j �N �
2 � 2i+1� � j�(v)j �N . Thus, less than (200`)�1 fra
tion of the verti
es in �(v) have more that200` � 
2 � 2i+1� �N < �2 � 2i� �N=100 � j�(v)j=100 su
h edges, where the inequalities are dueto 
2 � �2=40000` and j�(v)j � �2 � 2i� �N (sin
e v 62 Li). By Condition 3 of De�nition 5.2.1,at most (200`)�1 fra
tion of the verti
es in �(v) have at least 200` � 
2 � 2i� �N < j�(v)j=100edges going out of �(v; u). We 
on
lude that less than a (100`)�1 fra
tion of the verti
es in�(v) have degree ex
eeding j�(u)j+ 0:02j�(v)j < j�(v)j, and so :�1(v) holds. The latter fa
tallows us to in
rease our lower-bound on j�(v)j (from j�(v)j � �2 � 2i�N) to j�(v)j � �1 � 2i�N(using again v 62 Li). Thus, if j�(v)\Lj > j�(v)j=8 then there exist at least �1 � 2i�N=8 edgesfrom L = Sj�i�1 Lj to v.We upper-bound the number of su
h verti
es v (i.e., for whi
h j�(v) \ Lj > j�(v)j=8), byupper-bounding the number of edges that may go from L to any vertex of degree at least�1 � 2i�N . The 
ontribution of ea
h vertex in L(2)j to this number is at most �2 � 2j�N ,be
ause verti
es in L(2)j have degree at most �2 � 2j�N . As for the verti
es in Lj n L(2)j ,ea
h su
h vertex u0 violates �`0 and thus 
an 
ontribute at most j�(u0)j=100` to this number,be
ause at most a 1=100` fra
tion of its neighbors have degree ex
eeding 1:2j�(u0)j < �1 �2i�N(sin
e j�(u0)j < �1 � 2j�N and j � i � 1), whereas we 
ount edges to verti
es of degree atleast �1 � 2i�N . Thus, the 
ontribution of ea
h vertex in u0 2 Lj to the 
ount is at mostmax(�2 � 2j�N; j�(u0)j=100`) � �1 � 2j�N=100` (sin
e �2 � �1=100` and j�(u0)j < �1 � 2j�N).Re
alling that jLjj � jRj�1j � 2�(j�1)N , it follows that the number of bad verti
es (i.e.,verti
es v of degree at least �1 � 2i�N with at least j�(v)j=8 neighbors in L) is at mostPj�i�1 jLjj � �1 � 2j� �N=100`�1 � 2i�N=8 � (i� 1) � �1 � 2� �N2=100`�1 � 2i�N=8< 0:16 � 2�iN;whereas the rest of the verti
es v 2 Ri�1 n Li satisfy j�(v) \ Lj � j�(v)j=8. Re
alling thatj�(v) \ Cj � j�(v)j=8, we 
on
lude that j(�(v) n C) n Lj > j�(v)j=2, and the 
laim follows;that is, the 
urrent 
ase is only responsible for 0:16 � 2�iN verti
es violating Condition (
).Case of j�(v)j � j�(u)j (i.e., j�(v)j < 0:7j�(u)j). In this 
ase we shall show that j(�(u) nC) n Lj >j�(u)j=2 (and use j�(u)j > j�(v; u)j=2). We �rst show that j�(u) \ Lj � j�(u)j=8, and laterturn to show that typi
ally j�(u) \ Cj � j�(u)j=8 holds as well. The proof of the �rst 
laimis supported by the intuition that almost all verti
es in �(u) have the approximately thesame degree as v and satisfy �`0 (sin
e most of their neighbors have degree approximatelyj�(u)j � j�(v)j), whi
h implies that they 
annot be in L (be
ause verti
es in L that satisfy�`0 have degree at most �2 � 2i�1�N , whereas v 2 Ri�1 n Li has degree at least �2 � 2i�N).Details follow.We start by showing that almost all verti
es in �(u) satisfy �`0 . Analogously to the previous
ase, at most 1% of the verti
es in �(u) have more than 0:02 � j�(v)j neighbors not in �(v).On the other hand, by using Condition 1 of De�nition 5.2.1, at least 99% of the verti
es in�(u) have at least 0:99 � j�(v)j neighbors in �(v), whereas at least 99% of the verti
es in �(v)37



have degree at least 0:99 � j�(u)j. Let us denote by V the subset of �(u) 
ontaining verti
es v0su
h that j�(v0)j � 1:02 � j�(v)j and �(v0)\�(v) 
ontains at least 0:98 � j�(v)j verti
es of degreeat least 0:99 � j�(u)j. Then, jV j > 0:98j�(u)j, be
ause 98% of the verti
es in �(u) have bothdegree at most 1:02 � j�(v)j and at least 0:99 � j�(v)j neighbors in �(v) (whereas at most 1% ofthe verti
es in �(v) have degree smaller than 0:99 � j�(u)j). We note that ea
h vertex in V hasdegree at most 1:02 � j�(v)j < 0:72 � j�(u)j, whereas at least a 0:98=1:02 � (100`)�1 fra
tionof its neighbors have degree at least 0:99 � j�(u)j > 1:2 � 0:72 � j�(u)j, whi
h implies that ea
hvertex in V satis�es �`0 . Using the latter fa
t and re
alling that ea
h vertex in V has degreeat least 0:99 � j�(v)j � 0:99 ��2 �2i�N (sin
e v 62 Li), we show that V \L = ;. The latter 
laimfollows by noting that for every v0 2 L that satis�es �`0 it holds that j�(v0)j < �2 � 2i�1�N ,whereas every v0 2 V satis�es both �`0 and j�(v0)j > 0:99 � �2 � 2i�N . Finally, using V \L = ;and jV j � 0:98j�(u)j, we get j�(u) \ Lj � j�(u) n V j � 0:02j�(u)j.Having established j�(u) \ Lj � j�(u)j=8, we now turn to provide a similar upper-bound forj�(u) \ Cj. Unlike in the previous 
ase (or rather in the preliminary proof that �(v) \ C issmall), here we 
annot dire
tly 
harge the verti
es in �(u) \ C to edges going out from C tov. Still an indire
t 
harging rule will work; that is, we �rst 
harge su
h verti
es to u, andthen distribute the 
harge to u's neighbors.Spe
i�
ally, suppose that j�(u) \ Cj > j�(u)j=8. This means that there are at least j�(u)j=8edges going out from C to u. Wishing to 
harge these edges to the initial vertex v (while
onsidering all initial v 2 Ri�1nLi), we 
harge ea
h neighbor of u by one eighth of an edge (i.e.,1=8 unit) as its share in the edges going from C to u. (This guarantees that, when 
onsideringdi�erent initial verti
es, it still holds that ea
h edge going out of C is 
harged at most 1 unit.)Indeed, an important observation is that we are not 
on
erned with the existen
e of a spe
i�
u 2 �(v) that violates j�(u) \ Cj � j�(u)j=8, but should be 
on
erned only if this violationo

urs for all u 2 �(v)nC su
h that (v; u) is i-good (and j�(u)j > j�(v)j=0:7), sin
e otherwisewe may just pi
k some u 2 �(v) n C su
h that (v; u) is i-good and j�(u) \ Cj � j�(u)j=8.Thus, we get into trouble with v only if, for every u 2 �(v) n C that (v; u) is i-good, bothj�(u)j > j�(v)j=0:7 and j�(u)\Cj > j�(u)j=8 hold.15 Let us denote the set of su
h bad verti
esby B, and note that ea
h vertex v 2 B is 
harged with at least (j�(v)j=2) �(1=8) > �2 �2i�N=16edges going from C to �(v), where �(v)j=2 is a lower-bound on the number of verti
es u 2 �(v)su
h that u 62 C and (v; u) is i-good.16 Sin
e the total number of edges going out from C is atmost 36`2 �
2� �N2, we upper-bound jBj by 0:1 �2�iN (as in Eq. (12), ex
ept that here we use
2 < �2=(6000`2)). To re-
ap, note that we showed that the 
urrent 
ase is only responsiblefor 0:1 � 2�iN verti
es that violating Condition (
).Case of j�(v)j � j�(u)j (i.e., 0:7j�(u)j � j�(v)j � 1:3j�(u)j. We �rst note that the analysis ofj�(u) \ Cj for a typi
al (v; u), as presented in the previous 
ase (of j�(v)j � j�(u)j), stillapplies. Thus, for all but 0:1 � 2�iN verti
es v, there exists a vertex u su
h that either the�rst 
ase holds (i.e., j�(v)j > 1:3j�(u)j) or j�(u) \Cj � j�(u)j=8. (If the �rst 
ase holds thenwe pro
eeds as in the �rst 
ase, and otherwise we pro
eed as follows.) We shall show, below,that j�(u) \ Lj � j�(u)j=8, and 
on
lude that j(�(u) n C) n Lj � j�(u)j=2, whi
h in turn islower-bounded by j�(v; u)j=5 (sin
e j�(u)j � j�(v; u)j=2:3).The 
laim j�(u)\Lj � j�(u)j=8 is supported by the intuition that almost all verti
es in �(u)have approximately the same degree as v. However, in the 
urrent 
ase these verti
es do15If j�(u)j > j�(v)j=0:7 does not hold then this u is handled in the other two 
ases.16Re
all that the fra
tion of verti
es u 2 �(v) su
h that u 2 C is at most 1=8, whereas the fra
tion of verti
esu 2 �(v) su
h that (v; u) is not i-good is 
3 < 3=8. 38



not ne
essarily satisfy �`0 and so their being in L does not ne
essarily mean their havingdegree below �2 � 2i�1�N , whi
h is signi�
antly smaller than j�(v)j � �2 � 2i�N . So we need adi�erent method to argue that being in L is in
onsistent with having degree approximatelyj�(v)j. Indeed, the sour
e of trouble is that for two di�erent thresholds �0 > �00 it maybe the 
ase that v 62 Li holds be
ause j�(v)j � �00 � 2i�N , whereas v0 2 Lj holds be
ausej�(v0)j < �0 �2j�N . Here is where the intermediate thresholds (and the di�erent �k) 
ome intoplay: we shall show that whenever the foregoing happens it holds that �0 � �00 (rather than�0 > 2�00, whi
h would have not given anything). Spe
i�
ally, we shall show that if �k(v) holdsthen �k�1(v0) must hold for almost all v0 2 �(u). Thus, if v 62 Li due to j�(v)j � 0:9k�1 �2i�N(and �k(v) holds), then v0 2 Lj implies that j�(v0)j < 0:9k�1�1 �2j�N , whi
h yields the desired
ontradi
tion. Details follow.Using arguments as in the previous two 
ases, we �rst establish that at least 99% of the verti
esin �(u) have degree at most (1+`�2)�j�(v)j and have at least (1�`�2)�j�(v)j neighbors in �(v).(Here the argument relies on 
2 � �2=(500`2) and j�(u)j � j�(v)j=1:3 � �2 �2i�N=1:3.) Let usdenote this (large) subset of �(u) by V , and note that v 2 V . Similarly, one 
an show that atleast 1� (200`)�1 of the verti
es in �(v) have degrees in the interval [(1� (300`0)�1) � j�(u)j℄.Hen
e, for every v0 2 V , it holds that j�(v0)j is in the interval (1� (300`0)�1) � j�(v)j, whereasat least 1�(200`)�11+`�2 > 1� (100`)�1 of its neighbors (i.e., the verti
es in �(v0)) have degrees inthe interval [(1 � (300`0)�1) � j�(u)j℄. Denoting (for every v0 2 V ),�(v0) def= maxS��(v0) s.t. jSj=j�(v0)j=100`�minu02S � j�(u0)jj�(v0)j�� (13)we infer that for every v0 2 V (in
luding v) it holds that �(v0) = (1�(300`0)�1)�j�(u)j(1�(300`0)�1)�j�(v)j = (1 �(100`0)�1) � j�(u)jj�(v)j . It follows that �(v0) � 1�(100`0)�11+(100`0)�1 � �(v) > (1� (30`0)�1) � �(v).Re
all that k(v0) 2 f0; 1; : : : ; `0g is the largest index k su
h that �k(v0) holds (where �0always holds). Indeed, �(v) > 1:1 + k(v)10`0 and j�(v)j � 0:9k(v) � �1 � 2i� � N (be
ause v 62 Li).Combining �(v0) > (1 � (30`0)�1) � �(v) and �(v) > 1:1 + k(v)10`0 , it follows that for everyv0 2 V it holds that �(v0) > 1:1 + k(v)�110`0 , whi
h implies k(v0) � k(v) � 1. It follows thatV \ L = ;, be
ause otherwise we obtain, for some j � i � 1, a vertex v0 2 V \ Lj su
hthat j�(v0)j < 0:9k(v0) � �1 � 2j� � N � 0:9k(v)�1 � �1 � 2i�1� � N � j�(v)j=1:8, whi
h 
ontradi
tsj�(v0)j � (1 � (300`0)�1) � j�(v)j > �(v)j=1:8. Re
alling that jV j � 0:99 � j�(u)j, we 
on
ludethat j�(u) \ Lj � 0:01j�(u)j.Combining the preliminary bound (of Eq. (12)) and the bounds of the foregoing three 
ases, we
on
lude that at most (0:1 + 0:16 + 0:1 + 0:1) � 2�iN < 0:5 � 2�iN verti
es satisfy 
onditions (a)and (b) but violate Condition (
).Re
all that Ri only 
ontains verti
es that satisfy Condition (b) but violate either Condition (a)or Condition (
). The number of the former was upper-bounded by 
1 � 2�iN , whereas the numberof the latter was just upper-bounded by 0:5 � 2�iN . Thus, jRij � (
1 + 0:5) � 2�i � N , and Item 4follows by the foregoing setting of 
1 � 1=2. This 
ompletes the proof of the 
urrent 
laim. 2Completing the re
onstru
tion and its analysis. The foregoing 
onstru
tion leaves \unassigned" theverti
es in R` as well as some of the verti
es in L1; : : : ; L`. (Note that some verti
es in S`�1i=1 Li maybe pla
ed in bi-
liques 
onstru
ted in later iterations, but there is no guarantee that this a
tuallyhappens.) For sake of elegan
e, we assign ea
h of these remaining verti
es to a two-vertex bi-
lique(i.e., an isolated pair of verti
es 
onne
ted by an edge). Ignoring the number of edges used in39



these bi-
liques (whi
h is negligible), the number of violation 
aused by this assignment equals thenumber of edges with both endpoints in R0 def= R` [ (Sì=1 Li), be
ause edges with a single endpointin R0 were already a

ounted for in Item 3 of Claim 5.2.4. Nevertheless, we upper-bound thenumber of violations by the total number of edges in
ident to R0, whi
h in turn is upper-boundedby Xv2R`[(Si2[`℄Li) j�(v)j � jR`j �N + X̀i=1 Xv2Li j�(v)j� �N4 �N + X̀i=1 2�(i�1)N � �12i�N= �4 �N2 + 2` � �1 � �N2:By the foregoing setting of �1 (i.e., �1 � 1=4`), it follows that the number of these edges is smallerthan �N2=2. Combining this with the bounds on the number of violating edges (or non-edges) asprovided by Claim 5.2.4, the lemma follows.5.2 Non-Adaptive Lower-Bound for Bi-Clique Colle
tionIn this se
tion we establish Part 2 of Theorem 1.2 by adapting the proof presented in Se
tion 4.1.Spe
i�
ally, for every value of � > 0, we 
onsider two di�erent 
lasses of graphs, one 
onsistingof graphs in BCC and the other 
onsisting of graphs that are �-far from BCC, and show that anon-adaptive algorithm of query 
omplexity o(��3=2) 
annot distinguish between graphs sele
tedat random in these 
lasses.The �rst 
lass, denoted BCC�, 
ontains all N -vertex graphs su
h that ea
h graph 
onsists of(16�)�1 bi-
liques, and ea
h bi-
lique has 8� � N verti
es on ea
h side. It will be instru
tive topartition these (16�)�1 bi-
liques into (32�)�1 pairs (ea
h 
onsisting of two bi-
liques), and viewea
h of these bi-
liques as a super-
y
le of length four with 4� � N verti
es in ea
h of its fourindependent sets. The se
ond 
lass, denoted SC8C�, 
ontains all N -vertex graphs su
h that ea
hgraph 
onsists of (32�)�1 super-
y
les of length 8, and ea
h of these super-
y
les has 4� �N verti
esin ea
h of its eight independent sets. Indeed, BCC� � BCC, whereas ea
h graph in SC8C� is �-far fromBCC (be
ause ea
h of the super-
y
les of length 8 must be turned into a 
olle
tion of bi-
liques).We note that both 
lasses 
ontain only bipartite graphs.In order to motivate the 
laim that a non-adaptive algorithm of query 
omplexity o(��3=2)
annot distinguish between graphs sele
ted at random in these 
lasses, 
onsider the algorithm thatsele
ts o(��3=4) verti
es and inspe
ts the indu
ed subgraph. Consider the partition of a graph inSC8C� into (32�)�1 pairs of bi-
liques (equiv., super-
y
les of length 4), and 
orrespondingly thepartition of a graph in SC8C� into (32�)�1 super-
y
les of length 8. Then, the probability that asample of o(��3=4) verti
es 
ontains at least four verti
es that reside in the same part (of 32� � Nverti
es) is o(��3=4)4 � (32�)3 = o(1). On the other hand, one may show that if this event does noto

ur, then the answers obtained from both graphs are indistinguishable. As will be shown below,this intuition extends to an arbitrary non-adaptive algorithm.As in Se
tion 4.1, it suÆ
es to 
onsider deterministi
 algorithms. We shall show that, for everyset of o(��3=2) queries, the answers provided by a randomly sele
ted element of BCC� are statisti
ally
lose to the answers provided by a randomly sele
ted element of SC8C�. As in Se
tion 4.1, for anN -vertex graph G and a query (u; v), we denote the 
orresponding answer by ansG(u; v).40



Lemma 5.3 Let G1 and G2 be random N -vertex graphs uniformly distributed in BCC�and SC8C�, respe
tively. Then, for every sequen
e (v1; v2); : : : ; (v2q�1; v2q) 2 [N ℄ � [N ℄,where the vi's are not ne
essarily distin
t, it holds that the statisti
al di�eren
e betweenansG1(v1; v2); : : : ; ansG1(v2q�1; v2q) and ansG2(v1; v2); : : : ; ansG2(v2q�1; v2q) is O(q2�3).Part 2 of Theorem 1.2 follows.
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Figure 6: A single part, 
onsisting of eight independent sets, in BCC� and SC8C�.Proof: We adapt the proof of Lemma 4.1. Here, we 
onsider a 1-1 
orresponden
e, denoted �,between the verti
es of an N -vertex graph in BCC�[SC8C� and triples in [(32�)�1℄�f0; 1; : : : ; 7g�[4� �N ℄. Spe
i�
ally, �(v) = (i; j; w) indi
ates that v resides in the (j + 1)st independent set of theith part of the graph, and it is vertex number w in this set. Re
all that in the 
ase of a graphin BCC� the eight independent sets are arranged in two super-paths (ea
h of length 4), whereasin the 
ase of a graph in SC8C� the eight independent sets are arranged in a single super-path oflength 8. (See Figure 6.) Consequently, the answers provided by uniformly distributed G1 2 BCC�and G2 2 SC8C� 
an be emulated by the following two 
orresponding random pro
esses.1. The pro
ess A1 sele
ts uniformly a bije
tion � : [N ℄ ! [(32�)�1℄ � f0; 1; : : : ; 7g � [4� � N ℄and answers ea
h query (u; v) 2 [N ℄ � [N ℄ by 1 if and only if for �(u) = (i1; j1; w1) and�(v) = (i2; j2; w2) it holds that both i1 = i2 and j1 = (j2 � 1 mod 4) + bj2=4
 � 4.2. The pro
ess A2 sele
ts uniformly a bije
tion � : [N ℄ ! [(32�)�1℄ � f0; 1; : : : ; 7g � [4� � N ℄and answers ea
h query (u; v) 2 [N ℄ � [N ℄ by 1 if and only if for �(u) = (i1; j1; w1) and�(v) = (i2; j2; w2) it holds that both i1 = i2 and j1 = j2 � 1 mod 8.Let us denote by �0(v) (resp., �00(v) and �000(v)) the �rst (resp., se
ond and third) 
oordinates of�(v); that is, �(v) = (�0(v); �00(v); �000(v)). Then, both pro
esses answer the query (u; v) with 0 if�0(u) 6= �0(v), and the di�eren
e between the pro
esses is 
on�ned to the 
ase that �0(u) = �0(v).Spe
i�
ally, 
onditioned on �0(u) = �0(v), it holds that A1(u; v) = 1 if and only if �00(u) = (�00(v)�1 mod 4)+b�00(v)=4
�4, whereas A2(u; v) = 1 if and only if �00(u) = �00(v)�1 mod 8. However, sin
ethe (random) value of �00 is not present at the answer, the foregoing di�eren
e may go unnoti
ed.These 
onsiderations apply to a single query, but things may 
hange in 
ase of several queries. Ingeneral, the event that allows distinguishing the two pro
esses is a simple 
y
le of at least fourverti
es that have the same �0 value. Minor di�eren
es may also be due to equal �000 values, and sowe also 
onsider these in our \bad" event.De�nition 5.3.1 We say that � is bad (w.r.t. the sequen
e (v1; v2); : : : ; (v2q�1; v2q) 2 [N ℄� [N ℄),if one of the following two 
onditions hold:1. For some i 2 [(32�)�1℄, the subgraph Qi = (Vi; Ei), where Vi = fvk : k2 [2q℄ ^ �0(v)= ig andEi = ffv2k�1; v2kg : v2k�1; v2k 2 Vig, 
ontains a simple 
y
le of length at least four.41



2. There exists i 6= j 2 [2q℄ su
h that �000(vi) = �000(vj).Indeed, the query sequen
e (v1; v2); : : : ; (v2q�1; v2q) will be �xed throughout the rest of the proof,and so we shall omit it from our terminology.Claim 5.3.2 The probability that a uniformly distributed bije
tion � is bad is at mostO(q2�3) + q216�NProof: We start by upper-bounding the probability that the se
ond event in De�nition 5.3.1 holds.We have �2q2 � sub-events, and ea
h holds with probability 1=(32� � N). As for the �rst event, forevery t � 4, we upper-bound the probability that some Qi 
ontains a simple 
y
le of length t. As inthe proof of Claim 4.1.2, we observe that the query graph 
ontains at most (2q)t=2 
y
les of lengtht, whereas the probability that a spe
i�
 simple t-
y
le is 
ontained in some Qi is (32�)t�1. Thus,the probability of the �rst event is upper-bounded byXt�4(2q)t=2 � (32�)t�1 <Xt�4 �p2q � 32 � �(t�1)=t�t <Xt�4 �50pq � �3=4�t ;whi
h is upper-bounded by 2 � (50pq � �3=4)4 = O(q2�3), provided that 50pq � �3=4 < 1=2 (and the
laim hold trivially otherwise). 2Claim 5.3.3 Conditioned on the bije
tion� not being bad, the sequen
es (A1(v1; v2); : : : ; A1(v2q�1; v2q)) and (A2(v1; v2); : : : ; A2(v2q�1; v2q))are identi
ally distributed.Proof: Noting that De�nition 5.3.1 only refers to �0 and �000, we �xed any 
hoi
e of �0 and �000 thatyields a good � and 
onsider the residual random 
hoi
e of �00. Referring to the foregoing subgraphsQi's, re
all that pairs with endpoints in di�erent Qi's are answered by 0 in both pro
esses. Notethat (by the se
ond 
ondition in De�nition 5.3.1) the hypothesis implies that �000 assigns di�erentvalues to the di�erent verti
es in fvk : k 2 [2q℄g, and it follows that �00 assigns these verti
es valuesthat are uniformly and independently distributed in f0; 1; : : : ; 7g. Now, using the �rst 
onditionin De�nition 5.3.1, the hypothesis implies that the only simple 
y
les appearing in Qi = (Vi; Ei)have length three. We shall show that this implies that (in ea
h of the two pro
esses) the answerassigned to ea
h edge in Qi is independent of the answer given to other edges of Qi.We �rst note that, in ea
h of the two pro
esses, every query (v2k�1; v2k) su
h that �00(v2k�1) ��00(v2k�1) (mod 2) is answered negatively (i.e., in su
h a 
ase, A1(v2k�1; v2k) = A2(v2k�1; v2k) =0). Thus, �xing any (random) values of (�00(vk) mod 2 : k2 [2q℄), we may omit from Qi = (Vi; Ei)all edges that 
onne
t verti
es that have the same value of �00 (mod 2), be
ause the answers tothese queries are already determined (as 0, in ea
h of the two pro
esses). This omission eliminates(from Qi) all 
y
les of length three, whi
h are the only simple 
y
les in the original Qi, and thusea
h modi�ed Qi is a forest. We 
an now pro
eed analogously to the proof of Claim 4.1.3, althoughthings are slightly more 
omplex here. Spe
i�
ally, we 
onsider the residual random values of �00(
onditioned on �00 mod 2); that is, we augments the �xed values of �00 mod 2 with the randomvalues of b�00=2
, whi
h are uniformly distributed in f0; 1; 2; 3g. We view these random sele
tionsas taking pla
e in an order determined by some �xed traversal of ea
h tree (of the aforementionedforest), and note that at ea
h step (and in ea
h of the pro
esses) the new random value (uniformlydistributed in f0; 1; 2; 3g) yields answer 1 (to the 
orresponding query) with probability 1=2.42



1. In the 
ase of A1, the query/edge (u; v) 2 Ei (whi
h satis�es �0(u) = i = �0(v) and �00(u) ��00(v) + 1 (mod 2)) is answered 1 if and only if �00(u) = (�00(v) � 1 mod 4) + b�00(v)=4
 � 4holds (whi
h means that b�00(u)=4
 = b�00(v)=4
). Thus, A1(u; v) = 1 with probability 1=2.2. In the 
ase of A2, the query/edge (u; v) 2 Ei (whi
h satis�es �0(u) = i = �0(v) and �00(u) ��00(v) + 1 (mod 2)) is answered 1 if and only if �00(u) = �00(v) � 1 mod 8 holds. Thus,A2(u; v) = 1 with probability 2=4.Thus, in ea
h of the two pro
esses, ea
h query is answered by the value 1 with probability ex-a
tly 1=2, independently of the answers to all other queries. The 
laim follows. 2Combining Claims 5.3.2 and 5.3.3, it follows that the statisti
al distan
e between the sequen
es(A1(v1; v2); : : : ; A1(v2q�1; v2q)) and (A2(v1; v2); : : : ; A2(v2q�1; v2q)) is at most O(q2�3 + q2(�N)�1),and the lemma follows for suÆ
iently large N .5.3 Non-Adaptive Lower-Bound for Super-Cy
le Colle
tionIn this se
tion we establish a lower-bound on the non-adaptive query 
omplexity of testing Super-Cy
le Colle
tions. We do so by generalizing the ideas presented in Se
tion 5.2.Spe
i�
ally, �xing any t � 4, for every value of � > 0, we 
onsider two di�erent 
lasses of graphs,one 
onsisting of graphs in SCtC and the other 
onsisting of graphs that are �-far from SCtC, andshow that a non-adaptive algorithm of query 
omplexity o(��(2t�2)=t) 
annot distinguish betweengraphs sele
ted at random in these 
lasses.The �rst 
lass, denoted SCtC�, 
ontains all N -vertex graphs su
h that ea
h graph 
onsists of(t2�)�1 super-
y
les of length t, and ea
h super-
y
le has t� �N verti
es in ea
h of its t independentsets. It will be instru
tive to partition these (t2�)�1 super-
y
les into (2t2�)�1 pairs. The se
ond
lass, denoted SC2tC�, 
ontains all N -vertex graphs su
h that ea
h graph 
onsists of (2t2�)�1 super-
y
les of length 2t, and ea
h super-
y
le has t��N verti
es in ea
h of its 2t independent sets. Indeed,SCtC� � SCtC, whereas ea
h graph in SC2tC� is �-far from SCtC (be
ause ea
h of the super-
y
lesof length 2t must be turned into a pair of super-
y
les of length t).As in Se
tion 5.2, we motivate the 
laim that a non-adaptive algorithm of query 
omplexityo(��(2t�2)=t) 
annot distinguish between graphs sele
ted at random in these 
lasses by 
onsideringa spe
i�
 algorithm that inspe
ts the subgraph indu
ed by a random set of o(��(t�1)=t) verti
es.The probability that a sample of o(��(t�1)=t) verti
es 
ontains at least t verti
es that reside in thesame part (of (2t2�) � N verti
es) is �o(��(t�1)=t)t � � (2t2�)t�1 = o(1), where the o-notation refers toa �xed value of t and a varying value of � > 0. On the other hand, one may show that if thisevent does not o

ur, then the answers obtained from both graphs are indistinguishable. As willbe shown below, this intuition extends to an arbitrary non-adaptive algorithm. Following the same
onventions as in Se
tion 5.2, it suÆ
es to prove the followingLemma 5.4 (Lemma 5.3, generalized): For every �xed t � 4, let G1 and G2 be ran-dom N -vertex graphs uniformly distributed in SCtC� and SC2tC�, respe
tively. Then, for ev-ery sequen
e (v1; v2); : : : ; (v2q�1; v2q) 2 [N ℄ � [N ℄, where the vi's are not ne
essarily dis-tin
t, it holds that the statisti
al di�eren
e between ansG1(v1; v2); : : : ; ansG1(v2q�1; v2q) andansG2(v1; v2); : : : ; ansG2(v2q�1; v2q) is O(qt=2�t�1).Part 2 of Conje
ture 1.3 follows. Indeed, Lemma 5.3 is obtained as a spe
ial 
ase (of Lemma 5.4)by setting t = 4. The following proof is slightly di�erent from the proof provided in Se
tion 5.2.43



Proof: We generalize the proof of Lemma 5.3. We 
onsider a bije
tion, denoted �, between theverti
es of an N -vertex graph in SCtC�[SC2tC� and triples in [(2t2�)�1℄�f0; 1; : : : ; 2t�1g� [t� �N ℄.Spe
i�
ally, �(v) = (i; j; w) indi
ates that v resides in the (j+1)st independent set of the ith part ofthe graph, and that it is vertex number w in this set. Re
all that in the 
ase of a graph in SCtC� the2t independent sets in ea
h part are arranged in two super-paths (ea
h of length t), whereas in the
ase of a graph in SC2tC� the 2t independent sets are arranged in a single super-path of length 2t.Consequently, the answers provided by uniformly distributed G1 2 SCtC� and G2 2 SC2tC� 
an beemulated by the following two 
orresponding random pro
esses.1. The pro
ess A1 sele
ts uniformly a bije
tion � : [N ℄! [(2t2�)�1℄�f0; 1; : : : ; 2t� 1g� [t� �N ℄and answers ea
h query (u; v) 2 [N ℄ � [N ℄ by 1 if and only if for �(u) = (i1; j1; w1) and�(v) = (i2; j2; w2) it holds that both i1 = i2 and j1 = (j2 � 1 mod t) + bj2=t
 � t.2. The pro
ess A2 sele
ts uniformly a bije
tion � : [N ℄! [(2t2�)�1℄�f0; 1; : : : ; 2t� 1g� [t� �N ℄and answers ea
h query (u; v) 2 [N ℄ � [N ℄ by 1 if and only if for �(u) = (i1; j1; w1) and�(v) = (i2; j2; w2) it holds that both i1 = i2 and j1 = j2 � 1 mod 2t.Again, let us denote by �0(v) (resp., �00(v) and �000(v)) the �rst (resp., se
ond and third) 
oordinatesof �(v); that is, �(v) = (�0(v); �00(v); �000(v)). Then, both pro
esses answer the query (u; v) with 0if �0(u) 6= �0(v), and the di�eren
e between the pro
esses is 
on�ned to the 
ase that �0(u) = �0(v).Spe
i�
ally, 
onditioned on �0(u) = �0(v), it holds that A1(u; v) = 1 if and only if �00(u) = (�00(v)�1 mod t) + b�00(v)=t
 � t, whereas A2(u; v) = 1 if and only if �00(u) = �00(v) � 1 mod 2t. In general,the event that allows distinguishing the two pro
esses is a simple 
y
le of at least t verti
es thathave the same �0 value. Minor di�eren
es may also be due to equal �000 values, and so we also
onsider these in our \bad" event.De�nition 5.4.1 (De�nition 5.3.1, generalized): We say that � is bad (w.r.t. the sequen
e ofqueries (v1; v2); : : : ; (v2q�1; v2q) 2 [N ℄� [N ℄), if one of the following two 
onditions hold:1. For some i 2 [(2t2�)�1℄, the subgraph Qi = (Vi; Ei), where Vi = fvk : k2 [2q℄ ^ �0(v)= ig andEi = ffv2k�1; v2kg : v2k�1; v2k 2 Vig, 
ontains a simple 
y
le of length at least t.2. There exists i 6= j 2 [2q℄ su
h that �000(vi) = �000(vj).Indeed, the query sequen
e (v1; v2); : : : ; (v2q�1; v2q) will be �xed throughout the rest of the proof,and so we shall omit it from our terminology.Claim 5.4.2 (Claim 5.3.2, generalized): The probability that a uniformly distributed bije
tion � isbad is at most O(t)2t � qt=2�t�1 + q2t2�NProof: We start by upper-bounding the probability that the se
ond event in De�nition 5.4.1 holds.We have �2q2 � sub-events, and ea
h holds with probability 1=(2t2� � N). As for the �rst event, forevery ` � t, we upper-bound the probability that some Qi 
ontains a simple 
y
le of length ` by(2q)`=2 � (2t2�)`�1. Thus, the probability of the �rst event is upper-bounded byX̀�t(2q)`=2 � (2t2�)`�1 < X̀�t �3t2pq � �(t�1)=t�` ;whi
h is upper-bounded by 2�(3t2pq��(t�1)=t)t = O(t)2t �qt=2�t�1, provided that 3t2pq��(t�1)=t < 1=2(and the 
laim hold trivially otherwise). 2 44



Claim 5.4.3 (Claim 5.3.3, generalized): Conditioned on the bije
tion � not being bad, the sequen
es(A1(v1; v2); : : : ; A1(v2q�1; v2q)) and (A2(v1; v2); : : : ; A2(v2q�1; v2q)) are identi
ally distributed.Proving this 
laim is the only diÆ
ulty in extending the proof of Lemma 5.3 to the 
urrent setting.Indeed, the following proof yields a slightly di�erent proof of Claim 5.3.3.Proof: Again, we �x any 
hoi
e of �0 and �000 that yields a good �, and 
onsider the residual random
hoi
e of �00(v1); : : : ; �00(v2q), whi
h (by the se
ond hypothesis in De�nition 5.4.1) are uniformlyand independently distributed in f0; 1; : : : ; 2t� 1g. Considering any of the aforementioned graphsQi = (Vi; Ei), we note that this graph does not 
ontain simple 
y
les of length greater than t� 1.
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Figure 7: A single part, 
onsisting of 2t independent sets, in SCtC� and SC2tC�. The ellipses indi
atethe values of  00.We now 
onsider �00 : Vi ! f0; 1; : : : ; 2t� 1g as being sele
ted at random in two stages. In the�rst stage we assign ea
h vertex a random value mod t, and in the se
ond stage we assign ea
hvertex a random bit representing its most signi�
ant bit; that is, for ea
h vertex v 2 Vi, we �rstdetermine (at random) the value �00(v) mod t, whi
h we denote by  00(v), and next determine (atrandom) the bit b�00(v)=t
, whi
h we denote by �00(v). Thus, �00(v) =  00(v) + �00(v) � t, and it willbe instru
tive to depi
t the graphs as in Figure 7. Fixing an arbitrary setting of values for the �rststage, we shall 
onsider what may happen in the se
ond stage.For every �xed setting of  00, we 
onsider the residual graph Q0i = (Vi; E0i), where E0i 
ontainsonly the queries inEi that are still undetermined (given  00); that is, (u; v) 2 Ei is pla
ed in E0i if andonly if  00(u) �  00(v)� 1 (mod t), whereas all the other queries (or rather the answers to them)are already determined (as being answered by 0). We shall 
onsider the 
onne
ted 
omponents ofQ0i, and show that (
onditioned on the foregoing setting of  00) the answers provided to the queriesin E0i under A1 are distributed identi
ally to the answers provided under A2. Spe
i�
ally, for ea
hpossible sequen
e of answers, we shall show a 1-1 
orresponden
e between the assignments of �00that yield these answers under A1 and the assignments of �00 that yield these answers under A2.(Re
all that �00(v) =  00(v) + �00(v) � t.) That is, for ea
h possible sequen
e of answers and ea
h
onne
ted 
omponent of Q0i, we shall show that the number of assignments of �00 that yield theseanswers under Aj is independent of j 2 f1; 2g.Let C = (V 00i ; E00i ) be an arbitrary 
onne
ted 
omponent of Q0i = (Vi; E0), and let A00 : E00i !f0; 1g des
ribe an arbitrary sequen
e of answers to the queries E00i . Our aim is proving that thenumber of assignments of �00 that yield these answers under Aj (i.e., satisfy Aj(u;w) = A00(u;w)for every (u;w) 2 E00i ) is independent of j 2 f1; 2g. Furthermore, we shall show that this number iseither two or zero (when 
onsidering only the assignment of �00 to V 00i ). Consider any spanning treeT of C, rooted at an arbitrary vertex v 2 V 00i . For ea
h 
hoi
e of � 2 f0; 1g, we shall prove that45



there exists a unique assignment �00 : V 00i ! f0; 1g su
h that �00(v) = � and �00 is 
onsistent with A00and A1 (resp., A2) on the edges of T . That is, the resulting �00 is su
h that the answers as mandatedby A00 for the edges of T �t the answers that A1 (resp., A2) provides with respe
t to �00 =  00+t ��00.As we shall see, these assignments might be in
onsistent with the value of A00 on edges that do notbelong to the spanning tree. However, we shall show that there is an in
onsisten
y when �tting A1if and only if there is an in
onsisten
y when �tting A2. Details follow.Fitting the pro
ess A1: Re
all that the value of �00 on the root of T was set to �. The value of�00 on all other verti
es is set, by traversing the tree T , in the following manner. Whentraversing the tree edge (u;w) from a vertex u for whi
h �00(u) was already determined to anew w (for whi
h �00(w) is still undetermined), we set �00(w)  �00(u) if A00(u;w) = 1 and�00(w) 1� �00(u) otherwise (i.e., if A00(u;w) = 0).Note that this pro
ess determines the values of the bits �00(w) for all w 2 V 00i su
h that thetree-neighbors u and w are assigned the same bit if and only if A00(u;w) = 1. This is indeed
onsistent with the de�nition of A1. Furthermore, the setting of the values of �00 is uniquelydetermined by the requirement to be 
onsistent with A1.Fitting the pro
ess A2: We assign values exa
tly as in the 
ase of �tting A1, with a single ex
eptionthat refers to the 
ase that the tree-edge (u;w) 2 E00i satis�es f 00(u);  00(w)g = f0; t � 1g.In this 
ase (where vertex u has already been assigned a value), we set �00(w) 1� �00(u) ifA00(u;w) = 1 and �00(w) �00(u) otherwise (i.e., if A00(u;w) = 0).That is, in this 
ase (i.e., f 00(u);  00(w)g = f0; t � 1g), the pro
ess determines the valueof �00(w) su
h that the tree-neighbors u and w are assigned the opposite bits if and only ifA00(u;w) = 1.As noted in the foregoing dis
ussion, while ea
h of the two assignments is 
onsistent with A00 (andthe 
orresponding Aj) on the edges of the spanning tree T , there may be in
onsisten
ies with theedges of E00i that are not tree edges. It remains to show that there is an in
onsisten
y with respe
tto the pro
ess A1 if and only if there is an in
onsisten
y with respe
t to the pro
ess A2.We shall say that an edge (u;w) 2 E00i (e.g., an edge of the spanning tree T ) is a 
rossing edgeif f 00(u);  00(w)g = f0; t � 1g. By de�nition of the two assignments, the only di�eren
e betweenthem is 
aused when traversing a tree edge that is a 
rossing edge. For su
h an edge, the value of�00 is 
ipped when �tting the pro
ess A2 if and only if it is not 
ipped when �tting the pro
essA1. Thus, for ea
h u 2 V 00i , the value assigned to �00(u) when �tting A2 is the XOR of the valueassigned to �00(u) when �tting A1 and the parity of the number of 
rossing edges that belong tothe tree path from (the root) v to u.Now, 
onsider an edge (u;w) 2 E00i that is not an edge in the spanning tree T . Consider thesimple tree paths from the root v to verti
es u and w, respe
tively, and let us denote their bran
hingpoint by v0. Let pu (resp., pw) be the path on the spanning tree T leading from v0 to u (resp., w),and p0u be the path from v0 to u obtained by augmenting pw with the (non-tree) edge (w; u). Then,the union of pu and p0u 
onstitutes a simple 
y
le, whi
h by the hypothesis has length smaller thant. As we shall show in the next paragraph, it follows that the parity of the number of 
rossingedges on pu equals the parity of the number of 
rossing edges on p0u. In other words, the parity ofthe number of 
rossing edges on pu equals the parity of the number of 
rossing edges on pw if andonly if (u;w) is not a 
rossing edge. Assuming that (u;w) is not a 
rossing edge, 
onsider the valueassigned to �00(u) and �00(w) when �tting A1 (by following the paths from the root to u and w,respe
tively). Then, A00(u;w) is in
onsistent with �00(u) and �00(w) as determined when �tting thepro
ess A1 if and only if A00(u;w) is in
onsistent with �00(u) and �00(w) as determined when �tting46



the pro
ess A2, be
ause in both 
ases �00(u) � �00(w) is the same value (sin
e the total numberof 
rossing edges on pv and pw is even). A similar argument holds when (u;w) is a 
rossing edge(sin
e then �00(u)� �00(w) 
ips from A1 to A2), and the 
laim follows.To verify the assertion regarding the parity of the number of 
rossing edges on pu and on p0u,
onsider the values assigned by  00 to the verti
es in the union of pu and p0u. Sin
e the unionof pu and p0u is a 
y
le of length less than t, these values must belong to a proper subset, S, off0; : : : ; t� 1g. If this set does not 
ontain f0; t � 1g, then we are done (sin
e neither of the pathsmay 
ontain a 
rossing edge). Otherwise, for some j, it holds that S is a subset of the union ofS1 = fj+1; : : : ; t�1g and S2 = f0; : : : ; j�1g. If  00(v0) and  00(u) belong to the same Sk, then theparity of the number of 
rossing edges on both pu and p0u is even (sin
e these paths 
an only movefrom one subset to the other via a 
rossing edge).17 Similarly, if  00(v0) and  00(u) do not belongto the same subset then the parity on ea
h of these paths must be odd. 2Combining Claims 5.4.2 and 5.4.3, the lemma follows.5.4 A 
andidate adaptive tester for Super-Cy
le Colle
tionIn this se
tion we outline an adaptive eO(��1)-query algorithm what we 
onje
ture to be a testerfor SCtC, where t � 5 is �xed. The algorithm is a signi�
ant generalization of Algorithm 5.1, andwe fo
us on outlining the 
orresponding sub-test, denoted sub-testi(v).Re
all that in Algorithm 5.1 this sub-test 
onsists, essentially, of �nding an edge (v; u) and
he
king the potential bi-
lique indu
ed by it (i.e., �(u) � �(v)). In the 
urrent 
ontext we tryto �nd a t-
y
le (v0; v1; : : : ; vt�1) su
h that v0 = v and for every j 2 f0; : : : ; t � 1g it holds thatvj 2 �(vj�1modt) \ �(vj+1modt) 6= �(vj�1modt) [ �(vj+1modt). Given su
h a 
andidate t-
y
lev, letting Ij(v) def= (�(vj�1modt) \ �(vj+1modt), we 
he
k that Ij(v) � Ij+1modt(v) is a bi-
lique,and that �(vj) = Ij�1modt(v) [ Ij+1modt(v). Ea
h of these a
tivities is is to be performed bymaking poly(log(1=�))=(2i�) queries. The implementation of the various 
he
ks is similar to theimplementation of similar 
he
ks performed in Algorithm 5.1, and so we fo
us on �nding theaforementioned t-
y
le.Starting with v0 def= v, we obtain v1 2 �(v) just as (u was obtained) in Algorithm 5.1. Infa
t, we may obtain vt�1 2 �(v) in the same way, ex
ept that we need to verify that the lattervertex is a
tually in a di�erent independent set than v1. This is done by 
he
king that �(vt�1) isdi�erent from �(v1), where any w in the symmetri
 di�eren
e of �(v1) and �(vt�1) 
an serve as awitness. (Indeed, w 2 �(v1) n �(vt�1 
an be used as v2.) Similarly, when holding a partial path(vt�j ; : : : ; v0; : : : ; vk), we seek a vertex vk+1 (resp., vt�(j+1)) su
h that �(vk+1) and �(vk�1) (resp.,�(vt�(j+1)) and �(vt�(j�1))) are di�erent. When the path rea
hes length t�1 (i.e., holds t verti
es),we treat it as a 
andidate t-
y
le.We note that, as in the 
ase of Algorithm 5.1, it may happen that the foregoing algorithmfails to �nd a t-
y
le, (v0; : : : ; vt�1. In this 
ase, the algorithm performs only a subset of the
he
ks outlined above. Spe
i�
ally, suppose that the algorithm failed to extend the partial pathv def= (vt�j ; : : : ; v0; : : : ; vk) any further. Then, for intermediate verti
es the 
he
ks are as before, butfor the extremes we should pro
eed with more 
are. For example, assuming the path 
ontains atleast four verti
es, we let It�j(v) def= (�(vt�j+1modt) n It�j+2modt(v).Clearly, the foregoing algorithm always a

epts any graph in SCtC. One 
an also verify that,for every i � ` def= log2(1=�) + 2, this algorithm reje
ts with high probability any graph in SC2tC2�i ,17Note that the  00-values of intermediate verti
es along any path must be \adja
ent" modulo t, and so movingbetween fj + 1; : : : ; t� 1g and f0; : : : ; j � 1g is only possible via (t� 1; 0).47



where SC2tC2�i is as in Lemma 5.4. Sin
e graphs in SC2tC�=4 are �-
lose to SCtC, we 
on
lude thatthe aforementioned algorithm distinguishes graphs in SCtC from graphs in SC2tC0 def= Si�5 SC2tC2�ithat are �-far from SCtC. This yields an algorithm for testing a promise problem, denoted �t, whi
hrefers to inputs in SCtC [SC2tC0 su
h that the tester is required to a

ept inputs in SCtC and reje
tinputs (in SC2tC0) that are �-far from SCtC.Theorem 5.5 (an almost-quadrati
 
omplexity gap for promise problems): For every positiveinteger t � 5, the promise problem �t satis�es the following:1. There exists an adaptive tester of query 
omplexity eO(��1) for �t. Furthermore, this testerruns in time eO(��1).2. Any non-adaptive tester for �t must have query 
omplexity 
(��2+(2=t)).3. There exists a non-adaptive tester of query 
omplexity O(��2+(2=t)) for �t. Furthermore, thistester runs in time O(��2+(2=t)).Indeed, Part 1 follows by the foregoing algorithm, whereas Part 2 follows from Lemma 5.4. Part 3 isestablished by a tester that inspe
ts the subgraph indu
ed by a uniformly sele
ted set of O(��1+(1=t))verti
es, and reje
ts if and only if this set 
ontains t verti
es su
h that the subgraph indu
ed bythese t verti
es is a simple t-vertex path.6 Non-Adaptive Testing with fO(1=�) ComplexityWe �rst note that 
(1=�) (adaptive) queries are required for testing any graph property that isnon-trivial for testing, where a graph property � is non-trivial for testing if there exists �0 > 0 su
hthat for in�nitely many N 2 N there exist N -vertex graphs G1 and G2 su
h that G1 2 � and G2is �0-far from �. We note that all properties 
onsidered in this work are non-trivial for testing.On the other hand, the negation of this (non-triviality) 
ondition means that for every � > 0 andall suÆ
iently large N 2 N either � 
ontains no N -vertex graph or all N -vertex graphs are �-
loseto �. In su
h a 
ase (for every su
h � and N), the tester may de
ide without even looking at thegraph.18 Turning ba
k to properties that are non-trivial for testing, we prove that any tester forsu
h a property must have query 
omplexity 
(1=�).Proposition 6.1 Let � be a property that is non-trivial for testing. Then, any tester for � hasquery 
omplexity 
(1=�).Note that the 
laim holds also for general properties (i.e., arbitrary sets of fun
tions).Proof: Let �0 > 0 be as in the de�nition, and 
onsider any N 2 N su
h that � 
ontains someN -vertex graphs and there exist some N -vertex graphs that are �0-far from �. Let G0 be anyN -vertex graph that is �0-far from �, let G1 2 � be an N -vertex graph 
losest to G0, and let Æ > �0denote the relative distan
e between G0 and G1. Let D denote the set of vertex pairs on whi
h G0and G1 di�er; indeed, jDj = Æ � N2. Now, for every � � �0 (and � > N�2), 
onsider a graph, G,obtained at random from G0 and G1 by uniformly sele
ting a random R � D of 
ardinality 2� �N2and letting G agree with G0 on all pairs in R and agree with G1 otherwise. Clearly, any testerthat makes o(�0=�) queries 
annot distinguish G from G1 (be
ause regardless of is query sele
tion18Indeed, there exists natural graph properties that are trivial for testing (e.g., 
onne
tivity, non-planarity, havingno vertex of odd degree); see [GGR, Se
. 10.2.1℄. 48



strategy, its next query resides in R with probability at most jRj=jDj � 2�=�0). Thus, su
h a tester
annot de
ide 
orre
tly on both G and G1 (be
ause G is �-far from � whereas G1 2 �). Re
allingthat �0 is a �xed 
onstant, the proposition follows.To justify the fa
t that all our testers are inherently non-
anoni
al, we show that (for any propertythat is non-trivial for testing) 
anoni
al testers must use 
(��2) queries.Proposition 6.2 Let � be a property that is non-trivial for testing. Then, any 
anoni
al testerfor � has query 
omplexity 
(1=�2).Proof: We adapt the proof of Proposition 6.1 so as to for
e any 
anoni
al tester to sample 
(1=�)verti
es. Let �0 > 0, G0 = ([N ℄; E0) and G1 = ([N ℄; E1) 2 � be as in that proof. Then, there existsa set of at least �0N=2 verti
es, denoted B, su
h that for every v 2 B the symmetri
 di�eren
ebetween the sets fu : fv; ug 2 E0g and fu : fv; ug 2 E1g has size at least �0N=2. Now, for every� � �0=2 (and � > N�1), 
onsider a graph, G, obtained from G0 and G1 by arbitrarily sele
tinga subset D � B of 
ardinality (2�=�0) � N and letting G agree with G0 on all vertex pairs thatinterse
t D and agree with G1 otherwise. Clearly, G is �-far from �, but any 
anoni
al tester thatsele
ts o(�0=�) random verti
es 
annot distinguish G from G1. Thus, su
h a tester 
annot de
ide
orre
tly on both G and G1 (be
ause G is �-far from � whereas G1 2 �). Re
alling that �0 is a�xed 
onstant, the proposition follows.6.1 Clique and Bi-CliqueWe start with the problem of testing whether the given graph is a 
lique (or, equivalently, anindependent set). The algorithm 
onsists of sele
ting uniformly O(1=�) vertex-pairs and 
he
kingwhether ea
h of these pairs is 
onne
ted by an edge. Clearly, if the graph is �-far from being a
lique, then a randomly sele
ted pair of verti
es is 
onne
ted with probability at most 1 � �. Theforegoing algorithm and analysis seem to provide the simplest example of a graph property that
an be tested by O(1=�) non-adaptive queries. A somewhat less simple example is provided bytesting the property of being a bi-
lique.Algorithm 6.3 (non-adaptive test of bi-
liqueness): On input N and � and ora
le a

ess to a graphG = ([N ℄; E), set t = �(1=�) and sele
t arbitrarily a start vertex s (e.g., s = 1). For i = 1; : : : ; t,uniformly sele
t a pair of verti
es (ui; vi), and make the queries (s; ui), (s; vi), and (ui; vi). A

eptif and only if for every i an even number of answers are positive (i.e., indi
ate the existen
e of anedge).Clearly, if G is a bi-
lique then for every i either all verti
es reside on the same side (and so (s; ui),(s; vi), and (ui; vi) are all non-edges) or a single vertex is in solitude (and is thus adja
ent to theother two verti
es). To analyze what happens when G is �-far from being a bi-
lique we observe thats indu
es a partition of the graph to neighbors and non-neighbors (i.e., the 2-partition (�(s); [N ℄ n�(s))). That is, if G were a bi-
lique then every vertex v 2 �(s) (resp., v 2 [N ℄ n �(s)) would havesatis�ed �(v) = [N ℄ n �(s) (resp., �(v) = �(s)).19 However, sin
e G is �-far from being a bi-
lique,it follows that either there are at least �2 �N2 edges in (�(s)� �(s)) [ (([N ℄ n �(s))� ([N ℄ n �(s)))or at least �2 � N2 edges are missing from �(s) � ([N ℄ n �(s)). Thus, the sample of t pairs will hitsu
h an edge with probability at least 2=3.19Indeed, this is a simple appli
ation of the \indu
ed partition" idea, whi
h underlies the analysis of many of thetesters of [GGR℄. 49



6.2 Colle
tion of a 
onstant number of 
liquesFor any 
onstant 
, we 
onsider the set of graphs that 
onsists of a 
olle
tion of (up to) 
 
liques;that is, the property CC�
. Note that the spe
ial 
ase of CC�2 is analogous to bi-
lique, be
ausea graph G = ([N ℄; E) is in CC�2 if and only if its 
omplement graph ([N ℄; ([N ℄ � [N ℄) n E) is abi-
lique. The general 
ase (i.e., 
 � 3) seems less easy (for non-adaptive testers).To motivate the following non-adaptive tester, 
onsider �rst the 
ase in whi
h the input graph
onsists of 
 + 1 
liques su
h that the smallest 
lique has size 2p�N . In this 
ase, with highprobability, a sample of O(��1=2) random verti
es 
ontains an independent set of size 
+ 1, whi
hwill be dis
overed if (and only if) we probe the entire indu
ed subgraph. This 
ase will be dete
tedin Step 1. To motivate Step 2, 
onsider the 
ase that, for some � 2 (3�; o(p�)), the graph 
onsistsof two 
liques of size (1 � �)N=2 and a third 
lique of size �N su
h that ea
h vertex in the third
lique is 
onne
ted to �=� fra
tion of the verti
es in ea
h of the large 
liques. In this 
ase, Step 1 isunlikely to sample a vertex of the small 
lique (and will thus fail to dete
t that this graph is �-farfrom CC�
), but a sample as in Step 2 (with i = log2(�=�)) is likely to 
ontain a vertex of the small
lique as well as a neighbor from ea
h of the two large 
liques.Algorithm 6.4 (non-adaptive test for CC�
): On input N and � and ora
le a

ess to a graphG = ([N ℄; E), set ` = log2(1=�) and pro
eed as follows.1. Sele
t a uniform sample of �(��1=2) verti
es, denoted S, and examine all vertex pairs in S.2. For i = 1; : : : ; ` sele
t, uniformly at random, samples of �(log(1=�)=(2i�)) and �(2i) verti
esin [N ℄ denoted T 1i and T 2i , respe
tively, and a sample of �(minf2i; 1=(2i�)g) verti
es in S,denoted Si. Examines all the vertex pairs in Si � (T 1i [ T 2i ) and in T 1i � T 2i .3. A

ept if and only if the view of the subgraph as obtained in Steps 1-2 is 
onsistent with somegraph in CC�
. Namely, let g0 : �(S � S) [ �Sì=1 �(Si � (T 1i [ T 2i )) [ (T 1i � T 2i )��� ! f0; 1gbe the fun
tion determined by the answers obtained in Steps 1-2. Then, the test a

epts if andonly if g0 
an be extended to a fun
tion over S0 � S0 that represents a graph in CC�
, whereS0 def= S [ �Sì=1(T 1i [ T 2i )�.It is instru
tive to spell-out the meaning of the a

eptan
e 
riterion that underlies Step 3. Indeed,this 
riterion is equivalent to the 
onjun
tion of the following four 
onditions:(i) The subgraph indu
ed by S is in CC�
.In su
h a 
ase, we denote the 
orresponding 
liques by C1; : : : ; C
0 , where 
0 � 
.(ii) For every i 2 [`℄ and every v 2 T 1i [ T 2i , either �(v) \ Si = ; or, for some j 2 [
0℄, it holds that�(v) \ Si = Cj \ Si.(iii) For every i 2 [`℄, if jfj : Cj \ Si 6= ;gj = 
 then every v 2 T 1i [ T 2i has neighbors in Si.(iv) For every i 2 [`℄ and for every v 2 T 1i and u 2 T 2i su
h that �(v) \ Si 6= ; and �(u) \ Si 6= ;the following holds. If �(v) \ Si = �(u) \ Si then (v; u) 2 E, while if �(v) \ Si 6= �(u) \ Si,then (v; u) =2 E.Algorithm 6.4 has query 
omplexityjSj2 + X̀i=1 �jSij � (jT 1i j+ jT 2i j) + jT 1i j � jT 2i j� = O(1=�) + log(1=�) � O(log(1=�)=�) = eO(1=�)50



and a

epts every graph in CC�
 with probability 1. We thus turn to analyze the 
ase that theinput graph G = ([N ℄; E) is �-far from CC�
. Namely, we show:Lemma 6.5 If G is �-far from CC�
 then Algorithm 6.4 reje
ts with probability at least 2=3.Theorem 1.4 follows.Proof: Consider �rst the 
hoi
e of S. We think of S as being sele
ted in 
 + 1 phases, wherein phase t, a new uniform sample St, of �(��1=2) verti
es, is sele
ted (re
all that 
 is a 
onstant).Intuitively, the obje
tive of the �rst 
 phases is to ensure, with high (
onstant) probability, that aslong as the number of verti
es that do not have any neighbor among the verti
es sele
ted so far isrelatively big, we obtain su
h a vertex in the next phase. After 
 phases we use the sele
ted verti
esto de�ne a partition of the graph verti
es into at most 
 subsets with some ex
eptional verti
es(whi
h either do not have any neighbor among the verti
es sele
ted in the previous phases or aresomehow in
onsistent with these verti
es). The obje
tive of phase 
+1 is to ensure that (with highprobability) the number of ex
eptional verti
es is relatively small (or else, 
ause reje
tion). Theanalysis relies on the fa
t that CC�
 is a hereditary property (i.e., any indu
ed subgraph of anygraph in CC�
 is also in CC�
).For ea
h 1 � t � 
+ 1, let S�t = Stk=1 Sk. Re
all that the algorithm queries all vertex pairs inS�S. Hen
e, if for any 1 � t � 
+1, the subgraph indu
ed by S�t is not a 
olle
tion of at most 

liques, then the algorithm reje
ts, and we are done. Otherwise, let Ct1; : : : ; Ct
(t) denote the 
(t) � 

liques in the subgraph indu
ed by S�t. For ea
h 1 � t � 
, we de�ne the following partition ofthe set [N ℄ of all graph verti
es:V tj def= fv : �(v) \ S�t = Ctjg for 1 � j � 
(t) ;Rt0 def= fv : �(v) \ S�t = ;gRt1 def= [N ℄ n �Rt0 [ � [1�j�
(t) Vj�� :That is, for 1 � j � 
(t), the subset V tj 
onsists of the verti
es that neighbor all verti
es in Ctj andno other vertex in S�t, the subset Rt0 
onsists of all verti
es that have no neighbor in S�t, and Rt1
onsists of all verti
es that either neighbor only some of the verti
es in one of the 
liques Ctj (butnot all) or have neighbors in more than one of the 
liques. Observe that V t+1j � V tj and Rt+10 � Rt0while Rt+11 � Rt1.Given the above notation, we make two observations. The �rst observation is that for any1 � t � 
, if St+1 
ontains some vertex in Rt1, then the subgraph indu
ed by S�(t+1) is not a
olle
tion of at most 
 
liques, and so the algorithm reje
ts. It follows that if jRt1j > 14�1=2N forsome t � 
, then the algorithm reje
ts with high probability. The se
ond observation is that ifSt+1 
ontains some vertex in Rt0, then 
(t+1) � 
(t) + 1. Note that, as long as jRt0j > 14�1=2N , theprobability that St+1 does not 
ontain any vertex in Rt0 is at a small 
onstant. Therefore, eitherjR
0j � 14�1=2N , or the algorithm reje
ts with high probability, be
ause the subgraph indu
ed byS�(
+1) 
onsists of more than 
 
onne
ted 
omponents. >From this point on, we assume that thesubgraph indu
ed by S�(
+1) is a 
olle
tion of at most 
 
liques, that jR
1j � 14�1=2N and thatjR
0j � 14�1=2N . (We later take into a

ount the small 
onstant probability that this is not the 
ase(but that the algorithm did not reje
t).)To simplify the notation, we use the shorthand R0 for R
0, and R1 for R
1, the shorthand 
0 for
(t), and the shorthand Vj for V 
j . We also denote R0[R1 by R. We start by making the simplifying51



assumption that for ea
h suÆ
iently large Vj , the 
orresponding Cj 
ontains a number of verti
esthat is proportional to the size of Vj . To be pre
ise, jCjj=jSj � 12(jVj j=N) holds for every 1 � j � 
0that satis�es jVj j � ��1=22
 N . We justify this assumption at the end of the proof.Re
all that G is �-far from CC�
. This means that for every partition of the graph verti
es intoat most 
 subsets, the total number of vertex pairs that either belong to the same subset but donot have an edge between them, or belong to di�erent subsets but do have an edge between them,is greater than �N2. In parti
ular, this holds for the partition of [N ℄, denoted ( eVj)j2f0;1;:::;
0g, thatwe de�ne as follows:� For every j 2 [
0℄, it holds that Vj � eVj.� The verti
es in R are partitioned among the eVj 's as follows. For every vertex v 2 R andj 2 [
0℄, let ej(v) = j�(v) \ Vjj (resp., �ej = jVj n �(v)j) be the number of neighbors (resp.,non-neighbors) that v has in Vj . If 
0 = 
 then ea
h vertex v 2 R is pla
ed in the subset eVjfor whi
h �ej(v) +Pk2[
0℄nfjg ek(v) is minimized. If 
0 < 
 then we do the same, ex
ept thatevery vertex v 2 R that satis�es P
0k=1 ek(v) < minj2[
0℄f�ej(v) +Pk2[
0℄nfjg ek(vg is pla
ed ineV0; that is, v is pla
ed in eV0 if for every j 2 [
0℄ it holds that ej(v) < �ej(v).We note that it may be the 
ase that eV0 = ;; indeed, this always happens when 
0 = 
.Re
all that jRj � 12�1=2N . Therefore, the total number of vertex pairs in R � R is at most 14�N2.It follows that if G is �-far from CC�
 then (at least) one of the following three events must o

ur:1. There are at least 14�N2 missing edges between pairs of verti
es that belong to the same subsetVj ; that is, P
0j=1 j(Vj � Vj) n Ej � �4N2.2. There are at least 14�N2 super
uous edges between pairs of verti
es that belong to di�erentsubsets Vj and Vk; that is, P
0�1j=1 P
0k=j+1 j(Vj � Vk) \Ej � �4N2.3. The total number of missing and super
uous edges 
ontributed by pairs of verti
es in R �(S
0j=1 Vj) is at least 14�N2. That is, if for ea
h j 2 [
0℄ and v 2 R \ eVj we letx(v) = �ej(v) + Xk2[
0℄nfjg ek(v) ; (14)and for v 2 R \ eV0 we let x(v) = X1�k�
0 ek(v) ; (15)then P
0j=0Pv2R\eVj x(v) � �4N2. (Re
all that eV0 = ; whenever 
0 = 
.)It remains to prove that in ea
h of the three foregoing 
ases the algorithm reje
ts with probability atleast 5=6. Spe
i�
ally, we shall show that, with probability at least 5=6, there exists an i 2 [`℄ su
hthat the sample Si [ T 1i [ T 2i 
ontains a set of verti
es that indu
e a subgraph not in CC�
 that isinspe
ted by the algorithm. More spe
i�
ally, this set will 
ontain at most one vertex from ea
h T bi ,and we shall use the fa
t that the algorithm inspe
ts all pairs in (Si�(T 1i [T 2i ))[(T 1i �T 2i )[(Si�Si).In what follows let �0 = �8`
2 .Case 1: P
0j=1 j(Vj � Vj) nEj � �4N2. In this 
ase there must be an index 1 � j� � 
0 su
h that thenumber of missing edges with both endpoints in Vj� is at least �4
N2; that is,Xv2Vj� jVj� n (fvg [ �(v))j � �4
N2 : (16)52



In parti
ular this implies that jVj� j � �1=22
1=2N . For ea
h i 2 [`+ log2(8
)℄, we de�ne a subset Bj�;iof Vj� as follows. Bj�;i = �v 2 Vj� : jVj� n (fvg [ �(v))j � N2i �; (17)where Bj�;0 = ;. By Eq. (16) and sin
e the 
ontribution of verti
es outside Bj�;`+log2(8
) is at most�N2=8
. we have X̀i=1 jBj�;i n Bj�;i�1j � N2i�1 � �8
N2 (18)and thus there exists i� 2 [`+ log2(8
)℄ (i.e., a set Bj�;i�) su
h thatjBj�;i� j � 2i��1�8
` N � 2i��0N : (19)By the de�nition of Bj�;i if Bj�;i 6= ;, then jVj�j � N=2i� . Sin
e Bj�;i� 6= ;, it holds that jVj� j � �Nwhere � = maxf1=2i� ; �1=22
1=2 g. We shall show that, with high probability, the following three eventso

ur: (1) Si� 
ontains at least one vertex w from Cj�; (2) T 1i� 
ontains at least one vertex v fromBj�;i� � Vj�; and (3) T 2i� 
ontains at least one vertex u from Vj� n �(v). If the three event o

urthen the algorithm reje
ts sin
e it obtains eviden
e that the graph is not in CC�
 (in the form of(w; v); (w; u) 2 E and (v; u) =2 E). (Indeed, v 2 �(w) sin
e w 2 Cj� and v 2 Vj�, and u 2 �(w)n�(v)sin
e u 2 Vj� n�(v). Also note that the algorithm queries all pairs in (Si��(T 1i�[T 2i�))[(T 1i��T 2i�).)Let � be as de�ned in the foregoing dis
ussion. Sin
e jVj�j � �N and we assume thatjCj� j=jSj � 12 jVj� j=N , the probability that the �rst event does not o

ur is at most (1 � �=2)jSi� jwhi
h is a small 
onstant (due to our 
hoi
e of jSi� j = �(1=�)). Similarly (by our 
hoi
e ofjT 1i� j = �(log(1=�)=(�2i� )) = �(`=(�2i�)) = 
(1=(�02i�))), the probability that T 1i� does not 
on-tain any vertex from Bj�;i� is a small 
onstant (due to the density of Bj�;i� as lower-bounded inEq. (19)). Finally, assuming that T 1i� 
ontains a vertex v 2 Bj�;i� , the probability that T 2i� (whi
hhas size �(2i�)) does not 
ontain any vertex from Vj� n �(v) is a small 
onstant as well (sin
e, byde�nition of Bj�;i� , the set Vj� n �(v) has density at least 2�i�).Case 2: P
0�1j=1 P
0k=j+1 j(Vj � Vk)\Ej � �4N2. In this 
ase there exists at least one pair of subsets,Vj� and Vk� (where j� 6= k�), su
h that j(Vj��Vk�)\Ej � �4
2N2. Assume, without loss of generality,that jVj� j � jVk� j, so that in parti
ular jVj� j � �1=22
 N . Similarly to Case 1, it follows that thereexists a index i� 2 f1; : : : ; `g and a subset Bj�;i� � Vj� su
h that jBj�;i�j � �02i�N and for everyv 2 Bj�;i� it holds that jVk� \ �(v)j � N=2i� . Analogously to Case 1, here we 
an show that, withhigh probability, the following three events o

ur: (1) Si� 
ontains at least one vertex w from Cj� ,(2) T 1i� 
ontains at least one vertex v from Bj�;i�, and (3) T 2i� 
ontains at least one vertex u fromVk� \�(v). If these three events o

ur then the algorithm reje
ts sin
e it obtains eviden
e that thegraph is not in CC�
 (in the form of (w; v) 2 E, (w; u) =2 E and (v; u) 2 E). The probability thatthese three events o

ur is lower-bounded as in Case 1.Case 3: P
0j=0Pv2R\eVj x(v) � �4N2. For ea
h v 2 R, let x(v) be as de�ned in Eq. (14) & (15), andlet R0 def= nv 2 R : x(v) � �1=24 No. Sin
e jRj � 12�1=2N , we have that P
j=0Pv2(RnR0)\Vj x(v) <jRj� �1=24 N � �8N2. Therefore,P
j=0Pv2R0\Vj x(v) � �8N2. By the de�nition of R0, for every v 2 R0,we have that x(v) � N=2i for some i � `=2+2. Therefore, if we de�ne Bi = fv : x(v) � N=2ig fori = 1; : : : ; `=2+2, then there is an index i� 2 [`=2+2℄ su
h that jBi� j � �8`2i�N > �02i�N . Similarlyto the previous 
ases, with high probability, the sample T 1i� 
ontains at least one vertex v in Bi� .We next show that for ea
h �xed 
hoi
e of su
h a vertex v 2 Bi� , with high probability over the53




hoi
e of the samples Si� and T 2i� , we obtain eviden
e 
ontaining v that G is not in CC�
 (i.e., a setof verti
es that indu
e a subgraph not in CC�
, while having at most one vertex in ea
h T bi�).Let j� 2 f0; 1; : : : ; 
0g be su
h that v 2 eVj�, and de�ne �e0(v) = e0(v) = 0. Observe that sin
ev 2 eVj� we must have that �ej�(v)� ej�(v) � �ek(v)� ek(v) (8k 6= j�) ; (20)where if 
0 = 
 then 1 � k � 
0, while if 
0 < 
 then 0 � k � 
0. (Note that Eq. (20) holds sin
eotherwise v would be pla
ed in eVk.) Eq. (20) will be useful when we 
onsider the following sub
ases(whi
h refer to v 2 eVj�).� We �rst 
onsider the sub
ase in whi
h j� = 0 (whi
h may o

ur only when 
0 < 
). In thissub
ase, sin
e �ej�(v)�ej�(v) = 0�0 = 0, for every k 2 [
0℄ we have that �ek(v) � ek(v). On theother hand, sin
e x(v) =P
0k=1 ek(v) � N=2i� , there exists at least one index k� 2 [
0℄ su
h thatek�(v) � N=(
2i�). Sin
e �ek�(v) � ek�(v), we have that �ek�(v) � N=(
2i� ) as well. This alsoimplies that jVk� j=N � (
2i�)�1, and sin
e we assume that jCk� j=jSj � 12 jVk� j=N , we have thatjCk� j=jSj � (2
2i�)�1. Re
all that jT 2i� j = �(2i�), and that jSi� j = �(minf2i� ; 1=(�2i�)g) =�(2i�), sin
e i� � `=2 + 2 (where ` = log(1=�)).Now, if jCk� \ �(v)j � jCk� j=2, then, with high probability, the sample Si� 
ontains a vertexw in Ck� \ �(v) (sin
e jCk� j = 
(jSj=2i�)), and T 2i� 
ontains a vertex u in Vk� n �(v) (sin
e�ek�(v) = 
(N=2i�)). Otherwise (i.e., jCk� n �(v)j � jCk�j=2), with high probability, Si�
ontains a vertex w in Ck� n �(v), and T 2i� 
ontains a vertex u in Vk� \ �(v) (sin
e ek�(v) =
(N=2i�)). In either 
ases, w 2 Ck� and u 2 Vk�, whi
h implies (u;w) 2 E, and w 2 �(v) i�u 62 �(v), whi
h implies that jf(u;w); (w; v); (u; v)g \Ej = 2.In the subsequent sub
ases we assume that j� > 0.� We next 
onsider the sub
ase in whi
h both �ej�(v) � N=2i�+1 and ej�(v) � N=2i�+2 hold.Setting k�  j�, we rea
h a situation as in the �rst sub
ase (sin
e �ek�(v) = 
(N=2i�) andek�(v) = 
(N=2i�)), and we are done as in the �rst sub
ase (while noting that �rst sub
asedoes not rely on j� 6= k�).� The next sub
ase refers to �ej�(v) � N=2i�+1 and ej�(v) < N=2i�+2. In this sub
ase �ej�(v) �ej�(v) > 0 and so it 
an o

ur only when 
0 = 
 (sin
e otherwise v would be pla
ed ineV0, whereas here j� 6= 0)). The fa
t that �ej�(v) � ej�(v) � N=2i+2 implies that, for everyk 2 [
0℄ n fj�g, it holds that �ek(v) � ek(v) + �ej�(v) � ej�(v) � N=2i�+2. Similarly to theprevious sub
ase, we know that jCkj=jSj � 1=2i�+3 for all k, and we have that jSi� j = �(2i�)(as well as jT 2i� j = �(2i�)).If there exists k� 2 [
0℄ su
h that jCk� \ �(v)j � jCk� j=2, then with high probability, Si�
ontains a vertex in Ck� \ �(v), and T 2i� 
ontains a vertex in Vk� n �(v). Otherwise (i.e.,jCk n �(v)j � jCkj=2 for every k 2 [
0℄), with high probability, for every k 2 [
0℄, the sampleSi� 
ontains a vertex in Ck n �(v), and re
alling that 
0 = 
 we obtain eviden
e (in the formof an independent set of size 
+ 1) that G is not in CC�
.� Lastly, we 
onsider the sub
ase in whi
h �ej�(v) � N=2i�+1. Sin
e �ej�(v)+Pk2[
0℄nfj�g ek(v) =x(v) > N=2i� , we obtain Pk2[
0℄nfj�g ek(v) � N=2i�+1. In su
h a 
ase, there exists a k� 2[
0℄ n fj�g for whi
h ek�(v) � N=(
2i�+1). If ej�(v) � N=(
2i�+2), then with high probability,T 2i� 
ontains one vertex u in Vk� \ �(v) and one vertex u0 in Vj� \ �(v), while Si� 
ontainsone vertex w in Ck� and one vertex w0 in Cj�, and we have eviden
e that G is not a union of54




liques (sin
e (v; u); (v; u0); (u;w); (u0; w0) 2 E whereas (w;w0) 62 E, and all �ve vertex pairsare inspe
ted by the algorithm).20 Otherwise (i.e., ej�(v) < N=(
2i�+2)), by Eq. (20), wehave that �ek�(v) � ek�(v) + �ej�(v) � ej�(v) � N=(
2i�+2), and we are in essentially the samesituation as the �rst sub
ase (sin
e we have ek�(v) = 
(N=2i�) and �ek�(v) = 
(N=2i�)).It remains to deal with the assumption that jCj j=jSj � 12 jVjj=N holds for every j that satis�esjVj j � �1=22
 N . To this end, we add one more phase in the 
hoi
e of S (where we think of this phaseas taking pla
e before phase 
+ 1 that was used in the foregoing dis
ussion to bound jRj). Let S0denote the verti
es sele
ted in the �rst 
 phases and let S00 be the verti
es sele
ted in the additionalphase, where jS00j = 4jS0j. Let C 01; : : : ; C 0
0 be the 
liques in the subgraph indu
ed by S0, and forea
h 1 � j � 
0 let V 0j be the verti
es that neighbor all verti
es in C 0j and no other verti
es in S0. Inthe sample S00, let C 00j = S00\V 0j . By a multipli
ative Cherno� bound, with high probability over the
hoi
e of S00, it holds that jC 00j j=jS00j � (3=4)jV 0j j=N for every j that satis�es jV 0j j � �1=22
 N . Assumethat this is, in fa
t, the 
ase. Then, we de�ne Cj = C 0j [C 00j and Vj = fv : �(v) \ (S0 [ S00) = Cjg.If there is any new 
lique in S00 then it 
orresponds to a small set of verti
es (sin
e the setof verti
es that do not belong to any V 0j is small).21 Using the fa
t that S is the union of S0,S00 and the sample sele
ted in phase 
 + 1, we have jSj < (3=2)jS00j (sin
e jS00j = 4jS0j andjS0j = 
 � (jSj � jS0j � jS00j)) and jCj j=jSj � (3=4)jC 00j j=jS00j � (3=4) � (3=4)jV 0j j=N . Using Vj � V 0j ,we get that jCj j=jSj > 12 jVjj=N for every jVjj � �1=22
 N .A
knowledgmentsWe are grateful to Lidor Avigad for 
omments regarding a previous version of this work.

20A
tually, note that it also holds that (u0; w) 62 E, and thus we obtain eviden
e in the form of the four vertexpairs (v; u); (v; u0); (u;w); (u0; w). Note that we 
an obtain eviden
e in the form of three vertex pairs by 
onsideringeither (v; u); (u0; w); (v; w) or (v; u); (u;w); (v;w).21Indeed, the sizes of the sets V 0j behave as the sizes of the sets Vj , whi
h were analyzed in the beginning of thisproof. Also note that this additional 
lique may 
auses the algorithm to reje
t (whenever it 
auses the total numberof 
liques to ex
eed 
). 55
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