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on
i
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avor,although they are of 
ourse di�erent.
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1 Introdu
tionIn the last 
ouple of de
ades, the area of property testing has attra
ted mu
h attention (see, e.g., a
ouple of re
ent surveys [R1, R2℄). Loosely speaking, property testing typi
ally refers to sub-lineartime probabilisti
 algorithms for de
iding whether a given obje
t has a predetermined propertyor is far from any obje
t having this property. Su
h algorithms, 
alled testers, obtain bits of theobje
t by performing queries, whi
h means that the obje
t is seen as a fun
tion and the testers getora
le a

ess to this fun
tion. Thus, a tester may be expe
ted to work in time that is sub-linear inthe length of the des
ription of this obje
t.Mu
h of the aforementioned work (see, e.g., [GGR, AFKS, AFNS℄) was devoted to the studyof testing graph properties in the adja
en
y matrix model, whi
h is also the setting of the 
urrentwork. In this model, introdu
ed in [GGR℄, graphs are viewed as symmetri
 Boolean fun
tionsover a domain 
onsisting of all possible vertex-pairs. Namely, an N -vertex graph G = ([N ℄; E) isrepresented by the fun
tion g : [N ℄ � [N ℄ ! f0; 1g su
h that fu; vg 2 E if and only if g(u; v) = 1.Consequently, an N -vertex graph represented by the fun
tion g : [N ℄ � [N ℄ ! f0; 1g is said to be�-far from some predetermined graph property if more than � � N2 entries of g must be modi�edin order to yield a representation of a graph that has this property. We refer to � as the proximityparameter. Given this representation, the algorithm may query whether there is an edge betweenany pair of verti
es of its 
hoi
e, and the query and time 
omplexity of testing are stated in termsof � and possibly the number, N , of verti
es in the graph. We note that this model is most suitablefor testing dense graphs, that is, graphs in whi
h the number of edges is 
(N2). This is trueboth be
ause the adja
en
y matrix is an appropriate representation of dense graphs, and be
ausedistan
e between graphs is related to their size, �(N2). Dis
ussion of other models, more suitablefor sparse graphs, 
an be found, in [GR02, PR, KKR℄.Interestingly, many natural graph properties 
an be tested in the adja
en
y matrix modelwith query 
omplexity that depends only on the proximity parameter; see [GGR℄, whi
h presentstesters with query 
omplexity poly(1=�), and [AFNS℄, whi
h 
hara
terizes the 
lass of propertiesthat are testable within query 
omplexity that depends only on the proximity parameter (wherethis dependen
e may be an arbitrary fun
tion of �). However, a 
ommon phenomenon in all theaforementioned works is that they utilize quite naive algorithms and their fo
us is on the analysis ofthese algorithms, whi
h is often quite sophisti
ated. This phenomenon is no 
oin
iden
e: As shownin [AFKS, GT℄, when ignoring a quadrati
 blow-up in the query 
omplexity, property testing inthis model redu
es to sheer 
ombinatori
s. Spe
i�
ally, without loss of generality, the tester mayjust inspe
t a random indu
ed subgraph (of an appropriate size) of the input graph.In this paper we demonstrate that a more re�ned study of property testing in this model revealsthe importan
e of algorithmi
 design also in this model. This is demonstrated both by studying theadvantage of adaptive testers over non-adaptive ones as well as by studying the 
lass of propertiesthat 
an be tested within 
omplexity that is inversely proportional to the proximity parameter.1.1 Two Related StudiesWe start by reviewing the two related studies 
ondu
ted in the 
urrent work.1.1.1 Adaptivity vs. Non-adaptivityA tester is 
alled non-adaptive if it determines all its queries independently of the answers obtainedfor previous queries, and otherwise it is 
alled adaptive. Indeed, by [AFKS, GT℄, the bene�t ofadaptivity (or, equivalently, the 
ost of non-adaptivity) is polynomially bounded: Spe
i�
ally, any1



(possibly adaptive) tester, for any graph property, of query 
omplexity q(N; �) 
an be transformedinto a non-adaptive tester of query 
omplexity O(q(N; �)2). But is this quadrati
 gap an artifa
tof the known proofs (of [AFKS, GT℄) or does it re
e
t something inherent?A re
ent work by [GR07℄ suggests that the latter 
ase may hold: For every � > 0, they showedthat the set of N -vertex bipartite graphs of maximum degree O(�N) is �-testable (i.e., testable withrespe
t to proximity parameter �) by eO(��3=2) queries, while by [BT℄ a non-adaptive tester for thisset must use 
(��2) queries. Thus, there exists a 
ase where non-adaptivity has the 
ost of in
reasingthe query 
omplexity; spe
i�
ally, for any 
 < 4=3, the query 
omplexity of the non-adaptive testeris greater than a 
-power of the query 
omplexity of the adaptive tester (i.e., eO(��3=2)
 = o(��2)).We stress that the result of [GR07℄ does not refer to property testing in the \proper" sense; thatis, the 
omplexity is not analyzed with respe
t to a varying value of the proximity parameter fora �xed property. It is rather the 
ase that, for every value of the proximity parameter, a di�erentproperty, whi
h depends on this parameter, is 
onsidered. The upper bounds and lower boundsrefer to this 
ombination of a property tailored for a �xed value of the proximity parameter. Thus,the work of [GR07℄ leaves open the question of whether there exists a single graph property su
h thatadaptivity is bene�
ial for any value of the proximity parameter (as long as � > N�
(1)). That is,the question is whether adaptivity is bene�
ial for the standard asymptoti
-
omplexity formulationof property testing.1.1.2 Complexity linearly related to the proximity parameterAs shown in [GGR℄, many natural graph properties 
an be tested within query 
omplexity that ispolynomial in the re
ipro
al of the proximity parameter and independent of the size of the graph.We ask whether a linear 
omplexity is possible at all, and if so whi
h properties 
an be tested withquery 
omplexity that is linear (or almost linear) in the re
ipro
al of the proximity parameter, thatis, with query 
omplexity ~O(1=�).1The �rst question is easy to answer even when avoiding trivial properties. We say that a graphproperty � is trivial for testing if for every � > 0 there exists N0 > 0 su
h that for every N � N0either all N -vertex graphs belong to � or all of them are �-far from �. Note that the property ofbeing a 
lique (equiv., an independent set) 
an be tested by O(1=�) queries, even when these queriesare non-adaptive (e.g., make O(1=�) random queries and a

ept if and only if all return 1). Still,we ask whether \more interesting" graph theoreti
al properties 
an also be tested within similar
omplexity, either only adaptively or also non-adaptively. In parti
ular, the property of being a
lique (or an independent set) is viewed as \non-interesting" sin
e it 
ontains a single N -vertexgraph (per ea
h N) and is represented by a 
onstant fun
tion.1.2 Our ResultsWe address the foregoing questions by studying a sequen
e of natural graph properties, whi
h arede�ned formally in Se
tion 2.2. The �rst property in the sequen
e, 
alled 
lique 
olle
tion anddenoted CC, is the set of graphs su
h that ea
h graph 
onsists of a 
olle
tion of isolated 
liques.Testing this property 
orresponds to the following natural 
lustering problem: 
an a set of possiblyrelated elements be partitioned into \perfe
t 
lusters" (i.e., two elements are in the same 
lusterif and only if they are related)? For this property, CC, we prove a gap between adaptive and non-adaptive query 
omplexity, where the adaptive query 
omplexity is almost linear in the re
ipro
alof the proximity parameter. That is:1Note that 
(1=�) queries are required for testing any of the graph properties 
onsidered in the 
urrent work; fora more general statement see the beginning of Se
tion 6. 2



Theorem 1.1 (the query 
omplexity of 
lique 
olle
tion):1. There exists an adaptive tester for CC whose query 
omplexity is eO(��1). Furthermore, thistester has one-sided error and runs in time eO(��1).22. Any non-adaptive tester for CC must have query 
omplexity 
(��4=3).3. There exists a non-adaptive tester for CC whose query 
omplexity is O(��4=3). Furthermore,this tester has one-sided error and runs in time O(��4=3).Note that the 
omplexity gap between Parts 1 and 2 of Theorem 1.1 mat
hes the gap establishedby [GR07℄ for \non-proper" testing. A larger gap is established for a property of graphs, 
alledbi-
lique 
olle
tion and denoted BCC, where a graph is in BCC if it 
onsists of a 
olle
tion ofisolated bi-
liques (i.e., 
omplete bipartite graphs). We note that bi-
liques may be viewed as thebipartite analogues of 
liques (w.r.t. general graphs), and indeed they arise naturally in 
lusteringappli
ations that are modeled by bipartite graphs over two types of elements.Theorem 1.2 (the query 
omplexity of bi-
lique 
olle
tion):1. There exists an adaptive tester for BCC whose query 
omplexity is eO(��1). Furthermore, thistester has one-sided error and runs in time eO(��1).2. Any non-adaptive tester for BCC must have query 
omplexity 
(��3=2). Furthermore, thisholds even if the input graph is promised to be bipartite.The furthermore 
lause in Part 2 of Theorem 1.2 holds also for the model studied in [AFN℄, wherethe bi-partition of the graph is given.Theorem 1.2 asserts that the gap between the query 
omplexity of adaptive and non-adaptivetesters may be a power of 1:5 � o(1). Re
all that the results of [AFKS, GT℄ assert that the gapmay not be larger than quadrati
. We 
onje
ture that this upper bound 
an be mat
hed.Conje
ture 1.3 (an almost-quadrati
 
omplexity gap): For every positive integer t � 5, thereexists a graph property � for whi
h the following holds:1. There exists an adaptive tester for � whose query 
omplexity is eO(��1).2. Any non-adaptive tester for � must have query 
omplexity 
(��2+(2=t)).3. There exists an eÆ
ient non-adaptive tester for � whose query 
omplexity is eO(��2+2t�1).Furthermore, � 
onsists of graphs that are ea
h a 
olle
tion of \super-
y
les" of length t, wherea super-
y
le is a set of t independent sets arranged on a 
y
le su
h that ea
h pair of adja
entindependent sets is 
onne
ted by a 
omplete bipartite graph.We were able to prove Part 2 of Conje
ture 1.3, but failed to provide a full analysis of an algorithmthat we designed for Part 1. However, we were able to prove a promise problem version of Con-je
ture 1.3; spe
i�
ally, this promise problem (stated in Theorem 5.7) refers to inputs promised toreside in a set �0 � � and the tester is required to distinguish graphs in � from graphs that are�-far from �.2We refer to a model in whi
h elementary operations regarding pairs of verti
es are 
harged at unit 
ost.3



In 
ontrast to the foregoing results that aim at identifying properties with a substantial gapbetween the query 
omplexity of adaptive versus non-adaptive testing, we also study 
ases in whi
hno su
h gap exists. Sin
e query 
omplexity that is linear in the re
ipro
al of the proximity parameteris minimal for many natural properties, and, in fa
t, for any property that is \non-trivial for testing"(as de�ned at the end of Subse
tion 1.1), we fo
us on non-adaptive testers that approximately meetthis bound. Among the results obtained in this dire
tion, we highlight the following one.Theorem 1.4 (the query 
omplexity of 
olle
tions of O(1) 
liques): For every positive integer 
,there exists a non-adaptive tester of query 
omplexity eO(��1) for the set of graphs su
h that ea
hgraph 
onsists of a 
olle
tion of up to 
 
liques. Furthermore, this tester has one-sided error andruns in time eO(��1).Theorem 1.4 should be viewed as a �rst step in the study of graph properties that are the simplestto test; that is, the 
lass of graph properties that have a non-adaptive of query 
omplexity eO(��1).We mention that a se
ond step, whi
h signi�
antly generalizes Theorem 1.4, has been subsequentlytaken in [A09, AG℄.Dis
ussion. Our results demonstrate that a �ner look at property testing of graphs in the ad-ja
en
y matrix model reveals the role of algorithm design in this model. In parti
ular, in some
ases (see, e.g., Theorems 1.1 and 1.2), 
arefully designed adaptive algorithms outperform any non-adaptive algorithm. Indeed, this 
on
lusion stands in 
ontrast to [GT, Thm. 2℄, whi
h suggeststhat a less �ne view, whi
h ignores polynomial blow-ups,3 deems algorithm design irrelevant tothis model. We also note that, in some 
ases (see, e.g., Theorem 1.4 and Part 3 of Theorem 1.1),
arefully designed non-adaptive algorithms outperform 
anoni
al ones.As dis
ussed previously, one of the goals of this work was to study the relation between adaptiveand non-adaptive testers in the adja
en
y matrix model. Our results demonstrate that, in thismodel, the relation between the adaptive and non-adaptive query-
omplexities is not �xed, butrather varies with the 
omputational problem at hand. In some 
ases (e.g., Theorem 1.4) the
omplexities are essentially equal, indeed, as in the 
ase of sampling [CEG℄. In other 
ases (e.g.,Theorem 1.1), these 
omplexities are related by a �xed power (e.g., 4=3) that is stri
tly between1 and 2. And, yet, in other 
ases (e.g., Theorem 5.7) the non-adaptive 
omplexity is quadrati
in the adaptive 
omplexity, whi
h is the maximum gap possible (by [AFKS, GT℄). Furthermore,by Theorem 5.7, for any t � 4, there exists a promise problem for whi
h the aforementioned
omplexities are related by a power of 2� (2=t).Needless to say, the fundamental relation between adaptive and non-adaptive algorithms wasstudied in a variety of models, and the 
urrent work studies it in a spe
i�
 natural model (i.e.,of property testing in the adja
en
y matrix representation). In parti
ular, this relation has beenstudied in the 
ontext of property testing in other domains. Spe
i�
ally, in the setting of testingthe satis�ability of linear 
onstraints, it was shown that adaptivity o�ers absolutely no gain [BHR℄.A similar result holds for testing monotoni
ity of sequen
es of positive integers [F04℄. In 
ontrast,an exponential gap between the adaptive and non-adaptive 
omplexities may exist in the 
ontextof testing other properties of fun
tions [F04℄. Lastly, we mention that an even more dramati
gap exists in the setting of testing graph properties in the bounded-degree model (of [GR02℄);see [RS06℄.3Re
all that [GT, Thm. 2℄ asserts that 
anoni
al testers, whi
h merely sele
t a random subset of verti
es and rulea

ording to the indu
ed subgraph, have query-
omplexity that is at most quadrati
 in the query-
omplexity of thebest tester. We note that [GT, Thm. 2℄ also ignores the time-
omplexity of the testers.4



1.3 A Complexity Theoreti
 Perspe
tiveLet us start by rephrasing Conje
ture 1.3, while re
alling that it refers to properties for whi
htesting requires (adaptive) query 
omplexity that is at least linear in the re
ipro
al of the proximityparameter (see Proposition 6.1).Conje
ture 1.3 (rephrased). For every integer t � 2, there exists a (natural) graph property�t su
h that non-adaptively testing �t has query 
omplexity e�(q2�(2=t)), where q = q(N; �) denotesthe query 
omplexity of (adaptively) testing �t.Re
all that it is known that the non-adaptive query 
omplexity of testing any graph propertyis at most quadrati
 in the adaptive query 
omplexity. We stress that Conje
ture 1.3 not onlyasserts that this upper bound is essentially tight, but rather asserts an in�nite hierar
hy of possiblefun
tional relations between the non-adaptive and adaptive query 
omplexity.The results in this work refer to \two and a half" elements in the 
onje
tured hierar
hy as wellas to a 
orresponding hierar
hy of promise problems. Spe
i�
ally, denoting the (adaptive) query
omplexity by q = q(N; �), we have:� Theorem 1.4 establishes the 
onje
ture for t = 2. Spe
i�
ally, Theorem 1.4 presents naturalgraph properties that have non-adaptive query 
omplexity e�(q).� Theorem 1.1 establishes the 
onje
ture for t = 3. Spe
i�
ally, Theorem 1.1 presents a naturalgraph property that has non-adaptive query 
omplexity e�(q4=3).� Theorem 1.2 establishes half of the 
onje
ture for t = 4. Spe
i�
ally, Theorem 1.2 presents anatural graph property that has non-adaptive query 
omplexity e
(q3=2).� Theorem 5.7 fully establishes the 
onje
ture in the setting of promise problems. We stressthat these promise problems are �xed (independently of the proximity parameter).Indeed, in all our results q = q(N; e) = e
(1=�). We also mention that in all our results the upperbounds are established by one-sided error testers, whereas the lower bounds hold also for general(i.e., two-sided error) testers.Open problems. In addition to the resolution of Conje
ture 1.3, our study raises many otheropen problems; the most evident ones are listed next.1. What is the non-adaptive query 
omplexity of BCC? Note that Theorem 1.2 only establishesa lower bound of 
(��3=2). We 
onje
ture that an eÆ
ient non-adaptive algorithm of query
omplexity eO(��3=2) 
an be devised.2. For whi
h 
onstants 
 2 [1; 2℄ does there exist a property that has adaptive query 
omplexityof q(�) and non-adaptive query 
omplexity of e�(q(�)
)? Note that Theorem 1.1 shows that4=3 is su
h a 
onstant, and the same holds for the 
onstant 1 (see, e.g., Theorem 1.4). We
onje
ture (see Conje
ture 1.3) that, for any t � 2, it holds that the 
onstant 2 � (2=t) alsosatis�es the foregoing requirement. It may be the 
ase that these 
onstants are the only onesthat satisfy this requirement.3. Chara
terize the 
lass of graph properties for whi
h the query 
omplexity of non-adaptivetesters is almost linear in the query 
omplexity of adaptive testers. Note that this 
lass maynot 
ontain the property of bipartiteness [GR07℄.5



4. Chara
terize the 
lass of graph properties for whi
h the query 
omplexity of non-adaptivetesters is almost quadrati
 in the query 
omplexity of adaptive testers.5. Chara
terize the 
lass of graph properties for whi
h the query 
omplexity of adaptive (resp.,non-adaptive) testers is almost linear in the re
ipro
al of the proximity parameter.The last 
hara
terization proje
t may be the most feasible among the three foregoing 
hara
teriza-tion proje
ts. We mention that this is partially addressed in [A09, AG℄, whi
h signi�
antly extendsand builds upon Theorem 1.4. Finally, we re
all the well-known open problem, partially addressedin [AS℄, of providing a 
hara
terization of the 
lass of graph properties that are testable withinquery 
omplexity that is polynomial in the re
ipro
al of the proximity parameter.1.4 OrganizationSe
tion 2 
ontains a review of the basi
 notions underlying this work as well as formal de�nitions ofthe graph properties that we study. In Se
tion 3 we present an adaptive tester for Clique Colle
tionthat has almost-linear query 
omplexity. This result stands in 
ontrast to the tight lower boundon the query 
omplexity of non-adaptive testers for Clique Colle
tion, presented in Se
tion 4.Theorem 1.1 follows by 
ombining the results in these se
tions. Larger gaps between the query
omplexity of adaptive versus non-adaptive testers (i.e., Theorems 1.2 and 5.7) are presented inSe
tion 5. On the other hand, in Se
tion 6, we present non-adaptive testers of query 
omplexitythat is almost linear in the re
ipro
al of the proximity parameter. We 
on
lude this paper, inSe
tion 7, by expli
itly presenting three perspe
tives on our results.2 PreliminariesIn this se
tion we review the de�nition of property testing, when spe
ialized to graph properties inthe adja
en
y matrix model. We also de�ne several natural graph properties, whi
h will serve asthe pivot of our study.2.1 Basi
 NotionsFor an integer n, we let [n℄ = f1; : : : ; ng. A generi
 N -vertex graph is denoted by G = ([N ℄; E),where E � ffu; vg : u; v 2 [N ℄g is a set of unordered pairs of verti
es. Any set of su
h graphsthat is 
losed under isomorphism is 
alled a graph property. By ora
le a

ess to su
h a graphG = ([N ℄; E) we mean ora
le a

ess to the Boolean fun
tion that answers the query fu; vg (orrather (u; v) 2 [N ℄� [N ℄) with the bit 1 if and only if fu; vg 2 E.De�nition 2.1 (property testing for graphs in the adja
en
y matrix model): A tester for a graphproperty � is a probabilisti
 ora
le ma
hine that, on input parameters N and � and a

ess to anN -vertex graph G = ([N ℄; E), outputs a binary verdi
t that satis�es the following two 
onditions.1. If G 2 � then the tester a

epts with probability at least 2=3.2. If G is �-far from � then the tester a

epts with probability at most 1=3, where G is �-farfrom � if for every N -vertex graph G0 = ([N ℄; E0) 2 � it holds that the symmetri
 di�eren
ebetween E and E0 has 
ardinality that is greater than �N2.44Indeed, it is more natural to require that this symmetri
 di�eren
e should have 
ardinality that is greater than� � �N2 �. The 
urrent 
onvention is adopted for the sake of 
onvenien
e.6



If the tester a

epts every graph in � with probability 1, then we say that it has one-sided error. Atester is 
alled non-adaptive if it determines all its queries based solely on its internal 
oin tosses(and the parameters N and �); otherwise it is 
alled adaptive.The query 
omplexity of a tester is the number of queries it makes to any N -vertex graph ora
le,as a fun
tion of the parameters N and �. We say that a tester is eÆ
ient if it runs in time that ispolynomial in its query 
omplexity, where basi
 operations on elements of [N ℄ (and in parti
ular,uniformly sele
ting an element in [N ℄) are 
ounted at unit 
ost. We note that all testers presentedin this paper are eÆ
ient, whereas the lower bounds hold also for non-eÆ
ient testers.We shall fo
us on properties that 
an be tested with query 
omplexity that only depends onthe proximity parameter, �. Thus, the query 
omplexity upper bounds that we state hold for anyvalues of � and N , but will be meaningful only for � > 1=N2 or so. In 
ontrast, the lower bounds(e.g., of 
(1=�)) 
annot possibly hold for � < 1=N2, but they will indeed hold for any � > N�
(1).Alternatively, one may 
onsider the query-
omplexity as a fun
tion of �, where for ea
h �xed valueof � > 0 the value of N tends to in�nity.Notation and a 
onvention. For a �xed graph G = ([N ℄; E), we denote by �(v) = fu :fu; vg2Eg the set of neighbors of vertex v. At times, we look at E as a subset of [N ℄ � [N ℄; that is, weoften identify E with f(u; v) :fu; vg2Eg. For two sets V1; V2 � [N ℄, we denote by E(V1; V2) the setof pairs (u; v) 2 E \ (V1 � V2).If a graph G = ([N ℄; E) is not �-far from a property � then we say that G is �-
lose to �; thismeans that at most �N2 edges should be added and/or removed from G su
h to yield a graph in�.2.2 The Graph Properties to be StudiedThe set of graphs that 
onsists of a 
olle
tion of isolated 
liques is 
alled 
lique 
olle
tion and isdenoted CC; that is, a graph G = ([N ℄; E) is in CC if and only if the vertex set [N ℄ 
an be partitionedinto (C1; : : : ; Ct) su
h that the subgraph indu
ed by ea
h Ci is a 
lique and there are no edges withendpoints in di�erent Ci's (i.e., for every u < v 2 [N ℄ it holds that fu; vg 2 E if and only if thereexists an i su
h that u; v 2 Ci). In other words, the relation de�ned by the graph edges is transitive.If t � 
 then we say that G is in CC�
; that is, CC�
 is the subset of CC that 
ontains graphs thatare ea
h a 
olle
tion of up-to 
 isolated 
liques.A bi-
lique is a 
omplete bipartite graph (i.e., a graph G = (V;E) su
h that V is partitionedinto (S; V n S) su
h that fu; vg 2 E if and only if u 2 S and v 2 V n S). Note that a graph is abi-
lique if and only if its 
omplement is in CC�2. The set of graphs that 
onsists of a 
olle
tion ofisolated bi-
liques is 
alled bi-
lique 
olle
tion and denoted BCC; that is, a graph G = ([N ℄; E) is inBCC if and only if the vertex set [N ℄ 
an be partitioned into (V1; : : : ; Vt) su
h that the subgraphindu
ed by ea
h Vi is a bi-
lique and there are no edges with endpoints in di�erent Vi's (i.e., ea
hVi is partitioned into (Si; Vi n Si) su
h that for every u < v 2 [N ℄ it holds that fu; vg 2 E if andonly if there exists an i su
h that (u; v) 2 Si � (Vi n Si)).Generalizations of BCC are obtained by 
onsidering 
olle
tions of \super-paths" and \super-
y
les" respe
tively. A super-path (of length t) is a sequen
e of disjoint sets of verti
es, S1; : : : ; St,su
h that verti
es u; v 2 Si2[t℄ Si are 
onne
ted by an edge if and only if for some i 2 [t � 1℄ itholds that u 2 Si and v 2 Si+1. Note that a bi-
lique 
an be viewed as a super-path of lengthtwo. We denote the set of graphs that 
onsists of a 
olle
tion of isolated super-paths of length tby SPtC (e.g., SP2C = BCC). Similarly, a super-
y
le (of length t) is a sequen
e of disjoint sets of7



verti
es, S1; : : : ; St, su
h that verti
es u; v 2 Si2[t℄ Si are 
onne
ted by an edge if and only if forsome i 2 [t℄ it holds that u 2 Si and v 2 S(i mod t)+1. Note that a bi-
lique that has at least twoverti
es on ea
h side 
an be viewed as a super-
y
le of length four (by partitioning ea
h of its sidesinto two parts). We denote the set of graphs that 
onsists of a 
olle
tion of isolated super-
y
les oflength t by SCtC (e.g., SC4C � BCC, where the stri
t 
ontainment is due to the pathologi
al 
aseof bi-
liques having at most one node on one side).2.3 On Proving Lower Bound for Property TestingAll our lower bounds employ the following method, whi
h is 
ommonly attributed to Yao [Y77℄. Toprove that a 
ertain 
lass, C, of algorithms 
annot de
ide a 
ertain (promise) problem, we presenttwo distributions, one 
on
entrated on yes-instan
es and the other 
on
entrated on no-instan
esand prove that any algorithm in C 
annot distinguish these two distributions. In the 
ontext ofproperty testing, the �rst distribution, D1, is over obje
ts that have the predetermined property�, whereas the se
ond distribution, D2, is over obje
ts that are �-far from �, where � is the valueof the proximity parameter for whi
h we seek to prove the hardness of testing. Now, if T is a testerfor �, then on input proximity parameter �, it should hold that:1. With probability at least 2=3 (taken over both D1 and T 's internal 
oin tosses), when givena

ess to an obje
t sele
ted a

ording to D1 the tester T a

epts.2. With probability at most 1=3 (taken over both D2 and T 's internal 
oin tosses), when givena

ess to an obje
t sele
ted a

ording to D2 the tester T a

epts.Let us de�ne the distinguishing gap of M between D1 and D2 as jp1 � p2j where pi denotes theprobability that M outputs 1 (\a

ept") when given a

ess to an obje
t drawn a

ording to Di.Thus, T must be able to distinguish, with a gap of at least 1=3 between obje
ts distributed a

ordingto D1 and obje
ts distributed a

ording to D2. Therefore, in order to prove a query 
omplexitylower bound q, we show that ora
le ma
hines M making fewer than q queries 
annot distinguishsu
h distributions with gap at least 1=3. In other words, it suÆ
es to establish an upper bound onthe distinguishing gap of any ora
le ma
hine that makes a number of queries that is smaller thanthe 
laimed lower bound. Using an averaging argument (and relying on the la
k of a uniformity
ondition), it suÆ
es to establish this upper bound for deterministi
 ma
hines.Finally, when 
onsidering non-adaptive testers, it suÆ
es to 
onsider a �xed sequen
e of queries,and the distribution of answers provided by obje
ts sele
ted a

ording to the two distributions.Thus, for non-adaptive ora
le ma
hines, the distinguishing gap is upper bounded by the statisti
aldi�eren
e between these two distributions of answers. Re
all that the statisti
al di�eren
e betweentwo distributions A and B ismaxS fPre�A[e 2 S℄� Pre�B[e 2 S℄g = 12 �Xv jPre�A[e = v℄� Pre�B[e = v℄j (1)where Pre�D[P (e)℄ denotes the probability that an element drawn a

ording to distribution Dsatis�es the predi
ate P .2.4 Annoying Te
hni
alitiesWe allowed ourselves various immaterial ina

ura
ies. For example, various quantities (e.g., log2(1=�))are treated as if they are integers, whereas one should a
tually use some rounding and 
ompensatefor the rounding error. At times, we ignore events that o

ur with probability that is inversely8



proportional to the number of verti
es; for example, when we sele
t a random sample of s = O(1)(or s = eO(1=�)) verti
es, we often analyze it as if sampling was done with repetitions. In somepla
es, we do not spe
ify the \high" (
onstant) probability with whi
h some events o

ur; but su
hmissing details are easy to �ll-up. In other pla
es, we spe
ify high 
onstants that are not the bestones possible.3 The Adaptive Query Complexity of Clique Colle
tionIn this se
tion we study the (adaptive) query 
omplexity of 
lique 
olle
tion, presenting an almostoptimal (adaptive) tester for this property. Loosely speaking, the tester starts by �nding a fewrandom neighbors of a few randomly sele
ted start verti
es, and then examines the existen
e ofedges among the neighbors of ea
h start vertex as well as among these neighbors and the non-neighbors of ea
h start vertex. Note that if for some vertex v the algorithm either �nds twoneighbors of v that do not have an edge between them, or the algorithm �nds a neighbor of v anda non-neighbor of v that have an edge between them, then it has eviden
e that the graph is not a
lique 
olle
tion.We highlight the fa
t that adaptivity is used in order to perform queries that refer only to pairsof neighbors of the same start vertex. To demonstrate the importan
e of this fa
t, 
onsider the
ase that the N -vertex graph is partitioned into O(1=�) 
onne
ted 
omponents ea
h having O(�N)verti
es. Suppose that we wish to tell whether the 
onne
ted 
omponent that 
ontains the vertex vis indeed a 
lique, or there is a 
onstant fra
tion of missing edges between the neighbors of v. Usingadaptive queries we may �rst �nd a 
onstant number of neighbors of v, by sele
ting t def= O(1=�)random verti
es and 
he
king whether ea
h sele
ted vertex is adja
ent to v. We 
an then 
he
kwhether these 
onstant number of neighbors are adja
ent to ea
h other. In 
ontrast, intuitively,a non-adaptive pro
edure 
annot avoid making all �t2� possible queries, sin
e it \does not know"whi
h of the t verti
es are neighbors of v.The foregoing adaptive pro
edure is tailored to the 
ase that the N -vertex graph is partitionedinto O(1=�) (\strongly 
onne
ted") 
omponents, ea
h having O(�N) verti
es. In su
h a 
ase, itsuÆ
es to 
he
k that a 
onstant fra
tion of these 
omponents are in fa
t 
liques (or rather 
lose tobeing so), as des
ribed in the foregoing adaptive pro
edure, and that there are no edges (or ratherrelatively few edges) between the 
liques. However, if the 
omponents (and potential 
liques) arelarger, then we should 
he
k more of them. Fortunately, due to their larger size, �nding neighborsrequires less queries, and the total number of queries remains invariant.Thus, the algorithm, des
ribed next, works in iterations, where the iterations di�er in thenumber of start verti
es sele
ted and in the size of the sample used to get uniformly sele
tedneighbors (and non-neighbors) of these start verti
es. Ea
h iteration is designed to dete
t theexisten
e of verti
es with a 
ertain, iteration dependent, lower bound on their degree, for whi
hthe following holds. Either there are relatively many missing edges between their neighbors, orthere are relatively many \super
uous" edges between their neighbors and their non-neighbors.The quanti�
ation of \relatively many" is also dependent on the iteration. As we show in our
orre
tness proof, if the graph is �-far from CC, then there must be relatively many su
h verti
esfor at least one of the iterations (where again, the quanti�
ation of \relatively many" depends onthe iteration and is related to the number of start verti
es that are sele
ted in the iteration).Algorithm 3.1 (adaptive tester for CC): On input N and � and ora
le a

ess to a graph G =([N ℄; E), set t = �(log3(1=�)), and pro
eed in ` def= log2(1=�) + 2 iterations as follows: For i =9



1; : : : ; `, sele
t uniformly 10 � 2i start verti
es and for ea
h sele
ted vertex v 2 [N ℄ perform thefollowing sub-test, denoted sub-testi(v):1. Sele
t at random a sample, S, of t=(2i�) verti
es.2. Determine �S(v) = S \ �(v), by making the queries (v; w) for ea
h w 2 S.3. If j�S(v)j �pt=2i� then 
he
k that for every u;w 2 �S(v) it holds that (u;w) 2 E. Otherwise(i.e., j�S(v)j >pt=(2i�)), sele
t a sample of t=(2i�) pairs in �S(v)��S(v) and 
he
k that ea
hsele
ted pair is in E.4. Sele
t a sample of t=(2i�) pairs in �S(v)� (S n �S(v)) and 
he
k that ea
h sele
ted pair is notin E.The sub-test (i.e., sub-testi(v)) a

epts if and only if all 
he
ks were positive (i.e., no edges weremissed in Step 3 and no edges were dete
ted in Step 4). The tester itself a

epts if and only if allPì=1 10 � 2i invo
ations of the sub-test a

epted.The query 
omplexity of this algorithm is Pì=1 10 � 2i � O(t=(2i�)) = O(` � t=�) = eO(1=�), and therunning time is of the same order as the query 
omplexity. Clearly, this algorithm a

epts withprobability 1 any graph that is in CC. It remains to analyze its behavior on graphs that are �-farfrom CC, and thus establish Part 1 of Theorem 1.1, whi
h states that there exists an adaptive(one-sided error) tester for CC whose 
omplexity is eO(��1).Lemma 3.2 If G = ([N ℄; E) is �-far from CC, then on input N; � and ora
le a

ess to G, Algo-rithm 3.1 reje
ts with probability at least 2=3.Proof: We shall prove the 
ontrapositive statement; that is, that if Algorithm 3.1 a

epts a graphG with probability at least 1=3, then G is �-
lose to CC. The proof makes use of the following notionof i-good start verti
es (for i 2 [`℄). We �rst show that if Algorithm 3.1 a

epts with probability atleast 1=3, then the number of verti
es with a relatively high degree that are not i-good is relativelysmall, and next show how to use i-good verti
es (with a relatively high degree) in order to 
onstru
ta partition of the verti
es that demonstrates that the graph is �-
lose to CC.The following 
entral de�nition of i-good verti
es refers to a parameter 
, whi
h is set to
=t, where t is as determined in Algorithm 3.1 and 
 is a 
onstant (whi
h will be 
hosen to besuÆ
iently large for the purposes of the analysis). In fa
t, it is useful to think of �rst setting 
 tobe 1=(
0 log3(1=�)) for some suÆ
iently large 
onstant 
0 (whi
h ensures that we get a good partitionbased on i-good verti
es), and then setting t (whi
h determines the sample sizes sele
ted by thealgorithm) to be 
=
. (In fa
t, at the heart of the analysis is a parameter � whi
h is set to be1=(
00`) for a 
onstant 
00, and 
 is set to be �=(
000`2) for a 
onstant 
000.)De�nition 3.2.1 A vertex v is i-good if the following two 
onditions hold.1. The number of missing edges in the subgraph indu
ed by �(v) is at most 
 � 2i� � j�(v)j �N .2. For every positive integer j � j0 def= log2(j�(v)j=(
 � 2i�N)), the number of verti
es in �(v)that have at least 
 � 2i+j� �N neighbors that do not belong to �(v) is at most 2�j � j�(v)j.
10



Note that Condition 1 holds va
uously whenever j�(v)j < 
 � 2i� �N (sin
e in su
h a 
ase, j�(v)j2 <
 � 2i� � j�(v)j � N). However, when j�(v)j is suÆ
iently larger than 
 � 2i� � N , then Condition 1implies that a large fra
tion of the verti
es in �(v) neighbor almost all verti
es in �(v), so that�(v) is 
lose to being a 
lique. Condition 2 implies that almost all verti
es in �(v) have relativelyfew neighbors outside of �(v), where \almost all" and \relatively few" are quanti�ed and related.On the other hand, as the next 
laim establishes, if a vertex v is not i-good (and has a suÆ
ientlyhigh degree), then sub-testi(v) will dete
t it with high 
onstant probability.Claim 3.2.2 If v has degree at least 
 �2i��N and is not i-good, then the probability that sub-testi(v)a

epts is less than 0:05.Proof: Intuitively, the lower bound on j�(v)j implies that the violation of any of the two 
onditionsof De�nition 3.2.1 is dete
ted with high probability by sub-testi(v). For example, if a 0:01 fra
tionof the verti
es in �(v) have less than 0:99 � j�(v)j neighbors in �(v), then the residual sample �S(v)(
reated by sub-testi(v)) is likely to 
ontain a 
onstant fra
tion of verti
es that miss a 
onstantfra
tion of neighbors in �S(v). The a
tual proof, whi
h refers to the two 
onditions of i-goodness,follows. In this proof, whenever we say: \with high 
onstant probability", we mean with probabilityat least 1 � Æ, where Æ is a 
onstant that is suÆ
iently small, so that when we sum all failureprobabilities, we get at most 0:05.Assume that Condition 1 of i-goodness does not hold for v, and let� def= 
 � 2i� � j�(v)j �Nj�(v)j2 = 
 � 2i� �Nj�(v)j (2)denote the lower bound on the fra
tion of missing edges in �(v). As noted in the dis
ussion followingDe�nition 3.2.1, Condition 1 of i-goodness may be violated only if j�(v)j � 
 � 2i� �N . Re
all thatsub-testi(v) sele
ts a sample, S of t=(2i�) verti
es, and that t = 
=
 (for a 
onstant 
). By amultipli
ative Cherno� bound, for a suÆ
iently large 
, with high 
onstant probability, it holdsthat j�S(v)j � m=2, where m def= t�2i � j�(v)jN (3)is the expe
ted size of �S(v), and so m � t � 
 = 
.Assume from this point on that indeed j�S(v)j � n = m=2, and note that the members of�S(v) are distributed uniformly in �(v). Therefore, we may 
onsider n = m=2 uniformly dis-tributed verti
es in �(v), and de�ne the following 0=1-valued random variables �j;k for every1 � j < k � n. We let �j;k = 1 if there is no edge between the jth and kth verti
es in thesample (of verti
es in �(v)). Hen
e, Exp[�j;k℄ � �. We next give an upper bound (in terms of 
) onVar hPj<k �j;ki =Exp2 hPj<k �j;ki, so that by applying Chebyshev's Inequality, it will follow that,with high 
onstant probability, the fra
tion of edges that are missing in the subgraph indu
ed bythe said sample is at least �=2.By the de�nition of �j;k, we have �n2� random variables, whi
h are partially pairwise independent(i.e., �j;k is independent of �j0;k0 if jfj; k; j0; k0gj = 4). Furthermore, these random variables assumevalues in f0; 1g (and so �2j;k = �j;k) and it holds (by the de�nitions of n and �) that n � � = t
=2 =
=2. Assume, for simpli
ity that Exp[�j;k℄ equals � (and is not only lower bounded by �). Itfollows that Exp hPj<k �j;ki = �n2� � � > n2�=3 and Var hPj<k �j;ki < 4 � Exp hPj<k;k0 �j;k�j;k0i �4n � Exp hPj<k �j;ki < 2n3�. Thus, Var[Pj<k �j;k℄Exp2[Pj<k �j;k℄ < 18n� = 36t
 = 36=
, whi
h 
an be made anarbitrary small 
onstant by 
hoosing 
 to be suÆ
iently large.11



We thus obtain that if Condition 1 of i-goodness does not hold for v, then with high 
onstantprobability, the fra
tion of pairs of verti
es in �S(v) that do not have an edge between them is at least�=2. Conditioned on this event, if j�S(v)j �pt=(2i�), so that Step 3 of sub-testi(v) 
he
ks whether(u;w) 2 E for every u;w 2 �S(v), then we are done. Otherwise, the sub-test sele
ts a randomsample of t2i� � t
� = 
� pairs of verti
es in �S(v), and with probability at least 1 � (1 � �=2)
=�,whi
h is 
lose to 1 for a suÆ
iently large 
, it will dete
t a missing edge.Next assume that Condition 2 of i-goodness does not hold for v; that is, there exists a j � j0su
h that more than 2�j � j�(v)j verti
es in �(v) have ea
h a \high out-degree", that is, have ea
hat least 
 � 2i+j� � N neighbors that do not belong to �(v). Using the same setting of m and nas in the previous paragraph (as well as the premise of the 
laim: j�(v)j � 
 � 2i� � N), we note(again) that j�S(v)j � n = m=2 with high 
onstant probability. Similarly, sin
e there must be atleast 
 � 2i+j� �N verti
es in [N ℄ n�(v) (the neighbors of the high out-degree verti
es that are not in�(v)), the number of verti
es in S n �(v) is also at least half its expe
ted value with high 
onstantprobability. Assume that these events in fa
t hold.Sin
e v has at least 2�j �j�(v)j high out-degree neighbors, on
e again by a multipli
ative Cherno�bound, with high 
onstant probability we have that �S(v) 
ontains at least j�(v)j � 2�j=2 � t
 �2j0�j=4 � t
=4 = 
=4 su
h verti
es (where these verti
es are uniformly distributed among the highout-degree neighbors of v). Consider a �xed 
hoi
e of su
h a high out-degree vertex u in �S(v).Sin
e the verti
es in S n�S(v) are uniformly distributed in [N ℄n�(v), with high 
onstant probability(by a multipli
ative Cherno� bound), the number of neighbors that u has in S n�S(v) is at least halfits expe
ted value (i.e., at least 
 � 2i+j� � jSj=2). It follows by Markov's inequality that with high
onstant probability, the edge density in �S(v)�(Sn�S(v)) is at least �0 def= 2�j �
 �2i+j�=4 = 
 �2i�=4.Thus, a sample of t2i� = 

�2i� random pairs in �S(v)� (S n�S(v)) will hit an edge with high 
onstantprobability and 
ause Step 4 (of sub-testi(v)) to reje
t. The 
laim follows.Claim 3.2.3 If Algorithm 3.1 a

epts with probability at least 1=3, then, for every i 2 [`℄ thenumber of verti
es of degree at least 
 � 2i� �N that are not i-good is at most 2�i �N=4.Claim 3.2.3 follows by 
ombining Claim 3.2.2 with the fa
t that Algorithm 3.1 invokes sub-testion 10 � 2i random verti
es (and using (1 � 2�i=4)10�2i + 0:05 < exp(�10=4) + 0:05 < 1=3). Next,using the 
on
lusion of Claim 3.2.3, we turn to 
onstru
t a partition (C1; : : : ; Ct) of [N ℄ su
h thatthe following holds: the total number of missing edges (in G) within the Ci's is at most � � N2=2and the total number of (super
uous) edges between the Ci's is at most � �N2=2. The partition is
onstru
ted in iterations. We start with a motivating dis
ussion.Note that any i-good vertex, v, yields a set of verti
es (i.e., �(v)) that is \
lose" to being a
lique, where \
loseness" has a stri
ter meaning when i is smaller. Spe
i�
ally, by Condition 1,the number of missing edges between pairs of verti
es in this set is at most 
 � 2i� � j�(v)j � N .But we should also 
are about how this set \intera
ts" with the rest of the graph, whi
h is whereCondition 2 
omes into play. Letting Cv 
ontain only the verti
es in �(v) that have less than j�(v)jneighbors outside of �(v), we upper-bound the number of edges going out of Cv as follows: We�rst note that these edges are either edges between Cv and �(v) n Cv or edges between Cv and[N ℄ n �(v). The number of edges of the �rst type is upper-bounded by jCvj � j�(v) n Cvj, whereasj�(v) n Cvj � 2�j0 j�(v)j (by using Condition 2 with j = j0, while noting that 
 � 2i+j0�N = j�(v)j(sin
e j0 = log2(j�(v)j=(
 � 2i�N)))). Thus, the number of edges of the �rst type is upper-boundedby jCvj�2�j0 j�(v)j = jCvj�
2i�N � 
2i��j�(v)j�N . The number of edges of the se
ond type is upper-bounded by assigning ea
h vertex u 2 Cv to the smallest j 2 [j0℄ su
h that j�(u)n�(v)j < 
 �2i+j��N .(This means that u violates Condition 2 w.r.t j� 1.) Thus, the number of edges of the se
ond type12



is upper-bounded by j0Xj=1 2�(j�1)j�(v)j � 
 � 2i+j� �N = 2j0 � 
2i� � j�(v)j �N; (4)where the equality follows from the de�nition of j0. Thus, the total number of the edges of bothtypes is upper-bounded by (2j0+1) �
2i� � j�(v)j �N , whi
h is upper-bounded by 3` �
2i� � j�(v)j �N(sin
e j0 � log2(1=(
 � 2i�)) � log2(1=
�) = (1 + o(1)) � `).The foregoing paragraph identi�es a single (good) 
lique, while we wish to identify all 
liques.Starting with i = 1, the basi
 idea is to identify new 
liques by using i-good verti
es that are not
overed by previously identi�ed 
liques. If we are lu
ky and the entire graph is 
overed this way,then we halt. But it may indeed be the 
ase that some verti
es are left un
overed and that theyare not i-good. At this point we invoke Claim 3.2.3 and 
on
lude that these verti
es either havelow degree (i.e., have degree at most 
 �2i� �N) or are relatively few in number (i.e., their number isat most 2�i �N=4). Ignoring (for a moment) the verti
es of low degree, we deal with the remainingverti
es by invoking the same reasoning with respe
t to an in
remented value of i (i.e., i i+ 1).The key observation is that the number of violations, 
aused by 
liques identi�ed in ea
h iterationi, is upper-bounded by the produ
t of the number of verti
es 
overed in that iteration (whi
h islinearly related to 2�i) and the \density" of violations 
aused by ea
h identi�ed 
lique (whi
h islinearly related to 2i�). Thus, intuitively, ea
h iteration 
ontributes O(`
� � N2) violations, andafter the last iteration (i.e., i = `) we are left with at most 2�i �N=4 < (�=4)N verti
es, whi
h we
an a�ord to identify as a single 
lique (or alternatively as isolated verti
es).Two problems, whi
h were ignored by the foregoing des
ription, arise from the fa
t that verti
esthat are identi�ed as belonging to the 
lique Cv (of some i-good vertex v) may belong either topreviously identi�ed 
liques or to the set of verti
es 
ast aside as having low degree. Our solutionis to use only i-good verti
es for whi
h the majority of their neighbors do not belong to these two
ategories (i.e., verti
es v su
h that most of �(v) belongs neither to previously identi�ed 
liquesnor have low degree). This leads to the following des
ription.The partition re
onstru
tion pro
edure. The iterative pro
edure is initiated with C = L0 = ;,R0 = [N ℄ and i = 1, where C denotes the set of verti
es \
overed" (by 
liques) so far, Ri�1denotes the set of \remaining" verti
es after iteration i � 1 and Li�1 denotes the set of verti
es
ast aside (as having \low degree") in iteration i � 1. In ea
h iteration, a set Fi is 
onstru
ted,where ea
h vertex v 2 Fi is used to determine a 
lique (or, more pre
isely, a subset that is 
loseto being a 
lique). The pro
edure refers to a parameter � = 1=(
3`), where 
3 > 1 is a suÆ
ientlylarge 
onstant, whi
h determines the \low degree" threshold (for ea
h iteration). Re
all that
 = �(log�3(1=�)) = �(1=`3), so that 
 = o(�). For i = 1; : : : ; `, the ith iteration pro
eeds asfollows, where Fi is initialized to ;.1. Pi
k an arbitrary vertex v 2 Ri�1 n C that satis�es the following three 
onditions(a) v is i-good.(b) v has suÆ
iently high degree; that is, j�(v)j � � � 2i� �N .(
) v has relatively few neighbors in C; that is, j�(v) \ Cj � j�(v)j=4.If no su
h vertex exists, de�ne Li = fv 2 Ri�1nC : j�(v)j < � �2i��Ng and Ri = Ri�1n(Li[C).If i < ` then pro
eed to the next iteration, and otherwise terminate.13



verti
es in �(v) with many neighbors outside of �(v)
verti
es in �(v) taken by C

v uC 0v �(v) �(u) n �(v)Figure 1: An Illustration for the 
lique 
olle
tion partition re
onstru
tion pro
edure.2. For a vertex v as sele
ted in Step 1, let Cv = fu 2 �(v) : j�(u) n �(v)j < j�(v)jg. Form a new
lique with the vertex set C 0v  Cv n C, and update Fi  Fi [ fvg and C  C [ C 0v.For an illustration, see Figure 1. Note that by Condition 1
, for every v 2 Fi, it holds that jC 0vj �jCvj � (j�(v)j=4), whereas by i-goodness5 (and j0 = log2(j�(v)j=(
 � 2i�N)) � log2(�=
) = !(1))we have jCvj > (1 � o(1)) � j�(v)j. Thus, quality guarantees that are quanti�ed in terms of j�(v)jtranslate well to similar guarantees in terms of jC 0vj. This fa
t, 
ombined with the fa
t that Cv
annot 
ontain many low degree verti
es (i.e., verti
es 
ast aside in prior iterations as having lowdegree), plays an important role in the following analysis.Claim 3.2.4 Assume that 
 � �=(48`2). Referring to the partition re
onstru
tion pro
edure, forevery i 2 [`℄, the following holds.1. The number of missing edges inside the 
liques formed in iteration i is at most 8
� �N2; thatis, ������ [v2Fif(u;w) 2 C 0v � C 0v : (u;w) 62 Eg������ � 8
� �N2: (5)2. The number of (\super
uous") edges between 
liques formed in iteration i and either Ri orother 
liques formed in the same iteration is at most 24` � 
� �N2; a
tually,������ [v2Fif(u;w) 2 C 0v � (Ri�1 n C 0v) : (u;w) 2 Eg������ � 24` � 
� �N2: (6)3. jRij � 2�i �N and jLij � 2�(i�1) �N .Thus, the total number of violations 
aused by the 
liques that are formed by the foregoing pro-
edure is upper-bounded by (24 + o(1))`2 � 
� � N2 = o(�N2), assuming 
 = o(`�2). (Re
all that` def= log2(1=�) + 2, and that we shall set 
 = �(log�3(1=�)) and � = �(log�1(1=�)).)Proof: We prove all items simultaneously, by indu
tion from i = 0 to i = `. Needless to say, allitems hold va
uously for i = 0, and thus we fo
us on the indu
tion step.5Every v 2 Fi is i-good and thus satis�es jCvj > (1� 2�j0 ) � j�(v)j.14



Starting with Item 1, we note that every v 2 Fi is i-good and thus the number of edges missingin C 0v � C 0v � �(v) � �(v) is at most 
2i� � j�(v)j � N < 2
2i� � jC 0vj � N , where the inequalityfollows from jC 0vj > j�(v)j=2 (whi
h follows by 
ombining jC 0vj � jCvj � (�(v)j=4) and jCvj �(1 � 2�j0) � j�(v)j, where j0 = log2(j�(v)j=(
 � 2i�N)) > 2). Observe that the i-goodness of v,
ombined with j�(v)j � � � 2i� � N and the relation between 
 and � (i.e., 
 = o(�)), impliesthat �(v) 
ontains at least 0:99 � j�(v)j verti
es of degree ex
eeding 0:99 � j�(v)j. This implies thatj�(v) \ (Sj2[i�1℄Lj)j < jCvj=4, be
ause j�(v)j � �2i� � N whereas every vertex in Sj2[i�1℄ Lj hasdegree at most �2i�1� � N . Observing that C 0v = (C 0v \ Ri�1) [ (C 0v \ Sj2[i�1℄ Lj), it follows thatjSv2Fi C 0v \Ri�1j > jSv2Fi C 0vj=2, and thusPv2Fi jC 0vj � 2jRi�1j. Combining all these bounds, weobtain ������ [v2Fif(u;w) 2 C 0v � C 0v : (u;w) 62 Eg������ = Xv2Fi jf(u;w) 2 C 0v � C 0v : (u;w) 62 Egj (7)� 2
2i� �Xv2Fi jC 0vj �N (8)� 2
2i� � 2jRi�1j �N: (9)Using the indu
tion hypothesis regarding Ri�1 (i.e., jRi�1j < 2�(i�1) �N), Item 1 follows.Item 2 is proved in a similar fashion. Re
all that in the motivating dis
ussion (i.e., the textpre
eding and following Eq. (4)) we showed that the i-goodness of v (whi
h follows from v 2 Fi)implies that the number of edges in C 0v� (Ri�1 nC 0v) � Cv� ([N ℄nCv) is at most 3` �
2i� � j�(v)j �N .Sin
e we have shown that jC 0vj � j�(v)j=2, this expression is upper-bounded by 6` � 
2i� � jC 0vj � N .Using again Pv2Fi jC 0vj < 2jRi�1j and jRi�1j < 2�(i�1) �N , we establish Item 2.Turning to Item 3, we �rst note that Li � Ri�1 and thus jLij � jRi�1j � 2�(i�1) � N . As forRi, it may 
ontain only verti
es that are neither in Li nor in Sv2Fi C 0v. It follows that for everyv 2 Ri either v is not i-good (although it has degree at least � � 2i� �N) or it has at least j�(v)j=4neighbors in previously identi�ed 
liques (whi
h implies j�(v) \ (Sw2Sj2[i℄ Fj C 0w)j � j�(v)j=4).By Claim 3.2.3, the number of verti
es of the �rst type is at most 2�i � N=4. As for verti
es ofthe se
ond type, ea
h su
h vertex v (in Ri) requires at least j�(v)j=4 � � � 2i� � N=4 edges fromC 0 def= Sw2Sj2[i℄ Fj C 0w to it (be
ause C 0 is the set of verti
es 
overed by previously identi�ed 
liquesat the time iteration i is 
ompleted). By Item 2, the total number of edges going out from C 0 toRi is at most i � 24` � 
� �N2 � 24`2 � 
� �N2. On the other hand, as noted above, ea
h vertex of these
ond type has at least � � 2i� �N=4 edges in
ident to verti
es in C 0. Hen
e, the number of verti
esof the se
ond type is upper-bounded by24`2 � 
� �N2� � 2i� �N = 24`2 � 
� � 2�iN; (10)Thus, jRij � ((1=4) + 24`2
��1) � 2�i �N , and, for 
 � �=(48`2), we get that jRij � 2�i �N .Completing the re
onstru
tion and its analysis. The foregoing 
onstru
tion leaves \unassigned" theverti
es in R` as well as some of the verti
es in L1; : : : ; L`. (Note that some verti
es in S`�1i=1 Limay be pla
ed in 
liques 
onstru
ted in later iterations, but there is no guarantee that this a
tuallyhappens.) We now assign ea
h of these remaining verti
es to a singleton 
lique (i.e., an isolatedvertex). The number of violations 
aused by this assignment equals the number of edges with bothendpoints in R0 def= R`[Sì=1 Li, be
ause edges with a single endpoint in R0 were already a

ounted15



for in Item 2 of Claim 3.2.4. Nevertheless, we upper-bound the number of violations by the totalnumber of edges adja
ent at R0, whi
h in turn is upper-bounded byXv2R`[Si2[`℄ Li j�(v)j � jR`j �N + X̀i=1 Xv2Li j�(v)j (11)� �N4 �N + X̀i=1 2�(i�1)N � �2i�N (12)= �4 �N2 + 2` � � � �N2: (13)For � � 1=(8`), it follows that the number of these edges is smaller than �N2=2. Combining thiswith the bounds on the number of violating edges (or non-edges) as provided by Claim 3.2.4, thelemma follows. Note that the foregoing uses � � 1=(8`) and well as 
 � �=(48`2) = o(`2), whi
h
an be satis�ed by setting � = �(log�1(1=�)) and 
 = �(log�3(1=�)), sin
e ` = log2(1=�) + 2.4 The Non-Adaptive Query Complexity of Clique Colle
tionIn this se
tion we study the non-adaptive query 
omplexity of 
lique 
olle
tion. We �rst establishthe lower bound 
laimed in Part 2 of Theorem 1.1, and next show that this lower bound is tight.4.1 The Lower BoundIn this se
tion we establish Part 2 of Theorem 1.1. Spe
i�
ally, for every value of � > 0, we 
onsidertwo di�erent sets of graphs, one 
onsisting of graphs in CC and the other 
onsisting of graphs thatare �-far from CC, and show that a non-adaptive algorithm of query 
omplexity o(��4=3) 
annotdistinguish between graphs sele
ted at random in these sets. Ea
h set is a
tually determined by asingle graph and all possible permutations of the vertex names.4.1.1 The two setsThe �rst set, denoted CC�, 
ontains all N -vertex graphs su
h that ea
h graph 
onsists of (3�)�1
liques, and ea
h 
lique has size 3� �N . It will be instru
tive to partition these (3�)�1 
liques into(6�)�1 pairs (ea
h 
onsisting of two 
liques). The se
ond set, denoted BCC�, 
ontains all N -vertexgraphs su
h that ea
h graph 
onsists of (6�)�1 bi-
liques, and ea
h bi-
lique has 3� � N verti
eson ea
h side. For an illustration, see Figure 2. Indeed, CC� � CC, whereas, as we show next, thegraphs in BCC� are all �-far from CC.Claim 4.1 Every graph in BCC� is �-far from CC.Proof: Let G = ([N ℄; E) be a graph in BCC�, let (V 1j ; V 2j ) be the pair of sets of verti
es in its jthbi
lique, and let Vj = V 1j [ V 2j . For any partition P = (X1; : : : ;X`) of [N ℄, let �G(P) denote thenumber of edge modi�
ations that are required in order to make the sets X1; : : : ;X` into 
liqueswith no edges between them. Then,�G(P) = X̀i=1 jE(Xi)j+Xi<i0 jE(Xi;Xi0)j ; (14)16
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Figure 2: An Illustration for the lower bound 
onstru
tion that establishes Part 2 of Theorem 1.1.where E(Xi) denotes the set of (unordered) pairs of (di�erent) verti
es in Xi that do not have anedge between them. Thus, the distan
e between G and CC is N�2 times the minimum, taken overall partitions P, of �G(P). We need to show that �G(P) > �N2, for every partition P.We �rst observe that, without loss of generality, we may assume that ea
h set Xi interse
ts atmost one Vj . This is true sin
e otherwise, by re�ning the partition (i.e., repla
ing ea
h Xi withthe 
olle
tion of all nonempty Xi \ Vj), the value of �G(�) 
an only de
rease (be
ause there are noedges between the di�erent Vj 's, hen
e this re�nement 
auses no new violations). Next, we showthat, without loss of generality, we may also assume that ea
h Vj interse
ts at most one Xi. To seewhy this is true, 
onsider the 
ase that a set Vj has a non-empty interse
tion with more than oneXi � Vj, and let �i = jV 1j \Xij=jV 1j j, and �i = jV 2j \Xij=jV 2j j (so that Pi �i = 1 and Pi �i = 1).Let P 0 be the partition that repla
es all Xi's that interse
t Vj with a single set. Then, if we denotejV 1j j = jV 2j j by K, we have�G(P) ��G(P 0) = X̀i=1 jE(V 1j \Xi; V 2j nXi)j (15)�12 � X̀i=1 jE(V 1j \Xi; V 1j nXi)j � 12 � X̀i=1 jE(V 2j \Xi; V 2j nXi)j (16)= X̀i=1 ��iK � (1� �i)K ��12�iK(1� �i)K + 12�iK(1� �i)K�� (17)= K22 � X̀i=1(�i � �i)2 � 0 ; (18)where E(Y;Z) denotes the set of pairs of verti
es in Y �Z that do not have an edge between them.Hen
e, �G(P) � �G(P 0), meaning that the distan
e 
an only de
rease by taking the union of allsets Xi that interse
t Vj. It follows that it suÆ
es to 
ompute �G(P) for the partition P = fVjg1=6�j=1 .For this partition we get �(P) = 1=6�Xj=1 �jE(V 1j ; V 1j )j+ jE(V 2j ; V 2j )j� (19)= 16� � �9�2N2 � 3�N� > �N2 ; (20)using � > 1=N . The 
laim follows. 17



4.1.2 The indistinguishability resultIn order to motivate the 
laim that a non-adaptive algorithm of query 
omplexity o(��4=3) 
annotdistinguish between graphs sele
ted at random in these sets, 
onsider the (seemingly best su
h)algorithm that sele
ts o(��2=3) verti
es and inspe
ts the indu
ed subgraph. Consider the partitionof a graph in CC� into (6�)�1 pairs of 
liques, and 
orrespondingly the partition of a graph in BCC�into (6�)�1 bi-
liques. Then, the probability that a sample of o(��2=3) verti
es 
ontains at leastthree verti
es that reside in the same part (of 6� �N verti
es) is o(��2=3)3 �(6�)2 = o(1). On the otherhand, if this event does not o

ur, then the answers obtained from both graphs are indistinguishable(be
ause in ea
h 
ase a random pair of verti
es residing in the same part is 
onne
ted by an edgewith probability very 
lose to 1=2). As is outlined next, this intuition extends to an arbitrarynon-adaptive algorithm.Spe
i�
ally, by an averaging argument, it suÆ
es to 
onsider deterministi
 algorithms, whi
h arefully spe
i�ed by the sequen
e of queries that they make and their de
ision on ea
h 
orrespondingsequen
e of answers. Re
all that these (�xed) queries are elements of [N ℄� [N ℄. We shall show that,for every sequen
e of o(��4=3) queries, the answers provided by a randomly sele
ted element of CC�are statisti
ally 
lose to the answers provided by a randomly sele
ted element of BCC�. We shall usethe following notation: For an N -vertex graph G and a query (u; v), we denote the 
orrespondinganswer by ansG(u; v); that is, ansG(u; v) = 1 if fu; vg is an edge in G and ansG(u; v) = 0 otherwise.Lemma 4.2 Let G1 and G2 be random N -vertex graphs uniformly distributed in CC� and BCC�, re-spe
tively. Then, for every sequen
e (v1; v2); : : : ; (v2q�1; v2q) 2 [N ℄� [N ℄, where the vi's are not ne
-essarily distin
t, it holds that the statisti
al di�eren
e between ansG1(v1; v2); : : : ; ansG1(v2q�1; v2q)and ansG2(v1; v2); : : : ; ansG2(v2q�1; v2q) is O(q3=2�2).Part 2 of Theorem 1.1 follows (
f., also, Se
tion 2.3).Proof: We 
onsider a 1-1 
orresponden
e, denoted �, between the verti
es of an N -vertex graphin CC� [ BCC� and triples in [(6�)�1℄� f1; 2g � [3� �N ℄. Spe
i�
ally, �(v) = (i; j; w) indi
ates thatv resides in the jth \side" of the ith part of the graph, and it is vertex number w in this set. Thatis, for a graph in CC� the pair (i; j) indi
ates the jth 
lique in the ith pair of 
liques, whereas for agraph in BCC� the pair (i; j) indi
ates the jth side in the ith bi-
lique. Consequently, the answersprovided by uniformly distributed G1 2 CC� and G2 2 BCC� 
an be emulated by the following two
orresponding random pro
esses.1. The pro
ess A1 sele
ts uniformly a bije
tion � : [N ℄! [(6�)�1℄�f1; 2g� [3� �N ℄ and answersea
h query (u; v) 2 [N ℄ � [N ℄ by 1 if and only if �(u) and �(v) agree on their �rst two
oordinates (and di�er on the third). That is, for �(u) = (i1; j1; w1) and �(v) = (i2; j2; w2),it holds that A1(u; v) = 1 if and only if both i1 = i2 and j1 = j2 (and w1 6= w2).2. The pro
ess A2 sele
ts uniformly a bije
tion � : [N ℄! [(6�)�1℄�f1; 2g� [3� �N ℄ and answersea
h query (u; v) 2 [N ℄ � [N ℄ by 1 if and only if �(u) = (i; j; w1) and �(v) = (i; 3 � j; w2).That is, for �(u) = (i1; j1; w1) and �(v) = (i2; j2; w2), it holds that A2(u; v) = 1 if and onlyif i1 = i2 but j1 6= j2.Let us denote by �0(v) (resp., �00(v) and �000(v)) the �rst (resp., se
ond and third) 
oordinates of�(v); that is, �(v) = (�0(v); �00(v); �000(v)). Then, both pro
esses answer the query (u; v) with 0 if�0(u) 6= �0(v), and the di�eren
e between the pro
esses is 
on�ned to the 
ase that �0(u) = �0(v).Spe
i�
ally, 
onditioned on �0(u) = �0(v) (and �000(u) 6= �000(v)), it holds that A1(u; v) = 1 if andonly if �00(u) = �00(v), whereas A2(u; v) = 1 if and only if �00(u) 6= �00(v). However, sin
e the18



(random) value of �00 is not present at the answer, the forgoing di�eren
e may go unnoti
ed. Theforegoing 
onsiderations apply to a single query, but things may 
hange in 
ase of several queries.For example, if �0(u) = �0(v) = �0(w) then the answers to (u; v); (v; w) and (w; v) will indi
atewhether we are getting answers from A1 or from A2 (sin
e A1 will answer positively on an oddnumber of these queries whereas A2 will answer positively on an even number). In general, theevent that allows distinguishing the two pro
esses is an odd 
y
le of verti
es that have the same �0value. Minor di�eren
es may also be due to equal �000 values, and so we also 
onsider these in our\bad" event. For sake of simpli
ity, the bad event is de�ned more rigidly as follows, where the �rst
ondition represents the essential aspe
t and the se
ond is a te
hni
ality.De�nition 4.2.1 We say that � is bad (w.r.t. the sequen
e (v1; v2); : : : ; (v2q�1; v2q) 2 [N ℄� [N ℄),if any of the following two 
onditions hold:1. For some i 2 [(6�)�1℄, the subgraph Qi = (Vi; Ei), where Vi = fvk : k 2 [2q℄ ^ �0(v) = ig andEi = ffv2k�1; v2kg : v2k�1; v2k 2 Vig, 
ontains a simple 
y
le.2. There exists i 6= j 2 [2q℄ su
h that �000(vi) = �000(vj).Indeed, the query sequen
e (v1; v2); : : : ; (v2q�1; v2q) will be �xed throughout the rest of the proof,and so we shall omit it from our terminology.Claim 4.2.2 The probability that a uniformly distributed bije
tion � is bad is at most6000 � q3=2�2 + 2q23�N (21)Proof: We start by upper-bounding the probability that the se
ond event in De�nition 4.2.1 holds.This event is the union of �2q2 � sub-events, and ea
h sub-event holds with probability 1=(3� � N).Thus, we obtain a probability (upper) bound of 2q2=3�N . As for the �rst event, for every t � 3, weupper-bound the probability that some Qi 
ontains a simple 
y
le of length t. We observe that thequery graph Q = (VQ; EQ), where VQ = fvk : k2 [2q℄g and EQ = ffv2k�1; v2kg : k2 [q℄g), 
ontainsat most (2q)t=2 
y
les of length t (
f. [A81, Thm. 3℄), whereas the probability that a spe
i�
 simplet-
y
le is 
ontained in some Qi is (6�)t�1. Thus, the probability of the �rst event is upper-boundedby Xt�3(2q)t=2 � (6�)t�1 < Xt�3 �p2q � 6 � �(t�1)=t�t (22)< Xt�3 �9pq � �2=3�t ; (23)whi
h is upper-bounded by 2 � (9pq � �2=3)3 < 1500q3=2�2, provided 9pq � �2=3 < 1=2 (and the 
laimholds trivially otherwise).Claim 4.2.3 Conditioned on the bije
tion � not being bad, the sequen
es (A1(v1; v2); : : : ; A1(v2q�1; v2q))and (A2(v1; v2); : : : ; A2(v2q�1; v2q)) are identi
ally distributed.Proof: Noting that De�nition 4.2.1 only refers to �0 and �000, we �x any 
hoi
e of �0 and �000 thatyields a good � and 
onsider the residual random 
hoi
e of �00. Referring to the foregoing subgraphsQi's, re
all that pairs with endpoints in di�erentQi's are answered by 0 in both pro
esses. Note that19



(by the se
ond 
ondition in De�nition 4.2.1) the hypothesis implies that �000 assigns di�erent valuesto the di�erent verti
es in fvk : k 2 [2q℄g, and it follows that �00 assigns these verti
es values that areuniformly and independently distributed in f1; 2g. Now, using the �rst 
ondition in De�nition 4.2.1,the hypothesis implies that ea
h Qi is a forest. This implies that, for ea
h of the two pro
esses, theanswer assigned to ea
h edge in Qi is independent of the answer given to other edges of Qi. Thatis, we assert that (in ea
h of the two pro
esses) the edges of ea
h forest Qi = (Vi; Ei) are assigneda sequen
e of answers that is uniformly distributed in f0; 1gjEij. To formally prove this assertion,
onsider the 
onstraints on the �00-values (of Vi) that arise from any possible sequen
e of answers.These 
onstraints form a system of jEij linear equations over GF (2) with variables 
orrespondingto the possible �00-values and 
onstant terms en
oding possible equality and inequality 
onstraints.6Note that the (
oeÆ
ients of the) linear systems are not a�e
ted by the identity of the pro
ess,whi
h does e�e
t the free terms. Furthermore, this linear system is of full rank; and thus, for ea
hof the two pro
esses and ea
h sequen
e of answers, the 
orresponding system has 2jVij�jEij = 2solutions (i.e., possible assignments to �00 restri
ted to Vi). Thus, in ea
h of the two pro
esses, ea
hquery is answered by the value 1 with probability exa
tly 1=2, independently of the answers to allother queries. The 
laim follows.Combining Claims 4.2.2 and 4.2.3, it follows that the statisti
al distan
e between the sequen
es(A1(v1; v2); : : : ; A1(v2q�1; v2q)) and (A2(v1; v2); : : : ; A2(v2q�1; v2q)) is at most O(q3=2�2+q2(�N)�1),and the lemma follows for suÆ
iently large N .4.2 A Mat
hing Upper-BoundIn this se
tion we establish Part 3 of Theorem 1.1. We mention that this improves over the eO(��2)bound of [AS, Thm. 2℄ (whi
h is based on inspe
ting the subgraph indu
ed by a random set ofO(��1 log(1=�)) verti
es).Algorithm 4.3 (non-adaptive test for CC): On input N and � and ora
le a

ess to a graph G =([N ℄; E), set ` = log2(1=�) and pro
eeds as follows.1. Sele
t a random sample of s def= �(��2=3) verti
es, denoted S, and examine all vertex pairs (inS � S).2. For i = 1; : : : ; (2`=3)+�(1), uniformly sele
t a subset Si � S of 
ardinality si def= �(2i) and asample of e�(��1)=si verti
es (in [N ℄), denoted Ri, and examine all the vertex pairs in Si�Ri.3. The tester a

epts if and only if its view of the graph as obtained in Steps 1-2 is 
onsistentwith some graph in CC. Namely, let g0 : ((S � S) [S`0i=1(Si � Ri)) ! f0; 1g be the fun
tiondetermined by the answers obtained in Steps 1{2. Then, the tester a

epts if and only if forS0 = S [S`0i=1Ri, the fun
tion g0 
an be extended to a fun
tion over S0 � S0 that representsa graph in CC.The query 
omplexity of Algorithm 4.3 is dominated by Step 1, whi
h uses O(��2=3)2 = O(��4=3)queries. Step 3 
an be implemented eÆ
iently by �rst 
onstru
ting the 
onne
ted 
omponents ofthe graph de�ned by the positive answers obtained in Steps 1{2, and then 
he
king whether or notall the negative answers (obtained in Steps 1{2) refer to pairs that reside in di�erent 
omponents.Clearly, Algorithm 4.3 a

epts (with probability 1) any graph that is in CC. It remains toanalyze its behavior on graphs that are �-far from CC.6The 
ondition A1(u; w) = 1 i� �00(u) = �00(v) is en
oded by �00(u)+�00(v) = A1(u; w)+ 1, whereas the 
onditionA2(u;w) = 1 i� �00(u) 6= �00(v) is en
oded by �00(u) + �00(v) = A2(u;w).20



Lemma 4.4 If G = ([N ℄; E) is �-far from CC, then on input N; � and ora
le a

ess to G, Algo-rithm 4.3 reje
ts with probability at least 2=3.Part 3 of Theorem 1.1 follows.Overview of the proof of Lemma 4.4. We say that a triple (v; u; w) of (di�erent) verti
es(resp., a 3-set fv; u; wg � [N ℄) is a witness (for reje
tion) if the subgraph of G indu
ed by fv; u; wg
ontains exa
tly two edges. Indeed, Algorithm 4.3 reje
ts if (and only if), for some witness (v; u; w),the algorithm has made all three relevant queries (i.e., the queries (v; u), (u;w), and (w; v)).7 AsuÆ
ient 
ondition for this to happen is that either fv; u; wg � S or, for some i, two of the verti
esin fv; u; wg belong to Si, and the third belongs to Ri. Thus, we say that a witness is e�e
tive withrespe
t to the said samples (i.e., S and the Ri's) if the foregoing suÆ
ient 
ondition holds. Weshall show that, with probability at least 2=3, the samples 
ontain an e�e
tive witness.Let G0 = (V;E0) be a graph in CC that is 
losest to G = (V;E), and let (V1; : : : ; Vt) be itspartition into 
liques. For the sake of simpli
ity, we shall refer to the Vi's as 
liques, even thoughthey are not (ne
essarily) 
liques in G, and we shall refer to the partition (V1; : : : ; Vt) as the bestpossible partition for G. Two main observations regarding this partition follow.Observation 1: For every i 2 [t℄ and every S � Vi, it holds that jE\(S�(VinS))j � jS�(VinS)j=2,be
ause otherwise repla
ing the 
lique Vi by two 
liques, S and VinS, yields a better partitionfor G.Observation 2: For every i 6= j 2 [t℄, it holds that jE\ (Vi�Vj)j � jVi�Vjj=2, be
ause otherwiserepla
ing the two 
liques Vi and Vj by a single 
lique Vi [ Vj , yields a better partition for G.Now, sin
e G is �-far from CC, either there are at least �2 � N2 missing edges (in G) within theseVi's or there are at least �2 � N2 super
uous edges between distin
t Vi's. We show that in either
ase, with high 
onstant probability, the samples produ
ed by Algorithm 4.3 
ontain an e�e
tivewitness.The pivot of the analysis is relating the fra
tion of bad vertex pairs (i.e., either missing \internal"edges or super
uous \external" edges) to the fra
tion of witnesses. Spe
i�
ally, we shall show thatthe existen
e of �2 �N2 missing internal edges (resp., �2 �N2 super
uous external edges) implies theexisten
e of 
(�2N3) witnesses. Intuitively, missing internal edges yield many witnesses, be
ause(v; u) 2 (Vi�Vi)nE form a witness with any w 2 Vi\�(v)\�(u), whereas Observation 1 implies thatjVi\�(v)j � jVij=2 and most pairs in (Vin�(v))�(Vi\�(v)) are edges. Similar 
onsiderations, whi
hrely on Observation 2, 
an be shown to imply that super
uous external edges yield many witnesses,intuitively be
ause (v; u) 2 (Vi � Vj) \E form a witness with any w su
h that j�(w) \ fu; vgj = 1,whereas many w 2 Vi [ Vj satisfy this 
ondition. These 
ombinatorial 
onsiderations are detailedin Se
tion 4.2.1.It is tempting to think that we are done as soon as we establish the existen
e of 
(�2N3) wit-nesses. Unfortunately, this is not quite true. Indeed, if we were to sele
t independently at randomO(��2) triples and examine their internal edge relation, then we would have hit a witness with highprobability. However, while Algorithm 4.3 does inspe
t the internal edge relations of 
(��2) triples(and ea
h triple is uniformly distributed), these triples are not independently distributed. Thus,we shall establish additional features of the stru
ture of the set of witnesses, and use these featuresto show that with high probability the random sample (as produ
ed by Algorithm 4.3) 
ontains an7We note that only the (easy to establish) suÆ
ien
y of the foregoing reje
tion 
ondition is used in the analysis.21



e�e
tive witness. That is, these additional features, whi
h are established in the elaborate parts ofClaims 4.4.1 and 4.4.2, are instrumental to the dete
tion of a witness (as analyzed in Claim 4.4.3).Unfortunately, the implementation of the foregoing strategy is quite lengthy and 
ompli
ated.Some readers may prefer to skip it and pro
eed dire
tly to Se
tion 5.4.2.1 The stru
ture of the set of witnessesTo fa
ilitate the exposition, for every two sets A;B � [N ℄, we let E(A;B) denote the set of edgeswith one endpoint in A and another endpoint in B (i.e., E(A;B) def= E \ (A�B)). For ea
h vertexv and j 2 [t℄, let �j(v) def= Vj \ �(v) = fu2Vj : fu; vg 2 Eg (24)and �j(v) def= Vj n (�(v) [ fvg) = fu2(Vj n fvg) : fu; vg 62 Eg : (25)If v 2 Vi, then we use the shorthand: �(v) = �i(v). Indeed, �(v) 
orresponds to the set of internaledges that are missed by vertex v.
�i(v) [ fvgv �(v)uwViFigure 3: An Illustration for the proof of Claim 4.4.1.Introdu
tion to Claim 4.4.1. For every vertex v, the set �(v) � �(v) 
ontains pairs of verti
es thatmay form witnesses together with v; that is, (u;w) 2 �(v) � �(v) forms a witness with v if andonly if (u;w) 2 E. The basi
 
laim asserts that the number of su
h pairs is at least 
(j�(v)j2)(even when restri
ting w to the same Vi as v; see illustration in Figure 3). Moving to the elaborate
laim, we en
ourage the reader to �rst 
onsider the 
ase that F = ;. (In fa
t, this 
ase is one ofthe two 
ases that will be a
tually used.) The point of Part 1 (in the elaborate 
laim) is to set thestage for Part 2, whi
h upper-bounds the number of designated witnesses in whi
h ea
h w appears,where this upper-bound is instrumental for the probabilisti
 analysis provided by Claim 4.4.3.Claim 4.4.1 (using missing internal edges):Basi
 
laim: For every vertex v, the number of witnesses that 
ontain v is 
(j�(v)j2).Elaborate 
laim: For every (possibly empty) set F of (\forbidden") vertex-pairs, where F � �[N ℄2 � nE, the following holds:1. For every v 2 [N ℄ there exists a set Wv � �(v) n fu : fv; ug 2 Fg su
h thatXv2[N ℄ jWvj > 0�Xv2[N ℄ j�(v)j4 1A � 2 � jF j (26)22



and for every u 2 Wv there exists a set Wv;u � (�(v) \ �(u)) of size at most jWvj su
hthat Xu2Wv jWv;uj � jWvj2=4: (27)Moreover, if F = ; then for every v it holds that jWvj � j�(v)j=4.(Indeed, ea
h (u; v; w) su
h that u 2Wv and w 2Wv;u 
onstitutes a witness.)2. For the sets Wv and Wv;u as in Part 1 of the 
laim, letting U (2)w def= ffv; ug : w2Wv;ug itholds that if ea
h set Wv has 
ardinality at most �2=3N=2 then ea
h U (2)w has 
ardinalityat most �4=3N2.It follows that the total number of witnesses is 
(Pv2[N ℄ j�(v)j2). In parti
ular, if the number ofmissing internal edges is at least �2 � N2 (i.e., Pv2[N ℄ j�(v)j � � � N2), then the total number ofwitnesses is at least N � 
((�N)2) = 
(�2 �N3).Proof: Using Observation 1, we note that for any 
hoi
e of i 2 [t℄ and for every v 2 Vi it holds thatj�(v)j = jVi n fvgj � jE(fvg; Vi n fvg)j � jVij � 12 � j�i(v)j (28)and jE(�(v);�i(v)j = jE(�(v);�i(v) [ fvg)j > 12 � j�(v)j � j�i(v)j : (29)Letting Tv = f(v; u; w) : (u;w)2�(v) � �i(v)g, it follows that at least half of the triples (v; u; w)in Tv are witnesses (i.e., (u;w) 2 E, (u; v) 62 E, and (w; v) 2 E), whereas jTvj � j�(v)j2. Thisestablishes the basi
 
laim.Let us �rst establish the elaborate 
laim for the spe
ial 
ase of F = ;. In this 
ase, for every v 2 Vi,we 
onsider the set Wv def= �u2�(v) : jE(fug;�i(v))j � j�i(v)j4 � : (30)By Eq. (29), Pu2�(v) jE(fug;�i(v))j � j�(v)j � j�i(v)j=2. It follows that jWvj � j�(v)j=4. We notethat (by Eq. (30)), for every u 2 Wv, it holds that j�i(v) \ �(u)j � j�i(v)j=4 � jWvj=4. Next, forevery u 2Wv, let Wv;u be an arbitrary subset of jWvj=4 elements in �i(v)\�(u). Note that, indeedWv � �(v) and for every u 2 Wv it holds that Wv;u � �(v) \ �(u). Re
alling that jWvj � j�(v)j=4and jWv;uj = jWvj=4, Part 1 follows.To establish Part 2, we �rst note that if we sele
t Wv;u uniformly among all (jWv j=4)-subsetsof �i(v) \ �(u), then, for any w 2 Vi, the expe
ted size of U (2)w is upper-bounded byXv2Vi Xu2Wv jWvj=4j�i(v) \ �(u)j � Xv2Vi Xu2Wv jWvj=4jVij=8 = 2jVij �Xv2Vi jWvj2 (31)where the inequality uses j�i(v)\�(u)j � j�i(v)j=4 � jVij=8. Thus, if 2jVij �Pv2Vi jWvj2 � �4=3N2=2then, with overwhelmingly high probability, it holds that jU (2)w j � �4=3N2. Pi
king the sets (i.e.,the Wv;u's) so that none of the negligible probability events (asso
iated with the di�erent w 2 Vi)o

urs, we infer that jU (2)w j > �4=3N2 implies that Pv2Vi jWvj2 > �4=3N2jVij=4 (whi
h implies theexisten
e of v su
h that jWvj > �2=3N=2). Part 2 follows.Note that so far we have established the (elaborate) 
laim for the spe
ial 
ase of F = ;. We nowestablish the general 
ase by redu
tion to the former spe
ial 
ase. We �rst modify the sets Wv, by23



omitting from ea
h Wv ea
h vertex u su
h that fv; ug 2 F . This modi�
ation de
reasesPv jWvj byat most 2jF j. Next, we modify the sets Wv;u by omitting from ea
h Wv;u a few elements, sele
tedat random, so that jWv;uj = jWvj=4 holds (for the modi�ed sets Wv). Clearly, Part 1 holds for themodi�ed sets. To see that Part 2 holds too, we note that the foregoing argument only relies onthe fa
t that Wv;u is a random (jWvj=4)-size subset of �i(v) \ �(u), whi
h is una�e
ted by F . The
laim follows.Another pie
e of notation. For every i 2 [t℄ and every v 2 Vi, let�0(v) def= �(v) n Vi (32)denote the set of verti
es outside of Vi that have a super
uous edge to v. That is, �0(v) = Sj 6=i �j(v).Introdu
tion to Claim 4.4.2. For every vertex v, the set �0(v) 
ontains verti
es u su
h that v and uare part of a witness; spe
i�
ally, (v; u; w) is a witness if u 2 �0(v) and j�(w) \ fv; ugj = 1. Thebasi
 
laim asserts that the number of su
h pairs is at least 
(j�0(v)j2). Moving to the elaborate
laim, we note that the greater 
omplexity of Claim 4.4.2 (when 
ompared to Claim 4.4.1) isre
e
ted in the fa
t that even in the \simple" 
ase of F = ; (whi
h is treated in Part 1) we do notobtain a uniform bound on all Wv, but rather allow some ex
eptional verti
es (whi
h are shown tohave small 
ontribution to the sum of �0(�)s). Furthermore, in this 
ase, the basi
 
laim does notfollow from Part 1. In Part 2 we deal with a general forbidden set F , and get results analogousto (but quantitatively weaker than) the general 
ase of Claim 4.4.1. Analogously to Claim 4.4.1,Part 2a sets the stage for Part 2b, whi
h upper-bounds the number of designated witnesses in whi
hea
h w appears, where this upper-bound is instrumental for the probabilisti
 analysis provided byClaim 4.4.3.Claim 4.4.2 (using super
uous external edges):Basi
 
laim: For every vertex v, the number of witnesses that 
ontain v is 
(j�0(v)j2).Elaborate 
laim: There exist positive 
onstants 
1; : : : ; 
4 su
h that the following holds:1. For every � > 0, if Xv2[N ℄ j�0(v)j > 125� � Xv2[N ℄ j�(v)j ; (33)then for every v 2 [N ℄ there exists a set Wv � �0(v) su
h that letting V 0 = fv : jWvj �j�0(v)j=
1g it holds that Xv2V 0 j�0(v)j � (1� �) � Xv2[N ℄ j�0(v)j : (34)In addition, for every u 2 Wv there exists a set Wv;u, whi
h is either a subset of �(v) n�(u) or a subset of �(u) n �(v), su
h that jWv;uj � jWvj=
2.(Indeed, ea
h (v; u; w) su
h that u 2Wv and w 2Wv;u 
onstitutes a witness.)2. Let F be any set of \forbidden" vertex-pairs, where F � Si 6=j E(Vi; Vj), and let F (v) def=fu : fv; ug 2 Fg � �0(v), for every v 2 [N ℄. Then:
24



(a) For ea
h vertex v, there exists a subset Wv � �0(v) n F (v) su
h thatXv2[N ℄ jWvj > 1
3 �0�Xv2[N ℄ j�0(v)j1A � 
4 � jF j : (35)In addition, as in Part 1, for every u 2Wv, there exists a set Wv;u, whi
h is eithera subset of �(v) n �(u) or a subset of �(u) n �(v), su
h that jWv;uj � jWvj=
2.(b) For the sets Wv;u as in Part 2a, let U (2)w def= f(v; u) : w2Wv;ug. Then, if for every vit holds that j�0(v) n F (v)j � �2=3N=2, then U (2)w has 
ardinality at most 10�4=3N2.In all 
ases, it holds that jWv;uj � jWvj.It follows that the total number of witnesses is 
(Pv2[N ℄ j�0(v)j2). In parti
ular, if the number ofsuper
uous external edges is at least �2 �N2 (i.e., Pv2[N ℄ j�0(v)j � � �N2), then the total number ofwitnesses is at least N � 
((�N)2) = 
(�2 �N3).Proof: The 
laim is proved by a (rather tedious) 
ase analysis, whi
h refers to a generi
 vertex v.In ea
h of the 
ases, it is relatively easy to prove the basi
 
laim, and things get more 
ompli
atedwhen moving to Part 1 of the elaborate 
laim, and more so when moving to Part 2. Indeed, in ourpresentation we �rst establish Part 1, and only then move to Part 2 (whi
h refers to a general setof forbidden pairs F ).Ea
h 
ase deals with a di�erent subset of verti
es. With the ex
eption of one 
ase, Part 1 isproved by presenting, for every relevant vertex v (i.e., v that satis�es the 
ase hypothesis), a subsetWv � �0(v) of size at least j�0(v)j=
1 and adequate sets Wv;u for ea
h u 2Wv. Furthermore, it willbe shown that the verti
es 
overed by these (non-ex
eptional) 
ases a

ount for at least a 1 � �fra
tion of the sum Pv j�0(v)j.As in the proof of Claim 4.4.1, when we prove Part 2 we use Wv � �0(v) n F (v) and sele
tthe sets Wv;u as random �(jWvj)-subsets of the sets of admissible elements. We note that whenestablishing Part 2, for ea
h of the foregoing 
ases, we 
onsider the restri
tion of U (2)w to pairs (v; u)su
h that v obeys the 
ase hypothesis. We show that if j�0(v)j � �2=3N=2 for every su
h v, thenthe total 
ontribution to U (2)w of the 
orresponding pairs (v; u) is at most �4=3N2. Sin
e there areless than ten 
ases, Part 2 follows.We stress that, while the following analysis refers to possible 
ases that may apply to a generi
vertex v, we a
tually 
onsider the set of all verti
es that satisfy the hypothesis of ea
h of these
ases. (Hen
e, when we say that Part 1 (resp., Part 2) is established for the verti
es that satisfya parti
ular 
ase hypothesis, we mean that the 
ontribution of these verti
es is as 
laimed in the
orresponding part.) We now turn to the a
tual 
ase analysis.Case 1: Mu
h of �0(v) is 
ontained in a single Vj ; that is, there exists an index j su
h thatj�j(v)j > j�0(v)j=10. Fixing su
h an index j, we distinguish two sub
ases regarding the fra
tion ofVj that is not 
overed by �0(v) (i.e., the relative density of �j(v) in Vj). For v 62 Vj , the natural
ase is that j�j(v)j � jVj j=10 (see Case 1.1), and in this 
ase we seek witnesses of the form (v; u; w)su
h that (u;w) 2 (�j(v)��j(v))\E (i.e., Wv � �j(v) and Wv;u � �j(v)\�j(u)). The other 
ase(i.e., Case 1.2) is that j�j(v)j < jVj j=10, where we seek witnesses of the form (v; u; w) su
h that vand w resides in the same Vi, while u resides in Vj, and (v; u); (v; w) 2 E, while (u;w) =2 E. Detailsfollow. 25



Case 1.1: j�j(v)j � jVjj=10. In this 
ase, we let Wv be a subset of the neighbors that v has inVj , that is, a subset of �j(v). For ea
h u 2Wv we let Wv;u be a subset of the non-neighborsof v in Vj that are neighbors of w, that is, a subset of �j(v) \ �j(u). Thus, for every u 2Wvand w 2 Wv;u, the triple (v; u; w) is a witness. For an illustration, see Figure 4. Combiningthis 
ase hypothesis (whi
h asserts that v has many non-neighbors in Vj) with Observation 1(whi
h guarantees many edges between neighbors and non-neighbors of v in Vj), we obtainmany (i.e., 
(j�0(v)j2)) su
h witnesses, and the basi
 
laim follows.
v

j�j(v)j � jVjj=10
j�j(v)j � j�0(v)j=10Vj u

wFigure 4: An Illustration for Case 1.1 in the proof of Claim 4.4.2.In order to a
tually prove Parts 1 and 2, we now provide a more detailed des
ription of the
hoi
e of Wv and Wv;u. Let the subset of verti
es for whi
h the 
ase (1.1) hypothesis holdsbe denoted by V 1:1. For ea
h vertex v 2 V 1:1, let �(v) def= j if j is the smallest integer su
hthat j�j(v)j > j�0(v)j=10. Next, we de�ne the setWv def= fu2��(v)(v) : j�(u) \ (��(v)(v))j � j��(v)(v)j=4g; (36)and note that (by the 
ase hypothesis) for every u 2 Wv it holds that j�(u) \ (��(v)(v))j �jV�(v)j=40. By Observation 1, jE(��(v)(v);��(v)(v))j � j��(v)(v)j � j��(v)(v)j=2. Noting thatjE(��(v)(v);��(v)(v))j = Pu2��(v)(v) j�(u) \ (��(v)(v))j and referring to the de�nition of Wv,it follows that jWvj � j��(v)(v)j=4 � j�0(v)j=40. We 
omplete the proof of Part 1 by notingthat, for every u 2 Wv, the set ��(v)(v) \ �(u) 
ontains at least j��(v)(v)j=4 � jV�(v)j=40elements, whereas ea
h su
h element w yields a witness (v; u; w) (sin
e (u; v) 2 E and w 2��(v)(v) \ �(u)).Towards proving Part 2, we �rst omit from the foregoing Wv all elements of F (v); that is, werede�ne Wv as the set of all u 2 ��(v)(v) n F (v) su
h that j�(u) \ (��(v)(v))j � j��(v)(v)j=4.Surely, this de
reasesPv jWvj by at mostPv jF (v)j = 2jF j. Now, for every u 2Wv, let Wv;ube a random subset of jWvj=40 elements in ��(v)(v) \ �(u), while re
alling that the latter sethas size at least j��(v)(v)j=4 � jV�(v)j=40. Thus, Part 2a follows.In order to establish Part 2b, we �x an arbitrary j, and let V 1:1j def= fv 2 V 1:1 : �(v) = jg.We �rst note that, for any w 2 Vj , the expe
ted size of U (2)w is upper-bounded byXv2V 1:1j Xu2Wv jWvj=40j�j(v) \ �(u)j � 1jVj j � Xv2V 1:1j jWvj2 (37)where the inequality uses j�j(v)\�(u)j � jVj j=40. As in the proof of Claim 4.4.1, it is possibleto 
hoose the subsets Wv;u so that the sizes of the sets U (2)w are not mu
h larger than (the26



upper bounds on the value of) their expe
ted sizes. It follows that if some w 2 Vj satis�esjU (2)w j > �4=3N2, then Pv2V 1:1j jWvj2 > �4=3N2jVj j=2. Assume, 
ontrary to the 
laim, thatj�0(v) n F (v)j � �2=3N=2 (so that jWvj � �2=3N=2) for every v, but jU (2)w j > �4=3N2 for somew 2 Vj (so that Pv2V 1:1j jWvj2 > �4=3N2jVj j=2). In su
h a 
ase we have:jE(V 1:1j ; Vj) n F j � 12 Xv2V 1:1j jWvj (38)� 12 Xv2V 1:1j jWvj2�2=3N=2 (39)> 12 jVj j � �2=3N : (40)It follows that there exists a vertex u 2 Vj su
h that j�0(u) nF (u)j � j(�(u) nF (u))\V 1:1j j >�2=3N=2, and we have rea
hed a 
ontradi
tion. Thus, Part 2 follows in this 
ase.Case 1.2: j�j(v)j � jVjj=10 (i.e., j�j(v)j � 0:9jVj j). Let i be su
h that v 2 Vi. We �rst notethat j�i(v)j � 0:8j�j(v)j, be
ause otherwise we would obtain a better partition by moving thevertex v from Vi to Vj (sin
e the gain from su
h a move is at least (j�j(v)j� j�j(v)j)�j�i(v)j,whereas j�j(v)j � j�j(v)j � 0:8jVj j � 0:8j�j(v)j). It follows that j�i(v)j � 0:8 � j�0(v)j=10 >j�0(v)j=13. We 
onsider two sub
ases regarding the 
ardinality of the set �i(v):1. If j�i(v)j � 0:9 � jVij, then we let Wv be a subset of �j(v), and for ea
h u 2 Wv, we letWv;u be a subset of �i(v) n �(u). Thus ea
h triple (v; u; w) where u 2Wv and w 2Wv;uis a witness. For an illustration, see Figure 5. Combining the 
ase hypotheses (whi
hasserts that Vj � Vi is essentially 
overed by �j(v) � �i(v)) with Observation 2 (whi
hguarantees many non-edges in Vj � Vi), we obtain 
(j�0(v)j2) su
h witnesses. Detailsfollow. Vjv
w uj�i(v)j � 0:9jVij j�j(v)j � j�0(v)j=10

j�j(v)j � 0:9jVj j
Vi

j�i(v)j > j�0(v)j=13Figure 5: An Illustration for the 1st sub
ase of Case 1.2 in the proof of Claim 4.4.2.Let us denote the subset of verti
es (in Vi) for whi
h the 
ase hypothesis holds by V 1:2i ,and for ea
h v 2 V 1:2i de�ne �(v) as in Case 1.1. Fixing any i and v 2 V 1:2i , letWv def= fu2��(v)(v) : j�i(v) n �(u)j � j�i(v)j=10g : (41)27



Note that for any u 2 Wv it holds that j�i(v) n �(u)j � 0:1j�i(v)j � 0:08j�j(v)j, wherej def= �(v). Using Observation 2 we have thatjE(�j(v);�i(v))j � jE(Vj ; Vi)j (42)� 12 � jVjj � jVij (43)� 12 � j�j(v)j0:9 � j�i(v)j0:9 (44)< 0:7 � j�j(v)j � j�i(v)j : (45)Hen
e there are at least 0:3 � j�j(v)j � j�i(v)j pairs (u;w) 2 �j(v) � �i(v) su
h that(u;w) =2 E; that is, Pu2�j(v) j�i(v) n �(u)j > 0:3 � j�j(v)j � j�i(v)j. It follows thatjWvj > j�j(v)j=5, where by the hypothesis of Case 1 this value is greater than j�0(v)j=50.Next, re
alling that for any u 2Wv it holds that j�i(v)n�(u)j � 0:08j�j(v)j, we let Wv;ube an arbitrary 0:08jWv j-size subset of �i(v) n �(u) � �(v) n �(u), and note that indeedfor every u 2 Wv and w 2 Wv;u it holds that u;w 2 �(v) and (u;w) 62 E. Thus, Part 1follows in this 
ase.As for Part 2, we �rst omit from Wv all verti
es in F (v) (i.e., we rede�ne Wv as the setof all u 2 ��(v)(v) n F (v) satisfying j�i(v) n �(u)j � j�i(v)j=10), and let ea
h Wv;u be arandom 0:08jWv j-size subset of �i(v) n�(u) � �(v) n�(u). This establishes Part 2a, andso we turn to Part 2b. We then note that, for every w 2 Vi, the expe
ted size of U (2)w(when restri
ted to pairs (v; u) with v 2 V 1:2i ) is upper-bounded byXv2Vi Xu2Wv 0:08jWv jj�i(v) n �(u)j � 0:080:09jVij �Xv2Vi jWvj2 (46)where the inequality uses j�i(v) n �(u)j � 0:1j�i(v)j � 0:09jVij. Again, we may sele
tthe sets Wv;u su
h that for ea
h w 2 Vi it holds that jU (2)w j < Pv2Vi jWvj2=jVij. Thus,if some w 2 Vi satis�es jU (2)w j > �4=3N2, then Pv2Vi jWvj2 > �4=3N2jVij. It follows thatthere exists a vertex v 2 Vi su
h that jWvj > �2=3N , and Part 2 follows.2. If j�i(v)j � 0:9�jVij, then we pro
eed somewhat di�erently than in the other 
ases (this isthe ex
eptional 
ase mentioned at the preamble of the proof). Re
all that �(v) = �i(v) =Vi n �(v), and so j�(v)j � 0:1 � jVij � 0:008 � j�0(v)j (be
ause jVij � j�i(v)j � 0:8j�j(v)jand j�j(v)j � j�0(v)j=10). For the basi
 
laim, we invoke Claim 4.4.1, translating thelower bound in terms of j�(v)j (provided by Claim 4.4.1) into a lower bound in terms ofj�0(v)j. For the elaborate 
laim, we set Wv = ; for every v as in the 
ase hypothesis (i.e.,the 
urrent Case 1.2.2). Thus, we trivially have that jWv;uj � jWvj=
2 for every u 2Wv,and Part 2 of the 
laim holds trivially as well. Finally, we use the hypothesis of Eq. (33)(i.e., Pv2[N ℄ j�0(v)j > (125=�)Pv2[N ℄ j�(v)j) to infer that the 
urrent sub
ase (in whi
hj�0(v)j � 125j�(v)j) may a

ount for less than an � fra
tion of the sum Pv2[N ℄ j�0(v)j.All other verti
es v will be pla
ed in V 0, and hen
e Eq. (34) holds.This 
ompletes the treatment of the 
urrent 
ase (i.e., Case 1.2), whi
h in turn 
ompletes thetreatment of Case 1. (We thus pro
eed to the following 
omplementary Case 2.)Case 2: No single Vj 
ontains mu
h of �0(v); that is, for every j it holds that j�j(v)j �j�0(v)j=10. As in Case 1, we 
onsider two sub
ases regarding the relative part of ea
h Vj28




overed by �0(v), but in the 
urrent 
ase we 
onsider a partition of the set J def= fj : j�j(v)j �1g and distinguish 
ases regarding the interse
tion of �0(v) with the sets Vj in ea
h part.8Spe
i�
ally, we let J 0 def= fj : j�j(v)j > 0:9jVj jg, where ea
h Vj with j 2 J 0 is analogous toCase 1.2, ex
ept that having several su
h Vj 
alls for seeking witnesses of the form (v; u; w)su
h that (u;w) 2 (�(v)��(v))nE. The 
ase thatPj2J 0 j�j(v)j a

ounts for mu
h of j�0(v)jis treated �rst (in Case 2.1), and the 
omplementary 
ase is postponed to Case 2.2.Case 2.1: Pj2J 0 j�j(v)j � 0:5 � j�0(v)j. In this 
ase J 0 has 
ardinality at least �ve (sin
ePj2J 0 j�j(v)j � 0:5 � j�0(v)j and j�j(v)j � 0:1 � j�0(v)j for every j). Let Cv = Sj2J 0 �j(v)(note that the verti
es in Cv belong to several 
liques Vj). In this 
ase we let Wv bea subset of Cv, and for ea
h u 2 Cv we let Wv;u be a subset of Cv n �(u). We shallshow that the 
ase hypothesis implies that there are many missing edges between pairsof verti
es in Cv. Intuitively, this holds be
ause Cv essentially 
overs Sj2J 0 Vj , whereas(by Observation 2) for any j1 6= j2 there are many non-edges in Vj1 � Vj2 . This ensuresthat we have many witnesses of the form (v; u; w), where u 2Wv and w 2Wv;u. Detailsfollow.

...

v w Cv
j�j(v)j > 0:9jVj juseveral sets Vj su
h that j�j(v)j < j�0(v)j=10

Figure 6: An Illustration for Case 2.1 in the proof of Claim 4.4.2.For every j1 6= j2 2 J 0, by Observation 2 (and sin
e j�j(v)j > 0:9jVj j for every j 2 J 0),it holds that jE(�j1(v);�j2(v))j � 12 � jVj1 j � jVj2 j < 0:7 � j�j1(v)j � j�j2(v)j (47)(
f. the derivation of Eq. (45) from Eq. (42)).Letting M def= Pj1 6=j22J 0 j(�j1(v)� �j2(v)) n Ej, we �rst observe thatM = Xj1 6=j22J 0 (j�j1(v)j � j�j2(v)j � jE(�j1(v);�j2(v))j) (48)8We note that the threshold for relative density is also di�erent in the 
urrent 
ase.29



� Xj1 6=j22J 0(1� 0:7) � j�j1(v)j � j�j2(v)j (49)= 0:3 �0�0�Xj2J 0 j�j(v)j1A2 �Xj2J 0 j�j(v)j21A (50)� 0:3 � �(0:5 � j�0(v)j)2 � 0:1 � j�0(v)j2� ; (51)where the last inequality uses the hypotheses of Cases 2 and 2.1. Therefore, j(Cv�Cv)nEj �M > 0:04 � j�0(v)j2.De�ning Wv def= fu2Cv : jCv n �(u)j � 0:02 � j�0(v)jg ; (52)we note that jWvj � 0:02 � j�0(v)j. Next, we let Wv;u be any 0:02 � jWvj-size subset ofCv n �(u) � �0(v) n �(u). As in the previous 
ases, Part 1 follows by the de�nition ofthese sets.Establishing Part 2 (or rather Part 2b) is slightly more 
ompli
ated in the 
urrent
ase, and so we �rst make the simplifying assumption that jF (v)j < 0:01jWv j, for everyvertex v. This simplifying assumption implies that jF (v)j < 0:01j�0(v)j, whi
h meansthat for every u 2 Wv it holds that j(Cv n �(u)) n F (v)j > 0:01j�0(v)j. Now, we omitfrom Wv all verti
es in F (v) (i.e., rede�ne Wv as the set of u 2 Cv n F (v) su
h thatjCv n �(u)j � 0:02 � j�0(v)j), and let ea
h Wv;u be a random 0:01jWv j-size subset of(Cv n �(u)) n F (v). Part 2a follows, and so we turn to establishing Part 2b. Again, forany �xed w, the expe
ted size of U (2)w is upper-bounded byXv2[N ℄:Cv3w Xu2Wv 0:01 � jWvjj(Cv n �(u)) n F (v)j � Xv2[N ℄:(�0(v)nF (v))3w Xu2Wv 0:01 � jCvj0:01 � jCvj (53)= Xv2�0(w)nF (w) jWvj (54)where the inequality uses j(Cv n �(u)) n F (v)j � 0:01 � j�0(v)j and Wv � Cv � �0(v).We 
on
lude that the existen
e of w 2 Vj su
h that jU (2)w j > �4=3N2 implies thatPv2�0(w)nF (w) jWvj > �4=3N2=2, whi
h in turn implies that either j�0(w) n F (w)j >�2=3N=2 or jWvj > �2=3N for some v 2 �0(w) n F (w). Thus, Part 2 follows (under theassumption that jF (v)j < 0:01jWv j).It remains to handle the 
ase in whi
h for some v it holds that jF (v)j � 0:01jWv j. Inthis 
ase we just reset Wv to the empty set, and the foregoing analysis still applies(establishing Part 2b). We need, however, to examine the e�e
t of this modi�
ation onPart 2a. The key observation is that the sum of the sizes of the Wv's de
reases at mostby 200jF j, be
ause the 
ase of jF (v)j � 0:01jWv j (where Wv is reset to empty) 
ausesa loss of at most jWvj < 100jF (v)j, whereas the 
ase of jF (v)j < 0:01jWv j (in whi
h weavoid F (v)) 
auses (as usual) a loss of at most jF (v)j. Thus, Part 2 holds in Case 2.1.Case 2.2: Pj2JnJ 0 j�j(v)j � 0:5 � j�0(v)j. Let J 00 def= J n J 0 = fj : 1 � j�j(v)j � 0:9jVj jg,and note that for j 2 J 00 (as 
onsidered in this 
ase) it may be that j�j(v)j � jVj j and
onsequently for j1 6= j2 2 J 00 it may hold that E(�j1(v);�j2(v)) � j�j1(v)j � j�j2(v)j.More generally, rede�ning Cv def= Sj2J 00 �j(v), it may be that jE(Cv ; Cv)j � �jCv j2 �, and30



so the approa
h of Case 2.1 may not work in general (although it will work in the �rstsub
ase). Letting J 000 def= fj 2 J 00 : jVj j � j�0(v)j=10g, we 
onsider two sub
ases:1. If Pj2J 000 j�j(v)j � 0:4 � j�0(v)j, then we rede�ne Cv def= Sj2J 000 �j(v) and show thatjE(Cv ; Cv)j � 0:9�jCvj2 �. On
e the latter fa
t is established, we rea
h a situation asin Case 2.1 (where we only used �jCvj2 � � jE(Cv ; Cv)j > 0:04j�0(v)j2) and pro
eedessentially as in that 
ase. (The only modi�
ation is that here we only have �jCv j2 ��jE(Cv ; Cv)j > 0:002j�0(v)j2, and so we let Wv 
onsists of all verti
es u 2 Cv su
hthat jCv n �(u)j � 0:001j�0(v)j, so that jWvj � 0:001 � j�0(v)j, and we let Wv;u bea 0:001 � jWvj-size random subset of Cv n �(u).) Thus, we fo
us on establishingthat jE(Cv ; Cv)j � 0:9�jCvj2 �, by showing that otherwise one obtains a 
ontradi
tionto the optimality of the partition (by repla
ing the sub-partition (Vj)j2J 000 with(Cv; (Vj n Cv)j2J 000), where Vj n Cv = �j(v)). Details follow.Assuming, towards the 
ontradi
tion, that jE(Cv; Cv)j > 0:9�jCv j2 �, we lower-boundthe gain from the aforementioned repla
ement as follows. Combining all Cv \ Vj 's(into Cv) and splitting ea
h Vj (to (Cv \ Vj ; Vj n Cv)), yields a gain of at least� def= Xj1<j22J 000 jE(Cv \ Vj1 ; Cv \ Vj2)j � Xj1<j22J 000 jE(Cv \ Vj1 ; Cv \ Vj2)j� Xj2J 000 jE(Cv \ Vj ; Vj n Cv)j (55)where E(Y;Z) denotes the set of pairs of verti
es in Y �Z that do not have an edgebetween them. Thus:� � jE(Cv ; Cv)j � Xj2J 000 jE(Cv \ Vj; Cv \ Vj)j�jE(Cv ; Cv)j � Xj2J 000 jE(Cv \ Vj; Vj n Cv)j (56)= jE(Cv ; Cv)j � jE(Cv ; Cv)j � Xj2J 000 jE(Cv \ Vj; Vj)j (57)� jE(Cv ; Cv)j � jE(Cv ; Cv)j � jCvj � maxj2J 000fVjg: (58)By the 
ontradi
tion hypothesis jE(Cv ; Cv)j > 0:9�jCvj2 � (and jE(Cv; Cv)j <0:1�jCvj2 �), whereas maxj2J 000fjVj jg � j�0(v)j=10 and j�0(v)j � 2:5jCv j (by the def-inition of J 000 and the sub
ase hypothesis, respe
tively). Hen
e, � > 0:8�jCvj2 � �0:25jCv j2 > 0, in 
ontradi
tion to the optimality of the partition.2. If Pj2J 00nJ 000 j�j(v)j � 0:1 � j�0(v)j, then we pro
eed similarly to Case 1.1. That is,we try to obtain witnesses of the form (v; u; w) su
h that (u;w) 2 Sj2J 00nJ 000(�j(v)��j(v)) \ E; see Figure 7. Indeed, the only di�eren
e between Case 1.1 and the
urrent sub
ase is that here j 2 J 00 n J 000 may not be unique, but as we shall see thisissue has little 
onsequen
es. Spe
i�
ally, we de�neWv def= [j2J 00nJ 000�u 2 �j(v) : j�j(u) \ �j(v)j � j�j(v)j4 � (59)31



and note that Wv � �0(v) and that for every j 2 J 00 n J 000 it holds that jWv \ Vj j �j�j(v)j=4 (sin
e E(�j(v); Vj n �j(v)) � j�j(v)j � jVj n �j(v)j=2). Using the sub
asehypothesis, it follows that jWvj � Pj2J 00nJ 000 j�j(v)j=4 � j�0(v)j=40, and using j 2J 00 n J 000 every u 2 Wv satis�es j�j(u) \ �j(v)j � j�j(v)j=4 � jVj j=40 � j�0(v)j=400.Next, for every j 2 J 00 n J 000 and every u 2Wv \ Vj , we de�ne Wv;u to be a randomsubset of size j�0(v)j=400 of �j(u) \ �j(v). Indeed, for every u 2 Wv and w 2 Wv;uit holds that w 62 �0(v) and w 2 �(u) n �0(u). Given the lower bounds on the sizesof the sets Wv and Wv;u, Part 1 follows.

...

C(v)v u w j�j(v)j � jVjj=10
(jVj j > j�0(v)j=10)several sets Vj

Figure 7: An Illustration for the 2nd sub
ase of Case 2.2 in the proof of Claim 4.4.2.Again, proving Part 2 amounts to omitting from the foregoing Wv all elements ofF (v); that is, we rede�ne Wv as the set of all u 2 Sj2J 00nJ 000 �j(v) n F (v) su
h thatj�j(u) \ (�j(v))j � j�j(v)j=4g. Similarly, the sets Wv;u are random subsets of sizej�0(v)j=400 of �j(u) \ �j(v). Thus, Part 2a follows.To establish Part 2b, we note that, for any �xed w 2 Vj, the expe
ted size of U (2)wis upper-bounded byXv2[N ℄nVj Xu2Wv\Vj j�0(v) n F (v)j=400j�j(u) \ �j(v)j � Xv2[N ℄nVj Xu2�j(v)nF (v) j�0(v) n F (v)j10jVj j (60)= Xv2[N ℄nVj j�j(v) n F (v)j � j�0(v) n F (v)j10jVj jwhere the inequality uses j�j(u) n �j(v)j � jVj n �j(v)j=4 � jVj j=40. Here too it ispossible to 
hoose the subsets Wv;u so that the sizes of the sets U (2)w are not mu
hlarger than (the upper bounds on the value of) their expe
ted sizes. Again, it followsthat if some w 2 Vj satis�es jU (2)w j > �4=3N2, thenXv2[N ℄nVj j�0(v) n F (v)j � j�j(v) n F (v)j > 5�4=3N2jVj j; (61)32



whi
h implies that either for some v 2 [N ℄nVj it holds that j�0(v)nF (v)j > �2=3N orthatPv2[N ℄nVj j�j(v) nF (v)j > �2=3N jVjj. In the latter 
ase, there must be a vertexu 2 Vj su
h that j�0(u) nF (v)j > �2=3N . Thus, Part 2b holds also in this sub
ase ofCase 2.2.Thus, we have established the 
laim for all sub
ases of Case 2.2.Having 
ompleted the treatment of the two 
omplementary 
ases of Case 2 (i.e., Cases 2.1and 2.2), we 
omplete the treatment of Case 2.Having 
ompleted the treatment of the two 
omplementary 
ases (i.e., Cases 1 and 2), the 
laimfollows.4.2.2 The existen
e of e�e
tive witnessesCombining the hypothesis of Lemma 4.4 with (the basi
 parts of) Claims 4.4.1 and 4.4.2, we inferthe existen
e of 
(�2N3) witnesses. Moreover, the elaborate parts of these 
laims provide us withsome stru
ture that will be useful towards proving that (with high probability) the sample takenby Algorithm 4.3 
ontains at least one e�e
tive witness (i.e., a witness whose three vertex-pairs areinspe
ted by the algorithm). We shall use the following te
hni
al 
laim, whi
h will be proved inSe
tion 4.2.3. Essentially, the 
laim asserts that under some 
ir
umstan
es (i.e., those detailed inthe 
onditions), a random set of adequate size (i.e., of size O(��2=3)) 
ontains a witness. Looselyspeaking, the �rst 
ondition means that the expe
ted number of witnesses in the sample ex
eedsany desired 
onstant, whereas the upper bounds on the sizes of the sets Wv;Wv;u, U (1)v and U (2)v(stated in the other 
onditions) guarantee suÆ
ient 
on
entration around the expe
ted value.Claim 4.4.3 (on the existen
e of witnesses in a sample of verti
es): Suppose that the following
onditions hold:1. Pv2[N ℄Pu2Wv jWv;uj = 
(�2 �N3)2. For every v 2 [N ℄, it holds that jWvj < �2=3N and for U (1)v def= fx : v 2 Wxg and U (2)v def=f(x; y) : v 2Wx;yg, it holds that jU (1)v j < �2=3N and jU (2)v j < �4=3N2.3. For every v 2 [N ℄ and u 2Wv, it holds that jWv;uj < �2=3N .Then, for a suÆ
iently large 
onstant 
 that depends only on the 
onstant in the Omega-notation,with probability at least 2=3, a uniformly sele
ted sample of 
���2=3 verti
es 
ontains a triple (v; u; w)su
h that u 2Wv and w 2Wv;u.The proof of Claim 4.4.3 appears in Se
tion 4.2.3. Using Claims 4.4.1, 4.4.2 and 4.4.3, we �nallyprove Lemma 4.4.Completing the proof of Lemma 4.4. Re
all that Pv2[N ℄(j�(v)j + j�0(v)j) � � � N2 (bythe lemma's hypothesis). Thus, for any 
onstant � > 0, either Pv2[N ℄ j�(v)j � � � � � N2 orPv2[N ℄ j�0(v)j � (1 � �) � � �N2. We analyze these two 
ases, while postponing the determinationof the 
onstant � 2 (0; 1) to the treatment of the se
ond 
ase.Case of Pv2[N ℄ j�(v)j � � � � � N2. We 
onsider two sub
ases (and use 
laim 4.4.3 only in these
ond one): 33



1. The easier sub
ase is when large sets �(�) have a relatively large 
ontribution toPv2[N ℄ j�(v)j.In this 
ase, we apply Claim 4.4.1 with F = ; and obtain all that we need by using Part 1 ofthis 
laim, while observing that Algorithm 4.3 inspe
ts all vertex pairs that arise from thisanalysis. (We note that this 
ase refers to triples in Sk<(2`=3)+O(1) Rk � Sk � Sk, where thebound on k is related to the bound on large sets.)Spe
i�
ally, if Pv2[N ℄:j�(v)j��2=3N=2 j�(v)j � (�=10) � � � N2, then applying Claim 4.4.1 withF = ; we obtain sets Wv's and Wv;u's su
h that Part 1 of Claim 4.4.1 holds. In parti
ular, itfollows that Xv2[N ℄:jWvj��2=3N=8 jWvj � Xv2[N ℄:j�(v)j��2=3N=2 j�(v)j4 (62)� (�=10) � � �N24 = 
(� �N2): (63)Re
all that ` = log2(1=�). Thus, there exists k 2 f1; : : : ; (2`=3) +3g su
h that for V � def= fv 2[N ℄ : 2�kN � jWvj < 2�k+1Ng it holds thatPv2V � jWvj = 
(� �N2=`). Fixing this k, we notethat jV �j = 
(2k� �N=`) and thus Pr[Rk \ V � 6= ;℄ > 8=9, where Rk is as sele
ted in Step 2of Algorithm 4.3 (i.e., Rk is a random set of size 
((2k�=`)�1)). For the sake of the analysis,view Sk (whi
h is a uniformly sele
ted subset of S that has size �(2k) and is also sele
tedin Step 2) as the union of two independently sele
ted subsets of equal size, denoted S1k andS2k . Fixing any v 2 Rk \ V �, we have jWvj � 2�kN and so Pr[S1k \Wv 6= ;℄ > 8=9. Finally,�xing any u 2 S1k \Wv, sin
e jWv;uj = 
(jWvj) = 
(2�kN), we have Pr[S2k \Wv;u 6= ;℄ > 8=9.Noting that all pairs (Rk � Sk)[ (Sk � Sk) are inspe
ted by Algorithm 4.3, the 
laim follows(i.e., with probability at least 2=3, the sample taken by Algorithm 4.3 
ontains a witness).2. The other sub
ase is when large sets �(�) have a relatively small 
ontribution toPv2[N ℄ j�(v)j.In this 
ase, we apply Claim 4.4.1 while setting F so to eliminate all large sets. Here we useboth parts of the 
laim, where Part 2 provides the 
onditions required by the non-trivialprobabilisti
 analysis 
aptured in Claim 4.4.3. (We note that this 
ase refers to triples inS � S � S.)Spe
i�
ally, if Pv2[N ℄:j�(v)j��2=3N=2 j�(v)j < (�=10) � � � N2, then we set F = ffu; vg : u 2�(v); j�(v)j � �2=3N=2g, whi
h means that F (v) = �(v) if j�(v)j � �2=3N=2 and F (v) = ; oth-erwise. Applying Claim 4.4.1 with this F , and noting that jF j =Pv2[N ℄:j�(v)j��2=3N=2 j�(v)j,we obtain sets Wv's and Wv;u's su
h that Claim 4.4.1 holds. In parti
ular (by Part 1), wehave that Xv2[N ℄ jWvj � Xv2[N ℄ j�(v)j4 � 2jF j (64)� ��4 � 2 � �10� � � �N2 = 
(� �N2); (65)whereas jWvj � j�(v) n F (v)j < �2=3N=2 holds for every v 2 [N ℄. Re
all that jWv;uj � jWvjholds for every u 2Wv.Letting U (1)w def= fv : w 2Wvg, for every w it holds that jU (1)w j < �2=3N=2 (be
ause v 2 U (1)wimplies w 2 �(v) and (v; w) 62 F ). Also, by Part 2, we get jU (2)w j < �4=3N2 for every w. Thus,all 
onditions of Claim 4.4.3 hold, and we 
on
lude that (in this 
ase), with high probability,34



the sample S sele
ted in Step 1 (of Algorithm 4.3) 
ontains a witness (i.e., a triple (v; u; w)su
h that u 2Wv and w 2Wv;u).This 
ompletes the treatement of the 
ase in whi
h Pv2[N ℄ j�(v)j � � � � � N2. The treatment ofthe 
ase in whi
h Pv2[N ℄ j�0(v)j � (1� �) � � �N2 is analogous. Spe
i�
ally, we 
onsider analogoussub
ases (with di�erent 
onstants in the di�erentiating thresholds), and invoke Claim 4.4.2 (whilesetting �; � > 0 to be suÆ
iently small su
h that all 
al
ulations work out).Case ofPv2[N ℄ j�0(v)j � (1��) �� �N2. We may also assume thatPv2[N ℄ j�(v)j < � �� �N2, sin
eotherwise the previous 
ase applies. Thus, Pv2[N ℄ j�0(v)j > 1��� �Pv2[N ℄ j�(v)j, whi
h for � � 1=2is at least 12� �Pv2[N ℄ j�(v)j. Therefore, the premise of the (elaborate part of) Claim 4.4.2 holdswith � = 250� and hen
e the 
on
lusions of the 
laim hold as well. We 
onsider two sub
ases,whi
h are determined by a parameter 
 that will be set in the 
ourse of the analysis. In whatfollows, re
all that 
1; 
2; 
3 and 
4 are 
onstants that are de�ned by Claim 4.4.2.1. If Pv2[N ℄:j�0(v)j��2=3N=2 j�0(v)j � 
 �Pv2[N ℄ j�0(v)j, then, by Part 1 of Claim 4.4.2, for everyv 2 [N ℄ we obtain a set Wv � �0(v)su
h that: Xv2[N ℄:j�0(v)j��2=3N=2& jWvj�j�0(v)j=
1 j�0(v)j � (
 � �) � (1� �) � � �N2 (66)= (
 � 250�) � (1� �) � � �N2 ; (67)If � and 
 are set so that 
 � 251�, then,Xv2[N ℄:jWvj��2=3N=(2
1) jWvj � Xv2[N ℄:j�0(v)j��2=3N=2& jWvj�j�0(v)j=
1 j�0(v)j
1 (68)� � � (1� �)
1 � � �N2 = 
(� �N2) : (69)Re
all that ` = log2(1=�). Thus, there exists k 2 f1; : : : ; (2`=3) + log2(2
1)g su
h that forV � def= fv 2 [N ℄ : 2�kN � jWvj < 2�k+1Ng it holds that Pv2V � jWvj = 
(� � N2=`). Fixingthis k, we note that jV �j = 
(2k� � N=`) and thus Pr[Rk \ V � 6= ;℄ > 8=9, where Rk is assele
ted in Step 2 of Algorithm 4.3 (i.e., Rk is a random set of size 
((2k�=`)�1)).For the sake of the analysis, 
onsider viewing Sk (whi
h is a uniformly sele
ted subset of Sthat has size �(2k) and is also sele
ted in Step 2) as the union of two independently sele
tedsubsets of equal size, S1k and S2k . Fixing any v 2 Rk \ V �, we have jWvj � 2�kN and soPr[S1k \Wv 6= ;℄ > 8=9. Finally, �xing any u 2 S1k \Wv, sin
e jWv;uj � jWvj=
2 = 
(jWvj) =
(2�kN), (where Wv;u � (�(v) n �(u)) [ (�(u) n �(v))) we have Pr[S2k \Wv;u 6= ;℄ > 8=9.Noting that all pairs (Rk � Sk)[ (Sk � Sk) are inspe
ted by Algorithm 4.3, the 
laim followsfor this sub
ase (i.e., with probability at least 2=3, Algorithm 4.3 �nds a witness).2. If Pv2[N ℄:j�0(v)j��2=3N=2 j�0(v)j < 
 �Pv2[N ℄ j�0(v)j, then we apply Part 2 of Claim 4.4.2 withF = ffu; vg : u 2 �0(v); j�0(v)j � �2=3N=2g. For every v 2 [N ℄ we obtain a set Wv ��0(v) n F (v) (where F (v) = fu : fv; ug 2 Fg) su
h that if we set 
 = 12
3
4 thenXv2[N ℄ jWvj � 1
3 �0�Xv2[N ℄ j�0(v)j1A� 
4 � jF j (70)35



� (1=
3 � 
4 � 
) � Xv2[N ℄ j�0(v)j (71)� 12
3 � (1� �)�N2 = 
(� �N2) : (72)Observe that by the 
onstraint on the relation between � and 
 that was imposed by theprevious sub
ase, it suÆ
es to set � � 1502
3
4 . Sin
e for every v 2 [N ℄ and for every u 2 Wvwe have that jWv;uj � jWvj=
2, Equation (72) implies thatXv2[N ℄ Xu2Wv jWv;uj � Xv2[N ℄ jWvj2=
2 = 
(�2N3) : (73)On the other hand, we have the following upper bound on the size of ea
h Wv: jWvj �j�0(v) n F (v)j < �2=3N=2, and jWv;uj � jWvj holds (for every u 2 Wv). Letting U (1)w def= fv :w 2Wvg, for every w it holds that jU (1)w j < �2=3N=2 (be
ause v 2 U (1)w implies w 2 �0(v)and (v; w) 62 F ). Also, by Part 2b, we get jU (2)w j � 10�4=3N2 for every w. By applyingClaim 4.4.3 (with � set to 10� so that jU (2)w j < �4=3N2 for the new setting, while we still havethat Pv2[N ℄Pu2Wv jWv;uj = 
(�2N3) for this setting), we have that, with high probability,the sample S sele
ted in Step 1 of Algorithm 4.3 
ontains a witness (i.e., a triple (v; u; w)su
h that u 2Wv and w 2Wv;u).Thus, based on Claim 4.4.3 (to be proven next), we 
ompleted the proof of Lemma 4.4.4.2.3 Proof of Claim 4.4.3We denote the random sample by S, and denote its elements by v1; : : : ; vs; u1; : : : ; us; w1; : : : ; ws.We shall prove that, with probability at least 1 � O(s�1��2=3), there exists a triple (i; j; k) 2 [s℄3su
h that uj 2 Wvi and wk 2 Wvi;wj . The proof boils down to applying Chebyshev's Inequality toPi;j;k2[s℄ �i;j;k, where �i;j;k = 1 if uj 2 Wvi and wk 2Wvi;uj , and �i;j;k = 0 otherwise. We �rst notethat � def= ExpS 24 Xi;j;k2[s℄�i;j;k35 (74)= s3 � Prv;u;w2[N ℄[u 2Wv ^ w 2Wv;u℄ (75)= s3 � 1N3 � Xv2[N ℄ Xu2Wv jWv;uj (76)= 
(s3 � �2) (77)where the last line follows by the �rst 
ondition in the hypothesis. By Chebyshev's Inequality itfollows thatPr24 Xi;j;k2[s℄ �i;j;k = 035 � Var[Pi;j;k2[s℄ �i;j;k℄Exp[Pi;j;k2[s℄ �i;j;k℄2 (78)= ��2 �0�Exp240� Xi;j;k2[s℄ �i;j;k1A235 � Exp24 Xi;j;k2[s℄ �i;j;k3521A (79)36



= ��2 �0�0�X`2[s℄6 Exp[�i1;j1;k1 � �i2;j2;k2 ℄1A � �21A (80)where ` = (i1; i2; j1; j2; k1; k2). The upper bounds on jWvj; jWv;uj; jU (1)w j and jU (2)w j will be used inupper-bounding the large sum (i.e., P`2[s℄6 Exp[�i1;j1;k1 � �i2;j2;k2 ℄). We de
ompose the latter suminto partial sums that 
orrespond to the following 
ases (regarding the relations between i1-vs-i2,j1-vs-j2, and k1-vs-k2).Case of i def= i1 = i2, j def= j1 = j2, and k def= k1 = k2. There are s3 su
h terms, ea
h havingvalue Exp[�2i;j;k℄ = Exp[�i;j;k℄, whi
h equals Prv;u;w2[N ℄[u 2 Wv ^ w 2 Wv;u℄ = �=s3. Thus,the total 
ontribution of this 
ase is �.Case of i def= i1 = i2, j def= j1 = j2, and k1 6= k2. There are less than s4 su
h terms, ea
h hav-ing value Exp[�i;j;k1 � �i;j;k2℄, whi
h equalsPrv;u;w1;w22[N ℄[u 2Wv ^ w1; w2 2Wv;u℄ (81)� Prv;u;w12[N ℄[u 2Wv ^ w1 2Wv;u℄ � maxv;u;w12[N ℄�Prw22[N ℄[w2 2Wv;u℄	 (82)< �s3 � �2=3 (83)where the last inequality is due to jWv;uj < �2=3N . Thus, the total 
ontribution of this 
aseis smaller than s�2=3 � �.Case of i def= i1 = i2, j1 6= j2, and k def= k1 = k2. There are less than s4 su
h terms, ea
h hav-ing value Exp[�i;j1;k � �i;j2;k℄, whi
h equalsPrv;u1;u2;w2[N ℄[u1; u2 2Wv ^ w 2Wv;u1 \Wv;u2 ℄ (84)� Prv;u1;w2[N ℄[u1 2Wv ^ w 2Wv;u1 ℄ � maxv;u1;w2[N ℄�Pru22[N ℄[u2 2Wv℄	 (85)< �s3 � �2=3 (86)where the last inequality is due to jWvj < �2=3N . Thus, the total 
ontribution of this 
ase issmaller than s�2=3 � �.Case of i def= i1 = i2, j1 6= j2, and k1 6= k2. There are less than s5 su
h terms, ea
h havingvalue Exp[�i;j1;k1 � �i;j2;k2 ℄, whi
h equalsPrv;u1;u2;w1;w22[N ℄[u1; u2 2Wv ^ w1 2Wv;u1 ^ w2 2Wv;u2 ℄ (87)� Prv;u1;w12[N ℄[u1 2Wv ^ w1 2Wv;u1 ℄� maxv;u1;w12[N ℄�Pru2;w22[N ℄[u2 2Wv ^ w2 2Wv;u2 ℄	 (88)< �s3 � (�2=3)2 (89)where the last inequality is due to jWvj < �2=3N and jWv;u2 j < �2=3N . Thus, the total
ontribution of this 
ase is smaller than (s�2=3)2 � �.37



Case of i1 6= i2, j def= j1 = j2, and k def= k1 = k2. There are less than s4 su
h terms, ea
hhaving value Exp[�i1;j;k � �i2;j;k℄, whi
h equalsPrv1;v2;u;w2[N ℄[u 2Wv1 \Wv2 ^ w 2Wv1;u \Wv2;u℄ (90)� Prv1;u;w2[N ℄[u 2Wv1 ^ w 2Wv1;u℄ � maxv1;u;w2[N ℄�Prv22[N ℄[u 2Wv2 ℄	 (91)< �s3 � �2=3 (92)where the inequality is due to jU (1)u j < �2=3N (and u 2 Wv2 i� v2 2 U (1)u ). Thus, the total
ontribution of this 
ase is smaller than s�2=3 � �.Case of i1 6= i2, j1 6= j2, and k def= k1 = k2. There are less than s5 su
h terms, ea
h havingvalue Exp[�i1;j1;k � �i2;j2;k℄, whi
h equalsPrv1;v2;u1;u2;w2[N ℄[u1 2Wv1 ^ u2 2Wv2 ^ w 2Wv1;u1 \Wv2;u2 ℄ (93)� Prv1;u1;w2[N ℄[u1 2Wv1 ^ w 2Wv1;u1 ℄ � maxv1;u1;w2[N ℄�Pru2;v22[N ℄[w 2Wv2;u2 ℄	 (94)< �s3 � (�2=3)2 (95)where the last inequality is due to jU (2)w j < �4=3N2 (and w 2Wv2;u2 i� (v2; u2) 2 U (2)w ). Thus,the total 
ontribution of this 
ase is smaller than (s�2=3)2 � �.Case of i1 6= i2, j def= j1 = j2, and k1 6= k2. There are less than s5 su
h terms, ea
h havingvalue Exp[�i1;j;k1 � �i2;j;k2℄, whi
h equalsPrv1;v2;u;w1;w22[N ℄[u 2Wv1 \Wv2 ^ w1 2Wv1;u ^ w2 2Wv2;u℄ (96)� Prv1;u;w12[N ℄[u 2Wv1 ^ w1 2Wv1;u℄� maxv1;u;w12[N ℄�Prv2;w22[N ℄[u 2Wv2 ^ w2 2Wv2;u℄	 (97)< �s3 � (�2=3)2 (98)where the last inequality is due to jU (1)u j < �2=3N and jWv2;uj < �2=3N . Thus, the total
ontribution of this 
ase is smaller than (s�2=3)2 � �.Case of i1 6= i2, j1 6= j2, and k1 6= k2. There are less than s6 su
h terms, ea
h having valueExp[�i1;j1;k1 ��i2;jj ;k2 ℄ = Exp[�i;j;k℄2, whi
h equals (�=s3)2. Thus, the total 
ontribution of this
ase is smaller than �2.Thus, we have one 
ase (i.e., the �rst one) 
ontributing �, three 
ases (ea
h) 
ontributing s�2=3 � �,three 
ases (ea
h) 
ontributing (s�2=3)2 � �, and one 
ase (i.e., the last one) 
ontributing �2. Usingthese upper bounds in Eq. (80), we obtainPr24 Xi;j;k2[s℄ �i;j;k = 035 < ��2 � ���+ 3 � s�2=3 � �+ 3 � (s�2=3)2 � �+ �2�� �2� (99)= ��1 � �1 + 3s�2=3 + 3(s�2=3)2�: (100)Using � = 
(s3�2) and a suÆ
iently large s = O(��2=3), we obtain an error bound ofO((s�2=3)2=(s3�2)) = O(s�1��2=3) < 1=3, and the 
laim follows.38



5 Larger Adaptive versus Non-adaptive Complexity GapsWe start by establishing Theorem 1.2, whi
h refers to the adaptive versus non-adaptive 
omplexitygap of testing Bi-Clique Colle
tions. We believe that the ideas underlying the adaptive algorithmand the non-adaptive lower bound (presented in Se
tions 5.1 and 5.2) 
an serve as a basis for es-tablishing the larger gap stated in Conje
ture 1.3. Indeed, as shown in Se
tion 5.3, this is the 
asewith respe
t to the non-adaptive lower bound (whi
h indeed establishes Part 2 of Conje
ture 1.3).In Se
tion 5.4 we outline an adaptive algorithm that we believe to be suitable for Part 1 of Con-je
ture 1.3. In Se
tion 5.4, we also state and prove a promise problem version of Conje
ture 1.3.5.1 The Adaptive Query Complexity of Bi-Clique Colle
tionThe tester for BCC is obtained by extending the ideas that underly the tester for CC (i.e., Algo-rithm 3.1). The extension is relatively straightforward, but the analysis will have to address addi-tional diÆ
ulties (i.e., beyond those en
ountered in the analysis of Algorithm 3.1). We mention,however, that the 
urrent algorithm uses two levels of adaptivity (e.g., inspe
ting the edge relationof sele
ted neighbors) as 
ompared with the single level of adaptivity employed by Algorithm 3.1(whi
h inspe
ts, e.g., the edge relation of neighbors).Algorithm 5.1 (adaptive tester for BCC): On input N and � and ora
le a

ess to a graph G =([N ℄; E), set ` = log2(1=�) + 2, t = �(`4), and pro
eed in ` iterations as follows: For i = 1; : : : ; `,uniformly sele
t 100 � 2i start verti
es and for ea
h sele
ted vertex v 2 [N ℄ perform the followingsub-test, denoted sub-testi(v):1. Sele
t, uniformly at random, a sample, S, of t=(2i�) verti
es, and determine �S(v) = S\�(v)by making the queries (v; w) for ea
h w 2 S. If �S(v) 6= ; then sele
t u at random in �S(v)and 
ontinue to the following steps. (Otherwise, halt and a

ept v.)2. Determine �S(u) = S \ �(u) by making the queries (u;w) for ea
h w 2 S.3. If j�S(v) � �S(u)j � t=(2i�) then 
he
k that for every (w1; w2) 2 �S(v) � �S(u) it holds that(w1; w2) 2 E. Otherwise (i.e., j�S(v) � �S(u)j > t=(2i�)), uniformly sele
t a sample of t=(2i�)pairs in �S(v)� �S(u) and 
he
k that ea
h sele
ted pair is in E.4. Let B = (�S(v)��S(v))[(�S(u)��S(u)). If jBj � t=(2i�) then 
he
k that for every (w1; w2) 2B it holds that (w1; w2) 62 E. Otherwise (i.e., jBj > t=(2i�)), uniformly sele
t a sample oft=(2i�) pairs in B and 
he
k that ea
h sele
ted pair is in not E.5. Sele
t a sample of t=(2i�) pairs in (�S(v) [ �S(u))� (S n (�S(v) [ �S(u))) and 
he
k that ea
hsele
ted pair is not in E.The sub-test (i.e., sub-testi(v)) a

epts if and only if all 
he
ks were positive (i.e., no edges weremissed in Step 3 and no edges were dete
ted in Steps 4 and 5). The tester itself a

epts if and onlyif all Pì=1 10 � 2i invo
ations of the sub-test a

epted.The query 
omplexity of this algorithm isPì=1(100 � 2i) �O(t=(2i�)) = O(` � t=�) = eO(1=�). Clearly,this algorithm a

epts (with probability 1) any graph that is in BCC. It remains to analyze itsbehavior on graphs that are �-far from BCC.Lemma 5.2 If G = ([N ℄; E) is �-far from BCC, then on input N; � and ora
le a

ess to G, Algo-rithm 5.1 reje
ts with probability at least 2=3. 39



Part 1 of Theorem 1.2 follows.Proof: We pro
eed as in the proof of Lemma 3.2; that is, we will show that if Algorithm 5.1a

epts with probability at least 1=3 then the graph is �-
lose to BCC. The proof makes use of arevised notion of i-good start verti
es, whi
h is de�ned on top of the notion of i-good edges. Thede�nition refers to a parameter 
, whi
h will be determined so that 
 = �(1=t) = �(log�4(1=�)).Similarly to the analysis in the proof of Lemma 3.2, it is instru
tive to think of �rst setting 
 (whosesetting is determined by another parameter, �2, whi
h is introdu
ed subsequently), and then t isset to be a (suÆ
iently large) 
onstant fa
tor larger than 1=
.De�nition 5.2.1 An edge (v; u) is i-good if the following three 
onditions hold.1. The number of missing edges in �(v) � �(u) is at most 
 � 2i� � j�(v; u)j � N edges, where�(v; u) def= �(v) [ �(u); that is, j(�(v)� �(u)) n Ej � 
 � 2i� � j�(v; u)j �N .2. The number of edges in (�(v)� �(v)) [ (�(u)� �(u)) is at most 
 � 2i� � j�(v; u)j �N .3. For every positive integer j � j0 def= log2(j�(v; u)j=(
 �2i�N)), the number of verti
es in �(v; u)that have at least 
 � 2i+j� �N edges going out of �(v; u) is at most 2�j � j�(v; u)j.A vertex v is i-good if at least 0:8 � j�(v)j of its neighbors yield an edge that is i-good; that is, ifjfu 2 �(v) : (v; u) is i-goodgj � 0:8 � j�(v)j.Claim 5.2.2 If v has degree at least 
 �2i��N and is not i-good, then the probability that sub-testi(v)reje
ts is at least 0:1.Proof: By the hypothesis j�(v)j � 
 � 2i� �N , with high 
onstant probability, Step 1 of sub-testi(v)generates a non-empty sample of verti
es in �(v). Conditioned on this event, sin
e these verti
esare uniformly distributed in �(v), (and using the hypothesis that v is not i-good), with probabilityat least 0:2 the vertex u 2 �(v) sele
ted in this sample is su
h that (v; u) is not i-good. We �x su
han edge (v; u) for the rest of this proof.Assume that Condition 1 of i-goodness does not hold for (v; u), and let� def= 
 � 2i� � j�(v; u)j �Nj�(v)j � j�(u)j � 
 � 2i� �Nmin(j�(v)j; j�(u)j) (101)denote a lower bound on the fra
tion of missing edges in �(v) � �(u). (Note that the foregoingviolation of Condition 1 may o

ur only if min(j�(v)j; j�(u)j) � 
 �2i��N .) Then, with high 
onstantprobability, it holds that min(j�S(v)j; j�S(u)j) > m=2, wherem def= t�2i � min(j�(v)j; j�(u)j)N (102)is the mininum of the expe
ted sizes of j�S(v)j and j�S(u)j, and is lower bounded by t � 
 whi
his a (suÆ
iently large) 
onstant. Also note that the members of �S(v) and �S(u) are distributeduniformly in �(v) and �(u), respe
tively. Considering n = m=2 uniformly distributed verti
es in�(v) and n uniformly distributed verti
es in �(u), it follows (as in the proof of Claim 3.2.2) that,with high 
onstant probability, the fra
tion of edges that are missing in the subgraph indu
ed bythe said sample is at least �=2. This implies that Step 3 reje
ts with high 
onstant probability(regardless if it examines all pairs in �S(v) � �S(u) or just examines a random sample of t2i� � t
�pairs). 40



The treatment of Condition 2 is similar, ex
ept that here we refer to the number of edges (in(�(v)��(v))[(�(u)��(u))) over j�(v)j2+ j�(u)j2 = �(j�(v; u)j2). We 
on
lude that if Condition 2(of i-goodness of (v; u)) is violated, then Step 4 of the test reje
ts with high 
onstant probability.Finally, we turn to Condition 3 of i-goodness. Assuming that this 
ondition does not hold for(v; u), we 
laim that Step 5 of the test reje
ts with high 
onstant probability. The proof is analogousto the analysis of Condition 2 in Claim 3.2.2, ex
ept that �(v; u) repla
es �(v).Thus (re
alling the simple probabilisti
 assertions made at the start of the proof), sub-testi(v)reje
ts with probability at least (1 � Æ) � 0:2, where Æ 2 (0; 1) is an arbitrary small 
onstant, andthe 
urrent 
laim follows.Claim 5.2.3 If Algorithm 5.1 a

epts with probability at least 1=3, then for every i 2 [`℄ the numberof verti
es of degree at least 
 � 2i� �N that are not i-good is at most 2�i �N=4.Proof: Assuming to the 
ontrary that the number of these verti
es ex
eeds 2�i � N=4, Claim 5.2.2implies that a single invo
ation of sub-testi reje
ts with probability at least 0:025 � 2�i. Re
allingthat Algorithm 5.1 invokes sub-testi on 100�2i uniformly sele
ted random verti
es, the 
laim follows.Additional diÆ
ulties. As stated up-front, the 
urrent proof fa
es additional diÆ
ulties that werenot en
ountered in the proof of Lemma 3.2. These diÆ
ulties refer to the partition re
onstru
tionpro
edure, whi
h is supposed to provide an approximately good partition of the graph to bi-
liques.The �rst problem refers to the 
ase that (v; u) is i-good, but most of �(v; u) belongs to previouslyidenti�ed bi-
liques and furthermore these verti
es reside in �(u) (rather than in �(v)). Thus, we
annot \
harge" these verti
es to edges that are adja
ent to v, but rather develop a 
harging rulethat allows us to 
harge v indire
tly via its typi
al neighbors u. The se
ond problem refers tothe treatment of low-degree verti
es, and it arises from the fa
t that verti
es in �(v; u) may havevastly di�erent degrees (whi
h, indeed, o

urs in the 
ase that �(v) has a signi�
antly di�erent
ardinality than �(u)). Our solution is based on using two di�erent degree thresholds (dependingon the relation between the degree of a vertex and the degree of most of its neighbors). With thismotivation in mind, we turn to the a
tual des
ription of the (iterative) partition-re
onstru
tionpro
edure.The partition re
onstru
tion pro
edure. The iterative pro
edure is initiated with C = L0 = L(1)0 =L(2)0 = L(I)0 = ;, R0 = [N ℄ and i = 1, where C denotes the set of verti
es \
overed" (by bi-
liques)so far, Ri�1 denotes the set of \remaining" verti
es after iteration i � 1 and Li�1 denotes the setof verti
es 
ast aside (as having \low degree") in iteration i� 1. The set Li�1 is the union of threesets, L(1)i�1, L(2)i�1, and L(I)i�1, where the �rst two sets 
orrespond to two degree thresholds, denoted �1and �2, and the third set 
onsists of many subsets that use intermediate thresholds (for avoidinga non-smooth transition). In ea
h iteration, a set Fi of edges is 
onstru
ted, where ea
h edge inFi is used to determine a bi
lique (or, more pre
isely, a pair of subsets that are 
lose to being abi
lique). We shall set �1 = �(1=`) = �(log�1(1=�)) and �2 = �(�1=`) = �(1=`2). Re
all that
 = �(log�4(1=�), so that 
 = O(�2=`2) (and in the analysis we shall determine the suÆ
ient sizeof the 
onstant 
 su
h that 
 = �2=(
`2)).The ith iteration pro
eeds as follows, where i = 1; : : : ; ` and Fi is initialized to ;.1. Pi
k an arbitrary vertex v 2 Ri�1 n C that satis�es the following three 
onditions(a) v is i-good. 41



(b) v has suÆ
iently high degree in the following sense: either j�(v)j � �1 �2i� �N or for somek 2 [`0℄, where `0 = log0:9(�2=�1) = O(log `), both j�(v)j � 0:9k � �1 � 2i� � N and �k(v)hold, where �k(v) represents the 
ondition that a signi�
ant fra
tion of v's neighborshave a signi�
antly higher degree than v itself; spe
i�
ally, �k(v) holds if�����w2�(v) : j�(w)j > �1:1 + k10`0� � j�(v)j����� > j�(v)j100` : (103)Note that �`0(v) holds if jfw 2 �(v) : j�(w)j > 1:2 � j�(v)jgj is greater than j�(v)j=100`,and the 
orresponding degree bound is �2 � 2i� �N (be
ause 0:9`0 = �2=�1).(
) There exists u 2 �(v) n C su
h that the edge (v; u) is i-good and������(�(v; u) n C) n0� [j�i�1Lj1A������ � j�(v; u)j5(i.e., relatively few verti
es of �(v; u) are 
overed by C or 
ast aside in previous iterationsdue to having low degree).If no su
h vertex v exists, then de�neL(1)i = fv 2 Ri�1 n C : :�1(v) ^ (j�(v)j<�1 � 2i� �N)g; (104)L(I)i = [k2[`0�1℄fv 2 Ri�1 n C : �k(v) ^ :�k+1(v) ^ (j�(v)j<0:9k�1 � 2i� �N)g; (105)L(2)i = fv 2 Ri�1 n C : �`0(v) ^ (j�(v)j<�2 � 2i� �N)g; (106)Li = L(1)i [ L(I)i [ L(2)i , and Ri = Ri�1 n (Li [ C).If i < ` then pro
eed to the next iteration, and otherwise terminate.2. For a vertex v as sele
ted in Step 1, pi
k an arbitrary u 2 �(v) n C satisfying Condition 1
.Let Cv;u = fw 2 �(v; u) : j�(w) n �(v; u)j < j�(v; u)jg. Form a new bi-
lique with the vertexset C 0v;u  Cv;u n C, and update Fi  Fi [ f(v; u)g and C  C [ C 0v;u. This bi-
lique willhave �0(v) def= �(v) \ C 0v;u on one side and �0(u) def= �(u) \ C 0v;u on the other side.Note that by Condition 1
 (and the de�nition of i-goodness), for every (v; u) 2 Fi, it holds thatjCv;uj > (1� o(1)) � j�(v; u)j and j�(v; u) n Cj � j�(v; u)j=5. Thus, jC 0v;uj � jCv;uj � j�(v; u) \ Cj �j�(v; u)j=6, whi
h allows translating quality guarantees that are quanti�ed in terms of j�(v; u)j tosimilar guarantees in terms of jC 0v;uj. In fa
t, jC 0v;u n (Sj�i�1 Lj)j � j�(v; u)j=6, whi
h enablesfurther translation of these guarantees to quanti�
ation in terms of jC 0v;u \Ri�1j.Claim 5.2.4 Referring to the partition re
onstru
tion pro
edure, for every i 2 [`℄, the followingholds.1. The number of missing edges inside the bi-
liques formed in iteration i is at most 12
� �N2;that is, ������ [(v;u)2Fif(w1; w2) 2 �0(v) � �0(u) : (w1; w2) 62 Eg������ � 12
� �N2:42



2. The number of \super
uous" edges inside the bi-
liques formed in iteration i is at most12
� �N2; that is,������ [(v;u)2Fif(w1; w2) 2 (�0(v)� �0(v)) [ (�0(u)� �0(u)) : (w1; w2) 2 Eg������ � 12
� �N2:3. The number of \super
uous" edges between bi-
liques formed in iteration i and either Ri orother bi-
liques formed in the same iteration is at most 36` � 
� �N2; a
tually,������ [(v;u)2Fif(w1; w2) 2 C 0v;u � (Ri�1 n C 0v;u) : (u;w) 2 Eg������ � 36` � 
� �N2:4. jRij � 2�i �N and jLij � 2�(i�1) �N .Thus, the total number of violations 
aused by the bi-
liques that are formed by the foregoingpro
edure is upper-bounded by (36 + o(1))`2 � 
� �N2 = o(�N2).Proof: We prove all items simultaneously, by indu
tion from i = 0 to i = `. Needless to say, allitems hold va
uously for i = 0, and thus we fo
us on the indu
tion step.Starting with Item 1, we note that every (v; u) 2 Fi is i-good and thus the number of edgesmissing in �0(v)��0(u) � �(v)��(u) is at most 
2i��j�(v; u)j�N . As in the proof of Claim 3.2.4, weneed to relate j�(v; u)j to jC 0v;u\Ri�1j (in order to upper-bound the 
ontribution of all pairs in Fi).We re
all that C 0v;u = Cv;u nC, where C is the set of verti
es that are already 
overed when (v; u) isadded to Fi. Also re
all that j�(v; u)nCv;uj = o(1)�j�(v; u)j and j(�(v; u)nC)nLj � j�(v; u)j=5, whereL def= Sj2[i�1℄Lj. Using C 0v;u = (C 0v;u \Ri�1) [ (C 0v;u \L), we get that C 0v;u \Ri�1 = (Cv;u nC) n Land it follows that jC 0v;u \Ri�1j � j(�(v; u) nC) nLj � o(j�(v; u)j) > j�(v; u)j=6. Combining all theabove (and re
alling that the sets C 0v;u are disjoint), we obtain������ [(v;u)2Fif(w1; w2) 2 �0(v)� �0(u) : (w1; w2) 62 Eg������ � 
2i� � X(v;u)2Fi j�(v; u)j �N (107)� 
2i� � 6jRi�1j �N: (108)Using the indu
tion hypothesis regarding Ri�1 (i.e., jRi�1j < 2�(i�1) �N), Item 1 follows.Item 2 is proved in a similar fashion. As for Item 3, we adapt the proof of Item 2 of Claim 3.2.4.Spe
i�
ally, the number of edges in Cv;u � ([N ℄ n Cv;u) is upper-bounded by the sum of jCv;u �(�(v; u) nCv;u)j and the number of edges in Cv;u� ([N ℄ n �(v; u)). Using Condition 3 of i-goodness(of (v; u)), we upper-bound both j�(v; u)nCv;uj and the number of edges of the se
ond type. Hen
e,the number of edges in C 0v;u � (Ri�1 n C 0v;u) � Cv;u � ([N ℄ n Cv;u) is at most 3` � 
2i� � j�(v; u)j �N .Using again P(v;u)2Fi j�(v; u)j < 6jRi�1j and jRi�1j < 2�(i�1) �N , we establish Item 3.Turning to Item 4, we �rst note that Li � Ri�1 and thus jLij � jRi�1j � 2�(i�1) � N . As forRi, let us 
onsider all the 
ases that might lead to pla
ing a vertex v in Ri; that is, the variousviolations of the three 
onditions in Step 1.Violation of Condition (b): not having suÆ
iently high degree. We observe that verti
es that violateCondition (b) do not 
ontribute to Ri, be
ause ea
h su
h vertex is either 
overed in iteration43



i or ends-up in Li. Spe
i�
ally, let v be an arbitrary vertex that violates Condition (b), andlet k(v) 2 f0; 1; : : : ; `0g be the largest index k su
h that �k(v) holds (where �0 is �
titiouslyde�ned su
h that it always holds). Then, Condition (b) is equivalent to requiring that j�(v)j �0:9k(v) � �1 � 2i� �N holds. Indeed, if the latter 
ondition does not hold, then v is pla
ed in Li(and the 
onverse holds as well).In the subsequent 
ases, we shall assume that Condition (b) holds with respe
t to the vertexv.Violation of Condition (a): not being i-good. Here we refer to verti
es that are not i-good althoughthey have degree at least �2 � 2i� �N > 
 � 2i� �N . By Claim 5.2.3, the number of verti
es ofthis type is at most 2�i �N=4.Violation of Condition (
). Here we refer to verti
es that satisfy both Conditions (a) and (b) butviolate Condition (
), whi
h refers to the existen
e of a good edge that yields a bi-
liquewith suÆ
iently many new verti
es. The rest of the proof is devoted to upper-bounding thenumber of su
h verti
es. Loosely speaking, this is done by using the upper bound establishedin Item 3, while relying on the hypothesis that these verti
es satisfy both Conditions (a)and (b).Re
alling that we refer to verti
es that satisfy both Conditions (a) and (b), we �rst upper-boundthe number of verti
es that have relatively many neighbors in the 
urrent C, i.e., verti
es v su
hthat j�(v) \ Cj � j�(v)j=8. As in the proof of Claim 3.2.4, ea
h su
h vertex v requires at leastj�(v)j=8 � �2 � 2i� �N=8 edges from C 0 def= S(v0 ;u0)2Sj2[i℄ Fj C 0v0;u0 to it, whereas by Item 3 the totalnumber of edges going out from C 0 to Ri is at most i � 36` � 
� � N2 � 36`2 � 
� � N2. Hen
e, thenumber of verti
es of this type is upper-bounded by36`2 � 
� �N2�2 � 2i� �N = 36`2 � 
�2 � 2�iN < 0:1 � 2�iN; (109)where the last inequality uses 
 < �2=(360`2).In the rest of the proof we 
onsider only verti
es that have relatively few neighbors in the
urrent C (i.e., j�(v)\Cj � j�(v)j=8). In parti
ular, by the 
ase hypothesis (i.e., v is i-good), thereexists u 62 C su
h that (v; u) is i-good (be
ause the fra
tion of \non-good" pairs (v; u) is at most0:2). Thus, we fo
us on the 
ondition j(�(v; u) nC) nLj > j�(v; u)j=5, where L def= Sj�i�1 Lj and Cdenotes the 
urrent set of 
overed verti
es. We distinguish three 
ases with respe
t to the relationbetween j�(v)j and j�(u)j. A
tually, letting Uv denote the set of verti
es u 2 �(v) n C su
h that(v; u) is i-good, we 
onsider three 
ases regarding the relations of j�(v)j and fj�(u)j : u 2 Uvg.Case 1: there exists u 2 Uv su
h that j�(v)j > 1:3j�(u)j. We just pi
k an arbitrary su
hu, and note that, using the 
ase hypothesis (whi
h implies j�(v)j > j�(v; u)j=2), it suÆ
es toshow that j(�(v)nC)nLj > j�(v)j=2. Sin
e j�(v)\Cj � j�(v)j=8, we fo
us on upper-boundingj�(v)\Lj for but a small number of verti
es v (that fall under this 
ase). The intuition is thatin the 
urrent 
ase :�1(v) holds, and so the fa
t that v 62 Li implies that j�(v)j � �1 � 2i�N .On the other hand, ea
h vertex in �(v)\Lj has at most �2 �2j�N neighbors of degree at least�1 � 2i�N , whi
h yields a total 
ount of 2�2�N2 edges in Lj � (Ri�1 n Li). Thus, the numberof verti
es v 2 Ri�1 n Li for whi
h j�(v) \ Lj > j�(v)j=8 holds is suÆ
iently small. Detailsfollow.Using the hypothesis that (v; u) is i-good (and referring to Condition 2 of De�nition 5.2.1),we note that the number of edges with both endpoints in �(v) is at most 
 �2i� � j�(v; u)j �N �44




 � 2i+1� � j�(v)j �N . Thus, less than a 1=(200`) fra
tion of the verti
es in �(v) have more than200` � 
 � 2i+1� � N < �2 � 2i� � N=100 � j�(v)j=100 su
h edges, where the inequalities are dueto 
 � �2=40000` and j�(v)j � �2 � 2i� �N (sin
e v 62 Li). By Condition 3 of De�nition 5.2.1,at most a 1=(200`) fra
tion of the verti
es in �(v) have at least 200` � 
 � 2i� �N < j�(v)j=100edges going out of �(v; u). We 
on
lude that less than a 1=(100`) fra
tion of the verti
es in�(v) have degree ex
eeding j�(u)j+ 0:02j�(v)j < j�(v)j, and so :�1(v) holds. The latter fa
tallows us to in
rease our lower bound on j�(v)j (from j�(v)j � �2 � 2i�N) to j�(v)j � �1 � 2i�N(using again v 62 Li). Thus, if j�(v)\Lj > j�(v)j=8 then there exist at least �1 � 2i�N=8 edgesfrom L = Sj�i�1 Lj to v.We upper-bound the number of su
h verti
es v (i.e., for whi
h j�(v) \ Lj > j�(v)j=8), byupper-bounding the number of edges that may go from L to any vertex of degree at least�1 �2i�N . The 
ontribution of ea
h vertex in L(2)j to this number is at most �2 �2j�N , be
auseverti
es in L(2)j have degree at most �2 � 2j�N . As for the verti
es in Lj n L(2)j , ea
h su
hvertex u0 violates �`0 and thus 
an 
ontribute at most j�(u0)j=100` to this number, be
auseat most a 1=(100`) fra
tion of its neighbors have degree ex
eeding 1:2j�(u0)j < �1 � 2i�N(sin
e j�(u0)j < �1 � 2j�N and j � i � 1), whereas we 
ount edges to verti
es of degree atleast �1 � 2i�N . Thus, the 
ontribution of ea
h vertex in u0 2 Lj to the 
ount is at mostmax(�2 � 2j�N; j�(u0)j=100`) � �1 � 2j�N=100` (sin
e �2 � �1=100` and j�(u0)j < �1 � 2j�N).Re
alling that jLjj � jRj�1j � 2�(j�1)N , it follows that the number of bad verti
es (i.e.,verti
es v of degree at least �1 � 2i�N with at least j�(v)j=8 neighbors in L) is at mostPj�i�1 jLj j � �1 � 2j� �N=100`�1 � 2i�N=8 � (i� 1) � �1 � 2� �N2=100`�1 � 2i�N=8 (110)< 0:16 � 2�iN; (111)whereas the rest of the verti
es v 2 Ri�1 n Li satisfy j�(v) \ Lj � j�(v)j=8. Re
alling thatj�(v) \ Cj � j�(v)j=8, we 
on
lude that j(�(v) n C) n Lj > j�(v)j=2, and the 
laim follows;that is, the 
urrent 
ase is only responsible for 0:16 � 2�iN verti
es violating Condition (
).Case 2: for every u 2 Uv it holds that j�(v)j < 0:7j�(u)j. We �rst show that for everysu
h u it holds that j�(u)\Lj � j�(u)j=8, and later 
onsider two sub
ases. In the �rst sub
asej�(u)\Cj � j�(u)j=8 holds (for some relevant u), and so we obtain j(�(u)nC)nLj > j�(u)j=2and use j�(u)j > j�(v; u)j=2 to 
on
lude that v satis�es Condition (
). In the other sub
ase,where j�(u) \ Cj > j�(u)j=8 holds for all relevant u, we bound the number of verti
es v forwhi
h this may o

ur.The proof that j�(u) \ Lj � j�(u)j=8 is supported by the intuition that almost all verti
es in�(u) have approximately the same degree as v and satisfy �`0 (sin
e most of their neighborshave degree approximately j�(u)j > (10=7)j�(v)j), whi
h implies that they 
annot be in L(be
ause verti
es in L that satisfy �`0 have degree at most �2 � 2i�1�N , whereas v 2 Ri�1 nLihas degree at least �2 � 2i�N). Details follow.We start by showing that almost all verti
es in �(u) satisfy �`0 . Analogously to the previous
ase, at most a 0:01 fra
tion of the verti
es in �(u) have more than 0:02 � j�(v)j neighborsnot in �(v). On the other hand, by using Condition 1 of De�nition 5.2.1, at least a 0:99fra
tion of the verti
es in �(u) have at least 0:99 � j�(v)j neighbors in �(v), whereas at leasta 0:99 fra
tion of the verti
es in �(v) have degree at least 0:99 � j�(u)j. Let us denote byY the subset of �(u) 
ontaining verti
es v0 su
h that j�(v0)j � 1:02 � j�(v)j and �(v0) \ �(v)45




ontains at least 0:98 � j�(v)j verti
es of degree at least 0:99 � j�(u)j. Then, jY j > 0:98j�(u)j,be
ause a 0:98 fra
tion of the verti
es in �(u) have both degree at most 1:02 � j�(v)j andat least 0:99 � j�(v)j neighbors in �(v) (whereas at most a 0:01 fra
tion of the verti
es in�(v) have degree smaller than 0:99 � j�(u)j). We note that ea
h vertex in Y has degree atmost 1:02 � j�(v)j < 0:72 � j�(u)j, whereas at least a 0:98=1:02 fra
tion (whi
h is signi�
antlygreater than (100`)�1) of its neighbors have degree at least 0:99 � j�(u)j > 1:2 � 0:72 � j�(u)j,whi
h implies that ea
h vertex in Y satis�es �`0 . Using the latter fa
t and re
alling that ea
hvertex in Y has degree at least 0:99 � j�(v)j � 0:99 � �2 � 2i�N (sin
e v 62 Li), we show thatY \ L = ;. The latter 
laim follows by noting that for every v0 2 L that satis�es �`0 it holdsthat j�(v0)j < �2 �2i�1�N , whereas every v0 2 Y satis�es both �`0 and j�(v0)j > 0:99 ��2 �2i�N .Finally, using Y \ L = ; and jY j � 0:98j�(u)j, we get j�(u) \ Lj � j�(u) n Y j � 0:02j�(u)j.Having established j�(u)\Lj � j�(u)j=8, one may attempt to provide a similar upper boundfor j�(u) \ Cj. However, unlike in the previous 
ase (or rather in the preliminary proof that�(v)\C is small), here we 
annot dire
tly 
harge the verti
es in �(u)\C to edges going outfrom C to v. Still, an indire
t 
harging rule will work; that is, we �rst 
harge su
h verti
esto u, and then distribute the 
harge to u's neighbors. This will yield an upper bound on thenumber of verti
es v for whi
h there exists no u 2 Uv su
h that j�(u) \ Cj � j�(u)j=8. Inlight of the foregoing, we 
onsider two sub
ases.1. The easy sub
ase is the one where there exists u 2 Uv su
h that j�(u) \ Cj � j�(u)j=8(and j�(u)j > j�(v)j=0:7, by the 
ase hypothesis). In this sub
ase, we 
on
lude that vsatis�es Condition (
), sin
e j(�(v; u) n C) n Lj > j�(u)j=2 > j�(v; u)j=2. That is, thissub
ase does not 
ontribute any verti
es that violate Condition (
).2. The other sub
ase refers to the 
ase that for every u 2 Uv it holds that j�(u) \ Cj >j�(u)j=8. This means that there are at least j�(u)j=8 edges going out from C to u.Wishing to 
harge these edges to the initial vertex v (while 
onsidering all initial v 2Ri�1 n Li), we 
harge ea
h neighbor of u by one eighth of an edge (i.e., 1=8 unit) as itsshare in the total number of edges going from C to u. That is, these j�(u) \ Cj edgesgenerate a 
harging of j�(u)j=8 units, whi
h is distributed equally among all verti
es in�(u). (No over
harging o

urs sin
e j�(u) \ Cj > j�(u)j=8.)(Indeed, an important observation is that we are not 
on
erned with the existen
e of aspe
i�
 u 2 Uv that violates j�(u) \Cj � j�(u)j=8, but should be 
on
erned only if thisviolation o

urs for all u 2 Uv (su
h that j�(u)j > j�(v)j=0:7), sin
e otherwise we aredone by the �rst sub
ase. Thus, we get into trouble with v only if, for every u 2 Uvboth j�(u)j > j�(v)j=0:7 and j�(u) \ Cj > j�(u)j=8 holds.)9Let us denote the set of su
h bad (initial) verti
es by B; that is, v 2 B if for everyu 2 Uv both j�(u)j > j�(v)j=0:7 and j�(u) \ Cj > j�(u)j=8 holds. Note that ea
h vertexv 2 B is 
harged with at least (j�(v)j=2) � (1=8) > �2 � 2i�N=16 (units that a

ount for)edges going from C to �(v), where j�(v)j=2 is a lower bound on the number of verti
esu 2 �(v) su
h that u 62 C and (v; u) is i-good.10 Sin
e the total number of edges goingout from C is at most 36`2 � 
� �N2, we upper-bound jBj by 0:1 � 2�iN (as in Eq. (109),9Again, these 
onditions are guaranteed by the 
ase and sub
ase hypotheses.10Re
all that the fra
tion of verti
es u 2 �(v) su
h that u 2 C is at most 1=8, whereas the fra
tion of verti
esu 2 �(v) su
h that (v; u) is not i-good is at most 0:2 < 3=8.
46



ex
ept that here we use 
 < �2=(6000`2)).11To re-
ap, note that we showed that the 
urrent 
ase is only responsible for 0:1 �2�iN verti
esthat violating Condition (
).Case 3: there exists u 2 Uv su
h that 0:7j�(u)j � j�(v)j � 1:3j�(u)j. In addition, we as-sume here that Case 1 does not hold. We �rst note that the analysis of j�(u) \ Cj (for allu 2 Uv) as presented in Case 2 still holds. Thus, for all but 0:1 � 2�iN verti
es v, there existsa vertex u su
h that for every u 2 Uv it holds that j�(u) \ Cj � j�(u)j=8. These verti
eswill 
ontribute to violation of Condition (
), but we shall show that all other verti
es satisfyCondition (
).Thus, we 
onsider any arbitrary v su
h that there there exists a vertex u 2 Uv that satis�esj�(u) \ Cj � j�(u)j=8 (and j�(v)j � 1:3j�(u)j). We shall show, below, that j�(u) \ Lj �j�(u)j=8, and 
on
lude that j(�(u) n C) n Lj � j�(u)j=2, whi
h in turn is lower-bounded byj�(v; u)j=5 (sin
e j�(u)j � j�(v; u)j=2:3, whi
h follows from j�(v)j � 1:3j�(u)j).The 
laim j�(u)\Lj � j�(u)j=8 is supported by the intuition that almost all verti
es in �(u)have approximately the same degree as v. However, in the 
urrent 
ase these verti
es donot ne
essarily satisfy �`0 and so their being in L does not ne
essarily mean their havingdegree below �2 � 2i�1�N , whi
h is signi�
antly smaller than j�(v)j � �2 � 2i�N . So we need adi�erent method to argue that being in L is in
onsistent with having degree approximatelyj�(v)j. Indeed, the sour
e of trouble is that for two di�erent thresholds �0 > �00 it maybe the 
ase that v 62 Li holds be
ause j�(v)j � �00 � 2i�N , whereas v0 2 Lj holds be
ausej�(v0)j < �0 � 2j�N . Here is where the intermediate thresholds (and the di�erent �k) 
omeinto play: we shall show that whenever the foregoing happens it holds that �0 is very 
lose to�00 (rather than �0 > 2�00, whi
h would have not given anything). Spe
i�
ally, we shall showthat if �k(v) holds then �k�1(v0) must hold for almost all v0 2 �(u). Thus, if v 62 Li due toj�(v)j � 0:9k�1 � 2i�N (and �k(v) holds), then v0 2 Lj implies that j�(v0)j < 0:9k�1�1 � 2j�N ,whi
h yields the desired 
ontradi
tion. Details follow.Using arguments as in the previous two 
ases, we �rst establish that at least a 0:99 fra
tionof the verti
es in �(u) have degree at most (1+ `�2) � j�(v)j and have at least (1� `�2) � j�(v)jneighbors in �(v). (Here the argument relies on 
 � �2=(500`2) and j�(u)j � j�(v)j=1:3 ��2 �2i�N=1:3.) Let us denote this (large) subset of �(u) by Y , and note that v 2 Y . Similarly,one 
an show that at least 1 � (200`)�1 of the verti
es in �(v) have degrees in the interval[(1� (300`0)�1) � j�(u)j; (1 + (300`0)�1) � j�(u)j℄, whi
h we denote in short by [(1� (300`0)�1) �j�(u)j℄. Hen
e, for every v0 2 Y , it holds that j�(v0)j is in the interval (1� (300`0)�1) � j�(v)j,whereas at least 1�(200`)�11+`�2 > 1 � (100`)�1 of its neighbors (i.e., the verti
es in �(v0)) havedegrees in the interval [(1 � (300`0)�1) � j�(u)j℄. Denoting (for every v0 2 Y ),�(v0) def= maxS��(v0) s.t. jSj=j�(v0)j=100`�minu02S� j�(u0)jj�(v0)j�� (112)we infer that for every v0 2 Y (in
luding v) it holds that �(v0) = (1�(300`0)�1)�j�(u)j(1�(300`0)�1)�j�(v)j = (1 �(100`0)�1) � j�(u)jj�(v)j . It follows that �(v0) � 1�(100`0)�11+(100`0)�1 � �(v) > (1� (30`0)�1) � �(v).11Spe
i�
ally, here we have 36`2 � 
� �N2�2 � 2i� �N=16 = 576`2 � 
�2 � 2�iN < 0:1 � 2�iN;where the last inequality uses 
 < �2=(6000`2). 47



Re
all that k(v0) 2 f0; 1; : : : ; `0g is the largest index k su
h that �k(v0) holds (where �0always holds). Indeed, �(v) > 1:1 + k(v)10`0 and j�(v)j � 0:9k(v) � �1 � 2i� � N (be
ause v 62 Li).Combining �(v0) > (1 � (30`0)�1) � �(v) and �(v) > 1:1 + k(v)10`0 , it follows that for everyv0 2 Y it holds that �(v0) > 1:1 + k(v)�110`0 , whi
h implies k(v0) � k(v) � 1. It follows thatY \ L = ;, be
ause otherwise we obtain, for some j � i � 1, a vertex v0 2 Y \ Lj su
hthat j�(v0)j < 0:9k(v0) � �1 � 2j� � N � 0:9k(v)�1 � �1 � 2i�1� � N � j�(v)j=1:8, whi
h 
ontradi
tsj�(v0)j � (1 � (300`0)�1) � j�(v)j > �(v)j=1:8. Re
alling that jY j � 0:99 � j�(u)j, we 
on
ludethat j�(u) \ Lj � 0:01j�(u)j.Combining the preliminary bound (of Eq. (109)) and the bounds of the foregoing three 
ases, we
on
lude that at most (0:1 + 0:16 + 0:1 + 0:1) � 2�iN < 0:5 � 2�iN verti
es satisfy Conditions (a)and (b) but violate Condition (
).Re
all that Ri only 
ontains verti
es that satisfy Condition (b) but violate either Condition (a)or Condition (
). The number of the former was upper-bounded by 2�iN=4, whereas the numberof the latter was just upper-bounded by 0:5 � 2�iN . Thus, jRij � (0:25 + 0:5) � 2�i �N , and Item 4follows. This 
ompletes the proof of the 
urrent 
laim.Completing the re
onstru
tion and its analysis. The foregoing 
onstru
tion leaves \unassigned" theverti
es in R` as well as some of the verti
es in L1; : : : ; L`. (Note that some verti
es in S`�1i=1 Li maybe pla
ed in bi-
liques 
onstru
ted in later iterations, but there is no guarantee that this a
tuallyhappens.) We assign ea
h of these remaining verti
es to a two-vertex bi-
lique (i.e., an isolated pairof verti
es 
onne
ted by an edge). Ignoring the number of edges used in these bi-
liques (whi
h isnegligible), the number of violations 
aused by this assignment equals the number of edges withboth endpoints in R0 def= R` [ (Sì=1 Li), be
ause edges with a single endpoint in R0 were alreadya

ounted for in Item 3 of Claim 5.2.4. Nevertheless, we upper-bound the number of violations bythe total number of edges in
ident to R0, whi
h in turn is upper-bounded byXv2R`[(Si2[`℄ Li) j�(v)j � jR`j �N + X̀i=1 Xv2Li j�(v)j (113)� �N4 �N + X̀i=1 2�(i�1)N � �12i�N (114)= �4 �N2 + 2` � �1 � �N2: (115)By the foregoing setting of �1 (i.e., �1 � 1=4`), it follows that the number of these edges is smallerthan �N2=2. Combining this with the bounds on the number of violating edges (or non-edges) asprovided by Claim 5.2.4, the lemma follows.5.2 Non-Adaptive Lower-Bound for Bi-Clique Colle
tionIn this se
tion we establish Part 2 of Theorem 1.2 by adapting the proof presented in Se
tion 4.1.Spe
i�
ally, for every value of � > 0, we 
onsider two di�erent 
lasses of graphs, one 
onsistingof graphs in BCC and the other 
onsisting of graphs that are �-far from BCC, and show that anon-adaptive algorithm of query 
omplexity o(��3=2) 
annot distinguish between graphs sele
tedat random in these 
lasses. 48



5.2.1 The two setsThe �rst 
lass, denoted BCC�, 
ontains all N -vertex graphs su
h that ea
h graph 
onsists of (16�)�1bi-
liques, and ea
h bi-
lique has 8� � N verti
es on ea
h side. It will be instru
tive to partitionthese (16�)�1 bi-
liques into (32�)�1 pairs (ea
h 
onsisting of two bi-
liques), and view ea
h of thesebi-
liques as a super-
y
le of length four with 4� � N verti
es in ea
h of its four independent sets.The se
ond 
lass, denoted SC8C�, 
ontains all N -vertex graphs su
h that ea
h graph 
onsists of(32�)�1 super-
y
les of length 8, and ea
h of these super-
y
les has 4� � N verti
es in ea
h of itseight independent sets. For an illustration, see Figure 8. Indeed, BCC� � BCC, whereas, as we shownext, ea
h graph in SC8C� is �-far from BCC. Note that both 
lasses 
ontain only bipartite graphs.Claim 5.3 Every graph in SC8C� is �-far from BCC.Proof: Let G = ([N ℄; E) be a graph in SC8C�, let (V 1j ; : : : ; V 8j ) be the eights sets of verti
es inits jth super-
y
le, and let Vj = S8s=1 V sj . For any partition P = ((X11 ;X21 ) : : : ; (X 1̀;X 2̀)) into\potential bi
liques", we let �G(P) denote the number of edge modi�
ations that are required inorder to 
onvert the pairs of sets (X1i ;X2i ); : : : ; (X 1̀;X 2̀) into a 
olle
tion of bi
liques (with no edgesbetween the bi
liques). Then,�G(P) = X̀i=1 �jE(X1i ;X1i )j+ jE(X2i ;X2i )j+ jE(X1i ;X2i )j� +Xi<i0 jE(Xi;Xi0)j ; (116)where Xi = X1i [X2i and E(X1i ;X2i ) denotes the set of pairs of verti
es in X1i �X2i that do nothave an edge between them. Thus, the distan
e between G and BCC is N�2 times the minimum,taken over all partitions P, of �G(P). We need to show that �G(P) > �N2, for every partition P.Similarly to the proof of Claim 4.1, we �rst observe that, without loss of generality, we mayassume that ea
h set Xi interse
ts at most one Vj . This is true sin
e otherwise, by re�ning thepartition (i.e., repla
ing ea
h (X1i ;X2i ) with the 
olle
tion of all nonempty (X1i \ Vj;X2i \ Vj)), thevalue of �G(�) 
an only de
rease (be
ause there are no edges between the di�erent Vj's).Our next observation is that we may assume, without loss of generality, that ea
h V sj interse
tsat most one Xi (i.e., one pair (X1i ;X2i )). This is true be
ause (for every j 2 [(32�)�1℄, s 2 [8℄,i 2 [`℄, and b 2 f1; 2g) the 
ontribution of ea
h vertex v 2 V sj \Xbi to Eq. (116) 
omes only frompairs (v; u) su
h that either u 62 V sj or u 2 V sj \ X3�bi . In parti
ular, this 
ontribution does notdepend on jV sj \Xbi j nor on jV sj \Xb0i0 j for any i 6= i0 and b; b0 2 f1; 2g. Therefore, if V sj 
ontainsverti
es of both Xbi and Xb0i0 for some i 6= i0 and b; b0 2 f1; 2g, then it is possible to either moveall V sj \ Xb0i0 to V sj \ Xbi or the other way around without in
reasing �G(P) (and possibly evende
reasing it).Having 
on
luded that ea
h V sj is 
ontained in some Xi, we observe that either X1i \ V sj = ;or X2i \ V sj = ;. This holds be
ause, using the same reasoning as above, if both V sj \X1i 6= ; andV sj \X2i 6= ; then by 
ombining both sets into either V sj \X1i or V sj \X2i we only de
rease �G(P).We have shown that, for every i 2 [`℄ and b 2 f1; 2g, there exists j 2 [(32�)�1℄ and S � [8℄ su
hthat Xbi = Ss2S V sj . Thus, we may think of assigning pairs of the form (i; b) to the eight slots onthe 
y
le (i.e., V 1j ; :::; V 8j ), and we note that assigning (i; b) and (i0; b0) to (
y
li
ally) adja
ent slotsin
urs a 
ost of K2 if and only if (i0; b0) 6= (i; 3 � b). In addition, assigning (i; b) and (i; 3 � b) tonon-adja
ent slots also in
urs a 
ost of K2. Noting that it is impossible to assign these pairs ata 
ost of less than 3K2, it follows that the assignment to ea
h V j 
ontributed to �G(P) at least3K2 = 48�2N2 violating vertex pairs. Combining the 
ontribution of all j 2 [(32�)�1℄, the 
laimfollows. 49



5.2.2 The indistinguishability resultIn order to motivate the 
laim that a non-adaptive algorithm of query 
omplexity o(��3=2) 
annotdistinguish between graphs sele
ted at random in these 
lasses, 
onsider the algorithm that sele
tso(��3=4) verti
es and inspe
ts the indu
ed subgraph. Consider the partition of a graph in SC8C�into (32�)�1 pairs of bi-
liques (equiv., super-
y
les of length 4), and 
orrespondingly the partitionof a graph in SC8C� into (32�)�1 super-
y
les of length 8. Then, the probability that a sample ofo(��3=4) verti
es 
ontains at least four verti
es that reside in the same part (of 32� � N verti
es)is o(��3=4)4 � (32�)3 = o(1). On the other hand, one may show that if this event does not o

ur,then the answers obtained from both graphs are indistinguishable. As will be shown below, thisintuition extends to an arbitrary non-adaptive algorithm.As in Se
tion 4.1, it suÆ
es to 
onsider deterministi
 algorithms. We shall show that, for everyset of o(��3=2) queries, the answers provided by a randomly sele
ted element of BCC� are statisti
ally
lose to the answers provided by a randomly sele
ted element of SC8C�. As in Se
tion 4.1, for anN -vertex graph G and a query (u; v), we denote the 
orresponding answer by ansG(u; v).Lemma 5.4 Let G1 and G2 be random N -vertex graphs uniformly distributed in BCC�and SC8C�, respe
tively. Then, for every sequen
e (v1; v2); : : : ; (v2q�1; v2q) 2 [N ℄ � [N ℄,where the vi's are not ne
essarily distin
t, it holds that the statisti
al di�eren
e betweenansG1(v1; v2); : : : ; ansG1(v2q�1; v2q) and ansG2(v1; v2); : : : ; ansG2(v2q�1; v2q) is O(q2�3).Part 2 of Theorem 1.2 follows.
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4 5Figure 8: A single part, 
onsisting of eight independent sets in BCC� and SC8C� (that is, either twobi
liques, viewed as two super-
y
les of length 4, or a single super-
y
le of length 8).Proof: We adapt the proof of Lemma 4.2. Here, we 
onsider a 1-1 
orresponden
e, denoted �,between the verti
es of an N -vertex graph in BCC�[SC8C� and triples in [(32�)�1℄�f0; 1; : : : ; 7g�[4� �N ℄. Spe
i�
ally, �(v) = (i; j; w) indi
ates that v resides in the (j + 1)st independent set of theith part of the graph, and it is vertex number w in this set. Re
all that in the 
ase of a graphin BCC� the eight independent sets are arranged in two super-
y
les (ea
h of length 4), whereasin the 
ase of a graph in SC8C� the eight independent sets are arranged in a single super-
y
le oflength 8. (See Figure 8.) Consequently, the answers provided by uniformly distributed G1 2 BCC�and G2 2 SC8C� 
an be emulated by the following two 
orresponding random pro
esses.1. The pro
ess A1 sele
ts uniformly a bije
tion � : [N ℄ ! [(32�)�1℄ � f0; 1; : : : ; 7g � [4� � N ℄and answers ea
h query (u; v) 2 [N ℄ � [N ℄ by 1 if and only if for �(u) = (i1; j1; w1) and�(v) = (i2; j2; w2) it holds that both i1 = i2 and j1 = (j2 � 1 mod 4) + bj2=4
 � 4.2. The pro
ess A2 sele
ts uniformly a bije
tion � : [N ℄ ! [(32�)�1℄ � f0; 1; : : : ; 7g � [4� � N ℄and answers ea
h query (u; v) 2 [N ℄ � [N ℄ by 1 if and only if for �(u) = (i1; j1; w1) and�(v) = (i2; j2; w2) it holds that both i1 = i2 and j1 = j2 � 1 mod 8.50



Let us denote by �0(v) (resp., �00(v) and �000(v)) the �rst (resp., se
ond and third) 
oordinates of�(v); that is, �(v) = (�0(v); �00(v); �000(v)). Then, both pro
esses answer the query (u; v) with 0 if�0(u) 6= �0(v), and the di�eren
e between the pro
esses is 
on�ned to the 
ase that �0(u) = �0(v).Spe
i�
ally, 
onditioned on �0(u) = �0(v), it holds that A1(u; v) = 1 if and only if �00(u) = (�00(v)�1 mod 4)+b�00(v)=4
�4, whereas A2(u; v) = 1 if and only if �00(u) = �00(v)�1 mod 8. However, sin
ethe (random) value of �00 is not present at the answer, the foregoing di�eren
e may go unnoti
ed.These 
onsiderations apply to a single query, but things may 
hange in 
ase of several queries. Ingeneral, the event that allows distinguishing the two pro
esses is a simple 
y
le of at least fourverti
es that have the same �0 value. Minor di�eren
es may also be due to equal �000 values, and sowe also 
onsider these in our \bad" event.De�nition 5.4.1 We say that � is bad (w.r.t. the sequen
e (v1; v2); : : : ; (v2q�1; v2q) 2 [N ℄� [N ℄),if any of the following two 
onditions hold:1. For some i 2 [(32�)�1℄, the subgraph Qi = (Vi; Ei), where Vi = fvk : k2 [2q℄ ^ �0(v)= ig andEi = ffv2k�1; v2kg : v2k�1; v2k 2 Vig, 
ontains a simple 
y
le of length at least four.2. There exists i 6= j 2 [2q℄ su
h that �000(vi) = �000(vj).Indeed, the query sequen
e (v1; v2); : : : ; (v2q�1; v2q) will be �xed throughout the rest of the proof,and so we shall omit it from our terminology.Claim 5.4.2 The probability that a uniformly distributed bije
tion � is bad is upper bounded byO(q2�3) + q216�N :Proof: We start by upper-bounding the probability that the se
ond event in De�nition 5.4.1 holds.We have �2q2 � sub-events, and ea
h holds with probability 1=(32� � N). As for the �rst event, forevery t � 4, we upper-bound the probability that some Qi 
ontains a simple 
y
le of length t. As inthe proof of Claim 4.2.2, we observe that the query graph 
ontains at most (2q)t=2 
y
les of lengtht (
f. [A81, Thm. 3℄), whereas the probability that a spe
i�
 simple t-
y
le is 
ontained in some Qiis (32�)t�1. Thus, the probability of the �rst event is upper-bounded byXt�4(2q)t=2 � (32�)t�1 <Xt�4 �p2q � 32 � �(t�1)=t�t <Xt�4 �50pq � �3=4�t ;whi
h is upper-bounded by 2 � (50pq � �3=4)4 = O(q2�3), provided that 50pq � �3=4 < 1=2 (and the
laim holds trivially otherwise).Claim 5.4.3 Conditioned on the bije
tion � not being bad, the sequen
es(A1(v1; v2); : : : ; A1(v2q�1; v2q)) and (A2(v1; v2); : : : ; A2(v2q�1; v2q)) are identi
ally distributed.Proof: Noting that De�nition 5.4.1 only refers to �0 and �000, we �x any 
hoi
e of �0 and �000 thatyields a good � and 
onsider the residual random 
hoi
e of �00. Referring to the foregoing subgraphsQi's, re
all that pairs with endpoints in di�erent Qi's are answered by 0 in both pro
esses. Notethat (by the se
ond 
ondition in De�nition 5.4.1) the hypothesis implies that �000 assigns di�erentvalues to the di�erent verti
es in fvk : k 2 [2q℄g, and it follows that �00 assigns these verti
es valuesthat are uniformly and independently distributed in f0; 1; : : : ; 7g. Now, using the �rst 
onditionin De�nition 5.4.1, the hypothesis implies that the only simple 
y
les appearing in Qi = (Vi; Ei)51



have length three. We shall show that this implies that (in ea
h of the two pro
esses) the answerassigned to ea
h edge in Qi is independent of the answer given to other edges of Qi.We �rst note that, in ea
h of the two pro
esses, every query (v2k�1; v2k) su
h that �00(v2k�1) ��00(v2k�1) (mod 2) is answered negatively (i.e., in su
h a 
ase, A1(v2k�1; v2k) = A2(v2k�1; v2k) =0). Thus, �xing any (random) values of (�00(vk) mod 2 : k2 [2q℄), we may omit from Qi = (Vi; Ei)all edges that 
onne
t verti
es that have the same value of �00 (mod 2), be
ause the answers tothese queries are already determined (as 0, in ea
h of the two pro
esses). This omission eliminates(from Qi) all 
y
les of length three, whi
h are the only simple 
y
les in the original Qi, and thusea
h modi�ed Qi is a forest. We 
an now pro
eed analogously to the proof of Claim 4.2.3, althoughthings are slightly more 
omplex here. Spe
i�
ally, we 
onsider the residual random values of �00(
onditioned on �00 mod 2); that is, we augments the �xed values of �00 mod 2 with the randomvalues of b�00=2
, whi
h are uniformly distributed in f0; 1; 2; 3g. We view these random sele
tionsas taking pla
e in an order determined by some �xed traversal of ea
h tree (of the aforementionedforest), and note that at ea
h step (and in ea
h of the pro
esses) the new random value (uniformlydistributed in f0; 1; 2; 3g) yields answer 1 (to the 
orresponding query) with probability 1=2.1. In the 
ase of A1, the query/edge (u; v) 2 Ei (whi
h satis�es �0(u) = i = �0(v) and �00(u) ��00(v) + 1 (mod 2)) is answered 1 if and only if �00(u) = (�00(v) � 1 mod 4) + b�00(v)=4
 � 4holds (whi
h means that b�00(u)=4
 = b�00(v)=4
). Thus, A1(u; v) = 1 with probability 1=2.2. In the 
ase of A2, the query/edge (u; v) 2 Ei (whi
h satis�es �0(u) = i = �0(v) and �00(u) ��00(v) + 1 (mod 2)) is answered 1 if and only if �00(u) = �00(v) � 1 mod 8 holds. Thus,A2(u; v) = 1 with probability 2=4.Thus, in ea
h of the two pro
esses, ea
h query is answered by the value 1 with probability ex-a
tly 1=2, independently of the answers to all other queries. The 
laim follows.Combining Claims 5.4.2 and 5.4.3, it follows that the statisti
al distan
e between the sequen
es(A1(v1; v2); : : : ; A1(v2q�1; v2q)) and (A2(v1; v2); : : : ; A2(v2q�1; v2q)) is at most O(q2�3 + q2(�N)�1),and the lemma follows for suÆ
iently large N .5.3 Non-Adaptive Lower-Bound for Super-Cy
le Colle
tionIn this se
tion we establish a lower bound on the non-adaptive query 
omplexity of testing Super-Cy
le Colle
tions. We do so by generalizing the ideas presented in Se
tion 5.2.Spe
i�
ally, �xing any t � 4, for every value of � > 0, we 
onsider two di�erent 
lasses of graphs,one 
onsisting of graphs in SCtC and the other 
onsisting of graphs that are �-far from SCtC, andshow that a non-adaptive algorithm of query 
omplexity o(��(2t�2)=t) 
annot distinguish betweengraphs sele
ted at random in these 
lasses.5.3.1 The two setsThe �rst 
lass, denoted SCtC�, 
ontains all N -vertex graphs su
h that ea
h graph 
onsists of (t2�)�1super-
y
les of length t, and ea
h super-
y
le has t� � N verti
es in ea
h of its t independent sets.It will be instru
tive to partition these (t2�)�1 super-
y
les into (2t2�)�1 pairs. The se
ond 
lass,denoted SC2tC�, 
ontains all N -vertex graphs su
h that ea
h graph 
onsists of (2t2�)�1 super-
y
lesof length 2t, and ea
h super-
y
le has t� � N verti
es in ea
h of its 2t independent sets. For anillustration, see Figure 9. Indeed, SCtC� � SCtC, whereas, as we show next, ea
h graph in SC2tC� is�-far from SCtC. 52



Claim 5.5 Every graph in SC2tC� is �-far from SCtC.Proof: Let G = ([N ℄; E) be a graph in SC2tC�, let (V 1j ; : : : ; V 2tj ) be the 2t sets of verti
es in itsjth super-
y
le, and let Vj = S2ts=1 V sj . For any partition P = ((X11 ; :::;Xt1) : : : ; (X 1̀; :::;X t̀)) into\potential t-super-
y
les", we let �G(P) denote the number of edge modi�
ations that are requiredin order to 
onvert P into a 
olle
tion of t-super-
y
les (with no edges between the t-super-
y
les).Similarly to the proof of Claim 5.3, we observe that, without loss of generality, we may assumethat (1) ea
h set Xi = SrXri interse
ts at most one Vj, and (2) ea
h V sj interse
ts at most one Xi.Furthermore, we may also assume, without loss of generality, that ea
h V sj interse
ts at most oneXbi (but in this 
ase the argument does not ne
essarily de
rease �G(P), although it never in
reasesit). Thus, for every i 2 [`℄ and b 2 f1; :::; tg, there exists j 2 [(2t2�)�1℄ and S � [2t℄ su
h thatXbi = Ss2S V sj . Now, we may think of assigning pairs of the form (i; b) to the 2t slots on the 
y
le(i.e., V 1j ; :::; V 2tj ), and we note that assigning (i; b) and (i0; b0) to (
y
li
ally) adja
ent slots in
urs a
ost of K2 if and only if (i0; b0) 62 f(i; b�1); (i; b+1)g, where K def= t�N and addition is modulo t. Inaddition, assigning (i; b) and (i; b� 1) to non-adja
ent slots also in
urs a 
ost of K2. Note that it isimpossible to assign these pairs at a 
ost of less than 3K2, be
ause su
h an assignment mandateshaving at most two adja
ent pairs that are assigned di�erent values of i, whereas a 
onse
utiverun of t values of any i 
ontains either an adja
ent pair that does not have the form (i; b) and(i; b � 1) or a non-adja
ent pair of (i; b) and (i; b � 1). It follows that the assignment to ea
h V j
ontributed to �G(P) at least 3K2 = 3t2�2N2 violating vertex pairs. Combining the 
ontributionof all j 2 [(2t2�)�1℄, the 
laim follows.5.3.2 The indistinguishability resultAs in Se
tion 5.2, we motivate the 
laim that a non-adaptive algorithm of query 
omplexityo(��(2t�2)=t) 
annot distinguish between graphs sele
ted at random in these 
lasses by 
onsider-ing a spe
i�
 algorithm that inspe
ts the subgraph indu
ed by a random set of o(��(t�1)=t) verti
es.The probability that a sample of o(��(t�1)=t) verti
es 
ontains at least t verti
es that reside in thesame part (of (2t2�) � N verti
es) is �o(��(t�1)=t)t � � (2t2�)t�1 = o(1), where the o-notation refers toa �xed value of t and a varying value of � > 0. On the other hand, one may show that if thisevent does not o

ur, then the answers obtained from both graphs are indistinguishable. As willbe shown below, this intuition extends to an arbitrary non-adaptive algorithm. Following the same
onventions as in Se
tion 5.2, it suÆ
es to prove the followingLemma 5.6 (Lemma 5.4, generalized): For every �xed t � 4, let G1 and G2 be ran-dom N -vertex graphs uniformly distributed in SCtC� and SC2tC�, respe
tively. Then, for ev-ery sequen
e (v1; v2); : : : ; (v2q�1; v2q) 2 [N ℄ � [N ℄, where the vi's are not ne
essarily dis-tin
t, it holds that the statisti
al di�eren
e between ansG1(v1; v2); : : : ; ansG1(v2q�1; v2q) andansG2(v1; v2); : : : ; ansG2(v2q�1; v2q) is O(qt=2�t�1).Part 2 of Conje
ture 1.3 follows. Indeed, Lemma 5.4 
an be obtained as a spe
ial 
ase of Lemma 5.6by setting t = 4. The following proof is slightly di�erent from the proof provided in Se
tion 5.2.Proof: We generalize the proof of Lemma 5.4. We 
onsider a bije
tion, denoted �, between theverti
es of an N -vertex graph in SCtC�[SC2tC� and triples in [(2t2�)�1℄�f0; 1; : : : ; 2t�1g� [t� �N ℄.Spe
i�
ally, �(v) = (i; j; w) indi
ates that v resides in the (j+1)st independent set of the ith part ofthe graph, and that it is vertex number w in this set. Re
all that in the 
ase of a graph in SCtC� the53



2t independent sets in ea
h part are arranged in two super-
y
les (ea
h of length t), whereas in the
ase of a graph in SC2tC� the 2t independent sets are arranged in a single super-
y
le of length 2t.Consequently, the answers provided by uniformly distributed G1 2 SCtC� and G2 2 SC2tC� 
an beemulated by the following two 
orresponding random pro
esses.1. The pro
ess A1 sele
ts uniformly a bije
tion � : [N ℄! [(2t2�)�1℄�f0; 1; : : : ; 2t� 1g� [t� �N ℄and answers ea
h query (u; v) 2 [N ℄ � [N ℄ by 1 if and only if for �(u) = (i1; j1; w1) and�(v) = (i2; j2; w2) it holds that both i1 = i2 and j1 = (j2 � 1 mod t) + bj2=t
 � t.2. The pro
ess A2 sele
ts uniformly a bije
tion � : [N ℄! [(2t2�)�1℄�f0; 1; : : : ; 2t� 1g� [t� �N ℄and answers ea
h query (u; v) 2 [N ℄ � [N ℄ by 1 if and only if for �(u) = (i1; j1; w1) and�(v) = (i2; j2; w2) it holds that both i1 = i2 and j1 = j2 � 1 mod 2t.Again, let us denote by �0(v) (resp., �00(v) and �000(v)) the �rst (resp., se
ond and third) 
oordinatesof �(v); that is, �(v) = (�0(v); �00(v); �000(v)). Then, both pro
esses answer the query (u; v) with 0if �0(u) 6= �0(v), and the di�eren
e between the pro
esses is 
on�ned to the 
ase that �0(u) = �0(v).Spe
i�
ally, 
onditioned on �0(u) = �0(v), it holds that A1(u; v) = 1 if and only if �00(u) = (�00(v)�1 mod t) + b�00(v)=t
 � t, whereas A2(u; v) = 1 if and only if �00(u) = �00(v) � 1 mod 2t. In general,the event that allows distinguishing the two pro
esses is a simple 
y
le of at least t verti
es thathave the same �0 value. Minor di�eren
es may also be due to equal �000 values, and so we also
onsider these in our \bad" event.De�nition 5.6.1 (De�nition 5.4.1, generalized): We say that � is bad (w.r.t. the sequen
e ofqueries (v1; v2); : : : ; (v2q�1; v2q) 2 [N ℄� [N ℄), if any of the following two 
onditions hold:1. For some i 2 [(2t2�)�1℄, the subgraph Qi = (Vi; Ei), where Vi = fvk : k2 [2q℄ ^ �0(v)= ig andEi = ffv2k�1; v2kg : v2k�1; v2k 2 Vig, 
ontains a simple 
y
le of length at least t.2. There exists i 6= j 2 [2q℄ su
h that �000(vi) = �000(vj).The query sequen
e (v1; v2); : : : ; (v2q�1; v2q) will be �xed throughout the rest of the proof, and sowe shall omit it from our terminology.Claim 5.6.2 (Claim 5.4.2, generalized): The probability that a uniformly distributed bije
tion � isbad is upper bounded by (3t)2t � qt=2 � �t�1 + q2t2�N :Proof: We start by upper-bounding the probability that the se
ond event in De�nition 5.6.1 holds.We have �2q2 � sub-events, and ea
h holds with probability 1=(2t2� � N). As for the �rst event, forevery ` � t, we upper-bound the probability that some Qi 
ontains a simple 
y
le of length ` by(2q)`=2 � (2t2�)`�1 (on
e again using the fa
t that a subgraph with 2q edges 
ontains at most (2q)`=2
y
les of length ` (
f. [A81, Thm. 3℄)). Thus, the probability of the �rst event is upper-bounded byX̀�t (2q)`=2 � (2t2�)`�1 < X̀�t �3t2pq � �(t�1)=t�` :If 3t2pq � �(t�1)=t < 1=2, then this expression is upper bounded by 2 � (3t2pq � �(t�1)=t)t � (3t)2t �qt=2 � �t�1. But if 3t2pq � �(t�1)=t � 1=2, so that qt=2 � 6�t � t�2t � ��(t�1), then (3t)2t � qt=2 � �t�1 > 1,so that the 
laim hold trivially. 54



Claim 5.6.3 (Claim 5.4.3, generalized): Conditioned on the bije
tion � not being bad, the sequen
es(A1(v1; v2); : : : ; A1(v2q�1; v2q)) and (A2(v1; v2); : : : ; A2(v2q�1; v2q)) are identi
ally distributed.Proving this 
laim is the only diÆ
ulty in extending the proof of Lemma 5.4 to the 
urrent setting.Indeed, the following proof yields a slightly di�erent proof of Claim 5.4.3.Proof: Again, we �x any 
hoi
e of �0 and �000 that yields a good �, and 
onsider the residual random
hoi
e of �00(v1); : : : ; �00(v2q), whi
h (by the se
ond hypothesis in De�nition 5.6.1) are uniformlyand independently distributed in f0; 1; : : : ; 2t� 1g. Considering any of the aforementioned graphsQi = (Vi; Ei), we note that this graph does not 
ontain simple 
y
les of length greater than t� 1.
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��������
��������
��������
��������

��������
��������
��������
��������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������������
������������
������������
������������

������������
������������
������������
������������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

�������������
�������������
�������������

0

1

0

1

t-1t-1

Figure 9: A single part, 
onsisting of 2t independent sets, in SCtC� and SC2tC�, respe
tively. Theellipses indi
ate the values of  00.We now 
onsider �00 : Vi ! f0; 1; : : : ; 2t� 1g as being sele
ted at random in two stages. In the�rst stage we assign ea
h vertex a random value mod t, and in the se
ond stage we assign ea
hvertex a random bit representing its most signi�
ant bit; that is, for ea
h vertex v 2 Vi, we �rstdetermine (at random) the value �00(v) mod t, whi
h we denote by  00(v), and next determine (atrandom) the bit b�00(v)=t
, whi
h we denote by �00(v). Thus, �00(v) =  00(v) + �00(v) � t, and it willbe instru
tive to depi
t the graphs as in Figure 9. Fixing an arbitrary setting of values for the �rststage, we shall 
onsider what may happen in the se
ond stage.For every �xed setting of  00, we 
onsider the residual graph Q0i = (Vi; E0i), where E0i 
ontainsonly the queries inEi that are still undetermined (given  00); that is, (u; v) 2 Ei is pla
ed in E0i if andonly if  00(u) �  00(v)� 1 (mod t), whereas all the other queries (or rather the answers to them)are already determined (as being answered by 0). We shall 
onsider the 
onne
ted 
omponents ofQ0i, and show that (
onditioned on the foregoing setting of  00) the answers provided to the queriesin E0i under A1 are distributed identi
ally to the answers provided under A2. Spe
i�
ally, for ea
hpossible sequen
e of answers, we shall show a 1-1 
orresponden
e between the assignments of �00that yield these answers under A1 and the assignments of �00 that yield these answers under A2.(Re
all that �00(v) =  00(v) + �00(v) � t.) That is, for ea
h possible sequen
e of answers and ea
h
onne
ted 
omponent of Q0i, we shall show that the number of assignments of �00 that yield theseanswers under Aj is independent of j 2 f1; 2g.Let C = (V 00i ; E00i ) be an arbitrary 
onne
ted 
omponent of Q0i = (Vi; E0), and let A00 : E00i !f0; 1g des
ribe an arbitrary sequen
e of answers to the queries E00i . Our aim is proving that thenumber of assignments of �00 that yield these answers under Aj (i.e., satisfy Aj(u;w) = A00(u;w)for every (u;w) 2 E00i ) is independent of j 2 f1; 2g. Furthermore, we shall show that this number iseither two or zero (when 
onsidering only the assignment of �00 to V 00i ). Consider any spanning treeT of C, rooted at an arbitrary vertex v 2 V 00i . For ea
h 
hoi
e of � 2 f0; 1g, we shall prove that55



there exists a unique assignment �00 : V 00i ! f0; 1g su
h that �00(v) = � and �00 is 
onsistent with A00and A1 (resp., A2) on the edges of T . That is, the resulting �00 is su
h that the answers as mandatedby A00 for the edges of T �t the answers that A1 (resp., A2) provides with respe
t to �00 =  00+t ��00.As we shall see, these assignments might be in
onsistent with the value of A00 on edges that do notbelong to the spanning tree. However, we shall show that there is an in
onsisten
y when �tting A1if and only if there is an in
onsisten
y when �tting A2. Details follow.Fitting the pro
ess A1: Re
all that the value of �00 on the root of T was set to �. The value of�00 on all other verti
es is set, by traversing the tree T , in the following manner. Whentraversing the tree edge (u;w) from a vertex u for whi
h �00(u) was already determined to anew w (for whi
h �00(w) is still undetermined), we set �00(w)  �00(u) if A00(u;w) = 1 and�00(w) 1� �00(u) otherwise (i.e., if A00(u;w) = 0).Note that this pro
ess determines the values of the bits �00(w) for all w 2 V 00i su
h that thetree-neighbors u and w are assigned the same bit if and only if A00(u;w) = 1. This is indeed
onsistent with the de�nition of A1. Furthermore, the setting of the values of �00 is uniquelydetermined by the requirement to be 
onsistent with A1.Fitting the pro
ess A2: We assign values exa
tly as in the 
ase of �tting A1, with a single ex
eptionthat refers to the 
ase that the tree-edge (u;w) 2 E00i satis�es f 00(u);  00(w)g = f0; t � 1g.In this 
ase (where vertex u has already been assigned a value), we set �00(w) 1� �00(u) ifA00(u;w) = 1 and �00(w) �00(u) otherwise (i.e., if A00(u;w) = 0).That is, in this 
ase (i.e., f 00(u);  00(w)g = f0; t � 1g), the pro
ess determines the valueof �00(w) su
h that the tree-neighbors u and w are assigned the opposite bits if and only ifA00(u;w) = 1.As noted in the foregoing dis
ussion, while ea
h of the two assignments is 
onsistent with A00 (andthe 
orresponding Aj) on the edges of the spanning tree T , there may be in
onsisten
ies with theedges of E00i that are not tree edges. It remains to show that there is an in
onsisten
y with respe
tto the pro
ess A1 if and only if there is an in
onsisten
y with respe
t to the pro
ess A2.We shall say that an edge (u;w) 2 E00i (e.g., an edge of the spanning tree T ) is a 
rossing edgeif f 00(u);  00(w)g = f0; t � 1g. By de�nition of the two assignments, the only di�eren
e betweenthem is 
aused when traversing a tree edge that is a 
rossing edge. For su
h an edge, the value of�00 is 
ipped when �tting the pro
ess A2 if and only if it is not 
ipped when �tting the pro
essA1. Thus, for ea
h u 2 V 00i , the value assigned to �00(u) when �tting A2 is the XOR of the valueassigned to �00(u) when �tting A1 and the parity of the number of 
rossing edges that belong tothe tree path from (the root) v to u.Now, 
onsider an edge (u;w) 2 E00i that is not an edge in the spanning tree T . Consider thesimple tree paths from the root v to verti
es u and w, respe
tively, and let us denote their bran
hingpoint by v0. Let pu (resp., pw) be the path on the spanning tree T leading from v0 to u (resp., w),and p0u be the path from v0 to u obtained by augmenting pw with the (non-tree) edge (w; u). Then,the union of pu and p0u 
onstitutes a simple 
y
le, whi
h by the hypothesis has length smaller thant. As we shall show in the next paragraph, it follows that the parity of the number of 
rossingedges on pu equals the parity of the number of 
rossing edges on p0u. In other words, the parity ofthe number of 
rossing edges on pu equals the parity of the number of 
rossing edges on pw if andonly if (u;w) is not a 
rossing edge. Assuming that (u;w) is not a 
rossing edge, 
onsider the valueassigned to �00(u) and �00(w) when �tting A1 (by following the paths from the root to u and w,respe
tively). Then, A00(u;w) is in
onsistent with �00(u) and �00(w) as determined when �tting thepro
ess A1 if and only if A00(u;w) is in
onsistent with �00(u) and �00(w) as determined when �tting56



the pro
ess A2, be
ause in both 
ases �00(u) � �00(w) is the same value (sin
e the total numberof 
rossing edges on pv and pw is even). A similar argument holds when (u;w) is a 
rossing edge(sin
e then �00(u)� �00(w) 
ips from A1 to A2), and the 
laim follows.To verify the assertion regarding the parity of the number of 
rossing edges on pu and on p0u,
onsider the values assigned by  00 to the verti
es in the union of pu and p0u. Sin
e the unionof pu and p0u is a 
y
le of length less than t, these values must belong to a proper subset, S, off0; : : : ; t� 1g. If this set does not 
ontain f0; t � 1g, then we are done (sin
e neither of the pathsmay 
ontain a 
rossing edge). Otherwise, for some j, it holds that S is a subset of the union ofS1 = fj+1; : : : ; t�1g and S2 = f0; : : : ; j�1g. If  00(v0) and  00(u) belong to the same Sk, then theparity of the number of 
rossing edges on both pu and p0u is even (sin
e these paths 
an only movefrom one subset to the other via a 
rossing edge).12 Similarly, if  00(v0) and  00(u) do not belongto the same subset then the parity on ea
h of these paths must be odd.Combining Claims 5.6.2 and 5.6.3, the lemma follows.5.4 A Candidate Adaptive Tester for Super-Cy
le Colle
tionIn this se
tion we outline an adaptive eO(��1)-query algorithm that we 
onje
ture to be a tester forSCtC, where t � 5 is �xed. The algorithm is a generalization of Algorithm 5.1, and we fo
us onoutlining the 
orresponding sub-test, denoted sub-testi(v).Re
all that in Algorithm 5.1 this sub-test 
onsists, essentially, of �nding an edge (v; u) and
he
king the potential bi-
lique indu
ed by it (i.e., �(u) � �(v)). In the 
urrent 
ontext we tryto �nd a t-
y
le (v0; v1; : : : ; vt�1) su
h that v0 = v and for every j 2 f0; : : : ; t � 1g it holds thatvj 2 �(vj�1 mod t) \ �(vj+1 mod t) and �(vj�1 mod t) 6= �(vj+1 mod t). Given su
h a 
andidate t-
y
le v, letting Ij(v) def= �(vj�1 mod t) \ �(vj+1 mod t), we 
he
k that Ij(v) � Ij+1 mod t(v) is a bi-
lique, and that �(vj) = Ij�1 mod t(v) [ Ij+1 mod t(v). Ea
h of these tasks is to be performedby making poly(log(1=�))=(2i�) queries. The implementation of the various 
he
ks is similar tothe implementation of similar 
he
ks performed in Algorithm 5.1, and so we fo
us on �nding theaforementioned t-
y
le.Starting with v0 def= v, we obtain v1 2 �(v) just as (u was obtained) in Algorithm 5.1. Infa
t, we may obtain vt�1 2 �(v) in the same way, ex
ept that we need to verify that the lattervertex is a
tually in a di�erent independent set than v1. This is done by 
he
king that �(vt�1)is di�erent from �(v1), where any w in the symmetri
 di�eren
e of �(v1) and �(vt�1) 
an serveas a witness. (Indeed, w 2 �(v1) n �(vt�1) 
an be used as v2.) Similarly, when holding a partialpath (vt�j ; : : : ; v0; : : : ; vk), we seek a vertex vk+1 (resp., vt�(j+1)) su
h that �(vk+1) and �(vk�1)(resp., �(vt�(j+1)) and �(vt�(j�1))) are di�erent. When the path rea
hes length t� 1 (i.e., holds tverti
es), we treat it as a 
andidate t-
y
le.We note that, as in the 
ase of Algorithm 5.1, it may happen that the foregoing algorithmfails to �nd a t-
y
le, (v0; : : : ; vt�1). In this 
ase, the algorithm performs only a subset of the
he
ks mentioned above. Spe
i�
ally, suppose that the algorithm failed to extend the partial pathv def= (vt�j ; : : : ; v0; : : : ; vk) any further. Then, for intermediate verti
es, the 
he
ks are as before,but for the extremes we should pro
eed with more 
are. For example, assuming the path 
ontainsat least four verti
es, we let It�j(v) def= �(vt�j+1 mod t) n It�j+2 mod t(v).Clearly, the foregoing algorithm always a

epts any graph in SCtC, and we 
onje
ture that it(or possibly a slight variant of it) reje
ts with high probability graphs that are �-far from SCtC.12Note that the  00-values of intermediate verti
es along any path must be \adja
ent" modulo t, and so movingbetween fj + 1; : : : ; t� 1g and f0; : : : ; j � 1g is only possible via (t� 1; 0).57



In the next theorem we prove that a simpli�ed version of this algorithm 
an distinguish with highprobability between graphs in SCtC and graphs in SC2tC0 def= Si�5 SC2tC2�i that are �-far from SCtC.We refer to this promise problem as �t.Theorem 5.7 (an almost-quadrati
 
omplexity gap for promise problems): For every positiveinteger t � 3, the promise problem �t satis�es the following:1. There exists an adaptive tester of query 
omplexity O(��1) for �t. Furthermore, this testerhas one-sided error and runs in time O(��1).2. Any non-adaptive tester for �t must have query 
omplexity 
(��2+(2=t)).3. There exists a non-adaptive tester of query 
omplexity O(��2+(2=t)) for �t. Furthermore, thistester has one-sided error and runs in time O(��2+(2=t)).Indeed, in light of Theorems 1.1 and 1.2, the 
ases of t 2 f3; 4g are of little interest, but there aregiven here for the sake of uniformity (and sin
e Theorem 1.2 la
ks Part 3). We also stress that thehidden 
onstants in the O-notation may depend on (the 
onstant) t.Proof: As noted above, Part 2 follows from Lemma 5.6 (whi
h a
tually holds also in the 
ase oft = 3). Spe
i�
ally, for ` = log2(1=�), Lemma 5.6 asserts that an algorithm of query 
omplexityq def= o(��2+(2=t)) 
annot distinguish between graphs that are uniformly distributed in SCtC2�` andgraphs that are uniformly distributed in SC2tC2�` , sin
e its distinguishing gap is O(qt=2�t�1) = o(1).Part 2 follows sin
e SCtC2�` � SCtC, whereas all graphs in SC2tC2�` are both in SC2tC0 and �-farfrom SCtC.Turning to Part 1, as noted above, this part 
an be proved by using the algorithm outlinedabove. A
tually, for the 
urrent task of testing the promise problem �t, a degenerate version of theforegoing algorithm will do, and we detail and analyze su
h a version next. The key observationunderlying this simpli�ed version is that in the 
urrent 
ontext the input is guaranteed (by thepromise problem formulation, 
f. [ESY℄) to 
onsist of a 
olle
tion of super-
y
les. On input G =([N ℄; E) and proximity parameter � > 0, our (simpli�ed) algorithm pro
eeds as follows.1. Sele
t arbitrarily a vertex v0.2. Sele
t at random a sample S1 of �(1=�) verti
es, and query all pairs (v0; u) for u 2 S1. IfS1 \ �(v0) = ;, then a

ept. Otherwise, sele
t arbitrarily a vertex v1 2 S1 \ �(v0).3. For i = 1; :::; t� 1, attempt to �nd a vertex vi+1 2 �(vi) su
h that vi+1 does not reside in thesame independent set as vi�1 (i.e., �(vi+1) = �(vi�1)). This is done as follows.(a) Sele
t at random a sample Si+1 of �(1=�) verti
es, and query all pairs (vi; u) for u 2 Si.(b) If Si+1 \ �(vi) = ;, then a

ept. Otherwise, we let T def= Si+1 \ �(vi), and pro
eed asfollows.(
) Sele
t at random a set U of O(1) verti
es in T , and an auxiliary sample R of O(1=�)verti
es of G. Query all pairs (U [ fvi�1g) � R, and determine �R(u) def= R \ �(u) forea
h u 2 U [ fvi�1g. If for every u 2 U , it holds that �R(u) = �R(vi�1), then a

ept.Otherwise, sele
t arbitrarily a vertex vi+1 2 U su
h that �R(vi+1) 6= �R(vi�1).4. Sele
t at random an auxiliary sample R of O(1=�) verti
es, and query all pairs (fv0; vtg)�R.A

ept if and only if �R(vt) = �R(v0). 58



This algorithm has query 
omplexity O(1=�) (re
all that t is a 
onstant) and it a

epts any graphin SCtC, sin
e whenever a path (v0; v1; :::; vt) is found, it is the 
ase that v0 and vt reside in thesame independent set (and hen
e satisfy �(v0) = �(vt)). On the other hand, if G 2 SC2tC0 is �-farfrom SCtC, then it must be that G 2 SC2tC2�j , for some j � log2 4=�. In this 
ase, with high
onstant probability, the algorithm does not a

ept G in Step 2, sin
e the sample S1 is likely to hitthe set �(v0) (whi
h has 
ardinality 2�jN � �N=4). Similarly, with high 
onstant probability, thealgorithm does not a

ept G in any iteration of Step 3, sin
e the sample Si+1 is likely to 
ontainat least one vertex u in �(vi) that does not reside in the same independent set as vi�1 (and theauxiliary sample R is likely to 
ontain some vertex in (�(u) [ �(vi�1)) n (�(u) \ �(vi�1))). Lastly,observe that for the 
onstru
ted path (v0; v1; :::; vt) it holds that v0 and vt do not reside in thesame independent set, and furthermore �(v0) \ �(vt) = ;. Thus, Step 4 reje
ts with high 
onstantprobability.Finally, we turn to Part 3, whi
h is established by a (
anoni
al) tester that inspe
ts the subgraphindu
ed by a uniformly sele
ted set of O(��1+(1=t)) verti
es, and reje
ts if and only if this set 
ontainst verti
es su
h that the subgraph indu
ed by these t verti
es is a simple path (i.e., 
ontains only thet�1 edges of this path). This algorithm never reje
ts any graph G 2 SCtC, be
ause if the subgraphof G indu
ed by some set of t verti
es 
ontains a t-vertex path, denoted (v1; :::; vt), then eitherea
h vi resides in a di�erent independent set of the same super-
y
le (whi
h implies that vt andv1 are 
onne
ted) or some vi and vi+2 reside in the same independent set (whi
h yields the 4-
y
le
ontaining (vi�1; vi; vi+1; vi+2)). In 
ontrast, for every j � log2 4=�, every graph in G 2 SC2tC2�j
ontains sets of t verti
es su
h that the subgraph indu
ed by ea
h su
h set is a simple t-vertex path.Furthermore, with high 
onstant probability, a random sample of O(��1+(1=t)) verti
es 
ontains su
ha set, be
ause su
h a sample 
ontains at least (3t)! random t-vertex sets that are ea
h 
ontained inthe same super-
y
le,13 and with probability at least 1=(2t)! ea
h su
h t-vertex set indu
es a path.6 Non-Adaptive Testing with eO(1=�) ComplexityWe �rst note that 
(1=�) (adaptive) queries are required for testing any graph property that isnon-trivial for testing, where a graph property � is non-trivial for testing if there exists �0 > 0 su
hthat for in�nitely many N 2 N there exist N -vertex graphs G1 and G2 su
h that G1 2 � and G2is �0-far from �. We note that all properties 
onsidered in this work are non-trivial for testing.On the other hand, the negation of this (non-triviality) 
ondition means that for every � > 0 andall suÆ
iently large N 2 N either � 
ontains no N -vertex graph or all N -vertex graphs are �-
loseto �. In su
h a 
ase (for every su
h � and N), the tester may de
ide without even looking at thegraph.14 Turning ba
k to properties that are non-trivial for testing, we prove that any tester forsu
h a property must have query 
omplexity 
(1=�).Proposition 6.1 Let � be a property that is non-trivial for testing. Then, any tester for � hasquery 
omplexity 
(1=�).13The 
laim follows by using a generalized birthday problem. In our 
ase we have B = 2j bins and 
laim that,with high 
onstant probability, assigning at random b = eO(t) � B1�(1=t) balls to these bins results in having somebin 
ontain t balls. This 
an be proved by 
onsidering a t-step pro
ess, so that at ea
h step O(log t) � B1�(1=t) ballsare assigned. For j = 1; :::; t, we 
laim that after the jth step, with probability at least 1� o(1=t), there are at leastB1�(j=t) bins that 
ontain j balls ea
h. This 
laim is easily proved by indu
tion on j.14Indeed, there exists natural graph properties that are trivial for testing (e.g., 
onne
tivity, non-planarity, havingno vertex of odd degree); see [GGR, Se
. 10.2.1℄. 59



Note that the 
laim holds also for general properties (i.e., arbitrary sets of fun
tions).Proof: Let �0 > 0 be as in the de�nition, and 
onsider any N 2 N su
h that � 
ontains someN -vertex graphs and there exist some N -vertex graphs that are �0-far from �. Let G0 be anyN -vertex graph that is �0-far from �, let G1 2 � be an N -vertex graph 
losest to G0, and let Æ > �0denote the relative distan
e between G0 and G1. Let D denote the set of vertex pairs on whi
h G0and G1 di�er; indeed, jDj = Æ � N2. Now, for every � � �0 (and � > N�2), 
onsider a graph, G,obtained at random from G0 and G1 by uniformly sele
ting a random R � D of 
ardinality � �N2and letting G agree with G0 on all pairs in R and agree with G1 otherwise. Clearly, any testerthat makes o(�0=�) queries 
annot distinguish G from G1 (be
ause regardless of its query sele
tionstrategy, its next query resides in R with probability at most jRj=jDj � �=�0). Thus, su
h a tester
annot de
ide 
orre
tly on both G and G1 (be
ause G is �-far from � whereas G1 2 �). Re
allingthat �0 is a �xed 
onstant, the proposition follows.To justify the fa
t that all our testers are inherently non-
anoni
al, we show that (for any propertythat is non-trivial for testing) 
anoni
al testers must use 
(��2) queries.Proposition 6.2 Let � be a property that is non-trivial for testing. Then, any 
anoni
al testerfor � has query 
omplexity 
(1=�2).Proof: We adapt the proof of Proposition 6.1 so as to for
e any 
anoni
al tester to sample 
(1=�)verti
es. Let �0 > 0, G0 = ([N ℄; E0) and G1 = ([N ℄; E1) 2 � be as in that proof. Then, there existsa set of at least �0N=2 verti
es, denoted B, su
h that for every v 2 B the symmetri
 di�eren
ebetween the sets fu : fv; ug 2 E0g and fu : fv; ug 2 E1g has size at least �0N=2. Now, for every� � �0=2 (and � > N�1), 
onsider a graph, G, obtained from G0 and G1 by arbitrarily sele
tinga subset D � B of 
ardinality (2�=�0) � N and letting G agree with G0 on all vertex pairs thatinterse
t D and agree with G1 otherwise. Clearly, G is �-far from �, but any 
anoni
al tester thatsele
ts o(�0=�) random verti
es 
annot distinguish G from G1. Thus, su
h a tester 
annot de
ide
orre
tly on both G and G1 (be
ause G is �-far from � whereas G1 2 �). Re
alling that �0 is a�xed 
onstant, the proposition follows.6.1 Clique and Bi-CliqueWe start with the problem of testing whether the given graph is a 
lique (or, equivalently, anindependent set). The algorithm 
onsists of sele
ting uniformly O(1=�) vertex-pairs and 
he
kingwhether ea
h of these pairs is 
onne
ted by an edge. Clearly, if the graph is �-far from being a
lique, then a randomly sele
ted pair of verti
es is 
onne
ted with probability at most 1 � �. Theforegoing algorithm and analysis seem to provide the simplest example of a graph property that
an be tested by O(1=�) non-adaptive queries. A somewhat less simple example is provided bytesting the property of being a bi-
lique.Algorithm 6.3 (non-adaptive test of bi-
liqueness): On input N and � and ora
le a

ess to a graphG = ([N ℄; E), set t = �(1=�) and sele
t arbitrarily a start vertex s (e.g., s = 1). For i = 1; : : : ; t,uniformly sele
t a pair of verti
es (ui; vi), and make the queries (s; ui), (s; vi), and (ui; vi). A

eptif and only if for every i an even number of the answers are positive (i.e., indi
ate the existen
e ofan edge).Clearly, if G is a bi-
lique then for every i either all verti
es reside on the same side (and so (s; ui),(s; vi), and (ui; vi) are all non-edges) or a single vertex is in solitude (and is thus adja
ent to the60



other two verti
es). To analyze what happens when G is �-far from being a bi-
lique we observe thats indu
es a partition of the graph to neighbors and non-neighbors (i.e., the 2-partition (�(s); [N ℄ n�(s))). That is, if G were a bi-
lique then every vertex v 2 �(s) (resp., v 2 [N ℄ n �(s)) would havesatis�ed �(v) = [N ℄ n �(s) (resp., �(v) = �(s)).15 However, sin
e G is �-far from being a bi-
lique,it follows that either there are at least �2 �N2 edges in (�(s)� �(s)) [ (([N ℄ n �(s))� ([N ℄ n �(s)))or at least �2 � N2 edges are missing from �(s) � ([N ℄ n �(s)). Thus, the sample of t pairs will hitsu
h an edge with probability at least 2=3.6.2 Colle
tion of a Constant Number of CliquesFor any 
onstant 
, we 
onsider the set of graphs that ea
h 
onsists of a 
olle
tion of (up to) 

liques; that is, the property CC�
. Note that the spe
ial 
ase of CC�2 is analogous to bi-
lique,be
ause a graph G = ([N ℄; E) is in CC�2 if and only if its 
omplement graph ([N ℄; ([N ℄� [N ℄) nE)is a bi-
lique. Here we deal with the general 
ase of a 
onstant 
 � 3.To motivate the following non-adaptive tester (Algorithm 6.4), 
onsider �rst the 
ase in whi
hthe input graph 
onsists of 
+ 1 
liques su
h that the smallest 
lique has size 2p�N . In this 
ase,with high probability, a sample of O(��1=2) random verti
es 
ontains an independent set of size
+1, whi
h will be dis
overed if we probe the entire indu
ed subgraph. This 
ase will be dete
tedin Step 1 of the algorithm. To motivate Step 2, 
onsider the 
ase that, for some � 2 (3�; o(p�)), thegraph 
onsists of two 
liques of size (1��)N=2 and a third 
lique of size �N su
h that ea
h vertexin the third 
lique is 
onne
ted to an �=� fra
tion of the verti
es in ea
h of the large 
liques. Inthis 
ase, Step 1 is unlikely to sample a vertex of the small 
lique (and will thus fail to dete
t thatthis graph is �-far from CC�
), but a sample as in Step 2 (with i = log2(�=�)) is likely to 
ontain avertex of the small 
lique as well as a neighbor from ea
h of the two large 
liques.Algorithm 6.4 (non-adaptive test for CC�
): On input N and � and ora
le a

ess to a graphG = ([N ℄; E), set ` = log2(8
2=�) and pro
eed as follows.1. Sele
t a uniform sample of �(��1=2) verti
es, denoted S, and examine all vertex pairs in S.2. For i = 1; : : : ; ` sele
t, uniformly at random, samples of �(log(1=�)=(2i�)) and �(2i) verti
esin [N ℄ denoted T 1i and T 2i , respe
tively, and a sample of �(minf2i; 1=(2i�)g) verti
es in S,denoted Si. Examines all the vertex pairs in Si � (T 1i [ T 2i ) and in T 1i � T 2i .3. A

ept if and only if the view of the subgraph as obtained in Steps 1-2 is 
onsistent with somegraph in CC�
. Namely, let g0 : �(S � S) [ �Sì=1 �(Si � (T 1i [ T 2i )) [ (T 1i � T 2i )���! f0; 1gbe the fun
tion determined by the answers obtained in Steps 1-2. Then, the test a

epts if andonly if g0 
an be extended to a fun
tion over S0 � S0 that represents a graph in CC�
, whereS0 def= S [ �Sì=1(T 1i [ T 2i )�.Step 3 
an be implemented eÆ
iently by 
onstru
ting the 
onne
ted 
omponents of the graphde�ned by the positive answers (
f. dis
ussion following Algorithm 4.3). It is instru
tive to spellout several impli
ations of the a

eptan
e 
riterion that underlies Step 3. Indeed, this 
riterionimplies that the following four 
onditions hold (or equivalently, if any one of them is violated, thenthe algorithm will reje
t):15Indeed, this is a simple appli
ation of the \indu
ed partition" idea, whi
h underlies the analysis of many of thetesters of [GGR℄. 61



(i) The subgraph indu
ed by S is in CC�
.In su
h a 
ase, we denote the 
orresponding 
liques by C1; : : : ; C
0 , where 
0 � 
.(ii) For every i 2 [`℄ and every v 2 T 1i [ T 2i , either �(v) \ Si = ; or, for some j 2 [
0℄, it holds that�(v) \ Si = Cj \ Si.(iii) For every i 2 [`℄, if jfj : Cj \ Si 6= ;gj = 
 then every v 2 T 1i [ T 2i has at least one neighbor inSi.(iv) For every i 2 [`℄ and for every v 2 T 1i and u 2 T 2i su
h that �(v) \ Si 6= ; and �(u) \ Si 6= ;the following holds. If �(v) \ Si = �(u) \ Si then (v; u) 2 E, while if �(v) \ Si 6= �(u) \ Si,then (v; u) =2 E.(We mention that it is 
onsiderably easier to design and analyze an adaptive tester of query 
om-plexity O(1=�) for CC�
; see a more general result in [A09, Se
. 4℄.) Algorithm 6.4 has query
omplexityjSj2 +X̀i=1 �jSij � (jT 1i j+ jT 2i j) + jT 1i j � jT 2i j� = O(1=�) + log(1=�) � O(log(1=�)=�) (117)= eO(1=�) (118)and a

epts every graph in CC�
 with probability 1. We thus turn to analyze the 
ase that theinput graph G = ([N ℄; E) is �-far from CC�
. Namely, we show:Lemma 6.5 If G is �-far from CC�
 then Algorithm 6.4 reje
ts with probability at least 2=3.Theorem 1.4 follows.Proof: The analysis relies on the fa
t that CC�
 is a hereditary property (i.e., any indu
ed subgraphof any graph in CC�
 is also in CC�
), whi
h implies that any independent set of size 
 + 1 is awitness for the input graph not being in CC�
. Thus, 
onsidering only the sample S (sele
ted inStep 1), we show that, with high 
onstant probability, either S 
ontains su
h an independent set(and the algorithm reje
ts) or S indu
es a partition of almost all the graph's verti
es. In the latter
ase, with high 
onstant probability, the auxiliary samples and queries made in Step 2 will 
ausethe algorithm to reje
t. Details follow.We start by 
onsidering the 
hoi
e of S (in Step 1 of the algorithm). We think of S as beingsele
ted in 
+1 phases (where 
 is a 
onstant), su
h that in phase t 2 [
+1℄, a new uniform sampleSt, of �(��1=2) verti
es, is sele
ted. Intuitively, the obje
tive of the �rst 
 phases is to ensure, withhigh (
onstant) probability, that as long as the number of verti
es that do not have any neighboramong the verti
es sele
ted so far is relatively big, we obtain su
h a vertex in the next phase. After
 phases we use the sele
ted verti
es to de�ne a partition of the graph verti
es into at most 
 subsetswith some ex
eptional verti
es (whi
h either do not have any neighbor among the verti
es sele
tedin the previous phases or are somehow in
onsistent with these verti
es). The obje
tive of phase
+1 is to ensure that (with high probability) the number of ex
eptional verti
es is relatively small(or else, 
ause reje
tion).For ea
h t 2 [
 + 1℄, let S�t = Stk=1 Sk. Re
all that the algorithm queries all vertex pairs inS � S. Hen
e, if for any t 2 [
 + 1℄, the subgraph indu
ed by S�t is not a 
olle
tion of at most 

liques, then the algorithm reje
ts, and we are done. Otherwise, let Ct1; : : : ; Ctb(t) denote the b(t) � 
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liques in the subgraph indu
ed by S�t. For ea
h t 2 [
 + 1℄, we de�ne the following partition ofthe set [N ℄ of all graph verti
es:V tj def= fv : �(v) \ S�t = Ctjg for 1 � j � b(t) ; (119)Rt0 def= fv : �(v) \ S�t = ;g ; (120)Rt1 def= [N ℄ n �Rt0 [ � [1�j�b(t) V tj �� : (121)That is, for every j 2 [b(t)℄, the subset V tj 
onsists of the verti
es that neighbor all verti
es in Ctjand no other vertex in S�t, the subset Rt0 
onsists of all verti
es that have no neighbor in S�t, andRt1 
onsists of all verti
es that either neighbor only some of the verti
es in one of the 
liques Ctj(but not all) or have neighbors in more than one of the 
liques.Given the above notation, we make the following observations. First, for any 
hoi
e of S, itholds that V t+1j � V tj for every j 2 [b(t)℄, and likewise Rt+10 � Rt0 while Rt+11 � Rt1. Next, we turnto probabilisti
 assertions, whi
h refer to random 
hoi
es of S.1. For any t 2 [
℄ and any �xing of S�t, if jRt1j > 14�1=2N , then the algorithm reje
ts with highprobability (where the probability is taken over the 
hoi
e of St+1).This holds be
ause, under the hypothesis, it is very likely that St+1 will 
ontain some vertexin Rt1, whereas in this 
ase the subgraph indu
ed by S�(t+1) is not a 
olle
tion of (at most 
)
liques, and the algorithm reje
ts.2. For any t 2 [
℄ and any �xing of S�t, if jRt0j > 14�1=2N , then, with high probability, b(t+1) �b(t) + 1 (where the probability is taken over the 
hoi
e of St+1).This holds be
ause, under the hypothesis, it is very likely that St+1 will 
ontain some vertexin Rt0, whereas su
h a vertex 
annot �t to any of the existing 
liques.3. For any t 2 [
℄ and any �xing of S�t, for every j 2 [b(t)℄ su
h that jV tj j � ��1=22
 N , with highprobability (over the 
hoi
e of St+1), it holds thatjCt+1j jjSt+1j � 0:9 � jV tj jN : (122)This follows by an appli
ation of the standard multipli
ative Cherno� bound.Combining the foregoing observations, we infer that for, say, a 0.99 fra
tion of the possible 
hoi
esof S either the subgraph indu
ed by S is not in CC�
 or there exists t� 2 [
℄ su
h that(1) jRt�+11 j; jRt�+10 j � 14�1=2N ,(2) b(t�+1) = b(t�), and(3) for every j 2 [b(t�+1)℄ su
h that jV t�+1j j � ��1=22
 N it holds that jCt�+1j j=jSj � (2
)�1 � jV t�+1j j=N .
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Thus, throughout the rest of our analysis, we shall assume that the latter three 
onditions hold.(We later take into a

ount the small 
onstant probability that this is not the 
ase and the algorithmdid not reje
t.)16Fixing t� as above, we simplify the notation by using the following shorthands: Cj for Ct�+1j ,Vj for V t�+1j , R0 for Rt�+10 , R1 for Rt�+11 , and 
0 for b(t�+1). We also denote R0 [R1 by R.Re
all that G is �-far from CC�
. This means that for every partition of the graph verti
es intoat most 
 subsets, the total number of vertex pairs that either belong to the same subset but donot have an edge between them, or belong to di�erent subsets but do have an edge between them,is greater than �N2. In parti
ular, this holds for the partition of [N ℄, denoted (eVj)j2f0;1;:::;
0g, thatwe de�ne as follows:� For every j 2 [
0℄, it holds that Vj � eVj.� The verti
es in R are partitioned among the eVj's so as to minimize the number of violations
aused by pairs of the form (v; w) 2 R � ([N ℄ n R). Spe
i�
ally, for every vertex v 2 R andj 2 [
0℄, let ej(v) = j�(v)\ Vjj (resp., �ej = jVj n�(v)j) denote the number of neighbors (resp.,non-neighbors) that v has in Vj . If 
0 = 
 then ea
h vertex v 2 R is pla
ed in the subset eVj forwhi
h �ej(v) +Pk2[
0℄nfjg ek(v) is minimized. If 
0 < 
 then we do the same, ex
ept that everyvertex v 2 R that satis�esP
0k=1 ek(v) < minj2[
0℄f�ej(v)+Pk2[
0℄nfjg ek(v)g is pla
ed in eV0. Inparti
ular, v is pla
ed in eV0 if and only if for every j 2 [
0℄ it holds that ej(v) < �ej(v) (whi
h isequivalent to saying that for every j 2 [
0℄ it holds thatP
0k=1 ek(v) < �ej(v)+Pk2[
0℄nfjg ek(v)).We note that it may be the 
ase that eV0 = ;; indeed, this always happens when 
0 = 
.Re
all that jRj � 12�1=2N . Therefore, the total number of vertex pairs in R � R is at most 14�N2.It follows that if G is �-far from CC�
 then (at least) one of the following three events must o

ur:1. There are at least 14�N2 missing edges between pairs of verti
es that belong to the same subsetVj ; that is, P
0j=1 j(Vj � Vj) n Ej � �4N2.2. There are at least 14�N2 super
uous edges between pairs of verti
es that belong to di�erentsubsets Vj and Vk; that is, P
0�1j=1 P
0k=j+1 j(Vj � Vk) \Ej � �4N2.3. The total number of missing and super
uous edges 
ontributed by pairs of verti
es in R �(S
0j=1 Vj) is at least 14�N2. That is, if for ea
h j 2 [
0℄ and v 2 R \ eVj we letx(v) = �ej(v) + Xk2[
0℄nfjg ek(v) ; (123)and for v 2 R \ eV0 we let x(v) = X1�k�
0 ek(v) ; (124)then P
0j=0Pv2R\eVj x(v) � �4N2. (Re
all that eV0 = ; whenever 
0 = 
.)16Spe
i�
ally, if the algorithm a

epts with probability at least, say, 0:001, then (by Item 1) jRt1j � 14 �1=2Ntypi
ally holds (for any t). By Item 2, jRt0j > 14 �1=2N typi
ally implies b(t+1) > b(t), and so b(t+1) = b(t) indi
atesthat jRt0j � 14 �1=2N (while jRt+10 j � jRt0j always holds). Noting that we 
annot have b(t+1) > b(t) for every t 2 [
℄,it follows that for, say, a 0:99 fra
tion of the 
hoi
es of S, there exists a t� 2 [
℄ that satis�es 
onditions (1) and (2).On the other hand, for a 0:999 fra
tion of the 
hoi
es of S, for every t 2 [
℄ and every j 2 [b(t+1)℄ su
h thatjV t+1j j � ��1=22
 N it holds that jCt+1j j=jSt+1j � 0:9jV t+1j j=N . Using jSj = (
+ 1) � jSt+1j and 0:9=(
 + 1) > 1=2
, the
laim follows. 64



It remains to prove that in ea
h of the three foregoing 
ases the algorithm reje
ts with probability atleast 5=6. Spe
i�
ally, we shall show that, with probability at least 5=6, there exists an i 2 [`℄ su
hthat the sample Si[T 1i [T 2i 
ontains a set of verti
es whi
h indu
es a subgraph not in CC�
 that isinspe
ted by the algorithm. More spe
i�
ally, this set will 
ontain at most one vertex from ea
h T bi ,and we shall use the fa
t that the algorithm inspe
ts all pairs in (Si�(T 1i [T 2i ))[(T 1i �T 2i )[(Si�Si).In what follows let �0 = �8`
2 (and re
all that ` = log2(8
2=�)).Case 1: P
0j=1 j(Vj � Vj) n Ej � �4N2. In this 
ase there must be an index j� 2 [
0℄ su
h thatthe number of missing edges with both endpoints in Vj� is at least �4
N2; that is,Xv2Vj� jVj� n (fvg [ �(v))j � �4
N2 : (125)In parti
ular, this implies that jVj� j � �1=22
1=2N . For ea
h i 2 [`℄, we de�ne a subset Bj�;i of Vj� asfollows. Bj�;i = �v 2 Vj� : jVj� n (fvg [ �(v))j � N2i�; (126)where Bj�;0 = ;. By Eq. (125) and sin
e the 
ontribution of verti
es outside Bj�;` is at mostN � 2�`N = �N2=8
2, we have X̀i=1 jBj�;i n Bj�;i�1j � N2i�1 > �8
N2 (127)and thus there exists i� 2 [`℄ (i.e., a set Bj�;i�) su
h thatjBj�;i�j > 2i��1�8
` N > 2i��0N : (128)By the de�nition of Bj�;i if Bj�;i 6= ;, then jVj�j � N=2i� . Sin
e Bj�;i� 6= ;, it holds that jVj� j � �Nwhere � = maxf1=2i� ; �1=22
1=2 g. We shall show that, with high probability, the following three eventso

ur: (1) Si� 
ontains at least one vertex w from Cj�; (2) T 1i� 
ontains at least one vertex v fromBj�;i� � Vj� ; and (3) T 2i� 
ontains at least one vertex u from Vj� n �(v). If the three events o

urthen the algorithm reje
ts sin
e it obtains eviden
e that the graph is not in CC�
 (in the form of(w; v); (w; u) 2 E and (v; u) =2 E). (Indeed, v 2 �(w) sin
e w 2 Cj� and v 2 Vj�, and u 2 �(w)n�(v)sin
e u 2 Vj� n�(v). Also note that the algorithm queries all pairs in (Si��(T 1i�[T 2i�))[(T 1i��T 2i�).)Let � be as de�ned in the foregoing dis
ussion. Sin
e jVj� j � �N and so jCj� j=jSj � jVj�j=2
N ,the probability that the �rst event does not o

ur is at most (1�(�=2
))jSi� j whi
h is a small 
onstant(due to our 
hoi
e of jSi� j = �(1=�)). Similarly (by our 
hoi
e of jT 1i� j = �(log(1=�)=(�2i� )) =�(`=(�2i�)) = 
(1=(�02i�))), the probability that T 1i� does not 
ontain any vertex from Bj�;i� isa small 
onstant (due to the lower bound on the density of Bj�;i� given in Eq. (128)). Finally,assuming that T 1i� 
ontains a vertex v 2 Bj�;i� , the probability that T 2i� (whi
h has size �(2i�)) doesnot 
ontain any vertex from Vj� n�(v) is a small 
onstant as well (sin
e, by de�nition of Bj�;i� , theset Vj� n �(v) has density at least 2�i�).Case 2: P
0�1j=1 P
0k=j+1 j(Vj � Vk) \ Ej � �4N2. In this 
ase there exists at least one pair ofsubsets, Vj� and Vk� (where j� 6= k�), su
h that j(Vj� � Vk�) \ Ej � �4
2N2. Assume, without lossof generality, that jVj� j � jVk� j, so that in parti
ular jVj� j � �1=22
 N . Similarly to Case 1, it followsthat there exists a index i� 2 f1; : : : ; `g and a subset Bj�;i� � Vj� su
h that jBj�;i� j � �02i�N (re
all65



that �0 = �=(8
2`)) and for every v 2 Bj�;i� it holds that jVk� \ �(v)j � N=2i� . Analogously toCase 1, here we 
an show that, with high probability, the following three events o

ur: (1) Si�
ontains at least one vertex w from Cj� , (2) T 1i� 
ontains at least one vertex v from Bj�;i� , and(3) T 2i� 
ontains at least one vertex u from Vk�\�(v). If these three events o

ur then the algorithmreje
ts sin
e it obtains eviden
e that the graph is not in CC�
 (in the form of (w; v) 2 E, (w; u) =2 Eand (v; u) 2 E). The probability that these three events o

ur is lower-bounded as in Case 1.Case 3: P
0j=0Pv2R\ eVj x(v) � �4N2. For ea
h v 2 R, let x(v) be as de�ned in Eq. (123) & (124),and let R0 def= nv 2 R : x(v) � �1=24 No. Sin
e jRj � 12�1=2N , we have that Pv2(RnR0) x(v) <jRj � �1=24 N � �8N2. Therefore, Xv2R0 x(v) � �8N2: (129)By the de�nition of R0, for every v 2 R0, we have that x(v) � N=2i for some i � log2(4=�1=2).Therefore, if we de�ne Bi = fv : x(v) � N=2ig for i 2 [log2(4=�1=2)℄, then there is an indexi� 2 [log2(4=�1=2)℄ su
h that jBi� j � �8 log2(1=�) � 2i�N > �02i�N: (130)Similarly to the previous 
ases, with high probability, the sample T 1i� 
ontains at least one vertex vin Bi� . We next show that, for ea
h �xed 
hoi
e of su
h a vertex v 2 Bi� , with high probabilityover the 
hoi
e of the samples Si� and T 2i� , we obtain eviden
e 
ontaining v that G is not in CC�
(i.e., a set of verti
es that indu
es a subgraph not in CC�
, while having at most one vertex in ea
hT bi�).Let j� 2 f0; 1; : : : ; 
0g be su
h that v 2 eVj�, and de�ne �e0(v) = e0(v) = 0. Observe that sin
ev 2 eVj� we must have that �ej�(v)� ej�(v) � �ek(v)� ek(v) (8k 6= j�) ; (131)where if 
0 = 
 then 1 � k � 
0, while if 
0 < 
 then 0 � k � 
0. (Note that Eq. (131) holdssin
e otherwise v would be pla
ed in eVk.) Eq. (131) will be useful when we 
onsider the followingsub
ases (whi
h refer to v 2 eVj�).� We �rst 
onsider the sub
ase in whi
h j� = 0 (whi
h may o

ur only when 
0 < 
). In thissub
ase, sin
e �ej�(v) � ej�(v) = 0� 0 = 0, for every k 2 [
0℄ we have that �ek(v) � ek(v). Onthe other hand, sin
e x(v) =P
0k=1 ek(v) � N=2i� , there exists at least one index k� 2 [
0℄ su
hthat ek�(v) � N=(
2i�). Sin
e �ek�(v) � ek�(v), we have that �ek�(v) � N=(
2i�) as well. Thisalso implies that jVk� j=N � (
2i�)�1, and so jCk� j=jSj � jVk� j=2
N , we have that jCk� j=jSj �(2
22i�)�1. Re
all that jT 2i� j = �(2i�), and that jSi� j = �(minf2i� ; 1=(�2i�)g) = �(2i�), sin
ei� � log2(4=�1=2).Now, if jCk� \ �(v)j � jCk� j=2, then, with high 
onstant probability, the sample Si� 
ontainsa vertex w in Ck� \ �(v) (sin
e jCk�j = 
(jSj=2i�)), and T 2i� 
ontains a vertex u in Vk� n �(v)(sin
e �ek�(v) = 
(N=2i�)). Otherwise (i.e., jCk� n �(v)j � jCk� j=2), with high probability,Si� 
ontains a vertex w in Ck� n �(v), and T 2i� 
ontains a vertex u in Vk� \ �(v) (sin
eek�(v) = 
(N=2i�)). In either 
ase, w 2 Ck� and u 2 Vk�, whi
h implies (u;w) 2 E, andw 2 �(v) i� u 62 �(v), whi
h implies that jf(u;w); (w; v); (u; v)g \Ej = 2.In the subsequent sub
ases we assume that j� > 0. Using Eq. (123) and the hypothesisv 2 Bi� , we have �ej(v) +Pk2[
0℄nfjg ek(v) � N=2i� .66



� We next 
onsider the sub
ase in whi
h both �ej�(v) � N=2i�+1 and ej�(v) � N=2i�+2 hold.Setting k�  j�, we rea
h a situation as in the �rst sub
ase (sin
e �ek�(v) = 
(N=2i�) andek�(v) = 
(N=2i�)), and we are done as in the �rst sub
ase (while noting that the �rst sub
asedoes not rely on j� 6= k�).� The next sub
ase refers to �ej�(v) � N=2i�+1 and ej�(v) < N=2i�+2. In this sub
ase �ej�(v) �ej�(v) > 0 and so it 
an o

ur only when 
0 = 
 (sin
e otherwise v would be pla
ed ineV0, whereas here j� 6= 0). The fa
t that �ej�(v) � ej�(v) � N=2i+2 implies that, for everyk 2 [
0℄nfj�g, it holds that �ek(v) � ek(v)+�ej�(v)�ej�(v) � N=2i�+2. It follows that, for ea
hk 2 [
0℄, it holds that jCkj=jSj � 1=2i�+3 (sin
e jVkj=N � 1=2i�+2). Re
all that jSi� j = �(2i�)(and jT 2i� j = �(2i�)).If there exists k� 2 [
0℄ su
h that jCk� \ �(v)j � jCk� j=2, then with high probability, Si�
ontains a vertex in Ck� \ �(v), and T 2i� 
ontains a vertex in Vk� n �(v). Otherwise (i.e.,jCk n �(v)j � jCkj=2 for every k 2 [
0℄), with high probability, for every k 2 [
0℄, the sampleSi� 
ontains a vertex in Ck n �(v), and re
alling that 
0 = 
 we obtain eviden
e (in the formof an independent set of size 
+ 1) that G is not in CC�
.� Lastly, we 
onsider the sub
ase in whi
h �ej�(v) � N=2i�+1. Sin
e �ej�(v)+Pk2[
0℄nfj�g ek(v) =x(v) > N=2i� , we obtain Pk2[
0℄nfj�g ek(v) � N=2i�+1. In su
h a 
ase, there exists a k� 2[
0℄ n fj�g for whi
h ek�(v) � N=(
2i�+1). If ej�(v) � N=(
2i�+2), then with high probability,T 2i� 
ontains one vertex u in Vk� \ �(v) and one vertex u0 in Vj� \ �(v), while Si� 
ontainsone vertex w in Ck� and one vertex w0 in Cj�, and we have eviden
e that G is not a union of
liques (sin
e (v; u); (v; u0); (u;w); (u0; w0) 2 E whereas (w;w0) 62 E, and all �ve vertex pairsare inspe
ted by the algorithm).17 Otherwise (i.e., ej�(v) < N=(
2i�+2)), by Eq. (131), wehave that �ek�(v) � ek�(v) + �ej�(v) � ej�(v) � N=(
2i�+2), and we are in essentially the samesituation as the �rst sub
ase (sin
e we have ek�(v) = 
(N=2i�) and �ek�(v) = 
(N=2i�)).This 
ompletes the handling of all possible sub
ases of Case 3, and the lemma follows.7 Con
lusionsWe presented various results regarding the 
omplexity of testing graph properties in the adja
en
ymatrix model. All the properties we 
onsidered are easily testable in poly(1=�)-time, and theirtesting requires at least 
(1=�) queries. Our fo
us was on a �ner study of their query 
omplexity,whi
h distinguishes O(1=�) queries from poly(1=�) queries. While the parti
ular properties 
on-sidered are of natural appeal, our interest in them was as demonstrations of various phenomenaand/or perspe
tives. We 
on
lude this paper by expli
itly presenting three perspe
tives on ourresults.The role of algorithmi
 design in this model. Indeed, this is the perspe
tive promoted by thepaper's title, and it is delivered most eloquently by Theorems 1.2 and 1.4. In parti
ular, Theorem 1.2provides the strongest separation know between the query 
omplexity of adaptive testers and non-adaptive ones, whereas Theorem 1.4 (along with Proposition 6.2) provides the strongest separation17A
tually, note that it also holds that (u0; w) 62 E, and thus we obtain eviden
e in the form of the four vertexpairs (v; u); (v; u0); (u;w); (u0; w). Note that we 
an obtain eviden
e in the form of three vertex pairs by 
onsideringeither (v; u0); (u0; w); (v; w) or (v; u); (u;w); (v; w). 67



possible between the query 
omplexity of 
arefully designed non-adaptive testers and 
anoni
altesters.Indeed, with respe
t to this perspe
tive, Theorem 1.2 supersedes Theorem 1.1, while Conje
-ture 1.3 if true would supersede both. Theorem 5.7 provides eviden
e that Conje
ture 1.3 may betrue.Initiating a study of the general relation of adaptive versus non-adaptive testers (inthis model). Theorems 1.1 and 1.4 are the only results that establish a tight relation betweenthe query 
omplexity of adaptive and non-adaptive testers. Furthermore, the upper bounds aredemonstrated by eÆ
ient one-sided error testers, whereas the lower bounds refer to the query
omplexity of general (two-sided error) testers. These results assert that the exponent of therelation may be 4/3 and 1, respe
tively. Theorem 1.2 does not supersede Theorem 1.1, be
auseTheorem 1.2 just partially establishes another relation exponent (i.e., it asserts that the exponentmay be at least 3/2).With respe
t to this perspe
tive, even if Conje
ture 1.3 is true for any t > 4, this will notsupersede any of the above, but rather extrapolate them to all exponents of the form 2 � (2=t).(Again, Theorem 5.7 provides eviden
e that Conje
ture 1.3 may be true.)We mention that Alon [A02℄ presented non-trivial graph properties that 
an be tested by O(1=�)non-adaptive queries, but these testers had two-sided error probability.18 We also mention thatapproximating the edge density of a graph (or testing whether it is within some �xed interval) 
anbe performed by O(1=�2) non-adaptive queries and does require 
(1=�2) queries (even if adaptivityis allowed, 
f. [CEG℄).Advan
ing the study of the properties that are testable in small 
omplexity (i.e.,poly(1=�) queries). Indeed, Alon et al. [AFNS℄ provided a 
hara
terization of graph propertiesthat are testable in 
omplexity that is only related to the proximity parameter �, but we believethat further study of the lower 
omplexity 
lasses is begging, where the lowest 
omplexity 
lassesare �rstly eO(1=�) and se
ondly poly(1=�). This paper makes a small 
ontribution to this dire
tion,while fo
using on the �rst 
lass and a
tually de
oupling it to two 
lasses: the 
lass of propertiesthat are testable in eO(1=�) non-adaptive queries, and the rest of the 
lass of properties that aretestable by eO(1=�) (adaptive) queries. Theorems 1.1, 1.2, and 1.4 all have something to say aboutit.A
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18Spe
i�
ally, testing H-freeness, for any �xed bipartite graph H, 
an be performed by inspe
ting O(1=�) uniformly
hosen vertex pairs and a

epting if and only if no edge is seen (see Remark at the end of [A02, Se
. 2℄). Alon [A02,Thm. 1(i)℄ also shows that H-freeness 
an be tested by one-sided error testers of query 
omplexity poly(1=�), wherethe polynomial depends on H. 68
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