
Property Testing in Bounded Degree GraphsOded Goldreich� Dana RonyFebruary 18, 1997AbstractWe further develop the study of testing graph properties as initiated by Goldreich, Gold-wasser and Ron. Whereas they view graphs as represented by their adjacency matrix andmeasure distance between graphs as a fraction of all possible vertex pairs, we view graphs asrepresented by bounded-length incidence lists and measure distance between graphs as a fractionof the maximum possible number of edges. Thus, while the previous model is most appropriatefor the study of dense graphs, our model is most appropriate for the study of bounded-degreegraphs.In particular, we present randomized algorithms for testing whether an unknown bounded-degree graph is connected, k-connected (for k > 1), planar, etc. Our algorithms work in timepolynomial in 1=�, always accept the graph when it has the tested property, and reject with highprobability if the graph is �-away from having the property. For example, the 2-Connectivityalgorithm rejects (w.h.p.) any N -vertex d-degree graph for which more than �dN edges need tobe added to make the graph 2-edge-connected.In addition we prove lower bounds of
(pN) on the query complexity of testing algorithmsfor the Bipartite and Expander properties.
Keywords: Approximation Algorithms, Graph Algorithms.�Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.E-mail: oded@wisdom.weizmann.ac.il. On sabbatical leave at LCS, MIT.yLaboratory for Computer Science, MIT, 545 Technology Sq., Cambridge, MA 02139. E-mail:danar@theory.lcs.mit.edu. Supported by an NSF postdoctoral fellowship.0

1 IntroductionApproximation is one of the basic paradigms of modern science. One of its facets in computerscience is approximation algorithms. Yet, it is not always clear what approximation means. Thedominant approach considers a cost function associated with possible solutions of an instance,and regards an approximation algorithm as one which provides an approximation of the cost ofan optimal solution. In many cases one also expects (or requires) the approximation algorithmto supply a solution with cost close to optimal. This approach is most suitable in case there isa natural cost measure for candidate solutions and the optimal solution is preferable only dueto its low(est) cost. An alternative approach is to consider the distance of the given instanceto the closest instance which has a desirable property. The property may be having a solutionof certain cost (w.r.t some cost measure de�ned as in the �rst approach), but it can also be of aqualitative nature; for example, being a connected graph (in case the instances are graphs), or beinga linear function (in case the instances are functions). The latter approach underlines all work ontesting low-degree polynomials [BLR93, RS96, GLR+91, BFL91, BFLS91, FGL+91, ALM+92] andcodes [BFLS91, ALM+92, BGS95, H�as96], and its relevance to the construction of probabilisticallycheckable proofs [BFL91, BFLS91, FGL+91, AS92, ALM+92] is well known. Recently, a generalformulation of property testing has been presented in [GGR96], and its connection to the formerapproach to approximation have been demonstrated. Still the two approaches do di�er, and thequestion of meaningfulness has to be addressed (as we do below).Another general point is that approximation is applicable not only when the optimizationproblems are intractable. Also in case there exists an e�cient algorithm for solving the problemoptimally, one may wish to have an even faster algorithm and be willing to tolerate its approxima-tive nature. In particular, in a RAM model of computation, an approximation algorithm may evenrun in sub-linear time and still provide valuable information. For example, the testing algorithmsof [GGR96] run in constant time and provide \constant error approximations" (e.g., one can ap-proximate the value of the maximum cut in a dense graph to within a constant factor in constanttime).1.1 Testing graph propertiesRecently, a study of testing graph properties was initiated by Goldreich et. al., as part of a generalstudy of Property Testing [GGR96]. In the general model, the algorithm is given oracle access1to a function and has to decide whether the function has some speci�ed property or is \far" fromhaving that property. Distance between functions is de�ned as the fraction of instances on whichthe functions' values di�er.2 In their study of testing graph properties , Goldreich et. al. view thegraph as a Boolean function de�ned over the set of all vertex-pairs. Thus, their measure of distancebetween graphs is the fraction of vertex-pairs which are an edge in one graph and a non-edge inthe other graph, taken over the total number of vertex-pairs. This model is most appropriate forthe study of dense graphs, and indeed the graph algorithms in [GGR96] refer mainly to densegraphs. For example, their (constant time) Monte Carlo algorithm for testing whether a graphis Bipartite or is 0:1-far from Bipartite is meaningful only for N -vertex graphs which have morethan 0:1 � �N2 � edges (as any graph having fewer edges is 0.1-close to being Bipartite). Furthermore,testing connectivity in this model is trivial as long as the distance parameter is bigger than 2N (since1 Here we ignore the variant in which the algorithm is given only random examples.2 We ignore the variant where distance is measured with respect to an arbitrary distribution (rather than w.r.tthe uniform one). 1

every N -vertex graph is 2N -close to being connected and so the algorithm may as well accept anygraph).In this paper we present an alternative model. We view bounded-degree graphs as functionsde�ned over pairs (v; i), where v is a vertex and i is a positive integer within a predetermined(degree) bound, denoted d. The range of the function is the vertex set augmented by a specialsymbol. Thus the value on argument (v; i) speci�es the ith neighbor of v (with the special symbolindicating non-existence of such a neighbor). Our measure of distance between (N -vertex) graphsis the fraction of vertex-pairs which are an edge in one graph and a non-edge in the other, takenover the size of the domain (i.e., over dN). Thinking of d as being a �xed constant, this modeldoes not allow to consider dense graphs, yet it is most appropriate to the study of graphs withmaximum degree d. In particular, it is no longer true that every (degree-d) graph is 0.1-close tobeing connected and so an algorithm for testing connectivity cannot be trivial (i.e., always accept).On the other hand, the techniques in [GGR96] do not apply to our model and the analogies of mostof the results in [GGR96] do not hold: For example, we show that no constant time (Monte Carlo)algorithm can test whether a graph is Bipartite or is 0:1-far from Bipartite, where distance is asde�ned here.To demonstrate the viability of our model, we present randomized algorithms for testing severalnatural properties of bounded-degree graphs. All algorithms get as input a degree bound d andan approximation parameter �. The algorithms make queries of the form (v; i) which are answeredwith the name of the ith neighbor of v (or with a special symbol in case v has less than i neighbors).With probability at least 2=3, each algorithm accepts any graph having the tested property andrejects any graph which is at distance greater than � from any graph having the property. Actually,except for the cycle-freeness tester, all algorithms have one-sided error (i.e., always accept graphswhich have the property), and furthermore when rejecting they present a short certi�cate vouchingthat the property does not hold in the tested graph. Assuming that vertex names are manipulatedat constant time, all algorithms have poly(d=�) running-time (i.e., independent of the size of thegraph). Actually, most algorithms have poly(1=�) running-time and some have ~O(1=�) running-time, where ~O(`) = poly(log(`)) � `. In particular, we present testing algorithms for the followingproperties:connectivity: Our algorithm runs in time ~O(1=�). Recall that by the above this means that incase the graph is connected the algorithm always accepts, whereas in case the graph is �-far from being connected the algorithm rejects with probability at least 23 and furthermoresupplies a small counter-example to connectivity (in the form of an induced subgraph whichis disconnected from the rest of the graph).k-edge-connectivity: Our algorithms run in time ~O(k3 � ��3+ 2k). For k = 2; 3 we have improvedalgorithms whose running-times are ~O(��1) and ~O(��2), respectively.k-vertex-connectivity (for k = 2; 3): Our algorithms run in time ~O(��k).planarity: Our algorithm runs in time ~O(d4 � ��1).cycle-freeness: Our algorithm runs in time ~O(��3). Unlike all other algorithms, this algorithmhas two-sided error probability, which is shown to be unavoidable for testing this property(within o(pN) queries, where N is the size of the graph).In addition, we establish
(pN) lower bounds on the query complexity of testing algorithms forthe Bipartite and Expander properties. The �rst lower bound stands in sharp contrast to a2

result on testing bipartiteness which is described in [GGR96]. Recall that in [GGR96] graphs arerepresented by their N�N adjacency matrices, and the distance between two graphs is de�nedto be the fraction of entries on which their respective adjacency matrices di�er. The Bipartitetester of [GGR96] works in time poly(1=�) and distinguishes Bipartite graphs from graphs in whichat least �N2 edges must be omitted in order to be bipartite. Recall that in the current paper,graphs are represented by incidence lists of length d and distance is measured as the number ofedge modi�cations divided by dN (rather than by N2).Finally, we observe that the known results on inapproximability of Minimum Vertex Cover (andDominating Set) for bounded-degree graphs [ALM+92, PY91], rule out the possibility of e�cienttesting algorithms for these properties in our model.1.2 What does this type of approximation mean?To make the discussion less abstract, let us consider the k-(edge)-connectivity tester. As evidentfrom above, this algorithm is very fast; its running-time is polynomial in the error parameter, whichone may think of as being a constant. Yet, what does one gain by using it?One possible answer is that since the tester is so fast, it may make sense to run it beforerunning an algorithm for k-connectivity. In case the graph is very far from being k-connected, wewill obtain (w.h.p.) a proof towards this fact and save the time we might have used running theexact algorithm. (In case our tester detects no trace of non-k-connectivity, we may next run ourexact algorithm.) It seems that in some natural setting where typical objects are either good orvery bad, we may gain a lot. Furthermore, if it is guaranteed that objects are either good (i.e.,graphs are k-connected) or very bad (i.e., far from being k-connected) then we may not even needthe exact algorithm at all. The gain in such a setting is enormous.Alternatively, we may be forced to take a decision, without having time to run an exact algo-rithm, while given the option of modifying the graph in the future, at a cost proportional to thenumber of added/omitted edges. For example, suppose you are given a graph which representssome design problem, where k-connectivity corresponds to a good design and changes in the designcorrespond to edge additions/omissions. Using a k-connectivity tester you always accept a gooddesign, and reject with high probability designs which will cost a lot to modify. You may stillaccept bad designs, but then you know that it will not cost you much to modify them later. In thisrespect we mention the existence of e�cient algorithms for determining a minimum set of edges tobe added to a graph in order to make it k-connected [WN87, NGM90, Gab91, Ben95, NI96].1.3 Testing connectivity to the rest of the graphOur algorithm for testing k-edge-connectivity, for k � 2, uses a subroutine which may be of in-dependent interest. To describe it, suppose that you are given as input a vertex which resides ina k-connected component of the graph separated from the rest of the graph by less than k edges.Your task is to �nd all vertices in the same component, and this should be done within complexitywhich only depends on the size of this component. As above, you are allowed oracle queries of theform \what is the ith neighbor of vertex v".Our algorithm �nds the component containing the input vertex, within time cubic in the size ofthe component (independent of k and of the size of the entire graph). It is based on the underlyingidea of the min-cut algorithm of Karger [Kar93]. For k = 2, we have an alternative algorithm which3

works in time linear in the size of the component.3 We suggest the improvement of the complexityof the above task, for k � 3, as an open problem.OrganizationIn Section 2 we present the de�nitions used throughout the paper. Section 3 presents our algorithmsfor testing k-edge-connectivity (for k � 1). Our algorithms for testing k-vertex-connectivity (fork = 2; 3) are presented in Section 4. Testing algorithms for Cycle-Free, Planar and Eulerian graphsare presented in Sections 5, 6 and 7, respectively. Our hardness results are presented in Section 8.2 De�nitions and NotationWe consider undirected graphs of bounded degree. We allow multiple edges but no self-loops. Fora graph G, we denote by V(G) its vertex set and by E(G) its edge set. We assume, without loss ofgenerality, that V(G) = [jV(G)j] def= f1; : : : ; jV(G)jg and that for every vertex v 2 V(G), there is anordering among the edges incident to v. We stress that this ordering may be arbitrary and neednot be consistent among neighboring vertices. Namely, (u; v) 2 E(G) may be the ith edge incidentto u and the jth edge incident to v, where i 6= j. In accordance with the above, we associate witha (bounded degree) graph G, a function fG : V(G)� [d] 7! V(G)[f0g, where d is a bound on thedegree of G. That is, fG(v; i) = u if u is the ith neighbor of vertex v and fG(v; i) = 0 if v has lessthan i neighbors.We consider property testing algorithms which are allowed queries and work under the uniformdistribution. Our measure of the (relative) distance between graphs depends on their degree bound.That is, the distance between two graphs G1 and G2 with degree bound d, where V(G1) = V(G2) =[N], is de�ned as follows:distd(G1;G2) def= jf(v; i) : v 2 [N]; i 2 [d] and fG1(v; i) 6= fG2(v; i)gjd �N (1)This notation is extended naturally to a set, C, of N -vertex graphs with degree bound d; that is,dist(G; C) def= minG02Cfdistd(G;G0)g. For a graph property �, we let �N;d denote the class of graphswith N vertices and degree bound d which have property �. In case �N;d is empty for some �, N ,and d, we de�ne dist(G;�N;d) to be 1 for every G.De�nition 2.1 Let A be an algorithm which receives as input a size parameter N 2 N , a degreeparameter d 2 N , and a distance parameter 0 < � � 1. Fixing an arbitrary graph G with N verticesand degree bound d, the algorithm is also given oracle access to fG. We say that A is a propertytesting algorithm (or simply a testing algorithm) for graph-property �, if for every N , d, and � andfor every graph G with N vertices and maximum degree d, the following holds:� if G has property � then with probability at least 23, algorithm A accepts G;� if dist(G;�N;d) > � then with probability at least 23 , algorithm A rejects G.In both cases, the probability is taken over the coin ips of A.3 For k = 3, we present an algorithm which works in quadratic time.4

In the above de�nition we deviate from some traditions of having also a con�dence parameter,denoted �, and requiring the testing algorithm to be correct with probability at least 1 � �.4 ofhaving also a con�dence parameter, denoted �, One can always obtain such a better performanceat the cost of a multiplicative factor of O(log(1=�)) in all complexities. We shall be interested inbounding both the query complexity and the running time of A as a function of N , d, and �. Inparticular we try and achieve bounds which are polynomial in d, and 1=�, and sub-linear in N .Actually, our query complexity will be independent of N and so is the running-time in a RAMmodel in which vertex names can be written, read and compared in constant time.3 Testing k-Edge-ConnectivityLet k � 1 be an integer. A graph is said to be k{edge-connected if there are k edge-disjoint pathsbetween each pair of vertices in the graph. An equivalent de�nition is that the subgraph resultingby omitting any k � 1 edges (from the graph) is connected. A graph that is 1{edge-connected, issimply referred to as connected. In this section we show the following.Theorem 3.1 For every k � 1 there exists a testing algorithm for k-edge-connectivity whose querycomplexity and running time are poly(k�). Speci�cally,� For k = 1; 2 these complexities are O � log2(1=(�d))� �.� For k = 3 these complexities are O � log2(1=(�d))�2d �.� For k � 4 these complexities are O �k3 log2(1=(�d))�3� 2k d2� 2k �.Furthermore, the algorithms never reject a k{edge-connected graph.We note that the above complexity bounds do not increase with the degree bound d. The reasonis that the distance between graphs is measured as a fraction of d �N ; thus, d e�ects the numberof operations as well as the distance and its e�ect on the latter is typically more substantial.We start by describing and analyzing the algorithm for k = 1, and later show how it can begeneralized to larger k. From now on we assume that d � k, since otherwise we would immediatelyreject the tested graph G simply because a graph of degree less than k cannot be k connected. Inthe case of k = 1 we may actually assume that d � 2 (since otherwise, except for N � 2, the graphcannot be connected).3.1 Testing ConnectivityOur algorithm is based on the following simple observation concerning the connected components(i.e., the maximal connected subgraphs) of a graph.Lemma 3.1 Let d � 2. If a graph G is �-far from the class of connected graphs of degree bound d,then it has more that �4dN connected components.4 Adopting these traditions seems justi�able in case one can derive better results than by mere repetition of thebasic procedure. Alas, this is not the case in the present work.5

The lemma is very easy to establish in case the maximum degree of G is below d. Otherwise, anadditional argument is needed.Proof: Assume contrary to the claim that G has at most �4dN connected components. We willshow that by adding and removing at most �2dN edges we can transform G into a connected graphG0 which has maximum degree d. (Recall that according to our distance measure (Equation (1))every edge in the symmetric di�erence between graphs is counted twice).Let C1; : : : ;C` be the connected components of G. The easy case is when the sum of degrees ineach Ci is at most d � jCij � 2. In this case, for every i = 1; :::; `� 1, we can add an edge betweensome vertex of Ci and some vertex of Ci+1. This maintains the degree bound and makes the graphconnected. The number of edges added in such a case is `� 1 � �4dN � 1 < �2dN . But in general,the above condition may not hold and we need to do slightly more.Suppose that for some connected component, Ci, the sum of degrees is greater than d � jCij � 2(and hence we cannot add edges between Ci and Ci�1 without violating the degree bound). Let Tibe an arbitrary spanning tree of Ci. Since Ti has at least 2 leaves, and by our assumption regardingCi at least one of them has degree d � 2, that vertex has an incident edge in Ci which is not an edgein Ti. We can remove this edge from G without disconnecting Ci and get two vertices in Ci whichhave degree less than d. It follows that by removing at most one edge from each component andadding an edge between every Ci and Ci+1, we obtain a connected graph G0 respecting the degreebound d, where the symmetric di�erence between E(G) and E(G0) is bounded above by 2 � �dN4 .As an immediate corollary we getCorollary 3.2 If a graph G is �-far from the class of connected graphs then it has at least �dN8connected components each containing less than 8�d vertices.By using the fact that each connected component contains at least one vertex we conclude that ifG is �-far from the class of connected graphs then the probability that a uniformly chosen vertexbelongs to a connected component which contains at most 8�d vertices, is at least �d8 . Therefore,if we uniformly choose m = 16�d vertices, then the probability that no chosen vertex belongs to acomponent of size less than 8�d is bounded above by (1� �d8)m < 14 . This gives rise to the followingtesting algorithm, where we assume that N > 8�d since otherwise we could determine if the graphis connected by inspecting the whole graph5.Connectivity Testing Algorithm1. Uniformly choose a set of m = 16�d vertices;2. For each vertex s chosen perform a Breadth First Search (BFS)6 starting from s until d 8�de ver-tices have been reached or no more new vertices can be reached (a small connected componenthas been found);3. If any of the above searches found a small connected component then output REJECT, oth-erwise output ACCEPT.Since a connected graph consists of a single component, the algorithm never rejects a connectedgraph. The query complexity and running time of the algorithm are m � 8�d � d = O(1�2d). Wenote that the choice to perform a BFS is quite arbitrary, and that any other linear-time searchingmethod (e.g., DFS) will do. The complexity of the Connectivity Tester can be improved by applying5 In this uninteresting case the query complexity and running time are bounded by O(Nd) = O(1�)).6 The search is performed by making queries of the form (v; i).6

Corollary 3.2 more carefully. That is, suppose that G has at least L def= �dN4 connected components.Then, there exists an i � ` def= log2(8=�d) so that G has at least L2i` connected components of sizeranging between 2i�1 and 2i � 1. This suggests the following improved algorithm:Connectivity Testing Algorithm (Improved Version)1. For i = 1 to log(8=(�d)) do:(a) Uniformly choose a set of mi = 32�log(8=(�d))2i�d vertices;(b) For each vertex s chosen, perform a BFS starting from s until 2i vertices have beenreached or no new vertices can be reached.2. If any of the above searches found a small connected component then output REJECT, oth-erwise output ACCEPT.Lemma 3.3 If G is �-far from the class of connected graphs then the improved testing algorithmwill reject it with probability at least 34. The query complexity and running time of the algorithmare O(log2(1=(�d))�).Proof: Let Bi be the set of connected components in G which contain at most 2i� 1 vertices andat least 2i�1 vertices. Let ` def= log2(8=�d). By Corollary 3.2 we know that Pì=1 jBij � �dN8 . Hence,there exists an i � ` so that jBij � �dN8` . Thus, the number of vertices residing in componentsbelonging to Bi is at least 2i�1 � jBij. It follows that the probability of choosing a vertex s in oneof these components is at least 2i�1 � jBijN � �d � 2i16` = 2miThus, with probability at least 34 , a vertex s belonging to a component in Bi is chosen in iterationi of Step (2), and the BFS starting from s will discover a small connected component leadingto the rejection of G. The query complexity and running-time of the algorithm are bounded byPì=1mi � 2i � d = O(log2(1=(�d))�).3.2 Testing k-Connectivity for k > 1The structure of the testing algorithm for k-Connectivity where k > 1 is similar to the structureof the Connectivity Tester (i.e., case k = 1): We uniformly choose a set of vertices and for each ofthese vertices we test if it belongs to a small component of the graphs which has a certain property(i.e., is separated from the rest of the graph by a cut of size less than k). Similarly to the k = 1case, we show that if a graph is �-far from being k{connected then it has many such components. Inaddition, we present an e�cient procedure for recognizing such a component given a vertex whichresides in it.A subset of vertices X � V is said to be k{edge-connected if there are k edge-disjoint pathsbetween each pair of vertices in X. We stress that, in case k � 3, these paths may go throughvertices not in X and that any singleton is de�ned to be k{edge-connected. The k{edge-connectedclasses of a graph G are maximal subsets of V(G) which are k{edge-connected, and each vertexin V(G) resides in exactly one such class. In the remaining of this subsection, whenever we sayk{connected we mean k{edge-connected, and a k-class is a k{connected class.7

3.2.1 The CombinatoricsWe start by assuming that the graphs we test for k-connectivity are (k � 1){connected. We later(in Sec. 3.2.6) remove this assumption. In Appendix A we describe in more detail the structure of(k� 1){connected graphs in terms of their k-classes. Here we only state the facts necessary for ouralgorithms. Let G be a (k�1){connected graph. Then we can de�ne an auxiliary graph TG [DW95](based on the cactus structure of [DKL76]), which is a tree, such that for every k-class in G thereis a corresponding (unique) node in TG. The tree TG might include additional auxiliary nodes,but they are not leaves and we shall not be interested in them here. If G is k{connected, then TGconsists of a single node, corresponding to the vertex set of G. Otherwise, TG has at least twoleaves. The leaves of TG play a central role in our algorithm. Each leaf corresponds to a k-class Cof G which is separated from the rest of the graph by a cut of size k� 1. (Recall that G is assumedto be (k � 1){connected.) As we show below, for every leaf class C, given a vertex v 2 C, wecan e�ciently identify that v belongs to a leaf class. For k = 2 this can be done deterministicallywithin query and time complexity O(jCj � d). For k = 3 this can be done deterministically withinquery and time complexity O(jCj2 � d). For k � 4, we present a randomized algorithm with queryand time complexity O(jCj3 �d). The analysis of our algorithm relies on the following lemma whichdirectly follows from Lemma A.4 (see Appendix A).Lemma 3.4 Let G be a (k�1){connected graph which is �-far from the class of k{connected graphswith maximum degree d. Suppose that either d � k+1 or k � jV(G)j is even.7 Then, TG has at least�8dN leaves.3.2.2 The AlgorithmSimilarly to the k = 1 case, the above lemma implies that at least �dN16 of the leaves in TG contain atmost 16�d vertices. Hence we can run the following algorithm, where the implementation of Step (2)is discussed subsequently. As was shown for the k = 1 case, the algorithm below can be modi�edto save a factor of ~�(1=�d) in its query complexity and running time, but for sake of simplicity wedescribe the less e�cient algorithm. We also assume that the number of vertices in G is greaterthan 32�d , since otherwise we could decide if the graph is k{connected by observing the whole graphand running an algorithm for �nding a minimum cut (in time ~O(Ndk) [Gab95]).k-Connectivity Testing Algorithm1. Uniformly choose a set of m = 32�d vertices;2. For each vertex s chosen, check whether s belongs to a leaf class which has at most 16�d vertices.3. If any leaf class was discovered then output REJECT, otherwise output ACCEPT.As said above, this algorithm can be modi�ed analogously to the improved version of the connec-tivity tester, yielding7 The reason for this technical requirement is to rule out the pathological case in which d(= k) and jV(G)j are bothodd in which case it is not possible to transform G into a k{connected graph with maximum degree d by performingedge modi�cations. In other words, the class of k{connected graphs with max-degree k where k and N are odd isempty. Clearly, this pathological case is easily detected by the algorithm.8

Lemma 3.5 The (modi�ed) k-connectivity algorithm runs in time O(log(1=(�d))�d) �Plog2(16=(�d)i=1 Tk(2i)2i ,where Tk(n) is the time needed to implement the identi�cation of a k-class leaf of size at most n(i.e., Step (2)). It always accept a k{connected graph and rejects with probability at least 23 anygraph which is (k � 1){connected but �-far from being k{connected.In the following three subsection, we present such (k-class leaf) identi�cation algorithms for thethree cases k = 2, k = 3 and k � 4. The running-time bounds are T2(n) = O(nd), T3(n) = O(n2d),and Tk(n) = O(n3� 2kd), respectively, where d is the degree bound (or actually the maximum degreeof vertices in the class).3.2.3 Identifying a 2-class LeafGiven a vertex s and an integer n, the following Identi�cation Procedure can be used to determinewhether s belongs to a 2{connected class of size at most n which is a leaf in TG. Note that the upperbound, n, on the size of the class is determined by the algorithm when calling the identi�cationprocedure.2-Class Leaf Identi�cation Procedure1. Starting from s, perform a Depth First Search (DFS) until n+ 1 vertices have been reached.Let T1 be the tree de�ned by the search, and let E(T1) be its tree edges.2. Starting once again from s, perform another search (using either DFS or BFS) until n verticesare reached or no new vertices can be reached. This search is restricted as follows: If (u; v)is an edge in T1, where u is the parent of v, then (u; v) cannot be used to get from u to v inthe second search (but can be used to get from v to u). Let X2 be the set of vertices reached.3. If there is a single edge with one end-point in X2 and the other outside of X2 (i.e. (X2;X2)8is a cut of size 1), then X2 is the 2-class s belongs to.Clearly, the query complexity and running time of the procedure are O(nd). Since the procedurealways checks if it has found a cut of size 1, it will never identify a 2-class leaf when given a vertexs belonging to a 2-connected graph. Thus, we only need to prove the following.Lemma 3.6 Let G be a connected graph, C a 2-class in G of size at most n which is a leaf in TG,and s a vertex in C. Then the above procedure will always terminate with X2 = C.Proof: Since the �rst DFS terminates after seeing n+1 vertices, and vertices in C can be reachedonly by traversing the single edge (u; v) where u 2 C and v 2 C, we know that (u; v) must be aedge in T (with u being the parent). This ensures that the second search will never exit C. Inother words, X2 � C. What needs to be shown is that the second search reaches every vertex in C(i.e., X2 = C), and hence the cut (C;C) is discovered.Assume contrary to this claim, that S def= C n X2 is non-empty. Let (u1; v1); : : : ; (u`; v`) be theset of edges crossing the cut (X2; S), where 8i, ui 2 X2 and vi 2 S. Since C is 2{connected, theremust be at least two edges in the cut (X2; S). By our assumption that S is not reached in thesecond search, it follows that for every i, (ui; vi) is an edge in the DFS-tree T, and furthermore, uiis the parent of vi. However, since C is 2{connected there must be a path between v1 and v2 which8 For a subset X � V, we let X def= V n X. 9

does not use the edge (u1; v1). There are two cases. In case the path does not contain vertices inX2, we reach a contradiction to T being a DFS-tree. Otherwise, there must be a cut edge betweensome vertex, v, in the DFS-subtree rooted at v1 and a vertex, u, in X2. By the structure of theDFS-tree, this cannot be a DFS-tree edge from u to v, contradicting our hypothesis about the cutedges.3.2.4 Identifying a 3-class LeafGiven a vertex s and a size bound n, we �rst perform a DFS until n+1 vertices are discovered. Atthis point for each edge e in the tree (note that there are only n such edges) we \omit" e from thegraph. (That is, in the rest of the algorithm we pretend that this edge is not in the graph.) Nextwe invoke the Identi�cation procedure of the previous subsection (again starting from vertex s).Lemma 3.7 Let G be a 2{connected graph, C a 3-class leaf of TG with at most n vertices, and san arbitrary vertex in C. Then the above search process terminates in �nding the cut (C;C).It follows that we can identify a 3-Class Leaf of size n in time O(n2d).Proof: Clearly the initial DFS must cross an edge of the cut (C;C), and so its DFS-tree hasat least one cut edge. When this cut edge is omitted from the graph, the cut (C;C) contains asingle edge in the resulting graph, denoted G0. While the removal of this edge might decrease theconnectivity of the vertices in C (which was 3 in G), they are at least 2{connected in G0. InvokingLemma 3.6, we are done.3.2.5 Identifying a k-class Leaf (k � 2)The following applies to any k � 2, but for k = 2; 3 we have described more e�cient procedures(above).The algorithm for �nding leaf k-classes (k � 2) is based on Karger's Contraction Algorithm [Kar93]which is a randomized algorithm for �nding a minimum cut in a graph. Given a vertex s and asize bound n, the following search process is performed �(n2� 2k) times, or until a cut (S; S) of sizeless than k is found: Starting from the singleton set fsg, at each step the algorithm has a set Sof vertices it has visited. As long as jSj < n and the cut (S; S) has size at least k, the algorithmchooses an edge to traverse among the cut edges in (S; S) and adds the new vertex reached to S.The cut edge chosen is the one having the smallest cost, where edges are assigned random costsas follows. Whenever a new vertex is added to S, its incident edges which were not yet assignedcosts are each assigned a random cost uniformly in [0; 1]. Note that, as in the case of k = 1, thealgorithm never rejects a k{connected graph (simply since a k{connected graph does not have anycut of size less than k).Lemma 3.8 Let G be a (k� 1){connected graph, C k-class leaf of TG with at most n vertices, ands an arbitrary vertex in C. Then, with probability at least (2n)�(2� 2k), a single iteration of the abovesearch process succeeds in �nding the cut (C;C).Proof: Assume �rst that instead of assigning the edges costs in an online manner as describedabove, all edges in the graph are assigned random costs o�-line. (We may think of our algorithmas simply revealing these costs as it proceeds.) Consider any assignment of costs to all edges in the10

graph. A spanning tree, T, of the subgraph induced by C is said to be cheaper than the cut if thecost of every edge in T is smaller than the cost of any of the cut edges between C and C.Claim 3.8.1: Suppose that C contains a spanning tree which is cheaper than the cut (C;C). Thenthe search process succeeds in �nding (C;C).Comment: The above claim presents a su�cient but not necessary condition for the success ofthe search process. For example, the search may expand S by an edge with cost greater than anycut-edge in case S is not incident to any cut-edge.Proof of Claim 3.8.1: By induction on the size of S. 2Thus, all we need is to lower bound the probability that C contains a cheaper-than-the-cut spanningtree. This is done by using Karger's analysis of his contraction algorithm (for �nding a minimumcut) [Kar93]. Details follow.We start by considering an auxiliary graph G0, in which all of C is represented by an auxiliaryvertex, denoted x. That is, V(G0) = C [fxg and E(G0) contains all edges internal to C and anedge (u; x) for every edge (u; v) crossing the cut (C;C) in G. Since C is a k{connected class in G,the graph G0 has a single minimum cut of size k � 1; that is, the cut (C; fxg).We now turn to Karger's analysis of his Contraction Algorithm. Contraction is an operationperformed on a pair of vertices connected by an edge. When two vertices u and v are contracted,they are merged into a single vertex, w, where for each edge (u; z) such that z 6= v, we have an edge(w; z), and similarly for each edge (v; z0) (such that z0 6= u). Thus multiple edges are allowed, butthere are no self-loops. Given a graph as input, the Contraction Algorithm performs the followingprocess until two vertices remain: It chooses an edge at random from the current graph (which isinitially the original graph), and contracts its endpoints (resulting in a new graph which is smaller).An alternative presentation is to assign all edges uniformly chosen costs in [0; 1] and to contract thecheapest edge at each step. Karger shows that the probability that the algorithm never contracts amin-cut edge is at least 2n�2. In our case, this means that with probability at least 2n�2, Karger'salgorithm does not contract an edge incident to x, which implies that C has a spanning tree cheaperthan the cut (C; fxg).To obtain the better bound claimed in the lemma, we reproduce Karger's analysis [Kar93]. Heconsiders an n-vertex graph with min-cut of size c and such that the degree of every vertex inthe residual graph at any step of the Contraction Algorithm is at least D � c. Hence, at the ithstep of the algorithm, the probability of choosing to contract a cut edge is at most c(n�i)D=2 . Theprobability no cut edge is contracted in any step of the algorithm is at leastn�3Yi=0 �1� 2c(n� i)D� = n�3Yi=0 �n� i� (2c=D)n � i � > (2n)�2c=D (2)where the strict inequality is due to elementary algebraic manipulations (see Appendix C). In ourcase, since all cuts in G0 other than the minimum cut (C; fxg) have size at least k, we can setc = k � 1, D = k, and the lemma follows.3.2.6 Testing k-Connectivity of Graphs which are not (k � 1){connectedIn the general case where the tested graph is not necessarily k� 1 connected, we claim that we cansimply run the k-connectivity testing algorithm with distance parameter set to �=O(k). Note that,for every k � 4 and i � 1, when we run the k-connectivity algorithm on an (i�1){connected graph11

which is �-far from being i{connected, the algorithm detects a cut of size i� 1 with probability atleast 23 . (We stress that this holds also for i = 1, in which case this means that the algorithm detectsa small connected component.) Furthermore, the more e�cient Identi�cation procedures for 2-classand 3-class can be easily modi�ed so that they remain valid when omitting edges. Speci�cally, inStep 1 of the 2-Class procedure, one should declare detection in case less than n + 1 vertices arefound in the initial DFS. The 3-Class procedure is modi�ed analogously.However, in general the situation may be more complex. The tested graph may not be (i� 1){connected for any i � 1 and we need to analyze what happens if we run the k-connectivity tester onsuch a graph. The following lemma allows us to simplify the analysis by considering the distanceof the graph to the class of i{connected graphs rather than to the class of i{connected graphs withdegree bound d.Lemma 3.9 Let G be a graph which is �-far from the class of k-connected graphs with maximumdegree d, where either kN is even or d � k + 1.9 Then the minumum number of edges which mustbe added to G in order to transform it into a k-connected graph (without any bound on its degree),is at least 126�dN .Proof: Assume, contrary to the claim that in order to transform G into a k-connected graphit su�ces to augment it with m < 126�dN edges. We next show that by adding and removing atmost 13m edges we can transform G into a k-connected graph which has maximum degree d, incontradiction to the hypothesis.Let Gk be a k-connected graph which results from augmenting G with m edges. Some of thevertices in Gk might have degree larger than d. Hence we de�ne the excess of Gk (with respectto the degree bound d) as Pv; deg(v)>d(deg(v)� d). Since G has maximum degree d, and Gk wasobtained by augmenting G with m edges, the excess of Gk is at most 2m. We now show how byperforming at most 12m edge modi�cations to Gk, we can obtain a k-connected graph with excess0 (i.e., maximum degree at most d). Thus, we transform G (via Gk) into a k-connected graph withdegree bound d by modifying at most m + 12m edges. At each step of the following process wedecrease the excess of the graph while retaining its k-connectivity.While the excess of the graph is non-zero, do:1. If there is an edge (u; v) such that deg(u) > d and deg(v) > k, remove (u; v). In case the graphremains k-connected, no additional modi�cation is needed. Otherwise (the graph becomes(k � 1)-connected), by Lemma A.2 (in Appendix A), the auxiliary tree of the graph consistsof a simple path, with u belonging to one k-class leaf, and v to the other. Since v now hasdegree at least k, it cannot be a singleton leaf (because leaves have exactly k� 1 edges goingout of them). The same holds for u which now has degree at least d � k. We can thusapply Lemma A.3 on the two leaf k-classes, and obtain a k-connected graph at the cost of 4edge modi�cations. Thus, we have decreased the excess by at least 1, at the cost of 5 edgemodi�cations.2. Otherwise, for every vertex u such that deg(u) > d, all of u's neighbors have degree k (novertex may have degree lower than k since the graph is k-connected). We consider twosubcases.9 Recall that the technical condition (i.e., either kN is even or d � k + 1) is required as otherwise the class ofk-connected graph with maximum degree d is empty. 12

(a) If there are at least two such vertices u1 and u2 (i.e., with deg(ui) > d), then there mustexist two vertices v1 6= v2 such that v1 is a neighbor of u1 and v2 is a neighbor of u2. (Ifu1 and u2 only had a single (common) neighbor, or had edges between themselves, thiswould contradict the hypothesis that they both only have degree k neighbors.) We addan edge between v1 and v2, increasing their degree to k+1, and then apply Step 1 twice;that is, to the edges (ui; vi), for i = 1; 2. We have decreased the excess of the graph by2, at a cost of 1 + 2 � 5 = 11 edge modi�cations.(b) Otherwise, there exists a single vertex u with degree greater than d. Here we furtherconsider two subcases.i. deg(u) > d + 1. In such a case, we must remove at least two edges adjacent to u.Let v1 6= v2 be any two neighbors of u (once again, the existence of two such distinctvertices follows from the hypothesis that all of u's neighbors have degree k). Wenow proceed as in Step 2.a, by adding an edge between v1 and v2 and then applyingStep 1 to (u; v1) and then to (u; v2). We have decreased the excess of the graph by2, at a cost of 1 + 2 � 5 = 11 edge modi�cations.ii. deg(u) = d + 1. Let v be any neighbor of u (which, recall, must has degree k). Incase there exists a vertex (other than v), denoted w, with degree smaller than d, weadd an edge between v and w, raising the degree of v to k + 1 (where the degree ofw is now at most d). Applying Step 1 to the edge (u; v) we are done (at a cost of1 + 5 edge modi�cations).Otherwise, except for u and v, all vertices in the graph have degree d. We showthat this is not possible by using the lemma's technical assumptions by which eitherd > k or kN is even. In case d > k, all neighbors of u other than v have degreed > k, contradicting the hypothesis that all of u's neighbors have degree k (andagain, u must have such neighbors since deg(v) = k < d + 1deg(u)). In case d = kwe have that u has degree d + 1 and all other vertices in the graph have degreek = d, yielding a degree sum of kN + 1 which is odd.Thus in all cases, a decrease of 1 unit in the excess of the graph is obtained at a cost of at most 6edge modi�cations. Since the initial excess is at most 2m, the lemma follows.Let G be �-away from the class of k{connected graphs of degree bound d. By the above lemma,m � �dN26 edges must be added to G to make it k{connected. For every i � 1, let us denote by mithe minimum number of edges which should be added to G in order to make it i{connected, andlet Gi denote an i{connected graph which results when adding such mi edges to G. Let m0 def= 0and G0 def= G. Then, there must exist an i 2 f1; :::; kg so that mi �mi�1 � m=k. Let us considerany such i and let �0 def= �=(26k). It follows that in order to transform Gi�1 into an i{connectedgraph, we must augment it with at least �0dN edges. This implies that the auxiliary tree of Gi�1has a least 12�0dN leaves, and so, had we run the k-connectivity tester on Gi�1 with approximationparameter �0, it would detect that Gi�1 is not k (> i) connected, with probability at least 23 . Whatis left to show is that the detection probability of the k-connectivity tester on the graph G, whichis a subgraph of Gi�1, is no smaller. Although this sounds very appealing, a proof is in place.Actually we will modify the analysis of the detection probability of Gi�1 so that it applies to G.Recall that our analysis of the execution of the algorithm on an (i� 1){connected graph onlyrefers to the number of leaf i-classes of certain small sizes. Speci�cally, a leaf i-class C is hit withprobability jCjN and is identi�ed as such (with high probability) within time Ti(jCj) (see Sec. 3.2.2).Note that C is not necessarily a (leaf) i-class in G (as the structure of i-classes in G may be verydi�erent than in Gi�1 and in particular G may not be (i� 1){connected). Instead we let C0 be a13

minimal subset of C which is separated from the rest of G by a minimal number of edges, denotedj. Such a set is sometimes referred to as j-extreme. Since in Gi�1 the whole set C is separatedfrom the rest of the graph by i� 1 edges, we have that j � i� 1. Furthermore, by the de�nition ofC0, it contains no (strict) subset which is separated from the rest of G by less than j edges. Thus,we may apply the analysis of Sec. 3.2.5 to C0. It follows that if a vertex s 2 C0 is chosen by the(modi�ed) algorithm in iteration ` = dlog(jC0j)e (i.e. when testing if the graph has many leaves ofsize at most 2`�1 and at least 2`�1), then the leaf identi�cation procedure, starting from s, detectsthe cut (C0;C0), with high probability, within time Tj(2 � jC0j). The above analysis holds also withrespect to the (modi�ed) Identi�cation procedures for 2-class and 3-class.4 Testing k-Vertex-Connectivity for k = 2; 3The de�nitions for vertex-connectivity are analogous to the ones for edge-connectivity. Thereare also similarities in the induced structures, though the structures induced by vertex-connectedclasses tend to be more complex. In particular, although we believe that our techniques will applyto arbitrary k, we have only veri�ed the relatively simpler cases of k = 2; 3.For k � 1, a graph G having at least k + 1 vertices is said to be k-vertex-connected if thereare k vertex-disjoint paths between each pair of vertices in G. An equivalent de�nition is thatthe subgraph of G resulting by omitting any k � 1 vertices (and the edges incident to them) isconnected. For k = 1, edge-connectivity and vertex-connectivity coincide, but for k � 2 the twonotions are quite di�erent. Assume from now on that jV(G)j � k + 1.Theorem 4.1 For k = 2; 3 there exists a testing algorithm for k-vertex-connectivity whose querycomplexity and running time are poly(1=�). In particular,1. For k = 2 these complexities aremin(O� log(1=(�d))�2d � ; O 2d log2(1=(�d))� !)2. For k = 3 these complexities aremin(O� log(1=(�d))�3d2 � ; O 22d log(1=(�d))�2d !)Similarly to the case of edge-connectivity, our vertex connectivity testing algorithms try to �ndsmall k-vertex-connected classes. A subset of vertices X � V is said to be k-vertex-connected(k-connected) if there are k vertex-disjoint paths between each pair of vertices in X. As is thecase for k-edge-connectivity, when k � 3, these paths may pass through vertices not in X. Thek-vertex-connected classes (k-classes) of a graph G are maximal subsets of V(G) which are k-vertex-connected. In contrast to edge-connected classes, a vertex may belong to several vertex-connectedclasses. However, every two k-vertex-connected classes of a graph can have at most k� 1 commonvertices.For k = 2; 3, given a (k � 1)-connected graph G, we can de�ne an auxiliary graph TG which isa tree. Similarly to the case of edge-connectivity, the leaves of the tree will play an important rolein our algorithms. In particular we'll be interested in identifying leaves of TG which correspondto k{classes of G which contain at least k + 1 vertices, and leaves which correspond to sets which14

contain a vertex with only k � 1 distinct neighbors. The former, which we'll refer to as k{classleaves, have the property that they contain a single separating set of size k� 1 { i.e., a set of k� 1vertices whose removal disconnects the graph. For more details on the structure of the auxiliarytree of 2 and 3 connected graphs, see [Eve79] and [Pou92], respectively. For our purposes we onlyneed the above stated fact concerning the k-class leaves and the following lemma which followsfrom Lemmas B.4 and B.8 (see Appendix B).Lemma 4.1 1. Let G be a connected graph which is �-far from the class of 2-connected graphs.Then the sum of the number of degree-1 vertices in G and the number of 2-class leaves in TGis at least �dN6 .2. Let G be a 2-connected graph which is �-far from the class of 3-connected graphs with maximumdegree d. If d � 4 or G has an even number of vertices,10 then the sum of the number ofdegree-2 vertices in G and the number of 3-class leaves in TG is at least �dN8 .The vertex-connectivity testing algorithms have the same structure as the edge-connectivitytesting algorithms. Namely, for both k = 2 and k = 3 we uniformly choose a set of O(1�d) vertices,and for each vertex s chosen we �rst check if s has only k � 1 di�erent neighbors, in which casewe immediately reject the graph. Otherwise (s has at least k neighbors), we run a procedure forchecking if s belongs to a k-class leaf of size O(1=(�d)). Thus, a straightforward implementationwould run in time O � 1�d � Tk(O(1�d)�), where Tk(�) is the running time of the identi�cation procedure.Using the same technique described in the edge connectivity testing algorithms, we can cut a factorof ~�(1�d) in the running time. We hence focus on describing how to identify a small k{class leafgiven a vertex in the class.4.1 Identifying a 2-class LeafWe have two procedures for identifying a 2-class leaf C given a vertex s 2 C and an upper bound nof the size of C. The �rst has running time O(n2 � d), and the second has running time O(n � d � 2d).2-Class Leaf Identi�cation Procedure (Version I)1. Perform a BFS (or DFS) starting from s until n vertices are reached. Let the set of verticesreached be denoted by X.2. For each vertex v 2 X n fsg, start a new search from s in the auxiliary graph resulting fromthe omission of vertex v from the given graph. That is, start a new BFS from s, except thatwhen vertex v is reached treat it as if it has no other incident edges (i.e., do not extend thesearch from it). The search is terminated once n+1 vertices (including s and v) were reached.Let us denote by Xv the set of vertices reached in this search (including v).3. If for some v 2 X, the number of vertices in Xv is at most n, then Xv is a 2-class leaf.Clearly, the query and time complexity of the above procedure are O(n2d).Lemma 4.2 Let G be a connected graph with more than n vertices, C a 2-class in G of size atmost n which is a leaf in TG, and s a vertex in C which is not a separating vertex. Then for somev chosen in Step (2) of the above procedure, Xv = C. On the other hand, if G is 2-connected andjV(G)j > n, then the above procedure will never �nd a leaf class of size � n.10 See Footnote 7. 15

Di�erently from the leaf identi�cation procedures in the edge-connectivity case, here, in order todetect a leaf, the procedure cannot start from any vertex belonging to the leaf class. In particular,it should not start from a separating vertex. However, since each leaf class contains at least one non-separating vertex and exactly one separating vertex, the probability of choosing a good startingpoint is at least 12 the probability of choosing any vertex in a leaf class. Hence our analysis isessentially unchanged.Proof: Suppose �rst that G is 2-connected (and jV(G)j > n). Then for every choice of v (inStep 2) of the procedure, there are connected paths not passing through v between vertex s andany other vertex in V(G) n fs; vg. Thus, jXvj > n for every v.Consider now a non-separating vertex s which resides in a 2-class, C, of size at most n. Considerthe �rst BFS performed in Step (1) of the procedure. Since it reaches n vertices, one of these verticesmust be the single separating vertex belonging to C, which we denote by w. Since w is the onlyseparating vertex in C, any vertex outside of C can be reached only by passing through w. Thisimplies that when v = w in Step (2) of the procedure, the set of vertices Xv is a subset of C. Itremains to show that every vertex in C is reached in this execution of Step (2). But this followsdirectly from the fact that C is a two-connected class.2-Class Leaf Identi�cation Procedure (Version II) The second procedure for identifying a2-class leaf is based on the the observation that the problem of identifying a 2-vertex-connectedclass leaf can be reduced to the problem of identifying a 2-edge-connected class leaf (or simply a cutof size 1) in an auxiliary graph. In particular, consider the following randomized transformation ofthe tested graph, G, into a new graph G0: Replace each vertex v in G by two vertices, v1 and v2,connected by an edge, and partition the edges incident to v randomly among v1 and v2. That is, arandom non-trivial subset of these edges are now incident to v1 and the rest are incident to v2.Consider a separating vertex, w, belonging to a leaf class C in G, and let C0 be the correspondingset of vertices in G0. That is, C0 = fvi : v 2 C; i 2 f1; 2gg. Since C is 2-vertex-connected, w musthave some (actually { at least two) incident edges (in G) whose other end-points are in C. Let thisset of incident edges be denoted E1(w), and the remaining edges (with end-points outside of C),be E2(w). Suppose that when replacing w with two vertices, w1 and w2, the set of edges incidentto w1 is E1(w) (and the set incident to w2 is E2(w)). This event happens with probability at least2�d. Since w is a separating vertex, the edge between w1 and w2 is a bridge in G0 { that is, itsremoval disconnects the vertices in C00 def= C0 n fw2g from the rest of G0. On the other hand, it isnot hard to verify, that no matter how the other, non-separating, vertices in C are \broken intotwo", no other edge incident to a vertex in C00 is a bridge in G0.Thus, suppose we have chosen a non-separating vertex s that belongs to a small leaf class C ofG. We can now simulate the procedure for identifying a 2-edge-connected class in a graph G0, wherewe transform G into G0 randomly as we execute the procedure. Namely, whenever we encountera new vertex v, we do the following. We rename v as v1, and \virtually" connect it to another(new) vertex v2. We then randomly partition v's set of incident edges into two non-trivial subsets,E1(v) and E2(v), so that the edge traversed in order to reach v belongs to E1(v). We think of v1 asbeing incident to E1(v), and of v2 as incident to E2(v). The identi�cation procedure (for a 2-edge-connected class leaf) treats virtual edges as real edges. In order to achieve success probability 2=3,for each vertex chosen by the algorithm we perform the above randomized process 2d+1 times.16

4.2 Identifying a 3-class Leaf of a 2-Connected GraphAnalogously to the case of 2-class leaf identi�cation, we use two alternative procedures for identi-fying 3-class leaves. Both procedures are straightforward extensions of the ideas presented in the2-class case. Speci�cally, the �rst identi�cation procedure performs three \levels" of BFS ratherthan two:1. Perform a BFS starting from s until n vertices are reached. Let the set of vertices reachedbe denoted by X.2. For every vertex v 2 X n fsg:(a) Perform a BFS in the auxiliary graph resulting from the omission of vertex v. Again,the search is suspended once n + 1 vertices are discovered. Denote the set of verticesreached (including v) by Xv.(b) For every vertex w 2 Xv n fs; vg, perform a BFS in the auxiliary graph resulting fromthe omission of both v and w. Again, the search is suspended once n + 1 vertices arediscovered. Denote the set of vertices reached (including v and w) by Xv;w.3. If for some v 2 X and w 2 Xv, the number of vertices in Xv;w is at most n, then Xv;w is a2-class leaf.The second identi�cation procedure is based on the same reduction of the identi�cation of vertex-connected-classes to the identi�cation of edge-connected-classes. This time we consider two setsof edges { those incident to each of the two vertices which separate the class from the rest of thegraph. With probability at least 2�2d both sets are partitioned so that the edges going into thevertex-class are on one side and the rest of the edges (going to the rest of the graph) are on theother.4.2.1 Testing k-Connectivity of Graphs which are not (k � 1)-connectedConsider �rst the case in which k = 2 and the graph is not necessarily connected. We claim that inthis case we may simply run the 2-vertex-connectivity testing algorithm with distance parameterset to �8 . Note that if the graph G is not connected, and the 2-class leaf identi�cation procedure isgiven a vertex s belonging to a small connected component of G, then it will always output thatit has identi�ed a leaf11. Thus, in case G is �8-far from being connected, with high probability, thetesting algorithm will reject G.Otherwise, let G1 be a connected graph with maximum degree d which is at distance smallerthan �8 from G. Assuming that G is �-far from the class of 2-connected graphs with maximumdegree d, G1 must be at least 78�-far from this class. Thus, by Lemma 4.1, its auxiliary tree, TG1,has at least 748�dN 2-class leaves and vertices with a single neighbor. Let G01 be the graph whoseedge set is the union of the edge sets of G and G1. Clearly, G01 is connected (though its maximumdegree might be larger than d). Furthermore, the edge set of G01 is a superset of both the edge setof G and the edge set of G1, and it is at most �16dN larger than each one of them. In particular,this implies that TG01 has at least 748�dN � 18�dN = 148�dN 2-class leaves and vertices with a singleneighbor (since the addition of an edge can remove at most two leaves from the tree). This means11For sake of elegance, the procedure can explicitly check if in the �rst BFS it has reached less than n vertices, inwhich case it will stop and output that it has found a small connected component17

that if we tested G01 for 2-connectivity, it would be rejected with high probability. Namely, withhigh probability, the algorithm would choose a vertex s such that either s has only one neighboror s belongs to a small 2-class leaf C of G01 (but is not a separating vertex), and this leaf would beidenti�ed.Now consider the actual algorithm which runs on G. Since the number of neighbors each vertexin G has is bounded by the number of neighbors it has in G01, the algorithm will reject the graph ifa vertex s which has only one neighbor in G01 (and hence in G) is chosen. Thus consider a vertexs which belongs to a small 2-class leaf C in TG01 (but is not a separating vertex), and assume theleaf identi�cation procedure on G starts from s. Since the edge set of G is a subset of the edgeset of G01, either s cannot reach the separating vertex v of C, in which case it belongs to a smallconnected component, or v is still a separating vertex in G. In both cases, the leaf identi�cationprocedure will detect it,Similarly, for k = 3, it su�ces to run the 3-connectivity testing algorithm with distance pa-rameter set to �80 . By the discussion above concerning 2-connectivity, if the graph is at least �10-farfrom being 2-connected, then it will be rejected with high probability. Otherwise, we use the sameargument as above to show that there exists a 2-connected graph G02 whose edge set is a supersetof the edge set of G, such that there are many 3-class leaves in TG02. Similarly to the 2-class case,if the algorithm (executed on G) chooses a vertex s in one of these leaf classes C of G02, then it willeither �nd that s belongs to a small connected component, or that there exist one or two verticesseparating s (together with all or part of C) from the rest of the graph. It follows that G is rejectedwith high probability.5 Testing if a Graph is Cycle-Free (a Forest)The testing algorithm described in this section is based on the following observation. Let G be thetested graph and C1;C2; : : : ;Ck its connected components. By de�nition, if G is cycle-free theneach of its components is a tree. We should therefore expect each Ci to have jCij � 1 edges, andso the total number of edges in G should be N � k. Intuitively, if G is far from being cycle-free,then this is due mainly to either many extra edges within small components or to many extra edgesinside big components. In the �rst case, we can hope to sample a bad small component. In thesecond case, we may consider the subgraph if G which consists of all big component and detect adiscrepancy between its edge count and its vertex count. (Since here the number of components isrelatively small it cannot account for this discrepancy.) Details follow.Let Ci be the ith connected component of G, and denote by mi the number of edges in Ci.Denote ni def= jCij, and let bi def= mi� (ni� 1) � 0 be the number of edges which should be removedfrom Ci to make it a tree. Suppose that the components are arranged according to decreasing sizeand let t be the number of components of size at least 8�d (i.e., ni � 8=�d i� i � t). Let b def= Pki=1 biand consider the following two cases.Case 1: Suppose Pti=1 bi � b=2. In this case we may forget of the big components and concentrateon �nding a violation (cycle) inside a small component. If we select a vertex at random thenit will belong to a small component with probability at least b=2dN . Once we have selected sucha vertex, we may detect a cycle in its component by conducting a search on the component.The complexity of the search is bounded by the size of the component; that is, the complexityis 8�d � d. 18

Case 2: Suppose Pti=1 bi > b=2. In this case we may forget of the small components and concen-trate on approximating the sumPti=1 bi. This can be done by sampling vertices, and checkingif they are inside a large component. This sampling enables us to estimate Pti=1 ni (i.e., bythe probability we fall inside a large component) as well as Pti=1mi (i.e., by the averageof the degrees of vertices selected inside large components). A discrepancy of substantiallymore than t between the estimates (for Pti=1 ni and Pti=1mi) indicates a big distance fromcycle-freeness.Putting everything together, we get the following algorithm.Cycle-Freeness Testing Algorithm1. Uniformly choose a set of ` = �(1�2) vertices;2. For each vertex s chosen, perform a BFS starting from s until 8�d vertices are reached or nomore new vertices can be reached (s belongs to a small connected component);3. If any of the above searches found a cycle then output REJECT (otherwise continue);4. Let n̂ be the number of vertices in the sample which belong to connected components of sizegreater than 8�d , and let m̂ be half the sum of their degrees. If m̂�n̂` � �d16 then output REJECT,otherwise output ACCEPT.This establishes that:Theorem 5.1 There exists a testing algorithm for the Cycle-Free property whose query complexityand running time are O(1�3d).Proof: Let us denote by t the number of big connected components (i.e., connected componentsof size at least 8=�d). Firstly, note that with probability at least 23 both estimates done in Step 4are accurate to within (�d)=32; that is, m̀̂ = M 0N � �d32 and ǹ̂ = N 0N � �d32 , where N 0 (resp., M 0) isthe number of vertices (resp., edges) in big components. From this point on we assume that theseestimates are good.In case G is cycle-free, we never reject in Step 2. Furthermore, in this case we have M 0 �N 0 =�t � 0 and so Step 4 makes us accept. On the other hand, if G is �-far from cycle-free then eitherthere are �dN4 superuous edges inside small components or there are �dN4 superuous edges insidelarge components. The �rst case is detected in Step 2 with probability at least (1� �4)` > 23 , whereasthe second case is detected by Step 4 provided the estimates are good. Speci�cally, in the lattercase M 0 �N 0 � �dN4 � t � �dN8 .Remark: The above tester has two-sided error probability. This is unavoidable if one allows onlyo(pN) many queries. To see why consider either classes considered in the proof of Theorem 8.1: Ao(pN)-query algorithm must reject a random graph in the class with high probability and withoutseeing a cycle in it! Fixing any such sequence of coins, we observe that the algorithm will also rejecta graph which consists only of the (partial) forest it has observed. Thus the algorithm has a non-zero rejecting probability on some cycle-free graphs. It is even easier to show that any o(N)-queryalgorithm must have a non-zero accepting probability on graphs which are far from cycle-free (e.g.,consider the execution on the empty graph). 19

6 Testing PlanarityA graph is planar if it can be drawn in the plane so that no two edges in the graph cross eachother (cf. [Eve79]). Our planarity testing algorithm is based on a theorem which is due to Kura-towski [Kur30]. Two graphs are said to be homomorphic if both can be obtained from the samegraph by replacing edges with paths of degree-2 vertices (where these degree-2 vertices do notappear in the original graph). The graph K3;3 is a completely connected bipartite graph with 3vertices on each side, and the graph K5 is a clique of 5 vertices.Kuratowski's Theorem: A graph G is planar if and only if no subgraph of G is homomorphicto either K3:3 or K5.We begin by considering the easier problem of testing whether a graph is H-free, where H is any�xed constant size graph (e.g., K3:3 or K5). A graph G is H-free, if no subgraph is G is isomorphicto H. Let diam(H) denote the diameter of H.H-freeness Testing Algorithm1. Choose uniformly a set of m = �(1�) vertices;2. For each vertex s chosen, perform a BFS starting from s to depth diam(H).3. If any of the above searches found a subgraph isomorphic to H then output REJECT, otherwiseoutput ACCEPT.Lemma 6.1 The above algorithm is a testing algorithm for the H-freeness property whose querycomplexity and running time are O(ddiam(H)�) and O(ddiam(H)�jHj�), respectively.Proof: Clearly, if G is H-free it will be accepted with probability 1. Since in each search at mostddiam(H) queries are asked, the algorithm's query complexity is O(ddiam(H)�). The third step of thealgorithm (looking for a subgraph isomorphic to H) can be performed in time O(ddiam(H)�jV(H)j�), bychecking all mappings from the (at most) ddiam(H) vertices reached to H.It thus remains to show that if G is �-far from the class of H-free graphs then the H-freenessTesting Algorithm will reject it with probability at least 23 . But this follows directly from thede�nition of �-far: If G is �-far from the class of H-free graphs then it contains at least �2dN edgeswhich each reside in at least one subgraph of G which is isomorphic to H. Since the degree ofevery vertex is at most d, there are at least �2N vertices which reside in such subgraphs. Sincethe algorithm uniformly chooses �(1�) vertices, with probability 2=3 at least one of these verticesresides in such a subgraph, and this will be detected in the third step of the algorithm.If a graph is �-far from the class of planar graphs, then it contains at least �2dN edges whichreside in a subgraph of G which is homomorphic to either K3:3 or K5. Note that since neitherK3:3 nor K5 have degree 2 vertices this means that such a subgraph can be obtained by replacingedges of K3:3 or K5 with paths of degree 2 vertices. Consider a particular edge (u; v) in a subgraphhomomorphic to K3:3 or K5, and the corresponding homomorphism. Without loss of generality, letthis homomorphism be to K3;3. In this homomorphism, either (u; v) alone is mapped to an edgein K3:3 (in which case both u and v have degree at least 3) or (u; v) belongs to a path which ismapped to an edge in K3;3 (in which case either u or v has degree 2 (or possibly both have degree2)). We thus need to replace the BFS in the H-freeness testing algorithm with a slightly di�erentsearch. Suppose we could transform G into a contracted graph which contains no vertices with20

degree 2. Namely, every path in the graph in which all vertices except its endpoints have degree 2,is contracted into a single edge between the two endpoints. Note that all such paths are disjoint,and hence the process is well de�ned. We would thus like to essentially simulates a BFS to depthdiam(K3;3) = 2 on the contracted graph, given access to G.The only problem that arises if we actually perform this simulation is that some paths mightbe very long, causing the simulation to be expensive. Fortunately, there can't be too many longpaths. More precisely, since every vertex is an intermediate vertex in at most one such path, thereare no more than �4dN paths with more than 4�d intermediate vertices (or edges). It follows thatif G is �-far from the class of planar graphs, then it contains at least �4dN edges that reside in asubgraph of G which is homomorphic to either K3:3 or K5 and do not belong to a path of lengthgreater than 4�d . The above discussion gives rise to the following algorithm.Planarity Testing Algorithm1. Uniformly choose a set of m = �(1�) vertices;2. For each vertex u chosen perform the following procedure.(a) If u has degree at least 3 then let s = u. If u has degree 1 then Stop (go to 2). Otherwise(u has degree 2), perform a DFS starting from u until a vertex with degree at least 3 isreached or 4�d + 2 vertices are reached (or no new vertices can be reached). If a degree 3vertex is reached then let s be this vertex. Otherwise Stop (go to 2).(b) Starting from s perform a \BFS" as follows. Every vertex v reached, is assigned a label`(v) = (`1(v); `2(v)), where `(s) = (0; 0) and the label assignment rule is de�ned asfollows. If v1; : : : ; vk are the children of v in the BFS tree, then: (1) For every vi withdegree 2, let `1(vi) = `1(v) and let `2(vi) = `2(v) + 1; (2) For every vi with degree otherthan 2, let `1(vi) = `1(v) + 1, and `2(vi) = 0. The search should be discontinued atvertices v for which `1(v) = 2, or `2(v) = 4�d + 1.3. If any of the above searches found a subgraph homomorphic to either K3;3 or K5 then outputREJECT, otherwise output ACCEPT.The correctness of the algorithm follows from Lemma 6.1 and the discussion following it. Thenumber of queries performed is O(1�) larger than that stated in Lemma 6.1 (where here diam(H)is 1 for K5 and 2 for K3;3), since we might need to follow paths of that length in our search (Step(2b)). As for the running time, we can obtained better bounds than those implied by Lemma 6.1 asfollows. First note that for each starting vertex s, the graph induced by the search in Step (2b) canbe contracted while performing the search. Thus Step (3) is reduced to determining whether somecontracted subgraph containing s is isomorphic to K3;3 or K5. For the former we have to check ifthere exist three neighbors of s which all have two common neighbors (other than s). For the latterwe can simply go over all subsets fv1; v2; v3; v4g of 4 neighbors of s and check if fs; v1; v2; v3; v4ginduces a clique.As described above, the algorithm has query complexity O(d2�2) and running time O(d2�2 + d4�).However, similarly to the connectivity algorithms described in Sections 3 and 4, we can save afactor of ~�(1=�) in the query complexity (and in the �rst term of the bound on the running time).Theorem 6.1 There exists an algorithm for testing planarity whose query complexity and runningare O(d2 log2(1=�)�) and O(d4 log2(1=�)�), respectively.21

7 Testing if a Graph is EulerianA graph G = (V;E) is Eulerian if there exists a path in the graph that traverses every edgein E exactly once. It is well known the a graph is Eulerian if and only if it is connected andall vertices have even degree or exactly two vertices have odd degree. The testing algorithm isquite straightforward. In addition to testing connectivity (as done in subsection 3.1), we samplevertices and reject whenever we see more than two vertices of odd degree. Thus we test the twoproperties which conjuncted together yield the desired property. However, the analysis does notreduce to showing that each of the two sub-testers is valid { as property testing of a conjunctionof two sub-properties does not reduce in general to the property testing of each of the two sub-properties [GGR96]. Nonetheless, the following lemma does establish the validity of our tester.Lemma 7.1 Let G be a graph which is �-far from the class of Eulerian graphs with maximumdegree d. Then, it either has more than �8dN connected components, or it has more than �12dNvertices with odd degree.In other words, a graph which is �-far from the class of Eulerian graphs with maximum degree d iseither �4 -far from the class of connected graphs (with such degree bound) or �6-far from the class ofgraphs in which all (but at most two vertices) have even degree.Proof: Assume contrary to the claim that G has at most �8dN connected components, and atmost �12dN vertices with odd degree. We now show that by adding and removing at most �2dNedges we can transform G into becoming a Eulerian graph.First consider the case in which d is even, and hence all odd degree vertices have degree lessthan d. In such a case, we �rst pair all these vertices up and add an edge between every pair(using at most �24dN edges). Clearly, the number of connected components can only decrease inthis process. At this point, all vertices have even degree, which in particular means that all (atmost �8dN) connected components either consist of a single vertex (with degree 0) or have a cyclein them. We can then remove one edge from each non-trivial component, and then connect allcomponents in a cycle without raising the degree of the vertices above d. The total number of edgemodi�cations is bounded by �dN24 + 2 � �dN8 < �dN2 .In case d is odd, we �rst remove a single incident edge from every vertex with odd degree.Since there are at most �12dN such vertices, at most �12dN edges were removed, and the numberof connected components has increased by at most the same number (totaling to at most 5�24dN).However, now all vertices have even degree and we can connect the components as described above,by adding and removing at most 2 � 5�24dN edges. The total number of edge modi�cations is boundedby �dN12 + 5�dN12 = �dN2 .We have thus shown that:Theorem 7.1 There exists a testing algorithm for the Eulerian property whose query complexityand running time are O(log2(1=(�d))�).8 Hardness ResultsIn this section we present several lower bounds on the query complexity and running time requiredfor testing various properties. 22

8.1 Testing BipartitenessA graph is said to be bipartite if its set of vertices can be partitioned into two disjoint sets sothat there are no violating edges . An edge is said to be violating with respect to a given partition(V1;V2), if both its endpoints are either in V1 or in V2. In this section we show that any algorithmfor testing whether a graph is bipartite has query complexity
(pN). This lower bound stands incontrast to a result on testing bipartiteness which is described in [GGR96]. In [GGR96] a graphis assume to be represented by its N �N adjacency matrix, and the distance between two graphsis de�ned to be the fraction of entries on which their respective adjacency matrices di�er. Thus,a testing algorithm for a certain graph property should distinguish between the case in which thegraph has the property, and the case in which one must add and/or remove at least �N2 edgesin order to transform the graph into a graph that has the property. [GGR96] give an algorithmfor testing bipartiteness in this model whose query complexity and running time are poly(1=�).Recall that in the current paper, graphs are represented by incident lists of length d and distanceis measured as the number of edge modi�cations divided by dN (rather than by N2).Theorem 8.1 Testing Bipartiteness with distance parameter 0.01 requires 13 � pN queries.Proof: For any even12 N , consider the following two families of graphs:1. The �rst family, denoted GN1 , consists of all degree-3 graphs which are composed by the unionof a Hamiltonian cycle and a perfect matching. That is, there are N edges connecting thevertices in a cycle, and the other N=2 edges are a perfect matching.2. The second family, denoted GN2 , is the same as the �rst except that the perfect matchingsallowed are restricted as follows: the distance on the cycle between every two vertices whichare connected by an perfect matching edge must be odd.In both cases we assume that the edges incident to any vertex are labeled in the following �xedmanner: Each cycle edge is labeled 1 in one endpoint and 2 in the other. This labeling forms anorientation of the cycle. The matching edges are labeled 3.Clearly, all graphs in GN2 are bipartite. We next prove that almost all graphs in GN1 are farfrom being bipartite. Afterwards, we show that a testing algorithm that performs less than �pNqueries (for some constant � < 1) is not able to distinguish between a graph chosen randomly fromGN2 (which is always bipartite) and a graph chosen randomly from GN1 (which with high probabilitywill be far from bipartite).Lemma 8.1 With probability at least 1 � exp(
(N)), a graph chosen randomly in GN1 is 0:02-farfrom the class of bipartite graphs.Proof: What we'll actually show is something slightly stronger: For every ordering of the verticeson the cycle, with high probability over the choice of the matching edges, the resulting graph isfar from bipartite. Let us thus �x a certain ordering of the vertices on the cycle and consider allpossible partitions of the graph vertices into two sets. We show that with high probability (overthe choice of the matching edges) all such partitions have at least 132N violating edges (and sinced = 3, this implies that the graph is �-far from bipartite for � = 2�(N=32)dN = 148).12 For odd N , every graph (in both families) contains one degree-0 vertex, and the rest of the vertices are connectedas in the even case. 23

Consider a particular partition (V1;V2) of V. We consider two cases: (1) There are at least 132Nviolating cycle edges with respect to (V1;V2). In this case we are done no matter how the matchingedges are chosen. (2) There are less than 132N violating cycle edges. In this case we show (below)that with probability at least 1�exp(� 732N), over the choice of the matching edges, there are at least132N violating matching edges with respect to (V1;V2). This will su�ce since for any �xed i � N ,each partition which has i violating cycle edges is determined by the choice of those i violatingedges. Thus there are at mostPN=32i=0 �Ni � < exp(632N) partitions with less than 132N violating cycleedges. It follows that with probability at least 1� exp(632N) � exp(� 732N) = 1 � exp(� 132N) thereare at least 132N violating matching edges with respect to each one of these partitions.Without loss of generality, let jV1j � N=2 and consider the following process for choosing arandom matching. Starting from j = 1, choose an arbitrary vertex v in Vj , and match it witha randomly chosen unmatched vertex u. If the number of unmatched vertices in Vj is smallerthan the number of unmatched vertices in the other side of the partition then switch side (i.e., letj 3 � j). Clearly, during this process, we always try to match a vertex from the side havingmore unmatched vertices. Thus, at each step we create a violating edge with probability at least12 (independent of the past events). Since there are N=2 steps, the probability that less than 132Nviolating edges are created is bounded above by exp(�2 � (12 � 132)2 � N2) < exp(� 732N), as required.Notation. Let A be an algorithm for testing bipartiteness using ` = `(N) queries. Namely, Ais a (possibly probabilistic) mapping from query-answer histories [(q1; a1); : : : ; (qt; at)] to qt+1 =(vt+1; it+1), for every t < `, and to faccept; rejectg, for t = `. A query qt is a pair (vt; it), wherevt 2 V and it 2 f1; 2; 3g, and an answer at is simply a vertex ut 2 V. We assume that the mappingis de�ned only on histories which are consistent with some graph. Any query-answer history oflength t� 1 can be used to de�ne a knowledge graph, Gknt�1, at time t� 1 (i.e., before the tth query).The vertex set of Gknt�1 contains all vertices which appear in the history (either in queries or asanswers), and its edge set contains the edges between vt0 and at0 for all t0 < t (with the appropriatelabelings { it0 at vertex vt0). Thus, Gknt�1 is a labeled subgraph of the labeled graph tested by A.In what follows we describe two random processes, P1 and P2, which interact with an arbitraryalgorithm A, so that for j 2 f1; 2g, Pj answers A's queries while constructing a random graphfrom GNj . For a �xed A which uses ` queries, and for j 2 f1; 2g, let DAj denote the distributionon query-answer histories (of length `) induced by the interaction of A and Pj. We show that forany given A which uses ` � �pN queries, the statistical di�erence between DA1 and DA2 is 4�2.Combining this with Lemma 8.1, Theorem 8.1 follows.We start by de�ning P1. The process has two stages. In the �rst stage, which goes on as longas the algorithm performs queries, the exact position of the vertices on the cycle is undetermined.However, each vertex which is introduced into the knowledge graph of the algorithm, followingsome query, is assigned the parity of its future position on the cycle (but this bit is not given toA). That is, we think of the N positions on the cycle as being numbered from 0 to N � 1, and avertex which is assigned even (resp. odd) parity, will be allowed to be positioned only in even (resp.odd) cycle positions in the second stage. Thus, in this stage, the process essentially maintains theknowledge graph (which is extended according to the query-answer pairs), and keeps one additionalbit per vertex. Observe that by our convention on the labeling of the edges, the knowledge graphmaintained during the �rst stage can be viewed as \oating" (cycle) sections some of which areconnected by arcs (the matching edges). In the second stage, all vertices in the �nal knowledgegraph are positioned on the cycle randomly in a way that is consistent with the position-parity ofthe vertices, and so the knowledge graph edges which are labeled 1 or 2 coincide with cycle edges.24

Thus the sections stop oating and are restricted to �xed positions. Finally, all vertices which donot belong to the knowledge graph are randomly positioned on the remaining cycle positions andall unmatched vertices are randomly matched.First Stage of P1: Starting from t = 1, for each query qt = (vt; it) of A, process P1 proceeds asfollows:1. If vt belongs to Gknt�1 then there are three cases:(a) This edge already exists in the knowledge graph (i.e., there exists an edge (vt; u) in Gknt�1and this edge is labeled it at the endpoint vt). In this case P1 answers \u" (and theknowledge graph remains unchanged).(b) it = 3 and vt is unmatched in Gknt�1 (i.e., there is no edge (vt; �) in Gknt�1 which is labeled3). In this case P1 chooses a random unmatched vertex u 2 V (where u may belong toGknt�1) and answers \u". If u did not belong to Gknt�1, then it is assigned a position-parityin the natural manner. That is, let ne be the number of vertices in Gknt�1 which wereassigned even parity, and let no be the number that where assigned odd parity. Thenu is assigned even parity with probability (N=2)�neN�(ne+no) and odd parity otherwise. In anycase, the edge (vt; u) is added to the knowledge graph (with label 3).(c) it 2 f1; 2g and there is no edge incident to vt in Gknt�1 which is labeled it. Suppose,without loss of generality, that it = 1 and vt has even parity. Let Xo;2 be the set ofvertices in Gknt�1 which have odd parity, and do not have an incident edge labeled 2. Letno;2 def= jXo;2j. Then P1 �rst ips a coin with bias no;2(N=2)�no+no;2 to decide if to choosea vertex in Xo;2. If so, it uniformly chooses a vertex in Xo;2. Otherwise, it uniformlychooses a vertex not in Gknt�1. Let the chosen vertex be u, Then the process answers \u",and if u does not belong to Gknt�1, it is assigned odd parity (i.e., parity opposite to vt).In either case, the edge (vt; u) is added to the knowledge graph (with label it at vt).2. If vt does not belong to Gknt�1, process P1 �rst assigns vt parity as described in (1b) above,adds vt to the knowledge graph, and next answers the query as in (1).Second Stage of P1: After all queries are answered, do the following:1. Among all possible ways to embed Gkn` on the cycle, choose one uniformly, where a possibleembedding of Gkn` on the cycle must satisfy the following conditions.(a) Every vertex is assigned a cycle position (i.e., an integer in f0; : : : ; N � 1g with paritymatching the vertex's parity bit.(b) Vertices connected by a cycle edge in Gkn` are assigned adjacent positions on the cycle.Furthermore, if v is assigned position i on the cycle, and v has an edge labeled \1"connecting it to u in Gkn` , then u must be assigned position (i+ 1) (mod N)).2. Next, randomly position all other vertices on the cycle,3. Finally, match all unmatched vertices randomly.Process P2 is the same as P1, except when randomly matching vertices (since matched verticesmust have the same position-parity). The modi�cation to the second stage is self-evident (theunmatched vertices must be matched in a parity preserving manner). We also modify Step (1b)25

of the �rst stage { when choosing a vertex to match vt, process P2 only considers vertices in Gknt�1which have the same parity as vt. Without loss of generality, assume vt has even parity. Let Xo;3be the set of vertices in Gknt�1 which have odd parity, and do not have an incident edge labeled 3.Let no;3 def= jXo;3j. Then P2 �rst ips a coin with bias no;3(N=2)�no+no;3 to decide if to choose a vertex inXo;3. If so, it uniformly chooses a vertex in Xo;3. Otherwise, it uniformly chooses a vertex not inGknt�1. The rest of the process, and in particular the assignment of parity to new vertices, remainsunchanged.Lemma 8.2 For every algorithm A and for each j 2 f1; 2g, the process Pj, when interacting withA, uniformly generates graphs in GNj .Proof: We'll prove this by induction on the number of queries, `, that A performs. Since everyprobabilistic algorithm can be viewed as a distribution on deterministic algorithms, it su�ces toprove the lemma for any deterministic algorithm A. Also note that the (accept/reject) output ofthe algorithm is irrelevant to the claim and hence we view the algorithm only as a mapping fromhistories to queries.The base case, ` = 0 is clear since the knowledge graph is empty and Pj generates a randomgraph in GNj from scratch. Assuming the claim is true for ` � 1, we prove it for `. Let A be analgorithm that performs ` queries, and let A0 be the algorithm de�ned by stopping A before it asksthe `th query. By the induction hypothesis, we know that Pj when interacting with A0 uniformlygenerates graphs in GNj . We thus need to show that the same will be true if the second stage ofPj is performed following the `th query of A. We need to consider the following cases, dependingon the query q` = (v`; i`) of A. We may assume without loss of generality that the answer to thequery cannot be derived from the algorithm's knowledge graph, since this would be equivalent toasking no query (in which case the knowledge graph does not change and so the distribution onPj 's output after ` steps is identical to its output after `� 1 steps).1. i` = 3, and v` belongs to the algorithm's knowledge graph, Gkn`�1. Consider �rst the processP1 (when interacting with A0). The probability that P1 matches v` (in the second stage) toany vertex (either in Gkn`�1 or not) is clearly independent of the exact ordering of the verticeson the cycle. Hence, by �rst answering this query and then performing the second stage ofPj we are only changing the order in which the �nal graph is constructed.In the case of P2, the probability that P2 matches v` to any vertex is still independent of theexact ordering of the vertices on the cycle, but it does depend on the parity of the vertices.In particular, assume without loss of generality that v` has even parity. Then in any possiblematching done in the second stage, the only vertices in Gkn`�1 that v` can be matched to arevertices in Xo;3 (where Xo;3 is as de�ned in the process description). On the other hand, in anypossible embedding of the vertices on the cycle, there are exactly (N=2)� no vertices not inGkn`�1 which have odd parity and thus may be matched to v`. This implies that v` is matchedto some vertex in Xo;3 with probability jXo;3jjXo;3j+(N=2)�no , and to some vertex not in Gkn`�1, withprobability (N=2)�nojXo;3j+(N=2)�no . Furthermore, conditioned on the event that v` is matched to avertex in Xo;3, this vertex is distributed uniformly in Xo;3. Similarly, conditioned on the eventthat it is matched to a vertex not in Gkn`�1, this vertex is uniformly distributed among verticesnot in Gkn`�1. But these probabilities are exactly as de�ned in Step (1b) or P2.Therefore, for both processes the induction step holds in this case.26

2. i` = 3, and v` does not belong to Gkn`�1. This case is reduced to the previous one, providedthat the parity of v` is chosen with the correct probability. In the second stage each vertex isassigned parity at random according to the proportion of missing vertices (with this parity).This is exactly the assignment rule of Step (2) in the �rst stage.3. i` 2 f1; 2g, and v` belongs to Gkn`�1. Assume, without loss of generality, that i` = 1 and v` haseven parity. Clearly, in any embedding of Gkn`�1 in the cycle, v` can be adjacent to a vertex uin Gkn`�1 only if u belongs to Xo;2 (as de�ned in the process). It is also clear that conditionedon the event that it is adjacent to a vertex in Gkn`�1, this vertex is uniformly distributed in Xo;2(and similarly if it is not in the graph). Finally, since there should be exactly N=2 odd-parityvertices, and the total number of odd-parity vertices in Gkn`�1 is no, the number of odd-parityvertices not in Gkn`�1 (in any ordering of the vertices on the cycle) is (N=2) � no. Thus theprobability that v` is adjacent to some u 2 Xo;2 is jXo;2jjXo;2j+(N=2)�no , and the probability that itis adjacent to some vertex outside the knowledge graph is (N=2)�nojXo;2j+(N=2)�no , which is exactly asde�ned by the process. Hence the induction step holds in this case.4. i` 2 f1; 2g, and v` does not belong to the knowledge graph. This case is reduced to theprevious one, provided that the parity of v` is chosen with the correct probability. Thevalidity of the condition was already established in Case 2.Lemma 8.3 Let � < 1, ` � �pN and N � 8`. Then, for every algorithm A which asks ` queries,the statistical distance between DA1 and DA2 is at most 4�2. Furthermore, with probability at least1� 4�2 the knowledge graph at time of termination of A contains no cycles.Recall that DAj denotes the distribution on query-answer histories (of length `) induced by theinteraction of A and Pj .Proof: We assume without loss of generality that A does not ask queries whose answer can bederived from its knowledge graph, since those give it no new information. Under this assumption,we show that both in DA1 and in DA2 , the total weight of query-answer histories in which a vertex inGknt�1 is returned as an answer to the tth query (i.e., there exist t0 < t such that at = vt0 or at = at0)is at most 4�2. In particular, this means that with probability at least 1�4�2, the knowledge graphof A contains no cycles. Furthermore, in both distributions, for every history pre�x, conditionedon the event that the new answer does not equal some previous query or answer, the new answeris uniformly distributed among all vertices not appearing in the history. Since A's queries onlydepend on the preceding query-answer history, the lemma follows.There are two cases in which the event at = vt0 or at = at0 might occur.1. it = 3, and vt is matched to a vertex in the knowledge graph Gknt�1. Since the number ofvertices in Gknt�1 is at most 2(t� 1), this event occurs with probability at most 2(t�1)N�2(t�1) whenthe process is P1, and at most 2(t�1)(N=2)�2(t�1) when the process is P2.2. it 2 f1; 2g and at is chosen in Gknt�1. According to both processes this event occurs withprobability less than 2(t�1)(N=2)�2(t�1) < 8(t�1)N (as N � 8t).The probability that such an event occur in any sequence of �pN queries, is at mostP�pNt=1 8(t�1)N <4�2. (Lemma 8.3 and Theorem 8.1) 27

8.2 Testing Whether a Graph is an ExpanderThe neighbor set of a set A of vertices of a graph G = (V;E), denoted �(A), is de�ned as follows:�(A) def= A [fu : (v; u) 2 E; v 2 AgA graph on N vertices is an (N;�; �)-expander if for every subset A of the vertices which has sizeat most �N , j�(A)j � �jAj. Let us set � = 14 and � = 1:2, and simply refer to an (N; 14 ; 1:2)expander, as an expander. Here we show thatTheorem 8.2 Testing whether a graph is an expander, with error parameter 0.01, requires 15 �pNqueries.Proof: Similarly to the lower bound for testing bipartiteness, we �rst describe two families ofgraphs where with extremely high probability, a graph chosen randomly in the �rst family is anexpander, and every graph in the second family, is far from being an expander. We then describetwo processes which interact with a testing algorithm while constructing a random graph in oneof the families, and show that the distributions induced on the query-answer sequences are verysimilar. For simplicity we assume that N � 0 (mod 8).Let d = 3. It is well known (and easy to verify) that if we randomly construct a graph bychoosing d random perfect matchings to de�ne its edge set, then with probability 1� exp(
(N)),the resulting graph is an expander. The �rst family, GN1 , will consist of all possible resulting graphs.A graph in the second family, GN2 , is constructed by �rst randomly partitioning the vertex set into4 equal size subsets, and then choosing d random matchings inside each subset. Thus the foursubsets are disconnected. Clearly, every graph in this family is 160-far from being an expander,since in order to transform it into an expander we must connect each of the four subsets to at leastN=20 vertices outside the subset. In both cases, each edge in the graph has the same label at bothendpoints (i.e., corresponding to the index of the perfect matching to which the edge belongs).The process P1 for constructing a random graph in GN1 , while interacting with an algorithm A,is completely straightforward. Let qt = (vt; it) be A's tth query. If the answer at is determined bythe current knowledge graph, Gknt�1, then P1 answers accordingly. Otherwise, it chooses a randomvertex u which does not have an incident edge labeled it, answers \u", and adds the edge (andpossibly the vertex) to the knowledge graph. When the interaction with A ends, P1 randomlycompletes all d matchings.Process P2 is somewhat more complex. It maintains four subsets of vertices and coordinates itschoice of matching edges with these growing subsets.� Whenever algorithm Amakes a query of the form (v; i) where v is not in the current knowledgegraph, P2 assigns it a subset-id in f1; 2; 3; 4g with probability proportional to the number ofvertices missing in each subset (P2 starts with all subsets being empty). Speci�cally, let nsbe the number of vertices with subset-id s in the current knowledge graph, for s = 1; 2; 3; 4.Then the new vertex is assigned subset-id s with probability (N=4)�nsN�(n1+n2+n3+n4) . The query issubsequently processed as follows.� To answer a query (v; i) when v is already in the current knowledge graph, P2 matchesit to either a vertex already assigned to the same subset as v or to an unassigned vertex.Speci�cally, suppose that v is already assigned to the sth subset, and let Xs;i denote the set ofvertices which are assigned to the sth subset but do not have an incident edge labeled i. Then28

with probability jXs;ij�1(N=4�ns)+(jXs;ij�1) process P2 matches v to a uniformly chosen vertex, u, inXs;i n fvg. Otherwise, P2 matches v to a uniformly chosen vertex, u, which does not belongto the current knowledge graph, and assigns u to the sth subset. In both cases P2 answerswith the chosen vertex u, and the knowledge graph is augmented with the edge (v; u) labeledi.It is easy to verify that for both processes the distribution on the generated graphs is uniform inthe respective graph family. Similarly to the bipartite lower bound, it remains to show that for any(not too long) query-answer history, the probability that we get an answer at which is a vertex inthe knowledge graph (and not a uniformly distributed new vertex) is small. But this is easy to see.In the case of P1, such a vertex is chosen following the tth query, with probability at most 2tN�2t . Inthe case of P2, such a vertex is chosen with probability at most 2t(N=4)�2t . The probability that suchan event occurs in any sequence of �pN queries, is at most P�pNt=1 8tN�8t which is at most 8�2, forevery N � 256.8.3 On Testing MaxSNP ProblemsIt should come with little surprise that we cannot e�ciently test some properties of bounded degree-graphs which are MaxSNP-complete (i.e., when restricted to bounded-degree graphs). To see why,we need to be a bit more formal.Consider for example the class C�d of graphs with maximum degree d having a vertex cover ofsize �N , for some constant � > 0. Suppose that A is a property tester for C�d as in De�nition 2.1.Suppose we have an algorithm A which on input � and d, and access to a graph with degreebounded by d, the algorithm accepts (with high probability) any graph in C�d but rejects (w.h.p.)any N -vertex graph (of degree � d) which requires modi�cation of �dN edges in order to be in C�d .We observe that it su�ces to consider the number of edges omitted in the modi�cation process, andthat the number of omitted edges can be related to an increase in the vertex cover. Speci�cally,Claim 8.4 Suppose that A is a property tester for C�d . Then A distinguishes between N -vertexgraphs (of degree at most d) having vertex cover of size � �N and similar graphs having no vertexcover of size (�+ �d) �N .Since distinguishing the two cases is NP-Hard for some constants d; � and � [ALM+92, PY91], wecannot expect A to have \reasonable" (e.g., polynomial in N) complexity.Proof: By de�nition, the former graphs are in C�d . It remains to see that N -vertex graphs havingno vertex cover of size (�+ �d) �N require the modi�cation of at least �dN edges in order to putthem in C�d . Suppose that it su�ces to omit m edges from a graph G in order to obtain a graph G0in C�d (we don't care if edges were added in the process).13 Then taking the �N -vertex-cover of G0and at most one endpoint of each of the m edges omitted from G, results in a vertex cover of Ghaving size at most �N +m. Thus, we have m � �dN .Next, we consider the class D�d of graphs with maximum degree d having a dominating set ofdensity �. We observe that it su�ces to consider the number of edges which need to be added toput the graph in D�d. Speci�cally,13 Actually, without loss of generality we may assume that no edges were added as they only make the task ofcovering harder... 29

Claim 8.5 Suppose that A is a property tester for D�d. Then A distinguishes between N -vertexgraphs (of degree at most d) having no dominating set of size � � N and similar graphs havingdominating set of size (�+ �d) �N .Again, since distinguishing the two cases is NP-Hard for some constants d; � and � [ALM+92, PY91],we cannot expect A to have \reasonable" complexity.Proof: Again, the former graphs are in D�d , and it remains to see that N -vertex graphs havingno dominating set of size (� + �d) � N require the modi�cation of at least �dN edges in order toput them in D�d . Suppose that it su�ces to add m edges to a graph G, with maximum degree d,in order to obtain a graph G0 in D�d (we don't care if edges were omitted in the process).14 LetS0 be a dominating set of size �N of G0. Then S0 dominates all but at most m vertices in G (i.e.,all vertices dominated in G0 except for those which are dominated due to the edges added to G).Adding these vertices to S 0 we obtain a dominating set of size jS0j +m of G, and thus m � �dN .We conclude by proving a lower bound on the query complexity of testers for the Vertex CoverProperty, C�d . Speci�cally,Proposition 8.3 Let d = 3, � = 0:5 and � = 0:01. Then testing whether a 3-regular N -vertexgraph belongs to C�d or is �-far from it requires
(pN) queries.Proof: We use the families GN1 and GN2 presented in Subsection 8.1. By combining Lemmas 8.2and 8.3, an algorithm which makes o(pN) queries can not distinguish graphs uniformly chosen inGN1 from graphs uniformly chosen in GN2 . It is easy to see that graphs in GN2 have a vertex coverof size N=2 (e.g., all vertices with odd locations on the cycle). It remains to show that, with veryhigh probability, a graph chosen uniformly in GN1 has no vertex cover of size 0:51 �N .Consider an arbitrary subset, U, of vertices which cover all cycle edges. Then each vertex notin U must be adjacent (on the cycle) to vertices in U. It follows that the number of possible subsetsof size 0:51N which cover the cycle edges is at most 0:51N0:49N! < 2N=6On the other hand, for every �xed U as above, the probability that U covers the matching edges isupper bounded by 0:01NYi=0 0:51N � iN � 2i ! < 2�0:4NWe conclude that the probability that a graph chosen uniformly in GN1 has a vertex cover of size0:51 �N is exponentially vanishing in N . The lemma follows.AcknowledgmentsWe thank Ye�m Dinitz, Shimon Even, David Karger for helpful discussions.14 Here we cannot assume that the modi�cation of G into G0 consists only of the addition of edges, since we maybe forced to omit edges in order to satisfy the degree bound. Nevertheless, this fact does not e�ect the proof.30

References[ALM+92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cation andintractability of approximation problems. In Proceedings of the Thirty-Third AnnualSymposium on Foundations of Computer Science, pages 14{23, 1992.[AS92] S. Arora and S. Safra. Probabilistic checkable proofs: A new characterization of NP.In Proceedings of the Thirty-Third Annual Symposium on Foundations of ComputerScience, pages 1{13, 1992.[Ben95] A. Benczur. A representation of cuts within 6/5 times the edge connectivity withapplications. In Proceedings of the Thirty-Sixth Annual Symposium on Foundations ofComputer Science, pages 92{101, 1995.[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-proverinteractive protocols. Computational Complexity, 1(1):3{40, 1991.[BFLS91] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polyloga-rithmic time. In Proceedings of the Twenty-Third Annual ACM Symposium on Theoryof Computing, pages 21{31, 1991.[BGS95] M. Bellare, O. Goldreich, and M. Sudan. Free bits, pcps and non-approximability {towards tight results. In Proceedings of the Thirty-Sixth Annual Symposium on Foun-dations of Computer Science, pages 422{431, 1995. Full version available from ECCC,http://www.eccc.uni-trier.de/eccc/.[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to nu-merical problems. Journal of Computer and System Sciences, 47:549{595, 1993.[DKL76] E. A. Dinic, A. V. Karazanov, and M. V. Lomonosov. On the structure of the systemof minimum edge cuts in a graph. Studies in Discrete Optimizations, pages 290{306,1976. In Russian.[DW95] Y. Dinitz and J. Westbrook. Maintaining the classes of 4-edge-connectivity in a graphon-line. Technical Report #871, Technion, Department of Computer Science, 1995.[Eve79] S. Even. Graph Algorithms. Computer Science Press, 1979.[FGL+91] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Approximating cliqueis almost NP-complete. In Proceedings of the Thirty-Second Annual Symposium onFoundations of Computer Science, pages 2{12, 1991.[Gab91] H. Gabow. Applications of a poset representation to edge connectivity and graph rigid-ity. In Proceedings of the Thirty-Second Annual Symposium on Foundations of ComputerScience, pages 812{821, 1991.[Gab95] H. Gabow. A matroid approach to �nding edge connectivity and packing arborescences.Journal of Computer and System Sciences, 50(2):259{273, 1995.[GGR96] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learn-ing and approximation. In Proceedings of the Thirty-Seventh Annual Symposium onFoundations of Computer Science, pages 339{348, 1996.31

[GLR+91] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-testing/correcting for polynomials and for approximate functions. In Proceedings of theTwenty-Third Annual ACM Symposium on Theory of Computing, pages 32{42, 1991.[H�as96] J. H�astad. Testing of the long code and hardness for clique. In Proceedings of theTwenty-Eighth Annual ACM Symposium on the Theory of Computing, pages 11{19,1996.[Kar93] D. Karger. Global min-cuts in RNC and other rami�cations of a simple mincut al-gorithm. In Proceedings of the Fourth Annual ACM-SIAM Symposium on DiscreteAlgorithms, pages 21{30, 1993.[Kar95] D. Karger. Random Sampling in Graph Optimization Problems. PhD thesis, StanfordUniversity, 1995. Available from http://theory.lcs.mit.edu/~karger.[Kur30] K. Kuratowski. Sur le probleme des courbes gauches en topologie. Fund. Math., 15:217{283, 1930.[NGM90] D. Naor, D. Gus�eld, and C. Martel. A fast algorithm for optimally increasing the edge-connectivity. In Proceedings of the Thirty-First Annual Symposium on Foundations ofComputer Science, pages 698{707, 1990.[NI96] H. Nagamochi and T. Ibaraki. Deterministic ~O(nm) time edge-splitting in undirectedgraphs. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theoryof Computing, pages 64{73, 1996.[Pou92] J. A. La Poutre. Maintenance of triconnected components of graphs. In Proceedings ofthe 19th International Colloquium on Automata, Languages and Programming, pages354{365, 1992. Springer-Verlag Lecure Notes in Computer Science 623.[PY91] C.H. Papadimitriou and M. Yanakakis. Optimization, approximation and complexityclasses. Journal of Computer and System Sciences, 43:425{440, 1991.[RS96] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applicationsto program testing. SIAM Journal on Computing, 25(2):252{271, 1996.[WN87] T. Watanabe and A. Nakamura. Edge-connectivity augmentation problems. Journal ofComputer and System Sciences, 35:96{144, 1987.A Background on Edge-ConnectivityIn this appendix we recall some known facts regarding the structure of the k-edge-connected classesof a (k � 1)-connected graph. Whereas the structure of the 2-classes of a connected graph is well-known and relatively simple (cf., [Eve79]), the (k-connected class) structure of (k � 1)-connectedgraphs becomes slightly more complex when k � 3. We thus refrain from describing in detail thisstructure and merely state the facts which we need. The interested reader is referred to [DW95]for more details. We stress that the graphs below are not necessarily simple; that is, parallel edgesare allowed.Fact A.1 (cf., [DW95]): Let k > 1 be an integer and G be a (k � 1)-connected graph. Then thereexists an auxiliary graph, TG, that is a tree such that:32

� Each k-connected class in G corresponds to a unique node in TG.� In addition to nodes corresponding to k-connected classes, there are two types of auxiliarynodes: empty nodes, and cycle nodes (the latter exist only for odd k). The neighbors of acycle node in TG are said to belong to a common cycle, and we associate a cyclic order withthem. (Any two cycles can have at most one common node.)� All leaves of the auxiliary tree TG correspond to k-connected classes of G. Furthermore, thereare exactly k � 1 edges (in G) going out from each of these classes.For example, when k = 2, all nodes of the auxiliary tree correspond to 2-classes, and the edgesin the auxiliary tree correspond to graph edges which are known as bridges . Bridges are edgesconnecting vertices in di�erent 2-classes of the graph, and their removal disconnects the graph. Inthe case of k = 3, the auxiliary tree includes cycle nodes (but no empty nodes). If C1 : : : ;C` areneighbors of a cycle node Cy, then this means that there is a single graph edge between some vertexin Ci and some vertex in Ci+1, (for every i < `) and an edge between a vertex in C` and a vertexin C1.Before stating the next lemma we need to de�ne the notion of squeezing a cycle. Let Cy bea cycle node in TG, and let its children be C1; : : : ;Ct (where their indices corresponds to theirordering around the cycle). Then the result of squeezing Cy at Ci and Cj is the merging of Ci andCj into a new node Ck, with one of the following changes to the cycle:1. In case Ci and Cj are adjacent on the cycle, then we have two subcases. If t > 3 then themerged node Ck is connected by a single edge to the cycle node Cy (and all other nodesbelonging to the cycle remain that way); If t = 3 (i.e., there was only one additional node onthe cycle), then Cy is removed, and the additional node is connected by a tree edge to Ck.2. In case Ci and Cj are separated by at least one node on the cycle then we have three subcases.(a) If t = 4 (i.e., Ci and Cj are separated by a single node in each cycle direction), thenwe put a tree edge between each of these intermediate nodes and Ck, and the cycledisappears.(b) Otherwise (t > 4). If Ci and Cj are separated by a single node, then we put a tree edgebetween this node and Ck, and Ck belongs to a single cycle with all the rest of the nodeswhich were previously on the cycle.(c) Otherwise at least two nodes separate Ci and Cj in each direction. Then we get twocycles, where Ck belongs to both, and the other nodes are partitioned among the cyclesaccording to their relative position with respect to Ci and Cj.Lemma A.2 (cf., [DW95]): Let G be a (k � 1)-connected graph, and TG be its auxiliary tree.Suppose that we augment G by an edge with endpoints in the k-connected classes C1 and C2,respectively. Then the classes residing on the simple path between C1 and C2 in TG form a k-connected class in the augmented graph, and all classes in G which do not reside on the pathremain distinct k-classes in the augmented graph. In case the path passes through nodes Ci and Cjwhich belong to the same cycle Cy, then Cy is squeezed at Ci and Cj.A related lemma which we need follows. We note that this lemma can be proven (privatecommunication with Y. Dinitz, December 1996) using the Circumference Theorem in [DKL76], butwe provide a direct proof for completeness. In what follows, when we refer to an edge as being ina class we mean that it connects two vertices belonging to the class.33

Lemma A.3 Let G be a (k � 1)-connected graph, TG be its auxiliary tree, and C1, C2 two (k-connected) classes of G each containing at least one edge. Suppose that we omit a single edgefrom each Ci and add two edges so to maintain the vertex degrees of G; Speci�cally, if the edges(u1; v1) and (u2; v2) were omitted from C1 and C2 respectively, then we either add the edges (u1; u2)and (v1; v2), or the edges (u1; v2) and (v1; u2). As a result, the classes residing on the simple pathbetween C1 and C2 in TG form a k-connected class in the augmented graph, and all classes in Gwhich do not reside on the path remain distinct k-classes in the augmented graph.Proof: Let I1; :::; It be the (intermediate) k-classes residing on the path between C1 and C2 in thetree TG. (We do not exclude the case t = 0.)Consider what happens when we omit the edge (ui; vi) from Ci. Invoking Lemma A.2, weobserve that Ci may break into a path of subclasses, denoted C1i ; :::;Cqii , so that the vertex uiresides in C1i , and vertex vi resides in Cqii . Thus, the Ij's and the Cji 's reside on a tree (i.e., asubtree of the modi�ed auxiliary graph) so that the only leaves are among the \extreme" Cji 's (i.e.,C11, Cq11 , C12, and Cq22). (We do not exclude the case qi = 1. In this case Ci = C1i and the abovesubtree has less than four leaves.)At this point, the only case in which we must practice caution in choosing which two edge toadd, is the case in which C11, Cq11 , C12, and Cq22 all belong to the same cycle. In such a case assumethat the above is in fact their ordering around the cycle. Then it is essential that we add the edges(u1; u2) and (v1; v2) (i.e., connecting C11 to C12 and Cq11 to Cq22) in a crossing fashion, so as to insurethat the two invocation of Lemma A.2 will cause the collapse of the four classes into one class. Inall other cases, we may invoke Lemma A.2 twice, either with the addition of the edges (u1; u2) and(v1; v2), or with the edges (u1; v2) and (v1; u2), resulting in the collapse of the entire subtree to oneclass. The lemma follows.Using Lemmas A.2 and A.3, we get.Lemma A.4 Let G be a (k � 1)-connected graph, whose auxiliary graph, TG, has L leaves. Thenby removing and adding at most 4L edges to G we can transform it into a k-connected graph G0.Furtheremore, suppose that the maximum degree of G is d then the maximum degree of G0 is upperbounded by maxfd; kg if either d > k or dN is even, and by k + 1 otherwise.We note that there might be a way to save a constant factor in the number of edges added andremoved from G when transforming it into a k-connected graph by using a result of Naor, Gus�eldand Martel [NGM90]. They give an algorithm for optimally increasing the edge connectivity of agraph. However, they do so by always adding edges, without maintaining a bound on the degree ofthe graph, and hence it is not clear if their techniques can be applied in our, bounded degree, case.Proof: We �rst use Lemma A.2 to collapse all leaves in TG which correspond to singleton classes.These vertices have degree k� 1 and so we can match them in pairs and add a single edge betweeneach pair. At this point we may be left with a single unmatched vertex/leaf, which we deal withlater. Call the resulting graph G1 and its auxiliary tree T1. The number of leaves in T1 is at mostL � i, where i is the number of pairs matched above. All leaves in T1 (except for the possiblesingleton) can be now collapsed using Lemma A.3. The number of edge modi�cations in this stageis at most 4(L � i). The resulting graph, G2, has degree at most d0 def= maxfd; kg. In case G2 isk-connected we are done.Otherwise, G2 consists of a singleton which is connected to a k-connected class containing allother vertices. In case some vertex in the large class has degree lower than d0 we connect it to34

the singleton and conclude as per Lemma A.2. Otherwise (i.e., all vertices in the large class havedegree d0), we need to distinguish two subcases. In case k < d0 we simply omit one edge internalto the large class and connect its endpoints to the singleton. It can be seen that this makes thegraph k-connected and that all vertices have degree at most d0. Finally, if d0 = k a parity argumentshows that both d0 and N must be odd (as otherwise the sum of degrees is odd). In this case weare allowed to add an edge and increase the degree of the resulting graph to d0 + 1 = k + 1.B Background on Vertex-ConnectivityIn this appendix we recall some known facts regarding the structure of the k-vertex-connectedclasses of a (k � 1)-connected graph for k = 2; 3, and derive some new facts needed for our testingalgorithms. When we refer to k{classes, we think of k{vertex{connected classes of size at leastk+1. We use the convention that every pair of vertices which are connected by an edge and do notboth belong to the same k{class, form a class of their own which we refer to as an edge{class. Inthe case of k = 3, we choose to view triplets of vertices which form a clique and do not all belongto a common k{class as a cycle of edge{classes (see below).For k = 2, each class corresponds to a component which is the subgraph induced by the verticesin the class. The components corresponding to 2-vertex-connected classes are referred to as 2-vertex-connected components, and those corresponding to edge classes, as edge components. The(at least) two paths that connect a pair of vertices which belong to the same 2-vertex-connectedclass use only vertices and edges which reside in the corresponding component. Hence, thesecomponents are 2-vertex-connected subgraphs. For k = 3 there also exists such a correspondencebetween classes and components only it is slightly more involved since the components includeedges which are not in the original graph. We return to this issue later. For simplicity, from nowon we refer to k-vertex-connected classes (components) as k-classes (components).B.1 The 2-classes (components) of a connected graphGiven a connected graph G we can de�ne an auxiliary graph TG whose nodes are 2-vertex-connectedclasses, edge-classes, and separating vertices of G. For every class C in G (where C is either a 2-class or an edge-class), we have an edge in TG between C and each of the separating vertices itcontains. Since G is connected and every pair of classes in G have at most one separating vertexin common, TG is a tree. Since 2-classes directly correspond to 2-components, we use the twoterms interchangibly (depending on whether we want to discuss sets of vertices or subgraphs (setsof edges)).Lemma B.1 Let G be a connected graph, C1 and C2 two 2-classes in G, and X1;X2; : : : ;X`�1;X`the sequence of classes on the path connecting C1 and C2 in TG, where X1 = C1 and X` = C2.Suppose that we augment G by an edge (v1; v2) where v1 2 C1, v2 2 C2, and such that neither vertexseparates C def= [Xi in G. Then C is a 2-class in the augmented graph G0, and all classes in Gwhich do not reside on the path remain distinct 2-classes in G0.Proof: We need to show that for every vertex v, the removal of v from G0 does not disconnect anypair of vertices in C. Clearly, by de�nition of C (and the properties of the auxiliary graph), if v =2 Cthen it cannot separate C (in G or G0). Furthermore, if v does not separate C in G then it doesnot separate C in G0. Thus, let v be a separating vertex of G which belongs to C, and let Xj be the35

class it belongs to. Note that by our assumption on v1 and v2, v can be neither of them. Considera pair of vertices, u1 and u2 in C which are disconnected in G by the removal of v. We now showthat they are not separated by v in G0. (Clearly, pairs which are not separated by v in G are notseparated by it in G0). Let Xj1 and Xj2 be the classes they belong to respectively, and without lossof generality, j1 < j2 and j < j2 (if a vertex belongs to more than one class than we choose the onewith the smaller index). After the removal of v, the subgraphs induced by X1; : : : ;Xj n fvg andXj+1 n fvg; : : : ;X` respectively, are each connected. Hence there still exists a path from u1 to v1and a path from u2 to v2. Since we added the edge (v1; v2), u1 and u2 are connected.As for pairs of vertices u1, u2, that are not both in C, it is not hard to verify based on thede�nitions of TG and C, that the addition of the edge (v1; v2) cannot increase their connectivity,since they are still separated by the same separating vertices.By applying the reverse operation to that described in Lemma B.1 (i.e., removing an edge), we getthe following corollary.Corollary B.2 Let G be a connected graph, and C a 2-class in G. Let v1 and v2 be any two verticesin C that are connected by an edge in G. Assume we remove (v1; v2) from G. Then the resultinggraph G0 is connected, and the vertices in C belong to classes X1; : : : ;X` in G0 such that v1 2 X1,v2 2 X`, and X1; : : : ;X` form a simple path in TG0. Furthermore, all other classes in G are classesin G0, and there are no other classes in G0. (Note that the case in which C remains a 2-class in G0is a special case of the above).By applying Corollary B.2 and Lemma B.1 we get:Lemma B.3 Let G be a connected graph, TG its auxiliary graph, and C1, C2 be two 2-classes inG. Then there exists an edge e1 = (u1; v1) between two vertices in C1 and an edge e2 = (u2; v2)between vertices in C2, for which the following is true. If we remove e1 and e2, and add an edgebetween v1 and v2 then the classes residing on the simple path between C1 and C2 in TG form a2-class in the modi�ed graph G0.Proof: Let Y1;Y2; : : : ;Y`�1;Y` be the sequence of classes on the path connecting C1 and C2 inTG where Y1 = C1 and Y` = C2. Let u1 be the separating vertex common to C1 and Y2, let u2 bethe separating vertex common to C2 and Y`�1, and let ei = (ui; vi) be any edge between ui and avertex vi in Ci. Note that u1 and u2 coincide in case C1 and C2 are neighbors. Consider �rst theremoval of e1, and denote the resulting graph by G1. By Corollary B.2, in G1, the vertices belongingto C1 are possibly divided (in a non-disjoint manner) into classes X11; : : : ;X`11 where v1 2 X11 andu1 2 X`11 (and the other classes in G remain unchanged in G1). Since u1 belongs to Y2 as well, wehave a path in TG1 between X11 and Y2. We next remove e2 from G1, and let the resulting graphbe denoted G2. Then in G2 the vertices in C2 are possibly divided into classes X12; : : : ;X`22 wherev2 2 X12 and u2 2 X`22 . Thus the auxiliary graph TG2 has the following path from X11 to X12:X11; : : : ;X`11 ;Y2; : : : ;Y`�1;X`22 ; : : : ;X12Note that by the above, neither vi separates the union of the classes on the path. When we addthe edge between v1 and v2 then by Lemma B.1, we get a new classC = [`1i=1Xi1 [[`�1i=2Yi [[`2i=1Xi2 = [̀i=1Yias required. 36

Lemma B.4 Let G be a connected graph whose auxiliary graph, TG has L leaves. Then by removingand adding at most 3L edges to G we can transform it into a 2-connected graph G0. Furtheremore,the maximum degree of vertices in G0 is at most the maximum degree in G.Proof: Let L1 be the number of edge classes which are leaves of TG and let L2 be the number of2-classes which are leaves of TG. Since G is connected, its maximum degree is at least 2, and itsonly degree-1 vertices belong to edge classes which are leaves. Assume �rst that L1 is even. In sucha case we pair the edge leaves, and add an edge between the degree-1 vertices in each pair (raisingtheir degree to 2). By Lemma B.1, each pair of edge classes now belongs to a single class (whichpossibly includes other vertices). The auxiliary graph (tree) TG0 of the resulting graph G0 has atmost L1=2+L2 2-class leaves (and no edge leaves). Applying Lemma B.3 at most L1=2+L2 timeswe can merge all classes of G0 into a single 2-class by removing and adding at most 3(L1=2 + L2)edges in and between the leaves of TG0 . Note that in the process described in Lemma B.3 we donot increase the degree of any vertex.In case L1 is odd, we can pair all but one edge class. Let this class be fu; vg where u is theseparating vertex which also belongs to a neighbor 3-class C. Let v0 be a neighbor of u in C, thenit is not hard to verify that by removing the edge (u; v0) and adding the edge (v; v0), the set C[fvgbecomes a new 3-class.B.2 The 3-classes (components) of a 2-vertex-connected graphHere the structure becomes more complicated and we refer the reader to [Pou92]. First we describehow to decompose a 2-connected graph G into components of two types: 3-components (with atleast 3 vertices) and cycles. Slightly di�erently from the case of two-components of a connectedgraph which are subgraphs of the graph, here the components contain additional edges (which\stand for" paths using vertices outside the component). However, it is still true that the set ofvertices of each 3-component is a 3-class of the graph, and with slight abuse of terminology, we shallsometimes interchange between the two terms. We later show how to construct an auxiliary graph(which is a tree) whose nodes correspond to 3-components, cycles, edge components and separatingpairs.If G is 3-vertex-connected then it consists of a single 3-component. If G is a simple cycle, thenit consists of a single cycle component. Otherwise there must exist at least one separating pairof vertices in G that are 3-connected. Let v1 and v2 be such a pair which we call a block . Theremoval of v1 and v2 induces a partition of V n fv1; v2g into disjoint subsets V1; : : : ;V` that aremaximal sets which remain connected after the removal of v1; v2. For each Vj, let Ej be the set ofedges that have endpoints in Vj. Since fv1; v2g is a separating pair, the sets Ej are disjoint. Foreach j let Gj be the graph whose vertex set is Vj [fv1; v2g and whose edge set is the union of Ejwith two edges between v1 and v2. A single edge between v1 and v2 would su�ce to ensure thatfor each Gj and for every pair of vertices y1 2 Vj and y2 2 Vj [fv1; v2g, y1 and y2 have the samevertex-connectivity in Gj as in G. However, we allow for multiple edges between v1 and v2 so thatthey remain 3-vertex-connected in Gj. Each Gj is either 3-connected, or it is a cycle, or it containsa block (a separating 3-connected pair).We thus continue recursively to decompose G1; : : : ;G` as described above, with the minorexception that whenever we obtain a non-simple cycle (due to the addition of multiple edges), weturn it into a simple cycle. The resulting decomposition is independent of the order of separatingpairs chosen. Since the decomposition process induces a partition on E,15 For an example of the15By the above, a block in G (or more generally in some Gj de�ned by the recursive decomposition) induces a37

decomposition process, see Figure 1.The auxiliary graph TG (which we shall also refer to as the decomposition graph) is constructedusing the above decomposition process as follows. In case G is 3-connected then TG contains asingle node corresponding to its single 3-component (a 3-component node). In case G is a cycle,then TG contains one node corresponding to its cycle component (a cycle node), one node for eachedge component on the cycle (an edge node), and an edge between the cycle node and each oneof the edge nodes. (Recall that we use the convention that edges which do not belong to any3-component are considered as separate edge components). Otherwise, let fv1; v2g be the blockaccording to which we decompose G. Then we have a node fv1; v2g in TG corresponding to thisblock (a block node). We next recursively construct the decomposition trees of G1; : : : ;G` andconnect them to fv1; v2g as follows. For each Gj, if (v1; v2) is an edge node (i.e., part of a cycle),then we identify it with the node fv1; v2g (that is, we discard the node from TGj and put an edgebetween fv1; v2g and its cycle node neighbor). Otherwise, v1 and v2 must belong to a 3-componentC, and we put an edge between fv1; v2g and the node corresponding to C. See Figure 2 for anexample of a decomposition tree (of the graph depicted in Figure 1).As noted previously, TG is a tree. While a vertex v in G may belong to several componentsand blocks which have corresponding nodes in the tree, these nodes induce a connected subgraph(subtree) of TG, which we denote by SG(v). If v1 and v2 belong to a common 3-components and/orbar (that is, SG(v1) and SG(v2) are not disjoint) then by de�nition, they are 3-connected. Otherwisewe denote by PG(v1; v2) the path connecting SG(v1) and SG(v2) in TG (since TG is a tree, this pathis well de�ned). By de�nition of TG, (and the 2-connectivity of G), v1 and v2 have two vertexdisjoint paths that pass only through vertices that belong to bars and 3-components on PG(v1; v2).Furthermore:Lemma B.5 (cf., [Pou92]) Let G be a 2-connected graph, and let v1 and v2 be any two vertices inG which are not 3-connected. Assume we augment G with an edge between v1 and v2. Then v1,v2, together with all the vertices in the 3-components and bars on the path PG(v1; v2), form a new3-class in the augmented graph G0. All classes in G which do not reside on the path are classes inG0 and there are no other classes in G0.Proof: Let X1; : : : ;X`, be the sequence of 3-components and bars on PG(v1; v2), and let C be theunion of v1,v2 and the vertices belonging to X1; : : : ;X`. From the de�nitions of TG and C, any twovertices that do not both belong to C cannot separate C (neither in G not in G0). Also, any pair ofvertices that does not separate C in G cannot separate C in G0. We can thus restrict our attentionto separating pairs in C (with respect to G), where by de�nition of C all such pair are blocks in G.Let Xj be a block whose vertices belong to C, and let y1 and y2 be two vertices that Xj separatesin G. Then the removal of Xj separates G into at least 2 connected subgraphs: one which containsv1 and all vertices in X1; : : : ;Xj�1 (excluding the two vertices in Xj), and the other which containsv2 and all vertices in Xj+1; : : : ;X` (excluding the two vertices in Xj). Furthermore, y1 belongs toone of these subgraphs (without loss of generality, let it be the �rst) and y2 belongs to the secondsubgraph. Thus y1 is connected to y2 in G0 via the path y1��� v1� v2��� y2, where y1��� v1 passesin the �rst subgraph and and v2��� y2 in the second subgraph. Therefore, all vertices in C are3-connected in G0.As for pairs of vertices y1, y2, that are not both in C, it is not hard to verify based on thede�nitions of TG and C, that the addition of the edge (v1; v2) cannot increase their connectivity.partition on all edges of E (Ej) except the edge that might exist between the block vertices. In such a case wearbitrarily place this edge in one of the partition's subsets.38

By applying the reverse operation to that described in Lemma B.5 (i.e., removing an edge), weget the following corollary.Corollary B.6 Let G be a 2-connected graph, and C a 3-class in G. Let v1 and v2 be two verticesin C which are connected by an edge in G. Assume we remove (v1; v2) from G. Then the resultinggraph G0 is 2-connected, and either C remains a 3-class in G0 or the vertices in Cnfv1; v2g belong tothe 3-components and bars X1; : : : ;X` that lie on PG0(v1; v2) in TG0. Furthermore, all other classesin G are classes in G0, and there are no other classes in G0.By applying Corollary B.2 and Lemma B.1 we get:Lemma B.7 Let C1 and C2 be two 3-classes in a 2-connected graph G which correspond to leavesin TG. Then there exists an edge e1 = (u1; v1) between vertices in C1 and an edge e2 = (u2; v2)between vertices in C2, for which the following is true. If we remove e1 and e2, and add an edgebetween u1 and u2, and an edge between v1 and v2 then the vertices belonging to 3-components andbars residing on the simple path between C1 and C2 in TG form a 3-class in the modi�ed graph G0.Proof: Since C1 and C2 both correspond to 3-component leaves in TG, they (i.e. the nodes theycorrespond to) are each connected to a single bar in TG. Let the bars they are connected to befw1; x1g and fw2; x2g, respectively (where fw1; x1g and fw2; x2g might coincide). Then in each Cithere exist two vertices ui; vi which are neither xi nor wi, and which have an edge between them.Let ei be this edge.Similarly to Lemma B.3, let Y1; : : : ;Y` be the sequence of bars and 3-components on the pathbetween C1 and C2 in TG (here Y1 = C1, Y` = C2, and using the notation above, Y2 = fw1; x1gand Y`�1 = fw2; x2g). Consider �rst the removal of e1 and let G1 be the resulting graph. Then byCorollary B.6, in G1 the vertices belonging to C1 n fu1; v1g are possible divided (in a non-disjointmanner) among 3-components and bars, X11; : : : ;X`11 which lie on PG(u1; v1). This path eithercontains the bar Y2 = fx1; w1g or there exists a 3-component Xj1 which contains w1 and x1, andit is connected to Y2 in TG1 . Furthermore, since C1 is a leaf in G, there are two possibilities forSG1(u1) (SG1(v1)). It is either a single node subtree, consisting of a 3-component leaf in TG1, or it isa three node subtree, consisting of two edge components (with u1 (v1)) being a common edge pointand a cycle node they are connected to. In the former case X11 is the abovementioned 3-component,and in the latter, X11 is a bar on the cycle, and the cycle does not include any other edges or bars.Next, we remove e2 and obtain a graph G2. Similarly, in G2 the vertices in C2 n fu1; v2g arepossible divided (in a non-disjoint manner) among components and bars X12; : : : ;X`22 which lie onPG2(u2; v2). This path either contains the bar Y`�1 = fx2; w2g or there exists a 3-component Xj2which contains w2 and x2, and it is connected to Y`�1 in TG2 . The subtrees SG2(u2) and SG2(v2)have one of the two structures de�ned above for SG1(u1). By Lemma B.5, if we now add an edgebetween u1 and u2 and and edge between v1 and v2 then u1, v1, u2, v2 together with all verticesin X11; : : : ;X`11 ;Y2; : : : ;Y`;X12; : : : ;X`22 become a class in the augmented graph. This set of verticesis exactly the union of C1, C2 and the vertices belonging to 3-components and bars on the pathbetween C1 and C2 in G.Lemma B.8 Let G be a 2-connected graph whose auxiliary graph, TG, has L1 degree-2 verticesand L2 3-component leaves. Then by removing and adding at most 4(L1 + L2) edges to G we can39

transform it into a 3-connected graph G0. Furtheremore, suppose that the maximum degree of G isd. Then the maximum degree of G0 is upper bounded by maxfd; 3g if either d > k or dN is evenand by 4 otherwise.Proof: We start by noting that degree-2 vertices are vertices which belong to a single edgecomponent or to two edge components that lie on a cycle. These vertices do not belong to bars.Assume �rst that L1 is even. In such a case we pair the degree-2 edges (not allowing pairs that arealready end-points of a common edge), and add an edge between vertices in each pair. The degreeof these vertices is now 3. By Lemma B.5, these pairs of vertices (and possibly others) become3-connected, and in the resulting graph, G0, each vertex belongs to some 3-components and/or tosome bar in TG0 . In particular, each vertex either belongs to a 3-component leaf or is on the path of3-components and bars between two such leaves. Furthermore, the number of 3-component leavesis at most L1=2 + L2. Applying Lemma B.7 at most L1=2 + L2 times, we can merge all classes ofG0 into a single 3-class by removing and adding at most 4(L1=2 + L2) edges in and between the3-component leaves of TG0 . Note that in the process described in Lemma B.7 we do not increasethe degree of any vertex.In case L1 is odd, we can pair all but one degree-2 vertex, v. We separate in to two subcases:N is even, and N is odd. In case N is even, simple counting shows that it cannot be the case thatall vertices but v have degree exactly 3, and thus the maximum degree of G is at least 4. In caseN is odd then by the Corollary statement the resulting graph is allowed to have degree 4 vertices.If we have at least one vertex with degree smaller than the maximum between the largest degreein G and 4, then we add an edge between this vertex and v. Otherwise (all vertices except v havedegree at least 4), it is not hard to verify that by removing an arbitrary edge (u1; u2) and addingthe edges (v; u1) and (v; u2), the graph becomes 3-connected.C Proof of one inequalityOur aim is to prove that for any integers c � D,p def= n�3Yi=0 �n � i� (2c=D)n� i � > (2n)�2c=DA proof that p =
(n�2c=D), for constant c;D, can be found in Karger's Ph.D. Thesis [Kar95] (seeproof of Corollary 4.7.5 which refers to an exercise in Knuth Vol. 1). An alternative proof follows.Fixing D, c and n, let f(m) def= Qn�3i=0 m�Di�2cm�Di . Then, for any m > D(n� 3) + 1, we have f(m) >f(m� 1). In particular, for every j � D � 1, we have f(Dn) > f(DN � j), and sopD = f(Dn)D> D�1Yj=0 fD;n;c(Dn� j)= D�1Yj=0 n�3Yi=0 Dn� j �Di� 2cDn� j �Di= D�(n�3)+(D�1)Yk=0 Dn � k � 2cDn � k= 2c�1Ỳ=0 2D � `Dn� `40

where the third equality is obtained by substituting k = Di+ j. Finally, we getp > �(2D=4)2c(Dn)2c �1=D= (2n)�2c=D

41

v1

v2

v5 v6

v7 v8

v9

v1

v2 v4

v5 v6

v7 v8

v9

v4

v1

v2

v1

v2

v5 v6

v7 v8

v9

v4

v1

v2

v3 v3

v3

v4

v3 v1

v2

v1

v2 v4

v5 v6

v5 v6

v7 v8

v9

v4

v3v3

v1

v2

v1

v2 v4

v5 v6

v5 v6

v4

v3v3

v7 v8

(c) (d)

(a) (b)

(e)

Cl1

v7 v8

v9

Cl2

Cl3

Cy2

Cy1

Figure 1: (a): A 2-vertex-connected graph. (b){(e): The graph's recursive decomposition into 3-components and cycles, using the separating pairs (v1; v2), (v3; v4), (v5; v6), and (v7; v8), respectively.The edges added in the decomposition process are depicted as dotted lines (in all cycles, multipleedges are merged into single edges). 42

 {v1,v3}
{v3,v4}{v1,v2}

{v4,v6}{v2,v5}

{v5,v6}

{v7,v8}

{v8,v9}{v7,v9}

{v3,v4}{v1,v2}

{v4,v6}

{v2,v6}

Cl3

Cl2Cl1 Cl1 Cl2

Cl3’

Cy1’Cy1

Cy2Figure 2: Left: The auxiliary tree of the graph depicted in Figure 1. 3-components are denotedby lightly �lled circles, cycles by non-�lled circles, blocks by lightly �lled rectangles, and edgecomponents by bold lines. Right: The auxiliary tree of the same graph with an edge added betweenv2 and v9. The new component Cl03 is the union of v2, v9, and the vertices v5; v6; v7; v8 which residein the components and blocks on the path between the subtrees corresponding to v2 and v9.
43

