
Hierarchy Theorems for Property TestingOded Goldreich� Michael Krivelevichy Ilan Newmanz Eyal RozenbergxNovember 14, 2008AbstractReferring to the query complexity of property testing, we prove the existence of a rich hierarchyof corresponding complexity classes. That is, for any relevant function q, we prove the existence ofproperties that have testing complexity �(q). Such results are proven in three standard domainsoften considered in property testing: generic functions, adjacency predicates describing (dense)graphs, and incidence functions describing bounded-degree graphs. While in two cases the proofsare quite straightforward, the techniques employed in the case of the dense graph model seemsigni�cantly more involved. Speci�cally, problems that arise and are treated in the latter caseinclude (1) the preservation of distances between graph under a blow-up operation, and (2) theconstruction of monotone graph properties that have local structure.

Keywords: Property Testing, Graph Properties, Monotone Graph Properties, Graph Blow-up, Adap-tivity vs Non-adaptivity,�Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel. Email:oded.goldreich@weizmann.ac.il. Partially supported by the Israel Science Foundation (grant No. 1041/08).ySchool of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel. Email: krivelev@post.tau.ac.il.Partially supported by a USA-Israel BSF Grant, by a grant from the Israel Science Foundation, and by Pazy MemorialAward.zDepartment of Computer Science, Haifa University, Haifa, Israel. Email: ilan@cs.haifa.ac.ilxDepartment of Computer Science, Technion, Haifa, Israel. Email: eyalros@technion.ac.ili

Contents1 Introduction 12 Properties of Generic Functions 23 Testing Graph Properties in the Bounded-Degree Model 34 Testing Graph Properties in the Adjacency Matrix Model 44.1 The blown-up property � : 54.2 Lower-bounding the query complexity of testing � : 74.3 An optimal tester for property � : 85 Revisiting the Adjacency Matrix Model: Monotone Properties 105.1 The monotone property � : 105.2 Lower-bounding the query complexity of testing � : 125.3 An optimal tester for property � : 136 Summary of Open Problems That Arise 16Bibliography 18APPENDICES 20Appendix A: Hard-to-test Properties in P 20Appendix B: A General Analysis of the E�ect of Graph Blow-Up 23

ii

1 IntroductionIn the last decade, the area of property testing has attracted much attention (see the surveys of [F, R],which are already somewhat out-of-date). Loosely speaking, property testing typically refers to sub-linear time probabilistic algorithms for deciding whether a given object has a predetermined propertyor is far from any object having this property. Such algorithms, called testers, obtain local views of theobject by making adequate queries; that is, the object is seen as a function and the testers get oracleaccess to this function (and thus may be expected to work in time that is sub-linear in the length ofthe object).Following most work in the area, we focus on the query complexity of property testing, where thequery complexity is measured as a function of the size of the object as well as the desired proximity(parameter). Interestingly, many natural properties can be tested in complexity that only depends onthe proximity parameter; examples include linearity testing [BLR], and testing various graph propertiesin two natural models (e.g., [GGR, AFNS] and [GR1, BSS], respectively). On the other hand, propertiesfor which testing requires essentially maximal query complexity were proved to exist too; see [GGR]for arti�cial examples in two models and [BHR, BOT] for natural examples in other models. Inbetween these two extremes, there exist natural properties for which the query complexity of testingis logarithmic (e.g., monotonicity [EKK+, GGL+]), a square root (e.g., bipartitness in the bounded-degree model [GR1, GR2]), and possibly other constant powers (see [FM, PRR]).One natural problem that arises is whether there exist properties of arbitrary query complexity. Weanswer this question a�rmative, proving the existence of a rich hierarchy of query complexity classes.Such hierarchy theorems are easiest to state and prove in the generic case (treated in Section 2): Looselyspeaking, for every sub-linear function q, there exists a property of functions over [n] that is testableusing q(n) queries but is not testable using o(q(n)) queries.Similar hierarchy theorems are proved also for two standard models of testing graph properties:the adjacency representation model (of [GGR]) and the incidence representation model (of [GR1]). Forthe incidence representation model (a.k.a the bounded-degree graph model), we show (in Section 3)that, for every sub-linear function q, there exists a property of bounded-degree N -vertex graphs that istestable using q(N) queries but is not testable using o(q(N)) queries. Furthermore, one such propertycorresponds to the set of N -vertex graphs that are 3-colorable and consist of connected components ofsize at most q(N).The bulk of this paper is devoted to hierarchy theorems for the adjacency representation model(a.k.a the dense graph model), where complexity is measured in terms of the number of vertices ratherthan the number of all vertex pairs. Our main results for the adjacency matrix model are:1. For every sub-quadratic function q, there exists a graph property � that is testable in q queries,but is not testable in o(q) queries. Furthermore, for \nice" functions q, it is the case that � is inP and the tester can be implemented in poly(q)-time. (See Section 4.)2. For every sub-quadratic function q, there exists a monotone graph property � that is testable inO(q) queries, but is not testable in o(q) queries. (See Section 5.)The treatment of the adjacency representation model raises several interesting problems, which arefurther discussed in Section 6. which are further discussed in Section 6.Conventions. For sake of simplicity, we state all results while referring to query complexity as afunction of the input size; that is, we consider a �xed (constant) value of the proximity parameter,denoted �. In such cases, we sometimes use the term �-testing, which refers to testing when theproximity parameter is �xed to �. All our lower bounds hold for any su�ciently small value of theproximity parameter, whereas the upper bounds hide a (polynomial) dependence on (the reciprocal of)1

this parameter. In general, bounds that have no dependence on the proximity parameter refer to some(su�ciently small but) �xed value of this parameter.Organization. Sections 2 and 3 present hierarchy theorems for the generic case and the bounded-degree graph model, respectively. The bulk of this paper provides hierarchy theorems for graph prop-erties in the adjacency matrix model. Speci�cally, the focus of Section 4 is on the (standard) com-putational complexity of these properties, whereas the focus of Section 5 is on monotone properties.Combining both features is one of the open problems posed in Section 6. Appendices A and B alsorefer to the adjacency matrix model; they contain results that are not central to the main themes ofthis work (but are su�ciently related to it). In particular, in Appendix A we prove the existence ofgraph properties that are in P and have maximal query complexity (in the adjacency matrix model).2 Properties of Generic FunctionsIn the generic function model, the tester is given oracle access to a function over [n], and distancebetween such functions is de�ned as the fraction of (the number of) number of arguments on whichthese functions di�er. In addition to the input oracle, the tester is explicitly given two parameters: asize parameter, denoted n, and a proximity parameter, denoted �.De�nition 1 Let � = Sn2N �n, where �n contains functions de�ned over the domain [n] def= f1; :::; ng.A tester for a property � is a probabilistic oracle machine T that satis�es the following two conditions:1. The tester accepts each f 2 � with probability at least 2=3; that is, for every n 2 N and f 2 �n(and every � > 0), it holds that Pr[T f (n; �)=1] � 2=3.2. Given � > 0 and oracle access to any f that is �-far from �, the tester rejects with probabilityat least 2=3; that is, for every � > 0 and n 2 N , if f : [n] ! f0; 1g� is �-far from �n, thenPr[T f (n; �)=0] � 2=3.We say that the tester has one-sided error if it accepts each f 2 � with probability 1 (i.e., for everyf 2 � and every � > 0, it holds that Pr[T f (n; �)=1] = 1).De�nition 1 does not specify the query complexity of the tester, and indeed an oracle machine thatqueries the entire domain of the function quali�es as a tester (with zero error probability...). Needlessto say, we are interested in testers that have signi�cantly lower query complexity. Recall that [GGR]asserts that in some cases such testers do not exist; that is, there exist properties that require linearquery complexity. Building on this result, we show:Theorem 2 For every q : N ! N that is at most linear, there exists a property � of Boolean functionsthat is testable (with one-sided error) in q+O(1) queries, but is not testable in o(q) queries (even whenallowing two-sided error).Proof: We start with an arbitrary property �0 of Boolean functions for which testing is knownto require a linear number of queries (even when allowing two-sided error). The existence of suchproperties was �rst proved in [GGR]. Given �0 = Sm2N �0m, we de�ne � = Sn2N�n such that �nconsists of \duplicated versions" of the functions in �0q(n). Speci�cally, for every f 0 2 �0q(n), we de�nef(i) = f 0(i mod q(n)), where i modm is (non-standardly) de�ned as the smallest positive integer thatis congruent to i modulo m, and add f to �n.The query complexity lower bound of � follows from the corresponding bound of �0. Speci�cally,approximate-membership of f 0 in �0m can be tested by emulating the testing of an imaginary function2

f : [n] ! f0; 1g de�ned such that m = q(n) and f(i) = f 0(i modm); that is, testing f 0 w.r.t �0m isperformed by testing f w.r.t �n, while emulating oracle access to f by making corresponding queriesto f 0. Clearly, if f 0 2 �0m then f 2 �n, whereas if f 0 is �-far from �0m then f is bn=mc�mn � �-far from �n.Assuming without loss of generality that q(n) � n=2, we have bn=mc �m � n=2. Thus, a o(q(n))-queryoracle machine that distinguishes the case that f 2 �n from the case that f is (�=2)-far from �n, yieldsa o(m)-query oracle machine that distinguishes the case that f 0 2 �0m from the case that f 0 is �-farfrom �0m. We conclude that an
(m) lower bound on �-testing �0m implies an
(q(n)) lower bound on(�=2)-testing �n.The query complexity upper bound of � follows by using a straightforward tester that essentiallyreconstructs the underlying function and checks whether it is in �0. Speci�cally, on input n; � andaccess to f : [n] ! f0; 1g, we test whether f is a repetition of some function f 0 : [q(n)] ! f0; 1g in�0q(n). This is done by conducting the following two steps:1. Repeat the following basic check O(1=�) times: Uniformly select j 2 [q(n)] and r 2 f0; 1; :::; (n=q(n))�1g, and check whether f(r � q(n) + j) = f(j).2. Using q(n) queries, construct f 0[q(n)] ! f0; 1g such that f 0(i) def= f(i), and check whether f 0 isin �0. Note that checking whether f 0 is in �0 requires no queries, and that the correspondingcomputational complexity is ignored here.Note that this (non-adaptive) oracle machine has query complexity q(n) +O(1=�), and it accepts anyf 2 �. On the other hand, if f is accepted with probability at least 2=3, then the reconstructed f 0 mustbe in �0 (otherwise the Step 2 would have rejected with probability 1) and f must be (�=2)-close to therepetition of this f 0 (otherwise each iteration of the Step 1 would have rejected with probability at least�). Thus, in this case f is �-close to �, which establishes the upper bound on the query complexity oftesting �. The theorem follows.Comment. Needless to say, Boolean functions over [n] may be viewed as n-bit long binary strings.Thus, Theorem 2 means that there are properties of binary strings for which the query complexity oftesting is �(q). Given this perspective, it is natural to comment that such properties exist also in P.(This comment is proved by starting with the hard-to-test property asserted in Theorem 6.)3 Testing Graph Properties in the Bounded-Degree ModelThe bounded-degree model refers to a �xed (constant) degree bound, denoted d � 2. An N -vertexgraph G = ([N]; E) (of maximum degree d) is represented in this model by a function g : [N] � [d] !f0; 1; :::; Ng such that g(v; i) = u 2 [N] if u is the ith neighbor of v and g(v; i) = 0 if v has less than ineighbors.1 Distance between graphs is measured in terms of their aforementioned representation; thatis, as the fraction of (the number of) di�erent array entries (over dN). Graph properties are propertiesthat are invariant under renaming of the vertices (i.e., they are actually properties of the underlyingunlabeled graphs).Recall that [BOT] proved that, in this model, testing 3-Colorability requires a linear number ofqueries (even when allowing two-sided error). Building on this result, we show:Theorem 3 In the bounded-degree graph model, for every q : N ! N that is at most linear, thereexists a graph property � that is testable (with one-sided error) in O(q) queries, but is not testable ino(q) queries (even when allowing two-sided error). Furthermore, this property is the set of N -vertex1For simplicity, we assume here that the neighbors of v appear in arbitrary order in the sequence g(v; 1); :::; g(v;deg(v)),where deg(v) def= jfi : g(v; i) 6= 0gj. 3

graphs of maximum degree d that are 3-colorable and consist of connected components of size at mostq(N).Proof: We start with an arbitrary property �0 for which testing is known to require a linear number ofqueries (even when allowing two-sided error). We further assume that �0 is downward monotone (i.e.,if G0 2 �0 then any subgraph of G0 is in �0). Indeed, by [BOT], 3-Colorability is such a property. Given�0 = Sn2N�0n, we de�ne � = SN2N �N such that each graph in �N consists of connected componentsthat are each in �0 and have size at most q(N); that is, each connected component in any G 2 �N isin �0n for some n � q(N) (i.e., n denotes this component's size).The query complexity lower bound of � follows from the corresponding bound of �0. Speci�cally,approximate-membership of the n-vertex graph G0 in �0n can be tested by setting N such that q(N) = nand emulating the testing of the N -vertex graph G obtained by taking t def= bN=q(N)c copies of G0 (andadditional N � t � q(N) isolated vertices). Clearly, if G0 2 �0n then G 2 �N . On the other hand, if G0is �-far from �0n then G is t�nN � �-far from �N (because, by the downward monotonicity of �0, it su�cesto consider the number of edges that must be omitted from G in order to obtain a graph in �N). Asin the proof of Theorem 2, we may assume that t � n � N=2, and conclude that in the latter case Gis (�=2)-far from �N . Thus, a o(q(N))-query oracle machine that distinguishes the case that G 2 �Nfrom the case that G is (�=2)-far from �N , yields a o(n)-query oracle machine that distinguishes thecase that G0 2 �0n from the case that G0 is �-far from �0n. The desired
(q(N)) lower bound follows.The query complexity upper bound of � follows by using a tester that selects at random a startvertex s in the input N -vertex graph and tests that s resides in a connected component that is in �0nfor some n � Q(N). Speci�cally, on input N; � and access to an N -vertex graph G, we repeat thefollowing test O(1=�) times.1. Uniformly select a start vertex s, and explore its connected component while stopping afterq(N) + 1 vertices are encountered.2. Denoting the number of encountered vertices by n, reject of n > q(N). Similarly reject if theencountered graph is not in �0n.The query complexity of this oracle machine is O(d � q(N)=�), which is O(q(N)) when both d and � > 0are constants. Clearly, this oracle machine accepts any G 2 �. In analyzing its performance on graphsnot in �, we call a start vertex bad if it resides in a connected component that is either bigger thanq(N) or not in �0. Note that if G has more than �N bad vertices, then the foregoing tester rejects withprobability at least 2=3. Otherwise (i.e., G has fewer than �N bad vertices), G is �-close to �, becausewe can omit all edges incident to bad vertices and obtain a graph in �. The theorem follows.Comment. The proof of Theorem 3 is slightly di�erent from the one used in the proof of Theorem 2:In the proof of Theorem 3 each object in �N corresponds to a sequence of (possibly di�erent) objectsin �0n, whereas in the the proof of Theorem 2 each object in �N corresponds to multiples copies ofa single object in �0n. While Theorem 2 can be proved using a construction that is analogous to oneused in the proof of Theorem 3, the current proof of Theorem 2 provides a better starting point forthe proof of the following Theorem 4.4 Testing Graph Properties in the Adjacency Matrix ModelIn the adjacency matrix model, an N -vertex graph G = ([N]; E) is represented by the Boolean functiong : [N]� [N]! f0; 1g such that g(u; v) = 1 if and only if u and v are adjacent in G (i.e., fu; vg 2 E).Distance between graphs is measured in terms of their aforementioned representation; that is, as thefraction of (the number of) di�erent matrix entries (over N2). In this model, we state complexities in4

terms of the number of vertices (i.e., N) rather than in terms of the size of the representation (i.e.,N2). Again, we focus on graph properties (i.e., properties of labeled graphs that are invariant underrenaming of the vertices).Recall that [GGR] proved that, in this model, there exist graph properties for which testing requiresa quadratic (in the number of vertices) query complexity (even when allowing two-sided error). It wasfurther shown that such properties are in NP. Slightly modifying these properties, we show that theycan be placed in P; see Appendix A. Building on this result, we show:Theorem 4 In the adjacency matrix model, for every q : N ! N that is at most quadratic, there existsa graph property � that is testable in q queries, but is not testable in o(q) queries.2 Furthermore, ifN 7! q(N) is computable in poly(N)-time, then � is in P and the tester is relatively e�cient in thesense that its running time is polynomial in the total length of its queries.We stress that, unlike in the previous results, the positive part of Theorem 4 refers to a two-sided errortester. This is fair enough, since the negative side also refers to two-sided error testers. Still, it wouldbe nice to have a stronger separation in which the positive side is established via a one-sided errortester.Outline of the proof of Theorem 4. The basic idea of the proof is to implement the strategyused in the proof of Theorem 2. The problem, of course, is that we need to obtain graph properties(rather than properties of generic Boolean functions). Thus, the trivial \blow-up" (of Theorem 2)that took place on the truth-table (or function) level has to be replaced by a blow-up on the vertexlevel. Speci�cally, starting from a graph property �0 that requires quadratic query complexity, weconsider the graph property � consisting of N -vertex graphs that are obtained by a N=pq(N)-factorblow-up of pq(N)-vertex graphs in �0, where G is a t-factor blow-up of G0 if the vertex set of G canbe partitioned into (equal size) sets that correspond to the vertices of G0 such that the edges betweenthese sets represent the edges of G0; that is, if fi; jg is an edge in G0, then there is a complete bipartitebetween the ith set and the jth set, and otherwise there are no edges between this pair of sets.3Note that the notion of \graph blow-up" does not o�er an easy identi�cation of the underlyingpartition; that is, given a graph G that is as a t-factor blow-up of some graph G0, it is not necessaryeasy to determine a t-way partition of the vertex set of G such that the edges between these setsrepresent the edges of G0. Things may become even harder if G is merely close to a t-factor blow-up ofsome graph G0. We resolve all these di�culties by augmenting the graphs of the starting property �0.The proof of Theorem 4 is organized accordingly: In Section 4.1, we construct � based on �0 by�rst augmenting the graphs and then applying graph blow-up. In Section 4.2 we lower-bound the querycomplexity of � based on the query complexity of �0, while coping with the non-trivial question of howdoes the blow-up operation a�ect distances between graphs. In Section 4.3 we upper-bound the querycomplexity of �, while using the aforementioned augmentations in order to obtain a tight result (ratherthan an upper bound that is o� by a polylogarithmic factor).4.1 The blown-up property �Our starting point is any graph property �0 = Sn2N �0n for which testing requires quadratic querycomplexity. Furthermore, we assume that �0 is in P. Such a graph property is presented in Theorem 6(see Appendix A, which builds on [GGR]).The notion of graphs that have \vastly di�erent vertex neighborhoods" is central to our analysis.Speci�cally, for a real number � > 0, we say that a graph G = (V;E) is �-dispersed if the neighbor setsof any two vertices di�er on at least � � jV j elements (i.e., for every u 6= v 2 V , the symmetric di�erence2Both the upper and lower bounds refer to two-sided error testers.3In particular, there are no edges inside any set. 5

between the sets fw : fu;wg 2 Eg and fw : fv; wg 2 Eg has size at least � � jV j). We say that a set ofgraphs is dispersed if there exists a constant � > 0 such that every graph in the set is �-dispersed.4The augmentation. We �rst augment the graphs in �0 such that the vertices in the resulting graphsare dispersed, while the augmentation amount to adding a linear number of vertices. The fact thatthese resulting graphs are dispersed will be useful for establishing both the lower and upper bounds.The augmentation is performed in two steps. First, setting n0 = 2dlog2(2n+1)e 2 [2n+1; 4n], we augmenteach graph G0 = ([n]; E0) by n0�n isolated vertices, yielding an n0-vertex graph H 0 = ([n0]; E0) in whichevery vertex has degree at most n � 1. Next, we augment each resulting graph H 0 by a clique of n0vertices and connect the vertices of H 0 and the clique vertices by a bipartite graph that correspondsto a Hadamard matrix; that is, the ith vertex of H 0 is connected to the jth vertex of the clique if andonly if the inner product modulo 2 of i � 1 and j � 1 (in (log2 n0)-bit long binary notation) equals 1.We denote the resulting set of (unlabeled) graphs by �00 (and sometimes refer to �00 as the set of alllabeled graphs obtained from these unlabeled graphs).We �rst note that �00 is indeed dispersed (i.e., the resulting 2n0-vertex graphs have vertex neighbor-hoods that di�er on at least n � n0=4 vertices).5 Next note that testing �00 requires a quadratic numberof queries, because testing �0 can be reduced to testing �00 (i.e., �-testing membership in �0n reduces to�0-testing membership in �002n0 , where n0 � 4n and �0 = �=64). Finally, note that �00 is also in P, becauseit is easy to distinguish the original graph from the vertices added to it, since the clique vertices havedegree at least n0 � 1 whereas the vertices of G0 have degree at most (n � 1) + (n0=2) < n0 � 1 (andisolated vertices of H 0 have neighbors only in the clique).6Applying graph blow-up. Next, we apply an (adequate factor) graph blow-up to the augmented set�00. Actually, for simplicity of notation we assume, without loss of generality, that �0 = Sn2N�0n itselfis dispersed, and apply graph blow-up to �0 itself (rather than to �00). Given the desired complexitybound q : N ! N , we �rst set n = pq(N), and next apply to each graph in �0n an N=n-factor blow-up,thus obtaining a set of N -vertex graphs denoted �N . (Indeed, we assume for simplicity that bothn = pq(N) and N=n are integers.) Recall G is a t-factor blow-up of G0 if the vertex set of G can bepartitioned into t (equal size) sets, called clouds, such that the edges between these clouds representthe edges of G0; that is, if fi; jg is an edge in G0, then there is complete bipartite between the ith cloudand the jth cloud, and otherwise there are no edges between this pair of clouds). This yields a graphproperty � = SN2N �N .Let us �rst note that � is in P. This fact follows from the hypothesis that �0 is dispersed: Speci�-cally, given any graph N -vertex graph G, we can cluster its vertices according to their neighborhood,and check whether the number of clusters equals n = pq(N). (Note that if G 2 �N , then we obtainexactly n (equal sized) clusters, which correspond to the n clouds that are formed in the N=n-factorblow-up that yields G.) Next, we check that each cluster has size N=n and that the edges betweenthese clusters correspond to the blow-up of some n-vertex G0. Finally, we check whether G0 is in �0n(relying on the fact that �0 2 P). Proving that the query complexity of testing � indeed equals �(q)is undertaken in the next two sections.4Our notion of dispersibility has nothing to do with the notion of dispersers, which in turn is a weakening of the notionof (randomness) extractors.5Consider the graph obtained by augmenting the n-vertex graph G0, and let H 0 be the intermediate n0-vertex graphderived from G0. Then, vertices in H 0 neighbor (at most) n0=2 clique vertices, whereas vertices in the clique neighbor allother n0 � 1 clique vertices. Thus, these types of vertices di�er on at least (n0=2)� 1 > n � 1 neighbors. As for any twovertices in H 0, their neighborhood in the clique disagrees on n0=2 > n vertices. An analogous claim holds with respect toany two vertices of the clique.6Once this is done, we can verify that the original graph is in � (using � 2 P), and that the additional edges correspondto a Hadamard matrix. 6

4.2 Lower-bounding the query complexity of testing �In this section we prove that the query complexity of testing � is
(q). The basic idea is reducingtesting �0 to testing �; that is, given a graph G0 that we need to test for membership in �0n, we test itsN=n-factor blow-up for membership in �N , where N is chosen such that n = pq(N). This approachrelies on the assumption that the N=n-factor blow-up of any n-vertex graph that is far from �0n resultsin a graph that is far from �N . (Needless to say, the N=n-factor blow-up of any graph in �0n results ina graph that is in �N .)As shown by Arie Matsliah (see Appendix B), the aforementioned assumption does not hold in thestrict sense of the word (i.e., it is not true that the blow-up of any graph that is �-far from �0 resultsin a graph that is �-far from �). However, for our purposes it su�ces to prove a relaxed version of theaforementioned assumption that only asserts that for any �0 > 0 there exists an � > 0 such that theblow-up of any graph that is �0-far from �0 results in a graph that is �-far from �. Below we prove thisassertion for � =
(�0) and rely on the fact that �0 is dispersed. In Appendix B, we present a morecomplicated proof that holds for arbitrary �0 (which need not be dispersed), but with � =
(�0)2.Claim 4.1 There exists a universal constant c > 0 such that the following holds for every n; �0; �and (unlabeled) n-vertex graphs G01; G02. If G01 is �-dispersed and �0-far from G02, then for any t the(unlabeled) t-factor blow-up of G01 is c� � �0-far from the (unlabeled) t-factor blow-up of G02.Using Claim 4.1 we infer that if G0 is �0-far from �0 then its blow-up is
(�0)-far from �. This inferencerelies on the fact that �0 is dispersed (and Claim 4.1 is applied to G02 = G0 and every G01 2 �0).Proof: Let G1 (resp., G2) denote the (unlabeled) t-factor blow-up of G01 (resp., G02), and consider abijection � of the vertices of G1 = ([t � n]; E1) to the vertices of G2 = ([t � n]; E2) that minimizes thesize of the set (of violations)f(u; v) 2 [t � n]2 : fu; vg 2 E1 i� f�(u); �(v)g =2 E2g: (1)(Note that Eq. (1) refers to ordered pairs, whereas the distance between graphs refers to unorderedpairs.) Clearly, if � were to map to each cloud of G2 only vertices that belong to a single cloud of G1(equiv., for every u; v that belong to the same cloud of G1 it holds that �(u); �(v) belong to the samecloud of G2), then G2 would be �0-far from G1 (since the fraction of violations under such a mappingequals the fraction of violations in the corresponding mapping of G01 to G02). The problem, however,is that it is not clear that � behaves in such a nice manner (and so violations under � do not directlytranslate to violations in mappings of G01 to G02). Still, we show that things cannot be extremely bad.Speci�cally, we call a cloud of G2 good if at least (t=2) + 1 of its vertices are mapped to it (by �) froma single cloud of G1.Letting 2� denote the fraction of violations in Eq. (1) (i.e., the size of this set divided by (tn)2), we�rst show that at least (1�(6�=�)) �n of the clouds of G2 are good. Assume, towards the contradiction,that G2 contains more that (6�=�) � n clouds that are not good. Considering any such a (non-good)cloud, we observe that it must contain at least t=3 disjoint pairs of vertices that originate in di�erentclouds of G1 (i.e., for each such pair (v; v0) it holds that ��1(v) and ��1(v0) belong to di�erent cloudsof G1).7 Recall that the edges in G2 respect the cloud structure of G2 (which in turn respects the edgerelation of G02). But vertices that originate in di�erent clouds of G1 di�er on at least � � tn edges inG1. Thus, every pair (v; v0) (in this cloud) such that ��1(v) and ��1(v0) belong to di�erent clouds of7This pairing is obtained by �rst clustering the vertices of the cloud of G2 according to their origin in G1. By thehypothesis, each cluster has size at most t=2. Next, observe that taking the union of some of these clusters yields a setcontaining between t=3 and 2t=3 vertices. Finally, we pair vertices of this set with the remaining vertices. (A betterbound of bt=2c can be obtained by using the fact that a t-vertex graph of minimum degree t=2 contains a Hamiltoniancycle.) 7

G1 contributes at least � � tn violations to Eq. (1).8 It follows that the set in Eq. (1) has size greaterthan 6�n� � t3 � �tn = 2� � (tn)2in contradiction to our hypothesis regarding �. Having established that at least (1� (6�=�)) � n of theclouds of G2 are good and recalling that a good cloud of G2 contains a strict majority of vertices thatoriginates from a single cloud of G1, we consider the following bijection �0 of the vertices of G1 to thevertices of G2: For each good cloud g of G2 that contains a strict majority of vertices from cloud iof G1, we map all vertices of the ith cloud of G1 to cloud g of G2, and map all other vertices of G1arbitrarily. The number of violations under �0 is upper-bounded by four times the number of violationsoccuring under � between good clouds of G2 (i.e., at most 4 � 2� � (tn)2) plus at most (6�=�) � tn � tnviolations created with the remaining (6�=�) �n clouds. This holds, in particular, for a bijection �0 thatmaps to each remaining cloud of G2 vertices originating in a single cloud of G1. This �0, which mapscomplete clouds of G1 to clouds of G2, yields a mapping of G01 to G02 that has at most (8�+(6�=�)) �n2violations. Recalling that G01 is �0-far from G02, we conclude that 8� + (6�=�) � 2�0, and the claimfollows (with c = 1=7). 2Recall that Claim 4.1 implies that if G0 is �0-far from �0 then its blow-up is
(�0)-far from �. Usingthis fact, we conclude that �0-testing of �0 reduces to
(�0)-testing of �. Thus, a quadratic lowerbound on the query complexity of �0-testing �0n yields an
(n2) lower bound on the query complexityof
(�0)-testing �0N , where n = pq(N). Thus, we obtain an
(q) lower bound on the query complexityof testing �, for some constant value of the proximity parameter.4.3 An optimal tester for property �In this section we prove that the query complexity of testing � is at most q (and that this can be metby a relatively e�cient tester). We start by describing this (alleged) tester.Algorithm 4.2 On input N and proximity parameter �, and when given oracle access to a graphG = ([N]; E), the algorithm proceeds as follows:1. Setting �0 def= �=3 and computing n pq(N).2. Finding n representative vertices; that is, vertices that reside in di�erent alleged clouds, whichcorresponds to the n vertices of the original graph. This is done by �rst selecting s def= O(log n)random vertices, hereafter called the signature vertices, which will be used as a basis for clusteringvertices (according to their neighbors in the set of signature vertices). Next, we select s0 def=O(��2 � n log n) random vertices, probe all edges between these new vertices and the signaturevertices, and cluster these s0 vertices accordingly (i.e., two vertices are placed in the same clusterif and only if they neighbor the same signature vertices). If the number of clusters is di�erentfrom n, then we reject. Furthermore, if the number of vertices that reside in each cluster is not(1 � �0) � s0=n, then we also reject. Otherwise, we select (arbitrarily) a vertex from each cluster,and proceed to the next step.3. Note that the signature vertices (selected in Step 2), induce a clustering of all the vertices of G.Referring to this clustering, we check that the edges between the clusters are consistent with theedges between the representatives. Speci�cally, we select uniformly O(1=�) vertex pairs, cluster the8For each such pair (v; v0), there exists at least � � tn vertices u such that exactly one of the (unordered) pairsf��1(u); ��1(v)g and f��1(u); ��1(v0)g is an edge in G1. Recall that for every u, the pair fu; vg is an edge in G2 if andonly if fu; vg is an edge in G2, it follows that for at least � � tn vertices u either (��1(u); ��1(v)) or (��1(u); ��1(v0)) isa violation. 8

vertices in each pair according to the signature vertices, and check that their edge relation agreeswith that of their corresponding representatives. That is, for each pair (u; v), we �rst �nd thecluster to which each vertex belongs (by making s adequate queries per each vertex), determinethe corresponding representatives, denoted (ru; rv), and check (by two queries) whether fu; vg 2 Ei� fru; rvg 2 E. (Needless to say, if one of the newly selected vertices does not reside in any ofthe n existing clusters then we reject.)4. Finally, using �n2� < q(N)=2 queries, we determine the subgraph of G induced by the n represen-tatives. We accept if and only if this induced subgraph is in �0.Note that, for constant value of �, the query complexity is dominated by Step 4, and is thus upper-bounded by q(N). Furthermore, in this case, the above algorithm can be implemented in time poly(n �logN) = poly(q(N)�logN). We comment that the Algorithm 4.2 is adaptive, and that a straightforwardnon-adaptive implementation has query complexity O(n log n)2 = eO(q(N)). (In fact, a (non-adaptive)tester of query complexity eO(q(N)) can be obtained by a simpler algorithm that just selects a randomset of s0 vertices and accepts if and only if the induced subgraph is �0-close to being a (s0=n-factor)blow-up of some graph in �0n.)9We next verify that any graph in �N is accepted with very high probability. Suppose that G 2 �Nis a N=n-factor blow-up of G0 2 �0n. Relying on the fact that �0 is dispersed we note that, for every pairof vertices in G0 2 �0n, with constant probability a random vertex has a di�erent edge relation to themembers of this pair. Therefore, with very high (constant) probability, a random set of s = O(log n)vertices yields n di�erent neighborhood patterns for the n vertices of G0. It follows that, with thesame high probability, the s signature vertices selected in Step 2 induced n (equal sized) clusters onthe vertices of G, where each cluster contains the cloud of N=n vertices (of G) that replaces a singlevertex of G0. Thus, with very high (constant) probability, the sample of s0 = O(��2 �n log n) additionalvertices selected in Step 2 hits each of these clusters (equiv., clouds) and furthermore has (1� �0) � s0=nhits in each cluster. We conclude that, with very high (constant) probability, Algorithm 4.2 does notreject G in Step 2. Finally, assuming that Step 2 does not reject (and we did obtain representativesfrom each cloud of G), Algorithm 4.2 never rejects G 2 � in Steps 3 and 4.We now turn to the case that G is �-far from �N , where we need to show that G is rejected withhigh constant probability (say, with probability 2/3). We will actually prove that if G is accepted withsu�ciently high constant probability (say, with probability 1/3), then it is �-close to �N . We call a setof s vertices good if (when used as the set of signature vertices) it induces a clustering of the vertices ofG such that n of these clusters are each of size (1� 2�0) �N=n. Note that good s-vertex sets must exist,because otherwise Algorithm 4.2 rejects in Step 2 with probability at least 1� exp(
(�2=n) � s0) > 2=3.Fixing any good s-vertex set S, we call a sequence of n vertices R = (r1; :::; rn) well-representing if(1) the subgraph of G induced by R is in �0n, and (2) at most �0 fraction of the vertex pairs of Ghave edge relation that is inconsistent with the corresponding vertices in R (i.e., at most �0 fraction ofthe vertex pairs in G violate the condition by which fu; vg 2 E if and only if fri; rjg 2 E, where uresides in the ith cluster (w.r.t S) and v resides in the jth cluster). Now, note that there must exist agood s-vertex set S that has a well-representing n-vertex sequence R = (r1; :::; rn), because otherwiseAlgorithm 4.2 rejects with probability at least 2=3 (i.e., if a � fraction of the s-vertex sets are good(but have no corresponding n-sequence that is well-representing), then Step 2 rejects with probabilityat least (1� �) � 0:9 and either Step 3 or Step 4 reject with probability � �min((1 � (1� �0)
(1=�)); 1)).Fixing any good s-vertex set S and any corresponding R = (r1; :::; rn) that is well-representing, weconsider the clustering induced by S, denoted (C1; ::::; Cn;X), where X denotes the set of (untypical)vertices that do not belong to the n �rst clusters. Recall that, for every i 2 [n], it holds that ri 2 Ciand jCij = (1 � 2�0) � N=n. Furthermore, denoting by i(v) the index of the cluster to which vertex9Speci�cally, we can cluster these s0 vertices by using them also in the role of the signature vertices. Furthermore,these vertices (or part of them) can also be designated for use in Step 3.9

v 2 [N] nX belongs, it holds that the number of pairs fu; vg (from [N] nX) that violate the conditionfu; vg 2 E i� fri(u); ri(v)g 2 E is at most �0 � �N2 �. Now, observe that by modifying at most �0 � �N2 � edgesin G we can eliminate all the aforementioned violations, which means that we obtain n sets with edgerelations that �t some graph in �0n (indeed the graph obtained as the subgraph of G induced by R,which was not modi�ed). Recall that these sets are each of size (1� 2�0) �N=n, and so we may need tomove 2�0N vertices in order to obtain sets of size N=n. This movement may create up to 2�0N � (N � 1)new violations, which can be eliminated by modifying at most 2�0 � �N2 � additional edges in G. Using� = 3�0, we conclude that G is �-close to �N .5 Revisiting the Adjacency Matrix Model: Monotone PropertiesIn continuation to Section 4, which provides a hierarchy theorem for generic graph properties (in theadjacency matrix model), we present here a hierarchy theorem for monotone graph properties (in thesame model).Theorem 5 In the adjacency matrix model, for every q : N ! N that is at most quadratic, there existsa monotone graph property � that is testable in O(q) queries, but is not testable in o(q) queries.Note that Theorem 5 refers to two-sided error testing (just like Theorem 4). Theorems 4 and 5 areincomparable: the former provides graph properties that are in P (and the upper bound is establishedvia relatively e�cient testers), whereas the latter provides graph properties that are monotone.Outline of the proof of Theorem 5. Starting with the proof of Theorem 4, one may want toapply a monotone closure to the graph property � (presented in the proof of Theorem 4).10 Undersuitable tuning of parameters, this allows to retain the proof of the lower bound, but the problem isthat the tester presented for the upper bound fails. The point is that this tester relies on the structureof graphs obtained via blow-up, whereas this structure is not maintained by the monotone closure.One possible solution, which assumes that all graphs in � have approximately the same number ofedges, is to augment the monotone closure of � with all graphs that have signi�cantly more edges,where the corresponding threshold (on the number of edges) is denoted T . Intuitively, this way, wecan a�ord accepting any graph that has more than T edges, and handle graphs with fewer edges byrelying on the fact that in this case the blow-up structure is essentially maintained (because only fewedges are added). Unfortunately, implementing this idea is not straightforward: On one hand, weshould set the threshold high enough so that the lower bound proof still holds, whereas on the otherhand such a setting allows to destroy the local structure of a constant fraction of the graph's vertices.The solution to this problem is to use an underlying property �0 that supports \error correction" (i.e.,allows recovering the original structure even when a constant fraction of it is destroyed as above).5.1 The monotone property �Our starting point is a graph property �0 = Sn2N �0n for which testing requires quadratic querycomplexity. Furthermore, we assume that this property satis�es the additional conditions stated in thefollowing claim.Claim 5.1 There exists a graph property �0 = Sn2N�0n for which testing requires quadratic querycomplexity. Furthermore, for every constant � > 0 and all su�ciently large n, it holds that every graphG0 = ([n]; E0) in �0n satis�es the following two local conditions:10Indeed, this is the approach used in the proof of [GT, Thm. 1].10

1. Every vertex has degree (0:5 � �) � n; that is, for every v 2 [n] it holds that fu : fv; ug 2 E0g hassize at least (0:5 � �) � n and at most (0:5 + �) � n.2. Every two di�erent vertices neighbor at least (0:75� �) � n vertices; that is, for every v 6= w 2 [n]it holds that fu : fv; ug 2 E0 _ fw; ug 2 E0g has size at least (0:75 � �) � n.Moreover, pairs of graphs in �0n are related as follows:3. Every two non-isomorphic graphs in �0n di�er on at least 0:4 ��n2� vertex pairs; that is, if G01; G02 2�0n are not isomorphic, then G01 is 0:4-far from G02.4. Graphs in �0n that are isomorphic via a mapping that �xes less than 90% of the vertices di�er onat least 0:01 � �n2� vertex pairs; that is, if G01; G02 2 �0n are isomorphic via � such that jfi 2 [n] :�(i) 6= igj > 0:1n, then G01 is 0:01-far from G02.Note that the graphs in �0 are 2 � (0:25� 2�)-dispersed, because j�(u) n�(v)j = j�(u)[�(v)j � j�(v)j �(0:75 � �)N � (0:5 + �)N = (0:25 � 2�)N .Proof: The graph property presented in the proof of [GGR, Prop. 10.2.3.1] can be easily modi�ed tosatisfy the foregoing conditions. Recall that this property is obtained by selecting K def= exp(�(n2))random graphs and considering the n! isomorphic copies of each of these graphs. Note that each ofthe \basic" K graphs satis�es the two local conditions with probability at least 1� n2 � exp(�
(�2n)).Omitting the few exceptional graphs (which violate either of these two conditions), we obtain a propertythat satis�es both local conditions and maintains the query-complexity lower bound.11Regarding the distance between graphs in �0n, we distinguish two cases. In the case that G02; G02 2 �0nare not isomorphic, they arise from two independently selected graphs, and so with probability at least1 � exp(�
(n2)) > 1 � o(j�0nj�2) they are 0:4-far from one another. Applying the union bound, thisestablishes Condition 3. Turning to any pair of graphs that are isomorphic (and arise from isomorphiccopies of the same \basic" graph), we consider the sub-case in which the isomorphism � (between G01and G02) satis�es jfi 2 [n] : �(i) 6= igj > 0:1n (i.e., as in Condition 4). Fixing any such permutation�, we consider disjoint sets I � [n] and �(I) = f�(i) : i 2 Ig such that jIj � 0:05n. For a randomn-vertex graph G0 = ([n]; E0), with probability at least 1 � exp(�
(n2)) > 1 � o(j�0nj�1), the setsf(u; v) 2 I � ([n] n (I [�(I)) : fu; vg 2 E0g and f(u; v) 2 I � ([n] n (I [�(I)) : f�(u); �(v)g 2 E0g di�eron at least 0:01n2 entries. The claim follows. 2In the following description, we set � > 0 to be a su�ciently small constant (e.g., smaller than0.00001) such that the lower-bound established in Theorem 4 holds for proximity parameter 100� (i.e.,� def= �4=100, where �4 is a value of the proximity parameter for which Theorem 4 holds). Needlessto say, �0 satis�es the foregoing three conditions when setting � = �. Given the desired complexitybound q : N ! N , we set n = pq(N) and de�ne �N such that G = ([N]; E) 2 �N if and only if (atleast) one of the following two conditions holds:(C1) The graph G has at least (0:5 + 2�) � �N2 � edges.(C2) Each vertex in G has degree at least (0:5 ��) �N and G is an \approximate blow-up" of somegraph in �n; that is, there exists a partition of the vertex set of G (i.e., [N]) into n equal-sizedsets, denoted (V1; :::; Vn), and a graph G0 = ([n]; E0) 2 �0n such that for every fi; jg 2 E0 andevery u 2 Vi and v 2 Vj either fu; vg 2 E or the degree of either u or of v in G exceeds 0:52 �N .11Indeed, the query-complexity lower bound is not harmed, because it is established by considering the uniform distri-bution over �0n (versus the uniform distribution over all n-vertex graphs).11

Note that Condition (C2) mandates that each edge fi; jg 2 E0 is replaced by a bipartite graph overVi � Vj that contains all edges with the possible exception of edges that are incident at vertices ofdegree exceeding 0:52 � N . We stress that Condition (C2) does not require that for fi; jg 62 E0 thebipartite graph over Vi�Vj is empty, but in the case that Condition (C1) does not hold these bipartitegraphs will contain few edges (because the edges mandated by Condition (C2) leave room for fewsuperuous edges, when taking into account the upper bound on the number of edges that is impliedby the violation of Condition (C1)).Note that the property � = SN2N �N is monotone. Also observe that �N contains the N=n-factorblow-up of any graph in �0n, because any such blow-up satis�es Condition (C2). (Indeed, such a blow-updoes not satisfy Condition (C1), since each vertex in the blow-up has degree at most (0:5 +�) �N .)On the constant �. Recall that � was �xed above to be a small positive constant that is relatedto the constant hidden in Theorem 4 (i.e., the lower-bound in this theorem should hold when theproximity parameter is set to any value that does not exceed 100�). In addition, we will assume that� is smaller than various speci�c constants (e.g., in the proof of Claim 5.2 we use � < 0:0001). Ingeneral, setting � = 0:00001 satis�es all these conditions. We also note that we will assume that inour positive result (i.e., the analysis of the optimal tester) the proximity parameter � is signi�cantlysmaller than � (e.g., � < �=1000).5.2 Lower-bounding the query complexity of testing �In this section we prove that the query complexity of testing � is
(q). We shall do this by buildingon [GGR, Prop. 10.2.3.1] and Section 4.2. Speci�cally, combining the approach of Section 4.2 with theanalysis of [GGR, Prop. 10.2.3.1], we consider the following two distributions: (D1) the N=n-factorblow-up of random n-vertex graphs, and (D2) the N=n-factor blow-up of uniformly selected graph in�0n. Combining [GGR, Prop. 10.2.3.1] and Claim 4.1, it holds that, with high probability, a graphselected according to distribution (D1) is far (i.e., 100�-far) from the support of distribution (D2),whereas distinguishing the two distributions requires
(q) queries.Recalling that �N contains the support of distribution (D2), it now su�ces to show that, with highprobability, a graph selected according to distribution (D1) is far from �N . This claim su�ces becauseit yields a distribution on �N (indeed (D2) itself) and a distribution that is typically far from �N suchthat distinguishing these two distributions requires
(q) queries.The claim that distribution (D1) is typically far from �N is proved by �rst observing that, withhigh probability, a graph selected in distribution (D1) has maximum degree smaller than (0:5+�) �N .The proof is concluded by showing that if such a graph (i.e., of the foregoing degree bound) is 100�-farfrom the support of distribution (D2) then it is �-far from �N .Claim 5.2 Suppose that G has maximum degree smaller than (0:5 +�) �N and that G is �-close to�N . Then G is 64�-close to the support of distribution (D2).Proof: Let C (standing for correct) be a graph in �N that is closest to G. Then, C has less than(0:5+2�)��N2 � edges, and thus C must satisfy Condition (C2) in the de�nition of �N . Let G0 = ([n]; E0)and (V1; :::; Vn) be as required in Condition (C2), and let H denote the set of vertices that have degreeat least 0:52 �N in C.Consider the distance between G and a blow-up of G0, denoted B (standing for blow-up). Eachvertex in H contributes at most N units to this distance, but its contribution to the distance betweenG and C is at least 0:52 � N � (0:5 + �) � N > N=60. Thus, the total contribution of vertices in H(to the distance between G and B) is less than 60�N2. We stress that this count includes pairs ofvertices that contain at least one element in H, and thus it remains to upper-bound the contributionof pairs that reside entirely within [N] n H. We upper-bound the contribution of vertices in [N] n H12

to the distance between G and B by the sum of (1) their contribution to the distance between G andC (which is obviously upper-bounded by �N2), and (2) their contribution to the distance between Cand B.In analyzing (2), we note that a pair (u; v) 2 ([N] nH)2 that is connected in B must be connectedin C, and so (2) counts the number of pairs (u; v) 2 ([N] nH)2 that are connected in C but not in B.Furthermore, the value of (2) equals the di�erence between the number of edges of the subgraph of Binduced by [N] nH and the subgraph of C induced by [N] nH. Recall that the average vertex degreeof vertices in the graph C is at most (0:5 +�) �N +�N = (0:5 + 2�) �N , whereas in B vertices havedegree at least (0:5��) �N . Note that the number of edges with at least one endpoint in H is largerin C than it is in B (by an additive term of (0:02 � � � 60�)jHj � N > 0:001jHj � N , which we donot use).12 Thus, the di�erence in the average degree between the subgraphs (of C and B) induced by[N] nH is at most (0:5 + 2�) �N � (0:5��) �N = 3�N , and so the value of (2) is at most 3�N2. Itfollows that the total contribution (to both (1) and (2)) of vertices in [N]nH is at most 4�N2. Hence,G is 64�-close to B, and the claim follows (because B is in the support of (D2)). 25.3 An optimal tester for property �In this section we prove that the query complexity of testing � is O(q). Before describing the (alleged)tester, we analyze the structure of graphs that satisfy Condition (C2) but do not satisfy Condition (C1).Denoting this set by � = SN2N �N , recall that �N contains N -vertex graphs that are in �N and haveaverage degree below (0:5 + 2�) �N . Since these graphs have minimum degree at least (0:5 ��) �N ,they may contain relatively few vertices of degree exceeding 0:52 �N (i.e., the number of such verticesis at most O(�N)). We call such vertices (i.e., of degree exceeding 0:52 �N) heavy. As we show next,the fact that almost all vertices in G 2 �N are not heavy implies that the edges among these non-heavy vertices (in any G) essentially determine a unique graph G0 2 �0n such that G is an approximateblow-up of G0. Moreover, this determines a unique partition of the non-heavy vertices of G to cloudsthat correspond to the vertices of G0. That is:Claim 5.3 Let G = ([N]; E) 2 �N and H denote the set of heavy vertices of G (i.e., vertices havingdegree that exceeds 0:52 � N). Then, up to a reordering of the indices in [n], there exists a uniquepartition of [N] n H into n sets, denoted V 01 ; :::; V 0n, and a unique graph G00 = (fi 2 [n] : V 0i 6= ;g; E00)such that the following conditions hold:1. G00 is an induced subgraph of some graph in �0n (i.e., there exists G0 = ([n]; E0) 2 �0n such thatfi; jg 2 E00 if and only if V 0i 6= ;, V 0j 6= ; and fi; jg 2 E0).2. For every fi; jg 2 E00 and every u 2 V 0i and v 2 V 0j it holds that fu; vg 2 E.3. Vertices in the same V 0i di�er on at most 0:05N of their neighborhood, whereas vertices that residein di�erent V 0i di�er on at least 0:45N neighbors.4. Each V 0i has size at most N=n, and at most 0:01n sets are empty.Proof: The mere existence of a partition (V 01 ; :::; V 0n) and of a graph G00 that satis�es the conditionfollows from the fact thatG satis�es Condition (C2). Speci�cally, let (V1; :::; Vn) andG0 be as guaranteedby Condition (C2), and let V 0i def= Vi n H for every i 2 [n]. Then, (V 01 ; :::; V 0n) and the subgraph of G0that is induced by fi 2 [n] : V 0i 6= ;g satisfy all the foregoing conditions. In particular, vertices in12To justify this assertion we note that in C each vertex of H has degree at least 0:52 �N , whereas in B each vertex hasdegree at most (0:5 + �) � N . Thus, the di�erence in the sum of degrees of vertices in H is at least jHj � (0:02 ��) �N ,but edges with both sides in H are counted twice (and thus a corrective term of at most jHj2 < 60�jHj �N is due, wherejHj < 60�N was (implicitly) established above). 13

the same Vi n H may di�er on at most 2 � (0:52N � (0:5 � �)N + jHj) < 0:05N of their neighbors,whereas vertices that reside in di�erent Vi nH's must di�er on at least (0:5� 4�) �N � 2 � jHj > 0:45Nneighbors. Also, noting that each V 0i has size at most N=n and recalling that jHj < 150�N (sincejHj � 0:52N + (N � jHj) � (0:5��)N < (0:5 + 2�)N2), we conclude that at most 150� � n < 0:01n setsV 0i are empty.Having established the existence of suitable objects, we now turn to establish their uniqueness;that is, we shall establish the uniqueness of both the partition of [N] n H and the graph G00, up to areordering of the index set [n].Referring to the foregoing partition (V1; :::; Vn), we claim that two vertices u; v 2 [N] n H can beplaced in the same set of an n-wise partition of [N] nH if and only if they reside in the same set Vi.This follows by the \clustering" condition asserted in Item 3. Thus, the partition of [N]nH is uniquelydetermined, up to a reordering of the index set [n]. Let us denote this partition by (V 01 ; :::; V 0n); indeed,the sequence (V 01 ; :::; V 0n) is a permutation of the sequence (V1 nH; :::; Vn nH).Recall that, by Item 2, any unconnected pair of vertices (u; v) 2 V 0i � V 0j mandates that the pair(i; j) cannot be connected in G0. Since there are at most (0:5+2�) ��N2 � edges in G and at most jHj �Npairs that intersect H, we conclude that the number of unconnected pairs in Si 6=j V 0i � V 0j is at least(0:5� 2�) �N2 � jHj �N � (0:5� 152�) �N2. This forces at least (0:5� 152�) � n2 unconnected pairsin G0. Recalling that G0 2 �0n has average degree at most (0:5 +�) � n, this leaves us with slackness ofat most 153� � n2 pairs. Recalling that non-isomorphic graphs in �0n are 0:4-far apart, this determinesG0 up to isomorphism. Actually, referring to the last condition in Claim 5.1, we conclude that G0 isdetermined up to an isomorphism that �xes more than 90% of the vertices. We shall show next thatthis uniquely determines G00.Suppose towards the contradiction that there exist two di�erent graphs G001 and G002 that satisfy theconditions of the claim, and let i be a vertex in G001 that is mapped by the isomorphism to j 6= i inG002. As we show next, this situation induces conicting requirements on the neighbors of vertices inV 0i and V 0j ; that is, it requires too many shared neighbors (when compared to the shared neighborsof i and j in G0). Speci�cally, by applying Item 2 to G001, the neighbors of each vertex in V 0i shouldcontain all vertices in V 0k such that k is connected to i in G001. Similarly, by applying Item 2 to G002, theneighbors of each vertex in V 0j should contain all vertices in V 0k such that k is connected to j in G002.However, since the isomorphism �xes more than 90% of the vertices, it must be the case that for 90%of k 2 [n] it holds that i is connected to k in G001 i� j is connected to k in G002. It follows that eachpair of vertices in both V 0i and V 0j must share more than (0:5 � O(�)) � N � 0:1N > 0:3N neighbors,which contradicts the postulate (regarding G0 which implies) that each such pair can share at most(0:25 + 3�) �N + jHj < 0:3N neighbors. The claim follows. 2Having established Claim 5.3, we are now ready to present the (alleged) tester for �. Intuitively,the tester �rst checks whether the input graph satis�es Condition (C1), and if the input is found to be
(�)-far from satisfying Condition (C1) then it is tested for Condition (C2). Indeed, the core of thistester refers to the latter part (i.e., testing �), and is obtained by suitable adaptations of Algorithm 4.2.In particular, since we cannot expect to identify representatives from all clouds (i.e., some sets V 0i inClaim 5.3 may be too small or even empty), we settle for obtaining representatives from at least a 1��0fraction of the identi�able clouds (which leads to using, as a basis, the version of Algorithm 4.2 that isdiscussed in Footnote 9).Algorithm 5.4 On input N and proximity parameter �, and when given oracle access to a graphG = ([N]; E), the algorithm proceeds as follows, after setting �0 def= �=10 and n def= pq(N):1. Using a sample of O(��2) vertex pairs, we �rst estimate the edge density of G and accept if thisestimate exceeds 0:5 + 2� � 2�0. We proceed to the next steps only if the edge density of G isestimated to be less than 0:5+ 2�� 2�0, in which case we may assume that the edge density of Gis less than 0:5 + 2�� �0. 14

2. Next, using a sample of eO(��2) vertices, we estimate the minimum degree in G; that is, we pickO(��1) vertices and estimate their degrees using an auxiliary sample of eO(��2) vertices. If we�nd a vertex that we estimate to have degree less than (0:5 � � � �0) � N , then we reject. Weproceed to the next steps only if we failed to �nd such a vertex, in which case we may assume thatall but at most �0N vertices have degree exceeding (0:5 ��� 2�0) �N .3. Finding representative vertices. We start by selecting a sample, denoted S, of s def= O(��2n)random vertices, and estimating their individual degrees in G by their individual degress is thesubgraph induced by S. We let S0 � S denote the set of vertices for which the estimated degree isless than (0:52 � �0) �N . We proceed only if jS0j > 0:99s, and otherwise we halt and reject.Next, we cluster the vertices in S0 as follows. Probing all �jS0j2 � possible edges between thesevertices, we cluster them such that each cluster contains vertices having neighbor sets that di�eron at most 0:06s vertices in S0. Speci�cally, we associate to each vertex an jS0j-dimensionalBoolean vector that indicates whether or not it neighbors each of the vertices in S0, and considerthe metric de�ned by Hamming distance between these vectors. Scanning the vertices of S0, weput the current vertex in an existing cluster if it is 0:06-close to the center of this cluster, andopen a new cluster with the current vertex as its center otherwise (i.e., if the current vertex cannotbe �t to any existing cluster).If the number of clusters, denoted n0, is greater than n, then we reject. Otherwise, we select atrandom a representative from each cluster, and denote by ri the representative of the ith cluster.4. Determining an adequate subgraph of a graph in �0n. Let R = fri : i 2 [n0]g and let GR denotethe subgraph of G induced by R (i.e., by the set of representatives selected above). We try todetermine a graph G0 2 �0n such that the subgraph of G0 induced by [n0], denoted G00 = ([n0]; E00),is consistent with GR in the sense that if fi; jg 2 E00 then fri; rjg 2 E (equiv., the pair (ri; rj)is connected by an edge in GR). If either such a graph G0 does not exist or G00 is not uniquelydetermined, then we halt and reject.5. Note that the set R suggests a clustering of the vertices of G according to their neighbors in the setR. Referring to this clustering, we check whether it is indeed adequate. Speci�cally, for any vertexv 2 [N] of degree at most 0:52 � N , we let �(v) = i if v is 0:06-close to the representative ri andis 0:4-far from all other representatives. Otherwise (i.e., if no such i exists), then �(v) = ?. Inthe following sub-steps we refer to estimates of the degrees of individual vertices that are obtainedby an auxiliary sample of size O(��2 log t), where t = O(��2n log(1=�)) denotes the number ofvertices for which we need a degree estimate.(a) We check that all but at most an �0 fraction of the vertices that have degree at most 0:52 �Nare uniquely clustered and that each of these vertices resides in a cluster that has size atmost (1 + �0)N=n. That is, using an auxiliary sample of O(��2n log(1=�)) vertices, we checkthat for each such vertex v that is estimated to have degree at most (0:52 � �0) � N , it holdsthat �(v) 2 [n0], and that at least a 1 � �0 fraction of these vertices are clustered so that forevery i 2 [n0] at most (1 + �0)=n fraction of the vertices v satisfy �(v) = i.(b) We check that the edges between the clusters are consistent with the edges between the cor-responding vertices of G00. Speci�cally, we select uniformly O(1=�) vertex pairs, cluster thevertices in each pair according to �, and check that their edge relation agrees with that oftheir corresponding representatives in the sense that each vertex pair must be connected ifthe corresponding pair of representatives is connected. That is, for each pair (u; v), we �rstestimate the degree of each vertex and proceed only if both estimates are below (0:52� �0) �N .Next, we �nd the cluster to which each vertex belongs, and reject if f�(u); �(v)g 2 E00 holdsbut fu; vg 62 E. 15

We accept if and only if none of the foregoing checks led to rejection.Note that, for constant value of �, the query complexity is dominated by Step 3, which uses �jS0j2 � =O(��2n)2 = O(��4q(N)) queries. (In contrast, the number of queries made in Step 5 is (t+ O(1=�)) �(��2 log t+ n) = O(��4n2 log2(1=�)), where a better bound of o(��4n2) holds when �� 1=pn).We next verify that any graph in �N is accepted with very high probability. Note �rst that ifG 2 �N satis�es Condition (C1), then Step 1 accepts with very high probability. The same holds if Ghas average degree at least (0:5+2�� �0)N . Thus, we focus on the case that G 2 �N , and furthermorethat G has average degree less than (0:5 + 2� � �0)N . Needless to say, Step 2 is unlikely to reject G(because G has minimum degree at least (0:5 ��)N). Regarding the sample S taken in Step 3, withvery high probability, the degree of each sample vertex in G is approximated up-to an relative term of��0 by this vertex degree in the subgraph induced by S. The same holds with respect to the numberof neighbors that each such vertex has in n designated sets (i.e., the sets Vi associated with G 2 �N).Letting H, (V 01 ; :::; V 0n) and G00 be as in Claim 5.3, we note that with high probability the sample S0taken in Step 3 is clustered accordingly (i.e., the ith cluster consists of V 0i \ S0, where here we considera possible reordering of the sequence of clusters and allow also empty clusters to obtain a sequence oflength n). Furthermore, the induced graph GR �ts the subgraph G00 in the sense that it passes thechecks in Step 5b. Thus, Steps 3 and 5 are unlikely to reject G (because, with probability at least 1��,the ith cluster is assigned a (N�1 � jV 0i j� �0)=n fraction of the vertices sampled in Step 3 and in Step 5).To show that Step 4 is also unlikely to reject G, we need to show that, with high probability, the graphG00 is the only adequate graph that �ts the set R. The latter is proved by considering an (imaginary)set I selected at random such that I includes a single uniformly distributed element from each set Vi.Observe that a N=t-factor blow-up of the subgraph GI is likely to be in �N , and so applying Claim 5.3to this blow-up of GI guarantees the uniqueness of G00 (with respect to GI). The uniqueness of G00with respect to GR follows by observing that, with high probability, the constraints on G00 imposed bythe subgraph GR are a superset of the constraints on G00 imposed by the subgraph GI , because R canbe viewed as obtained from I by replacing some vertices of H by vertices not in H (i.e., a vertex inVi \H is replaced by some vertex in V 0i = Vi nH).13 We conclude that G is unlikely to be rejected byany step, and thus it is accepted (with high probability).We now turn to the case that G is �-far from �, where we need to show that G is rejected with,say, probability 2/3. We will actually prove that if G is accepted with probability 1/3, then it is �-closeto �N . We may assume that G has average degree below (0:5 + 2� � �)N , since otherwise the claimfollows easily. Thus, with high probability, the graph G is not accepted by Step 1, and so we may usethe fact that G is accepted by virtue of not violating the subsequent checks. In particular, by virtue ofStep 2 we may assume that at most �0N vertices of G have degree below (0:5���2�0)N , which meansthat we can meet the degree lower bound (of �) by adding at most 3�0N2 edges. Let S0, r1; :::; rn0 andG00 be as determined in Steps 3 and 4. Then, by virtue of Step 5, we obtain a clustering of at least(1 � �0)N vertices that approximately �ts the graph G00 in the sense that they reside in clusters thathave each size at most (1+2�0)N=n and the number of missing edges between these clusters is at most�0N2. By moving m def= 3�0N vertices and adding at most mN + �0N2 edges, we obtain a partition ofthe vertices into n equal sized sets that perfectly �t G00, and it follows that G is (3+ 4) � �0-close to �N .6 Summary of Open Problems That AriseTheorems 4 and 5 (and their proofs) raise several natural open problems, listed next. We stress thatall questions refer to the adjacency matrix graph model considered in Sections 4 and 5.13Indeed, the remaining vertices of H are viewed (in R) as non-existing).16

1. Preservation of distance between graphs under blow-up: Recall that the proof of Theorem 4 relieson the preservation of distances between graphs under the blow-up operation. The partial results(regarding this matter) obtained in this work su�ce for the proof of Theorem 4, but the problemseems natural and of independent interest.Recall that Claim 4.1 asserts that in some cases the distance between two unlabeled graphs ispreserved up to a constant factor by any blow-up (i.e., \linear preservation"), whereas Theorem 7asserts a quadratic preservation for any pair of graphs. Also recall that it is not true that thedistance between any two unlabeled graphs is perfectly preserved by any blow-up (see beginningof Appendix B). A natural question that arises is whether the distance between any two unlabeledgraphs is preserved up to a constant factor by any blow-up, and if so then what is the minimalsuch constant.2. One-sided versus two-sided error testers: Theorem 4 refers to testing with two-sided error. How-ever, following the analogy with prior sections, one may hope to see a hierarchy theorem thatconfronts two-sided error lower bounds and one-sided error upper bounds.14 As an intermediatequestion, how about a hierarchy theorem for one-sided testing (i.e., a result, analogous to Theo-rem 4, that would refer to one-sided error lower and upper bounds)? Needless to say, the sameapplies to Theorem 5.3. Hierarchy of monotone graph properties in P: Recall that Theorem 4 is proved by using non-monotone graph properties (which are in P), while Theorem 5 refers to monotone graph propertiesthat are not likely to be in P. Can one combine the good aspects of both results?4. Hard-to-test monotone graph property in P: Indeed, before addressing Problem 3, one should askwhether a result analogous to Theorem 6 holds for a monotone graph property? Recall that [GT,Thm. 1] provides a monotone graph property in NP that is hard-to-test.AcknowledgmentsWe are grateful to Ronitt Rubinfeld for asking about the existence of hierarchy theorems for theadjacency matrix model. Ronitt raised this question during a discussion that took place at the Dagstuhl2008 workshop on sub-linear algorithms. We are also grateful to Arie Matsliah and Yoav Tzur forhelpful discussions. In particular, we thank Arie Matsliah for providing us with a proof that theblow-up operation does not preserve distances in a perfect manner.

14We note that the \blow-up" properties used in the proof of Theorem 4 do not allow one-sided testers with sub-linearquery complexity (because such testers may fail to �nd evidence that a graph is far from a blow-up of any graph).17

References[AGHP] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almost k-wiseindependent random variables. Journal of Random structures and Algorithms, Vol. 3 (3),pages 289{304, 1992.[ABI] N. Alon, L. Babai and A. Itai. A fast and Simple Randomized Algorithm for the MaximalIndependent Set Problem. J. of Algorithms, Vol. 7, pages 567{583, 1986.[AFKS] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy. E�cient Testing of Large Graphs.Combinatorica, Vol. 20, pages 451{476, 2000.[AFNS] N. Alon, E. Fischer, I. Newman, and A. Shapira. A Combinatorial Characterization of theTestable Graph Properties: It's All About Regularity. In 38th STOC, pages 251{260, 2006.[BSS] I. Benjamini, O. Schramm, and A. Shapira. Every Minor-Closed Property of Sparse Graphsis Testable. ECCC, TR08-010, 2008.[BLR] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications to NumericalProblems. JCSS, Vol. 47, No. 3, pages 549{595, 1993.[BHR] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova. 3CNF Properties Are Hard to Test. SIAMJournal on Computing, Vol. 35 (1), pages 1{21, 2005.[BOT] A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for testing 3-colorability in bounded-degree graphs. In 43rd FOCS, pages 93{102, 2002.[EKK+] F. Ergun, S. Kannan, S. R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers. JCSS,Vol. 60 (3), pages 717{751, 2000.[F] E. Fischer. The art of uninformed decisions: A primer to property testing. Bulletin of theEuropean Association for Theoretical Computer Science, Vol. 75, pages 97{126, 2001.[FM] E. Fischer and A. Matsliah. Testing Graph Isomorphism. In 17th SODA, pages 299{308,2006.[GGL+] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky. Testing Monotonic-ity. Combinatorica, Vol. 20 (3), pages 301{337, 2000.[GGR] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning andapproximation. Journal of the ACM, pages 653{750, July 1998.[GR1] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica,Vol. 32 (2), pages 302{343, 2002.[GR2] O. Goldreich and D. Ron. A Sublinear Bipartitness Tester for Bounded Degree Graphs.Combinatorica, Vol. 19 (3), pages 335{373, 1999.[GT] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. RandomStructures and Algorithms, Vol. 23 (1), pages 23{57, August 2003.[NN] J. Naor and M. Naor. Small-bias Probability Spaces: E�cient Constructions and Applications.SIAM J. on Computing, Vol 22, 1993, pages 838{856.[PRR] M. Parnas, D. Ron and R. Rubinfeld. Testing Membership in Parenthesis Laguages. RandomStructures and Algorithms, Vol. 22 (1), pages 98{138, 2003.18

[R] D. Ron. Property testing. In Handbook on Randomization, Volume II, pages 597{649, 2001.(Editors: S. Rajasekaran, P.M. Pardalos, J.H. Reif and J.D.P. Rolim.)[RS] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications toprogram testing. SIAM Journal on Computing, 25(2), pages 252{271, 1996.

19

APPENDICESAppendix A: Hard-to-test Properties in PIn this appendix we strengthen the hardness results of [GGR] that refer to the existence of propertiesthat are hard to test. These properties were shown to be in NP. Here we modify the constructionsin order to obtain such properties in P. The aforementioned results refer both to the model of genericfunctions and to the model of testing graph properties in the adjacency matrix model (a.k.a densemodel).Let us �rst comment on the reasons that the original properties were only known to be in NP(rather than in P).15 In the �rst case (i.e., the case of generic functions), the reason is the complexityof recognizing possible outputs of an adequate pseudorandom generator (which becomes easy whengiven an adequate seed as an NP-witness). In the second case (i.e., the case of graph properties),an additional reason stems from the fact that \closure under isomorphism" is applied to the basicconstruction, and so the problem of recognizing graphs that are isomorphic to graphs in a particularset arises (and becomes easy when given an adequate isomorphism as an NP-witness). Below, we shallavoid the use of NP-witnesses by augmenting the basic construction in adequate ways.We comment that the additional monotone closure used in [GT, Sec. 3] (in order to obtain monotonegraph properties) introduces additional di�culties, which we were not able to resolve (and thus thegraph properties that we obtain in this appendix are not monotone). Furthermore, our techniques seemincompatible with monotonicity. The result we prove is stated next.Theorem 6 There exists a graph property in P for which, in the adjacency matrix model, every testermust query a constant fraction of the representation of the graph (even when invoked with constantproximity parameter).Background: the GGR construction and two di�culties. The graph property for which aquadratic query complexity lower bound is proved in [GGR, Prop. 10.2.3.2] is de�ned in two steps.1. First, it is shown that certain sample spaces yield a collection of Boolean functions (i.e., a propertyof Boolean functions) that is hard to test (i.e., any tester must inspect at least a constant fractionof the function's values).On one hand, the sample space is relatively sparse (and thus a random function is far fromany function in the resulting collection), but on the other hand it enjoys a strong pseudorandomfeature (and so its projection on any constant fraction of the coordinates looks random). Thus, thefunctions in the class (which must be accepted with high probability) look random to any testerthat inspect only a small constant fraction of the function's values, whereas random functionsare far from the class (and should be rejected with high probability). This yields a contradictionto the existence of a tester that inspect only a small constant fraction of the function's values.2. Next, the domain of the functions is associated with the set of unordered pairs of elements in [N],and the collection of functions is \closed" under graph isomorphism (i.e., if a certain function on�N2 � is in the collection then so is any function obtained from it by a relabeling of the elements of[N]).The closure operation makes this collection correspond to a graph property (since it is nowpreserved under isomorphism). The parameters are such that the resulting collection (although15The current description is intended for readers who have some recall of the aforementioned result. A self-containeddescription follows. 20

likely to be N ! times bigger than the original one) is still sparse enough (and so a random graphis far from it). On the other hand, the indistinguishability feature is maintained.The two di�culties discussed above correspond to these two steps. Firstly, while the (support of the)sample space used in the proof of [GGR, Prop. 10.2.3.2] is in NP , it is not clear whether it is in P.Secondly, while NP-witnesses can be provided to prove that a given graph is isomorphic to a graphobtained in Step 1, it is not clear how to e�ciently verify such a claim without an NP-witness.Resolving the two di�culties (overview). The �rst di�culty is resolved by using an adequatepseudorandom generator for which membership in the corresponding sample space can be decided inpolynomial time. Speci�cally, we shall use an adequate
(n)-wise independence generator of n-bit longsequences rather than using a quite generic small-biased sample space as done in the proof of [GGR,Prop. 10.2.3.2].16The second di�culty is resolved by augmenting the graphs (constructed in Step 1) in a way thatmakes the original graph easy to recover from any relabeling of the resulting graph. Thus, applyingStep 2 to these augmented graphs yields a class of graphs that is easy to recognize (by �rst recoveringthe original graph and then checking that it corresponds to a string in the sample space).The actual construction. For every N , we start by considering an e�ciently constructible d-wiseindependent sample space over n-bit long strings, where n def= �N2 � and d def=
(n). Speci�cally, forsome constant � > 0, we use an explicitly constructible linear code mapping 0:01n-bit long strings ton-bit strings such that every �n positions in a generic codeword are linearly independent (see [ABI]).Such a code is constructed by constructing a party-check matrix that spans a 0:99n-dimensional vectorspace (called the \dual code") in which each vector has Hamming weight at least �n. We will use theparity-check matrix of the (primary) code in order to check membership in this code.For each sequence s = (s1; :::; sn) 2 f0; 1gn, we de�ne a graph Gs = ([N]; Es) by letting fi; jg 2 Esif and only if the (i; j)th bit of s equals 1, where we consider any �xed (e�ciently computable) order ofthe elements in f(i; j) : 1 � i < j � Ng. We call the graph Gs good if s is in the aforementioned samplespace and bad otherwise. We refer to each such graph as basic; that is, the set of basic graphs includesall good and bad graphs (and indeed includes all N -vertex graphs). We highlight the fact that the setof good graphs is recognizable in polynomial-time, because the support of the aforementioned samplespace is recognizable in polynomial-time (and the set of all N -vertex graphs is in 1-1 correspondenceto the set of all n-bit strings).Note that the set of good graphs is not likely to be closed under isomorphism, and thus this collectiondoes not constitute a graph property. Following [GGR], we wish to consider the \closure" of the set ofgood graphs under isomorphism, but before applying this operation we augment the graphs in a waythat makes it easy to reconstruct their original labeling. Speci�cally, for each graph Gs = ([N]; Es),we consider the augmented graph G0s = ([3N + 1]; E0s) obtained by adding a clique of size 2N + 1 toGs and connecting the ith vertex of Gs to the �rst i vertices in the clique; that is,E0s = Es [ffu; vg : u; v 2 fN + 1; :::; 3N + 1gg [ffi;N + jg : i 2 [N] ^ j 2 [i]g: (2)Now, we consider the set of �nal graphs obtained by \closing" the set of augmented graphs underisomorphism. That is, for every s in the sample space (equiv., an augmented graph G0s obtainedfrom a good graph Gs) and every permutation � over [3N + 1], we consider the �nal graph G0s;� =([3N + 1]; Es;�) that is de�ned so that f�(u); �(v)g 2 Es;� i� fu; vg 2 E0s. By construction, the setof �nal graphs is closed under isomorphism, and so this collection does constitute a graph property.Furthermore, as is shown next, the augmentation guarantees that the set of �nal graphs is in P.16We mention that an alternative construction may be based on a speci�c small-biased generator; speci�cally, on the�rst small-biased generator of [AGHP] (i.e., the one based on LFSR sequences).21

To test whether a graph G = ([3N+1]; E) is in the set of �nal graphs, we �rst attempt to reconstructthe corresponding basic graph. We use the fact that given a �nal graph it is easy to determine whichvertex belongs to the basic graph (since these vertices have degree at most (N � 1) + N = 2N � 1,whereas each clique vertex has degree at least 2N). Next, we determine the label of each vertexin the basic graphs by counting the number of its neighbors in the clique. (Needless to say, if thisreconstruction fails, then G is not a �nal graph and we just reject it.) Finally, we check whether theresulting basic graph belongs to the set of good graphs (and whether the rest of the graph indeed �tsthe augmentation procedure).Showing that the �nal graphs are hard to test. Our aim is to show that the property ofbeing a �nal (3N +1)-vertex graph cannot be tested using o(N2) queries. We shall prove this claim bypresenting two distributions on (3N+1)-vertex such that a tester of �nal graphs must distinguish thesetwo distributions whereas no machine that makes o(N2) queries can distinguish these two distributions.The �rst distribution is con�ned to �nal graphs, whereas with high probability graphs in the seconddistribution are 0:01-far from any �nal graph. Speci�cally, the �rst distribution, denoted GN , isobtained by uniformly selecting a good N -vertex graph and augmenting it to an (3N + 1)-graph (asdone above). The second distribution, denoted RN , is obtained by uniformly selecting a N -vertexgraph and augmenting it to a (3N + 1)-graph (again, as done above, except that here we apply thisaugmentation to all graphs). We shall �rst show that, with high probability, RN is 0:01-far from thethe set of �nal graphs.Claim 6.1 The probability that RN is 0.01-close to some �nal (3N + 1)-vertex graph is o(1).Proof: The key observation is that the set of �nal graphs is very sparse. Speci�cally, each good graphgives rise to at most (3N + 1)! �nal graphs, whereas the number of good graphs is 20:01n = 20:01�(N2).Thus, the number of �nal graphs is at most 2(0:01+o(1))�(N2). Each such graph is 0:01-close to less than20:1�(3N+12) � 2(0:9+o(1))�(N2) graphs, and so (for all su�ciently large N) the total number of graphs thatare 0:01-close to the set of �nal graphs is smaller than 20:92�(N2). Since RN is uniformly distributed ona set of 2(N2) graphs, the claim follows. 2Next, we show that o(N2) queries do not allow distinguishing RN from GN .Claim 6.2 Let M be a probabilistic oracle machine that makes at most d = �n � �N2=2 queries.Then, Pr[MRN (N) = 1] = Pr[MGN (N) = 1].Proof: Since both distributions are obtained by applying the same �xed augmentation to some pre-liminary distributions, it su�ces to consider queries to the preliminary distributions. Speci�cally, letus denote by G0N the uniform distribution over good N -vertex graphs, and let R0N denote the uniformdistribution over all N -vertex graphs. Indeed, GN (resp., RN) is obtained by applying the (�xed)augmentation of Eq. (2) to G0N (resp., R0N), and each query to GN (resp., RN) can be answered eitherby using a constant value or by making a single query to the corresponding G0N (resp., R0N). Thus, itsu�ces to show that a machine that makes at most d queries cannot distinguish R0N from G0N .We identify �N2 �-bit long strings with N -vertex graphs (obtained as in the �rst stage of the con-struction). Recall that G0N denote a graph uniformly selected among all graphs in the sample space;that is, it corresponds to a d-wise independent sequence of length n = �N2 �. So the claim reduces toasserting that using d queries one cannot distinguish between a d-wise independent sequence and auniformly distributed sequence, which follows easily from the de�nition of d-wise independent samplespaces (i.e., in such cases adaptive queries o�er no advantage). 2Theorem 6 follows by combining Claims 6.1 and 6.2 (with the fact that the set of �nal graphs is in P).22

Appendix B: A General Analysis of the E�ect of Graph Blow-UpA natural question is whether the distance between any two unlabeled graphs is perfectly preservedby any blow-up. This question was answered negatively by Arie Matsliah, and we start this appendixwith a presentation of his proof. The proof refers to two 4-vertex graphs and their 2-factor blow-up.Speci�cally, let G be a 4-vertex graph that consists of a triangle and an isolated vertex, and H consistsof a matching of size two, denoted ff1; 2g; f3; 4gg. Then, the (absolute) distance between G and H is 3edges (because at least two edges must be dropped from the triangle and one edge added to be incidentthe isolated vertex). On the other hand, it is not hard to see that the 2-factor blow-ups of G and H areat distance of at most 10 < 4 �3 edges. For example, consider an mapping of the eight vertices, denotedf10; 100; 20; 200; 30; 300; 40; 400g, of the 2-factor blow-up of H to 4 clouds such that i0 is mapped to cloud i,whereas 100 is mapped to the 1st cloud, 200 is mapped to the 4th cloud, 300 is mapped to the 2nd cloud,and 400 is mapped to the 3rd cloud (see Figure 1). Then, dropping the edges f30; 400g; f30; 40g; f300; 400gand adding 12� 5 = 7 edges among the 1st, 2nd and 4th clouds, we obtain a 2-factor blow-up of G.
1’’

1’ 2’

3’ 4’

3’’

2’’4’’

1 2

3 4Figure 1: A mapping of the 2-factor blow-up of H to four clouds that �t the 2-factor blow-up of GRecall that Claim 4.1 has established that for dispersed graphs the blow-up operation maintainsdistances up to a constant factor (depending on the dispersing parameter of one of the two graphs).Here we prove a weaker preservation that refers to all pairs of graphs (i.e., we waive the dispersingcondition).Theorem 7 There exists a universal constant c > 0 such that the following holds for every n; �0 and(unlabeled) n-vertex graphs G01; G02. If G01 is �0-far from G02, then for any t the (unlabeled) t-factorblow-up of G01 is c � (�0)2-far from the the (unlabeled) t-factor blow-up of G02.Proof: The current proof builds on the ideas underlying the proof of Claim 4.1. However, in thecurrent case we have no bound on the dispersing parameter of G01, and so the argument is more re�ned.Again, we let G1 (resp., G2) denote the (unlabeled) t-factor blow-up of G01 (resp., G02), and considera bijection � of the vertices of G1 = ([t � n]; E1) to the vertices of G2 = ([t � n]; E2) that minimizes thesize of the set of violations (as de�ned in Eq. (1)). Intuitively, it may be that � maps to each cloud ofG2 vertices that originate in di�erent clouds of G1, but we shall show that on the average these verticesdo not have very di�erent neighborhoods and hence they can be moved to obtain homogeneous cloudsin G2 without creating too many violations.Letting 2� denote the fraction of violation in Eq. (1), we say that two vertices in G01 are similar ifthe neighbor sets of these two vertices di�er on at most p� �n elements (i.e., vertices u and v are similarif the symmetric di�erence between the sets fw : fu;wg 2 Eg and fw : fv; wg 2 Eg has size at mostp� � n). Similarly, we say that two vertices in G1 are similar if the neighbor sets of these two vertices23

di�er on at most p� � tn elements. Indeed, a pair of vertices of G1 is similar if and only if these verticesreside in clouds of G1 that correspond to vertices that are similar in G01.We consider a maximal pairing of vertices of G2 that consists of disjoint pairs of vertices such thateach pair consists of vertices that reside in the same cloud of G2 but are not similar (w.r.t G1). We�rst show that this pairing may contain at most 2p� � tn pairs. As in the proof of Claim 4.1, thisholds because every pair contributes at least p� � tn violations to Eq. (1), whereas the total number ofviolations is bounded by 2� � (tn)2.We call a vertex of G2 free if it does not appear in the aforementioned maximal pairing, and recallthat the number of free vertices is at least (1� 4p�) � tn. Note that any two free vertices that reside inthe same cloud of G2 are similar with respect to G1 (i.e., they have similar neighborhoods in G1). Acloud of G2 is called good if at least t=2 of its vertices are free. We note that at least (1�8p�) �n of theclouds of G2 are good, and that these clouds contain at least (1� 4p�) � tn� 8p�n � t=2 = (1� 8p�) � tnfree vertices, which are called super-free.Consider an auxiliary t-regular bipartite graph with clouds of G1 on one side, clouds of G2 on theother side, and edges representing the mapping � (i.e., the ith cloud of G1 is connected to the jth cloudof G2 if some vertex that resides in the ith cloud of G1 is mapped by � to the jth cloud of G2). Considera t-coloring of the edges of this bipartite graph, and note that this t-coloring induces a t-partition of thepairs f(v; �(v)) : v 2 [tn]g such that each part contains n pairs that in turn contain a single vertex fromeach cloud of G1 and a single vertex from each cloud of G1. Thus, each part induces an injection of theclouds of G1 to n vertices that belong to di�erent clouds of G2, and the t sets of vertices appearing inthe range of these t injections constitute a partition of the set of vertices of G2. It follows that one ofthese injections, denoted � : [n]! [tn], contains in its range at least (1 � 8p�) � n super-free vertices.We call the (good) clouds of G2 containing these (super-free) vertices very good.Using the foregoing injection �, we de�ne a new bijection �0 of the vertices of G1 to the vertices ofG2. The bijection �0 maps all vertices in each cloud of G1 to some cloud of G2 such that the ith cloudof G1 is mapped to the �0(i)th cloud of G1, where �0(i) denote the cloud of G2 (under �) that containsthe vertex �(i). The number of violations created by �0 is upper-bounded as follows. The numberof violations between the very good clouds is upper-bounded by 4(� + p�) � (tn)2, which representsfour times the number of violations occuring under � between the very good clouds plus the slacknessbetween similar vertices residing in these clouds (speci�cally, between the vertex �(i) and the othersuper-free vertices in this cloud). The number of violations involving clouds that are not very good isupper-bounded by 8p� � (tn)2 (since the number of such clouds is 8p� �n). Thus, �0 yields a mapping ofG01 to G02 that has at most (4�+12p�) �n2 violations. Recalling that G01 is �0-far from G02, we concludethat 4�+ 12p� � �0, and the claim follows (with c = 1=256).

24

