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1 IntrodutionIn the last deade, the area of property testing has attrated muh attention (see, e.g., a ouple of reentsurveys [R1, R2℄). Loosely speaking, property testing typially refers to sub-linear time probabilistialgorithms for deiding whether a given objet has a predetermined property or is far from any objethaving this property. Suh algorithms, alled testers, obtain loal views of the objet by makingadequate queries; that is, the objet is seen as a funtion and the testers get orale aess to thisfuntion (and thus may be expeted to work in time that is sub-linear in the length of the objet).Following most work in the area, we fous on the query omplexity of property testing, measuredas a funtion of the size of the objet as well as the desired proximity (parameter). Interestingly,many natural properties an be tested in omplexity that only depends on the proximity parameter;examples inlude linearity testing [BLR℄, and testing various graph properties in two natural models(e.g., [GGR, AFNS℄ and [GR1, BSS℄, respetively). On the other hand, properties for whih testing re-quires essentially maximal query omplexity were proved to exist too; see [GGR℄ for arti�ial examplesin two models and [BHR, BOT℄ for natural examples in other models. In between these two extremes,there exist natural properties for whih the query omplexity of testing is logarithmi (e.g., monotoni-ity [EKK+, GGL+℄), a square root (e.g., bipartitness in the bounded-degree model [GR1, GR2℄), andpossibly other onstant powers (see [FM, PRR℄).1.1 Our main resultsOne natural question that arises is whether there exist properties of arbitrary query omplexity. Weanswer this question aÆrmatively, proving the existene of a rih hierarhy of query omplexity lasses.Suh hierarhy theorems are easiest to state and prove in the generi ase (treated in Setion 2): Looselyspeaking, for every sub-linear funtion q, there exists a property of funtions over [n℄ that is testableusing q(n) queries but is not testable using o(q(n)) queries.Similar hierarhy theorems are proved also for two standard models of testing graph properties:the adjaeny representation model (of [GGR℄) and the inidene representation model (of [GR1℄). Forthe inidene representation model (a.k.a the bounded-degree graph model), we show (in Setion 3)that, for every sub-linear funtion q, there exists a property of bounded-degree N -vertex graphs that istestable using q(N) queries but is not testable using o(q(N)) queries. Furthermore, one suh propertyorresponds to the set of N -vertex graphs that are 3-olorable and onsist of onneted omponents ofsize at most q(N).The bulk of this paper is devoted to hierarhy theorems for the adjaeny representation model(a.k.a the dense graph model), where the omplexity is stated as a funtion of the number of verties(rather than as a funtion of the number of all vertex pairs, whih is the representation size). Ourmain results for the adjaeny matrix model are:1. For every sub-quadrati funtion q, there exists a graph property � that is testable in q queries,but is not testable in o(q) queries. Furthermore, for \nie" funtions q, it is the ase that � is inP and the tester an be implemented in poly(q)-time. (See Setion 4.)2. For every sub-quadrati funtion q, there exists a monotone graph property � that is testable inO(q) queries, but is not testable in o(q) queries. (See Setion 5.)The adjaeny representation model is further studied in Setions 6 and 7. (See Setion 8 for furtherdisussion.)Conventions. For sake of simpliity, we state all results while referring to query omplexity as afuntion of the objet's size; that is, we onsider a �xed (onstant) value of the proximity parameter,denoted �. In suh ases, we sometimes use the term �-testing, whih refers to testing when the1



proximity parameter is �xed to �. All our lower bounds hold for any suÆiently small value of theproximity parameter, whereas the upper bounds hide a (polynomial) dependene on (the reiproal of)this parameter. In general, bounds that have no dependene on the proximity parameter refer to some(suÆiently small but) �xed value of this parameter.A remotely related prior work. In ontrast to the foregoing onventions, we mention here aresult that refers to graph properties that are testable in (query) omplexity that only depends on theproximity parameter. This result, due to [AS℄, establishes a (very sparse) hierarhy of suh properties.Spei�ally, [AS, Thm. 4℄ asserts that for every funtion q there exists a funtion Q and a graphproperty that is �-testable in Q(�) queries but is not �-testable in q(�) queries. (We note that while Qdepends only on q, the dependene proved in [AS, Thm. 4℄ is quite weak (i.e., Q is lower bounded bya non-onstant number of ompositions of q), and thus the hierarhy obtained by setting qi = Qi�1 fori = 1; 2; ::: is very sparse.)1.2 Our tehniquesThe proofs of the hierarhy theorems for the generi ase (treated in Setion 2) and for the inidenerepresentation graph model (treated in Setion 3), are quite straightforward. In ontrast, the treatmentof the dense graph model is signi�antly more involved. We disuss the soure of trouble next.Given that properties of maximal query omplexity are known in eah of the testing models that weonsider, a natural idea towards proving hierarhy theorems is to onstrut properties that orrespondto repetitions of the original properties; that is, eah objet in the new property onsists of an adequatenumber of objets, eah belonging to the original property. Straightforward implementations of thisidea work in the generi ase and in the inidene representation graph model, but not in the densegraph model. The point is that a naive repetition of a graph, in this model, neessarily reates a graphthat is not dense.Nevertheless, the graph blow-up operation (see Setion 4) does seem to be the adequate onstrutionthat we seek. Loosely speaking, the graph blow-up operation replaes eah vertex by an independentset, and replaes edges by orresponding omplete bipartite graphs. One soure of trouble is thatthe blow-up operation does not neessarily preserve distanes; indeed the relative distane betweenthe blow-up of G1 and G2 is at most the relative distane between the original graphs, but the naiveassumption that it may not be smaller is false. In Setion 4 we overome this diÆulty by showing thatfor ertain graphs, whih we all dispersed, the blow-up does preserve the original distanes (up to aonstant fator). Thus, we �rst redue the testing of the original property to testing a orrespondingproperty that refers to dispersed graphs. (An n-vertex graph is alled dispersed if the neighbor sets ofany two verties di�er on at least 
(n) elements.)Using dispersed graphs also allows us to overome another tehnial diÆulty, whih relates to theomplexity of our tester. In partiular, the use of dispersed graphs allows us to reover the anoniallabeling of an unlabeled graph, whih is helpful whenever a graph property (viewed as a set of labeledgraphs) is obtained by a losure under isomorphism of some set of labeled graphs (f. [GGR℄). (Fordetails see Setion 7.)When trying to obtain a result for monotone graph properties, we enounter another tehnialdiÆulty. The diÆulty is that standard onstrutions of monotone graph properties (f. [GT℄) tendto lak any loal struture, sine the property should be preserved under arbitrary edge additions. Wedemonstrate that the latter onlusion is a bit hasty, by showing that a loal struture an be essentiallymaintained as long as the edge density does not exeed some threshold, whereas we an inlude in theproperty all graphs that have edge density that exeeds this threshold. (For details see Setion 5.)A third type of diÆulty arises in Setion 6, where we use a di�erent type of graph blow-up.Spei�ally, under the aforementioned blow-up eah vertex is replaed by an independent set of the2



same size, whereas in Setion 6 we used a generalized blow-up in whih these independent sets mayhave di�erent sizes.1.3 OrganizationSetions 2 and 3 present hierarhy theorems for the generi ase and for the bounded-degree graphmodel, respetively. The bulk of this paper provides hierarhy theorems for graph properties in theadjaeny matrix model. The basi hierarhy theorem regarding this model is presented in Setion 4,whereas in Setion 5 we obtain suh a theorem for monotone graph properties.In Setion 6 we address a re�ned issue that has been ignored above. Spei�ally, we note that allour lower bounds refer to two-sided error testers, whereas the upper bounds in Setions 2 and 3 aredemonstrated using one-sided error testers, whih only make these separations stronger. In ontrast,the upper bounds presented in Setions 4 and 5 use two-sided error testers. In Setion 6 we modify theonstrution of Setion 4 in order to obtain one-sided error testers (while the lower bounds still holdfor two-sided error testers). However, the latter theorem loses some features of the former theorems;see Setion 8 for further disussion.We mention that our results for graph properties in the adjaeny matrix model use the existeneof graph properties that are in P and have maximal query omplexity. This result is presented inSetion 7, building on a prior onstrution of [GGR℄, whih only asserted suh properties in NP .2 Properties of Generi FuntionsIn the generi funtion model, the tester is given orale aess to a funtion over [n℄, and distanebetween suh funtions is de�ned as the fration of (the number of) arguments on whih these funtionsdi�er. In addition to the input orale, the tester is expliitly given two parameters: a size parameter,denoted n, and a proximity parameter, denoted �.De�nition 1 Let � = Sn2N �n, where �n ontains funtions de�ned over the domain [n℄ def= f1; :::; ng.A tester for a property � is a probabilisti orale mahine T that satis�es the following two onditions:1. The tester aepts eah f 2 � with probability at least 2=3; that is, for every n 2 N and f 2 �n(and every � > 0), it holds that Pr[T f (n; �)=1℄ � 2=3.2. Given � > 0 and orale aess to any f that is �-far from �, the tester rejets with probabilityat least 2=3; that is, for every � > 0 and n 2 N , if f : [n℄ ! f0; 1g� is �-far from �n, thenPr[T f (n; �) = 0℄ � 2=3, where g is �-far from �n if, for every g 2 �n, it holds that jfi 2 [n℄ :f(i) 6= g(i)gj > � � n.We say that the tester has one-sided error if it aepts eah f 2 � with probability 1; that is, for everyf 2 � and every � > 0, it holds that Pr[T f (n; �)=1℄ = 1.When � > 0 is �xed, we refer to the residual orale mahine T (�; �) by the term �-tester. We also usethe orresponding term �-testing �.De�nition 1 does not speify the query omplexity of the tester, and indeed an orale mahine thatqueries the entire domain of the funtion quali�es as a tester (with zero error probability...). Needlessto say, we are interested in testers that have signi�antly lower query omplexity. Reall that [GGR℄asserts that in some ases suh testers do not exist; that is, there exist properties that require linearquery omplexity. Building on this result, we show:Theorem 2 For every q : N ! N that is onto and at most linear, there exists a property � of Booleanfuntions that is testable (with one-sided error) in q +O(1) queries, but is not testable in o(q) queries(even when allowing two-sided error). 3



Proof: We start with an arbitrary property �0 of Boolean funtions for whih testing is knownto require a linear number of queries (even when allowing two-sided error). The existene of suhproperties was �rst proved in [GGR℄. Given �0 = Sm2N �0m, we de�ne � = Sn2N�n suh that �nonsists of \dupliated versions" of the funtions in �0q(n). Spei�ally, for every f 0 2 �0q(n), we de�nef(i) = f 0(i mod q(n)) and add f to �n, where i mod m is (non-standardly) de�ned as the smallestpositive integer that is ongruent to i modulo m,The query omplexity lower bound of � follows from the orresponding bound of �0. Spei�ally,approximate membership of f 0 in �0m an be tested by emulating the testing of an imaginary funtionf : [n℄ ! f0; 1g de�ned suh that m = q(n) and f(i) = f 0(i mod m); that is, testing f 0 w.r.t �0m isperformed by testing f w.r.t �n, while emulating orale aess to f by making orresponding queriesto f 0. Clearly, if f 0 2 �0m then f 2 �n, whereas if f 0 is �-far from �0m then f is bn=m�mn � �-far from �n.Assuming without loss of generality that q(n) � n=2, we have bn=m �m � n=2. Thus, a o(q(n))-queryorale mahine that distinguishes the ase that f 2 �n from the ase that f is (�=2)-far from �n, yieldsa o(m)-query orale mahine that distinguishes the ase that f 0 2 �0m from the ase that f 0 is �-farfrom �0m. We onlude that an 
(m) lower bound on �-testing �0m implies an 
(q(n)) lower bound on(�=2)-testing �n.The query omplexity upper bound of � follows by using a straightforward tester that essentiallyreonstruts the underlying funtion and heks whether it is in �0. Spei�ally, on input n; � andaess to f : [n℄ ! f0; 1g, we test whether f is a repetition of some funtion f 0 : [q(n)℄ ! f0; 1g in�0q(n). This is done by onduting the following two steps:1. Repeat the following basi hek O(1=�) times: Uniformly selet j 2 [q(n)℄ and r 2 [bn=q(n)�1℄,and hek whether f(r � q(n) + j) = f(j).2. Using q(n) queries, onstrut f 0 : [q(n)℄ ! f0; 1g suh that f 0(i) def= f(i), and hek whether f 0is in �0. Note that heking whether f 0 is in �0 requires no queries, and that the orrespondingomputational omplexity is ignored here.Note that this (non-adaptive) orale mahine has query omplexity q(n) +O(1=�), and it aepts anyf 2 � with probability 1. On the other hand, if f is aepted with probability at least 2=3, thenthe reonstruted f 0 must be in �0 (otherwise Step 2 would have rejeted with probability 1) and fmust be �-lose to the repetition of this f 0 (otherwise eah iteration of Step 1 would have rejeted withprobability at least �=2, where we again use q(n) � n=2). Thus, in this ase f is �-lose to �, whihestablishes the upper bound on the query omplexity of testing �. The theorem follows.Comment. Needless to say, Boolean funtions over [n℄ may be viewed as n-bit long binary strings.Thus, Theorem 2 means that, for every sub-linear q, there are properties of binary strings for whihthe query omplexity of testing is �(q). Given this perspetive, it is natural to omment that suhproperties exist also in P. This omment an be proved by starting with the hard-to-test propertyasserted in Theorem 7. Atually, starting with the hard-to-test property asserted in [LNS℄ (whih is inL), we obtain a hierarhy theorem for testing properties that are in L.3 Graph Properties in the Bounded-Degree ModelThe bounded-degree model refers to a �xed (onstant) degree bound, denoted d � 2. An N -vertexgraph G = ([N ℄; E) (of maximum degree d) is represented in this model by a funtion g : [N ℄ � [d℄ !f0; 1; :::; Ng suh that g(v; i) = u 2 [N ℄ if u is the ith neighbor of v and g(v; i) = 0 if v has lessthan i neighbors. (For simpliity, we assume here that the neighbors of v appear in arbitrary order inthe sequene g(v; 1); :::; g(v;deg(v)), where deg(v) def= jfi : g(v; i) 6= 0gj.) Distane between graphs is4



measured in terms of their aforementioned representation; that is, as the fration of (the number of)di�erent array entries (over dN). Graph properties are properties that are invariant under renamingof the verties (i.e., they are atually properties of the underlying unlabeled graphs).Reall that [BOT℄ proved that, in this model, testing 3-Colorability requires a linear number ofqueries (even when allowing two-sided error). Building on this result, we show:Theorem 3 In the bounded-degree graph model, for every q : N ! N that is onto and at most linear,there exists a graph property � that is testable (with one-sided error) in O(q) queries, but is not testablein o(q) queries (even when allowing two-sided error). Furthermore, this property is the set of N -vertexgraphs of maximum degree d that are 3-olorable and onsist of onneted omponents of size at mostq(N).Proof: Atually, we may start with an arbitrary property �0 that satis�es the following two onditions:1. Testing � requires a linear number of queries (even when allowing two-sided error).2. The property �0 is downward monotone; that is, if G0 2 �0 then any subgraph of G0 is in �0. Inpartiular, the single-vertex graph is in �0.Indeed, by [BOT℄, 3-Colorability is suh a property. Given �0 = Sn2N�0n, we de�ne � = SN2N �Nsuh that �N is the set of all graphs that onsist of onneted omponents that are eah in �0 andhave size at most q(N); that is, eah onneted omponent in any G 2 �N is in �0n for some n � q(N)(i.e., n denotes this omponent's size).The query omplexity lower bound of � follows from the orresponding bound of �0. Spei�ally,approximate membership of the n-vertex graph G0 in �0n an be tested by setting N suh that q(N) = nand emulating the testing of the N -vertex graph G obtained by taking t def= bN=q(N) opies of G0 (andadditional N � t � q(N) isolated verties). Clearly, if G0 2 �0n then G 2 �N . On the other hand, if G0is �-far from �0n then G is t�nN � �-far from �N (beause, by the downward monotoniity of �0, it suÆesto onsider the number of edges that must be omitted from G in order to obtain a graph in �N ). Asin the proof of Theorem 2, we may assume that t � n � N=2, and onlude that in the latter ase Gis (�=2)-far from �N . Thus, a o(q(N))-query orale mahine that distinguishes the ase that G 2 �Nfrom the ase that G is (�=2)-far from �N , yields a o(n)-query orale mahine that distinguishes thease that G0 2 �0n from the ase that G0 is �-far from �0n. The desired 
(q(N)) lower bound follows.The query omplexity upper bound of � is obtained by using a tester that selets at random astart vertex s in the input N -vertex graph and tests that s resides in a onneted omponent that is in�0n for some n � q(N). Spei�ally, on input N; � and aess to an N -vertex graph G, we repeat thefollowing test O(1=�) times.1. Uniformly selet a start vertex s, and explore its onneted omponent untill either enounteringq(N) + 1 verties or disovering that the onneted omponent has at most q(N) verties.2. Denoting the number of enountered verties by n, rejet of n > q(N). Similarly rejet if theenountered graph is not in �0n.The query omplexity of this orale mahine is O(d � q(N)=�), whih is O(q(N)) when both d and � > 0are onstants. Clearly, this orale mahine aepts any G 2 � with probability 1. In analyzing itsperformane on graphs not in �, we all a start vertex bad if it resides in a onneted omponent that iseither bigger than q(N) or not in �0. Note that if G has more than �N bad verties, then the foregoingtester rejets with probability at least 2=3. Otherwise (i.e., G has fewer than �N bad verties), G is�-lose to �, beause we an omit all edges inident to bad verties and obtain a graph in �. Thetheorem follows. 5



Comment. The onstrution used in the proof of Theorem 3 is slightly di�erent from the one usedin the proof of Theorem 2: In the proof of Theorem 3 eah objet in �N orresponds to a sequene of(possibly di�erent) objets in �0n, whereas in the proof of Theorem 2 eah objet in �N orrespondsto multiple opies of a single objet in �0n. While Theorem 2 an be proved using a onstrution thatis analogous to one used in the proof of Theorem 3, the urrent proof of Theorem 2 provides a betterstarting point for the proof of the following Theorem 4.4 Graph Properties in the Adjaeny Matrix ModelIn the adjaeny matrix model, an N -vertex graph G = ([N ℄; E) is represented by the Boolean funtiong : [N ℄� [N ℄! f0; 1g suh that g(u; v) = 1 if and only if u and v are adjaent in G (i.e., fu; vg 2 E).Distane between graphs is measured in terms of their aforementioned representation; that is, as thefration of (the number of) di�erent matrix entries (over N2). In this model, we state omplexities interms of the number of verties (i.e., N) rather than in terms of the size of the representation (i.e.,N2). Again, we fous on graph properties (i.e., properties of labeled graphs that are invariant underrenaming of the verties).Reall that [GGR℄ proved that, in this model, there exist graph properties for whih testing requiresa quadrati (in the number of verties) query omplexity (even when allowing two-sided error). It wasfurther shown that suh properties are in NP. Slightly modifying these properties, we show that theyan be plaed in P; see Setion 7. Building on this result, we show:Theorem 4 In the adjaeny matrix model, for every q : N ! N suh that N 7! bpN is onto andat most linear, there exists a graph property � that is testable in q queries, but is not testable in o(q)queries. (Both the upper and lower bounds refer to two-sided error testers.) Furthermore, if N 7! q(N)is omputable in poly(logN)-time, then � is in P, and the tester is relatively eÆient in the sense thatits running time is polynomial in the total length of its queries.We stress that, unlike in the previous results, the positive part of Theorem 4 refers to a two-sided errortester. This is fair enough, sine the negative side also refers to two-sided error testers. Still, one mayseek a stronger separation in whih the positive side is established via a one-sided error tester. Suha separation is presented in Theorem 6 (alas the positive side is established via a tester that is notrelatively eÆient).Outline of the proof of Theorem 4. The basi idea of the proof is to implement the strategyused in the proof of Theorem 2. The problem, of ourse, is that we need to obtain graph properties(rather than properties of generi Boolean funtions). Thus, the trivial \blow-up" (of Theorem 2)that took plae on the truth-table (or funtion) level has to be replaed by a blow-up on the vertexlevel. Spei�ally, starting from a graph property �0 that requires quadrati query omplexity, weonsider the graph property � onsisting of N -vertex graphs that are obtained by a (N=pq(N))-fatorblow-up of pq(N)-vertex graphs in �0, where G is a t-fator blow-up of G0 if the vertex set of G an bepartitioned into t-sized sets that orrespond to the verties of G0 suh that the edges between these setsrepresent the edges of G0; that is, if fi; jg is an edge in G0, then there is a omplete bipartite betweenthe ith set and the jth set, and otherwise there are no edges between this pair of sets. (In partiular,there are no edges inside any set.)Note that the notion of \graph blow-up" does not o�er an easy identi�ation of the underlyingpartition; that is, given a graph G that is as a t-fator blow-up of some graph G0, it is not neessaryeasy to determine a partition of the vertex set of G (into t-sized sets) suh that the edges betweenthese (t-sized) sets represent the edges of G0. Things may beome even harder if G is merely lose toa t-fator blow-up of some graph G0. We resolve these as well as other diÆulties by augmenting thegraphs of the starting property �0. 6



The proof of Theorem 4 is organized aordingly: In Setion 4.1, we onstrut � based on �0 by�rst augmenting the graphs and then applying graph blow-up. In Setion 4.2 we lower-bound the queryomplexity of � based on the query omplexity of �0, while oping with the non-trivial question of howdoes the blow-up operation a�et distanes between graphs. In Setion 4.3 we upper-bound the queryomplexity of �, while using the aforementioned augmentations in order to obtain a tight result (ratherthan an upper bound that is o� by a polylogarithmi fator).4.1 The blow-up property �Our starting point is any graph property �0 = Sn2N �0n for whih testing requires quadrati queryomplexity. Furthermore, we assume that �0 is in P. Suh a graph property is presented in Theorem 7(see Setion 7, whih builds on [GGR℄).The notion of graphs that have \substantially di�erent vertex neighborhoods" is entral to ouranalysis. Spei�ally, for a real number � > 0, we say that a graph G = (V;E) is �-dispersed if theneighbor sets of any two verties di�er on at least � � jV j elements (i.e., for every u 6= v 2 V , thesymmetri di�erene between the sets fw : fu;wg 2 Eg and fw : fv; wg 2 Eg has size at least � � jV j).We say that a set of graphs is dispersed if there exists a onstant � > 0 suh that every graph in theset is �-dispersed. (Our notion of dispersibility has nothing to do with the notion of dispersers, whihin turn is a weakening of the notion of (randomness) extrators (see, e.g., [S℄).)The augmentation. We �rst augment the graphs in �0 suh that the resulting graphs are dispersed,while the augmentation amounts to adding a linear number of verties. The fat that these resultinggraphs are dispersed will be useful for establishing both the lower and upper bounds. The augmentationis performed in two steps. First, setting n0 = 2dlog2(2n+1)e 2 [2n + 1; 4n℄, we augment eah graphG0 = ([n℄; E0) by n0 � n isolated verties, yielding an n0-vertex graph H 0 = ([n0℄; E0) in whih everyvertex has degree at most n� 1. Next, we augment eah resulting n0-vertex graph H 0 by an n0-vertexlique and onnet the verties of H 0 and the lique verties by a bipartite graph that orresponds to aHadamard matrix; that is, the ith vertex of H 0 is onneted to the jth vertex of the lique if and onlyif the inner produt modulo 2 of i� 1 and j � 1 (viewed as (log2 n0)-bit long strings) equals 1. Thus,eah n0-vertex graph H 0 yields a 2n0-vertex graph that ontains H 0 one one side, a lique on the otherside, and a \Hadamard-based" bipartite graph onneting them (see Figure 1).We denote the resulting set of (unlabeled) graphs by �00 (and sometimes refer to �00 as the set ofall labeled graphs obtained from these unlabeled graphs). We show that �00 is dispersed and inheritsthe fundamental features of �0.
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Figure 1: The two stage augmentation of �0. The verties i and j are onneted if and only if the innerprodut modulo 2 of the binary representations of i� 1 and j � 1 equals 1.Claim 4.1 The graph property �00 satis�es the following onditions.7



1. The set �00 is dispersed; that is, the resulting 2n0-vertex graphs have vertex neighborhoods thatdi�er on at least n � n0=4 verties.2. Testing �00 requires a quadrati number of queries.3. The set �00 is in P.Proof: We �rst show that the resulting 2n0-vertex graphs have vertex neighborhoods that di�er onat least n � n0=4 verties. Consider the graph obtained by augmenting the n-vertex graph G0, andlet H 0 be the intermediate n0-vertex graph derived from G0. Then, verties in H 0 neighbor (at most)n0=2 lique verties, whereas verties in the lique neighbor all other n0� 1 lique verties. Thus, thesetypes of verties di�er on at least (n0=2) � 1 > n� 1 neighbors. As for any two verties in H 0, by theuse of the Hadamard bipartite graph, their neighborhood in the lique disagrees on n0=2 > n verties.An analogous laim holds with respet to any two verties of the lique.Proving that testing �00 requires a quadrati number of queries is done by reduing testing �0 totesting �00; spei�ally, �-testing membership in �0n redues to �0-testing membership in �002n0 , wheren0 � 4n and �0 = �=64. The redution merely emulates an 2n0-vertex graph by making queries to toorresponding n-vertex graph (while answering some queries (i.e., those that are not on�ned to theoriginal graph) aording to the onstrution and without issuing any queries). Note that, sine theoriginal graph oupies an n=2n0 � 1=8 fration of the augmented graph, the relative distane to theproperty is redued by a fator of at most 64.Finally, note that the hypothesis that �0 2 P implies that �00 is also in P, beause it is easy todistinguish the original graph from the verties added to it, sine the lique verties have degree atleast n0 � 1 whereas the verties of G0 have degree at most (n � 1) + (n0=2) < n0 � 1 (and isolatedverties of H 0 have neighbors only in the lique). One this is done, we an verify that the originalgraph is in � (using � 2 P), and that the additional edges orrespond to a Hadamard matrix. 2Applying graph blow-up. Next, we apply an (adequate fator) graph blow-up to the augmentedset of graphs �00. Atually, for simpliity of notation we assume, without loss of generality, that�0 = Sn2N �0n itself is dispersed, and apply graph blow-up to �0 itself (rather than to �00). Given adesired omplexity bound q : N ! N , we �rst set n = pq(N), and next apply to eah graph in �0nan N=n-fator blow-up, thus obtaining a set of N -vertex graphs denoted �N . (Indeed, we assume forsimpliity that both n = pq(N) and N=n are integers.) Reall that G is a t-fator blow-up of G0 if thevertex set of G an be partitioned into t-sized sets, alled louds, suh that the edges between theselouds represent the edges of G0; that is, if fi; jg is an edge in G0, then there is omplete bipartitebetween the ith loud and the jth loud, and otherwise there are no edges between this pair of louds.This yields a graph property � = SN2N �N .Let us �rst show that � is in P. The proof that the query omplexity of testing � indeed equals�(q) is undertaken in the next two setions.Claim 4.2 The graph property � is in P.Proof: The proof relies on the hypothesis that �0 is dispersed, or rather on the fat that eah vertexin eah G0 2 �0 has a distint set of neighbors. This fat allows us to luster verties (in a graphresulting from a blow-up of any suh G0) aording to their neighbor set. Spei�ally, given any graphN -vertex graph G, we �rst luster its verties aording to their neighborhood, and hek whether thenumber of lusters equals n = pq(N). (Note that if G 2 �N , then we obtain exatly n (equal sized)lusters, whih orrespond to the n louds that are formed in the N=n-fator blow-up that yields G.)Next, we hek that eah luster has size N=n and that the edges between these lusters orrespond tothe blow-up of some n-vertex graph, denoted G0. Finally, we hek whether G0 is in �0n, while relyingon the fat that �0 2 P. 2 8



4.2 Lower-bounding the query omplexity of testing �In this setion we prove that the query omplexity of testing � is 
(q). The basi idea is reduingtesting �0 to testing �; that is, given a graph G0 that we need to test for membership in �0n, we test itsN=n-fator blow-up for membership in �N , where N is hosen suh that n = pq(N). This approahrelies on the assumption that the N=n-fator blow-up of any n-vertex graph that is far from �0n resultsin a graph that is far from �N . (Needless to say, the N=n-fator blow-up of any graph in �0n results ina graph that is in �N .)Unfortunately, as shown by Arie Matsliah, the aforementioned assumption does not hold in thestrit sense of the word (i.e., it is not true that the blow-up of any graph that is �-far from �0 resultsin a graph that is �-far from �).1 However, for our purposes it suÆes to prove a relaxed version ofthe aforementioned assumption that only asserts that for any �0 > 0 there exists an � > 0 suh that theblow-up of any graph that is �0-far from �0 results in a graph that is �-far from �. Below we prove thisassertion for � = 
(�0) and rely on the fat that �0 is dispersed. (We mention that in Appendix B ofour tehnial report [GKNR℄, we present a more ompliated proof that holds for arbitrary �0 (whihneed not be dispersed), but with � = 
(�0)2. Our result was superseded by Oleg Pikhurko, who showedthat the distane is atually preserved up to a fator of three [P, Se. 4℄.)Lemma 4.3 There exists a universal onstant  > 0 suh that the following holds for every n; �0; � andevery pair of (unlabeled) n-vertex graphs, (G01; G02). If G01 is �-dispersed and �0-far from G02, then forany t the (unlabeled) t-fator blow-up of G01 is � � �0-far from the (unlabeled) t-fator blow-up of G02.Using Lemma 4.3 we infer that if G0 is �0-far from �0 then its blow-up is 
(�0)-far from �. Thisinferene relies on the fat that �0 is dispersed (and on Lemma 4.3 when applied to G02 = G0 and everyG01 2 �0).Proof: Let G1 (resp., G2) denote the (unlabeled) t-fator blow-up of G01 (resp., G02), and onsider abijetion � of the verties of G1 = ([t � n℄; E1) to the verties of G2 = ([t � n℄; E2) that minimizes thesize of the set (of violations)f(u; v) 2 [t � n℄2 : fu; vg2E1 i� f�(u); �(v)g =2E2g: (1)(Note that Eq. (1) refers to ordered pairs, whereas the distane between graphs refers to unorderedpairs.) Clearly, if � were to map to eah loud of G2 only verties that belong to a single loud of G1(equiv., for every u and v that belong to the same loud of G1 it holds that �(u) and �(v) belong tothe same loud of G2), then G2 would be �0-far from G1 (sine the fration of violations under suh amapping equals the fration of violations in the orresponding mapping of G01 to G02). The problem,however, is that it is not lear that � behaves in suh a nie manner (and so violations under � donot diretly translate to violations in mappings of G01 to G02). Still, we show that things annot beextremely bad.Spei�ally, we all a loud of G2 good if at least (t=2) + 1 of its verties are mapped to it (by �)from a single loud of G1. Letting 2� denote the fration of violations in Eq. (1) (i.e., the size of thisset divided by (tn)2), we �rst show that at least (1� (6�=�)) � n of the louds of G2 are good.1Matsliah's proof refers to two 4-vertex graphs and their 2-fator blow-up. Spei�ally, let G be a 4-vertex graph thatonsists of a triangle and an isolated vertex, and H onsists of a mathing of size two, denoted ff1; 2g; f3; 4gg. Then,the (absolute) distane between G and H is 3 edges (beause at least two edges must be dropped from the triangle andone edge added to be inident the isolated vertex). On the other hand, it is not hard to see that the 2-fator blow-upsof G and H are at distane of at most 10 < 4 � 3 edges. For example, onsider an mapping of the eight verties, denotedf10; 100; 20; 200; 30; 300; 40; 400g, of the 2-fator blow-up of H to four louds suh that vertex i0 is mapped to loud i, whereasvertex 100 is mapped to the 1st loud, vertex 200 is mapped to the 4th loud, vertex 300 is mapped to the 2nd loud, andvertex 400 is mapped to the 3rd loud. Then, dropping the edges f30; 400g; f30; 40g; f300; 400g and adding 12 � 5 = 7 edgesamong the 1st, 2nd and 4th louds, we obtain a 2-fator blow-up of G.9



Assume, towards the ontradition, that G2 ontains more that (6�=�) �n louds that are not good.Considering any suh a (non-good) loud, we observe that it must ontain at least t=3 disjoint pairs ofverties that originate in di�erent louds of G1 (i.e., for eah suh pair (v; v0) it holds that ��1(v) and��1(v0) belong to di�erent louds of G1).2 Reall that the edges in G2 respet the loud struture ofG2 (whih in turn respets the edge relation of G02). But verties that originate in di�erent louds ofG1 di�er on at least � � tn edges in G1. Thus, every pair (v; v0) (in this loud of G2) suh that ��1(v)and ��1(v0) belong to di�erent louds of G1 ontributes at least � � tn violations to Eq. (1).3 It followsthat the set in Eq. (1) has size greater than6�n� � t3 � �tn = 2� � (tn)2in ontradition to our hypothesis regarding �.Having established that at least (1 � (6�=�)) � n of the louds of G2 are good and realling that agood loud of G2 ontains a strit majority of verties that originates from a single loud of G1, weonsider the following bijetion �0 of the verties of G1 to the verties of G2: For eah good loud g ofG2 that ontains a strit majority of verties from loud i of G1, we map all verties of the ith loudof G1 to loud g of G2, and map all other verties of G1 arbitrarily.The number of violations under �0 is upper-bounded by four times the number of violations ouringunder � between good louds of G2 (i.e., at most 4 � 2� � (tn)2) plus at most (6�=�) � tn � tn violationsreated with the remaining (6�=�) � n louds. This holds, in partiular, for a bijetion �0 that maps toeah remaining loud of G2 verties originating in a single loud of G1. This �0, whih maps ompletelouds of G1 to louds of G2, yields a mapping of G01 to G02 that has at most (8�+(6�=�)) �n2 violations.Realling that G01 is �0-far from G02, we onlude that 8�+ (6�=�) > 2�0, whih implies � > ��0=7. Thelaim follows (sine � is the minimal value suh that G1 is �-lose to G2). 2Using Lemma 4.3, we are ready to establish the 
(q) lower bound on the query omplexity of testing�.Proposition 4.4 Any tester for � has query omplexity 
(q).Proof: Reall that Lemma 4.3 implies that if G0 is �0-far from �0, then its blow-up is 
(�0)-far from �.Using this fat, we onlude that �0-testing of �0 redues to 
(�0)-testing of �. Thus, a quadrati lowerbound on the query omplexity of �0-testing �0n yields an 
(n2) lower bound on the query omplexity of
(�0)-testing �N , where n = pq(N). Hene, we obtain an 
(q) lower bound on the query omplexityof testing �, for some onstant value of the proximity parameter. 24.3 An optimal tester for property �In this setion we prove that the query omplexity of testing � is at most q (and that this an be metby a relatively eÆient tester). We start by desribing this (alleged) tester.Algorithm 4.5 On input N and proximity parameter �, and when given orale aess to a graphG = ([N ℄; E), the algorithm proeeds as follows:2This pairing is obtained by �rst lustering the verties of the loud of G2 aording to their origin in G1. By thehypothesis, eah luster has size at most t=2. Next, observe that taking the union of some of these lusters yields a setontaining between t=3 and 2t=3 verties. Finally, we pair verties of this set with the remaining verties. (A betterbound of bt=2 an be obtained by using the fat that a t-vertex graph of minimum degree t=2 ontains a Hamiltonianyle.)3For eah suh pair (v; v0), there exist at least � � tn verties u suh that exatly one of the (unordered) pairsf��1(u); ��1(v)g and f��1(u); ��1(v0)g is an edge in G1. Realling that for every u, the pair fu; vg is an edge in G2 ifand only if fu; v0g is an edge in G2, it follows that for at least � � tn verties u either (��1(u); ��1(v)) or (��1(u); ��1(v0))is a violation. 10



1. Setting �0 def= �=3 and omputing n pq(N).2. Finding n representative verties; that is, verties that reside in di�erent alleged louds, whihorresponds to the n verties of the original graph. This is done by �rst seleting s def= O(log n)random verties, hereafter alled the signature verties, whih will be used as a basis for lusteringverties (aording to their neighbors in the set of signature verties). Next, we selet s0 def=O(��2 � n logn) random verties, probe all edges between these new verties and the signatureverties, and luster these s0 verties aordingly (i.e., two verties are plaed in the same lusterif and only if they neighbor the same signature verties). If the number of lusters is di�erentfrom n, then we rejet. Furthermore, if the number of verties that reside in eah luster is not(1 � �0) � s0=n, then we also rejet. Otherwise, we selet (arbitrarily) a vertex from eah luster,and proeed to the next step.3. Note that the signature verties (seleted in Step 2) indue a lustering of all the verties of G.Referring to this lustering, we hek that the edges between the lusters are onsistent with theedges between the representatives. Spei�ally, we selet uniformly O(1=�) vertex pairs, lusterthe verties in eah pair aording to the signature verties, and hek that their edge relationagrees with that of their orresponding representatives. That is, for eah pair (u; v), we �rst �ndthe luster to whih eah vertex belongs (by making s queries per eah vertex), determine theorresponding representatives, denoted (ru; rv), and hek (by two queries) whether fu; vg 2 E i�fru; rvg 2 E. (Needless to say, if one of the newly seleted verties does not reside in any of then existing lusters, then we rejet.)4. Finally, using �n2� < q(N)=2 queries, we determine the subgraph of G indued by the n represen-tatives. We aept if and only if this indued subgraph is in �0.Note that, for onstant value of �, the query omplexity is dominated by Step 4, and is thus upper-bounded by q(N). (In general, the query omplexity is o(q(N)=�2) + (q(N)=2) = O(q(N)=�2).) Fur-thermore, for onstant �, the above algorithm an be implemented in time poly(n � logN) = poly(q(N) �logN). We omment that the Algorithm 4.5 is adaptive, and that a straightforward non-adaptiveimplementation of it has query omplexity (that is dominated by) �s02� = O(n logn)2 = eO(q(N)).Remark 4.6 In fat, a (non-adaptive) tester of query omplexity eO(q(N)) an be obtained by a simpleralgorithm that selets a random set of s0 verties and aepts if and only if the indued subgraph is �0-lose to being a (s0=n-fator) blow-up of some graph in �0n. Spei�ally, we an luster these s0 vertiesby using them also in the role of the signature verties. Furthermore, these verties (or part of them)an also be designated for use in Step 3. We note that the analysis of this simpler algorithm does notrely on the hypothesis that �0 is dispersed.We now turn to analyzing the performane of Algorithm 4.5. We note that the proof that this algorithmaepts, with very high probability, any graph in �N relies on the hypothesis that �0 is dispersed. (Inontrast, the proof that Algorithm 4.5 rejets, with very high probability, any graph that is �-far from�N does not rely on this hypothesis.)Proposition 4.7 Algorithm 4.5 onstitutes a tester for �.Proof: We �rst show that any graph in �N is aepted with very high probability. Suppose thatG 2 �N is a N=n-fator blow-up of G0 2 �0n. Relying on the fat that �0 is dispersed we note that,for every pair of verties in G0 2 �0n, with onstant probability a random vertex has a di�erent edgerelation to the members of this pair. Therefore, with very high (onstant) probability, a random set ofs = O(logn) verties yields n di�erent neighborhood patterns for the n verties of G0. It follows that,11



with the same high probability, the s signature verties seleted in Step 2 indued n (equal sized) lusterson the verties of G, where eah luster ontains the loud of N=n verties (of G) that replaes a singlevertex of G0. Thus, with very high (onstant) probability, the sample of s0 = O(��2 �n log n) additionalverties seleted in Step 2 hits eah of these lusters (equiv., louds) and furthermore has (1� �0) � s0=nhits in eah luster. We onlude that, with very high (onstant) probability, Algorithm 4.5 does notrejet G in Step 2. Finally, assuming that Step 2 does not rejet (and we did obtain representativesfrom eah loud of G), Algorithm 4.5 never rejets G 2 � in Steps 3 and 4.We now turn to the ase that G is �-far from �N , where we need to show that G is rejeted withhigh onstant probability (say, with probability 2/3). We will atually prove that if G is aepted withsuÆiently high onstant probability (say, with probability 1/3), then it is �-lose to �N . We all a setof s verties good if (when used as the set of signature verties) it indues a lustering of the verties ofG suh that n of these lusters are eah of size (1� 2�0) �N=n. Note that good s-vertex sets must exist,beause otherwise Algorithm 4.5 rejets in Step 2 with probability at least 1� exp(
(�2=n) � s0) > 2=3.Fixing any good s-vertex set S, we all a sequene of n verties R = (r1; :::; rn) well-representing if(1) ri resides in the ith aforementioned luster, (2) the subgraph of G indued by R is in �0n, and (3)when lustering the verties of G aording to S, at most �0 fration of the vertex pairs of G have anedge relation that is inonsistent with the orresponding verties in R. That is, ondition (3) requiresthat at most �0 fration of the vertex pairs in G violate the ondition by whih fu; vg 2 E if and only iffri; rjg 2 E, where u resides in the ith luster (w.r.t S) and v resides in the jth luster. Now, note thatthere must exist a good s-vertex set S that has a well-representing n-vertex sequene R = (r1; :::; rn),beause otherwise Algorithm 4.5 rejets with probability at least 2=3. (Spei�ally, if a � frationof the s-vertex sets are good (but have no orresponding n-sequene that is well-representing), thenStep 2 rejets with probability at least (1� �) � 0:9 and either Step 3 or Step 4 rejet with probability� �min((1 � (1� �0)
(1=�)); 1) > 0:9�.)Fixing any good s-vertex set S and any orresponding R = (r1; :::; rn) that is well-representing, weonsider the lustering indued by S, denoted (C1; ::::; Cn;X), where X denotes the set of (untypial)verties that do not belong to the n �rst lusters. Reall that, for every i 2 [n℄, it holds that ri 2 Ciand jCij = (1 � 2�0) � N=n. Furthermore, denoting by i(v) the index of the luster to whih vertexv 2 [N ℄ nX belongs, it holds that the number of pairs fu; vg (from [N ℄ nX) that violate the onditionfu; vg 2 E i� fri(u); ri(v)g 2 E is at most �0 � �N2 �. Now, observe that by modifying at most �0 � �N2 � edgesin G we an eliminate all the aforementioned violations, whih means that we obtain n sets with edgerelations that �t some graph in �0n (indeed the graph obtained as the subgraph of G indued by R,whih was not modi�ed). Reall that these sets are eah of size (1� 2�0) �N=n, and so we may need tomove 2�0N verties in order to obtain sets of size N=n. This movement may reate up to 2�0N � (N � 1)new violations, whih an be eliminated by modifying at most 2�0 � �N2 � additional edges in G. Using� = 3�0, we onlude that G is �-lose to �N . The proposition follows. 2Conlusion. We just showed that Algorithm 4.5 satis�es the upper bound requirements of Theo-rem 4; that is, it is a (relatively eÆient) tester for � and has query omplexity O(q). Realling thatProposition 4.4 establishes a orresponding 
(q) lower bound, we omplete the proof of Theorem 4.5 Revisiting the Adjaeny Matrix Model: Monotone PropertiesIn ontinuation to Setion 4, whih provides a hierarhy theorem for generi graph properties (in theadjaeny matrix model), we present in this setion a hierarhy theorem for monotone graph properties(in the same model). We say that a graph property � is monotone if adding edges to any graph thatresides in � yields a graph that also resides in �. (That is, we atually refer to upward monotoniity,12



and an idential result for downward monotoniity follows by onsidering the omplement graphs.)4Theorem 5 In the adjaeny matrix model, for every q : N ! N as in Theorem 4, there exists amonotone graph property � that is testable in O(q) queries, but is not testable in o(q) queries.Note that Theorem 5 refers to two-sided error testing (just like Theorem 4). Theorems 4 and 5 areinomparable: the former provides graph properties that are in P (and the upper bound is establishedvia relatively eÆient testers), whereas the latter provides graph properties that are monotone.Outline of the proof of Theorem 5. Starting with the proof of Theorem 4, one may want to applya monotone losure to the graph property � (presented in the proof of Theorem 4). (Indeed, this isthe approah used in the proof of [GT, Thm. 1℄.) Under suitable tuning of parameters, this allows toretain the proof of the lower bound, but the problem is that the tester presented for the upper boundfails. The point is that this tester (i.e., Algorithm 4.5) relies on the struture of graphs obtained viablow-up, whereas this struture is not maintained by the monotone losure.One possible solution, whih assumes that all graphs in � have approximately the same edge density,is to augment the monotone losure of � with all graphs that have signi�antly larger edge density,where the orresponding threshold on the number of edges is denoted T . Intuitively, this way, we ana�ord aepting any graph that has more than T edges, and handle graphs with fewer edges by relyingon the fat that in this ase the blow-up struture is essentially maintained (beause only few edgesare added).Unfortunately, implementing this idea is not straightforward: On the one hand, we should set thethreshold high enough so that the lower bound proof still holds, whereas on the other hand suh asetting may destroy the loal struture of a onstant fration of the graph's verties. The solution tothis problem is to use an underlying property �0 that supports \error orretion" (i.e., allows reoveringthe original struture even when a onstant fration of it is destroyed as above).The proof of Theorem 5 opes with the aforementioned diÆulties by a areful implementationof the stated ideas. In Setion 5.1, we onstrut a monotone property � by ombining the blow-upoperation with monotone (upward) losure and augmenting � with all suÆiently dense graphs. InSetion 5.2 we lower-bound the query omplexity of � by showing that for graphs of non-exessivemaximal degree the distane to the property analyzed in Setion 4.2 is linearly related to the distaneto the monotone property �. Finally, in Setion 5.3, we upper-bound the query omplexity of � byanalyzing the struture of the graphs in � that are not too dense.5.1 The monotone property �Our starting point is a graph property �0 = Sn2N �0n for whih testing requires quadrati queryomplexity. Furthermore, we assume that this property satis�es the additional onditions stated in thefollowing laim.Claim 5.1 There exists a graph property �0 = Sn2N�0n for whih testing requires quadrati queryomplexity. Furthermore, for every onstant Æ > 0 and all suÆiently large n, it holds that every graphG0 = ([n℄; E0) in �0n satis�es the following two (loal) onditions:1. Every vertex has degree (0:5 � Æ) � n; that is, for every v 2 [n℄ it holds that fu : fv; ug 2 E0g hassize at least (0:5 � Æ) � n and at most (0:5 + Æ) � n.2. Every two di�erent verties neighbor at least (0:75� Æ) � n verties; that is, for every v 6= w 2 [n℄it holds that fu : fv; ug 2 E0 _ fw; ug 2 E0g has size at least (0:75 � Æ) � n.4We stress that these notions of monotoniity are di�erent from the notion of monotoniity onsidered in [AS℄, wherea graph property � is alled monotone if any subgraph of a graph in � is also in �.13



Moreover, pairs of graphs in �0n are related by the following two (global) onditions:3. Every two non-isomorphi graphs in �0n di�er on at least 0:4 ��n2� vertex pairs; that is, if G01; G02 2�0n are not isomorphi, then G01 is 0:4-far from G02.4. Graphs in �0n that are isomorphi via a mapping that �xes less than 90% of the verties di�er onat least 0:01 � �n2� vertex pairs; that is, if G01; G02 2 �0n are isomorphi via � suh that jfi 2 [n℄ :�(i) 6= igj > 0:1n, then G01 is 0:01-far from G02, where here we onsider distane between labeledgraphs (or rather their adjaeny matries).In addition, with probability 1� o(1), a random n-vertex graph is 0:4-far from �0n.Note that the graphs in �0 are 2 � (0:25� 2Æ)-dispersed, beause j�(u) n�(v)j = j�(u)[�(v)j � j�(v)j �(0:75 � Æ)n� (0:5 + Æ)n = (0:25 � 2Æ)n.Proof: The graph property presented in the proof of [GGR, Prop. 10.2.3.1℄ an be easily modi�ed tosatisfy the foregoing onditions. Reall that this property is obtained by seleting K def= exp(�(n2))random graphs and onsidering the n! isomorphi opies of eah of these graphs. Note that eah ofthe \basi" K graphs satis�es the two loal onditions with probability at least 1� n2 � exp(�
(Æ2n)).Omitting the relatively few exeptional graphs (whih violate either of these two onditions), we obtain aproperty that satis�es both loal onditions and maintains the query-omplexity lower bound. (Indeed,the query-omplexity lower bound is not harmed, beause it is established by onsidering the uniformdistribution over the set of basi graphs (whih hardly hanges).)Turning to the global onditions, whih refer to the pairwise distanes between graphs in �0n,we distinguish two ases. In the ase that G01; G02 2 �0n are not isomorphi, they arise from twoindependently seleted basi graphs, and so with probability at least 1� exp(�
(n2)) > 1� o(j�0nj�2)these two graphs are 0:4-far from one another. Applying the union bound (over all pairs in �0n), thisestablishes Condition 3.It is left to onsider pairs of graphs as in Condition 4 (i.e., graphs G01; G02 2 �0n suh that thereexists an isomorphism � of G01 to G02 suh that � �xes less than 90% of the verties). Thus, weonsider an arbitrary permutation � (over [n℄) that �xes less than 0:9n of the domain (i.e., jfi 2[n℄ : �(i) 6= igj > 0:1n). Next, we onsider an arbitrary set I � [n℄ suh that jIj = 0:05n and�(I) = f�(i) : i 2 Ig does not interset I. For a random n-vertex graph G0 = ([n℄; E0), with probabilityat least 1� exp(�
(n2)) > 1� o((n!2 �K)�1), the sets f(u; v) 2 I � ([n℄ n (I [ �(I)) : fu; vg 2 E0g andf(u; v) 2 I � ([n℄ n (I [ �(I)) : f�(u); �(v)g 2 E0g di�er on at least 0:01n2 entries (sine the expeteddi�erene is 0:05n � 0:9n=2 > 0:02n2). Thus, the �-isomorphi opy of G0 is 0:01-far from G0 (whereboth are viewed as labeled graphs). Applying the union bound (over all the basi graphs and all hoiesof � and I), we establish Condition 4, and the laim follows. 2The monotone losure and augmentation (yielding �). In the following desription, we set� > 0 to be a suÆiently small onstant (e.g., smaller than 0.00001) suh that the lower boundestablished in Theorem 4 holds for proximity parameter 100� (i.e., � def= �4=100, where �4 is a value ofthe proximity parameter for whih Theorem 4 holds). Needless to say, �0 satis�es the four onditionsof Claim 5.1 also when we �x Æ to equal �. Given a desired omplexity bound q : N ! N , we setn = pq(N) and de�ne �N suh that G = ([N ℄; E) 2 �N if and only if (at least) one of the followingtwo onditions holds:(C1) The graph G has at least (0:5 + 2�) � �N2 � edges.(C2) Eah vertex in G has degree at least (0:5��)�N and G is an \approximate (monotone) blow-up"of some graph in �n; that is, there exists a partition of the vertex set of G (i.e., [N ℄) into n equal-sized sets, denoted (V1; :::; Vn), and a graph G0 = ([n℄; E0) 2 �0n suh that for every fi; jg 2 E014



and every u 2 Vi and v 2 Vj either fu; vg 2 E or the degree of either u or of v in G exeeds0:52 �N .Note that Condition (C2) mandates that eah edge fi; jg 2 E0 is replaed by a bipartite graph overVi � Vj that ontains all edges, with the possible exeption of edges that are inident at verties ofdegree exeeding 0:52 �N (in G). We stress that Condition (C2) does not require that for fi; jg 62 E0the bipartite graph over Vi � Vj is empty, but in the ase that Condition (C1) does not hold thesebipartite graphs will ontain few edges (beause the edges mandated by Condition (C2) leave roomfor few superuous edges, when taking into aount the upper bound on the number of edges that isimplied by the violation of Condition (C1)).Note that the property � = SN2N �N is monotone (sine Conditions (C1) and (C2) are eahmonotone). Also observe that �N ontains the N=n-fator blow-up of any graph in �0n, beause anysuh blow-up satis�es Condition (C2). (Indeed, suh a blow-up does not satisfy Condition (C1), sineeah vertex in the blow-up has degree at most (0:5 +�) �N .)On the onstant �. Reall that � was �xed to be a small positive onstant that is related to theonstant hidden in Theorem 4 (i.e., the lower bound in this theorem should hold when the proximityparameter is set to any value that does not exeed 100�). In addition, we will assume that � is smallerthan various spei� onstants (e.g., in the proof of Claim 5.2 we use � < 0:0001). In general, setting� = 0:00001 satis�es all these onditions. We also note that in our positive result (i.e., the analysis ofthe optimal tester) we will assume that the proximity parameter � is signi�antly smaller than � (e.g.,� < �=1000).5.2 Lower-bounding the query omplexity of testing �In this setion we prove that the query omplexity of testing � is 
(q). We shall do this by buildingon [GGR, Prop. 10.2.3.1℄ and Setion 4.2. Spei�ally, ombining the approah of Setion 4.2 with theanalysis of [GGR, Prop. 10.2.3.1℄, we onsider the following two distributions (D1) and (D2):(D1) The distribution obtained by applying an Nn -fator blow-up to a random n-vertex graph (i.e., toa graph seleted uniformly among all n-vertex graphs).(D2) The distribution obtained by applying an Nn -fator blow-up to a graph seleted uniformly in �0n,where �0n is as asserted in Claim 5.1 (with respet to Æ = �).Combining [GGR, Prop. 10.2.3.1℄ and Lemma 4.3, we laim that, with high probability, a graph seletedaording to distribution (D1) is far (i.e., 100�-far) from the support of distribution (D2), whereasdistinguishing the two distributions requires 
(q) queries. Spei�ally, we reall that, with high prob-ability, a random n-vertex graph (as underlying distribution (D1)) is 0:4-far from any graph in �0n.By Lemma 4.3, the orresponding blow-ups preserve this distane (up to a onstant fator), and thus(with high probability) a graph seleted aording to distribution (D1) is far from the support of dis-tribution (D2). We also note that the proof of [GGR, Prop. 10.2.3.1℄ refers to these two underlyingdistributions on n-vertex graphs, and establishes that they are indistinguishable by o(n2) queries. Itfollows that the blow-up distributions (i.e., (D1) and (D2)) are indistinguishable by o(q(N)) queries.Realling that �N ontains the support of distribution (D2), it suÆes to show here that, with highprobability, a graph seleted aording to distribution (D1) is far from �N (rather than merely far fromthe support of (D2)). This laim suÆes, beause by using it we obtain a distribution that is typiallyfar from �N and yet is indistinguishable by o(q(N)) queries from a distribution on �N (indeed (D2)itself).The laim that distribution (D1) is typially far from �N is proved by �rst observing that, with highprobability, a graph seleted in distribution (D1) has maximum degree smaller than (0:5+�) � (N �1).15



The proof is onluded by showing that if suh a graph (i.e., of the foregoing degree bound) is 100�-farfrom the support of distribution (D2), then it is �-far from �N .Claim 5.2 Suppose that G has maximum degree smaller than (0:5+�) � (N �1) and that G is �-loseto �N . Then, G is 64�-lose to the support of distribution (D2).Proof: Let C (standing for orret) be a graph in �N that is losest to G. Then, C has less thanN �(0:5+�)(N�1)2 + � � �N2 � = (0:5 + 2�) � �N2 � edges, and thus C must satisfy Condition (C2) in thede�nition of �N . Let G0 = ([n℄; E0) and (V1; :::; Vn) be as required in Condition (C2), and let H denotethe set of verties that have degree greater than 0:52 �N in C.
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blow-upFigure 2: The graph G, its losest orretion to �, denoted C, and the orresponding perfet blow-upB. Consider the distane between G and a blow-up of G0, denoted B (standing for blow-up); seeFigure 2. Eah vertex in H ontributes at most N units to this distane (between G and B), but itsontribution to the distane between G and C is at least 0:52 � N � (0:5 + �) � N > N=60 (whereasthe total distane between G and C is at most �N2). Thus, the total ontribution of verties in H(to the distane between G and B) is less than 60�N2. We stress that this ount inludes pairs ofverties that ontain at least one element in H, and thus it remains to upper-bound the ontributionof pairs that reside entirely within [N ℄ n H. We upper-bound the ontribution of verties in [N ℄ n H(to the distane between G and B) by the sum of (1) their ontribution to the distane between G andC (whih is obviously upper-bounded by �N2), and (2) their ontribution to the distane between Cand B.In analyzing (2), we note that a pair (u; v) 2 ([N ℄nH)2 that is onneted inB must also be onnetedin C, and so (2) ounts the number of pairs (u; v) 2 ([N ℄ nH)2 that are onneted in C but not in B.Furthermore, the value of (2) equals the di�erene between the number of edges of the subgraph of Bindued by [N ℄ nH and the subgraph of C indued by [N ℄ nH. Reall that the average vertex degreeof verties in the graph C is at most (0:5 +�) �N +�N = (0:5 + 2�) �N , whereas in B verties havedegree at least (0:5��) �N . If these averages were holding for the subgraphs indued by [N ℄nH, thenwe ould have upper bounded the value of (2) by ((0:5 + 2�) �N � (0:5��) �N) � (N � jHj) < 3�N2.Atually, as we shall see next, the gap between these averages may only inrease when we move to thesubgraphs indued by [N ℄ n H. Spei�ally, the number of edges with at least one endpoint in H islarger in C than it is in B, beause the number of edges inident at any vertex of H is greater than0:52 � N in C (by de�nition of H) and at most (0:5 + �) � N in B (by B's degree bound). Thus, thedi�erene in the average degree between the subgraphs (of C and B) indued by [N ℄ n H is at most(0:5 + 2�) �N � (0:5 ��) �N = 3�N , and so the value of (2) is at most 3�N2.It follows that the total ontribution (to both (1) and (2)) of verties in [N ℄ nH is at most 4�N2.Hene, G is 64�-lose to B, and the laim follows (beause B is in the support of (D2)). 216



Proposition 5.3 Any tester for � has query omplexity 
(q).Proof: The laim follows by ombing all fats stated above. Reall that, by [GGR, Prop. 10.2.3.1℄,distinguishing the distributions (D1) and (D2) requires 
(q) queries. On the other hand, by [GGR,Prop. 10.2.3.1℄ and Lemma 4.3, with high probability, a graph seleted aording to distribution (D1)is 100�-far from the support of distribution (D2). With high probability, suh a (random) graph hasmaximum degree smaller than (0:5 + �)(N � 1), and so by Claim 5.2 it is (100�=64)-far from �N .Realling that distribution (D2) resides on �N , it follows that any tester for � must distinguish thedistributions (D1) and (D2), and the proposition follows. 25.3 An optimal tester for property �In this setion we prove that the query omplexity of testing � is O(q). Before desribing the (alleged)tester, we analyze the struture of graphs that satisfy Condition (C2) but do not satisfy Condition (C1).Denoting this set by � = SN2N �N , reall that �N ontains N -vertex graphs that are in �N and haveaverage degree below (0:5 + 2�) �N . Sine these graphs have minimum degree at least (0:5 ��) �N ,they may ontain relatively few verties of degree exeeding 0:52 �N (i.e., the number of suh vertiesis at most O(�N)). We all suh verties (i.e., of degree exeeding 0:52 �N) heavy. As we show next,the fat that almost all verties in G 2 �N are not heavy implies that the edges among these non-heavy verties (in any G) essentially determine a unique graph G0 2 �0n suh that G is an approximateblow-up of G0. Moreover, this determines a unique partition of the non-heavy verties of G to loudsthat orrespond to the verties of G0. That is:Lemma 5.4 Let G = ([N ℄; E) 2 �N and H denote the set of heavy verties of G (i.e., verties havingdegree that exeeds 0:52 � N). Then, up to a reordering of the indies in [n℄, there exists a uniquepartition of [N ℄ n H into n sets, denoted V 01 ; :::; V 0n, and a unique graph G00 = (fi 2 [n℄ : V 0i 6= ;g; E00)suh that the following onditions hold:1. G00 is an indued subgraph of some graph in �0n (i.e., there exists G0 = ([n℄; E0) 2 �0n suh thatfi; jg 2 E00 if and only if V 0i 6= ;, V 0j 6= ; and fi; jg 2 E0).2. For every fi; jg 2 E00 and every u 2 V 0i and v 2 V 0j it holds that fu; vg 2 E.3. Verties in the same V 0i di�er on at most 0:05N of their neighborhoods, whereas verties thatreside in di�erent V 0i di�er on at least 0:45N neighbors.4. Eah V 0i has size at most N=n, and at most 0:01n sets (i.e., V 0i 's) are empty.Furthermore, the laim holds even if G has minimum degree that is only above (0:5 � 2�) �N (ratherthan above (0:5 ��) � N) and its average degree is smaller than (0:5 + 3�) � N (rather than smallerthan (0:5 + 2�) �N).Proof: We shall fous on the main laim, and the furthermore part will follow by observing that theargument is atually insensitive to the value of � (as long as the latter is small enough).The mere existene of a partition (V 01 ; :::; V 0n) and of a graph G00 that satis�es the foregoing fouronditions follows from the fat that G satis�es Condition (C2). Spei�ally, let (V1; :::; Vn) and G0be as guaranteed by Condition (C2), and let V 0i def= Vi n H for every i 2 [n℄. Then, (V 01 ; :::; V 0n) andthe subgraph of G0 that is indued by fi 2 [n℄ : V 0i 6= ;g satisfy all the foregoing onditions. Inpartiular, verties in [N ℄ nH have neighbors (in [N ℄ nH) as mandated by G0, and may have at most0:52N�((0:5��)N�jHj) < 0:021N additional neighbors. Thus, verties in the same VinH may di�eron at most 2 �0:021N + jHj < 0:05N of their neighbors, whereas verties that reside in di�erent Vi nH'smust di�er on at least (0:5� 4�) �N � (2 � 0:021N + jHj) > 0:45N neighbors. Clearly, eah V 0i has size17



at most N=n. Realling that jHj < 150�N (sine jHj �0:52N +(N�jHj) �(0:5��)N < (0:5+2�)N2),we onlude that at most 150� � n < 0:01n sets V 0i are empty.Having established the existene of suitable objets, we now turn to establish their uniqueness;that is, we shall establish the uniqueness of both the partition of [N ℄ n H and the graph G00, up to areordering of the index set [n℄.We start by onsidering an arbitrary n-way partition of [N ℄ n H that satis�es the four onditionsof the laim. Referring to the foregoing partition (V1; :::; Vn), we show that two verties u; v 2 [N ℄ nHan be plaed in the same set of this n-wise partition (of [N ℄ n H) if and only if they reside in thesame set Vi. This follows by the \lustering" ondition asserted in Item 3 (sine verties in the sameVi nH may di�er on at most 0:05N of their neighbors, whereas verties that reside in di�erent Vi nH'smust di�er on at least 0:45N neighbors). Thus, the partition of [N ℄ n H is uniquely determined, upto a reordering of the index set [n℄. Let us denote this partition by (V 01 ; :::; V 0n); indeed, the sequene(V 01 ; :::; V 0n) is a permutation of the sequene (V1 n H; :::; Vn n H), and here we arbitrarily �x suh apermutation (ordering of [n℄).Note that so far we have only used the ondition in Item 3, and this allowed us to uniquely determinethe sequene (V 01 ; :::; V 0n) (up to reordering of [n℄). Using the ondition in Item 2, we show that thissequene uniquely determines the subgraph G00, whih is an indued subgraph of some G0 2 �0n.Reall that, by Item 2, any unonneted pair of verties (u; v) 2 V 0i � V 0j mandates that the pair(i; j) annot be onneted in G0. Sine there are at most (0:5+2�) ��N2 � edges in G and at most jHj �Npairs that interset H, we onlude that the number of unonneted pairs in Si 6=j V 0i � V 0j is at least(0:5� 2�) �N2 � jHj �N � (0:5� 152�) �N2. This fores at least (0:5� 152�) � n2 unonneted pairsin G0. Realling that G0 2 �0n has average degree at most (0:5 +�) � n, this leaves us with slakness ofat most 153� � n2 vertex pairs. Thus, any two graphs in �0n that satisfy Item 2, must be 153�-lose.Realling that non-isomorphi graphs in �0n are 0:4-far apart, this determines G0 up to isomorphism.Atually, referring to the last ondition in Claim 5.1, we onlude that G0 is determined up to anisomorphism that �xes more than 90% of the verties (beause otherwise these graphs are 0:01-far).We shall show next that this (90%-�xing isomorphism) uniquely determines G00.Suppose towards the ontradition that there exist two di�erent graphs G001 and G002 that satisfy theonditions of the laim, and let i be a vertex in G001 that is mapped by the isomorphism to j 6= i inG002 . As we show next, this situation indues oniting requirements on the neighbors of verties inV 0i and V 0j ; that is, it requires too many shared neighbors (when ompared to the shared neighborsof i and j in G0). Spei�ally, by applying Item 2 to G001 , the neighbors of eah vertex in V 0i shouldontain all verties in V 0k suh that k is onneted to i in G001 . Similarly, by applying Item 2 to G002 , theneighbors of eah vertex in V 0j should ontain all verties in V 0k suh that k is onneted to j in G002 .However, sine the isomorphism �xes more than 90% of the verties, it must be the ase that for 90%of k 2 [n℄ it holds that i is onneted to k in G001 i� j is onneted to k in G002 . It follows that eah pairof verties in V 0i � V 0j must share more than ((0:5�O(�)) � n� 0:1n) � (N=n)� jHj > 0:3N neighbors,whih ontradits the postulate (regarding G0 whih implies) that eah suh pair an share at most(2 � (0:5 +�) � n� (0:75 ��) � n) � (N=n) + jHj < 0:3N neighbors. The laim follows. 2Testing the property �. Having established Lemma 5.4, we are now ready to present the (alleged)tester for �. Intuitively, the tester �rst heks whether the input graph satis�es Condition (C1), andif the input is found to be 
(�)-far from satisfying Condition (C1) then it is tested for Condition (C2).Indeed, the ore of this tester refers to the latter part (i.e., testing �), and is obtained by suitableadaptations of Algorithm 4.5. In partiular, sine we annot expet to identify representatives fromall louds (i.e., some sets V 0i in Lemma 5.4 may be too small or even empty), we settle for obtainingrepresentatives from at least a 1 � 
(�) fration of the identi�able louds (whih leads to using, as abasis, the simpli�ed version of Algorithm 4.5 that is disussed in Remark 4.6).18



Algorithm 5.5 On input N and proximity parameter �, and when given orale aess to a graphG = ([N ℄; E), the algorithm proeeds as follows, after setting �0 def= �=10 and n def= pq(N):1. Estimating the edge density of G. Using a sample of O(��2) vertex pairs, we estimate the edgedensity of G and aept if this estimate exeeds 0:5+2�� 2�0. We proeed to the next steps onlyif the edge density of G is estimated to be less than 0:5 + 2�� 2�0, in whih ase we may assumethat the edge density of G is atually less than 0:5 + 2�� �0.2. Estimating the minimum degree of G. Using a sample of eO(��2) verties, we estimate the min-imum degree in G; that is, we pik O(��1) verties and estimate their degrees using an auxil-iary sample of eO(��2) verties. If we �nd a vertex that we estimate to have degree less than(0:5 � � � �0) � N , then we rejet. We proeed to the next steps only if we failed to �nd suha vertex, in whih ase we may assume that all but at most �0N verties have degree exeeding(0:5 ��� 2�0) �N .3. Finding representative verties. We start by seleting a sample, denoted S, of s def= O(��2n)random verties, and estimating their individual degrees in G by their individual degrees in thesubgraph indued by S. We let S0 � S denote the set of verties for whih the estimated degree isless than (0:52 � �0) �N . We proeed only if jS0j > 0:99s, and otherwise we halt and rejet.Next, we luster the verties in S0 as follows. Probing all �jS0j2 � possible edges between theseverties, we luster these verties suh that eah luster ontains verties having neighbor setsthat di�er on at most 0:06s verties in S0. Spei�ally, we assoiate to eah vertex an jS0j-dimensional Boolean vetor that indiates whether or not it neighbors eah of the verties in S0,and onsider the metri de�ned by Hamming distane between these vetors. Sanning the vertiesof S0, we put the urrent vertex in an existing luster if it is 0:06-lose to the enter of this luster,and open a new luster with the urrent vertex as its enter otherwise (i.e., if the urrent vertexannot be �t to any existing luster).If the number of lusters, denoted n0, is greater than n, then we rejet. Otherwise, we selet atrandom a representative from eah luster, and denote by ri the representative of the ith luster.4. Determining an adequate subgraph of a graph in �0n. Let R = fri : i 2 [n0℄g and let GR denotethe subgraph of G indued by R (i.e., by the set of representatives seleted above). We try todetermine a graph G0 2 �0n suh that the subgraph of G0 indued by [n0℄, denoted G00 = ([n0℄; E00),is onsistent with GR in the sense that if fi; jg 2 E00 then fri; rjg 2 E (equiv., the pair (ri; rj)is onneted by an edge in GR). If either suh a graph G0 does not exist or G00 is not uniquelydetermined, then we halt and rejet.5. Testing the indued lustering of the verties of G. The set R suggests a lustering of the vertiesof G aording to their neighbors in the set R. Spei�ally, for any vertex v 2 [N ℄ of degree atmost 0:52 �N , we let �(v) = i if v is 0:06-lose to the representative ri and is 0:4-far from all otherrepresentatives. Otherwise (i.e., if no suh i exists), then �(v) = ?. Referring to this lustering(i.e., the lustering aording to �), we hek whether it is indeed adequate (both with respet tosize and �tting G00) by taking a sample of t = O(��2n log(1=�)) verties.In the following sub-steps we refer to estimates of the degrees of individual verties that areobtained by an auxiliary sample of size O(��2 log t).(a) We hek that all but at most an �0 fration of the verties that have degree at most 0:52 �Nare uniquely lustered and that eah of these verties resides in a luster that has size atmost (1 + �0)N=n. That is, using an auxiliary sample of O(��2n log(1=�)) verties, we hekthat for eah suh vertex v that is estimated to have degree at most (0:52 � �0) � N , it holds19



that �(v) 2 [n0℄, and that at least a 1 � �0 fration of these verties are lustered so that forevery i 2 [n0℄ at most (1+ �0)=n fration of the verties v satisfy �(v) = i. We rejet if eithersuh an unlusterable vertex v is found or some luster is too big.(b) We hek that the edges between the lusters are onsistent with the edges between the or-responding verties of G00. Spei�ally, we selet uniformly O(1=�) vertex pairs, luster theverties in eah pair aording to �, and hek that their edge relation agrees with that oftheir orresponding representatives in the sense that eah vertex pair must be onneted ifthe orresponding pair of �-indies is onneted in G00. That is, for eah pair (u; v), we �rstestimate the degree of eah vertex and proeed only if both estimates are below (0:52� �0) �N .Next, we �nd the luster to whih eah vertex belongs, and rejet if f�(u); �(v)g 2 E00 holdsbut fu; vg 62 E.(The ondition in Step 5b may be interpreted as not rejeting if either �(u) = ? or �(v) = ?; butwe an also rejet in this ase, as in Step 5a.)We aept if and only if none of the foregoing heks led to rejetion.Note that, for onstant value of �, the query omplexity is dominated by Step 3, whih uses �jS0j2 � =O(��2n)2 = O(��4q(N)) queries. (In ontrast, the number of queries made in Step 5 is (t+ O(1=�)) �(n0 +O(��2 log t)) = O(��4n2 log2(1=�)), while a better bound of o(��4n2) holds when �� 1=pn). Wenow turn to analyzing the performane of Algorithm 5.5.Proposition 5.6 Algorithm 5.5 onstitutes a tester for �.Proof: We �rst verify that any graph in �N is aepted with very high probability. Note �rst that ifG 2 �N satis�es Condition (C1), then Step 1 aepts with very high probability. The same holds if Ghas average degree at least (0:5+2�� �0)N . Thus, we fous on the ase that G 2 �N , and furthermoreassume that G has average degree less than (0:5 + 2� � �0)N . Needless to say, Step 2 is unlikely torejet G (beause G has minimum degree at least (0:5 ��)N).Regarding the sample S taken in Step 3, with very high probability, the degree of eah samplevertex in G is approximated up-to an relative term of ��0 by this vertex's degree in the subgraphindued by S. The same holds with respet to the number of neighbors that eah suh vertex has inany n �xed sets, where we are about the sets Vi assoiated with G 2 �N . Letting H, (V 01 ; :::; V 0n) andG00 be as in Lemma 5.4, we note that with high probability the sample S0 taken in Step 3 is lusteredaordingly (i.e., the ith luster onsists of V 0i \ S0, where here we onsider a possible reordering of thesequene of lusters). (Here we allow also empty lusters in order to obtain a sequene of n lusters.)Furthermore, the subgraph G00 �ts the indued graph GR in the sense that G00 satis�es the onditionin Step 4 (i.e., if fi; jg is an edge in G00 then fri; rjg 2 E). Moreover, with high probability, G00 passesthe heks in Step 5b (beause the auxiliary samples taken in Step 5 are also lustered aording tothe Vi's). Thus, Steps 3 and 5 are unlikely to rejet G (beause, with probability at least 1� �, the ithluster is assigned a (N�1 � jV 0i j � �0)=n fration of the verties sampled in Step 3 and in Step 5).To show that Step 4 is also unlikely to rejet G, we need to show that, with high probability,the graph G00 is the only adequate graph that �ts the set R. The latter is proved by onsidering an(imaginary) set I seleted at random suh that I inludes a single uniformly distributed element fromeah set Vi. Observe that, with high probability (i.e., probability at least 1 � exp(�
(n))) over thehoie of I, the N=n-fator blow-up of the subgraph GI is approximately in �N , and so applying (thefurthermore part of) Lemma 5.4 to this blow-up of GI guarantees the uniqueness of G00 (with respetto GI). That is, G00 is the only n0-vertex graph that is an indued subgraph of some graph in �0n and�ts GI (i.e., if fi; jg is an edge in G00 then either the orresponding edge is in GI or at least one of itsendpoints is in H). We now onsider R as being derived from I by replaing eah vertex in Vi \H by20



a uniformly hosen vertex in V 0i = Vi nH, and note that this replaement may only inrease the set ofonstraints involved in the \�tting ondition" (i.e., if some graph did not �t GI , then it will also not�t the orresponding GR).5 It follows that G00 is the only graph that �ts GR, and so Step 4 is unlikelyto rejet G. We onlude that G is unlikely to be rejeted by any step, and thus it is aepted (withhigh probability).We now turn to the ase that G is �-far from �, where we need to show that G is rejeted with, say,probability 2/3. We will atually prove that if G is aepted with probability 1/3, then it is �-lose to�N . We may assume that G has average degree below (0:5+2���)N , sine otherwise the laim followseasily. Thus, with high probability, the graph G is not aepted by Step 1, and so we may use the fatthat G is aepted by virtue of not violating the subsequent heks (of Steps 2{5). In partiular, byvirtue of Step 2, we may assume that at most �0N verties of G have degree below (0:5 �� � 2�0)N ,whih means that we an meet the degree lower bound (of �) by adding at most 3�0N2 edges. Let S0,r1; :::; rn0 and G00 be as determined in Steps 3 and 4. (Indeed, here we use the fat that G00 is uniquelydetermined by S, and that the same holds with respet to the distribution of r1; :::; rn0 .) Then, byvirtue of Step 5, we obtain a lustering of at least (1� �0)N verties that approximately �ts the graphG00 in the sense that they reside in lusters that have eah size at most (1 + 2�0)N=n and the numberof missing edges between these lusters is at most �0N2. By moving m def= 3�0N verties and adding atmost mN + �0N2 edges, we obtain a partition of the verties into n equal sized sets that perfetly �tG00, and it follows that G is (3 + 4) � �0-lose to �N . 2Conlusion. We just showed that Algorithm 5.5 satis�es the upper bound requirements of Theo-rem 5; that is, it is a tester for � and has query omplexity O(q). Realling that Proposition 5.3establishes a orresponding 
(q) lower bound, we omplete the proof of Theorem 5.6 Revisiting the Adjaeny Matrix Model: One-Sided ErrorIn ontinuation to Setion 4, whih provides a hierarhy theorem for two-sided error testing of graphproperties (in the adjaeny matrix model), we present in this setion a hierarhy theorem that refersto one-sided error testing. Atually, the lower bounds will hold also with respet to two-sided error,but the upper bounds will be established using a tester with one-sided error.Theorem 6 In the adjaeny matrix model, for every q : N ! N as in Theorem 4, there exists a graphproperty � that is testable with one-sided error in O(q) queries, but is not testable in o(q) queries evenwhen allowing two-sided error. Furthermore, � is in P.Theorems 4 and 6 are inomparable: in the former the upper bound is established via relatively eÆienttesters (of two-sided error), whereas in the latter the upper bound is established via one-sided errortesters (whih are not relatively eÆient). (Unlike Theorem 5, both Theorems 4 and 6 do not providemonotone properties.)Outline of the proof of Theorem 6. Starting with the proof of Theorem 4, we observe that thesoure of the two-sided error of the tester is in the need to approximate set sizes. This is unavoidablewhen onsidering graph properties that are blow-ups of some other graph properties, where blow-upis de�ned by replaing verties of the original graph by equal-size louds. The natural solution is toonsider a generalized notion of blow-up in whih eah vertex is replaed by a (non-empty) loud ofarbitrary size. That is, G is a (generalized) blow-up of G0 = ([n℄; E0) if the vertex set of G an be5The key observation is that all onstraints that refer to a vertex in H (present in I) are trivially satis�ed. Thus, itdoes not matter whih verties are used to replae those in H, and it does not matter if we just omit these verties (asin ase that Vi nH = ;). 21



partitioned into n non-empty sets (of arbitrary sizes) that orrespond to the n verties of G0 suh thatthe edges between these sets represent the edges of G0; that is, if fi; jg is an edge in G0 (i.e., fi; jg 2 E0),then there is a omplete bipartite between the ith set and the jth set, and otherwise (i.e., fi; jg 62 E0)there are no edges between this pair of sets.The proof of Theorem 6 builds on the proof of Theorem 4 (while deviating from it in some plaes).In Setion 6.1, we onstrut � based on �0 by applying the generalized graph blow-up operation. InSetion 6.2 we lower-bound the query omplexity of � based on the query omplexity of �0, whileoping with the non-trivial question of how does the generalized (rather than the standard) blow-upoperation a�et distanes between graphs. In Setion 6.3 we upper-bound the query omplexity of �with respet to one-sided error testers.6.1 The (generalized) blow-up property �Our starting point is any graph property �0 = Sn2N �0n for whih testing requires quadrati queryomplexity. Atually, we start with a graph property �0 for whih distinguishing a random n-vertexgraph from a graph uniformly distributed in �0n requires 
(n2) queries (f. Setion 7, whih buildson [GGR℄). Furthermore, we assume that �0 is in P (as in Setion 4.1).Given a desired omplexity bound q : N ! N , we �rst set n = pq(N), and de�ne �N as the set ofall N -vertex graphs that are (generalized) blow-ups of graphs in �0n; that is, the N -vertex graph G isin �N if and only if G is a (generalized) blow-up of some graph in �0n.We note that, as in Setion 4, if �0 2 P (and eah vertex in eah graph in �0 has distint neighborset), then � 2 P. We omment that the latter impliation relies on the fat that the de�nition of(generalized) blow-up requires that eah vertex (of the original graph) is replaed by a non-emptyloud. For further disussion see Remark 6.5.6.2 Lower-bounding the query omplexity of testing �In this setion we prove that the query omplexity of testing � is 
(q). As in Setion 4.2, the basiidea is reduing testing �0 to testing �; that is, given a graph G0 that we need to test for membershipin �0n, we test its N=n-fator blow-up for membership in �N , where N is hosen suh that n = pq(N).(Needless to say, the N=n-fator blow-up of any graph in �0n results in a graph that is in �N .) Note thatwe still use the \balaned" blow-up operation in our redution, although �N ontains any generalizedblow-up (of any graph in �0n). Indeed, this redution relies on the assumption that the N=n-fatorblow-up of any n-vertex graph that is far from �0n results in a graph that is far from �N (and not onlyfrom graphs obtained from �0n by a \balaned" blow-up).Reall that in Setion 4.2 we proved that for any �0 > 0 there exists an � > 0 suh that the N=n-fator blow-up of any graph that is �0-far from �0n is �-far from the N=n-fator blow-up of any graph in�0n. Here we show that, in the relevant (for us) ase, the former graph is �-far from �N (i.e., far fromany generalized blow-up of any graph in �0n). Spei�ally, sine the lower bound regarding testing �0refers to distinguishing a random n-vertex graph from a graph that is uniformly distributed in �0n, itsuÆes to onsider the ase that G0 is random. In partiular, in this ase, with high probability G0 isdispersed.Lemma 6.1 There exists a universal onstant  > 0 suh that the following holds for every n; �0; �and (unlabeled) n-vertex graphs G01; G02. If G02 is �-dispersed and �0-far from G01, then for any t anytn-vertex graph that is obtained by a generalized blow-up of G01 is �2 � �0-far from the t-fator blow-upof G02.Using Lemma 6.1 we onlude that if G0 is �-dispersed and �0-far from �0, then its generalized blow-upis 
(�0)-far from �. Spei�ally, applying Lemma 6.1 to G02 = G0 and every G01 2 �0, we onlude22



that with high probability the N=n-fator blow-up of a random n-vertex graph G0 is 
(�0)-far from �(beause suh a random graph is likely to be dispersed and �0-far from �0).We omment that the use of a balaned blow-up on one of the original graphs (in Lemma 6.1) isessential to the validity of the \approximate distane preservation" laim (of Lemma 6.1). In ontrast,note that the generalized blow-ups of an n-vertex lique and an n-vertex independent set may berelatively lose to one another. Similarly, the dispersity ondition is also essential (e.g., a balanedblow-up of an n-vertex independent set is relatively lose to some generalized blow-up of an n-vertexlique).Proof: By Lemma 4.3, for a suitable onstant 1, it holds that the t-fator blow-up of G01 is 1� � �0-farfrom the t-fator blow-up of G02, denoted G2. Let G1 be an arbitrary (generalized) blow-up of G01 (seeFigure 3). We need to prove that G1 is �2 � �0-far from G2. We onsider two ases regarding theamount of imbalane in the blow-up underlying G1, where G1 is alled a Æ-imbalaned blow-up of G01if the variation distane between the relative densities of the various louds in G1 and the uniformsequene of densities is at most Æ (i.e., Pni=1 j�i � (1=n)j � 2Æ, where �i is the relative size of the ithloud in G1). (Indeed, 0-imbalane orresponds to the ase of a t-fator blow-up (of G01), and anygeneralized blow-up of G01 is 1-imbalaned.)
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blow-upFigure 3: G01, G02, and their blow-ups.Case 1: G1 is a Æ-imbalaned blow-up of G01, where Æ = 1��0=3. In this ase G1 is (1� � �0 � 2Æ)-farfrom G2, beause G1 is 2Æ-lose to a t-fator blow-up of G01 (whereas the t-fator blow-up of G01is 1� � �0-far from G2).Note that, by the hoie of Æ, it holds that 1� � �0 � 2Æ = Æ.Case 2: G1 is not a Æ-imbalaned blow-up of G01. In this ase, using the fat that G2 is a t-fator blow-up of an �-dispersed graph, we prove that G1 is far from G2.Let �i denote the relative size of the ith loud in G1, and I = fi 2 [n℄ : �i > 1=ng denote theset of louds that are larger than in the uniform ase. Then, Pi2I �i > (jIj=n) + Æ. We onsiderthe most edge-�tting bijetion � of the verties of G2 to the verties of G1, and lower-boundthe number of vertex pairs that do not preserve the edge relation (i.e., pairs (u; v) suh thatfu; vg 2 E2 i� f�(u); �(v)g 62 E1). Observe that, for eah i 2 I, the ith loud of G1 must ontainat least (�i � (1=n)) �N=2 pairs of verties suh that eah pair onsists of verties that reside indi�erent louds of G2 (beause this loud of G1 ontains at most N=n verties that reside in thesame loud of G2).6 Eah suh pair ontributes at least � � N units to the (absolute) distanebetween G1 and G2 (beause these verties must have the same neighbors in G1 whereas theirneighborhoods in G2 must have a disagreement rate of at least �). Thus, we lower-bound this6The lower bound on the number of pairs follows from the following laim: For b � t, if an urn ontains t balls suhthat at most b balls have the same olor, then the urn must ontain at least (t� b)=2 disjoint pairs of mixed-olored balls.The laim is proved by indution on t. In the indution step (assuming b < t), we take an arbitrary pair of balls withdi�erent olors, and are left with t� 2 balls (and at most b have the same olor).23



(absolute) distane by Xi2I (�i � (1=n))N2 � �N = Æ � �2 �N2and it follows that G1 is (Æ�=2)-far from G2.The laim follows by setting  = 1=6 and noting that min(Æ; Æ�=2) = 1�2�0=6. 2Proposition 6.2 Any tester for � has query omplexity 
(q).Proof: Reall that Lemma 6.1 implies that if G0 is dispersed and �0-far from �0, then its (balaned)blow-up is 
(�0)-far from �. Sine a random n-vertex graph G0 is very likely to be dispersed, we inferthat the distane of the (balaned) blow-up of G0 from � is linearly related to the distane of G0 from�0. Using this fat, we onlude that distinguishing graphs that are uniformly distributed in �0n fromrandom n-vertex graphs redues to testing membership in �N , where n = pq(N). Spei�ally, ifG0 2 �0n then its (balaned) blow-up is in �N , whereas if G0 is �-far from �0n (as is likely to be thease when it is a random n-vertex graph) then its (balaned) blow-up is 
(�)-far from �N . Thus, aquadrati lower bound on the query omplexity of the distinguishing task regarding �0 implies an 
(q)lower bound on the query omplexity of testing �, for some onstant value of the proximity parameter.26.3 An optimal tester for property �In this setion we prove that the query omplexity of testing � is at most O(q) and that this anbe met by a one-sided error tester. In fat, essentially, we will use a straightforward tester, whihselets uniformly a sample of O(pq) verties and aepts if and only if the indued subgraph is a(generalized) blow-up of some graph in �0. Atually, sine some louds of the tested graph may not berepresented in the sample, we shall use a relaxed version of (generalized) blow-up that allows emptylouds. Equivalently, we shall hek whether the indued subgraph is a (generalized) blow-up of anindued subgraph of some graph in �0.Algorithm 6.3 On input N and proximity parameter �, and when given orale aess to a graphG = ([N ℄; E), the algorithm proeeds as follows:1. The algorithm sets �0 def= �=3 and omputes n pq(N).2. The algorithm selets uniformly a set of O(n=�) verties, denoted S, and inspets the subgraph ofG indued by S; that is, for every u; v 2 S, the algorithm heks whether fu; vg 2 E.3. The algorithm aepts G if and only if the subgraph viewed in Step 2 is a generalized blow-up ofsome indued subgraph of some graph in �0n.We stress that Step 3 does not require the subgraph viewed in Step 2 to be a generalized blow-up ofsome graph G0 2 �0n, but rather allows the former graph to be a generalized blow-up of any induedsubgraph of suh G0. In other words, Step 3 refers to the following relaxation of the notion of ageneralized blow-up: the graph G is a relaxed blow-up of G0 if the vertex set of G an be partitionedinto sets (of arbitrary sizes) that orrespond to verties of G0 suh that the edges between these setsrepresent the edges of G0. We stress that some of these sets may be empty (and, needless to say, insuh a ase no edges are inident at these empty sets).The query omplexity of Algorithm 6.3 is �O(n=�)2 � = O(q(N)=�2). Note that this algorithm may notbe relatively eÆient, sine we do not know of an eÆient implementation of Step 3 (even if �0 2 P; seeRemark 6.5). Clearly, Algorithm 6.3 aepts any graph in � with probability 1, beause being a relaxed24



blow-up of any graph G0 is hereditary (i.e., if G is a relaxed blow-up of G0, then any indued subgraphof G is a relaxed blow-up of G0). It is left to show that Algorithm 6.3 rejets with probability 2/3 anygraph that is �-far from �.Let G be an arbitrary N -vertex graph that is �-far from �N , and let us onsider the sample S asbeing drawn in 2n iterations suh that at eah iteration O(1=�) random verties are seleted. We denoteby Si the sample taken in iteration i, and by Gi the subgraph of G that is indued by S(i) def= Sj2[i℄ Sj .We refer to the lustering of the verties of Gi aording to their neighbor sets suh that two vertiesare in the same luster if and only if they have exatly the same set of neighbors. We shall show (seethe following Claim 6.4) that in eah iteration, with high onstant probability, either the number oflusters inreases or we obtain a subgraph that is not a relaxed blow-up of any graph in �0n. It followsthat, with overwhelmingly high probability, after 2n iterations we obtain a subgraph that is not arelaxed blow-up of any graph in �0n.Claim 6.4 Let G be an arbitrary N -vertex graph that is �-far from �N , and GS0 be the subgraph of Gindued by S0. Let m denote the number of lusters in GS0 and suppose that m � n. Further supposethat GS0 is a relaxed blow-up of some graph in �0n. Then, for a randomly seleted pair of vertiesu; v 2 [N ℄, with probability 
(�), the number of lusters in the subgraph indued by S0[fu; vg is greaterthan m.Note that if GS0 is not a relaxed blow-up of any graph in �0n, then neither is the subgraph indued byS0 [ fu; vg. On the other hand, by Claim 6.4, if GS0 is a relaxed blow-up of some graph in �0n and weaugment S0 with O(1=�) random verties, then, with probability at least 2=3, the number of lustersin the resulting indued subgraph is greater than m. Finally, note that if the number of lusters in agraph (e.g., GS) is greater than n, then this graph annot be a relaxed blow-up of any n-vertex graph(e.g., any graph in �0n). It follows that, with overwhelmingly high probability, the indued subgraphGS is not a relaxed blow-up of any graph in �0n.Proof: By the hypothesis regarding GS0 , there exists G0 2 �0n suh that GS0 is a relaxed blow-up ofG0. We onsider a partition of the vertex set of GS0 to louds that orrespond to verties of G0 anddenote by Cv the loud that orresponds to vertex v. Clearly, the verties in eah loud must belongto the same luster, beause otherwise the (relaxed) blow-up ondition is violated. Thus, the loudsare a re�nement of the partition of the vertex set of GS0 into lusters. On the other hand, withoutloss of generality, all the verties of eah luster may belong to a single loud, beause if Cv and Cware louds of the same luster then we an move verties of Cw to Cv while maintaining louds thatorrespond to verties of G0. We onlude that, without loss of generality, the olletion of m lustersequals the olletion of non-empty louds of GS0 , whih orrespond to an indued subgraph of G0,denoted G00 = (V 00; E00). Without loss of generality, we assume that V 00 = [m℄.We now onsider a lustering of the verties of the entire graph G aording to their neighborsin the set S0; that is, we luster the verties of G aording to their S0-neighborhood, where the S0-neighborhood of v equals �S0(v) def= fw2S0 : fv; wg2Eg. Note that some of these lusters extend theforegoing Cv's, whereas the other lusters, alled new, ontain verties that have S0-neighborhood thatare di�erent from the S0-neighborhoods of all verties in S0. If the number of verties that are plaedin new lusters exeeds �N=4, then suh a vertex is seleted with probability at least �=4 and the laimfollows immediately. Otherwise, we onsider an m-way partition, denoted (V1; :::; Vm), of the vertiesthat have the same S0-neighborhood as some verties of S0 suh thatVi = fv : (8u2Ci) �S0(v) = �S0(u)g:By the hypothesis that G is �-far from �N and ���Si2[m℄ Vi��� � (1 � (�=4)) �N (and n=N < �=4), it mustbe the ase that (�=2) �N2 vertex pairs in Si;j2[m℄ Vi�Vj have edge relations that are inonsistent with25



G00 (i.e., for suh a pair (u; v) 2 Vi � Vj it holds that fu; vg 2 E i� fi; jg 62 E00).7 Hene, these pairshave edge relations that are inonsistent with the edges between the orresponding Ci's (beause theverties in Si;j2[m℄Ci�Cj have edge relations that are onsistent with G00). Thus, with probability atleast �=2, for a random pair of verties fu; vg the edge relation between u and v does not �t the edgerelation between Ci and Cj , where i and j are the designated louds of u and v (i.e., u 2 Vi and v 2 Vj).It follows that the fug [ Ci (and fvg [ Cj) must be split when lustering the vertex set S0 [ fu; vgaording to the neighborhoods in S0 [ fu; vg. Thus, the laim follows also in this ase. 2Remark 6.5 Reall that the property � was obtained by a generalized blow-up of �0, whereas Step 3in Algorithm 6.3 refers to relaxed blow-ups of �0. Denoting the set of relaxed blow-ups of �0 by b�, wenote that �0 2 P implies b� 2 NP, but it is not lear whether b� 2 P even when �0 2 P. In fat, forsome �0 2 P, deiding membership in the orresponding b� is NP-omplete.8Conlusion. We just showed that Algorithm 6.3 satis�es the upper bound requirements of Theo-rem 6; that is, it is a one-sided error tester for � and has query omplexity O(q). Realling thatProposition 6.2 establishes a orresponding 
(q) lower bound (also for two-sided testing), we ompletethe proof of Theorem 6.7 Hard-to-test Graph Properties in PIn this setion we strengthen the hardness results of [GGR℄ that refer to the existene of propertiesthat are hard to test. These properties were shown to be in NP. Here we modify the onstrutionsin order to obtain suh properties in P. The aforementioned results refer both to the model of generifuntions and to the model of testing graph properties in the adjaeny matrix model (a.k.a densemodel).Let us �rst omment on the reasons that the original properties were only known to be in NP(rather than in P).9 In the �rst ase (i.e., the ase of generi funtions), the reason is the omplexityof reognizing possible outputs of an adequate pseudorandom generator (whih beomes easy whengiven an adequate seed as an NP-witness). In the seond ase (i.e., the ase of graph properties),an additional reason stems from the fat that \losure under isomorphism" is applied to the basionstrution, and so the problem of reognizing graphs that are isomorphi to graphs in a partiularset arises (and beomes easy when given an adequate isomorphism as an NP-witness). Below, we shallavoid the use of NP-witnesses by augmenting the basi onstrution in adequate ways.We omment that the additional monotone losure used in [GT, Se. 3℄ (in order to obtain monotonegraph properties) introdues additional diÆulties, whih we were not able to resolve (and thus the7Otherwise, we an obtain an m-way partition that is onsistent with G00 by hanging the edge relation of at most�N2 vertex pairs (i.e., at most (�=2) � N2 vertex pairs in Si;j2[m℄ Vi � Vj and at most all pairs with one element notin Si2[m℄ Vi). Similarly, we an obtain an n-way partition that is onsistent with G0 (by reating n �m new singletonlusters and using n�m < �N=4). This violates the hypothesis that G is �-far from �N .8For any NP witness relation R, we show how to redue membership in SR def= fx : 9w (x;w)2Rg to testing whether aonstruted graph is an indued subgraph (or a relaxed blow-up) of some graph in an adequate set �0. We use the graphsin �0 to enode pairs in R, and use the onstruted graph to enode an input x that we need to hek for membershipin SR. Eah graph in �0n will orrespond to a pair (x;w) 2 f0; 1gn+m suh that the graph will onsist of (1) a liqueof 2(n +m) verties, (2) a sequene of n +m pairs of verties suh that the ith pair is onneted i� the ith bit in xwequals 1, and (3) edges onneting the ith vertex in Part (2) to the i �rst verties of the lique. On input x 2 f0; 1gn,we onstrut a (2(n +m) + 2n)-vertex graph Gx essentially as above, exept that we do not inlude the m last pairs ofPart (2). (Indeed, given x, we annot onstrut the orresponding m pairs, sine we don't know w.) Note that Gx is anindued subgraph (or a relaxed blow-up) of some graph in �0n if and only if x 2 SR.9The urrent desription is intended for readers who have some reall of the aforementioned result. A self-ontaineddesription follows. 26



graph properties that we obtain in this setion are not monotone). Furthermore, our tehniques seeminompatible with monotoniity. The result we prove is stated next.Theorem 7 There exists a graph property in P for whih, in the adjaeny matrix model, every testermust query a onstant fration of the representation of the graph (even when invoked with onstantproximity parameter).Bakground: the GGR onstrution and two diÆulties. The graph property for whih aquadrati query omplexity lower bound is proved in [GGR, Prop. 10.2.3.2℄ is de�ned in two steps.1. First, it is shown that ertain sample spaes yield a olletion of Boolean funtions (i.e., a propertyof Boolean funtions) that is hard to test (i.e., any tester must inspet at least a onstant frationof the funtion's values).On the one hand, the sample spae is relatively sparse (and thus a random funtion is far fromany funtion in the resulting olletion), but on the other hand it enjoys a strong pseudorandomfeature (and so its projetion on any onstant fration of the oordinates looks random). Thus, thefuntions in the lass (whih must be aepted with high probability) look random to any testerthat inspet only a small onstant fration of the funtion's values, whereas random funtionsare far from the lass (and should be rejeted with high probability). This yields a ontraditionto the existene of a tester that inspet only a small onstant fration of the funtion's values.2. Next, the domain of the funtions is assoiated with the set of unordered pairs of elements in [N ℄,and the olletion of funtions is \losed" under graph isomorphism (i.e., if a ertain funtion on�[N ℄2 � is in the olletion, then so is any funtion obtained from it by a relabeling of the elementsof [N ℄).The losure operation makes this olletion orrespond to a graph property (sine it is nowpreserved under isomorphism). The parameters are suh that the resulting olletion (althoughlikely to be N ! times bigger than the original one) is still sparse enough (and so a random graphis far from it). On the other hand, the indistinguishability feature is maintained.The two diÆulties disussed above orrespond to these two steps. Firstly, while the (support of the)sample spae used in the proof of [GGR, Prop. 10.2.3.2℄ is in NP , it is not lear whether it is in P.Seondly, while NP-witnesses an be provided to prove that a given graph is isomorphi to a graphobtained in Step 1, it is not lear how to eÆiently verify suh a laim without an NP-witness.Resolving the two diÆulties (overview). The �rst diÆulty is resolved by using an adequatepseudorandom generator for whih membership in the orresponding sample spae an be deided inpolynomial time. Spei�ally, we shall use an adequate 
(n)-wise independene generator of n-bit longsequenes rather than using a quite generi small-biased sample spae as done in the proof of [GGR,Prop. 10.2.3.2℄. (We mention that an alternative onstrution may be based on a spei� small-biasedgenerator; spei�ally, on the �rst small-biased generator of [AGHP℄ (i.e., the one based on LFSRsequenes).)The seond diÆulty is resolved by augmenting the graphs (onstruted in Step 1) in a way thatmakes the original graph easy to reover from any relabeling of the resulting graph. Thus, applyingStep 2 to these augmented graphs yields a lass of graphs that is easy to reognize (by �rst reoveringthe original graph and then heking whether it orresponds to a string in the sample spae).The atual onstrution. For every N , we start by onsidering an eÆiently onstrutible d-wiseindependent sample spae over n-bit long strings, where n def= �N2 � and d def= 
(n). Spei�ally, for27



some onstant Æ > 0, we use an expliitly onstrutible linear ode mapping 0:01n-bit long strings ton-bit strings suh that every Æn positions in a generi odeword are linearly independent (see [ABI℄).Suh a ode is onstruted by onstruting a party-hek matrix that spans a 0:99n-dimensional vetorspae (alled the \dual ode") in whih eah vetor has Hamming weight at least Æn. We will use theparity-hek matrix of the (primary) ode in order to hek membership in this ode.For eah sequene s = (s1; :::; sn) 2 f0; 1gn, we de�ne a graph Gs = ([N ℄; Es) by letting fi; jg 2 Esif and only if the (i; j)th bit of s equals 1, where we onsider any �xed (eÆiently omputable) orderof the elements in f(i; j) : 1 � i < j � Ng. We all the graph Gs good if s is in the aforementionedsample spae, and all it bad otherwise. We refer to eah suh graph as basi; that is, the set of basigraphs inludes all good and bad graphs (and indeed inludes all N -vertex graphs). We highlightthe fat that the set of good graphs is reognizable in polynomial-time, beause the support of theaforementioned sample spae is reognizable in polynomial-time (and the set of all N -vertex graphs isin 1-1 orrespondene to the set of all n-bit strings).
Gs

(2N+1)-vertex clique

i

1
1

i

2

2

Figure 4: From Gs to G0s.Note that the set of good graphs is not likely to be losed under isomorphism, and thus this olletiondoes not onstitute a graph property. Following [GGR℄, we wish to onsider the \losure" of the set ofgood graphs under isomorphism, but before applying this operation we augment the graphs in a waythat makes it easy to reonstrut their original labeling. Spei�ally, for eah graph Gs = ([N ℄; Es),we onsider the augmented graph G0s = ([3N + 1℄; E0s) obtained by adding a lique of size 2N + 1 toGs and onneting the ith vertex of Gs to the �rst i verties in the lique; that is,E0s = Es [ ffu; vg : u; v 2 fN + 1; :::; 3N + 1gg [ ffi;N + jg : i 2 [N ℄ ^ j 2 [i℄g: (2)(See Figure 4.) Now, we onsider the set of �nal graphs obtained by \losing" the set of augmentedgraphs under isomorphism. That is, for every s in the sample spae (equiv., an augmented graph G0sobtained from a good graph Gs) and every permutation � over [3N + 1℄, we onsider the �nal graphG0s;� = ([3N +1℄; Es;�) that is de�ned so that f�(u); �(v)g 2 Es;� i� fu; vg 2 E0s. By onstrution, theset of �nal graphs is losed under isomorphism, and so this olletion does onstitute a graph property.Furthermore, as is shown next, the augmentation guarantees that the set of �nal graphs is in P.To test whether a graph G = ([3N+1℄; E) is in the set of �nal graphs, we �rst attempt to reonstrutthe orresponding basi graph. We use the fat that given a �nal graph it is easy to determine whihvertex belongs to the basi graph (sine these verties have degree at most (N � 1) + N = 2N � 1,whereas eah lique vertex has degree at least 2N). Next, we determine the label of eah vertexin the basi graphs by ounting the number of its neighbors in the lique. (Needless to say, if thisreonstrution fails, then G is not a �nal graph and we just rejet it.) Finally, we hek whether the28



resulting basi graph belongs to the set of good graphs (and whether the rest of the graph indeed �tsthe augmentation proedure).Showing that the �nal graphs are hard to test. Our aim is to show that the property ofbeing a �nal (3N + 1)-vertex graph annot be tested using o(N2) queries. We shall prove this laimby presenting two distributions on (3N + 1)-vertex graphs suh that a tester of �nal graphs mustdistinguish these two distributions whereas no mahine that makes o(N2) queries an distinguish thesetwo distributions. The �rst distribution is on�ned to �nal graphs, whereas with high probability graphsin the seond distribution are 0:01-far from any �nal graph. Spei�ally, the �rst distribution, denotedGN , is obtained by uniformly seleting a good N -vertex graph and augmenting it to an (3N +1)-graph(as done above). The seond distribution, denoted RN , is obtained by uniformly seleting a N -vertexgraph and augmenting it to a (3N + 1)-graph (again, as done above, exept that here we apply thisaugmentation to all graphs). Throughout the rest of the argument, we assoiate the two distributionswith random graphs drawn from them. We shall �rst show that, with high probability, RN is 0:01-farfrom the set of �nal graphs.Claim 7.1 The probability that RN is 0.01-lose to some �nal (3N + 1)-vertex graph is o(1).Proof: The key observation is that the set of �nal graphs is very sparse. Spei�ally, eah good graphgives rise to at most (3N + 1)! �nal graphs, whereas the number of good graphs is 20:01n = 20:01�(N2 ).Thus, the number of �nal graphs is at most 2(0:01+o(1))�(N2 ). Eah suh graph is 0:01-lose to at most2H2(0:01)�(3N+12 ) � 20:1�(3N+12 ) � 2(0:9+o(1))�(N2 ) graphs, where H2 denotes the binary entropy funtion(and H(0:01) < 0:1). Thus (for all suÆiently large N), the total number of graphs that are 0:01-loseto the set of �nal graphs is smaller than 20:92�(N2 ). Sine RN is uniformly distributed on a set of 2(N2 )graphs, the laim follows. 2Next, we show that o(N2) queries do not allow distinguishing RN from GN .Claim 7.2 Let M be a probabilisti orale mahine that makes at most d = Æn � ÆN2=2 queries.Then, Pr[MRN (N) = 1℄ = Pr[MGN (N) = 1℄.Proof: Sine both distributions are obtained by applying the same �xed augmentation to some pre-liminary distributions, it suÆes to onsider queries to the preliminary distributions. Spei�ally, letus denote by G0N the uniform distribution over good N -vertex graphs, and let R0N denote the uniformdistribution over all N -vertex graphs. Indeed, GN (resp., RN ) is obtained by applying the (�xed)augmentation of Eq. (2) to G0N (resp., R0N ), and eah query to GN (resp., RN ) an be answered eitherby using a onstant value or by making a single query to the orresponding G0N (resp., R0N ). Thus, itsuÆes to show that a mahine that makes at most d queries annot distinguish R0N from G0N .We identify �N2 �-bit long strings with N -vertex graphs (obtained as in the �rst stage of the on-strution). Reall that G0N denote a graph uniformly seleted among all graphs in the sample spae;that is, it orresponds to a d-wise independent sequene of length n = �N2 �. So the laim redues toasserting that using d queries one annot distinguish between a d-wise independent sequene and auniformly distributed sequene, whih follows easily from the de�nition of d-wise independent samplespaes (sine in suh ases adaptive queries o�er no advantage). 2Theorem 7 follows by ombining Claims 7.1 and 7.2 (with the fat that the set of �nal graphs is in P).8 Conluding CommentsFigure 5 provides a bird's eye view of the various hierarhy theorems proved in this work, where bd-graphs denote bounded-degree graphs. The third olumn spei�es the type of error made by the tester29



that establishes the upper bound; reall that in all ases the lower bound refers to two-sided errortesters. The fourth olumn spei�es the omputational omplexity of the tester as a funtion of itsquery omplexity (e.g., poly-time means running time that is polynomial in the total length of thequeries made by the tester). The monotone graph properties are listed as monotone in the diretionshown in the main text; we mention that monotoniity in the opposite diretion an be shown too (seeomment below). The weaker features of the results are indiated by itali (or by `{').property's tester's tester's property'sdomain error omplexity monotoniityThm 2 generi one-sided log-spae {Thm 3 bd-graphs one-sided in NP downwardsThm 4 dense graph two-sided poly-time {Thm 5 dense graph two-sided in NP upwardsThm 6 dense graph one-sided in NP {Figure 5: All hierarhy theorems at a glaneReversing the diretion of monotoniity. As stated above, the diretion of monotoniity ofgraph properties an be reversed while preserving the query omplexity of testing. Three simple waysof obtaining this e�et are disussed next.1. The simplest method, whih is only appliable to the dense graph model, onsists of onsideringthe omplement graphs. That is, for a graph property �, we onsider the graph property � =fG : G 2 �g, where for G = ([N ℄; E) it holds that G = ([N ℄; ffu; vg : fu; vg 62 E).2. For any �xed �0 > 0, we may onsider the property of being �0-far from the original property. Thatis, for a property � and �0 > 0, we onsider the property far�0(�) that onsists of all objets thatare �0-far from �. This notion is appliable to all models, and it holds that � � far�0(far�0(�))(but equality does not neessarily hold). Thus, a lower bound for �0-testing � does imply aorresponding lower bound for (�0-testing) far�0(�). Consequently, we an obtain a hierarhytheorem for upwards monotone properties graph in the bounded-degree model by starting withthe property of being 0:01-far from 3-Colorability. However, in suh a ase, the upper boundswill be established by two-sided error testers.3. An alternative method, whih is only appliable to the bounded-degree graph model, onsistsof onsidering only the graphs with a maximum number of edges, whih means that upwardsmonotoniity holds vauously. But we need to make sure that this set of graphs yields a propertythat maintains the omplexity of the original one. Spei�ally, starting with 3-Colorability, weonsider the set of 3-olorable d-regular graphs (with an even number of verties). To see that thisproperty is hard to test onsider a transformation of arbitrary graphs of maximum degree d intod-regular graphs that (approximately) preserves the distane from 3-Colorability. For example,onsider taking two opies of the original graph and onneting opies of eah vertex v of degreedv by d � dv gadgets, where eah onsists of the omplete bipartite graph Kd;d with one edgeomitted (so that the free endpoints an be used for onneting).Some open problems. An immediate gap, onspiuous in Figure 5, refers to the fat that Theorem 3refers to graph properties that are unlikely to be in P (and so they are unlikely to admit a relativelyeÆient tester). In fat, we do not know of a graph property in P that has maximal testing omplexityin the bounded-degree model. 30



Many more natural open problems arise in the dense graph model. In partiular, Theorems 4, 5and 6 (and their proofs) raise several natural open problems, listed next. We stress that all questionsrefer to the adjaeny matrix graph model onsidered in Setions 4{6 (and Setion 7).1. Combining the features of all three hierarhy theorems: Theorems 4, 5 and 6 provide inomparablehierarhy theorems, eah having an additional feature that the others lak. Spei�ally, Theorem 4refers to properties in P (and testing, in the positive part, is relatively eÆient), Theorem 5 refersto monotone properties, and Theorem 6 provides one-sided testing (in the positive part). Is itpossible to have a single hierarhy theorem that enjoys all three additional feature? Intermediategoals inlude the following:(a) Hierarhy of monotone graph properties in P: Reall that Theorem 4 is proved by usingnon-monotone graph properties (whih are in P), while Theorem 5 refers to monotone graphproperties that are not likely to be in P. Can one ombine the good aspets of both results?(b) Hard-to-test monotone graph property in P: Indeed, before addressing Problem 1a, oneshould ask whether a result analogous to Theorem 7 holds for a monotone graph property.Reall that [GT, Thm. 1℄ provides a monotone graph property in NP that is hard-to-test.() One-sided versus two-sided error testers: Reall that the positive part of Theorem 6 refersto testing with one-sided error, but these testers are not relatively eÆient. In ontrast,the positive part of Theorem 4 provides relatively eÆient testers, but these testers havetwo-sided error. Can one ombine the good aspets of both results?2. Determining the exat e�et of the blow-up operation on the distane between graphs: Reall thatthe proof of Theorem 4 relies on the preservation of distanes between graphs under the blow-upoperation. While the partial results obtained in this work (regarding this matter) suÆe for theproof of Theorem 4, the problem seems natural and of independent interest.Reall that Lemma 4.3 asserts that in some ases the distane between two unlabeled graphs ispreserved up to a onstant fator by any blow-up (i.e., \linear preservation"), whereas Theorem 8of our tehnial report [GKNR℄ asserts a quadrati preservation for any pair of graphs. Also reallthat it is not true that the distane between any two unlabeled graphs is perfetly preserved byany blow-up (see Footnote 1).In earlier versions of this work we raised the natural question of whether the distane betweenany two unlabeled graphs is preserved up to a onstant fator by any blow-up. This question hasbeen reently resolved by Oleg Pikhurko, who showed that the distane is indeed preserved up to aonstant fator, spei�ally a fator of three [P, Se. 4℄. Note that Arie Matsliah's ounterexampleto perfet preservation (presented in Footnote 1) shows that the said onstant fator annot besmaller than 6=5. Indeed, determining the true onstant fator remains an open problem.AknowledgmentsWe are grateful to Ronitt Rubinfeld for asking about the existene of hierarhy theorems for theadjaeny matrix model. Ronitt raised this question during a disussion that took plae at the Dagstuhl2008 workshop on sub-linear algorithms. We are also grateful to Arie Matsliah, Dana Ron, and YoavTzur for helpful disussions. In partiular, we thank Arie Matsliah for providing us with a proof thatthe blow-up operation does not preserve distanes in a perfet manner.
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