
A Note on Testing MonotonicityOded Goldreich� Sha� Goldwassery Dana RonzOctober 1997 (revised April 1998)AbstractWe show that under a certain conjecture regarding the boolean lattice, there ex-ists an e�cient algorithm for testing whether a function is monotone or �-far frommonotone.Note: The said combinatorial conjecture has been recently proven in collaboration withEric Lehman. We plan to write a joint paper presenting these results. [April 12, 1998]1 IntroductionOne of the �rst problems we considered while working on our paper on Property Testing [3],is testing Monotonicity of (Boolean) functions. A function f : f0; 1gn 7! f0; 1g is calledmonotone if f(x) � f(y), for every x < y, where the partial order between strings is de�nedanalogously to the set inclusion relation. That is, x1x2 � � � xn < y1y2 � � � yn if xi � yi for alli's and 0 = xj < yj = 1 for some j.A testing algorithm is given a distance parameter �, and oracle access to an unknownfunction. It is required to accept with high probability any monotone function, and toreject with high probability any function that is �-far from being monotone. A functionf : f0; 1gn 7! f0; 1g is said to be �-far from monotone if for every monotone function g,jfx2f0; 1gn : f(x) 6= g(x)gj > � � 2nOne natural idea is to test monotonicity by repeating poly(n=�) many time the followingstep: Uniformly select x 2 f0; 1gn, and i 2 [n] def= f1; 2; :::; ng, query the function at x and�Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot,Israel. E-mail: oded@wisdom.weizmann.ac.il. Work done while visiting LCS, MIT.yLaboratory for Computer Science, MIT, 545 Technology Sq., Cambridge, MA 02139. E-mail:shafi@theory.lcs.mit.edu.zLaboratory for Computer Science, MIT, 545 Technology Sq., Cambridge, MA 02139. E-mail:danar@theory.lcs.mit.edu. Supported by an NSF postdoctoral fellowship.1



at x0 def= x� 0i�110n�i (i.e., x with the ith bit 
ipped), and reject if monotonicity is violated(e.g., in case x < x0 we reject if f(x) > f(x0)).We were able to reduce the correctness of this natural algorithm to a conjecture regardingthe structure of the Boolean Lattice, but were not able to prove this conjecture. The currentnote presents what we know.2 PreliminariesFor any pair of functions f; g : f0; 1gn ! f0; 1g, we de�ne the distance between f and g,denoted, dist(f; g), to be the fraction of instance x 2 f0; 1gn on which f(x) 6= g(x). In otherwords, dist(f; g) is the probability over a uniformly chosen x that f and g di�er on x. Let Gbe a class of boolean functions over f0; 1gn. We de�ne dist(f;G) def= ming2Gfdist(f; g)g. Wesay that f is �-far from G, for 0 � � � 1, if dist(f;G) > �. Let Mn be the class of monotonefunctions over f0; 1gn. That is, for every function g 2 Mn the following holds: For everyx; y 2 f0; 1gn, if x < y then g(x) � g(y).De�nition 1 A property-testing algorithm for the monotonicity property is given an input-size parameter n, a distance parameter �, and oracle access to an unknown function f :f0; 1gn ! f0; 1g. We require that for every n, � and f the following hold:� If f is a monotone function then the algorithm accepts with probability at least 23 ;� If f is �-far from Mn then the algorithm rejects with probability at least 23 .3 The ReductionClearly, the algorithm described in the introduction accepts any monotone function. Toanalyze its behavior on a function that is far from being monotone, we consider an arbitraryfunction f , and investigate its properties.Let � = dist(f;Mn), and let g be a monotone function (over f0; 1gn) for which dist(f; g) =�. Namely, g is a monotone function that is closest to f . For b 2 f0; 1g, letDb def= fx : f(x) 6= g(x) and g(x) = b g (1)That is, the set D0 [ D1 is a set of minimum size such that if we 
ip the value of f on allstrings in the set then we obtain a monotone function (i.e., g). Since jD0 [D1j = � � 2n andD0 \ D1 = ;, we may assume without loss of generality that jD1j � �2 � 2n. Note that, byde�nition, D1 = fx : g(x) = 1 and f(x) = 0 g2



For any set S � f0; 1gn, the shadow1 of S, denoted �(S), is de�ne as follows:�(S) def= fx =2 S : 9y 2 S s.t. x < ygNamely, the shadow of S is the set of all strings not in S that are each smaller than somestring in S. For any S � D1 (where D1 is as de�ned above), de�ne�1(S) def= fx 2 �(S) : f(x) = g(x) = 1gAs a visualization (See Figure 3), we view g as de�ning a boundary in the boolean latticesuch that all strings on and above the boundary are labeled 1, and all other strings arelabeled 0. The set D1 contains those strings above the boundary that f labels 0. The set�(D1) contains all strings in the shadow of D1 that lie above the boundary and f labels 1.
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Figure 1: The sets D1 and �1(D1).Thus, by de�nition of D1 and �1(D1), we have that for every x 2 �1(D1), there existsy 2 D1 such that y < x but f(y) < f(x) (i.e. f(y) = 0 and f(x) = 1), thus providing evidenceto the non-monotonicity of f . We stress that this evidence is not necessarily detectable bythe algorithm. The next lemma is the �rst step towards translating evidence of the abovetype into phenomena that may be detectable by the algorithm. The lemma asserts (as aspecial case) that there is a matching of elements of D1 to elements of �1(D1) so that eachy 2 D1 is matched to a string x < y.Lemma 1 For every S � D1, there exists a 1-to-1 mapping � from S into �1(S), such thatfor each x 2 S, �(x) < y.1This is not the standard de�nition of a shadow [1].3



Proof: We �rst show that for every T � D1, j�1(T)j � jTj. Assume towards the contradic-tion that, for some T � D1, j�1(T)j < jTj. We show, contrary to our hypothesis on g, thatthere exists another monotone function g0 that is (strictly) closer to f . De�ne g0 as follows:for every x 2 T [ �(T), g0(x) = 0. Otherwise, g0(x) = g(x). We need to verify the followingtwo claims.Claim 1: dist(f; g0) < dist(f; g).Claim 2: g0 is a monotone function.Proof of Claim 1: For any set X � f0; 1gn let �(X) def= 2�n � jXj. By de�nition of g0, thefunctions g and g0 di�er on � def= (T[ �(T))\ fx : g(x)=1g. Since T � D1 � fx : g(x)=1g,� = T [ (�(T) \ fx : g(x)=1g)= T [ (�(T) \ fx : g(x)=1 and f(x)=1g) [ (�(T) \ fx : g(x)=1 and f(x)=0g)= T [ �1(T) [ Awhere A def= �(T) \ fx : g(x)=1 and f(x)=0g. Consider the three disjoint subsets �.� For every x 2 T, we have f(x) = 0 and g(x) = 1 (since T � D1), and g0(x) = 0 (byde�nition).� For every x 2 �1(T), we have f(x) = g(x) = 1 (by de�nition of �1(T)), and againg0(x) = 0.� For every x 2 A, we have f(x) = 0 and g(x) = 1 (by de�nition of A), and againg0(x) = 0.Thus, dist(f; g0)� dist(f; g) = �(�1(T))� �(T [ A)� �(�1(T))� �(T)< 0where the strict inequality is due to the counter-hypothesis regarding T. 2Proof of Claim 2: We need to show that for every x; y such that x < y, it holds thatg0(x) � g0(y). Consider the following cases.Case 1: x 2 T [ �(T). In this case g0(x) = 0, and so for all y, g(x) � g(y).Case 2: x =2 T [ �(T). Note that in this case g0(x) = g(x). We will show that for every yif y > x then y =2 T [ �(T) as well, and thus g0(y) = g(y) � g(x) = g0(x) as required.Suppose towards contradiction that for some y 2 T [ �(T) it holds that y > x. Weconsider two cases. 4



1. If y 2 T and x < y then x 2 T [ �(T) in contradiction to the case hypothesis.2. If y 2 �(T) and x < y then there exists z 2 T such that z > y. Thus z > x andcontradiction follows as in Item 1.The claim follows. 2Consider any set S � D1. We have established that for every T � S, j�1(T)j � jTj. Thelemma follows from Hall's Theorem [2, Thm. 6.12]: Consider the bipartite graph G whosevertex set is labeled by the strings in S[�1(S), and whose edge set is f(x; y) : x 2 �1(S); y 2S; x < yg. By the above, for each T � S, we have j�(T)j � jTj, where �(T) denotes theneighbor set of T in G. By Hall's Theorem, this implies that there exists a complete matchingof S to �1(S), and the lemma follows.For every string x, let w(x) denote the weight of x (i.e., the number of 1's in x). Foreach i, 0 � i � n, let Li � f0; 1gn denote the set of n-bit long strings of weight i (i.e.,Li = fx2f0; 1gn : w(x)= ig). Let Gn be the leveled directed (acyclic) graph over the vertexset f0; 1gn, where there is a directed edge from y to x if and only if x < y and w(x) = w(y)�1(i.e., x and y are in adjacent Li's). As shown below, the following conjecture implies thatthe algorithm presented in the introduction constitute a tester of monotonicity.Conjecture 1 Let r and s be integers satisfying, 0 � r < s � n, and let R;S � f0; 1gn, besets such that R � Lr, and S � Ls, and jRj = jSj = m. Suppose that there exists a 1-to-1mapping  from S to R such that for every y 2 S, there is a directed path in Gn from y to (y). Then there exist m vertex-disjoint directed paths from S to R in Gn.Actually, let us present a slight variant of the algorithm presented in the introductionAlgorithm 1:Repeat 2n2=� times1. Uniformly select x 2 f0; 1gn, and obtain the value f(x);2. In case f(x) = 1, obtain the values of f(y) for all y > x that neighbor x in Gn (i.e., yequals x with one of the zeros in x 
ipped to 1). If one of these f(y)'s is 0 then reject.3. Analogously, in case f(x) = 0, obtain the values of f(y) for all y < x that neighbor xin Gn. If one of these f(y)'s is 1 then reject.If all iterations were completed without rejecting then accept.Theorem 1 If Conjecture 1 holds then Algorithm 1 is a property tester for monotonicity.In particular, if f is monotone then Algorithm 1 always accepts, whereas if f is �-far fromMn then Algorithm 1 rejects with probability at least 2=3.5



The only di�erence between the algorithm presented in the introduction and Algorithm 1is that in each iteration, instead of picking a random neighbor of the chosen string x, weconsider either all neighbors above x or all neighbors below x. Thus the correctness ofAlgorithm 1 implies the correctness of the algorithm presented in the introduction.Proof: Clearly, if f is monotone, then the algorithm always accepts. So we need to considerwhat happens when f is �-far from Mn. By the above discussion we may assume that D1(see Eq. (1)) has size at least � � 2n�1. Let Si def= D1 \ Li, and let k denote the index of thelargest set among the Si's. It follows that jSkj � �2n � 2n.We now invoke Lemma 1 with S = Sk. Let Rk def= �(Sk), where � is as guaranteed bythe lemma. Hence, Rk � �1(Sk), and jRkj = jSkj. Note that while all elements of Sk belongto Lk, the elements of Rk are contained in several Li's, i < k. For each i, 0 � i < k, letRk;i def= Rk \ Li. Let Rk;j be the largest such set. Since jRkj = jSkj � �2n � 2n, we havejRk;jj � �2n2 � 2n. Finally let Sk;j def= ��1(Rk;j).We next apply Conjecture 1 with r = j, s = k, R = Rk;j and S = Sk;j . We conclude thatthere exist m = jSj � �2n2 � 2n vertex disjoint paths from S to R (in Gn). Consider any suchpath y0 = y; : : : ; yt = x, where y 2 S, x 2 R, and t = k � j. Since y0 2 S � D1, we havef(y0) = 0. On the other hand, since yt 2 R � �1(D1), we have f(yt) = 1. Therefore, theremust exist some ` 2 f0; :::; t� 1g, such that f(y`) = 0 and f(y`+1) = 1. But y` > y`+1, andso if the algorithm selects either y` or y`+1 at Step (1) then it rejects. Since these m pathsare vertex-disjoint, we conclude that the probability that the algorithm rejects in a singleiteration is at least 2m2n � �n2Thus, the probability that the algorithm accepts an �-far from monotone function is boundedabove by �1� �n2�2n2=� < 13and the theorem follows.4 Observations Concerning Conjecture 1We stress that Conjecture 1 does not require that the vertex-disjoint paths from S to Rrespect the given 1{1 mapping  (i.e., that the new paths also connect each y 2 S to thecorresponding  (S)). In fact, a stronger claim in which these paths are required to respectthe given mapping is false. An example is depicted in Figure 4. For the given examplejSj = jRj = 8, and there are no 8 vertex-disjoint paths that respect the given matching (yetthere exist 8 vertex-disjoint paths from S to R). This illustrates the non-triviality of theconjecture.We next show that Conjecture 1 follows from the following seemingly weaker conjecture.6
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1000 1101Figure 2: An example in which there aren't enough disjoint paths respecting a particular1{1 mapping (but there is the desired number of disjoint paths corresponding to a di�erentmapping). The given 1-1 mapping is from each 8-bit long string at the top level to the 8-bitlong string that is aligned with it in the bottom level. For each such \matched" pair thereare (two) paths from the top vertex to the corresponding bottom one. All possible pathsconnecting these matched pairs appear in the picture in solid arrows. (There are only twopaths between each pair of strings that are at Hamming distance 2.) Since the paths thatrespect the matching use only 7 intermediate vertices, there exist no 8 vertex-disjoint pathsrespecting this mapping. Still, if we are willing to use a di�erent matching then 8 vertex-disjoint paths from the top vertices to the bottom one do exist. For example, consider the\circular shift-to-right mapping" and use the auxiliary vertex on the right.Conjecture 2 Let r, s, R, S and  be as in Conjecture 1. Let I be the set of vertices inLs�1 that are on a directed path going from some vertex in S to a vertex in R. Then jIj � jSj.Clearly Conjecture 2 follows from Conjecture 1. We show that the converse holds too.Proposition 1 Conjecture 2 implies Conjecture 1.Proof: The proof is by induction on ` def= s� r. The base case of ` = 1 holds vacuously. Forthe induction step, we assume that the implication holds for ` � 1, and consider arbitrarysets S � Ls and R � Lr with s�r = `. We will shortly prove that (1) there exists a completematching from S to I; and (2) there exists a 1{1 mapping  0 from the matched vertices of Ito R so that there is a path from each matched x 2 I to  0(x). Given (2) we can apply theinduction hypothesis on I and R, and by combining with (1) we get the desired paths fromS to R.We now prove both (1) and (2). Consider the following auxiliary network, A. It has asingle source vertex s, a single target vertex t, and the rest of the vertices are partitionedinto three layers corresponding to S, I and R, respectively. There is an edge from s to eachof the vertices in T, and from each of the vertices in R to t. The edges between S and Iare as in Gn and edges between I and R correspond to directed paths in Gn. We show thatthe minimum s � t vertex-separator in A has size m def= jSj. Claims (1) and (2) follow byMenger's Theorem [2, Thm. 6.4], which guarantees the existence of m vertex-disjoint pathsfrom s to t.Assume in contradiction that there exists a vertex-separator C of size smaller than m inA. Let m1 def= jC \ Sj, m2 def= jC \ Ij, and m3 def= jC \ Rj. Consider the subset of vertices7



S0 � S that do not belong to C and are not mapped by  to vertices in R \ C. The size ofS0 is at least m0 = m� (m1 +m3) > jCj � (m1 +m3) = m2. Let R0 def=  (S0), and I0 be theset of vertices in Ls�1 that are on a directed path going from some vertex in S0 to a vertexin R0. Then, by Conjecture 2 (applied to S0 and R0), the set I0 is of size at least m0. SincejC \ Ij = m2 < m0, there exists at least one vertex v in I0 n C, but this contradicts the factthat C is an s � t vertex-separator (since we can connect s to t using a path through S0, vand R0).AcknowledgementsWe would like to thank Dan Kleitmann for a helpful discussion, and in particular for comingup with the counter-example (Figure 4).References[1] B. Bollob�as. Combinatorics. Cambridge University Press, 1986.[2] S. Even. Graph Algorithms. Computer Science Press, 1979.[3] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection tolearning and approximation. Extended abstract in Proc. of the 37th IEEE Symp. onFoundation of Computer Science, pages 339{348, 1996. Full version available fromhttp://theory.lcs.mit.edu/~oded/ggr.html.
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