A Note on Testing Monotonicity

Oded Goldreich* Shafi Goldwasser! Dana Ron#

October 1997 (revised April 1998)

Abstract

We show that under a certain conjecture regarding the boolean lattice, there ex-
ists an efficient algorithm for testing whether a function is monotone or e-far from
monotone.

NOTE: The said combinatorial conjecture has been recently proven in collaboration with
Eric Lehman. We plan to write a joint paper presenting these results. [April 12, 1998]

1 Introduction

One of the first problems we considered while working on our paper on Property Testing [3],
is testing Monotonicity of (Boolean) functions. A function f : {0,1}" — {0,1} is called
monotone if f(x) < f(y), for every @ < y, where the partial order between strings is defined
analogously to the set inclusion relation. That is, zyxy--- 2, < y1ys-- -y, if x; < y; for all
t’s and 0 = z; < y; = 1 for some j.

A testing algorithm is given a distance parameter €, and oracle access to an unknown
function. It is required to accept with high probability any monotone function, and to
reject with high probability any function that is e-far from being monotone. A function
f:{0,1}" — {0,1} is said to be e-far from monotone if for every monotone function g,

{ze{0, 137" f(z) # g(e)}] > - 2"

One natural idea is to test monotonicity by repeating poly(n/e) many time the following

step: Uniformly select = € {0,1}", and ¢ € [n] & {1,2,...,n}, query the function at = and

*Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot,
IsRAEL. E-mail: oded@wisdom.weizmann.ac.il. Work done while visiting LCS, MIT.

TLaboratory for Computer Science, MIT, 545 Technology Sq., Cambridge, MA 02139. E-mail:
shafiOtheory.lcs.mit.edu.

{Laboratory for Computer Science, MIT, 545 Technology Sq., Cambridge, MA 02139. E-mail:
danar@theory.lcs.mit.edu. Supported by an NSF postdoctoral fellowship.

at o' ¥ 2 0i-110m (i.e., x with the ¢th bit flipped), and reject if monotonicity is violated
(e.g., in case & < &’ we reject if f(x) > f(a')).

We were able to reduce the correctness of this natural algorithm to a conjecture regarding
the structure of the Boolean Lattice, but were not able to prove this conjecture. The current
note presents what we know.

2 Preliminaries

For any pair of functions f,¢ : {0,1}" — {0,1}, we define the distance between [and g,
denoted, dist(f, g), to be the fraction of instance « € {0,1}" on which f(z) # g(«). In other
words, dist(f, g) is the probability over a uniformly chosen x that f and ¢ differ on x. Let G
be a class of boolean functions over {0,1}". We define dist(f,G) & mingeg{dist(f,g)}. We
say that f is e-far from G, for 0 < e < 1, if dist(f,G) > e. Let M, be the class of monotone
functions over {0,1}". That is, for every function ¢ € M, the following holds: For every
z,y € {0,1}", if @ < y then g(x) < g(y).

Definition 1 A property-testing algorithm for the monotonicity property is given an input-
size parameter n, a distance parameter ¢, and oracle access to an unknown function f :

{0,1}" — {0,1}. We require that for every n, ¢ and f the following hold:

o If f is a monotone function then the algorithm accepts with probability at least %;

o If f is e-far from M, then the algorithm rejects with probability at least %

3 The Reduction

Clearly, the algorithm described in the introduction accepts any monotone function. To
analyze its behavior on a function that is far from being monotone, we consider an arbitrary
function f, and investigate its properties.

Let 6 = dist(f, M,,), and let ¢ be a monotone function (over {0, 1}") for which dist(f, ¢) =
6. Namely, ¢ is a monotone function that is closest to f. For b € {0, 1}, let

Dy (a2 f(a) # gla) and glx) = b) (1)

That is, the set Dy U Dy is a set of minimum size such that if we flip the value of f on all
strings in the set then we obtain a monotone function (i.e., ¢). Since |Dg U Dq| = ¢ - 2" and
Do N Dy = 0, we may assume without loss of generality that [Dy| > % - 2", Note that, by
definition,

Di={x: g(x)=1and f(z)=0}

For any set S C {0,1}", the shadow' of S, denoted o(S), is define as follows:
o) {r¢S: JyeSst x<yl

Namely, the shadow of S is the set of all strings not in S that are each smaller than some
string in S. For any S C Dy (where Dy is as defined above), define

o(S) E {z € 0(9): fz) =g(x) =1}

As a visualization (See Figure 3), we view ¢ as defining a boundary in the boolean lattice
such that all strings on and above the boundary are labeled 1, and all other strings are
labeled 0. The set Dy contains those strings above the boundary that f labels 0. The set
o(D1) contains all strings in the shadow of Dy that lie above the boundary and f labels 1.

The Boundary ——
of g

Figure 1: The sets Dy and o1(Dy).

Thus, by definition of Dy and o4(Dy), we have that for every @ € o1(Dy), there exists
y € Dy such that y < 2 but f(y) < f(z) (i.e. f(y) =0and f(x) = 1), thus providing evidence
to the non-monotonicity of f. We stress that this evidence is not necessarily detectable by
the algorithm. The next lemma is the first step towards translating evidence of the above
type into phenomena that may be detectable by the algorithm. The lemma asserts (as a
special case) that there is a matching of elements of Dy to elements of o1(Dy) so that each
y € Dy is matched to a string = < y.

Lemma 1 For every S C Dy, there exists a 1-to-1 mapping ¢ from S into o1(S), such that
for each x € S, ¢(x) < y.

!This is not the standard definition of a shadow [1].

Proof: We first show that for every T C Dy, |o1(T)| > |T|. Assume towards the contradic-
tion that, for some T C Dy, |o1(T)| < |T|. We show, contrary to our hypothesis on g, that
there exists another monotone function ¢’ that is (strictly) closer to f. Define ¢’ as follows:
for every x € TU o(T), ¢'(x) = 0. Otherwise, ¢'(z) = g(x). We need to verify the following
two claims.

Claim 1: dist(f,¢") < dist(f, g).
Claim 2: ¢’ is @ monotone function.

Proof of Claim 1: For any set X C {0,1}" let u(X) Lef 9-n . |X]. By definition of ¢’, the
functions ¢ and ¢’ differ on A & (TUo(T))Nn{x:g(x)=1}. Since T C Dy C{x:g(x)=1},

A= T UM ge)=1)
= T J(e(T)n{z:g(z)=1and f(z)=1}) [(o(T)N{x: g(z)=1 and f(z)=0})
=T U o1(T) U A

where A & o(T)N{z:g(x)=1and f(x)=0}. Consider the three disjoint subsets A.

e For every x € T, we have f(x) = 0 and g(x) = 1 (since T C Dy), and ¢'(x) = 0 (by
definition).

e For every « € o¢(T), we have f(x) = g(x) = 1 (by definition of o1(T)), and again
g'(x)=0.

e For every @ € A, we have f(x) = 0 and g(x) = 1 (by definition of A), and again
g'(x)=0.

Thus,

dist(f. ') — dist(f,g)

ACIA I
= =
29
22
o
= =
==

C
=

where the strict inequality is due to the counter-hypothesis regarding T. O

Proof of Claim 2: We need to show that for every z,y such that @ < y, it holds that
¢'(z) < ¢'(y). Consider the following cases.

Case 1: © € TUo(T). In this case ¢'(x) = 0, and so for all y, g(x) < g(y).

Case 2: © ¢ TUo(T). Note that in this case ¢'(x) = g(x). We will show that for every y
if y >« then y ¢ T U o(T) as well, and thus ¢'(y) = ¢(y) > g(x) = ¢'(x) as required.
Suppose towards contradiction that for some y € T U o(T) it holds that y > x. We

consider two cases.

l. If y € T and « < y then € TU o(T) in contradiction to the case hypothesis.

2. If y € o(T) and @ < y then there exists z € T such that z > y. Thus z > « and
contradiction follows as in Item 1.

The claim follows. O

Consider any set S C D;. We have established that for every T C S, |o1(T)| > |T|. The
lemma follows from Hall’s Theorem [2, Thm. 6.12]: Consider the bipartite graph G whose
vertex set is labeled by the strings in SUoy(S), and whose edge set is {(z,y): « € 01(S), y €
S, © < y}. By the above, for each T C S, we have |[['(T)| > |T|, where I'(T) denotes the
neighbor set of T in G. By Hall’s Theorem, this implies that there exists a complete matching
of S to 01(S), and the lemma follows. W

For every string x, let w(x) denote the weight of = (i.e., the number of 1’s in z). For
each ¢, 0 < ¢ < n, let L; C {0,1}" denote the set of n-bit long strings of weight ¢ (i.e.,
L ={x€{0,1}" : w(x)=1}). Let G,, be the leveled directed (acyclic) graph over the vertex
set {0,1}", where there is a directed edge from y to if and only if # < y and w(x) = w(y)—1
(i.e., and y are in adjacent L;’s). As shown below, the following conjecture implies that
the algorithm presented in the introduction constitute a tester of monotonicity.

Conjecture 1 Let r and s be integers satisfying, 0 < r < s <n, and let R,S C {0,1}", be
sets such that R C L,, and S C Ly, and |R| = |S| = m. Suppose that there exvists a 1-to-1
mapping ¥ from S to R such that for every y € S, there is a directed path in G, from y to
Y(y). Then there exist m vertex-disjoint directed paths from S to R in G,,.

Actually, let us present a slight variant of the algorithm presented in the introduction
ALGORITHM 1:

Repeat 2n?/e times

1. Uniformly select & € {0,1}", and obtain the value f(x);

2. In case f(x) = 1, obtain the values of f(y) for all y > « that neighbor « in G, (i.e., y
equals « with one of the zeros in x flipped to 1). If one of these f(y)’s is 0 then reject.

3. Analogously, in case f(x) = 0, obtain the values of f(y) for all y < « that neighbor x
in G, If one of these f(y)’s is 1 then reject.

It all iterations were completed without rejecting then accept.

Theorem 1 [f Conjecture 1 holds then Algorithm 1 is a property tester for monotonicity.
In particular, if f is monotone then Algorithm 1 always accepts, whereas if f is e-far from
M, then Algorithm 1 rejects with probability at least 2/3.

The only difference between the algorithm presented in the introduction and Algorithm 1
is that in each iteration, instead of picking a random neighbor of the chosen string z, we
consider either all neighbors above x or all neighbors below x. Thus the correctness of
Algorithm 1 implies the correctness of the algorithm presented in the introduction.

Proof: Clearly, if f is monotone, then the algorithm always accepts. So we need to consider

what happens when f is e-far from M,,. By the above discussion we may assume that D4

(see Eq. (1)) has size at least € -2"7'. Let S; def D, N L;, and let k& denote the index of the

largest set among the S;’s. It follows that |Sy| > % A

We now invoke Lemma 1 with S = S;. Let Ry & #(Sk), where ¢ is as guaranteed by
the lemma. Hence, Ry, C 01(Sk), and |Rg| = |Sk|. Note that while all elements of Sj, belong

to Lg, the elements of Ry are contained in several 1;’s, ¢ < k. For each ¢, 0 < ¢ < k, let

Ri,i def Ry N L;. Let Ry, be the largest such set. Since |Ry| = |Si| > % - 2", we have

2
Ri,| > 525 - 2. Finally let Sy ; % 671 (Ry,).

We next apply Conjecture 1 with r =y, s =k, R =Ry ; and S = 5; ;. We conclude that
there exist m = [S| > 55 - 2" vertex disjoint paths from S to R (in G,). Consider any such
path yo = y,...,y: =z, where y € S, x € R, and t = k — j. Since yo € S C Dy, we have
f(yo) = 0. On the other hand, since y; € R C o1(D4), we have f(y;) = 1. Therefore, there
must exist some (€ {0,....,t — 1}, such that f(y,) =0 and f(ye41) = 1. But y¢ > yeq1, and
so if the algorithm selects either y, or y,41 at Step (1) then it rejects. Since these m paths
are vertex-disjoint, we conclude that the probability that the algorithm rejects in a single
iteration is at least

2m €
A
2" T n?

Thus, the probability that the algorithm accepts an e-far from monotone function is bounded

2n? /e 1
@

i < -
(nz) 3

above by
and the theorem follows. W

4 Observations Concerning Conjecture 1

We stress that Conjecture 1 does not require that the vertex-disjoint paths from S to R
respect the given 1-1 mapping ¢ (i.e., that the new paths also connect each y € S to the
corresponding t(S)). In fact, a stronger claim in which these paths are required to respect
the given mapping is false. An example is depicted in Figure 4. For the given example
|S| = |R| = 8, and there are no 8 vertex-disjoint paths that respect the given matching (yet
there exist 8 vertex-disjoint paths from S to R). This illustrates the non-triviality of the
conjecture.

We next show that Conjecture 1 follows from the following seemingly weaker conjecture.

1101 1100 l 1011 1100 l l 0111 1100 l l 1110 1100 l l 1100 1110 l l 1100 0111 l l 1100 1011] l 1100 1101 l

=N
— A

l 1001 1100 l l 0011 1100 l l 0110 1100 l 1100 1100 l 1100 0110 l l 1100 0011 l l 1100 1001 l | 1000 1101
S gl

- -~ /
N
N\ /
l 1000 1100 l l 0001 1100 l l 0010 1100 l l 0100 1100 l l 1100 0100 l l 1100 0010 l l 1100 0001 l l 1100 1000 l 7

Figure 2: An example in which there aren’t enough disjoint paths respecting a particular
1-1 mapping (but there is the desired number of disjoint paths corresponding to a different
mapping). The given 1-1 mapping is from each 8-bit long string at the top level to the 8-bit
long string that is aligned with it in the bottom level. For each such “matched” pair there
are (two) paths from the top vertex to the corresponding bottom one. All possible paths
connecting these matched pairs appear in the picture in solid arrows. (There are only two
paths between each pair of strings that are at Hamming distance 2.) Since the paths that
respect the matching use only 7 intermediate vertices, there exist no 8 vertex-disjoint paths
respecting this mapping. Still, if we are willing to use a different matching then 8 vertex-
disjoint paths from the top vertices to the bottom one do exist. For example, consider the
“circular shift-to-right mapping” and use the auxiliary vertex on the right.

Conjecture 2 Let r, s, R, S and 1 be as in Conjecture 1. Let 1 be the set of vertices in
Ls—1 that are on a directed path going from some vertex in S to a vertex in R. Then |I| > |S].

Clearly Conjecture 2 follows from Conjecture 1. We show that the converse holds too.

Proposition 1 Conjecture 2 implies Conjecture 1.

Proof: The proof is by induction on ¢ 4 s . The base case of = 1 holds vacuously. For
the induction step, we assume that the implication holds for ¢ — 1, and consider arbitrary
sets S C Ly and R C L, with s —r = {. We will shortly prove that (1) there exists a complete
matching from S to I; and (2) there exists a 1-1 mapping ¢’ from the matched vertices of |
to R so that there is a path from each matched « € 1 to ¢'(x). Given (2) we can apply the
induction hypothesis on I and R, and by combining with (1) we get the desired paths from
S to R.

We now prove both (1) and (2). Consider the following auxiliary network, A. It has a
single source vertex s, a single target vertex ¢, and the rest of the vertices are partitioned
into three layers corresponding to S, I and R, respectively. There is an edge from s to each
of the vertices in T, and from each of the vertices in R to . The edges between S and I

are as in G, and edges between [and R correspond to directed paths in G,,. We show that

the minimum s — ¢ vertex-separator in A has size m = |S]. Claims (1) and (2) follow by

Menger’s Theorem [2, Thm. 6.4], which guarantees the existence of m vertex-disjoint paths
from s to t.

Assume in contradiction that there exists a vertex-separator C of size smaller than m in
A. Let mp € 0S|, my ¥ |CNT), and ms € |C N R|. Consider the subset of vertices

S" C S that do not belong to C and are not mapped by ¢ to vertices in R N C. The size of
S"is at least m’ = m — (mq + ms) > |C| — (mq1 + m3) = my. Let R/ def p(S'), and I’ be the
set of vertices in L;_; that are on a directed path going from some vertex in S’ to a vertex
in R’. Then, by Conjecture 2 (applied to S’ and R’), the set I’ is of size at least m’. Since
|C NI = mg < m, there exists at least one vertex v in I’ \ C, but this contradicts the fact
that C is an s — t vertex-separator (since we can connect s to ¢ using a path through §'; v

and R’). W

Acknowledgements

We would like to thank Dan Kleitmann for a helptul discussion, and in particular for coming
up with the counter-example (Figure 4).

References

[1] B. Bollobds. Combinatorics. Cambridge University Press, 1986.
[2] S. Even. Graph Algorithms. Computer Science Press, 1979.

[3] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation. Extended abstract in Proc. of the 37th IEEFE Symp. on
Foundation of Computer Science, pages 339-348, 1996. Full version available from
http://theory.lcs.mit.edu/ oded/ggr.html.

