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1 IntroductionIn the last decade, the area of property testing has attracted much attention (see the surveysof [F, R], which are already out-of-date). Loosely speaking, property testing typically refers tosub-linear time probabilistic algorithms for deciding whether a given object has a predeterminedproperty or is far from any object having this property. Such algorithms, called testers, obtainlocal views of the object by making adequate queries; that is, the object is seen as a function andthe testers get oracle access to this function (and thus may be expected to work in time that issub-linear in the length of the object).The foregoing description refers to the notion of \far away" objects, which in turn presumesa notion of distance between objects as well as a parameter determining when two objects areconsidered to be far from one another. The latter parameter is called the proximity parameter, andis often denoted �; that is, one typically requires the tester to reject with high probability anyobject that is �-far from the property.Needless to say, in order to satisfy the aforementioned requirements, any tester (of a reason-able property) must obtain the proximity parameter as auxiliary input (and determine its actionsaccordingly). The question, addressed in this work, is what does the tester do with this parameter(or how does the parameter a�ect the actions of the tester). A very minimal e�ect is exhibited bytesters that, based on the value of the proximity parameter, determine the number of times thata basic test is invoked, where the basic test is oblivious of the proximity parameter. For example,the celebrated linearity tester of [BLR], repeats a basic test that consists of selecting two randompoints, x and y, and probing the value of the function at the points x; y; x + y. This basic test isrepeated for a number of times that is inversely proportional to the proximity parameter.Our focus is on such basic tests (i.e., basic tests that are oblivious of the proximity param-eter). We call such tests proximity oblivious, and consider a variety of questions regarding them.Speci�cally:� Which properties have proximity oblivious tests (of small query complexity)?� How does the detection probability of such tests grow as a function of the distance of the objectfrom the property, and how does this relate to the query complexity of the best (standard)tester for the corresponding property.For a formulation of the aforementioned notion and a summary of our results see Sections 2 and 3,respectively.
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2 Formal SettingIn continuation to the introduction, we consider proximity-oblivious testers, and note that standardtesters (which err with probability at most 1=3)1 may be obtained by repeating these proximity-oblivious testers for an adequate number of times.De�nition 2.1 (vanilla version): Let � be a set of functions over a �nite set 
. A proximity-oblivious tester for � is a probabilistic oracle machine T that satis�es the following two conditions:1. The tester accepts each function in � with probability 1; that is, for every f 2 � it holds thatPr[T f=1] = 1.2. For some monotone function � : (0; 1] ! (0; 1], each function f 62 � is rejected by T withprobability at least �(��(f)), where��(f) def= ming2�f�(f; g)g and �(f; g) def= Prx2
[f(x) 6= g(x)]. (1)The function � is called the detection probability of the tester T .Indeed, we require that �(�) > 0 for every � > 0, whereas extending Item 2 to f 2 � while avoidingcontradiction with Item 1 mandates extending � so that �(0) = 0. The requirement that � ismonotone (i.e., monotonely increasing) does not rule out cases where the tight lower-bound is non-monotone (e.g., [BCH+]), because � is not required to be tight.2 Also, we may assume, withoutloss of generality, that �(�) � �.We note that (as outlined in the introduction), using a proximity-oblivious tester T (as inDe�nition 2.1), we can obtain a standard (one-sided error) tester (of error probability at most 1/3).Speci�cally, given the proximity parameter �, the standard tester invokes T for �(1=�(�)) times,and accepts if and only if all these invocations accept.Note that it is natural to require one-sided error in (Item 1 of) De�nition 2.1, because otherwisefunctions in � may be accepted with probability that is lower than the acceptance probability ofsome functions that are not in � (but are close to �).De�nition 2.1 does not specify the query complexity of the (proximity-oblivious) tester, andindeed an oracle machine that queries the entire domain of the function quali�es as a (proximity-oblivious) tester (with detection probability �(�) = 1 for every � > 0). Needless to say, we areinterested in (proximity-oblivious) testers that have signi�cantly lower query complexity. To fa-cilitate an asymptotic treatment, we refer to in�nite families of �nite functions, and provides thetester with the size of the function's domain.1Analogously to De�nition 2.1 a standard tester for a property � is a probabilistic oracle machine T that satis�esthe following conditions:1. The tester accepts each f 2 � with probability at least 2=3; that is, for every f 2 � and every � > 0, it holdsthat Pr[T f (�)=1] � 2=3.2. Given any � > 0 and oracle access to any f that is �-far from � (i.e., ��(f) > �), the tester rejects withprobability at least 2=3 (i.e., Pr[T f (�)=0] � 2=3).We say that the tester has one-sided error if it accepts each f 2 � with probability 1 (i.e., for every f 2 � and every� > 0, it holds that Pr[T f (�)=1] = 1).2In fact, it su�ces to require that for every x > 0 it holds that �0(x) def= infy�xf�(y)g > 0. Indeed, in such acase, �0 is a monotonely non-decreasing lower-bound (of �). Furthermore, we may obtain a monotonely increasinglower-bound (of �) by de�ning �00(x) def= (1 + x) � �0(x)=2. 2



De�nition 2.2 (main version): Let � = Sn2N�n, where �n contains functions de�ned over thedomain [n] def= f1; :::; ng, and � : (0; 1] ! (0; 1] be monotone. A proximity-oblivious tester withdetection probability � for � is a probabilistic oracle machine T that satis�es the following twoconditions:1. For every n 2 N and f 2 �n, it holds that Pr[T f (n)=1] = 1.2. For every n 2 N and f : [n] ! f0; 1g� not in �n, it holds that Pr[T f (n) = 0] � �(��n(f)),where ��n(f) = ming2�nf�(f; g)g (indeed, as in Eq. (1)).De�nition 2.2 can be further extended so to cover also (proximity-oblivious) testers that obtainother parameters of the function being tested (e.g., a degree bound in the case of testing low-degreepolynomials). Note that De�nition 2.2 mandates that the detection probability is only a functionof the relative distance to the property; indeed, one may relax this requirement but one should stayaway from the trivial lower-bound (which corresponds to only requiring that for every f 62 � thereexists a computation of T f that rejects).3 Summary of our ResultsRecall that the (three-query) linearity test of [BLR] is actually a proximity-oblivious tester, andthat its detection probability is linear (i.e., �(�) = 
(�)). The same holds also for several knownlow-degree tests (see, e.g., [RS] and [KS]), testers of monotonicity (e.g., [GGL+]), and some of theresults regarding locally testable codes (see [GS] and the end of Section 6). In this work, we studythe existence and quality (i.e., �) of e�cient proximity-oblivious testers in other domains, mostimportantly in the domain of testing graph properties.The dense graphs model. We start (in Section 4) with the setting of testing properties of graphsin the adjacency matrix model (introduced in [GGR]). We consider several natural properties andshow constant-query proximity-oblivious testers of optimal (up to a constant factor) detectionprobability. For example, we show that:1. The set of graphs consisting of isolated cliques has a three-query proximity-oblivious tester ofquadratic detection probability (i.e., �(�) = 
(�2)), whereas no constant-query proximity-oblivious tester of this property may do better (i.e., have detection probability �(�) =!(�2)). We note that this property has a standard (adaptive) tester of eO(1=�)-query com-plexity [GR08, Sec. 3].2. For every integer c � 2, the set of graphs consisting of up to c isolated cliques has a c2-query proximity-oblivious tester, and the optimal detection probability is �(�) = �(�c=2). Wenote that these properties have a standard (non-adaptive) tester of eO(1=�)-query complex-ity [GR08, Sec. 6].In contrast to the aforementioned positive results, we show that the set of bipartite graphs hasno constant-query proximity-oblivious tester, although it does have a standard tester of poly(1=�)-query complexity [GGR, AK]. We characterize the class of graph properties having constant-queryproximity-oblivious testers, showing that they equal the class of properties that correspond to in-duced subgraph freeness. This class is rather restricted when compared to the class of graph prop-erties having a standard tester of complexity that only depends on � (as characterized in [AFNS]).3



The bounded-degree graphs model. Next (in Section 5), we turn to testing graph propertiesin the bounded-degree model (introduced in [GR02]). In this model, we also characterize the classof graph properties having constant-query proximity-oblivious testers. Interestingly, this class is astrict superset of the class of properties having such testers in the adjacency matrix model. We notethat, also in the current model, the class of properties having constant-query proximity-oblivioustesters is rather restricted when compared to the class of graph properties having a standard testerof complexity that only depends on � (as explored in [GR02, BSS]).The characterization of the class of graph properties having constant-query proximity-oblivioustesters in the bounded-degree model gives rise to a generalized notion of subgraph freeness, whichmay be of independent interest. This notion generalizes both the notions of non-induced andinduced subgraph freeness, and is more expressive than the latter. For example, the generalizednotion allows to capture non-hereditary properties such as (degree) regularity. We call the reader'sattention to an open problem regarding this notion (i.e., Open Problem 5.7).Focusing on induced subgraph freeness properties (which do have constant-query proximity-oblivious testers in both models), we note that the detection probability in the bounded-degreemodel is a polynomial that depends on the number of connected components in the individual graphsof the forbidden family (i.e., �(�) = 
(�c), where c is the maximum number of connected componentsin any forbidden graph). This is very di�erent from the behavior in the dense graphs model, whereeven for c = 1 (i.e., connected forbidden subgraphs) the detection probability varies from linear toquadratic and to super-polynomial (i.e., �(�) = � versus �(�) = �(�2) versus �(�) < �
(log(1=�))).We comment that the techniques establishing the characterizations in the two di�erent graphtesting model are quite di�erent (as one should expect given the di�erent nature of the two models).In particular, as hinted above, the analysis of the bounded-degree model seems more novel.Generic Observations and Discussions. Finally (in Section 6), we present a couple of genericobservations and some of their consequences.4 Testing Graph Properties in the Adjacency Matrix ModelIn the adjacency matrix model an N -vertex graph G = ([N ]; E) is represented by the Booleanfunction g : [N ]� [N ]! f0; 1g such that g(u; v) = 1 if and only if u and v are adjacent in G (i.e.,fu; vg 2 E). Distance between graphs is measured in terms of their aforementioned representation(i.e., as the fraction of (the number of) di�erent matrix entries (over N2)), but occasionally weshall use the more intuitive notion of the fraction of (the number of) edges over �N2 �.Notation. For a �xed graph G = ([N ]; E), we denote the set of neighbors of vertex v 2 [N ] by�(v); that is, �(v) def= fu : fu; vg 2 Eg.4.1 A few illustrative resultsWe start with the simple case of testing whether a graph is a clique.Proposition 4.1 Clique has a single-query proximity-oblivious tester with detection probability�(�) = �, where Clique is the set of all graphs consisting of a single clique.Proof: The claim follows by considering the straightforward tester that uniformly selects tworandom vertices, and accepts if and only if there is an edge between them.4



Proposition 4.2 BiClique has a three-query proximity-oblivious tester with detection probability�(�) = �, where BiClique is the set of all graphs consisting of a single bi-clique (i.e., a completebipartite graph).Proof: We consider a tester that sets s 2 [N ] as an arbitrary vertex, selects v; u 2 [N ] uniformly,and accepts if and only if the subgraph induced by fs; u; vg has an even number of edges.3Clearly, if G is a bi-clique then this test always accepts, because either all vertices reside on thesame side (and so (s; u), (s; v), and (u; v) are all non-edges) or a single vertex is in solitude (and isthus adjacent to the other two vertices, which in turn are non-adjacent).To analyze what happens when G = ([N ]; E) is �-far from being a bi-clique, we observe that sinduces a partition of the graph to its neighbors and non-neighbors (i.e., the 2-partition (�(s); [N ]n�(s))).4 Note that if G were a bi-clique then every vertex w 2 �(s) (resp., w 2 [N ] n �(s)) wouldhave satis�ed �(w) = [N ] n �(s) (resp., �(w) = �(s)). However, since G is �-far from being abi-clique, the sum of the number of edges in (�(s) � �(s)) [ (([N ] n �(s)) � ([N ] n �(s))) and thenumber of non-edges in �(s)� ([N ]n�(s)) must exceed � �N2, and we call the corresponding vertexpairs bad. Thus, the probability that a pair (u; v) is bad is at least �, whereas each bad pair causesour tester to reject (because in the subcase that (u; v) 2 E \ (�(s) � �(s)) the induced subgraphhas three edges and in the other two subcases (i.e., (u; v) 2 E \ (([N ] n �(s)) � ([N ] n �(s))) and(u; v) 2 (�(s)� ([N ] n �(s))) n E) the induced subgraph has a single edge).Proximity-oblivious testers with �(�) = o(�). So far, we considered proximity-oblivious testerwith a linear detection probability (i.e., �(�) = 
(�)). We now turn to cases where � is polynomialbut not linear. Such a natural case is provided by the graph property that corresponds to graphsthat consist of a �xed number of isolated cliques. Speci�cally, for any �xed integer c � 1, considerthe set of graphs, denoted CC�c, that consist of at most c isolated cliques. Note that Proposition 4.1refers to CC�1, whereas Proposition 4.2 refers to graphs that are closely related to CC�2 (i.e., agraph is in CC�2 if and only if its complement graph is a bi-clique). The following result refers tothe case of c � 3.Proposition 4.3 For every constant c � 3, the property CC�c has a �c+12 �-query proximity-oblivioustester with detection probability �(�) > �c+1+o(1). On the other hand, CC�c has no constant-queryproximity-oblivious tester with detection probability �(�) = !(�c=2).Note that Section 6.2 of the companion paper [GR08] provides a standard (non-adaptive) testerfor CC�c having query complexity eO(1=�) and constant error probability. This standard tester issuperior to the one obtained by repeating any proximity-oblivious tester for an adequate numberof times (since for any c � 3 the number of repetitions must be 
(��c=2)). We note that thelower-bound on �(�) provided by Proposition 4.3 can be improved (see Proposition 4.11).Proof: The lower-bound on � follows from the analysis of the CC�c-tester that is provided in[GR08, Sec. 6.2]. Speci�cally, we refer to the fact that the analysis in [GR08] establishes that (withhigh probability) a sample of eO(1=�) vertices (from any graph that is �-far from CC�c) inducesa subgraph not in CC�c. (The said analysis actually establishes something much stronger, butthe foregoing su�ces here.)5 Note that any graph G0 that is not in CC�c contains an induced3We mention that in Section 6.1 of the companion paper [GR08] we considered a standard tester that selectsO(1=�) random pairs of vertices (in addition to an arbitrary s as above).4Indeed, this is a simple application of the \induced partition" technique, which underlies the analysis of many ofthe testers of [GGR].5Details are omitted in light of the fact that Proposition 4.11 establishes a stronger lower-bound.5



subgraph of at most c+1 vertices that is not in CC�c, because G0 either has at least c+1 connectedcomponents (which yields an independent set of size c + 1) or has a connected component that isnot a clique (which yields three vertices that miss some edge among them). It follows that the saideO(1=�)-vertex sample contains such c+1 vertices. Thus, the proximity-oblivious tester that selectsc + 1 uniformly distributed vertices and accepts if and only if the induced graph is in CC�c hasdetection probability at least 
(1)=�eO(1=�))c+1 � > �c+1+o(1).For the impossibility claim (or rather the upper-bound on �), consider a random graph consistingof c small cliques, each of size p� � N , and a large clique of size (1 � cp�) �N . This graph is �-farfrom CC�c, but the probability that any k vertices induce a subgraph that is not in CC�c is upper-bounded by �kc� � p�c, because only subsets that contain representatives from each of the smallcliques yield a subgraph not in CC�c. Recalling that we refer to constant-query proximity-oblivioustesters (which must accept if the induced subgraph is in CC�c), the upper-bound follows (since�kc� � p�c = O(�c=2) for constant k).Proximity-oblivious testers with detection probability that is even smaller are provided by [A].Proposition 4.4 (implicit in [A]): Triangle-Freeness has a three-query proximity-oblivious testerwith detection probability �(�) that is the reciprocal of a tower of poly(1=�)-many exponents. On theother hand, Triangle-Freeness has no constant-query proximity-oblivious tester with detectionprobability �(�) = poly(�).We note that [A] actually established that every constant-query proximity-oblivious tester forTriangle-Freeness must have detection probability �(�) < �
(log(1=�)).Easily testable properties having no proximity-oblivious testers. While bipartitenesscan be tested with query-complexity that is polynomial in the reciprocal of the proximity parame-ter [GGR], this property has no constant-query proximity-oblivious tester. That is:Proposition 4.5 Bipartiteness has no constant-query proximity-oblivious tester.Proof: For every � > 0, consider a graph G that consists of t def= 1=p� sets, denoted V0; V1; :::; Vt�1,each of size p� �N such that there is an edge between a pair of vertices if and only if these verticesreside in \adjacent" sets; that is, fu; vg is an edge if and only if for some i 2 f0; :::; t � 1g itholds that u 2 Vi and v 2 V(i+1)modt. Clearly, for an odd t, the graph G is �-far from beingbipartite, but a proximity-oblivious tester of query complexity less than t cannot reject G (becauseany non-bipartite subgraph of G must contain at least t vertices).4.2 Connection to induced subgraph freenessThe reader might have noticed that the proximity-oblivious testers presented so far worked bysearching for a small \forbidden subgraph" in the input graph (see, e.g., the proof of Proposi-tions 4.1, 4.2 and 4.3). In contrast, the non-existence of constant-query proximity-oblivious testerswas demonstrated by proving the non-existence of constant-size \forbidden subgraphs" in all no-instances (see, indeed, the proof of Propositions 4.5). We show that this is no coincidence, sincethere is a close relationship between the two notions.De�nition 4.6 (induced subgraph freeness): Let F be a set of unlabeled graphs. A labeled graphG is called F -free if it contains no induced subgraph that belongs to F .6



Note that De�nition 4.6 refers to induced subgraphs, whereas in many works the term F -freenessmeans having no subgraph (not necessarily an induced one) that is in F . We also note thatthe standard de�nition of graph properties, which refers to labeled graphs, actually refers to theunderlying unlabeled graphs (since graph properties are closed under graph isomorphism).Theorem 4.7 (characterization for the dense graphs model): Let � = SN2N �N be a graph prop-erty such that each �N consists of all N -vertex graphs that satisfy �. Then � has a constant-query proximity-oblivious tester if and only if there exists a constant c and an in�nite sequenceF = (FN )N2N of sets of unlabeled graphs such that1. each FN contains graphs of size at most c; and2. �N equals the set of N -vertex FN -free graphs.Furthermore, if membership in � is decidable, then a computable proximity-oblivious tester yieldsa computable sequence of sets, and vice versa.Note that the speci�c detection probability function � is irrelevant for the \only if" direction, whichonly relies on the fact that �(�) > 0 for every � > 0.6 On the other hand, the opposite directionactually provides a lower-bound on the detection probability, albeit a very weak one (i.e., �(�) isthe reciprocal of a tower of poly(1=�)-many towers of exponents). Combining both directions, weconclude that any graph property that has a constant-query proximity-oblivious tester has sucha tester with detection probability function that is lower-bounded by a speci�c function7 of theproximity parameter (albeit the reciprocal of a tower of towers of exponents).Proof: Suppose that � has a constant-query proximity tester. By [GT, Thm. 4.5] (see also [GT-err]),every one-sided error tester of query complexity q for �N can be converted into a one-sided errorcanonical tester of query complexity 2q2, where for some GN (which depends only on �N and q),the canonical tester uniformly selects a random set of 2q vertices and accepts the input graph i� theinduced subgraph is in GN . We stress that the proof provided in [GT, Sec. 4] maintains the errorprobability of the tester, and thus applies also to generalized (one-sided error) testers of arbitraryerror probability. Thus, if � has a q-query proximity-oblivious tester then for every N there existsa set of 2q-vertex graphs GN such that a graph is in �N i� each of its 2q-vertex induced subgraphsis in GN . De�ning FN as the set of all 2q-vertex graphs that are not in GN , we conclude that �Nequals the set of N -vertex graphs that are FN -free.Suppose, on the other hand, that for some constant c and a sequence of sets (FN )N2N ofunlabeled graphs it holds that each FN contains graphs of size at most c and �N equals the setof N -vertex FN -free graphs. Our goal is to derive a constant-query proximity tester for �. Thecase of identical sets (i.e., FN = FN+1 for every N) follows almost immediately from [AFKS].Speci�cally, [AFKS, Thm. 6.1] implies that, for every set of c-vertex graphs F and for every � > 0,there exists a graph H of size s(�) such that H is not F -free and every graph G that is �-far frombeing F -free contains at least a �(�) fraction of (induced) copies of the subgraph H (unless G issmaller than H, in which case we may use H def= G). It follows that, with probability at least�s(�)c ��1 � �(�), a random set of c vertices (of such a graph G) induces a subgraph that is in F .The argument extends the general case (of an arbitrary sequence of sets (FN )N2N), by partitioningall integers according to the corresponding sets. This yields testers for each of the �nitely many6Indeed, this holds even if the detection probability function is allowed to depend on N (as long as �(N; �) > 0for every � > 0 and N 2 N).7This lower-bounding function is determined based only on the aforementioned constant (number of queries).7



possible sets, and so the �nal tester will incorporate all these testers, and activate the one thatsuits the size of the input graph. Lastly, we note that the functions s and � provided by [AFKS,Thm. 6.1] satisfy s(�)=�(�) = TT(1=�), where TT(n) is a tower of poly(n)-many towers of exponents(with the polynomial depending only on c).A special case and a quantitative version. A natural special case of properties havingconstant-query proximity-oblivious testers is properties that correspond to sets of F -free graphs,for arbitrary �nite sets F . Indeed, this corresponds to the special case of Theorem 4.7 in which allthe sets in the sequence F are identical (i.e., FN = FN+1 for every N). In this case, the detec-tion probability of any constant-query proximity-oblivious tester is determined by the quantity �Fde�ned next.� For an unlabeled c-vertex graph F , we denote by �F (G) the fraction of c-vertex subsets thatinduce the subgraph F in the graph G.� For a �nite set of graphs F , we denote by �F (�) the in�mum of the value of maxF2Ff�F (G)gtaken over all graphs G that are �-far from being F -free.8Recall that by Theorem 4.7 (or rather by [AFKS, Thm. 6.1]), for every F , the function �F is well-de�ned. Furthermore, �F is lower-bounded by the reciprocal of a tower of towers of exponents. Thefollowing result asserts that the detection probability of the best possible constant-query proximity-oblivious for F -freeness is determined by �F .Theorem 4.8 Let c be an integer and F be a �nite set containing graphs that each has at mostc vertices. Then, F-freeness has a �c2�-query proximity-oblivious tester of detection probability�F , whereas any constant-query proximity-oblivious tester for F-freeness has detection probabil-ity O(�F ).Proof: First note that the straightforward proximity-oblivious tester for F -freeness (which selectsa random set of c vertices and accepts if and only if it is F -free) has detection probability �F .In order to justify the upper-bound (on the detection probability of any constant-query proximity-oblivious testers) we recall that, by [GT, Thm. 4.5], it su�ces to consider constant-query proximity-oblivious testers that select a random set of c0 = O(1) vertices and accept the input N -vertex graphi� the induced subgraph is in some adequate set GN . We stress that this GN need not complementthe set F , and in particular c0 may be di�erent from c. Still, without loss of generality, we mayassume that c0 � c.Let us �rst assume that GN does not depend on N (i.e., GN = GN+1 for every N � c0). In thiscase, GN = Gc0 must equal the set of c0-vertex graphs that are F -free. The reason being that ac0-vertex graph G has a unique induced subgraph with c0 vertices, being the graph itself. Now, onthe one hand (by the acceptance criterion of the tester), the input (c0-vertex) graph G is acceptedby the tester if and only if G 2 Gc0 , whereas on the other hand the tester is required to accept G ifand only if it is F -free.In the general case, the sequence (GN )N2N may contain a �nite number of possible sets (ofc0-vertex graphs). For each N � c0, consider the smallest integer n such that GN = Gn, and denotedit by n(GN ); that is, n(G) = minfn � c0 : Gn = Gg. Note that n� = maxfn(GN ) : N � c0g is8Indeed, in the case that F consists of c-vertex graphs, an alternative de�nition can be based on de�ning �F (G)as the fraction of c-vertex subsets that induce in G a subgraph that belong to F . Needless to say, these two de�nitionare related by a factor of at most jFj. 8



a constant, because there are �nitely many di�erent sets GN . (Indeed, in the special case (whereGN = GN+1), it holds that n� = c0, since n(GN ) = c0 for every N � c0.) Now, consider a tester that,on input an N -vertex graph, accepts if and only if the subgraph induced by n(GN ) random verticesis in G0N , where G0N consists of the set of all n(GN )-vertex graphs G0 such that every c0 verticesin G0 induce a subgraph that is in GN . The detection probability of this tester (on any graph)is lower-bounded by the detection probability of the original tester, whereas the new tester neverrejects graphs that were never rejected by the original tester. Thus, we can apply the analysisof the special case (of equal GN 's) here, and conclude that G0N = G0n(GN ) must equal the set ofn(GN )-vertex graphs that are F -free.It follows that the aforementioned tester rejects an input N -vertex graph G if and only if it hasselected a random set of n(GN ) = O(1) vertices such that the induced subgraph is not F -free. Theprobability of the latter event is upper-bounded by PF2F �n(GN )jV (F )j� ��F (G), where V (F ) denotes thevertex set of the graph F . Recalling that F is �nite and n(GN ) � n� = O(1), it follows that thistester has detection probability O(�F ).In light of Theorem 4.8, the study of the detection probability of constant-query proximity-testersfor natural properties that have such testers (i.e., F -freeness), reduces to the study of the corre-sponding quantities �F for various F . A few examples follow.1. The property Clique (see Proposition 4.1) corresponds to the set of fI2g-free graphs, whereI2 denotes an independent set of two vertices. Needless to say, �fI2g(�) = �.Similarly �fP2g(�) = �, where P2 denotes a single edge (which may be viewed as a path of twovertices).2. Denoting by CC (standing for Clique Collection) the set of graphs consisting of a collectionof isolated cliques, we note that CC equals the set of fP3g-free graphs, where P3 denotesa three-vertex graph with exactly two edges (i.e., a path of three vertices). We show (inProposition 4.10) that �fP3g(�) = �(�2).3. Recall that CC�c is the set of graphs consisting of a collection of at most c isolated cliques(see Proposition 4.3). Note that CC�c equals the set of fP3; Ic+1g-free graphs, where Ic+1denotes an independent set of c+ 1 vertices. Combining Theorem 4.8 and Proposition 4.3,9it follows that �fP3;Ic+1g(�) = O(�c=2) for every c � 3. We show (in Proposition 4.11) that�fP3;Ic+1g(�) = 
(�c=2).Note that Proposition 4.2 implies that �fP3;I3g(�) = 
(�), because BiClique consists of graphswhose complement graph is in CC�2. Clearly, �fP3;I3g(�) = O(�).4. Recall that Proposition 4.4 refers to Triangle-Freeness, which corresponds to fC3g-freenesswhere C3 is the three-vertex cycle. Recall that [A] established that �fC3g is a super-polynomialfunction, whereas �fC3g was known to be lower-bounded by the reciprocal of a tower ofexponents.We mention that the work of [AS04] provides a characterization of the class of graphs F for which�F is lower-bounded by a polynomial (i.e., �F (�) � poly(�)). In particular, their results imply that�F is lower-bounded by a polynomial only for at most seven graphs (i.e., the graphs P2; P3; P4; C4and their complements). The foregoing discussion begs to try to extend their study to �nite setsof graphs; that is, for every �nite set of graphs F , determine the behavior of �F . In particular:9Actually, the proof of Proposition 4.3 directly implies upper (and lower) bounds on �fP3;Ic+1g.9



Open Problem 4.9 Determine the class of sets of graphs F for which �F is lower-bounded by apolynomial.4.3 The detection probability of Clique Collection (i.e., �fP3g(�) = �(�2))Recall that (by Theorem 4.7) CC has a constant-query proximity-oblivious tester, since CC equalsfP3g-freeness. Furthermore, by Theorem 4.8, the detection probability of the best possible constant-query proximity-oblivious for CC equals �(�fP3g).Proposition 4.10 (the best detection probability for CC): �fP3g(�) = �(�2).Proposition 4.10 follows from Section 4 in the companion paper [GR08]; speci�cally, the upperbound (on �fP3g) uses the graphs of [GR08, Sec. 4.1] (which are �-far from CC), whereas the lowerbound follows from the basic parts of Claims 4.3.1 and 4.3.2 in [GR08, Sec. 4.2]. For sake ofself-containment, we provide a full proof below (where the aforementioned basic parts appear asClaims 4.10.1 and 4.10.2, respectively). We note that the following proof is signi�cantly simplerthan the analysis in [GR08, Sec. 4].We mention that the constant-query proximity-oblivious tester resulting from Proposition 4.10yields a standard (non-adaptive) tester of query complexity O(��2), which improves over the eO(��2)bound of [AS04, Thm. 2] (which, in turn, is based on inspecting the subgraph induced by a randomset of O(��1 log(1=�)) vertices). However, in [GR08, Sec. 4.2] we present an alternative (non-adaptive) tester of query complexity eO(��4=3), and in [GR08, Sec. 3] we present an adaptive testerof query complexity eO(��1).Proof: The proof adapts ideas from the study of non-adaptive testers for CC, conducted in thecompanion paper [GR08]. For the upper-bound consider an N -vertex graph G consisting of (4�)�1connected components, each being a bi-clique with 2�N vertices on each side. The graph G is�-far from CC, but �fP3g(G) � (4�)2, because a copy of P3 must contain three vertices in the sameconnected component.For the lower-bound we consider an arbitrary graph G = ([N ]; E) that is �-far from CC. LetG0 = ([N ]; E0) be a graph in CC that is closest to G, and let (V1; :::; Vt) be its partition into cliques.For the sake of simplicity, we shall refer to the Vi's as cliques, even though they are not (necessarily)cliques in G, and we shall refer to the partition (V1; :::; Vt) as the best possible partition for G. Twomain observations regarding this partition follow.Observation 1: For every i 2 [t] and every S � Vi, it holds that jE\(S�(Vi nS))j � jS�(Vi nS)j=2,since otherwise replacing the clique Vi by two cliques, S and Vi n S, yields a better partitionfor G.Observation 2: For every i 6= j 2 [t], it holds that jE \ (Vi � Vj)j � jVi � Vj j=2, since otherwisereplacing the two cliques Vi and Vj by a single clique Vi [ Vj yields a better partition for G.Now, since G is �-far from CC, either G misses �2 � �N2 � edges within these Vi's or G has �2 � �N2 �superuous edges between distinct Vi's. We show that in either case, with probability at least
(�2), three uniformly selected vertices induce the subgraph P3. We call such a triplet a witness.The pivot of the analysis is relating the fraction of bad vertex pairs (i.e., either missing \internal"edges or superuous \external" edges) to the fraction of witnesses. Speci�cally, we shall showthat the existence of �2 � �N2 � missing internal edges (resp., �2 � �N2 � superuous \external" edges)implies the existence of 
(�2N3) witnesses. The following notation will be useful: for every i 2 [t]10



and v 2 [N ] (not necessarily in Vi), we denote by �i(v) the set of neighbors of v in Vi, and�i(v) def= Vi n (�i(v) [ fvg).We �rst consider the case in which at least �2 ��N2 � internal edges are missing (i.e.,Pi2[t]Pv2Vi j�i(v)j �� � �N2 �). Note that every triple (v; u; w) such that u 2 �i(v), w 2 �i(v) and fu;wg 2 E is a witness.Using Observation 1, we have (for each v):1. j�i(v)j � j�i(v)j; and2. the density of edges between �i(v) and �i(v) is at least 1=2.Thus, the number of witnesses that contain v is at least j�i(v)j � j�i(v)j=2 � j�i(v)j2=2. It followsthat the total number of witnesses is lower-bounded by12 �Xi2[t] Xv2Vi j�i(v)j2 � 12 �N �  Pi2[t]Pv2Vi j�i(v)jN !2which is lower-bounded by 
(�2N3) as desired. For sake of reference, we highlight the followingclaim, which was established above.Claim 4.10.1 For every v 2 Vi, the number of witnesses containing v is 
(j�i(v)j2).We now turn to the case in which there are at least �2 � �N2 � superuous \external" edges; thatis, in this case Pv2[N ] j�0(v)j � � � �N2 �, where for every v 2 Vi we de�ne �0(v) def= Sj 6=i �j(v). In thiscase, we shall show that the number of witnesses that contain each speci�c v 2 [N ] is 
(j�0(v)j2),and the claim (regarding the total number of witnesses) will follow as in the previous case. Thus,it is left to establish the following.Claim 4.10.2 The number of witnesses containing v is 
(j�0(v)j2).Proof: In addition to the notations �i(v) = �(v) \ Vi, �i(v) = Vi n (�(v) [ fvg), and �0(v) =Sj:v 62Vj �j(v), we shall use the notation E(V 0; V 00) def= f(v0; v00) 2 (V 0 � V 00) : fv0; v00g 2 Eg. Theproof will proceed via a case analysis, which refers to an arbitrary i 2 [t] and v 2 Vi.Case 1: Much of �0(v) is contained in a single Vj; that is, there exists an index j such that j�j(v)j >j�0(v)j=10. Fixing such an index j, we distinguish two subcases regarding the fraction of Vj that isnot covered by �0(v) (i.e., the relative density of �j(v) in Vj).Case 1.1: j�j(v)j � jVjj=10. In this case the claim follows by considering most of the possiblechoices of u 2 �j(v) and w 2 �j(v). Speci�cally, by Observation 1, jE(�j(v);�j(v))j islower-bounded by j�j(v)j � j�j(v)j=2, and so at least half of the triples in Tv def= f(v; u; w) :(u;w) 2 �j(v) � �j(v)g are witnesses (i.e., (u;w) 2 E and (v; u) 2 E, but (v; w) 62 E),whereas jTvj = j�j(v)j � j�j(v)j = 
(j�0(v)j2) (because j�j(v)j � jVj j=10 � j�j(v)j=10 andj�j(v)j > j�0(v)j=10).Case 1.2: j�j(v)j � jVjj=10 (i.e., j�j(v)j � 0:9jVj j). We �rst note that jVij > j�0(v)j=20, becauseotherwise we would obtain a better partition by moving the vertex v from Vi to Vj (sincej�i(v)j � jVij whereas j�j(v)j� j�j(v)j � 0:8jVj j and jVjj � j�j(v)j � j�0(v)j=10). We considertwo subcases regarding the cardinality of the set �i(v):11



1. If j�i(v)j � 0:9 � jVij, then the claim follows by considering a constant fraction of thepossible choices of u 2 �j(v) and w 2 �i(v). Speci�cally, using Observation 2, it holdsthat jE(�j(v);�i(v)j � jE(Vj ; Vi)j� 12 � jVj j � jVij� 12 � j�j(v)j0:9 � j�i(v)j0:9< 0:7 � j�j(v)j � j�i(v)j;where the second inequality uses j�j(v)j � 0:9jVj j and j�i(v)j � 0:9jVij. We obtain atleast (1 � 0:7) � j�j(v)j � j�i(v)j pairs (u;w) 2 (�j(v) � �i(v)) n E (and the correspond-ing triples (v; u; w) are witnesses). Using j�j(v)j � j�0(v)j=10 and j�i(v)j � 0:9jVij =
(�0(v)j), we lower-bound the said number by 
(j�0(v)j2).2. If j�i(v)j � 0:9 � jVij, then we have many missing internal edges inside Vi with v asan endpoint (i.e., j�i(v)j = 
(�0(v)j)), and we invoke the corresponding analysis (asin the case of Pi2[t]Pv2Vi j�i(v)j � � � �N2 �). Speci�cally, we obtain 12 � j�i(v)j � j�i(v)jwitnesses (corresponding to edges fu;wg such that u 2 �i(v) and w 2 �i(v)), andusing the subcase's hypothesis (and Observation 1) this number is lower-bounded by12 � 0:5jVij � 0:1jVij, which is lower-bounded by 
(j�0(v)j2) (since jVij > j�0(v)j=20 holds inCase 1.2).This completes the treatment of Case 1.2.Case 2: No single Vj contains much of �0(v); that is, for every j 2 [t] it holds that j�j(v)j � j�0(v)j=10.As in Case 1, we consider two subcases regarding the relative part of Vj covered by �0(v), but inthe current case we consider a partition of the set J def= fj : j�j(v)j � 1g and distinguish casesregarding the intersection of �0(v) with the sets Vj in each part. Speci�cally, we let J 0 def= fj :j�j(v)j > 0:9jVj jg, and consider the following two subcases.Case 2.1: Pj2J 0 j�j(v)j � 0:5 � j�0(v)j. In this case J 0 has cardinality at least �ve (since j�j(v)j �0:1 � j�0(v)j for every j). Let Cv = Sj2J 0 �j(v), and note that the vertices in Cv belongto several cliques Vj. We shall show that the case hypothesis implies that there are manymissing edges between pairs of vertices in Cv. Intuitively this holds because Cv essentiallycovers Sj2J 0 Vj , whereas (by Observation 2) for any j1 6= j2 there are many non-edges inVj1 � Vj2 . This ensures that we have many witnesses of the form (v; u; w), where u;w 2 Cvand fu;wg 62 E. Details follow.For every j1 6= j2 2 J 0, by Observation 2 (and since j�j(v)j > 0:9jVj j for every j 2 J 0), itholds that jE(�j1(v);�j2(v))j � 12 � jVj1 j � jVj2 j < 0:7 � j�j1(v)j � j�j2(v)j :Therefore the number of non-edges between pairs in Cv is lower-bounded byXj1 6=j22J 0(1� 0:7) � j�j1(v)j � j�j2(v)j= 0:3 �0@ Xj1;j22J 0 j�j1(v)j � j�j2(v)j � Xj2J 0 j�j(v)j21A� 0:3 � �(0:5 � j�0(v)j)2 � 0:1 � j�0(v)j2�12



where the last inequality is due to the case's hypotheses (i.e., Pj2J 0 j�j(v)j � 0:5 � j�0(v)j andj�j(v)j � 0:1 � j�0(v)j). Thus, j(Cv � Cv) n Ej > 0:04 � j�0(v)j2, and the claim follows.Case 2.2: Pj2JnJ 0 j�j(v)j � 0:5 � j�0(v)j. Let J 00 def= J n J 0 = fj : 1 � j�j(v)j � 0:9jVj jg, and notethat for j 2 J 00 (as considered in this case) it may be that j�j(v)j � jVj j and consequentlyfor j1 6= j2 2 J 00 it may hold that E(�j1(v);�j2(v)) � j�j1(v)j � j�j2(v)j. More generally,rede�ning Cv def= Sj2J 00 �j(v), it may be that jE(Cv ; Cv)j � �jCv j2 �, and so the approach ofCase 2.1 may not work in general (although it will work in the �rst subcase). Thus, lettingJ 000 def= fj 2 J 00 : jVj j � j�0(v)j=10g, we consider two subcases:1. If Pj2J 000 j�j(v)j � 0:4 � j�0(v)j then we rede�ne Cv def= Sj2J 000 �j(v) and show thatjE(Cv ; Cv)j � 0:99 � �jCv j2 �. This is the case because otherwise we obtain a contradictionto the optimality of the partition (by replacing the sub-partition (Vj)j2J 000 with (Cv; (Vj nCv)j2J 000)).Thus, we have reached a situation as in Case 2.1, and we proceed as in thatcase.2. If Pj2J 00nJ 000 j�j(v)j � 0:1 � j�0(v)j then we proceed similarly to Case 1.1. Speci�cally, foreach j 2 J 00 n J 000, we note that the density of edges in �j(v)� �j(v) is at least one half,whereas j�j(v)j � 0:1jVj j � 0:1 � 0:1 � j�0(v)j (by j 2 J 00 and j 62 J 000, respectively). Thus,the number of witnesses (v; u; w) such that (u;w) 2 �j(v) � �j(v) (and fu;wg 2 E) isat least Xj2J 00nJ 000 j�j(v) � �j(v)j2 � Xj2J 00nJ 000 j�j(v)j � j�0(v)j200which is 
(j�0(v)j2) by the subcase hypothesis.These completes the treatment of Case 2.2.Thus, a lower bound of 
(j�0(v)j2) was proved in all cases, and the claim follows. 2This completes the proof of the entire proposition.4.4 An improved result for CC�c (i.e., �fP3;Ic+1g(�) = 
(�c=2))Recall that, for every constant c � 3, Proposition 4.3 established that the property CC�c hasa constant-query proximity-oblivious tester with �(�) > �c+1+o(1) (whereas any constant-queryproximity-oblivious tester for CC�c must satisfy �(�) = O(�c=2)). In this section we improve thelower-bound on �, and in fact obtain a tight result. By Theorem 4.8, it su�ces to prove that�fP3;Ic+1g(�) = 
(�)c=2, since CC�c equals fP3; Ic+1g-freeness.Proposition 4.11 (the best detection probability for CC�c): For every integer c � 3, it holds that�fP3;Ic+1g(�) = 
(�)c=2.The proof builds on the �rst part of the analysis of the CC�c-tester that is provided in [GR08,Sec. 6.2]. Actually, we shall modify also this part, and thus we provide a self-contained descriptionof the entire argument.Proof: Suppose that G = ([N ]; E) is an N -vertex graph that is �-far from CC�c. As a mentalexperiment, we consider a uniformly distributed set of �(��1=2) vertices of G, denoted S. We shallshow that, for a typical S (i.e., for most choices of S) and for a uniformly selected vertex v, with13



probability 
(�), the subgraph induced by S[fvg is not in CC�c. In such a case, the said subgraphcontains c+1 vertices that induce a subgraph not in CC�c. That is, for a typical S, with probabilityat least minfjSj�(c+1);
(�) � jSj�cg = 
(�)(c+2)=2 either a sample of c+1 vertices in S or a sample ofc vertices in S and a single vertex v in [N ] yields an induced subgraph that is not in CC�c (i.e., is notfP3; Ic+1g-free). Thus, �fP3;Ic+1g(G) = 
(�)(c+2)=2, and it follows that �fP3;Ic+1g(�) = 
(�)(c+2)=2.The proposition will follow by a somewhat more re�ned analysis.We think of S as being selected in c + 1 phases, where in phase t, a new uniform sample St,of �(��1=2) vertices, is selected (recall that c is a constant). Intuitively, the objective of the �rstc phases is to yield a partition of all the graph vertices into at most c + 1 subsets in a way thatfacilitates �nding evidence of the fact that the original graph is not in CC�c. For example, onemain part of the argument is showing that, with high (constant) probability, it is either the casethat the set of vertices with no neighbors in S is of size O(�1=2 �N) or S contains an independentset of size c+ 1 (and we are done). Let us elaborate on the way this assertion is proved.Intuitively, with high (constant) probability, if the number of vertices that do not have anyneighbor among the vertices selected so far is relatively big, then we obtain such a vertex in thenext phase. Indeed, if the set of vertices with no neighbors in S is of size 
(�1=2 � N), then aftereach of the �rst c phases it is the case that the number of vertices that do not have any neighboramong the vertices selected so far is relatively big. Thus, we should have been quite unlucky notto obtain such a vertex in each of the following phases. Assuming that we are not unlucky, Sdoes contain an independent set of size c + 1, and it follows that �fP3;Ic+1g(G) = 
(jSj�(c+1)) =
(�)�(c+1)=2. However, a closer look at the situation reveals that we can select such an independentset (in S) by selecting an arbitrary vertex in S1, and then selecting an adequate vertex in eachSt for each t = 2; :::; c + 1 (i.e., a vertex of St that has no neighbors in St�1k=1 Sk). It follows that�fP3;Ic+1g(G) = 
(Qc+1t=2 jStj�1) = 
(�)c=2. Note that the argument applies also if it only holds thatthe set of vertices with no neighbors in S�c def= Sck=1 Sk is of size 
(�1=2 �N). Let us generalize thisargument further.Claim 4.11.1 For s > 2c, suppose that a graph G0 = ([s]; E0) is not in CC�c. Then, with probabilitygreater than s�c=2, a uniformly selected set of c + 1 vertices induces in G0 a subgraph that is notin CC�c.Proof: If G0 contains an induced copy of P3, then three uniformly selected vertices hit it withprobability at least s�3 � s�c, since c � 3. Otherwise (i.e., if G0 62 CC�c contains no induced copyof P3), it must be the case that G0 is a collection of at least c + 1 isolated cliques. We arbitrarilycluster these cliques into c + 1 sets, and consider the probability that a sample of c + 1 verticeshits a vertex in each of these c + 1 sets. This probability is lower-bounded by Qc+1i=1 xi subject toPc+1i=1 xi = 1 and xi � 1=s for every i. The minimum is obtained at x1 = � � � = xc = 1=s, and theclaim follows. 2We now turn to de�ning the (c + 1)-partition (of the graph vertices) that arises from the sampleS. For each 1 � t � c + 1, let S�t = Stk=1 Sk. If for any 1 � t � c, the subgraph induced byS�t is not a collection of at most c cliques, then we are done (by Claim 4.11.1). Otherwise, letCt1; :::; Ctct denote the ct � c cliques in the subgraph induced by S�t. For each 1 � t � c, we de�nethe following partition of the set of all graph vertices (i.e., [N ]):V tj def= fv : �(v) \ S�t = Ctjg for 1 � j � ct ;Rt0 def= fv : �(v) \ S�t = ;g14



Rt1 def= V n �Rt0 [ � [1�j�ct Vj�� :That is, for 1 � j � ct, the subset V tj consists of the vertices that neighbor all vertices in Ctj andno other vertex in S�t, the subset Rt0 consists of all vertices that have no neighbor in S�t, andRt1 consists of all vertices that either neighbor only some of the vertices in one of the cliques Ctj ,but not all, or that have neighbors in more than one of the cliques. Observe that V t+1j � V tj andRt+10 � Rt0 while Rt+11 � Rt1.Given the above notation, we make two observations. The �rst observation is that, for any1 � t � c, if St+1 contains some vertex in Rt1, then the subgraph induced by S�(t+1) is not acollection of (at most c) cliques, and so we are done (again, by Claim 4.11.1). It follows that ifjRt1j > 14�1=2N , for some t � c, then we are done (because with high probability St+1 will containsome vertex in Rt1). The second observation is that if St+1 contains some vertex in Rt0, thenct+1 � ct + 1. Note that as long as jRt0j > 14�1=2N , the probability that St+1 does not contain anyvertex in Rt0 is at a small constant. Therefore, either jRc0j � 14�1=2N , or we are done (because withhigh probability St+1 will contain a vertex from each Rt0 (for t = 1; :::; c), which together with S1induce a subgraph that is not in CC�c).In light of the foregoing paragraph, from this point on, we assume that the subgraph inducedby S�(c+1) is a collection of at most c cliques, that jRc1j � 14�1=2N and that jRc0j � 14�1=2N . Tosimplify the notation, we use the shorthand R0 for Rc0, and R1 for Rc1, the shorthand c0 for cc, andthe shorthand Vj for V cj (resp., Cj for Ccj ). We also denote R0 [R1 by R.Recall that G = ([N ]; E) is �-far from CC�c. This means that for every partition of the graphvertices into at most c subsets, the total number of vertex pairs that \violate the partition" (i.e.,either both vertices belong to the same subset but do not have an edge between them or they belongto di�erent subsets but do have an edge between them) is greater than �N2. In particular, thisholds for the partition that we shall de�ne next. We consider a partition, denoted ( eVj)j2f0;1;:::;c0g,where for every j 2 [c0] it holds that Vj � eVj , while the vertices in R are partitioned as follows.Each vertex v 2 R1 is placed in an arbitrary eVj such that v has some neighbor in Cj . If c0 < c thenR0 is de�ned as eV0, and otherwise R0 is placed in eV1 (i.e., in an arbitrary eVj).Note that the total number of vertex pairs in R � R is at most 14�N2, since jRj � 12�1=2N .Recalling that G is �-far from CC�c, it follows that (at least) one of the following three events musthold:1. There are at least 14�N2 missing edges between pairs of vertices that belong to the same subseteVj such that these pairs have no element in R0 and at most one element in R1. That is, thecurrent case refers to pairs (u; v) 2 Sc0j=1( eVj � eVj) such that fu; vg 62 E and fu; vg \ R0 = ;and jfu; vg \R1j � 1.2. There are at least 14�N2 superuous edges between pairs of vertices that belong to di�erentsubsets eVj and eVk and have at most one element in R. That is, the current case refers topairs (u; v) 2 Sj 6=k2f0;1;:::;c0g( eVj � eVk) such that jfu; vg \Rj � 1.3. There are at least 14�N2 missing edges between pairs of vertices that belong to the same subseteVj but have exactly one endpoint in R0 and no endpoint in R1; that is, pairs in (R0\ eV1)�V1.(Recall that R0 was placed either in eV0 or in eV1, whereas V0 = ;; hence, Sc0k=0((R0 \ eVk)�Vk)equals (R0 \ eV1)� V1.) 15



We shall show that in each of these three cases, with probability at least 
(�c=2), a uniformlyselected set of c+ 1 vertices induces a subgraph that is not in CC�c.Case 1. Recall that this case refers to missing edges within some eVj, where j 2 [c0], such that atleast one endpoint of such an edge is not in R (and none is in R0). In this case, with probability atleast �=4, a uniformly distributed pair (u; v) 2 [N ]� [N ] hits such a missing edge (i.e., in particular,(u; v) 62 E and u; v 2 eVj for some j 2 [k]). Assume, without loss of generality, that u 2 Vj (i.e.,u 62 R), and let w be an arbitrary neighbor of v 2 eVj in Cj (which is guaranteed to exist sincev 2 eVj n R0, whereas v 2 R1 is placed in eVj only if it has neighbors in Cj). Recall that w is alsoa neighbor of u (since u 2 Vj neighbors all vertices in Cj). Hence, selecting uniformly a vertex inS, we hit this w with probability 1=jSj. It follows that if we select uniformly and independentlythree vertices in [N ], then, with probability �4 � 
(1)jSj = 
(�3=2), we obtain a triple (u; v; w) such that(u; v) 62 E whereas (u;w); (v; w) 2 E.Case 2. Recall that this case refers to superuous edges between some eVj and eVk, where j 6=k 2 f0; 1; :::; c0g, such that at least one endpoint of such an edge is not in R. In this case, withprobability at least �=4, a uniformly distributed pair (u; v) 2 [N ]� [N ] hits such a superuous edge(i.e., in particular, (u; v) 2 E and (u; v) 2 Sj 6=k( eVj � eVk)). Assume, without loss of generality, thatu 2 Vj and v 2 eVk, where v may be in R (and even in R0). If v 2 eVk n R0 then we let w be anarbitrary neighbor of v in Ck, and note that w is not a neighbor of u (since u 2 Vj neighbors novertex in Ck). Otherwise (i.e., v 2 R0), let w 2 Cj be an arbitrary non-neighbor of v, and notethat w is a neighbor of u (since u 2 Vj). Thus, either way, w is a neighbor of exactly one of the twovertices u and v, and selecting uniformly a vertex in S, we hit w with probability 1=jSj. It followsthat if we select uniformly and independently three vertices in [N ], then, with probability 
(�3=2),we obtain a triple (u; v; w) such that (u; v) 2 E whereas (u;w) 62 E if and only if (v; w) 2 E.Case 3. Recall that this case refers to missing edges between vertices of R0 and vertices of V1 (i.e.,the part Vj to which R0 was added). It follows that c0 = c and that jR0j > �N=4. Thus, we canobtain an independent set of size c+ 1 by selecting one vertex from R0 and a vertex from each ofthe sets C1; :::; Cc. The probability that a uniformly selected sample of c+ 1 vertices yields such aset is at least Pr[S is good] � �4 � cYk=1 jCkjjSj > �5 � minx1; :::; xc � jSj�1Pck=1 xk = 1 ( cYk=1xk)> �6 � jSj�(c�1)which yields the lower-bound of 
(�)(c+1)=2. To obtain a better bound, we modify the argument alittle.Suppose that for every j such that jVj j � �1=2N it holds that jCj jjSj � 12 � jVj jN . (This assumptionwill be justi�ed at the end of the proof.) Then, we modify the construction (of the partition ( eVj))such that in the case of c = c0 the set R0 is placed in the smallest set Vj (rather than in anarbitrary set Vj). Turning back to Case 3, we recall that in this case there are �N2=4 missingedges between R0 and Vj , and it follows that jR0j � jVjj � �N2=4. Recalling that jR0j � �1=2N=4,we have jVj j � �1=2N and it follows that jR0jN � jCj jjSj � �8 (because jCj jjSj � jVj j2N ). Note that we canobtain an independent set of size c + 1 by selecting a pair from R0 � Cj and a vertex from eachof the other c� 1 sets Ck's, and recall that the largest Ck must have size at least jSj=3c (becausejCkj=jSj � jVkj=2N � (1 � �1=2)=2c). The probability that a uniformly selected sample of c + 116



vertices yields such a set is at leastPr[S is good] � �8 � Yk2[c]nfjg jCkjjSj > �9 � minx1; :::; xc�2 � jSj�1xc�1 � 1=3c (c�1Yk=1xk)> �27c � jSj�(c�2)which yields the lower-bound of 
(�)c=2.It remains to deal with the assumption that jCj j=jSj � jVj j=2N for every j such that jVj j ��1=2N . To this end we add one more phase in the choice of S (where we think of this phase astaking place before phase c + 1 that was used in the foregoing discussion to bound jRj). Let S0denote the vertices selected in the �rst c phases and let S00 be the vertices selected in the additionalphase, where jS00j = 4jS0j. Let C 01; : : : ; C 0c0 be the cliques in the subgraph induced by S0, and foreach 1 � j � c0 let V 0j be the vertices that neighbor all vertices in C 0j and no other vertices in S0.In the sample S00, let C 00j = S00 \ V 0j . By a multiplicative Cherno� bound, with high probabilityover the choice of S00, it holds that jC 00j j=jS00j � (3=4)jV 0j j=N for every j such that jV 0j j � �1=2N .Assuming that this is in fact the case, we de�ne Cj = C 0j[C 00j and Vj = fv : �(v)\(S0[S00) = Cjg.If there is any new clique in S00, then it corresponds to a small set of vertices (since the setof vertices that do not belong to any V 0j is small).10 Using the fact that S is the union of S0,S00 and the sample selected in phase c + 1, we have jSj < (3=2)jS00j (since jS00j = 4jS0j andjS0j = c � (jSj � jS0j � jS00j)) and jCj j=jSj � (3=4)jC 00j j=jS00j � (3=4) � (3=4)jV 0j j=N . Using Vj � V 0j ,we get that jCj j=jSj > jVj j=2N for every jVj j � �1=2N .5 Testing Graph Properties in the Bounded-Degree ModelThe bounded-degree model refers to a �xed degree bound, denoted d � 2. An N -vertex graphG = ([N ]; E) (of maximum degree d) is represented in this model by a function g : [N ] � [d] !f0; 1; :::; Ng such that g(v; i) = u 2 [N ] if u is the ith neighbor of v and g(v; i) = 0 if v has less than ineighbors.11 Distance between graphs is measured in terms of their aforementioned representation(i.e., as the fraction of (the number of) di�erent array entries (over dN)), but occasionally we shalluse the more intuitive notion of the fraction of (the number of) edges over dN=2.It turns out that, in the current model, constant-query proximity-oblivious testers exist for allgraph properties that have such testers in the adjacency matrix model. However, in the currentmodel, the scope of constant-query proximity-oblivious testers extends somewhat beyond the for-mer. Speci�cally, while in the adjacency matrix model such testers exist for any \induced subgraphfreeness" property, the current model allows testing also properties that correspond to a general-ized notion of subgraph freeness, which includes properties that are not hereditary (e.g., the set ofgraphs in which each vertex has at least three neighbors).De�nition 5.1 (generalized subgraph freeness): A marked graph is an unlabeled graph with eachvertex marked as either full or semi-full or partial. Such a marked graph F = ([n]; EF ) can beembedded in a graph G = ([N ]; EG) if there exists a 1-1 mapping f : [n]! [N ] such that for everyv 2 [n] the following two conditions hold:10Indeed, the sizes of the sets V 0j behave as the sizes of the sets Vj , which were analyzed in the beginning of thisproof.11For simplicity, we assume here that the neighbors of v appear in arbitrary order in the sequenceg(v; 1); :::; g(v;deg(v)), where deg(v) def= jfi : g(v; i) 6= 0gj.17



1. If v is marked full, then �G(f(v)) = f(�F (v)), where f(S) def= ff(u) : u 2 Sg and �H(x) def=fw : fx;wg 2 EHg for H 2 fF;Gg. That is, f yields a bijection between the set of neighborsof v in F and the set of neighbors of f(v) in G.2. If v is marked semi-full, then �G(f(v)) \ f([n]) = f(�F (v)). That is, f yields a bijectionbetween the set of neighbors of v in F and the set of neighbors of f(v) in the subgraph of Ginduced by f([n]).3. If v is marked partial, then �G(f(v)) � f(�F (v)). That is, f yields an injection of the set ofneighbors of v in F to the set of neighbors of f(v) in G.In this case we call f an embedding of F in G. (See illustration in Figure 1.) The graph G is calledF -free if F cannot be embedded in G (i.e., there is no embedding of F in G). For a set of markedgraphs F , a graph G is called F -free if for every F 2 F the graph G is F -free.We note that the standard notion of non-induced subgraph freeness is a special case of generalizedsubgraph freeness, obtained by considering the corresponding marked graph in which all verticesare marked partial. Similarly, the notion of induced subgraph freeness (as in De�nition 4.6) is aspecial case of generalized subgraph freeness (as in De�nition 5.1), obtained by considering thecorresponding marked graph in which all vertices are marked semi-full. We stress that the general-ized notion of subgraph freeness includes properties that are not hereditary (e.g., regular graphs),whereas induced and non-induced subgraph freeness are hereditary. We also mention that thenotion of generalized subgraph freeness remains as expressive when disallowing either semi-full orpartial markings.12De�nition 5.2 (local properties): Let � = SN2N �N be a graph property such that each �Nconsists of all N -vertex graphs that satisfy �. The property � is called local if there exists aninteger s and an in�nite sequence F = (FN )N2N such that for every N the following conditionshold:1. FN is a set of marked graphs, each of size at most s; and2. �N equals the set of N -vertex graphs that are FN -free.In such a case we say that � is F-local.We note that induced subgraph freeness (in the sense of Theorem 4.7) implies locality (in the senseof De�nition 5.2); that is, for every sequence F as in Theorem 4.7 the corresponding property �12The emulation of partial markings by semi-full markings is analogous to the emulation of non-induced subgraphfreeness by induced subgraph freeness. On the other hand, the e�ect of a marked graph containing semi-full verticescan be emulated by a set of marked graphs in which the corresponding vertices are marked full but are connectedto some auxiliary vertices marked partial. Speci�cally, each marked graph F 2 F is replaced by a correspondingset of marked graphs such that each F 0 in this set is as follows. (Note that by the �rst emulation, we may assumewithout loss of generality that F contains no vertices marked partial.) The vertex-set of F 0 consists of the vertices ofF , which are all marked full, and a set of auxiliary vertices, which are all marked partial. All edges of F are edges inF 0, and in addition F 0 contains some edges with at least one endpoint that is marked partial (representing a vertexoutside F ). Without loss of generality, we only add edges with exactly one endpoint marked partial (and the otherendpoint marked full). Thus, F 0 consists of a copy of F augmented by an arbitrary bipartite graph with vertices ofF (marked full) on one side and auxiliary vertices (marked partial) on the other side. Without loss of generality, weonly include a vertex that is marked partial if it is adjacent to some vertex marked full. All marked graphs F 0 thatcan be obtained in the foregoing manner are included in the derived set of marked graphs F 0. Thus, bearing in mindthat all graphs have maximum degree at most d, we replace each marked graph in F by a �nite set of marked graphs.18
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Figure 1: The 4-vertex marked graph is embedded in the 6-vertex graph such that the full vertex ais mapped to 1, the semi-full vertex c is mapped to 3, and the partial vertices b and d are mappedto 2 and 4, respectively.is local. Although it may seem that all local properties have a constant-query proximity-oblivioustester (in the current model), the claim only holds for local properties that satisfy the followingnon-propagating condition (which actually refers to the sequence of sets of marked graphs de�ningthe property).De�nition 5.3 (the non-propagating condition): Let F = (FN )N2N be a sequence of sets ofmarked graphs as in De�nition 5.2. We say that F is non-propagating if there exists a (mono-tone) function � : (0; 1]! (0; 1] such that the following holds:1. for every � > 0 there exists � > 0 such that �(�) < �; and2. for every graph G = ([N ]; E) and every B � [N ], if every embedding of some F 2 FN in Gmaps some vertex of F to a vertex in B, then either G is �(jBj=N)-close to being FN -free orthere are no N -vertex graphs that are FN -free.13(Recall that, for F = ([n]; E0), an embedding of F in G is a 1-1 mapping f : [n] ! [N ] thatsatis�es the two conditions in De�nition 5.1. The foregoing if-statement asserts that for anysuch embedding f there exists v 2 [n] such that f(v) 2 B.)A local property � is non-propagating if there exists a non-propagating sequence F (as above) suchthat � is F -local.Intuitively, non-propagation means that the elimination of all possible embeddings of F in G, whichnecessarily use vertices in B, does not require modifying G \much beyond" B. For example, theset of regular graphs constitutes a local property that is non-propagating (see the proof of Part 3of Proposition 5.4). Indeed, it is natural to consider functions � of the form �(�) = O(�), butDe�nition 5.3 allows arbitrary functions � (which may depend arbitrarily on F). In contrast towhat one might naturally conjecture, as shown in Proposition 5.4, not all sequences of sets ofmarked graphs are non-propagating. On the other hand, the local properties that correspond to13Indeed, it is more natural to disallow the latter possibility in the de�nition, but this would have made ourexposition somewhat more cumbersome. 19



induced subgraph freeness (as in Theorem 4.7) are non-propagating. Indeed, the question whetheror not every local property is non-propagating remains open. We stress that a property may belocal with respect to several di�erent sequences of sets of marked graphs, where some of thesesequences may be non-propagating and the other not.Proposition 5.4 (on satisfying the non-propagating condition):1. (negative): For every d � 3, there exists a sequence of sets of marked graphs F = (FN )N2Nas in De�nition 5.2 that does not satisfy the non-propagating condition.2. (positive { induced subgraph freeness): For every sequence of sets of unlabeled graphs F =(FN )N2N as in Theorem 4.7, the property of being F -free14 is local and non-propagating; thatis, there exists a sequence of sets of marked graphs F 0 = (F 0N )N2N as in De�nition 5.2 suchthat (1) induced subgraph freeness w.r.t F is equivalent to generalized subgraph freeness w.r.tF 0, and (2) F 0 is non-propagating.3. (positive { non-hereditary properties): There exist non-hereditary properties that are local andnon-propagating.Proof: We start by proving Part 1 (i.e., the negative claim). Consider a set F consisting ofbd=2c+ 1 marked graphs that e�ectively impose the following two constraints (on F -free graphs):(1) either there are no isolated vertices or all vertices are isolated, and (2) each non-isolated vertexhas an odd degree. Speci�cally, the set F consists of the following two types of marked graphs:1. A marked graph consisting of three vertices with a single edge connecting two vertices that aremarked partial, and an isolated vertex that is marked full. (This forbidden graph mandatesthat if the target graph contains any isolated vertex then it cannot contain any edges.)2. For every even i 2 f2; :::; dg, we have a graph with a single vertex marked full having ineighbors marked partial and having no other edges. (This set of forbidden graphs mandatesthat each non-isolated vertex has an odd degree.)Note that if N is odd, then the only N -vertex graph that is F -free is a set of N isolated vertices.15However (for odd N), consider any graph G that consists of a single isolated vertex and N � 1vertices that have odd degrees (e.g., G may consists of a single isolated vertex and a 3-regular(N � 1)-vertex graph). Then, G contains only one vertex (i.e., the isolated vertex) that mustappear in the image of any embedding of some F 2 F in G. Thus, we obtain an in�nite sequenceof graphs that are 
(1)-far from being F -free, whereas only one vertex (in each of these graphs)must be contained in any embedding of some F 2 F in this graph. Indeed, this proves that F (orrather F = (FN )N2N such that FN = F for every N 2 N) does not satisfy the non-propagatingcondition (because we need �(1=N) = 
(1), whereas limN!1 �(1=N) must equal zero).Turning to Part 2 (i.e., the positive claim regarding induced subgraph freeness), we consideran arbitrary set of (unmarked) graphs F and the set of N -vertex graphs that are F -free (as14That is, we refer to the set � = SN2N �N such that each �N consists of all N -vertex graphs that are FN -free,where here we refer to induced subgraph freeness.15Note that, for odd N , this set of graphs (i.e., the set of graphs consisting of isolated vertices) is F 0-free withrespect to a non-propagating F 0 that contains a single graph that forbids any edges (i.e., the graph consists of asingle edge with both endpoints marked partial). Thus, the current di�culty can be bypassed by using the generalformalism, which refers to a sequence of sets of forbidden graphs (i.e., we may consider the sequence (FN)N2N, whereFN = F if N is even and FN = F 0 otherwise). 20



per De�nition 4.6). As noted before, this property (or set) is local, because induced subgraphfreeness can be emulated by generalized subgraph freeness. Speci�cally, for each F 2 F , weintroduce a corresponding marked graph F 0 2 F 0 such that the graph F 0 is obtained from F bymarking all vertices as semi-full. It follows that, for every F = (FN )N2N as in the proposition'shypothesis, the corresponding induced subgraph freeness property (i.e., F -freeness) is F 0-local,where F 0 = (F 0N )N2N such that F 0N is obtained from FN by the foregoing procedure.We now turn to prove that the sequence F 0 = (F 0N )N2N is non-propagating. Let G = ([N ]; E)and B � [N ] be as in De�nition 5.3 (i.e., every embedding of some F 0 2 F 0N in G maps some vertexof F 0 to a vertex in B). It follows that the subgraph of G induced by [N ] n B, denoted Gj[N ]nB,is FN -free (because if Gj[N ]nB contains an induced subgraph that is isomoprhic to F 2 FN thenthis isomorphism yields an embedding of the corresponding F 0 2 F 0N in G0). Using the fact thatGj[N ]nB is FN -free and assuming that N > 3ds, where s is the maximum size of a graph in FN ,we claim the graph that results from G by turning B into an independent set is FN -free. Denotingthis resulting graph by G0, this claim follows by considering an arbitrary s-vertex subset, S, andnoting that if S induces a subgraph of G0 that is in FN then S0 def= S nB combined with r = s�jS0jadequate vertices induce the same subgraph in G (e.g., pick an independent set (in G) among thevertices of [N ] n S0 that do not neighbor S0 in G, using the hypothesis (N � (d + 1)jS0j)=d > r).Thus, G is 2(jBj=N)-close to being FN -free (which is the same as being F 0N -free). It follows thatF 0 satis�es the non-propagating condition (with �(�) = 2�).Finally, we turn to Part 3 (i.e., the positive claim regarding non-hereditary properties). Con-sider, for example, the set of regular graphs, which is clearly non-hereditary. To see that this setconstitutes a local property, consider a set of marked graphs FN that forbids two vertices of di�er-ent degrees; a typical member of this set consists of two vertices marked full that are connected to adi�erent number of vertices marked partial (in addition to, possibly, an edge between the two `full'vertices). In addition, if N is odd then we also forbid odd degrees. To see that this sequence of setsF = (FN )N2N of marked graphs is non-propagating, consider any graph G = ([N ]; E) and B � [N ]as in De�nition 5.3 (i.e., every embedding of some F 2 FN in G maps some vertex of F to a vertexin B). Letting C def= B [ Sv2B �(v) be the set of all vertices that are either in B or neighbor it,we note that all vertices in [N ] n C have the same degree. Intuitively, G can be made regular byonly modifying edges that are incident at C. This is easy to see if we allow multiple edges, andessentially holds also otherwise.16 It follows that F satis�es the non-propagating condition (with�(�) = O(d�)).The characterizationWe now turn to the main result of the current section.Theorem 5.5 (characterization for the bounded-degree graphs model): A graph property � has aconstant-query proximity-oblivious tester if and only if � is local and non-propagating.Unlike in the case of Theorem 4.7 (see Footnote 6), here we rely on the fact that the detectionprobability function depends only on the proximity parameter. We stress that the class of properties16Replacing each pair of edges in C � ([N ] nC) by a single edge between the endpoints in [N ] nC, we maintain thedegree of vertices in [N ] n C while leaving at most one edge in C � ([N ] n C). Replacing the subgraph induced by Cby an adequate subgraph, we obtain the desired regular graph. Finally, multiple edges can be eliminated as follows.Suppose that we wish to eliminate an edge that connects u and v. Then, we select an edge (u0; v0) such that (u; u0)and (v; v0) and not edges, and omit the edges (u; v) and (u0; v0) while adding the edges (u; u0) and (v; v0).21



having constant-query proximity-oblivious tester is a strict superset of the class of properties thatrefer to induced subgraph freeness.Proof: We start by showing that any non-propagating local graph property � has a constant-query proximity-oblivious tester. Suppose that � is F -local, where F = (FN )N2N, and let c andr be upper bounds on the number of connected components and the radius of each connectedcomponent (in each graph in FN ), respectively. We consider the following tester T (for �):17 oninput an N -vertex graph G, the tester selects at random c start vertices v1; :::; vc 2 [N ], performsa BFS of depth r+ 1 starting at each vi, and accepts if and only if the subgraph explored in thesec executions of BFS is FN -free. More precisely, T accepts unless there is an embedding of someF 2 FN in the said subgraph such that all vertices of F are mapped to vertices of G that are atdistance at most r from some vi. (The extra level of the BFS is used in order to identify all edgesincident at vertices that reside in level r).18Clearly, T always accepts any N -vertex graph that is FN -free. In the analysis of T 's detectionprobability (of graphs that are not FN -free), we shall consider a more relaxed rejection criterionthat checks, for every F 2 FN , whether the ith connected component of F can be embedded in thesubgraph explored in the ith BFS such that some vertex of this component is mapped to vi. Thus,we refer to an embedding that maps the ith connected component of F to the r-neighborhood ofvi, where the r-neighborhood of a vertex v in G is de�ned as the (unlabeled) graph that representsthe subgraph of G that contains all the vertices that are at distance at most r + 1 from v and alledges that are incident at some vertex that is at distance at most r from v. It will be instructiveto consider a function (depending on G) that assigns each vertex v 2 [N ] its r-neighborhood.Towards analyzing the detection probability of T , let us consider the following simpli�ed prop-erty testing problem referring to functions from [N ] to [m]. The property, denoted P, is de�nedby a �xed set of sequences F � [m]c such that a function f : [N ] ! [m] is in P if, for everyv1; :::; vc 2 [N ], it holds that (f(v1); :::; f(vc)) 62 F. We analyze the straightforward tester thatselects uniformly v1; :::; vc 2 [N ] and accepts if and only if (f(v1); :::; f(vc)) 62 F. Suppose that f is�-far from P and �N > cm, and let V def= fv : Prr2[N ][f(r) = f(v)] � �=mg denote the set of (\typ-ical") points that are assigned values that appear relatively frequently. Then, f restricted to V isnot in P, because otherwise we can modify f on [N ] n V (using arbitrary values in ff(v) : v 2 V g)and obtain a function in P that is �-close to f . It follows that there exist v1; :::; vc 2 V such that(f(v1); :::; f(vc)) 2 F, and it follows thatPru1;:::;uc2[N ][(f(u1); :::; f(uc)) 2 F] � Pru1;:::;uc2[N ][(8i 2 [c]) f(ui) = f(vi)]� �minv2V nPrr2[N ][f(r) = f(v)]o�cwhich is lower-bounded by (�=m)c.The foregoing paragraph suggests to de�ne a function f such that f(v) describes the r-neighborhoodof vertex v in G. However, the current situation is more complex because the r-neighborhoods ofthe various vertices in G are related, and thus modifying f at one vertex may require modifyingit in many other vertices. This is where the non-propagating condition comes into play. Indeed,in the following we shall refer to the function � provided by the non-propagating condition. Weshall also assume that �N 6= ; (and modify T such that it rejects without making any queries if�N = ;).17The foregoing description refers to the case that �N 6= ;; otherwise, T just reject without making any queries.18Needless to say, we need to identify edges that connect pairs of vertices that reside at level r. But we also needto identify edges that connect vertices at level r with vertices at level r + 1, or rather to verify that no such edgesexist for certain vertices. This is important in case the embedding maps a vertex marked full to level r.22



Fixing any � > 0, let � > 0 be maximal such that �(�) < �. Note that the r-neighborhood ofeach vertex in any graph (of maximum degree d) is determined by the immediate neighborhoods ofat most Pri=0 di < 2dr vertices, and so it may take one of at most 2(2dr2 ) � ddr < 2d3r many values.Hence, for m def= 2d3r , in any graph at most a � fraction of the vertices have an r-neighborhoodthat occurs in less than a �=m fraction of the vertices. Now, consider any N and any N -vertexgraph G = ([N ]; E) that is �-far from �, and let B denote the set of vertices that have an r-neighborhoods that occurs in less than �N=m vertices. Clearly, jBj � �N . We claim that thereexist c vertices v1; :::; vc 2 ([N ] nB) and a marked graph F 2 FN that can be embedded in G suchthat for every i � cF some vertex of the ith connected component of F is mapped to vi, wherecF � c denotes the number of connected components in F . This claim holds because otherwise,for every F 2 FN , and every embedding of F in G must map some vertex of F to a vertex in B.(By the non-propagating condition this implies that the graph G is �(jBj=N)-close to �N , whereas�(jBj=N) � � (in contradiction to G being �-far from �N ).) Using the claim it follows that someF 2 FN can be embedded in G so that the ith connected component of F is mapped inside ther-neighborhood of some vi 2 ([N ] nB), and thus T rejects if it selects this sequence (i.e., v1; :::; vc)of start vertices. Recalling that [N ] nB contains only vertices with an r-neighborhood that occursin many (i.e., �N=m) vertices, we proceed as in the foregoing warm-up (regarding generic functionsfrom [N ] to [m]). Speci�cally, the probability that c uniformly selected vertices of G have thisspeci�c forbidden sequence of r-neighborhoods (as the aforementioned v1; :::; vc) is at least (�=m)c.Recalling that T rejects when seeing this sequence of r-neighborhoods, we are done.We now turn to showing that any property that has a constant-query proximity-oblivious testeris indeed local and non-propagating. We start by providing canonical testers for the current model,where the canonization process resembles (but is di�erent from) the process applied in the adjacencymatrix model (see Theorem 4.7, which uses [GT, Thm. 4.5]). Needless to say, unlike in the lattermodel, we have no hope to obtain non-adaptive testers (cf. [RaSm]). Still, we may obtain a relaxednotion of non-adaptivity, like the one implicit in the following de�nition.De�nition 5.5.1 (canonical testers in the bounded-degree model): A probabilistic oracle machineM is called canonical if, on input N and oracle access to g : [N ]� [d]! f0; 1; :::; Ng, the machineM behaves as follows.1. For some predetermined function s : N ! N , the machines selects uniformly a set S of s(N)elements in [N ].2. For some predetermined function ` : N ! N , the machine conducts a `(N)-step BFS from eachvertex in S. That is, for every v 2 S, and every t = 1; :::; `(N) and i1; :::; it 2 [d], the machineobtains the value g(v; i1; :::; it), where g(v; i1; :::; it) def= g(w; it) if w = g(v; i1; :::; it�1) 6= 0 andg(v; i1; :::; it) def= 0 otherwise. Indeed, if w = g(v; i1; :::; it�1) 6= 0, then the value g(v; i1; :::; it)is obtained by making the query (w; it).3. The machine M decides according to N and the subgraph of G explored by it. Speci�cally,M 's decision depends on a �xed set of s(N)-long sequences of marked graphs, denoted FN ,such that M accepts if and only if no F 2 FN appears in the explored subgraph of G. That is,G is accepted if there is no embedding of any F 2 FN that maps all vertices of F to verticesthat are at distance at most `(N) from one of the s(N) start vertices.Indeed, the tester T presented in the �rst part of the proof is canonical (with constant s and`). Our point, however, is that any tester can be converted into a canonical one. Unlike in the23



adjacency matrix model (cf. [GT]), the current transformation incurs an exponential blow-up inthe query complexity. Since we aim to apply this canonization transformation to (constant-query)proximity-oblivious testers, we state the transformation for generalized testers allowing arbitraryrejection probabilities of arbitrary no-instances.Claim 5.5.2 Let T be a generalized one-sided error tester of query complexity q for property �of graphs of maximum degree d. Then � has a canonical tester of query complexity Q def= eO(dq)that always accepts any graph in � and rejects any graph G not in � with probability that is lower-bounded by the probability that T rejects G.Proof: The core of the desired transformation is obtained by an adequate adaptation of the trans-formation provided in [GT, Sec. 4]. Analogously to [GT, Sec. 4.1], we �rst convert T into a testerT 0 that makes all queries as postulated in Steps 1 and 2 of De�nition 5.5.1, while setting s and` to equal q. After acting as postulated in these two canonical steps, the tester T 0 emulates theexecution of T while answering its queries as follows. When T makes a query (v; i) such that vdid not appear in any prior query or answer, the tester T 0 allocates to v the next unused vertexu in the initial sample S, and otherwise T 0 just uses the allocation determined before; that is, if vdid not appear before then T 0 de�nes �(v) = u and otherwise T 0 just uses the value �(v) de�nedbefore. The answer provided by T 0 to the query (v; i) of T is ��1(g(�(v); i)) if the latter is de�ned,and otherwise the answer is de�ned as a new random value r (di�erent from all queries made byT and all answers given to T ) and �(r) is de�ned to equal g(�(v); i). If �(r) is in S then (in thefuture) it will be considered used.Note that all the values g(�; �) used by T 0 in the foregoing process are values that appear in oneof the BFS executions (i.e., we use g(u; i) for either u 2 S or for some u that appeared as an answerto some prior query (w; j), i.e., u = g(w; j)). On the other hand, the execution of T 0 on input Gcorresponds to an execution of T on a random isomorphic copy of G (where the isomorphism isprovided by the permutation �, which is selected on-the-y by T 0).Next, analogously to [GT, Sec. 4.2], we note that, without loss of generality, the decision ofT 0 is sample-oblivious and label-oblivious; that is, the decision depends only on the edges amongthe explored vertices (i.e., the underlying subgraph explored by the BFS executions), and not onthe actual labels of these vertices in G. This is proved by making T 0 accept with probability thatequals the average of all relevant probabilities (i.e., the acceptance probabilities that are associatedwith each of the possible relabellings of the subgraph), and observing that the probability that theresulting T 0 accepts G equals the probability that the original T 0 accepted a random isomorphiccopy of G. Note that the decision of the resulting T 0 may still depends on an identi�cation of thes(N) initial vertices (from which the corresponding BFS executions were started), but it does notdepend on the labels of these (or any other) vertices.19Finally, we use the fact that T 0 has one-sided error in order to make the �nal decision deter-ministic as well as invariant under the identi�cation of the s(N) initial vertices. Firstly, as in [GT,Sec. 4.2], we note that if T 0 rejects with non-zero probability when seeing a particular subgraph ofG then it must be the case that G is not in �, and hence we may modify T 0 such that it rejectswith probability 1 in this case. Similarly, we may extend the rejection criterion by omitting theidenti�cation of the s(N) initial vertices (but maintaining the distinction between vertices whoseneighborhood was fully explored and those discovered in the last step of one of the BFS executions).19Indeed, the identity of the start vertex of a scanned graph need not be uniquely determined by the markinginduced by an `-step BFS, even when ` is known. Consider, for example, a 4-step BFS yielding the subgraphthat consists of the edges f0; 1g; f1; 2g; f1; 3g; f2; 3g; f1; 4g; f4; 5g; f5; 6g. Note that the corresponding 4-step BFSexploration could have been initiated at vertex 0 as well as either at vertex 2 (or 3) or at vertex 6.24



That is, if T 0 rejects with one identi�cation of the initial vertices then the resulting tester will re-ject when seeing the same subgraph with any other possible identi�cation of the initial vertices.Thus, the �nal decision of the resulting tester only depends on the marked graph that it sees in itsexploration, where vertices are marked partial if and only if they were discovered in the last stepof one of the BFS executions. Indeed, this tester is canonical, and the claim follows. 2Applying Claim 5.5.2 to any constant-query proximity-oblivious tester for �, we obtain a canonicaltester of constant query complexity. Letting F = (FN )N2N be the sequence of sets of markedgraphs used by (Step 3 of) this tester, we claim that, for every N and every N -vertex graph G, itholds that G 2 � if and only if G is FN -free. The claim follows by noting that G 2 � if and only ifthe canonical tester accepts it with probability 1, which happens if and only if G is FN -free (by thedescription of the canonical tester and the de�nition of generalized subgraph freeness). It followsthat � is local (and, in fact, F -local).It is left to prove that F is non-propagating. We shall refer to the canonical tester derived above,and speci�cally to its detection probability function � (which equals the detection probabilityfunction of the constant-query proximity-oblivious tester of the hypothesis). Let us denote thequery complexity of the canonical tester by q. We de�ne � : (0; 1] ! (0; 1] so that �(�) equals a\relatively small"20 � 2 (0; 1] that satis�es �(�) > q� (if such � exists and �(�) def= 1 otherwise).Note that, indeed, for every � > 0 there exists � > 0 such that �(�) < �. We shall show that Fsatis�es the non-propagating condition with respect to this function � . For any N , consider anygraph G = ([N ]; E) and any B � [N ] such that every embedding of any F 2 FN in G maps somevertex to B. Assume, towards the contradiction, that G is �(jBj=N)-far from �N (while �N 6= ;),where �N denotes the set of N -vertex graphs that are FN -free. Then, the canonical tester mustreject G with probability at least �(�(jBj=N)). On the other hand, the canonical tester may rejectG only if one of the vertices that it visits resides in B. Since each vertex is visited with probabilityat most q=N , it holds that �(�(jBj=N)) � q � jBj=N , which contradicts the de�nition of � (i.e.,�(�(�)) > q�).21A quantitative version. We note that the proof of Theorem 5.5 provides a rather tight relationbetween the optimal detection probability of constant-query proximity-oblivious testers and thefunction � used in the de�nition of the non-propagating condition (cf., De�nition 5.3). Speci�-cally, these two functions are roughly inverses of one another; for example, polynomial detectionprobability (i.e., �(�) = �O(1)) correspond to constant-root functions (i.e., �(�) = �
(1)), whereasexponential detection probability (i.e., �(�) = 2�O(1=�)) correspond to logarithmic functions (i.e.,�(�) = O(1= log(1=�))). A closer look at the proof of Theorem 5.5 also yields the following corollary.Corollary 5.6 For every sequence of unlabeled graphs F = (FN )N2N as in Theorem 4.7, theproperty of being F-free has a constant-query proximity-oblivious tester of polynomial detectionprobability function (i.e., �(�) � poly(�)). Furthermore, the degree of this polynomial equals themaximum number of connected components in a graph in F .We note that the said dependency is optimal. Consider, for example, the unlabelled graph Fthat consists of c < d connected components such that the ith component consists of a singlevertex marked full that is connected to i vertices marked partial. Then, the set of fFg-free graphsconsists of graphs whose degree distribution does not contain the set [c] (i.e., for any such graphG there exists i 2 [c] such that no vertex in G has degree i). On the other hand, a constant-query20For example, we may de�ne � (�) = 2 inf�(x)>q�fxg.21Indeed, we assumed that � (�) < 1, and the claim hold vacuously otherwise.25



proximity tester for this set has detection probability �(�) = O(�)c, because an N -vertex graph thatis �-far from this set may have �N vertices of each problematic degree (whereas we should see allproblematic degrees when rejecting).Proof: As shown in the proof of Proposition 5.4, this property is local and non-propagating with�(�) = O(�). Let c denote an upper bound on the number of connected components in any graphin F , and let r denote a corresponding bound on the radius of such components. Then, the �rstpart of the proof of Theorem 5.5 implies that this property has a 2dr+1-query proximity-oblivioustester of detection probability �(�) > (�= exp(d3(r+1)))c, where � = 
(�) satis�es �(�) < �. Theclaim follows.In contrast, we explicitly state the main problem left open in this section.Open Problem 5.7 (are all local properties non-propagating?) Let F = (FN )N2N be an arbitrarysequence of sets of marked graphs as in De�nition 5.2. Is it the case that there exists another suchsequence F 0 = (F 0N )N2N that is non-propagating and de�nes the same property (i.e., for every Nand any N -vertex graph G it holds that G is FN -free if and only if G is F 0N -free)?(Note that F 0N must depend on N even if FN does not depend on N (i.e., FN = F for a �xedF and all N).)22 A related challenge is to determine relatively tight bounds on the function �corresponding to various non-propagating local properties. In particular, can � always be linear?Easily testable properties having no proximity-oblivious testers. While connectivity canbe tested with query-complexity that is inversely proportional to the proximity parameter [GR02],this property has no constant-query proximity-oblivious tester. That is:Proposition 5.8 Connectivity has no constant-query proximity-oblivious tester. Furthermore,connectivity is not a local property.Proof: Let F be a set of marked graphs as in De�nition 5.1, and suppose that the largest graphin F has n vertices. We shall show that, for every N � 2n + 4, the set of connected N -vertexgraphs does not coincide with the set of N -vertex graphs that are F -free. Consider, towards thecontradiction, a graph G that consists of two isolated cycles, each of size at least n + 2. If G isF -free then we are done (since G is not connected). On the other hand, if G is not F -free, thenwe consider an embedding of some F 2 F in G, and note that each cycle contains at least one pairof adjacent vertices that are not in the image of this embedding (i.e., let (ui; vi) denote such a pairon the ith). Then, by switching edges between the two cycles, we obtain an N -vertex cycle that isstill not F -free (i.e., replace the edges (u1; v1) and (u2; v2) by the edges (u1; u2) and (v1; v2)), andso we are done.6 Generic Observations and DiscussionsAn obvious condition for the existence of a constant-query proximity-oblivious tester for a particularproperty is the existence of constant-size \witnesses for non-membership" in that property.22Consider the set F used in the proof of Part 1 of Proposition 5.4, and let F 0 be an arbitrary set of marked graphssuch that every graph is F 0-free if and only if it is F-free. Then, a graph G0 with an even number of vertices that areeach of odd degree is F 0-free. On the other hand, augmenting G0 with a single isolated vertex, we obtain a graph Gthat is 
(1)-far from being F 0-free and yet only one vertex (i.e., the isolated vertex) must be contained in the imageof any embedding any F 0 2 F 0 in the graph G. 26



De�nition 6.1 (witnesses for non-membership): For � = Sn2N�n as in De�nition 2.2, the se-quence ((x1; y1); :::; (xq ; yq)) is called a witness for non-membership in �n if for every f 2 �n thereexists j 2 [q] such that f(xj) 6= yj. For s : N ! N , we say that � has s-size witnesses for non-membership if for every n 2 N and every f : [n]! f0; 1g� that is not in � there exists a sequencex1; :::; xs(n) such that ((x1; f(x1)); :::; (xs(n); f(xs(n))) is a witness for non-membership in �n.Theorem 6.2 For s : N ! N, if a property � (as in De�nition 2.2) has an s-query proximity-oblivious tester, then it has s-size witnesses for non-membership.Like in the case of Theorem 4.7 (see Footnote 6), we only rely on the fact that every function notin � must be rejected with positive probability (and we don't require this probability to be solelya function of the distance of this function from �).Proof: Using �(�) > 0 for every � > 0, it follows that the proximity-oblivious tester must rejectany f 62 � with positive probability. Fixing an arbitrary f : [n] ! f0; 1g� that is not in �n, letx1; :::; xq 2 [n] be a sequence of queries made by the tester when rejecting f . Note that the one-sided error of the tester implies that ((x1; f(x1)); :::; (xq ; f(xq)) is a witness for non-membership in�n. The theorem follows.Discussion. We stress that Theorem 6.2 (unlike Theorem 4.7) only establishes a necessary con-dition, and recall that this condition is not su�cient (see a dramatic demonstration in [BHR]).23Indeed, the existence of a constant-query proximity-oblivious tester (for property �) depends notonly on the existence of witnesses for non-membership (for �) but also on the ability to �nd suchwitnesses with probability related to the distance of the function from the property (while makinga constant number of queries to the function). In the context of testing bounded-degree graphs (cf.Section 5) these qualities were linked to the non-propagating condition. This link was based on theexistence of a canonical testers in the latter context, whereas such testers may not exist in general.Still, in the general setting, one can just postulate the features underlying that argument.Theorem 6.3 A property � as in De�nition 2.2 has a constant-query proximity-oblivious tester if� has a standard tester T (of error probability 1=3) that satis�es the following three conditions:1. T is non-adaptive;2. T has query complexity, denoted q : (0; 1]! N , that only depends on the proximity parameter;and3. For some �xed s 2 N , the tester T rejects if and only if it �nds a s-size witnesses for non-membership.Furthermore, assuming that q is monotonically non-decreasing, the resulting proximity-oblivioustester makes s queries and has detection probability at least �(�) = 
(q(�=2)�s � �).Indeed, an observation similar to Theorem 6.3 underlies the proof of the positive part of Propo-sition 4.3. (In the latter proof we use the fact that the standard tester is further restricted andderived a stronger bound on �.)23Recall that [BHR] presents a property that has constant-size witnesses of non-membership but no (standard)testers of sub-linear query complexity (even when �xing a su�ciently small value of the proximity parameter). Itfollows that this property has no proximity-oblivious testers of sub-linear (let alone constant) query complexity.27



Proof: On input n and oracle access to f : [n] ! f0; 1g�, the proximity-oblivious tester, T 0,proceeds as follows. First, T 0 selects i 2 f1; :::; dlog2 neg at random such that the value i is selectedwith probability 2�i, and invokes (the query-generating algorithm of) T with the proximity pa-rameter 2�i. Thus, T 0 obtains a random set of queries that T issues (non-adaptively, on proximityparameter 2�i). Denoting this set by Q = fx1; :::; xq(2�i)g � [n], the proximity-oblivious testerselects a random s-subset of Q, and queries f on these indices. Finally, T 0 rejects if and only if thecorresponding sequence of s queries and answers constitutes a witnesses for non-membership.Clearly, T 0 never rejects any f 2 �. Towards analyzing the detection probability of T 0, let �denote the distance of f : [n]! f0; 1g� from �n. Then, T 0 selected i = dlog2(1=�)e with probability
(�), and conditioned on this event, with probability at least 2=3, the set of queries Q combinedwith the corresponding answers (of f) contains a s-size witnesses for non-membership. In this case,a uniformly selected set of s elements in Q yields a witnesses for non-membership with probabilityat least jQj�s = q(2�i)�s � q(�=2)�s.Discussion. Needless to say, Theorem 6.3 is applicable to many property testers, since searching(non-adaptively) for a witness of non-membership is a natural way in which one-sided error testersproceed. Examples include testers for properties such as d-dimensional Euclidean metrics [PR],singletons [PRS], and juntas [FKR+], and various clustering problems (cf. [ADPR]). We notethat Theorem 6.3 is applicable also in case the query complexity of the original tester as wellas the size of the witnesses for non-membership may depend on the function's domain (i.e., [n]),but in this case we obtain a relaxed notion of proximity-oblivious testing in which the detectionprobability may depend on the function's domain. That is, if the original tester makes q(n; �) toany function over [n] and searches for s(n)-size witnesses for non-membership, then we obtain arelaxed proximity-oblivious tester that makes s(n) queries and has detection probability at least�(n; �) = 
(q(n; �=2)�s(n) � �).The case of locally testable codes. The notion of proximity-oblivious testing was discussedin the context of locally testable codes (LTCs), which are error-correcting codes augmented bye�cient codeword testers (i.e., testers for the property of being a codeword). Speci�cally, proximity-oblivious (codeword) testers (with linear detection probability function) correspond to the de�nitionof strong codeword tests as in [GS, Def. 2.2], whereas a restricted form of standard (codeword)testers correspond to the standard de�nition of codeword tests (called weak in [GS, Def. 2.1]). Wemention that while the main results of [GS] refer to strong codeword tests, most subsequent work(including [D, Sec. 8]) refer to (weak) codeword tests. It is indeed an open problem whether theparameters of [D, Cor. 8.8] (i.e., constant query complexity and one-over-polylogarithmic rate) canbe obtained with respect to strong codeword testing. That is:Open Problem 6.4 Do some error-correcting codes of constant relative distance and one-over-polylogarithmic rate have constant-query proximity-oblivious codeword testers?On the other hand, proximity-oblivious testers may provide a setting in which one may establishinherent limitations on codeword testing. Speci�cally, we conjecture that error-correcting codesof constant relative distance that have constant-query proximity-oblivious codeword testers musthave rate that is inferior to arbitrary error-correcting codes of the same relative distance.
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