
Combinatorial Property Testing (a survey)�Oded GoldreichyDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.E-mail: oded@wisdom.weizmann.ac.il.May 5, 1998AbstractWe consider the question of determining whether a given object has a predetermined propertyor is \far" from any object having the property. Speci�cally, objects are modeled by functions,and distance between functions is measured as the fraction of the domain on which the functionsdi�er. We consider (randomized) algorithms which may query the function at arguments of theirchoice, and seek algorithms which query the function at relatively few places.We focus on combinatorial properties, and speci�cally on graph properties. The two standardrepresentations of graphs { by adjacency matrices and by incidence lists { yield two di�erentmodels for testing graph properties. In the �rst model, most appropriate for dense graphs,distance between N -vertex graphs is measured as the fraction of edges on which the graphsdisagree over N2. In the second model, most appropriate for bounded-degree graphs, distancebetween N -vertex d-degree graphs is measured as the fraction of edges on which the graphsdisagree over dN .To illustrate the two models, we survey results regarding the complexity of testing whethera graph is Bipartite. For a constant distance parameter, a constant number of queries su�ce inthe �rst model, whereas e�(pN) queries are necessary and su�cient in the second model.
�Based mainly on joint work with Sha� Goldwasser and Dana Ron [17], and joint works with Dana Ron [19, 20].yCurrently visiting LCS, MIT. Supported by DARPA grant DABT63-96-C-0018.0

1 Introduction and Summary of Known ResultsThe following general formulation of Property Testing was suggested in [17]:Let P be a �xed property of functions, and f be an unknown function. The goal is todetermine (possibly probabilistically) if f has property P or if it is far from any functionwhich has property P, where distance between functions is measured with respect tosome distribution D on the domain of f . Towards this end, one is given examples ofthe form (x; f(x)), where x is distributed according to D. One may also be allowed toquery f on instances of one's choice.The above formulation is inspired by the PAC learning model [37]. In fact, property testing isrelated to variants of PAC learning as has been shown in [17]. The general formulation aboveallows the consideration of arbitrary distributions rather than uniform ones, and of testers whichutilize only randomly chosen instances (rather than being able to query instances of their ownchoice). However, we do not consider these latter generalizations here, but rather focus on thespecial case (formulated previously in [34, 33]) where the distribution is uniform on the domain ofthe function, and testers are allowed to query the function on instances of their choice. Thus, theabove formulation simpli�es to the following de�nition, in which we associate a property with theclass of functions satisfying it.De�nition 1 (property tester): Let S be a �nite set, and P a subset of functions mapping S tof0; 1g�. A (property) tester for P is a probabilistic oracle machine1, M , which given a distanceparameter � > 0 and oracle access to an arbitrary function f : S 7! f0; 1g� satis�es the followingtwo conditions:1. (the tester accepts f if it is in P)If f 2 P then Pr(M f(�)=1) � 23.2. (the tester rejects f if it is far from P)If jfx2S : f(x) 6=g(x)gj > � � jSj, for every g 2 P, then Pr(M f (�)=1) � 13.Property testing (as just de�ned) emerges naturally in the context of program checking [10, 29, 16,34] and probabilistically checkable proofs (pcp) [6, 7, 14, 4, 3, 8, 11, 5, 9, 22, 24]. Speci�cally, in thecontext of program checking, one may choose to test that the program satis�es certain propertiesbefore checking that it computes a speci�ed function. This paradigm has been followed both inthe theory of program checking [10, 34], and in practice where often programmers �rst test theirprograms by verifying that the programs satisfy properties that are known to be satis�ed by thefunction they compute. In the context of probabilistically checkable proofs, the property tested isbeing a codeword with respect to a speci�c code. This paradigm, explicitly introduced in [7], hasshifted from testing codes de�ned by low-degree polynomials [6, 7, 14, 4, 3] to testing Hadamardcodes [3, 8, 11, 5, 28, 36], and recently to testing the \long code" [9, 22, 24, 36].Much of the work cited above deals with the development and analysis of testers for algebraicproperties; speci�cally, linearity, multi-linearity, and low-degree polynomials [10, 29, 6, 7, 14, 16,34, 4, 3, 8, 11, 5]. In contrast, following [17] we focus on testing combinatorial properties, andspeci�cally on testing graph properties such as Bipartiteness.1 Alternatively, one may consider a RAM model of computation, in which trivial manipulation of domain andrange elements (e.g., reading/writing an element and comparing elements) is performed at unit cost.1

The relevant parameters. The main parameter relevant to property testing is the permitteddistance parameter, denoted �. In addition, one may consider a con�dence (or error bound) param-eter, denoted �, rather than �xing an error bound of 13 (as done in De�nition 1 above). Standardampli�cation techniques do apply here, and thus we choose to �x the error bound. The complexitymeasures we focus on are the query complexity and the running time of the tester. All testersdiscussed in this survey have running-time which is substantially smaller than the full descriptionof the function.1.1 MotivationThe de�nition of property testing is a relaxation of the standard de�nition of a decision task: Thetester is allowed arbitrary behavior when the object does not have the property, and yet is \close"to an object having the property. Thus, a property tester may be far more e�cient than a standarddecision procedure (for the same property).In case the object is huge, as in case one thinks of a function and algorithms which operate intime polynomial in the length of the arguments to the function, there is actually no other alternativeto property testing. That is, it is typically infeasible (i.e., requires exponential time in the lengthof the arguments) to decide whether such a function has the desired property. A property testingalgorithm which operates in time polynomial in the length of the arguments thus o�ers a feasibleapproximation to a problem which is intractable in the exact formulation.Property testers are valuable also in case one deals with objects of feasible size (i.e., size forwhich scanning the entire object is feasible): If a property tester is much faster than the exactdecision procedure then it makes sense to run it before running the decision procedure. In case theobject is far from having the property, we may obtain an indication towards this fact, and savethe time we might have used running the decision procedure. In case the tester supplies proofs ofviolation of the property (as in some of the testers discussed below), we have obtain an absolutelycorrect answer without running the decision procedure at all. Thus, we may only need to run thedecision procedure on objects which are close to having the property. In some natural setting wheretypical objects are either good (i.e., have the property) or very bad (i.e., are very far from objectshaving the property), we may gain a lot. Furthermore, if it is guaranteed that objects are eithergood or very bad then we may not even need to run the decision procedure at all. The gain in sucha setting is enormous.Being close to an object which has the property is a notion of approximation which, in certainapplications, may be of great value. In some cases, being close to an object having the propertytranslates to a standard notion of approximation. In other cases, it translates to a notion of \dualapproximation". This point is clari�ed and exempli�ed below (by referring to speci�c properties).In both cases, a fast property tester which is more e�cient than the decision procedure is of value,both if the decision procedure is feasible and more so if it is not.Alternatively, we may be forced to take action, without having time to run a decision procedure,while given the option of modifying the object in the future, at a cost proportional to the numberof added/omitted edges. For example, suppose you are given a graph which represents some designproblem, where Bipartite graphs corresponds to a good design and changes in the design correspondto edge additions/omissions. Using a Bipartiteness tester you always accept a good design, andreject with high probability designs which will cost a lot to modify. You may still accept baddesigns, but then you know that it will not cost you much to modify them later.2

1.2 Testing Graph Properties { An OverviewAs stated above, this survey focuses on testing graph properties. Two natural representations of agraph are o�ered by its adjacency matrix and by its incidence list. Correspondingly, we considertwo representations of graphs by functions.1. An N -vertex graph, G = (V;E), can be represented by the adjacency predicate, f :V�V 7!f0; 1g, so that (u; v) 2 E if and only if f(u; v) = 1.2. An N -vertex graph of degree bound d, G = (V;E), can be represented by the incidencefunction, g : V� [d] 7! V [f0g, so that g(u; i) = v if v is the ith vertex incident at u, andg(u; i) = 0 62 V if u has less than i neighbors.As usual, the choice of representation has a fundamental impact on the potential algorithm. Herethe impact is even more dramatic since we seek algorithms which only inspect a relatively smallfraction of the object (graph represented by a function). Furthermore, there is another fundamentalimpact of the choice of representation on the task of property testing. This has to do with ourde�nition of distance, which is relative to the size of the domain of the function. In particular,distance � in the �rst representation means a symmetric di�erence of 2� �N2 edges, whereas in thesecond representation this means a symmetric di�erence of 2� � dN edges. (In both cases, the extrafactor 2 is due to the redundant representation which is adopted for sake of simplicity.)As usual, the �rst representation (i.e., adjacency predicate) is most appropriate for dense graphs(i.e., jEj =
(jVj2)), whereas the second representation (i.e., incidence function) is applicable andmost appropriate for graphs of degree bound d. We demonstrate the di�erence between the tworepresentations by considering the task of testing whether a graph is Bipartite.1.2.1 Some known results in the �rst (i.e., adjacency predicate) representationTesters of complexity which depends only on the distance parameter, �, are known for several naturalgraph properties [17]. In particular, the following properties can be tested in query-complexitypoly(1=�) and time complexity exp(poly(1=�)):� k-Colorability, for any �xed k � 2. The query-complexity is poly(k=�), and for k = 2 therunning-time is eO(1=�3). The Bipartite Tester is presented in Section 2.� �-Clique, for any � > 0. That is, does the N -vertex graph have a clique of size �N .� �-CUT, for any � > 0. That is, does the N -vertex graph have a cut of size at least �N2. Ageneralization to k-way cuts works within query-complexity poly((log k)=�).� �-Bisection, for any � > 0. That is, can the vertices of the N -vertex graph be partitionedinto two equal parts with at most �N2 edges going between them.Remarks:1. For all the above properties, in case the graph has the desired property, the testing algorithmoutputs some auxiliary information which allows to construct, in poly(1=�) �N -time, a parti-tion which approximately obeys the property. For example, for �-CUT, we can construct apartition with at least (�� �)N2 crossing edges.2. Except for Bipartite testing, running-time of poly(1=�) is unlikely, as it will implyNP � BPP.3

3. The k-Colorability tester has one-sided error: It always accepts k-colorable graphs. Further-more, when rejecting a graph, this tester always supplies a poly(1=�)-size subgraph which isnot k-colorable. All other algorithms have two-sided error, and this is unavoidable withino(N) query-complexity.All the above property testing problems are special cases of the General Graph Partition TestingProblem, parameterized by a set of lower and upper bounds. In this problem one needs to determinewhether there exists a k-partition of the vertices so that the number of vertices in each part as wellas the number of edges between each pair of parts falls between the corresponding lower and upperbounds (in the set of parameters). A tester for the general problem has been presented in [17] too.The algorithm uses eO(k2=�)2k+O(1) queries, runs in time exponential in its query-complexity, andhas two-sided error.Going beyond the General Graph Partition Problem, we remark that there are graph propertieswhich are very easy to test in this model (e.g., Connectivity, Hamiltonicity, and Planarity) [17]. Thereason being that for these properties either every N -vertex graph is at distance at most O(1=N)from a graph having the desired property (and so for � =
(1=N) the trivial algorithm which alwaysaccepts will do), or the property holds only for sparse graphs (and so for � =
(1=N) one may rejectany non-sparse graph). On the other hand, there are (\unnatural") graph properties in NP whichare extremely hard to test; namely, any testing algorithm must inspect at least
(N2) of the vertexpairs [17]. In view of the above, we believe that providing a characterization of graph properties,according to the complexity of testing them, may be very challenging.Relation to recognizing graph properties: Our notion of testing a graph property P is arelaxation of the notion of deciding the graph property P which has received much attention in thelast two decades [30]. In the classical problem there are no margins of error, and one is required toaccept all graphs having property P and reject all graphs which lack it. In 1975 Rivest and Vuillemin[35] resolved the Aanderaa{Rosenberg Conjecture [32], showing that any deterministic procedurefor deciding any non-trivial monotone N -vertex graph property must examine
(N2) entries in theadjacency matrix representing the graph. The query complexity of randomized decision procedureswas conjectured by Yao to be
(N2). Progress towards this goal was made by Yao [38], King [27]and Hajnal [21] culminating in an
(N4=3) lower bound. This stands in striking contrast to thetesting results of [17] mentioned above, by which some non-trivial monotone graph properties canbe tested by examining a constant number of locations in the matrix.Application to the standard notion of approximation: The relation of testing graph prop-erties to the standard notions of approximation is best illustrated in the case of Max-CUT. Anytester for the class �-cut, working in time T (�; N), yields an algorithm for approximating the maxi-mum cut in an N -vertex graph, up to additive error �N2, in time 1� �T (�; N). Thus, for any constant� > 0, using the above tester of [17], we can approximate the size of the max-cut to within �N2in constant time. This yields a constant time approximation scheme (i.e., to within any constantrelative error) for dense graphs, improving over previous work of Arora et. al. [2] and de la Vega [13]who solved this problem in polynomial-time (i.e., in O(N1=�2){time and exp(eO(1=�2)) � N2{time,respectively). In the latter works the problem is solved by actually constructing approximate max-cuts. Finding an approximate max-cut does not seem to follow from the mere existence of a testerfor �-cut; yet, as mentioned above, the tester in [17] can be used to �nd such a cut in time linearin N . 4

Relation to \dual approximation" (cf., [25, 26]): To illustrate this relation, we consider the �-Clique Tester mentioned above. The traditional notion of approximating Max{Clique correspondsto distinguishing the case in which the max-clique has size at least �N from, say, the case in whichthe max-clique has size at most �N=2. On the other hand, when we talk of testing \�-Cliqueness",the task is to distinguish the case in which an N -vertex graph has a clique of size �N from the casein which it is �-far from the class of N -vertex graphs having a clique of size �N . This is equivalentto the \dual approximation" task of distinguishing the case in which an N -vertex graph has aclique of size �N from the case in which any �N subset of the vertices misses at least �N2 edges.To demonstrate that these two tasks are vastly di�erent we mention that whereas the former taskis NP-Hard, for � < 1=4 (see [9, 22, 23]), the latter task can be solved in exp(O(1=�2))-time, forany �; � > 0. We believe that there is no absolute sense in which one of these approximation tasksis more important than the other: Each of these tasks may be relevant in some applications andirrelevant in others.1.2.2 Some known results in the second (i.e., incidence function) representationTesters of complexity which depends only on the distance parameter, �, are known for severalnatural graph properties [19]. In particular, the following properties can be tested in time (andthus query-complexity) poly(d=�):� Connectivity. The tester runs in time eO(1=�). In case the graph is connected the algorithmalways accepts, whereas in case the graph is �-far from being connected the algorithm rejectswith probability at least 23 and furthermore supplies a small counter-example to connectivity(in the form of an induced subgraph which is disconnected from the rest of the graph).� k-edge-connectivity. The algorithms run in time eO(k3 ���3). For k = 2; 3 improved algorithmshave running-times eO(��1) and eO(��2), respectively. Again, k-edge-connected graphs arealways accepted, and rejection is accompanied by a counter-example.� k-vertex-connectivity, for k = 2; 3. The algorithms run in time eO(��k).� Planarity. The algorithm runs in time eO(d4 � ��1).� Cycle-Freeness. The algorithms run in time eO(��3). Unlike all other algorithms, this algo-rithm has two-sided error probability, which is unavoidable for testing this property (withino(pN) queries).The complexity of Bipartiteness testing is considered in Section 3. We survey an
(pN) lowerbound on the query complexity of any tester [19] and a recent result of [20] by which a naturalalgorithm of running time (and query complexity) eO(poly(1=�) � pN) is a good tester. The lowerbound stands in sharp contrast to the situation in the �rst model (i.e., representation by adjacencypredicates), where Bipartite testing is possible in poly(1=�)-time. We note that the eO(poly(1=�) �pN)-time tester (for the incidence function representation) is signi�cantly faster than the lineartime decision procedure (provided that � is not too small).1.3 Combinatorics beyond Graph Theory { Testing MonotonicityIn this subsection we mention a partial result referring to testing a combinatorial property whichis seemingly unrelated to graph theory. A function f : f0; 1gn 7! f0; 1g is called monotone iff(x) � f(y), for every x � y, where the partial order between strings is de�ned analogously to the5

set inclusion relation. That is, x1x2 � � �xn � y1y2 � � �yn if xi � yi for all i's, and x 6= y. Let w(x)denote the weight of x (i.e., the number of 1's in x). The following natural test of Monotonicitywas suggested and analyzed in [18].Algorithm 1 (Monotonicity Tester):Given n, � and oracle access to a function f :f0; 1gn 7!f0; 1g, repeat 2n2=� times:1. Uniformly select x 2 f0; 1gn, and obtain the value f(x).2. In case f(x) = 1, obtain the values of f(y) for all y's satisfying y � x and w(y) = w(x) + 1.If one of these f(y)'s is 0 then reject.3. Analogously, in case f(x) = 0, obtain the values of f(y) for all y's satisfying y � x andw(y) = w(x)� 1. If one of these f(y)'s is 1 then reject.If all iterations were completed without rejecting then accept.Clearly, Algorithm 1 accepts every monotone function with probability 1. Establishing the factthat it rejects, with probability at least 2=3, any function which is �-far from being monotonewas reduced in [18] to the following combinatorial lemma referring to the Boolean Lattice (cf.,background in [12]). For each i, 0 � i � n, let Li � f0; 1gn denote the set of n-bit long strings ofweight i. Let Gn be the leveled directed (acyclic) graph over the vertex set f0; 1gn, where there isa directed edge from y to x if and only if x � y and w(x) = w(y)� 1 (i.e., x and y are in adjacentLi's).Lemma 1.1 [18]: Let r and s be integers satisfying, 0 � r < s � n, and let R; S � f0; 1gn, be setssuch that R � Lr, and S � Ls, and jRj = jSj = m. Suppose that there exists a 1-to-1 mapping from S to R such that for every y 2 S, there is a directed path in Gn from y to (y). Then thereexist m vertex-disjoint directed paths from S to R in Gn.We stress that these vertex-disjoint paths do not have to respect . In fact, if one requires thesepaths to respect then the lemma becomes false (cf., [18]). Using Lemma 1.1 we haveTheorem 1 Algorithm 1 is a property tester for monotonicity.1.4 Rest of this surveyIn Sections 2 and 3 we consider the complexity of testing Bipartiteness in the two graph represen-tations discussed above: In Section 2 we consider representation by an adjacency predicate, and inSection 3 by an incidence function. Concluding remarks appear in Section 4.2 Testing Bipartiteness in the First RepresentationIn this section we consider the representation of N -vertex graphs by adjacency predicates mappingpairs f1; 2; :::;Ng�f1; 2; :::; Ng to f0; 1g. The bipartite tester is extremely simple: It selects a tiny,random set of vertices and checks whether the induced subgraph is bipartite.Algorithm 2 (Bipartite Tester in the �rst model [17]):On input N , d, � and oracle access to an adjacency predicate of an N -vertex graph, G = (V;E):6

1. Uniformly select a subset of eO(1=�2) vertices of V.2. Accept if and only if the subgraph induced by this subset is Bipartite.Step (2) amounts to querying the predicate on all pairs of vertices in the subset selected at Step (1).As will become clear from the analysis, it actually su�ce to query only eO(1=�3) of these pairs.Theorem 2 [17]: Algorithm 2 is a Bipartite Tester (in the adjacency predicate representation).Furthermore, the algorithm always accepts a Bipartite graph, and in case of rejection it provides awitness of length poly(1=�) (that the graph is not bipartite).Proof: Let R be the subset selected in Step (1), and GR the subgraph induced by it. Clearly, if Gis bipartite then so is GR, for any R. The point is to prove that if G is �-far from bipartite thenthe probability that GR is bipartite is at most 1=3. Thus, from this point on we assume that atleast �N2 edges have to be omitted from G to make it bipartite.We view R as a union of two disjoint sets U and S, where t def= jUj = O(��1 � log(1=�)) andm def= jSj = O(t=�). We will consider all possible partitions of U, and associate a partial partition ofV with each such partition of U. The idea is that in order to be consistent with a given partition,(U1;U2), of U, all neighbors of U1 (resp., U2) must be placed opposite to U1 (resp., U2). We willshow that, with high probability, most high-degree vertices in V do neighbor U and so are forcedby its partition. Since there are relatively few edges incident to vertices which do not neighbor U, itfollows that with very high probability each such partition of U is detected as illegal by GR. Detailsfollow, but before we proceed let us stress the key observation: It su�ces to rule out relatively few(partial) partitions of V (i.e., these induced by partitions of U), rather than all possible partitionsof V.We use the notations �(v) def= fu : (u; v)2Eg and �(X) def= [v2X�(v). Given a partition (U1;U2)of U, we de�ne a (possibly partial) partition, (V1;V2), of V so that V1 def= �(U2) and V2 def= �(U1)(assume, for simplicity that V1\V1 is indeed empty). As suggested above, if one claims that G canbe \bipartited" with U1 and U2 on di�erent sides then V1 = �(U1) must be on the opposite side toU2 (and �(U1) opposite to U1). Note that the partition of U places no restriction on vertices whichhave no neighbor in U. Thus, we �rst ensure that most \in
uential" (i.e., \high-degree") verticesin V have a neighbor in U.De�nition 2.1 (high-degree vertices and good sets): We say that a vertex v 2 V is of high-degreeif it has degree at least �3N . We call U good for V if all but at most �3N of the high-degree verticesin V have a neighbor in U.Note that not insisting that U neighbors all high-degree vertices allows us to show that a randomU of size unrelated to the size of the graph has this feature. (If we were to insist that U neighborsall high-degree vertices then we would have had to use jUj =
(logN).)Claim 2.2 With probability at least 5=6, a uniformly chosen set U of size t is good.Proof: For any high-degree vertex v, the probability that v does not have any neighbor in auniformly chosen U is at most (1 � �=3)t < �18 (since t =
(��1 log(1=�))). Hence the expectednumber of high-degree vertices which do not have a neighbor in a random set U is less than �18 �N ,and the claim follows by Markov's Inequality. 2De�nition 2.3 (disturbing a partition of U): We say that an edge disturbs a partition (U1;U2) ofU if both is end-points are in the same �(Ui), for some i 2 f1; 2g.7

Claim 2.4 For any good set U and any partition of U, at least �3N2 edges disturb the partition.Proof: Each partition of V has at least �N2 violating edges (i.e., edges with both end-points onthe same side). We upper bound the number of these edges which are not disturbing. Actually, weupper bound the number of edges which have an end-point not in �(U).� The number of edges incident to high-degree vertices which do not neighbor U is bounded by�3N �N (at most �3N such vertices each having at most N incident edges).� The number of edges incident to vertices which are not of high-degree vertices is bounded byN � �3N (at most N such vertices each having at most �3N incident edges).This leaves us with at least �3N2 violating edges connecting vertices in �(U) (i.e., edges disturbingthe partition of U). 2The theorem follows by observing that GR is bipartite only if either (1) the set U is not good;or (2) the set U is good and there exists a partition of U so that none of the disturbing edges occursin GR. Using Claim 2.2 the probability of event (1) is bounded by 1=6; and using Claim 2.4 theprobability of event (2) is bounded by the probability that there exists a partition of U so thatnone of the corresponding � �3N2 disturbing edges has both edge-point in S. Actually, we pair them vertices of S, and consider the probability that none of these pairs is a disturbing edge for apartition of U. Thus the probability of event (2) is bounded by2jUj � �1� �3�m=2 < 16where the inequality is due to m =
(t=�). The theorem follows.Comment: The procedure employed in the proof yields a poly(1=�) � N -time algorithm for 2-partitioning a bipartite graph so that at most �N2 edges lie within the same side. This is done byrunning the tester, determining a partition of U (de�ned as in the proof) which is consistent withthe bipartite partition of R, and partitioning V as done in the proof (with vertices which do notneighbor U, or neighbor both U1;U2, placed arbitrarily). Thus, the placement of each vertex isdetermined by inspecting at most eO(1=�) entries of the adjacency matrix.3 Testing Bipartiteness in the Second RepresentationIn this section we consider the representation of N -vertex graphs of degree bound d by incidencefunctions mapping pairs f1; 2; :::;Ng� f1; 2; :::; dg to f0; 1; 2; :::;Ng.3.1 A lower boundIn contrast to Theorem 2, under the incidence function representation there exists no Bipartitetester of complexity independent of the graph size.Theorem 3 [19]: Testing Bipartiteness (with constant � and d) requires
(pN) queries (in theincidence function representation).Proof Idea: For any (even) N , we consider the following two families of graphs:8

1. The �rst family, denoted GN1 , consists of all degree-3 graphs which are composed by the unionof a Hamiltonian cycle and a perfect matching. That is, there are N edges connecting thevertices in a cycle, and the other N=2 edges are a perfect matching.2. The second family, denoted GN2 , is the same as the �rst except that the perfect matchingsallowed are restricted as follows: the distance on the cycle between every two vertices whichare connected by an perfect matching edge must be odd.Clearly, all graphs in GN2 are bipartite. One �rst proves that almost all graphs in GN1 are far frombeing bipartite. Afterwards, one proves that a testing algorithm that performs less than �pNqueries (for some constant � < 1) is not able to distinguish between a graph chosen randomly fromGN2 (which is always bipartite) and a graph chosen randomly from GN1 (which with high probabilitywill be far from bipartite). Loosely speaking, this is done by showing that in both cases thealgorithm is unlikely to encounter a cycle (among the vertices it has inspected).3.2 An algorithmThe lower bound of Theorem 3 is essentially tight. Furthermore, the following natural algorithmconstitutes a Bipartite tester of running time poly((logN)=�) � pN .Algorithm 3 (Bipartite Tester in the second model [20]):On input N , d, � and oracle access to an incidence function for an N -vertex graph, G = (V;E), ofdegree bound d, repeat T def= �(1�) times:1. Uniformly select s in V.2. (Try to �nd an odd cycle through vertex s):(a) Perform K def= poly((logN)=�) � pN random walks starting from s, each of lengthL def= poly((logN)=�).(b) Let R0 (resp., R1) denote the vertices set reached from s in an even (resp., odd) numberof steps in any of these walks.(c) If R0 \R1 is not empty then reject.If the algorithm did not reject in any one of the above T iterations, then it accepts.Theorem 4 [20]: Algorithm 3 is a Bipartite Tester (in the incidence function representation).Furthermore, the algorithm always accepts a Bipartite graph, and in case of rejection it provides awitness of length poly((logN)=�) (that the graph is not bipartite).Motivation { the special case of rapid mixing graphs. The proof of Theorem 4 is quiteinvolved. As a motivation, we consider the special case where the graph has a \rapid mixing"feature. It is convenient to modify the random walks so that at each step each neighbor is selectedwith probability 1=2d, and otherwise (with probability at least 1=2) the walk remains in the presentvertex. Furthermore, we will consider a single execution of Step (2) starting from an arbitraryvertex, s, �xed in the rest of the discussion. The rapid mixing feature we assume is that, forevery vertex v, a (modi�ed) random walk of length L starting at s reaches v with probabilityapproximately 1=N (say, up-to a factor of 2). Note that if the graph is an expander then this iscertainly the case (since L � O(logN)). 9

The key quantities is the analysis are the following probabilities, referring to the parity of thelength of a path obtained from the random walk by omitting the self-loops (transitions whichremain at current vertex). Let p0(v) (resp., p1(v)) denote the probability that a (modi�ed) randomwalk of length L starting at s reaches v while making an even (resp., odd) number of real (i.e.,non-self-loop) steps. By the rapid mixing assumption we have (for every v 2 V)12N < p0(v) + p1(v) < 2N (1)We consider two cases regarding the sumPv2V p0(v)p1(v) { In case the sum is (relatively) \small",we show that V can be 2-partitioned so that there are relatively few edges between vertices placedin the same side, which implies that G is close to be bipartite. Otherwise (i.e., when the sumis not \small"), we show that with signi�cant probability, when Step (2) is started at vertex sit is completed by rejecting G. The two cases are presented in greater detail in the following(corresponding) two claims.Claim 3.1 Suppose Pv2V p0(v)p1(v) � �=50N . Let V1 def= fv 2 V : p0(v) < p1(v)g and V2 =V nV1. Then, the number of edges with both end-points in the same V� is bounded above by �dN .Proof Sketch: Consider an edge (u; v) where, without loss of generality, both u and v are inV1. Then, both p1(v) and p1(u) are greater than 12 � 12N . However, one can show that p0(v) >13d � p1(u): Observe that a walk of length L � 1 with path-parity 1 ending at u is almost as likelyas such a walk having length L, and that once such a walk reaches u it continues to v in the nextstep with probability exactly 1=2d. Thus, such an edge contributes at least (1=4N)23d to the sumPv2V p0(v)p1(v). The claim follows.Claim 3.2 Suppose Pv2V p0(v)p1(v) � �=50N , and that Step (2) is started with vertex s. Then,with probability at least 2=3, the set R0 \R1 is not empty (and rejection follows).Proof Sketch: Consider the probability space de�ned by an execution of Step (2) with startvertex s. We de�ne random variables �i;j representing the event that the vertex encountered in theLth step of the ith walk equals the vertex encountered in the Lth step of the jth walk, and that theith walk corresponds to an even-path whereas the jth to an odd-path. ThenE(jR0 \R1j) > Xi 6=j E(�i;j)= K(K � 1) �Xv2V p0(v)p1(v)> 500N� �Xv2V p0(v)p1(v)� 10where the second inequality is due to the setting of K, and the third to the claim's hypothesis.Intuitively, we expect that with high probability jR0\R1j > 0. This is indeed the case, but proving itis less straightforward than it seems, the problem being that the �i;j's are not pairwise independent.Yet, since the sum of the covariances of the dependent �i;j's is quite small, Chebyshev's Inequalityis still very useful (cf., [1, Sec. 4.3]). Speci�cally, letting � def= Pv2V p0(v)p1(v) (= E(�i;j)), and10

�i;j def= �i;j � �, we get:Pr0@Xi 6=j �i;j = 01A < V(Pi 6=j �i;j)(K2�)2= 1K4�2 �0@Xi;j E(�2i;j) + 2Xi;j;kE(� i;j�i;k)1A< 1K2� + 2K�2 �E(�1;2�1;3)For the second term, we observe that Pr(�1;2 = �2;3 = 1) is upper bounded by the probability that�1;2 = 1 times the probability that the Lth vertex of the �rst walk appears as the Lth vertex of thethird path. Using the rapid mixing hypothesis, we upper bound the latter probability by 2=N , andobtain Pr(jR0 \R1j = 0) < 1K2� + 2K�2 � � � 2N< 13where the last inequality uses K < N=4, � � �=50N and K2 � 6 � 50N=�. The claim follows.Beyond rapid mixing graphs. The proof in [20] refers to a more general sum of products; thatis, Pv2V podd(v)peven(v), where U � V is an appropriate set of vertices, and podd(v) (resp., peven(v))is the probability that a random walk (starting at s) passes through v after more than L=2 stepsand the corresponding path to v has odd (resp., even) parity. Much of the analysis in [20] goesinto selecting the appropriate U (and an appropriate starting vertex s), and pasting together manysuch U's to cover all of V. Loosely speaking, U and s are selected so that there are few edgesfrom U and the rest of the graph, and podd(u) + peven(u) � 1=pjVj � jUj, for every u 2 U. Theselection is based on the \combinatorial treatment of expansion" of Mihail [31]. Speci�cally, we usethe counterpositive of the standard analysis, which asserts that rapid mixing occurs when all cutsare relatively large, to assert the existence of small cuts which partition the graph so that verticesreached with relatively high probability (in a short random walk) are on one side and the rest ofthe graph on the other. The �rst set corresponds to U above and the cut is relatively small withrespect to U. A start vertex s for which the corresponding sum is big is shown to cause Step (2)to reject (when started with this s), whereas a small corresponding sum enables to 2-partition Uwhile having few violating edges among the vertices in each part of U.The actual argument of [20] proceeds in iterations. In each iteration a vertex s for which Step (2)accepts with high probability is �xed, and an appropriate set of remaining vertices, U, is found.The set U is then 2-partitioned so that there are few violating edges inside U. Since we want topaste all these partitions together, U may not contain vertices treated in previous iterations. Thiscomplicates the analysis, since it must refer to the part of G, denoted H, not treated in previousiterations. We consider walks over an (imaginary) Markov Chain representing the H-part of thewalks performed by the algorithm on G. Statements about rapid mixing are made with respect tothe Markov Chain, and linked to what happens in random walks performed on G. In particular, asubset U of H is determined so that the vertices in U are reached with probability � 1=pjVj � jUj(in the chain) and the cut between U and the rest of H is small. Linking the sum of productsde�ned for the chain with the actual walks performed by the algorithm, we infer that U may be11

partitioned with few violating edges inside it. Edges to previously treated parts of the graphs arecharged to these parts, and edges to the rest of H nU are accounted for by using the fact that thiscut is small (relative to the size of U).4 Concluding RemarksRandomness plays a pivotal role in the theory of property testing: A deterministic tester for any\non-degenerate" property (and in particular for any of the properties discussed above) needs toquery the function on a constant fraction of its domain, and so is of little interest.The results regarding property testing, known to date, are rather sporadic. For more than adozen natural graph properties, testers are known in the adjacency predicate representation, andfor some testers are known in the incidence function representation. More than half a dozen ofthese testers are interesting, and though they share some techniques, no general structure seemsto arise. Some negative results in [17] seem to indicate that general results may be hard to obtain:For example, it was shown that there exist properties in NP which require high query complexityfor testing. Also some properties are easy to test with one-sided error, whereas other require two-sided error to be tested e�ciently. Thus, obtaining \structural" results regarding easily testableproperties may be very challenging as well as of great interest.AcknowledgmentsThis survey is based mainly on joint work with Sha� Goldwasser and Dana Ron [17], and jointworks with Dana Ron [19, 20]. The subsection on testing monotonicity is based on a recent jointwork with Sha� Goldwasser, Eric Lehman, and Dana Ron [18].References[1] N. Alon and J.H. Spencer, The Probabilistic Method, John Wiley & Sons, Inc., 1992.[2] S. Arora, D. Karger, and M Karpinski. Polynomial time approximation schemes for denseinstances of NP-hard problems. In Proceedings of the Twenty-Seventh Annual ACM Symposiumon the Theory of Computing, pages 284{293, 1995.[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cation and intractabil-ity of approximation problems. In Proceedings of the Thirty-Third Annual Symposium onFoundations of Computer Science, pages 14{23, 1992.[4] S. Arora and S. Safra. Probabilistic checkable proofs: A new characterization of NP. In Pro-ceedings of the Thirty-Third Annual Symposium on Foundations of Computer Science, pages1{13, 1992.[5] M. Bellare, D. Coppersmith, J. H�astad, M. Kiwi, and M. Sudan. Linearity testing in character-istic two. In Proceedings of the Thirty-Sixth Annual Symposium on Foundations of ComputerScience, pages 432{441, 1995.[6] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover inter-active protocols. Computational Complexity, 1(1):3{40, 1991.12

[7] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polylogarithmictime. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing,pages 21{31, 1991.[8] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. E�cient probabilistically checkableproofs and applications to approximation. In Proceedings of the Twenty-Fifth Annual ACMSymposium on the Theory of Computing, pages 294{304, 1993.[9] M. Bellare, O. Goldreich, and M. Sudan. Free bits, pcps and non-approximability { towardstight results. Extended abstract in Proceedings of the Thirty-Sixth Annual Symposium onFoundations of Computer Science, pages 422{431, 1995. To appear in SICOMP.[10] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numericalproblems. Journal of Computer and System Sciences, 47:549{595, 1993.[11] M. Bellare and M. Sudan. Improved non-approximability results. In Proceedings of the 26thAnnual ACM Symposium on the Theory of Computing, pages 184{193, 1994.[12] B. Bollob�as. Combinatorics. Cambridge University Press, 1986.[13] W. F. de la Vega. MAX-CUT has a randomized approximation scheme in dense graphs. Toappear in Random Structures and Algorithms , 1994.[14] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Approximating clique is almostNP-complete. In Proceedings of the Thirty-Second Annual Symposium on Foundations ofComputer Science, pages 2{12, 1991.[15] A. Frieze and R. Kanan. The regularity lemma and approximation schemes for dense problems.In Proceedings of the Thirty-Seventh Annual Symposium on Foundations of Computer Science,pages 12{20, 1996.[16] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-testing/correctingfor polynomials and for approximate functions. In Proceedings of the Twenty-Third AnnualACM Symposium on Theory of Computing, pages 32{42, 1991.[17] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning andapproximation. To appear in JACM. Extended abstract in Proc. of the 37th IEEE Symp.on Foundation of Computer Science, pages 339{348, 1996. Available as TR96-057 of ECCC ,http://www.eccc.uni-trier.de/eccc/, 1996.[18] O. Goldreich, S. Goldwasser, E. Lehman, and D. Ron. Testing Monotinicity. Unpublishedmanuscript, 1998.[19] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. In Proc. of the 29thACM Symp. on Theory of Computing, pages 406{415, 1997.[20] O. Goldreich and D. Ron. A sublinear Bipartite Tester for Bounded Degree Graphs. Toappear in Proc. of the 30th ACM Symp. on Theory of Computing, 1998. Available fromhttp://theory.lcs.mit.edu/�oded/test.html.[21] P. Hajnal. An
(n4=3) lower bound on the randomized complexity of graph properties. Com-binatorica, 11(2):131{144, 1991. 13

[22] J. H�astad. Testing of the long code and hardness for clique. In Proc. of the 28th ACM Symp.on Theory of Computing, pages 11{19, 1996.[23] J. H�astad. Clique is hard to approximate within n1��. In Proc. of the 37th IEEE Symp. onFoundation of Computer Science, pages 627{636, 1996.[24] J. H�astad. Getting optimal in-approximability results. In Proc. of the 29th ACM Symp. onTheory of Computing, pages 1{10, 1997.[25] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling prob-lems: Theoretical and practical results. Journal of the Association for Computing Machinery,34(1):144{162, January 1987.[26] D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for machine schedul-ing on uniform processors: Using the dual approximation approach. SIAM Journal on Com-puting, 17(3):539{551, 1988.[27] V. King. An
(n5=4) lower bound on the randomized complexity of graph properties. Combi-natorica, 11(1):23{32, 1991.[28] M. Kiwi. Probabilistically Checkable Proofs and the Testing of Hadamard-like Codes. PhDthesis, Massachusetts Institute of Technology, 1996.[29] R. J. Lipton. New directions in testing. Unpublished manuscript, 1989.[30] L. Lov�asz and N. Young. Lecture notes on evasiveness of graph properties. Technical ReportTR{317{91, Princeton University, Computer Science Department, 1991.[31] M. Mihail. Conductance and convergence of Markov chains { A combinatorial treatment ofexpanders. In Proceedings 30th Annual Symp. on Foundations of Computer Science, pages526{531, 1989.[32] A. L. Rosenberg. On the time required to recognize properties of graphs: A problem. SIGACTNews, 5:15{16, 1973.[33] R. Rubinfeld. Robust functional equations and their applications to program testing. InProceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994. Toappear in SIAM Journal on Computing.[34] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications toprogram testing. SIAM Journal on Computing, 25(2):252{271, 1996.[35] R. L. Rivest and J. Vuillemin. On recognizing graph properties from adjacency matrices.Theoretical Computer Science, 3:371{384, 1976.[36] L. Trevisan. Recycling queries in PCPs and in linearity tests. To appear in Proc. of the 30thACM Symp. on Theory of Computing, 1998.[37] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134{1142,November 1984.[38] A. C. C. Yao. Lower bounds to randomized algorithms for graph properties. In Proceedings ofthe Twenty-Eighth Annual Symposium on Foundations of Computer Science, pages 393{400,1987. 14

