
Property Testing in Massive GraphsOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.E-mail: oded@wisdom.weizmann.ac.il.July 16, 1999AbstractWe consider the task of evaluating properties of graphs that are too big to be even scanned.Thus, the input graph is given in form of an oracle which answers questions of the form is there anedge between vertices u and v, or who is the ith neighbor of v. Our task is to determine whethera given input graph has a predetermined property or is \relatively far" from any graph havingthe property. Distance between graphs is measured as the fraction of the possible queries onwhich the corresponding oracles, representing the two graphs, di�er. We show that randomizedalgorithms of running-time substantially smaller than the size of the input graph may reach(with high probability) a correct verdict regarding whether the graph has some predeterminedproperty (such as being bipartite) or is far from having it.
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1 IntroductionSuppose we are given a huge graph representing some binary relation over a huge data-set (seebelow), and we need to determine whether the graph (equiv., the relation) has some predeterminedproperty. Since the graph is huge, we cannot or do not want to even scan all of it (let aloneprocessing all of it). The question is whether it is possible to make meaningful statements aboutthe entire graph based only on a \small portion" of it. Of course, such statements will at best beapproximations. But in many settings approximations are good enough.As a motivation, let us consider a well-known example in which fast approximations are possibleand useful. Suppose that some cost function is de�ned over a huge set, and that one wants to obtainthe average cost of an element in the set. To be more speci�c, let � : S 7! [0; 1] be a cost function,and suppose we want to estimate � def= 1jSjPx2S �(x). Then, uniformly (and independently) select-ing m def= O(��2 log(1=�)) sample points, x1; :::; xm, in S we obtain with probability at least 1 � �an estimate of � up-to ��. That is,Prx1;:::;xm2S "����� 1m mXi=1 �(xi) � ������ > �# < �Graphs capture more complex features of a data-set; that is, relations among pairs of elements(rather then functions of single elements). Speci�cally, a symmetric binary relation R � S � S isrepresented by a graph G = (S;R), where the elements of S are called vertices and the elements inR are called edges. In this survey, we focus on two types of graphs:1. Dense graphs: Such graphs have many edges; speci�cally, jRj = 
(jSj2) (say jRj > 0:1 � jSj2).A natural representation of such graphs is by an oracle which on query a pair (u; v) 2 S � Sresponds with a bit indicating whether (u; v) 2 R or not.Such an oracle may be either a look-up table to which we have \direct access" (i.e., we canobtain the (u; v)-entry in unit cost) or a fast procedure which allows us to determine whether(u; v) 2 R.2. Bounded-degree graphs: Such graphs have few edges, and furthermore each vertex in them hasfew neighbors; that is, for some small d (say d = 10), jfv : (u; v) 2 Rgj � d holds for everyu 2 S. A natural representation of such graphs (of degree bound d) is by an oracle which onquery a pair (u; i) 2 S �f1; :::; dg responds with the name of the ith neighbor of u (or with aspecial symbol if u has less than i neighbors). Again, such an oracle may be either a look-uptable or a fast procedure.Each of these two types of graphs gives rise to a natural notion of inspecting a portion of the graph:Asking queries to the corresponding oracle (de�ned above). Also, each of these types of graphsgives rise to a natural notion of distance (among graphs): Speci�cally, two dense graphs (oververtex set S) are considered relatively close if they di�er on o(jSj2) edges, whereas two bounded-degree graphs are considered relatively close if they di�er on o(jSj) edges. A natural notion ofapproximation emerges: A graph approximately has a predetermined property if it is relatively closeto a graph having this property. This leads to the following de�nition.Testing graph properties { informal de�nition: A graph property is a set of graphs closedunder graph isomorphism (renaming of vertices). Let P be such a property. A P-tester is arandomized algorithm that is given oracle access to a graph, and has to determine whether the1



graph is in P or is far from being in P. The type of oracle and distance-measure depend on themodel, and we focus on two such models:1. The adjacency predicate model: Here the P-tester is given oracle access to a function f :S � S 7! f0; 1g which represents the graph Gf = (S; f�1(1)), wheref�1(1) def= f(u; v) 2 S � S : f(u; v) = 1g :The tester is also given a distance parameter � > 0, and is required to accept f if Gf 2 P andreject f if Gf di�ers in more than �jSj2 edges from any graph in P. (The tester is allowed toerr, in each of these cases, with some small probability.)2. The incidence function model: Here the P-tester is given oracle access to a function f :S � f1; :::; dg 7! S [ f?g which represents the graph Gf = (S; f(u; v) : u 2 S ; v 2 �f (u)g),where �f (u) def= fv : 9i f(u; i) = vg :The tester is also given a distance parameter � > 0, and is required to accept f if Gf 2 P andreject f if Gf di�ers in more than �djSj edges from any graph in P. (Again, a small errorprobability is allowed.)Thus, in both cases, rejection is required only in case the corresponding representation is �-far fromhaving the property P. In both cases �-far refers to di�erence of more than � fraction of the entriesin the oracle. The adjacency predicate model is most adequate for testing of dense graphs, whereasthe incidence function model is adequate for testing bounded-degree graphs.The de�nition of property testing is a relaxation of the standard de�nition of a decision task(where one is required to decide correctly on all graphs): The tester is allowed arbitrary behaviorwhen the graph does not have the property, and yet is �-close to a graph having the property.Thus, a property tester may be far more e�cient than a standard decision procedure (for the sameproperty). We shall see that this is indeed the case for a variety of graph properties. But beforedoing so we wish to further discuss the notion of approximation underlining the above de�nition.Firstly, being close to a graph which has the property is a notion of approximation which, incertain applications, may be of great value. Furthermore, in some cases, being close to a graphhaving the property translates to a standard notion of approximation (see Section 3.2). In othercases, it translates to a notion of \dual approximation" (see, again, Section 3.2).Secondly, in some cases, we may be forced to take action, without having time to run a decisionprocedure, while given the option of modifying the graph in the future, at a cost proportional tothe number of added/omitted edges. For example, suppose we are given a graph which representssome design problem, where Bipartite graphs corresponds to good designs and changes in thedesign correspond to edge additions/omissions. Using a Bipartiteness tester, we may (with highprobability) accept any good design, while rejecting designs which will cost a lot to modify. Thatis, we may still accept bad designs, but only such which are close to being good and thus will notcost too much to later modify.Thirdly, we may use the property tester as a preliminary stage before running a slower exactdecision procedure. In case the graph is far from having the property, with high probability, weobtain an indication towards this fact, and save the time we might have used running the decisionprocedure. Furthermore, in case the tester has one-sided error (i.e., it always accepts a graphhaving the property), we have obtain an absolutely correct answer without running the slowerdecision procedure at all. The saving provided by using a property tester as a preliminary stage2



may be very substantial in many natural settings where typical graphs either have the property orare very far from having the property. Furthermore, if it is guaranteed that graphs either have theproperty or are very far from having it then we may not even need to run the decision procedureat all.Organization: In Section 2, we rede�ne the two models of testing graph properties discussedinformally above. In Section 3 (resp., Section 4) we survey results in the �rst (resp., second)model. We will contrast the two models by considering the complexity of testing bipartiteness inboth of them. Additional models for testing graph properties are discussed in Section 5. A widerperspective on property testing is provided in Section 6.2 Testing Graph Properties { Two ModelsWe assume some familiarity with basic notions of graph theory and graph algorithms (cf., [18]).We switch to more standard notations for graphs (i.e., denote the vertex and edge sets V and E,respectively). Furthermore, we typically assume that the vertex set V equals f1; :::; jVjg. Here wediscuss undirected graphs, and so both representations presented below are redundant (since eachedge appears twice).Two natural representations of a graph are o�ered by its adjacency matrix and by its incidencelist. Correspondingly, we consider two representations of graphs by functions.1. An N -vertex graph, G = (V;E), can be represented by the adjacency predicate, f : V�V 7!f0; 1g, so that (u; v) 2 E if and only if f(u; v) = 1.2. An N -vertex graph of degree bound d, G = (V;E), can be represented by the incidencefunction, g :V�f1; :::; dg 7!V [ f0g, so that g(u; i) = v if v is the ith vertex incident at u, andg(u; i) = 0 62 V if u has less than i neighbors.As usual, the choice of representation has a fundamental impact on the potential algorithm. Herethe impact is even more dramatic since we seek algorithms which only inspect a relatively smallfraction of the object (graph represented by a function). Furthermore, there is another fundamentalimpact of the choice of representation on the task of property testing. This has to do with ourde�nition of distance, which is relative to the size of the domain of the function. In particular,distance � in the �rst representation means a symmetric di�erence of 2� �N2 edges, whereas in thesecond representation this means a symmetric di�erence of 2� � dN edges. (In both cases, the extrafactor 2 is due to the redundant representation which is adopted for sake of simplicity.)De�nition 1 (testing graph properties): For any m 2 N , let [m] def= f1; 2; :::;mg. Let P be a graphproperty.1. A P-tester for the adjacency predicate model is a randomized algorithm that on input a sizeparameter N 2 N, distance parameter � > 0, and oracle access to a function f : [N ]� [N ] 7!f0; 1g, with probability at least 2=3, accepts if f represents a graph in P and rejects if f is�-far from any graph in P. That is,� If G = ([N ]; f�1(1)) is in P then the algorithm accepts with probability at least 2=3.� If for every h : [N ] � [N ] 7! f0; 1g such that ([N ]; h�1(1)) 2 P, the functions f and hdi�er in more than � �N2 entries then the algorithm rejects with probability at least 2=3.3



2. A P-tester for d-bounded incidence function model is a randomized algorithm that on inputa size parameter N 2 N, distance parameter � > 0, and oracle access to a function f :[N ] � [d] 7! f0g [ [N ] with probability at least 2=3 accepts if f represents a graph in P andrejects if f is �-far from any graph in P. That is, letting �g(u) def= fv : 9i g(u; i) = vg,� If G = ([N ]; f(u; v) 2 [N ] � [N ] : v 2 �f (u)g) is in P then the algorithm accepts withprobability at least 2=3.� If for every h : [N ]�[d] 7! f0g[[N ] such that ([N ]; f(u; v) 2 [N ]�[N ] : v 2 �h(u)g) 2 P,the functions f and h di�er in more than � � dN entries then the algorithm rejects withprobability at least 2=3.As usual, the error probability may be decreased by successive applications of the tester.The �rst model (i.e., adjacency predicate) is most appropriate for dense graphs (i.e., jEj =
(jVj2)), whereas the second model (i.e., d-bounded incidence function) is applicable and mostappropriate for graphs of degree bound d. Below, we demonstrate the di�erence between the tworepresentations by considering the task of testing whether a graph is Bipartite.We will be focus on the query and time complexity of such testers, as a function of N and �.By query complexity we mean the number of oracle queries made by the algorithm. In evaluatingthe running time, we count each query at unit cost.1We stress that the testing algorithms are allowed to be randomized, and that this is of keyimportance for achieving query complexity which is signi�cantly lower than the size of the graph.A deterministic tester for any \non-degenerate" property needs to query the oracle on a constantfraction of its domain, and so is of little interest in our context.3 The First Model (Adjacency Predicates)In this section we consider the representation of N -vertex graphs by adjacency predicates mappingpairs f1; 2; :::; Ng�f1; 2; :::; Ng to f0; 1g. Recall that in this model, distance between graphs refersto the fraction of di�erent edges over N2=2.3.1 Some Known ResultsTesters of complexity which depends only on the distance parameter, �, are known for several naturalgraph properties [22, 1]. In particular, the following properties can be tested in query-complexitypoly(1=�) and time complexity exp(poly(1=�)) (cf., Goldreich, Goldwasser and Ron [22]):2� k-Colorability3, for any �xed k � 2. The query-complexity is poly(k=�), and for k = 2 therunning-time is eO(1=�3), where by eO(m) we mean O(m � poly(logm)). In case the graph isk-colorable the tester always accepts, whereas in case the graph is �-far from k-colorable thetester rejects with probability at least 23 and furthermore supplies a small counterexample (inthe form of a small subgraph which is not k-colorable).The 2-Colorability (equiv., Bipartite) Tester is presented in Subsection 3.3. An improvedanalysis has been recently obtained by Alon and Krivelevich [2].1 Alternatively, one may consider a RAM model of computation, in which trivial manipulation of vertices (e.g.,reading/writing a vertex and comparing vertices) is performed at unit cost.2 Except for Bipartite testing, running-time of poly(1=�) is unlikely, as it will imply NP � BPP.3 A graph is k-colorable if its vertices can be partitioned into k parts so that there are no edges among verticesresiding in the same part. 4



� �-Clique, for any � > 0. That is, does the N -vertex graph have a clique (i.e., a set of verticeswith edges among each pair in it) of size �N .� �-CUT, for any � > 0. That is, does the N -vertex graph have a cut of size at least �N2. Ageneralization to k-way cuts works within query-complexity poly((log k)=�).� �-Bisection, for any � > 0. That is, can the vertices of the N -vertex graph be partitionedinto two equal parts with at most �N2 edges going between them.All the above property testing problems are special cases of the General Graph Partition TestingProblem, parameterized by a set of lower and upper bounds. In this problem one needs to determinewhether there exists a k-partition of the vertices so that the number of vertices in each part as wellas the number of edges between each pair of parts falls between the corresponding lower and upperbounds (in the set of parameters). For example, �-clique is expressible as a 2-partition in whichone part has �N vertices, and the number of edges in this part is ��N2 �. A tester for the generalproblem has been presented in [22] too: The tester uses eO(k2=�)2k+O(1) queries, and runs in timeexponential in its query-complexity.Going beyond the General Graph Partition Problem: Although many natural graph prop-erties can be formulated as partition problems, many more cannot. Among these we mention a fewclasses which certainly do not exhaust all graph properties.� Many natural graph properties are very easy to test in the adjacency predicate model. Avery partial list includes Connectivity, Hamiltonicity, Cycle-freeness and Planarity (cf., [22]).The reason being that for these properties either every N -vertex graph is at distance atmost O(1=N) from a graph having the desired property (and so for � = 
(1=N) the trivialalgorithm which always accepts will do), or the property holds only for sparse graphs (and sofor � = 
(1=N) one may reject any non-sparse graph).� On the other hand, there are (\unnatural") graph properties in NP which are extremely hardto test; namely, any testing algorithm must inspect at least 
(N2) of the vertex pairs [22].� Alon et. al. [1] have recently suggested to study graph properties through the type (or \logicalcomplexity") of a formula de�ning the property. Speci�cally, they considered graph propertiesexpressible by �rst order formulae. They showed that every graph property expressible by suchformula of the form 9�8� is testable in complexity depending only on � (alas the dependencymany be terrible; e.g., a tower of poly(1=�) exponentiations). In contrast, they also showedthat there exists a (natural) graph property expressible by a �rst order formula of the form8+9+ which cannot be tested within complexity depending only on �.In view of the above, we believe that providing a characterization of graph properties, according tothe complexity of testing them, may be very challenging.From Testing to Searching: Most graph properties discussed above are inNP. Furthermore, inthese cases the NP-witness for G having property P is a natural structure in the graph; for example,in case of the General Graph Partition Problems the witness is merely an adequate partition ofthe vertices. Interestingly, our testers for (all cases of) the General Graph Partition Problem, canbe modi�ed into algorithms which provide such approximate NP-witnesses. That is, if the graphhas the desired (partitioning) property, then the testing algorithm may actually output auxiliary5



information that allows to construct, in poly(1=�) �N -time, a partition which approximately obeysthe property. For example, for �-CUT, we can construct a partition with at least (� � �) � N2crossing edges.One-sided error probability: The k-Colorability tester has one-sided error: It always acceptsk-colorable graphs. Furthermore, when rejecting a graph, this tester always supplies a poly(1=�)-size subgraph which is not k-colorable. The other algorithms for all the other cases of the GeneralGraph Partition Problem discussed above, have two-sided error. This is unavoidable within o(N)query-complexity.3.2 Testing vs Deciding and Other Forms of ApproximationWe shortly discuss the relationship of the notion of approximation underlying the de�nition oftesting graph properties to more traditional notions. The latter include exact decision as well asother notions of approximation.Relation to recognizing graph properties: Our notion of testing a graph property P is arelaxation of the notion of deciding the graph property P which has received much attention in thelast three decades [35]. In the classical problem there are no margins of error { one is required toaccept all graphs having property P and reject all graphs which lack it. In 1975 Rivest and Vuillemin[40] resolved the Aanderaa{Rosenberg Conjecture [38], showing that any deterministic procedurefor deciding any non-trivial monotone N -vertex graph property must examine 
(N2) entries in theadjacency matrix representing the graph. The query complexity of randomized decision procedureswas conjectured by Yao to be 
(N2). Progress towards this goal was made by Yao [43], King [32]and Hajnal [25] culminating in an 
(N4=3) lower bound. This stands in striking contrast to thetesting results of [22] mentioned above, by which some non-trivial monotone graph properties canbe tested by examining a constant number of locations in the matrix.Application to the standard notion of approximation: The relation of testing graph prop-erties to the standard notions of approximation is best illustrated in the case of Max-CUT. Anytester for the class �-cut, working in time T (�;N), yields an algorithm for approximating the maxi-mum cut in an N -vertex graph, up to additive error �N2, in time 1� �T (�;N). Thus, for any constant� > 0, using the above tester of [22], we can approximate the size of the max-cut to within �N2in constant time. This yields a constant time approximation scheme (i.e., to within any constantrelative error) for dense graphs, improving over previous work of Arora et. al. [4] and de la Vega [15]who solved this problem in polynomial-time (i.e., in O(N1=�2){time and exp( eO(1=�2)) � N2{time,respectively). In the latter works the problem is solved by actually constructing approximate max-cuts. Finding an approximate max-cut does not seem to follow from the mere existence of a testerfor �-cut; yet, as mentioned above, the tester in [22] can be used to �nd such a cut in time linearin N .Relation to \dual approximation" (cf., [29, 30]): To illustrate this relation, we consider the �-Clique Tester mentioned above. The traditional notion of approximating Max{Clique correspondsto distinguishing the case in which the max-clique has size at least �N from, say, the case in whichthe max-clique has size at most �N=2. On the other hand, when we talk of testing \�-Cliqueness",the task is to distinguish the case in which an N -vertex graph has a clique of size �N from the casein which it is �-far from the class of N -vertex graphs having a clique of size �N . This is equivalent6



to the \dual approximation" task of distinguishing the case in which an N -vertex graph has aclique of size �N from the case in which any �N subset of the vertices misses at least �N2 edges.To demonstrate that these two tasks are vastly di�erent we mention that whereas the former taskis NP-Hard, for � < 1=4 (see [12, 26, 27]), the latter task can be solved in exp(O(1=�2))-time, forany �; � > 0. We believe that there is no absolute sense in which one of these approximation tasksis more important than the other: Each of these tasks may be relevant in some applications andirrelevant in others.3.3 Testing BipartitenessThe bipartite tester is extremely simple: It selects a tiny, random set of vertices and checks whetherthe induced subgraph is bipartite.Algorithm 1 (Bipartite Tester in the �rst model [22]):On input N , d, � and oracle access to an adjacency predicate of an N -vertex graph, G = (V;E):1. Uniformly select a subset of eO(1=�2) vertices of V.2. Accept if and only if the subgraph induced by this subset is Bipartite.Step (2) amounts to querying the predicate on all pairs of vertices in the subset selected at Step (1),and testing whether the induced graph is bipartite (e.g., by running BFS; see [18]). As will becomeclear from the analysis, it actually su�ce to query only eO(1=�3) of these pairs. We comment thata more complex analysis due to Alon and Krivelevich [2] implies that the above algorithm is aBipartite Tester even if one selects only eO(1=�) vertices (rather than eO(1=�2)) in Step (1).Theorem 1 (Goldreich, Goldwasser and Ron [22]): Algorithm 1 is a Bipartite Tester (in theadjacency predicate model). Furthermore, the algorithm always accepts a Bipartite graph, and incase of rejection it provides a witness of length poly(1=�) (that the graph is not bipartite).Proof: Let R be the subset selected in Step (1), and GR the subgraph induced by it. Clearly, ifG is bipartite then so is GR, for any R. The point is to prove that if G is �-far from bipartite thenthe probability that GR is bipartite is at most 1=3. Thus, from this point on we assume that atleast �N2 edges have to be omitted from G to make it bipartite.We view R as a union of two disjoint sets U and S, where t def= jUj = O(��1 � log(1=�)) andm def= jSj = O(t=�). We will consider all possible partitions of U, and associate a partial partition ofV with each such partition of U. The idea is that in order to be consistent with a given partition,(U1;U2), of U, all neighbors of U1 (resp., U2) must be placed opposite to U1 (resp., U2). We willshow that, with high probability, most high-degree vertices in V do neighbor U and so are forcedby its partition. Since there are relatively few edges incident to vertices which do not neighbor U, itfollows that with very high probability each such partition of U is detected as illegal by GR. Detailsfollow, but before we proceed let us stress the key observation: It su�ces to rule out relatively few(partial) partitions of V (i.e., these induced by partitions of U), rather than all possible partitionsof V.We use the notations �(v) def= fu : (u; v)2Eg and �(X) def= [v2X�(v). Given a partition (U1;U2)of U, we de�ne a (possibly partial) partition, (V1;V2), of V so that V1 def= �(U2) and V2 def= �(U1)(assume, for simplicity that V1\V1 is indeed empty). As suggested above, if one claims that G canbe \bipartited" with U1 and U2 on di�erent sides then V1 = �(U1) must be on the opposite side7



to U2 (and �(U1) opposite to U1). Note that the partition of U places no restriction on verticeswhich have no neighbor in U. Thus, we �rst ensure that most \inuential" (i.e., \high-degree")vertices in V have a neighbor in U.De�nition 3.1 (high-degree vertices and good sets): We say that a vertex v 2 V is of high-degreeif it has degree at least �3N . We call U good for V if all but at most �3N of the high-degree verticesin V have a neighbor in U.Note that not insisting that U neighbors all high-degree vertices allows us to show that a randomU of size unrelated to the size of the graph has this feature. (If we were to insist that U neighborsall high-degree vertices then we would have had to use jUj = 
(logN).)Claim 3.2 With probability at least 5=6, a uniformly chosen set U of size t is good.Proof: For any high-degree vertex v, the probability that v does not have any neighbor in auniformly chosen U is at most (1 � �=3)t < �18 (since t = 
(��1 log(1=�))). Hence the expectednumber of high-degree vertices which do not have a neighbor in a random set U is less than �18 �N ,and the claim follows by Markov's Inequality. 2De�nition 3.3 (disturbing a partition of U): We say that an edge disturbs a partition (U1;U2) ofU if both is end-points are in the same �(Ui), for some i 2 f1; 2g.Claim 3.4 For any good set U and any partition of U, at least �3N2 edges disturb the partition.Proof: Each partition of V has at least �N2 violating edges (i.e., edges with both end-points onthe same side). We upper bound the number of these edges which are not disturbing. Actually, weupper bound the number of edges which have an end-point not in �(U).� The number of edges incident to high-degree vertices which do not neighbor U is bounded by�3N �N (at most �3N such vertices each having at most N incident edges).� The number of edges incident to vertices which are not of high-degree vertices is bounded byN � �3N (at most N such vertices each having at most �3N incident edges).This leaves us with at least �3N2 violating edges connecting vertices in �(U) (i.e., edges disturbingthe partition of U). 2The theorem follows by observing that GR is bipartite only if either (1) the set U is not good;or (2) the set U is good and there exists a partition of U so that none of the disturbing edges occursin GR. Using Claim 3.2 the probability of event (1) is bounded by 1=6; and using Claim 3.4 theprobability of event (2) is bounded by the probability that there exists a partition of U so thatnone of the corresponding � �3N2 disturbing edges has both edge-point in S. Actually, we pair them vertices of S, and consider the probability that none of these pairs is a disturbing edge for apartition of U. Thus the probability of event (2) is bounded by2jUj � �1� �3�m=2 < 16where the inequality is due to m = 
(t=�). The theorem follows.8



Comment: The procedure employed in the proof yields a poly(1=�) � N -time algorithm for 2-partitioning a bipartite graph so that at most �N2 edges lie within the same side. This is done byrunning the tester, determining a partition of U (de�ned as in the proof) which is consistent withthe bipartite partition of R, and partitioning V as done in the proof (with vertices which do notneighbor U, or neighbor both U1;U2, placed arbitrarily). Thus, the placement of each vertex isdetermined by inspecting at most eO(1=�) entries of the adjacency matrix.4 The Second Model (Incidence Functions)In this section we consider the representation of N -vertex graphs of degree bound d by incidencefunctions mapping pairs f1; 2; :::; Ng � f1; 2; :::; dg to f0; 1; 2; :::; Ng. Recall that in this model,distance between graphs refers to the fraction of di�erent edges over dN=2.4.1 Some Known ResultsTesters of complexity which depends only on the distance parameter, �, are known for severalnatural graph properties (cf., Goldreich and Ron [23]). In particular, the following properties canbe tested in time (and thus query-complexity) poly(d=�):� Connectivity. The tester runs in time eO(1=�). In case the graph is connected the testeralways accepts, whereas in case the graph is �-far from being connected the tester rejects withprobability at least 23 and furthermore supplies a small counter-example to connectivity (inthe form of an induced subgraph which is disconnected from the rest of the graph).� k-edge-connectivity. The tester runs in time eO(k3 � ��3). For k = 2; 3 improved testers haverunning-times eO(��1) and eO(��2), respectively. Again, k-edge-connected graphs are alwaysaccepted, and rejection is accompanied by a counter-example.� k-vertex-connectivity, for k = 2; 3. The testers run in time eO(��k).� Planarity. The tester runs in time eO(d4 � ��1). Planar graphs are always accepted, andrejection is accompanied by a counter-example (in the form of a subgraph homomorphic toK3;3 or to K5).� Cycle-Freeness. The tester runs in time eO(��3). Unlike all other algorithms, this testerhas two-sided error probability, which is unavoidable for testing this property within o(pN)queries.The complexity of Bipartiteness testing is considered in Subsections 4.2 and 4.3: We survey an
(pN) lower bound on the query complexity of any tester [23], and a matching upper bound [24].The lower bound stands in sharp contrast to the situation in the �rst model (i.e., representation byadjacency predicates), where Bipartite testing is possible in poly(1=�)-time. The query complexityupper bound (for the incidence function representation) is obtained by a natural Bipartite-testerof running time (and query complexity) eO(poly(1=�) � pN). We stress that, for � > N�
(1), thetesters in both models are faster than the decision procedure.
9



4.2 A Lower Bound on the Complexity of Testing BipartitenessIn contrast to Theorem 1, under the incidence function representation there exists no Bipartitetester of complexity independent of the graph size.Theorem 2 (Goldreich and Ron [23]): Testing Bipartiteness (with constant � and d) requires
(pN) queries (in the incidence function model).Proof Idea: For any (even) N , we consider the following two families of graphs:1. The �rst family, denoted GN1 , consists of all degree-3 graphs which are composed by the unionof a Hamiltonian cycle and a perfect matching. That is, there are N edges connecting thevertices in a cycle, and the other N=2 edges are a perfect matching.2. The second family, denoted GN2 , is the same as the �rst except that the perfect matchingsallowed are restricted as follows: the distance on the cycle between every two vertices whichare connected by an perfect matching edge must be odd.Clearly, all graphs in GN2 are bipartite. One �rst proves that almost all graphs in GN1 are far frombeing bipartite. Afterwards, one proves that a testing algorithm that performs less than �pNqueries (for some constant � < 1) is not able to distinguish between a graph chosen randomlyfrom GN2 (which is always bipartite) and a graph chosen randomly from GN1 (which with highprobability will be far from bipartite). Loosely speaking, this is done by showing that in both casesthe algorithm is unlikely to encounter a cycle (among the vertices it has inspected).4.3 An Algorithm for Testing BipartitenessThe lower bound of Theorem 2 is essentially tight. Furthermore, the following natural algorithmconstitutes a Bipartite tester of running time poly((logN)=�) � pN .Algorithm 2 (Bipartite Tester in the second model [24]):On input N , d, � and oracle access to an incidence function for an N -vertex graph, G = (V;E), ofdegree bound d, repeat T def= �(1� ) times:1. Uniformly select s in V.2. (Try to �nd an odd cycle through vertex s):(a) Perform K def= poly((logN)=�) � pN random walks starting from s, each of lengthL def= poly((logN)=�).(b) Let R0 (resp., R1) denote the vertices set reached from s in an even (resp., odd) numberof steps in any of these walks.(c) If R0 \R1 is not empty then reject.If the algorithm did not reject in any one of the above T iterations, then it accepts.Theorem 3 (Goldreich and Ron [24]): Algorithm 2 is a Bipartite Tester (in the incidence functionmodel). Furthermore, the algorithm always accepts a Bipartite graph, and in case of rejection itprovides a witness of length poly((logN)=�) (that the graph is not bipartite).10



Motivation { the special case of rapid mixing graphs. The proof of Theorem 3 is quiteinvolved. As a motivation, we consider the special case where the graph has a \rapid mixing"feature. It is convenient to modify the random walks so that at each step each neighbor is selectedwith probability 1=2d, and otherwise (with probability at least 1=2) the walk remains in the presentvertex. Furthermore, we will consider a single execution of Step (2) starting from an arbitraryvertex, s, �xed in the rest of the discussion. The rapid mixing feature we assume is that, forevery vertex v, a (modi�ed) random walk of length L starting at s reaches v with probabilityapproximately 1=N (say, up-to a factor of 2). Note that if the graph is an expander then this iscertainly the case (since L � O(logN)).The key quantities is the analysis are the following probabilities, referring to the parity of thelength of a path obtained from the random walk by omitting the self-loops (transitions whichremain at current vertex). Let p0(v) (resp., p1(v)) denote the probability that a (modi�ed) randomwalk of length L starting at s reaches v while making an even (resp., odd) number of real (i.e.,non-self-loop) steps. By the rapid mixing assumption we have (for every v 2 V)12N < p0(v) + p1(v) < 2N (1)We consider two cases regarding the sumPv2V p0(v)p1(v) { In case the sum is (relatively) \small",we show that V can be 2-partitioned so that there are relatively few edges between vertices placedin the same side, which implies that G is close to be bipartite. Otherwise (i.e., when the sumis not \small"), we show that with signi�cant probability, when Step (2) is started at vertex sit is completed by rejecting G. The two cases are presented in greater detail in the following(corresponding) two claims.Claim 4.1 Suppose Pv2V p0(v)p1(v) � �=50N . Let V1 def= fv 2 V : p0(v) < p1(v)g and V2 =V nV1. Then, the number of edges with both end-points in the same V� is bounded above by �dN .Proof Sketch: Consider an edge (u; v) where, without loss of generality, both u and v are inV1. Then, both p1(v) and p1(u) are greater than 12 � 12N . However, one can show that p0(v) >13d � p1(u): Observe that a walk of length L� 1 with path-parity 1 ending at u is almost as likelyas such a walk having length L, and that once such a walk reaches u it continues to v in the nextstep with probability exactly 1=2d. Thus, such an edge contributes at least (1=4N)23d to the sumPv2V p0(v)p1(v). The claim follows.Claim 4.2 Suppose Pv2V p0(v)p1(v) � �=50N , and that Step (2) is started with vertex s. Then,with probability at least 2=3, the set R0 \R1 is not empty (and rejection follows).Proof Sketch: Consider the probability space de�ned by an execution of Step (2) with startvertex s. We de�ne random variables �i;j representing the event that the vertex encountered in theLth step of the ith walk equals the vertex encountered in the Lth step of the jth walk, and that theith walk corresponds to an even-path whereas the jth to an odd-path. ThenE(jR0 \R1j) > Xi 6=j E(�i;j)= K(K � 1) �Xv2V p0(v)p1(v)> 500N� �Xv2V p0(v)p1(v)� 1011



where the second inequality is due to the setting of K, and the third to the claim's hypothesis.Intuitively, we expect that with high probability jR0\R1j > 0. This is indeed the case, but proving itis less straightforward than it seems, the problem being that the �i;j's are not pairwise independent.Yet, since the sum of the covariances of the dependent �i;j's is quite small, Chebyshev's Inequalityis still very useful (cf., [3, Sec. 4.3]). Speci�cally, letting � def= Pv2V p0(v)p1(v) (= E(�i;j)), and�i;j def= �i;j � �, we get:Pr0@Xi 6=j �i;j = 01A < V(Pi 6=j �i;j)(K2�)2= 1K4�2 �0@Xi;j E(�2i;j) + 2Xi;j;kE(�i;j�i;k)1A< 1K2� + 2K�2 �E(�1;2�1;3)For the second term, we observe that Pr(�1;2 = �2;3 = 1) is upper bounded by the probability that�1;2 = 1 times the probability that the Lth vertex of the �rst walk appears as the Lth vertex of thethird path. Using the rapid mixing hypothesis, we upper bound the latter probability by 2=N , andobtain Pr(jR0 \R1j = 0) < 1K2� + 2K�2 � � � 2N< 13where the last inequality uses K < N=4, � � �=50N and K2 � 6 � 50N=�. The claim follows.Beyond rapid mixing graphs. The proof in [24] refers to a more general sum of products;that is, Pv2V podd(v)peven(v), where U � V is an appropriate set of vertices, and podd(v) (resp.,peven(v)) is the probability that a random walk (starting at s) passes through v after more thanL=2 steps and the corresponding path to v has odd (resp., even) parity. Much of the analysis in [24]goes into selecting the appropriate U (and an appropriate starting vertex s), and pasting togethermany such U's to cover all of V. Loosely speaking, U and s are selected so that there are few edgesfrom U and the rest of the graph, and podd(u) + peven(u) � 1=pjVj � jUj, for every u 2 U. Theselection is based on the \combinatorial treatment of expansion" of Mihail [36]. Speci�cally, we usethe counterpositive of the standard analysis, which asserts that rapid mixing occurs when all cutsare relatively large, to assert the existence of small cuts which partition the graph so that verticesreached with relatively high probability (in a short random walk) are on one side and the rest ofthe graph on the other. The �rst set corresponds to U above and the cut is relatively small withrespect to U. A start vertex s for which the corresponding sum is big is shown to cause Step (2)to reject (when started with this s), whereas a small corresponding sum enables to 2-partition Uwhile having few violating edges among the vertices in each part of U.The actual argument of [24] proceeds in iterations. In each iteration a vertex s for which Step (2)accepts with high probability is �xed, and an appropriate set of remaining vertices, U, is found.The set U is then 2-partitioned so that there are few violating edges inside U. Since we want topaste all these partitions together, U may not contain vertices treated in previous iterations. Thiscomplicates the analysis, since it must refer to the part of G, denoted H, not treated in previousiterations. We consider walks over an (imaginary) Markov Chain representing the H-part of the12



walks performed by the algorithm on G. Statements about rapid mixing are made with respect tothe Markov Chain, and linked to what happens in random walks performed on G. In particular, asubset U of H is determined so that the vertices in U are reached with probability � 1=pjVj � jUj(in the chain) and the cut between U and the rest of H is small. Linking the sum of productsde�ned for the chain with the actual walks performed by the algorithm, we infer that U may bepartitioned with few violating edges inside it. Edges to previously treated parts of the graphs arecharged to these parts, and edges to the rest of H nU are accounted for by using the fact that thiscut is small (relative to the size of U).5 Two Other ModelsSo far our discussion was con�ned to undirected graphs. Yet, the two models (above) extendnaturally to the case of directed graphs. Some of the results for the undirected case extend naturallyto the directed case (e.g., testing directed connectivity). A natural task in the directed graph modelsis testing whether a given directed graph is acyclic (i.e., has no directed cycles). Bender and Ronhave presented a Acyclicity-tester of poly(1=�) complexity in the adjacency predicate model, andshowed that no such tester may exist in the incidence list model [8].In our discussion above (as well as in the next section) we have linked the issue of representationto the distance measure. That is, when representing a graph by an oracle from some domainD to a range R, we have considered the relative distance of graphs as the fraction of di�erententries in their representation divided by the size of the domain (i.e., jDj). This (quite natural)convention is abandoned by Parnas and Ron who developed a more general model by decoupling therepresentation of the graph from the distance measure [37]: Whatever is the mechanism of accessingthe graph, the distance between graphs is de�ned as the number of edges in their symmetricdi�erence. (The relative distance may be de�ned as the latter quantity divided by the total numberof edges in both graphs.) The new model allows to treat well the case of sparse graphs which are notof bounded-degree { a case that was not treated in a satisfactory manner in either of the previoustwo models. Many of the testers for bounded-degree graphs can be extended to the case of sparsegraphs in the new model. Furthermore, the following problem of estimating the diameter of a graphis shown to be solvable in this model within complexity poly(1=�): Given a diameter parameter Dand a distance parameter �, determine whether the graph has diameter at most D or is �-far fromany graph of diameter at most 2D+2 (i.e., one has to add more than � � jEj edges in order to obtainfrom the input graph G = (V;E) a graph of diameter at most 2D + 2). (We comment that in the\bounded-degree model" and for � > 1=D this task can be easily reduced to testing connectivity.)6 A Wider PerspectiveOur formulation of testing graph properties (in both the adjacency predicate and incident listmodels) is a special case of property testing of arbitrary functions.De�nition 2 (property tester [39]): Let S be a �nite set, and P a subset of functions mapping Sto f0; 1g�. A (property) tester for P is a probabilistic oracle machine, M , which given a distanceparameter � > 0 and oracle access to an arbitrary function f : S 7! f0; 1g� satis�es the followingtwo conditions:1. (the tester accepts every f in P): If f 2 P thenPr(Mf (�)=1) � 2313



2. (the tester rejects every f that is far from P): If jfx2S : f(x) 6= g(x)gj > � � jSj, for everyg 2 P, then Pr(Mf (�)=1) � 13Property testing (as just de�ned) emerges naturally in the context of program checking [13, 34, 20,39] and probabilistically checkable proofs (pcp) [9, 10, 19, 6, 5, 11, 14, 7, 12, 26, 28]. Speci�cally,in the context of program checking, one may choose to test that the program satis�es certainproperties before checking that it computes a speci�ed function. This paradigm has been followedboth in the theory of program checking [13, 39], and in practice where often programmers �rsttest their programs by verifying that the programs satisfy properties that are known to be satis�edby the function they compute. In the context of probabilistically checkable proofs, the propertytested is being a codeword with respect to a speci�c code. This paradigm, explicitly introduced in[10], has shifted from testing codes de�ned by low-degree polynomials [9, 10, 19, 6, 5] to testingHadamard codes [5, 11, 14, 7, 33, 41], and recently to testing the \long code" [12, 26, 28, 41].Much of the work cited above deals with the development and analysis of testers for algebraicproperties; speci�cally, linearity, multi-linearity, and low-degree polynomials [13, 34, 9, 10, 19, 20,39, 6, 5, 11, 14, 7]. The study of property testing as applied to combinatorial properties wasinitiated by Goldreich, Goldwasser and Ron [22]. Speci�cally, they initiated the study of propertytesting in the adjacency predicate model. The study of property testing in the incidence functionmodel was latter initiated in [23]. We comment that testing of combinatorial properties other thanones related to graphs has been considered in [17, 21, 16]: Speci�cally, these works consider thetask of testing whether a function f : �n 7! R is monotone (with respect to orderings of both �and R).4Further generalization: We mention that an even more general formulation of property testingwas suggested in [22] {Let P be a �xed property of functions, and f be an unknown function. The goal is todetermine (possibly probabilistically) if f has property P or if it is far from any functionwhich has property P, where distance between functions is measured with respect tosome distribution D on the domain of f . Towards this end, one is given examples ofthe form (x; f(x)), where x is distributed according to D. One may also be allowed toquery f on instances of one's choice.The above formulation is inspired by the PAC learning model [42]. In fact, property testing isrelated to variants of PAC learning as has been shown in [22] and [31] (the results in [22] aregeneric and [31] aims at obtaining better results for properties which are related to concept classesextensively investigated in the machine learning literature). The general formulation above allowsthe consideration of arbitrary distributions (rather than uniform ones), and of testers which utilizeonly randomly chosen instances (rather than being able to query instances of their own choice).References[1] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy. E�cient Testing of Large Graphs. In40th FOCS, to appear, 1999.4 That is, if xi �� yi, for every i, then a monotone f should satisfy f(x1 � � �xn) �R f(y1 � � � yn). Ergun et. al. [17]deal only with the case n = 1, Goldreich et. al. [21] focuses on the case � = R = f0; 1g, whereas Dodis et. al. [16] dealwith the general case. Speci�cally, Dodis et. al. provide a monotonicity tester with complexityO(n� �(log j�j)�(log jRj)).14
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