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Abstract

We consider the task of evaluating properties of graphs that are too big to be even scanned.
Thus, the input graph is given in form of an oracle which answers questions of the form is there an
edge between vertices u and v, or who is the i*™ neighbor of v. Our task is to determine whether
a given input graph has a predetermined property or is “relatively far” from any graph having
the property. Distance between graphs is measured as the fraction of the possible queries on
which the corresponding oracles, representing the two graphs, differ. We show that randomized
algorithms of running-time substantially smaller than the size of the input graph may reach
(with high probability) a correct verdict regarding whether the graph has some predetermined
property (such as being bipartite) or is far from having it.



1 Introduction

Suppose we are given a huge graph representing some binary relation over a huge data-set (see
below), and we need to determine whether the graph (equiv., the relation) has some predetermined
property. Since the graph is huge, we cannot or do not want to even scan all of it (let alone
processing all of it). The question is whether it is possible to make meaningful statements about
the entire graph based only on a “small portion” of it. Of course, such statements will at best be
approximations. But in many settings approximations are good enough.

As a motivation, let us consider a well-known example in which fast approximations are possible
and useful. Suppose that some cost function is defined over a huge set, and that one wants to obtain
the average cost of an element in the set. To be more specific, let 4 : S +— [0, 1] be a cost function,
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Graphs capture more complex features of a data-set; that is, relations among pairs of elements
(rather then functions of single elements). Specifically, a symmetric binary relation R C S x S is
represented by a graph G = (S, R), where the elements of S are called vertices and the elements in
R are called edges. In this survey, we focus on two types of graphs:

1. Dense graphs: Such graphs have many edges; specifically, |R| = Q(|S|?) (say |R| > 0.1-|S|?).
A natural representation of such graphs is by an oracle which on query a pair (u,v) € S x S
responds with a bit indicating whether (u,v) € R or not.

Such an oracle may be either a look-up table to which we have “direct access” (i.e., we can
obtain the (u,v)-entry in unit cost) or a fast procedure which allows us to determine whether
(u,v) € R.

2. Bounded-degree graphs: Such graphs have few edges, and furthermore each vertex in them has
few neighbors; that is, for some small d (say d = 10), |{v : (u,v) € R}| < d holds for every
u € S. A natural representation of such graphs (of degree bound d) is by an oracle which on
query a pair (u,4) € S x {1, ...,d} responds with the name of the i*" neighbor of u (or with a
special symbol if 4 has less than i neighbors). Again, such an oracle may be either a look-up
table or a fast procedure.

Each of these two types of graphs gives rise to a natural notion of inspecting a portion of the graph:
Asking queries to the corresponding oracle (defined above). Also, each of these types of graphs
gives rise to a natural notion of distance (among graphs): Specifically, two dense graphs (over
vertex set S) are considered relatively close if they differ on o(|S|?) edges, whereas two bounded-
degree graphs are considered relatively close if they differ on o(|S]) edges. A natural notion of
approximation emerges: A graph approximately has a predetermined property if it is relatively close
to a graph having this property. This leads to the following definition.

Testing graph properties — informal definition: A graph property is a set of graphs closed
under graph isomorphism (renaming of vertices). Let P be such a property. A P-tester is a
randomized algorithm that is given oracle access to a graph, and has to determine whether the



graph is in P or is far from being in P. The type of oracle and distance-measure depend on the
model, and we focus on two such models:

1. The adjacency predicate model: Here the P-tester is given oracle access to a function f :
S x S — {0,1} which represents the graph G = (S, f7}(1)), where

£ € {(u,0) €S x St f(u,v) =1}
The tester is also given a distance parameter € > 0, and is required to accept f if Gy € P and
reject f if Gy differs in more than €|S|* edges from any graph in P. (The tester is allowed to
err, in each of these cases, with some small probability.)

2. The incidence function model: Here the P-tester is given oracle access to a function f :
S x{1,...,d} — SU{L} which represents the graph G; = (S, {(u,v) :uw € S, v € I'y(u)}),
where

Up(u) < {v: 3 fu,i) = v}

The tester is also given a distance parameter € > 0, and is required to accept f if Gy € P and
reject f if Gy differs in more than ed|S| edges from any graph in P. (Again, a small error
probability is allowed.)

Thus, in both cases, rejection is required only in case the corresponding representation is e-far from
having the property P. In both cases e-far refers to difference of more than e fraction of the entries
in the oracle. The adjacency predicate model is most adequate for testing of dense graphs, whereas
the incidence function model is adequate for testing bounded-degree graphs.

The definition of property testing is a relaxation of the standard definition of a decision task
(where one is required to decide correctly on ALL graphs): The tester is allowed arbitrary behavior
when the graph does not have the property, and yet is e-close to a graph having the property.
Thus, a property tester may be far more efficient than a standard decision procedure (for the same
property). We shall see that this is indeed the case for a variety of graph properties. But before
doing so we wish to further discuss the notion of approximation underlining the above definition.

Firstly, being close to a graph which has the property is a notion of approximation which, in
certain applications, may be of great value. Furthermore, in some cases, being close to a graph
having the property translates to a standard notion of approximation (see Section 3.2). In other
cases, it translates to a notion of “dual approximation” (see, again, Section 3.2).

Secondly, in some cases, we may be forced to take action, without having time to run a decision
procedure, while given the option of modifying the graph in the future, at a cost proportional to
the number of added/omitted edges. For example, suppose we are given a graph which represents
some design problem, where Bipartite graphs corresponds to good designs and changes in the
design correspond to edge additions/omissions. Using a Bipartiteness tester, we may (with high
probability) accept any good design, while rejecting designs which will cost a lot to modify. That
is, we may still accept bad designs, but only such which are close to being good and thus will not
cost too much to later modify.

Thirdly, we may use the property tester as a preliminary stage before running a slower exact
decision procedure. In case the graph is far from having the property, with high probability, we
obtain an indication towards this fact, and save the time we might have used running the decision
procedure. Furthermore, in case the tester has one-sided error (i.e., it always accepts a graph
having the property), we have obtain an absolutely correct answer without running the slower
decision procedure at all. The saving provided by using a property tester as a preliminary stage



may be very substantial in many natural settings where typical graphs either have the property or
are very far from having the property. Furthermore, if it is guaranteed that graphs either have the
property or are very far from having it then we may not even need to run the decision procedure
at all.

Organization: In Section 2, we redefine the two models of testing graph properties discussed
informally above. In Section 3 (resp., Section 4) we survey results in the first (resp., second)
model. We will contrast the two models by considering the complexity of testing bipartiteness in
both of them. Additional models for testing graph properties are discussed in Section 5. A wider
perspective on property testing is provided in Section 6.

2 Testing Graph Properties — Two Models

We assume some familiarity with basic notions of graph theory and graph algorithms (cf., [18]).
We switch to more standard notations for graphs (i.e., denote the vertex and edge sets V and E,
respectively). Furthermore, we typically assume that the vertex set V equals {1,...,|V|}. Here we
discuss undirected graphs, and so both representations presented below are redundant (since each
edge appears twice).

Two natural representations of a graph are offered by its adjacency matrix and by its incidence
list. Correspondingly, we consider two representations of graphs by functions.

1. An N-vertex graph, G = (V,E), can be represented by the adjacency predicate, f:VxV i—
{0,1}, so that (u,v) € E if and only if f(u,v) = 1.

2. An N-vertex graph of degree bound d, G = (V,E), can be represented by the incidence
function, g:Vx{1,...,d} —V U{0}, so that g(u,i) = v if v is the i*! vertex incident at u, and
g(u,i) =0 ¢ V if u has less than ¢ neighbors.

As usual, the choice of representation has a fundamental impact on the potential algorithm. Here
the impact is even more dramatic since we seek algorithms which only inspect a relatively small
fraction of the object (graph represented by a function). Furthermore, there is another fundamental
impact of the choice of representation on the task of property testing. This has to do with our
definition of distance, which is relative to the size of the domain of the function. In particular,
distance e in the first representation means a symmetric difference of 2¢ - N? edges, whereas in the
second representation this means a symmetric difference of 2¢ - dN edges. (In both cases, the extra
factor 2 is due to the redundant representation which is adopted for sake of simplicity.)
Definition 1 (testing graph properties): For any m € N, let [m)] o {1,2,...,m}. Let P be a graph
property.
1. A P-tester for the adjacency predicate model is a randomized algorithm that on input a size
parameter N € N, distance parameter € > 0, and oracle access to a function f : [N] x [N] —

{0,1}, with probability at least 2/3, accepts if f represents a graph in P and rejects if f is
e-far from any graph in P. That 1s,

o If G =(|N],f~1(1)) is in P then the algorithm accepts with probability at least 2/3.

o If for every h : [N] x [N] — {0,1} such that ([N],h=(1)) € P, the functions f and h
differ in more than €- N? entries then the algorithm rejects with probability at least 2/3.



2. A ‘P-tester for d-bounded incidence function model is a randomized algorithm that on input
a size parameter N € N, distance parameter € > 0, and oracle access to a function f :
[N] x [d] — {0} U[N] with probability at least 2/3 accepts if f represents a graph in P and

rejects of f is e-far from any graph in P. That is, letting I'g(u) def {v:3Jig(u,i) =v},

o If G = ([N],{(u,v) € [N] x[N]:v €'g(u)}) is in P then the algorithm accepts with
probability at least 2/3.

o If for every h: [N]x[d] — {0}U[N] such that ([N],{(u,v) € [N]x[N]:v eTI'y(u)}) € P,
the functions f and h differ in more than € - AN entries then the algorithm rejects with
probability at least 2/3.

As usual, the error probability may be decreased by successive applications of the tester.

The first model (i.e., adjacency predicate) is most appropriate for dense graphs (i.e., |E| =
Q([V]?)), whereas the second model (i.e., d-bounded incidence function) is applicable and most
appropriate for graphs of degree bound d. Below, we demonstrate the difference between the two
representations by considering the task of testing whether a graph is Bipartite.

We will be focus on the query and time complexity of such testers, as a function of N and e.
By query complexity we mean the number of oracle queries made by the algorithm. In evaluating
the running time, we count each query at unit cost.!

We stress that the testing algorithms are allowed to be randomized, and that this is of key
importance for achieving query complexity which is significantly lower than the size of the graph.
A deterministic tester for any “non-degenerate” property needs to query the oracle on a constant
fraction of its domain, and so is of little interest in our context.

3 The First Model (Adjacency Predicates)

In this section we consider the representation of N-vertex graphs by adjacency predicates mapping
pairs {1,2,..., N} x {1,2,..., N} to {0,1}. Recall that in this model, distance between graphs refers
to the fraction of different edges over N?2/2.

3.1 Some Known Results

Testers of complexity which depends only on the distance parameter, €, are known for several natural
graph properties [22, 1]. In particular, the following properties can be tested in query-complexity
poly(1/¢) and time complexity exp(poly(1/¢)) (cf., Goldreich, Goldwasser and Ron [22]):?

e k-Colorability®, for any fixed k > 2. The query-complexity is poly(k/¢), and for k = 2 the
running-time is O(1/€3), where by O(m) we mean O(m - poly(logm)). In case the graph is
k-colorable the tester always accepts, whereas in case the graph is e-far from k-colorable the
tester rejects with probability at least % and furthermore supplies a small counterexample (in
the form of a small subgraph which is not k-colorable).

The 2-Colorability (equiv., Bipartite) Tester is presented in Subsection 3.3. An improved
analysis has been recently obtained by Alon and Krivelevich [2].

1 Alternatively, one may consider a RAM model of computation, in which trivial manipulation of vertices (e.g.,
reading/writing a vertex and comparing vertices) is performed at unit cost.

2 Except for Bipartite testing, running-time of poly(1/¢) is unlikely, as it will imply NP C BPP.

3 A graph is k-colorable if its vertices can be partitioned into k parts so that there are no edges among vertices
residing in the same part.



e p-Clique, for any p > 0. That is, does the N-vertex graph have a clique (i.e., a set of vertices
with edges among each pair in it) of size pN.

e p-CUT, for any p > 0. That is, does the N-vertex graph have a cut of size at least pN2. A
generalization to k-way cuts works within query-complexity poly((log k)/€).

e p-Bisection, for any p > 0. That is, can the vertices of the N-vertex graph be partitioned
into two equal parts with at most pN? edges going between them.

All the above property testing problems are special cases of the General Graph Partition Testing
Problem, parameterized by a set of lower and upper bounds. In this problem one needs to determine
whether there exists a k-partition of the vertices so that the number of vertices in each part as well
as the number of edges between each pair of parts falls between the corresponding lower and upper
bounds (in the set of parameters). For example, p-clique is expressible as a 2-partition in which
one part has pN vertices, and the number of edges in this part is (pév). A tester for the general
problem has been presented in [22] too: The tester uses O(k2/e)?*tO() queries, and runs in time
exponential in its query-complexity.

Going beyond the General Graph Partition Problem: Although many natural graph prop-
erties can be formulated as partition problems, many more cannot. Among these we mention a few
classes which certainly do not exhaust all graph properties.

e Many natural graph properties are very easy to test in the adjacency predicate model. A
very partial list includes Connectivity, Hamiltonicity, Cycle-freeness and Planarity (cf., [22]).
The reason being that for these properties either every N-vertex graph is at distance at
most O(1/N) from a graph having the desired property (and so for e = Q(1/N) the trivial
algorithm which always accepts will do), or the property holds only for sparse graphs (and so
for e = Q(1/N) one may reject any non-sparse graph).

e Oun the other hand, there are (“unnatural”) graph properties in NP which are extremely hard
to test; namely, any testing algorithm must inspect at least Q(IN?) of the vertex pairs [22].

e Alon et. al. [1] have recently suggested to study graph properties through the type (or “logical
complexity”) of a formula defining the property. Specifically, they considered graph properties
expressible by first order formulae. They showed that every graph property expressible by such
formula of the form 3*V* is testable in complexity depending only on € (alas the dependency
many be terrible; e.g., a tower of poly(1/e¢) exponentiations). In contrast, they also showed
that there exists a (natural) graph property expressible by a first order formula of the form
V3T which cannot be tested within complexity depending only on e.

In view of the above, we believe that providing a characterization of graph properties, according to
the complexity of testing them, may be very challenging.

From Testing to Searching: Most graph properties discussed above are in A/P. Furthermore, in
these cases the NP-witness for G having property P is a natural structure in the graph; for example,
in case of the General Graph Partition Problems the witness is merely an adequate partition of
the vertices. Interestingly, our testers for (all cases of) the General Graph Partition Problem, can
be modified into algorithms which provide such approximate NP-witnesses. That is, if the graph
has the desired (partitioning) property, then the testing algorithm may actually output auxiliary



information that allows to construct, in poly(1/¢) - N-time, a partition which approximately obeys
the property. For example, for p-CUT, we can construct a partition with at least (p —¢) - N2
crossing edges.

One-sided error probability: The k-Colorability tester has one-sided error: It always accepts
k-colorable graphs. Furthermore, when rejecting a graph, this tester always supplies a poly(1/¢)-
size subgraph which is not k-colorable. The other algorithms for all the other cases of the General
Graph Partition Problem discussed above, have two-sided error. This is unavoidable within o(V)
query-complexity.

3.2 Testing vs Deciding and Other Forms of Approximation

We shortly discuss the relationship of the notion of approximation underlying the definition of
testing graph properties to more traditional notions. The latter include exact decision as well as
other notions of approximation.

Relation to recognizing graph properties: Our notion of testing a graph property P is a
relazation of the notion of deciding the graph property P which has received much attention in the
last three decades [35]. In the classical problem there are no margins of error — one is required to
accept all graphs having property P and reject all graphs which lack it. In 1975 Rivest and Vuillemin
[40] resolved the Aanderaa—Rosenberg Conjecture [38], showing that any deterministic procedure
for deciding any non-trivial monotone N-vertex graph property must examine 2(N?) entries in the
adjacency matrix representing the graph. The query complexity of randomized decision procedures
was conjectured by Yao to be Q2(N?). Progress towards this goal was made by Yao [43], King [32]
and Hajnal [25] culminating in an Q(N*/3) lower bound. This stands in striking contrast to the
testing results of [22] mentioned above, by which some non-trivial monotone graph properties can
be tested by examining a constant number of locations in the matrix.

Application to the standard notion of approximation: The relation of testing graph prop-
erties to the standard notions of approximation is best illustrated in the case of Max-CUT. Any
tester for the class p-cut, working in time T'(e, N'), yields an algorithm for approximating the maxi-
mum cut in an N-vertex graph, up to additive error e N2, in time %-T(e, N). Thus, for any constant
e > 0, using the above tester of [22], we can approximate the size of the max-cut to within eN?
in constant time. This yields a constant time approximation scheme (i.e., to within any constant
relative error) for dense graphs, improving over previous work of Arora et. al. [4] and de la Vega [15]
who solved this problem in polynomial-time (i.e., in O(NY<)~time and exp(O(1/€?)) - N2—time,
respectively). In the latter works the problem is solved by actually constructing approximate max-
cuts. Finding an approximate max-cut does not seem to follow from the mere existence of a tester
for p-cut; yet, as mentioned above, the tester in [22] can be used to find such a cut in time linear
in N.

Relation to “dual approximation” (cf., [29, 30]): To illustrate this relation, we consider the p-
Clique Tester mentioned above. The traditional notion of approximating Max—Clique corresponds
to distinguishing the case in which the max-clique has size at least p/N from, say, the case in which
the max-clique has size at most p/N/2. On the other hand, when we talk of testing “p-Cliqueness”,
the task is to distinguish the case in which an N-vertex graph has a clique of size p/N from the case
in which it is e-far from the class of N-vertex graphs having a clique of size p/N. This is equivalent



to the “dual approximation” task of distinguishing the case in which an N-vertex graph has a
clique of size pN from the case in which any pN subset of the vertices misses at least eN? edges.
To demonstrate that these two tasks are vastly different we mention that whereas the former task
is NP-Hard, for p < 1/4 (see [12, 26, 27]), the latter task can be solved in exp(O(1/€?))-time, for
any p,€ > 0. We believe that there is no absolute sense in which one of these approximation tasks
is more important than the other: Each of these tasks may be relevant in some applications and
irrelevant in others.

3.3 Testing Bipartiteness

The bipartite tester is extremely simple: It selects a tiny, random set of vertices and checks whether
the induced subgraph is bipartite.

Algorithm 1 (Bipartite Tester in the first model [22]):
On input N, d, € and oracle access to an adjacency predicate of an N -vertex graph, G = (V,E):

1. Uniformly select a subset of O(1/€?) vertices of V.

2. Accept if and only if the subgraph induced by this subset is Bipartite.

Step (2) amounts to querying the predicate on all pairs of vertices in the subset selected at Step (1),
and testing whether the induced graph is bipartite (e.g., by running BF'S; see [18]). As will become
clear from the analysis, it actually suffice to query only 6(1/63) of these pairs. We comment that
a more complex analysis due to Alon and Krivelevich [2] implies that the above algorithm is a
Bipartite Tester even if one selects only O(1/e) vertices (rather than O(1/€2)) in Step (1).

Theorem 1 (Goldreich, Goldwasser and Ron [22]): Algorithm 1 is a Bipartite Tester (in the
adjacency predicate model). Furthermore, the algorithm always accepts a Bipartite graph, and in
case of rejection it provides a witness of length poly(1/e) (that the graph is not bipartite).

Proof: Let R be the subset selected in Step (1), and Ggr the subgraph induced by it. Clearly, if
G is bipartite then so is Gg, for any R. The point is to prove that if G is e-far from bipartite then
the probability that Gg is bipartite is at most 1/3. Thus, from this point on we assume that at
least eN2 edges have to be omitted from G to make it bipartite.

We view R as a union of two disjoint sets U and S, where ¢ def U] = O(e ! - log(1/€)) and

m < IS| = O(t/e). We will consider all possible partitions of U, and associate a partial partition of

V with each such partition of U. The idea is that in order to be consistent with a given partition,
(Uy,Ug), of U, all neighbors of U; (resp., Uy) must be placed opposite to U; (resp., Ug). We will
show that, with high probability, most high-degree vertices in V do neighbor U and so are forced
by its partition. Since there are relatively few edges incident to vertices which do not neighbor U, it
follows that with very high probability each such partition of U is detected as illegal by Gg. Details
follow, but before we proceed let us stress the key observation: It suffices to rule out relatively few
(partial) partitions of V (i.e., these induced by partitions of U), rather than all possible partitions
of V.

We use the notations I'(v) o {u: (u,v)€E} and ['(X) = UyexI'(v). Given a partition (U, Us)
of U, we define a (possibly partial) partition, (Vi,Vs), of V so that V; def ['(Uy) and Vo def I'(Uy)
(assume, for simplicity that V1 NVy is indeed empty). As suggested above, if one claims that G can
be “bipartited” with Uy and Uy on different sides then Vi = I'(U;) must be on the opposite side

def



to Ug (and I'(U;) opposite to U;). Note that the partition of U places no restriction on vertices
which have no neighbor in U. Thus, we first ensure that most “influential” (i.e., “high-degree”)
vertices in V have a neighbor in U.

Definition 3.1 (high-degree vertices and good sets): We say that a vertex v € V is of high-degree
if it has degree at least §N. We call U good for V if all but at most §N of the high-degree vertices
i V have a neighbor in U.

Note that NOT insisting that U neighbors all high-degree vertices allows us to show that a random
U of size unrelated to the size of the graph has this feature. (If we were to insist that U neighbors
all high-degree vertices then we would have had to use |U| = Q(log N).)

Claim 3.2 With probability at least 5/6, a uniformly chosen set U of size t is good.

Proof: For any high-degree vertex v, the probability that v does not have any neighbor in a
uniformly chosen U is at most (1 — ¢/3)" < {5 (since t = Q(e 'log(1/e))). Hence the expected
number of high-degree vertices which do not have a neighbor in a random set U is less than {5 - IV,
and the claim follows by Markov’s Inequality. O

Definition 3.3 (disturbing a partition of U): We say that an edge disturbs a partition (Uy,Us) of
U if both is end-points are in the same I'(U;), for some i € {1,2}.

Claim 3.4 For any good set U and any partition of U, at least §N2 edges disturb the partition.

Proof: Each partition of V has at least eN? violating edges (i.e., edges with both end-points on
the same side). We upper bound the number of these edges which are not disturbing. Actually, we
upper bound the number of edges which have an end-point not in I'(U).

e The number of edges incident to high-degree vertices which do not neighbor U is bounded by
5N - N (at most /N such vertices each having at most IV incident edges).

e The number of edges incident to vertices which are not of high-degree vertices is bounded by
N - £N (at most N such vertices each having at most £V incident edges).

This leaves us with at least $N? violating edges connecting vertices in I'(U) (i.e., edges disturbing
the partition of U). O

The theorem follows by observing that Gg is bipartite only if either (1) the set U is not good;
or (2) the set U is good and there exists a partition of U so that none of the disturbing edges occurs
in Gg. Using Claim 3.2 the probability of event (1) is bounded by 1/6; and using Claim 3.4 the
probability of event (2) is bounded by the probability that there exists a partition of U so that
none of the corresponding > §N2 disturbing edges has both edge-point in S. Actually, we pair the
m vertices of S, and consider the probability that none of these pairs is a disturbing edge for a
partition of U. Thus the probability of event (2) is bounded by

m/2 1
2lUl, <1 — E) < =
3 6

where the inequality is due to m = Q(t/€). The theorem follows. W



Comment: The procedure employed in the proof yields a poly(1l/e) - N-time algorithm for 2-
partitioning a bipartite graph so that at most eN? edges lie within the same side. This is done by
running the tester, determining a partition of U (defined as in the proof) which is consistent with
the bipartite partition of R, and partitioning V as done in the proof (with vertices which do not
neighbor U, or neighbor both Uj, Us, placed arbitrarily). Thus, the placement of each vertex is
determined by inspecting at most O(1/¢) entries of the adjacency matrix.

4 The Second Model (Incidence Functions)

In this section we consider the representation of N-vertex graphs of degree bound d by incidence
functions mapping pairs {1,2,..., N} x {1,2,...,d} to {0,1,2,..., N}. Recall that in this model,
distance between graphs refers to the fraction of different edges over dN/2.

4.1 Some Known Results

Testers of complexity which depends only on the distance parameter, €, are known for several
natural graph properties (cf., Goldreich and Ron [23]). In particular, the following properties can
be tested in time (and thus query-complexity) poly(d/e):

e Connectivity. The tester runs in time 6(1/6) In case the graph is connected the tester
always accepts, whereas in case the graph is e-far from being connected the tester rejects with
probability at least % and furthermore supplies a small counter-example to connectivity (in
the form of an induced subgraph which is disconnected from the rest of the graph).

o k-edge-connectivity. The tester runs in time 6(k3 -€73). For k = 2,3 improved testers have
running-times O(e ') and O(e ?), respectively. Again, k-edge-connected graphs are always
accepted, and rejection is accompanied by a counter-example.

o k-vertex-connectivity, for k = 2,3. The testers run in time 6(6*’“).

e Planarity. The tester runs in time 6(d4 - e 1. Planar graphs are always accepted, and
rejection is accompanied by a counter-example (in the form of a subgraph homomorphic to
K373 or to K5)

e Cycle-Freeness. The tester runs in time O(¢=3). Unlike all other algorithms, this tester
has two-sided error probability, which is unavoidable for testing this property within o(v/N)
queries.

The complexity of Bipartiteness testing is considered in Subsections 4.2 and 4.3: We survey an
Q(vV/N) lower bound on the query complexity of any tester [23], and a matching upper bound [24].
The lower bound stands in sharp contrast to the situation in the first model (i.e., representation by
adjacency predicates), where Bipartite testing is possible in poly(1/¢)-time. The query complexity
upper bound (for the incidence function representation) is obtained by a natural Bipartite-tester
of running time (and query complexity) O(poly(1/€) - VN). We stress that, for ¢ > N1 the
testers in both models are faster than the decision procedure.



4.2 A Lower Bound on the Complexity of Testing Bipartiteness

In contrast to Theorem 1, under the incidence function representation there exists no Bipartite
tester of complexity independent of the graph size.

Theorem 2 (Goldreich and Ron [23]): Testing Bipartiteness (with constant € and d) requires
Q(VN) queries (in the incidence function model).

Proof Idea: For any (even) N, we consider the following two families of graphs:

1. The first family, denoted Gi¥, consists of all degree-3 graphs which are composed by the union
of a Hamiltonian cycle and a perfect matching. That is, there are N edges connecting the
vertices in a cycle, and the other N/2 edges are a perfect matching.

2. The second family, denoted G2, is the same as the first ezcept that the perfect matchings
allowed are restricted as follows: the distance on the cycle between every two vertices which
are connected by an perfect matching edge must be odd.

Clearly, all graphs in ggV are bipartite. One first proves that almost all graphs in Q{V are far from
being bipartite. Afterwards, one proves that a testing algorithm that performs less than av/N
queries (for some constant o < 1) is not able to distinguish between a graph chosen randomly
from GY (which is always bipartite) and a graph chosen randomly from Gi¥ (which with high
probability will be far from bipartite). Loosely speaking, this is done by showing that in both cases
the algorithm is unlikely to encounter a cycle (among the vertices it has inspected). W

4.3 An Algorithm for Testing Bipartiteness

The lower bound of Theorem 2 is essentially tight. Furthermore, the following natural algorithm
constitutes a Bipartite tester of running time poly((log N)/e) - v/N.

Algorithm 2 (Bipartite Tester in the second model [24]):
On input N, d, € and oracle access to an incidence function for an N-vertex graph, G = (V,E), of

degree bound d, repeat T def @(%) times:
1. Uniformly select s in V.

2. (Try to find an odd cycle through vertex s):

(a) Perform K def poly((log N)/€) - VN random walks starting from s, each of length
def
L = poly((log N)/e).

(b) Let Ry (resp., Ry) denote the vertices set reached from s in an even (resp., odd) number
of steps in any of these walks.

(c) If Ry N Ry is not empty then reject.

If the algorithm did not reject in any one of the above T iterations, then it accepts.

Theorem 3 (Goldreich and Ron [24]): Algorithm 2 is a Bipartite Tester (in the incidence function
model). Furthermore, the algorithm always accepts a Bipartite graph, and in case of rejection it
provides a witness of length poly((log N)/e) (that the graph is not bipartite).
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Motivation — the special case of rapid mixing graphs. The proof of Theorem 3 is quite
involved. As a motivation, we consider the special case where the graph has a “rapid mixing”
feature. It is convenient to modify the random walks so that at each step each neighbor is selected
with probability 1/2d, and otherwise (with probability at least 1/2) the walk remains in the present
vertex. Furthermore, we will consider a single execution of Step (2) starting from an arbitrary
vertex, s, fixed in the rest of the discussion. The rapid mixing feature we assume is that, for
every vertex v, a (modified) random walk of length L starting at s reaches v with probability
approximately 1/N (say, up-to a factor of 2). Note that if the graph is an expander then this is
certainly the case (since L > O(log N)).

The key quantities is the analysis are the following probabilities, referring to the parity of the
length of a path obtained from the random walk by omitting the self-loops (transitions which
remain at current vertex). Let p°(v) (resp., p'(v)) denote the probability that a (modified) random
walk of length L starting at s reaches v while making an even (resp., odd) number of real (i.e.,
non-self-loop) steps. By the rapid mixing assumption we have (for every v € V)

v < PP < < 1)
We consider two cases regarding the sum Y,y p°(v)p' (v) - In case the sum is (relatively) “small”,
we show that V can be 2-partitioned so that there are relatively few edges between vertices placed
in the same side, which implies that G is close to be bipartite. Otherwise (i.e., when the sum
is not “small”), we show that with significant probability, when Step (2) is started at vertex s
it is completed by rejecting G. The two cases are presented in greater detail in the following
(corresponding) two claims.

Claim 4.1 Suppose Y ,cv p°(v)pt(v) < €/50N. Let Vy o {veV:p’w) < plv)} and Vo =

V \ Vi. Then, the number of edges with both end-points in the same V, is bounded above by edN .

Proof Sketch: Consider an edge (u,v) where, without loss of generality, both v and v are in
Vi. Then, both p(v) and p'(u) are greater than 3 - 5. However, one can show that p°(v) >
% - p'(u): Observe that a walk of length L — 1 with path-parity 1 ending at u is almost as likely
as such a walk having length L, and that once such a walk reaches u it continues to v in the next
(1/4N)?
3d

step with probability exactly 1/2d. Thus, such an edge contributes at least to the sum

Soey PP (0)pt(v). The claim follows. M

Claim 4.2 Suppose 3,y p°(v)pt(v) > €/50N, and that Step (2) is started with vertex s. Then,
with probability at least 2/3, the set Ry N Ry is not empty (and rejection follows).

Proof Sketch: Consider the probability space defined by an execution of Step (2) with start
vertex s. We define random variables (; ; representing the event that the vertex encountered in the
L™ step of the i walk equals the vertex encountered in the L' step of the j*® walk, and that the
i*h walk corresponds to an even-path whereas the j* to an odd-path. Then

E(|[RoNRi]) > > E((iy)

i#]
= KK -1 X 0t 0)
veV
> S )
veV
> 10
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where the second inequality is due to the setting of K, and the third to the claim’s hypothesis.
Intuitively, we expect that with high probability |RgNR;| > 0. This is indeed the case, but proving it
is less straightforward than it seems, the problem being that the ¢; ;’s are not pairwise independent.
Yet, since the sum of the covariances of the dependent (; ;’s is quite small, Chebyshev’s Inequality

is still very useful (cf., [3, Sec. 4.3]). Specifically, letting u ot ey PP (0)pt(v) (= E((j ), and

= def
Cij = Gij — u, we get:

V(Xizj Giy)
Pr (ZCi,jZO> < W

1]
1 —9 _ _
= <k (Z E((; ;) +2 Z E(Ci,jgi,k))
,J i,5,k
1 2
LT R
< K% + K2 (€1,2€1,3)

For the second term, we observe that Pr(¢;» = (23 = 1) is upper bounded by the probability that
C1,2 = 1 times the probability that the L™ vertex of the first walk appears as the L' vertex of the
third path. Using the rapid mixing hypothesis, we upper bound the latter probability by 2/N, and
obtain

1 2 2
Pr(|RyNRy| =0 o s —
MR Bl =0) < g T sty
<1
3

where the last inequality uses K < N/4, u > ¢/50N and K% > 6-50N/¢e. The claim follows. W

Beyond rapid mixing graphs. The proof in [24] refers to a more general sum of products;
that is, Y- cv Podd(V)Peven(v), where U C V is an appropriate set of vertices, and poga(v) (resp.,
Peven(v)) is the probability that a random walk (starting at s) passes through v after more than
L /2 steps and the corresponding path to v has odd (resp., even) parity. Much of the analysis in [24]
goes into selecting the appropriate U (and an appropriate starting vertex s), and pasting together
many such U’s to cover all of V. Loosely speaking, U and s are selected so that there are few edges
from U and the rest of the graph, and poqq(u) + peven(u) = 1//|V]-|U], for every u € U. The
selection is based on the “combinatorial treatment of expansion” of Mihail [36]. Specifically, we use
the counterpositive of the standard analysis, which asserts that rapid mixing occurs when all cuts
are relatively large, to assert the existence of small cuts which partition the graph so that vertices
reached with relatively high probability (in a short random walk) are on one side and the rest of
the graph on the other. The first set corresponds to U above and the cut is relatively small with
respect to U. A start vertex s for which the corresponding sum is big is shown to cause Step (2)
to reject (when started with this s), whereas a small corresponding sum enables to 2-partition U
while having few violating edges among the vertices in each part of U.

The actual argument of [24] proceeds in iterations. In each iteration a vertex s for which Step (2)
accepts with high probability is fixed, and an appropriate set of remaining vertices, U, is found.
The set U is then 2-partitioned so that there are few violating edges inside U. Since we want to
paste all these partitions together, U may not contain vertices treated in previous iterations. This
complicates the analysis, since it must refer to the part of G, denoted H, not treated in previous
iterations. We consider walks over an (imaginary) Markov Chain representing the H-part of the
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walks performed by the algorithm on G. Statements about rapid mixing are made with respect to
the Markov Chain, and linked to what happens in random walks performed on G. In particular, a
subset U of H is determined so that the vertices in U are reached with probability ~ 1/+/|V] - |U]
(in the chain) and the cut between U and the rest of H is small. Linking the sum of products
defined for the chain with the actual walks performed by the algorithm, we infer that U may be
partitioned with few violating edges inside it. Edges to previously treated parts of the graphs are
charged to these parts, and edges to the rest of H\ U are accounted for by using the fact that this
cut is small (relative to the size of U).

5 Two Other Models

So far our discussion was confined to undirected graphs. Yet, the two models (above) extend
naturally to the case of directed graphs. Some of the results for the undirected case extend naturally
to the directed case (e.g., testing directed connectivity). A natural task in the directed graph models
is testing whether a given directed graph is acyclic (i.e., has no directed cycles). Bender and Ron
have presented a Acyclicity-tester of poly(1/e) complexity in the adjacency predicate model, and
showed that no such tester may exist in the incidence list model [8].

In our discussion above (as well as in the next section) we have linked the issue of representation
to the distance measure. That is, when representing a graph by an oracle from some domain
D to a range R, we have considered the relative distance of graphs as the fraction of different
entries in their representation divided by the size of the domain (i.e., |D|). This (quite natural)
convention is abandoned by Parnas and Ron who developed a more general model by decoupling the
representation of the graph from the distance measure [37]: Whatever is the mechanism of accessing
the graph, the distance between graphs is defined as the number of edges in their symmetric
difference. (The relative distance may be defined as the latter quantity divided by the total number
of edges in both graphs.) The new model allows to treat well the case of sparse graphs which are not
of bounded-degree — a case that was not treated in a satisfactory manner in either of the previous
two models. Many of the testers for bounded-degree graphs can be extended to the case of sparse
graphs in the new model. Furthermore, the following problem of estimating the diameter of a graph
is shown to be solvable in this model within complexity poly(1/e): Given a diameter parameter D
and a distance parameter €, determine whether the graph has diameter at most D or is e-far from
any graph of diameter at most 2D +2 (i.e., one has to add more than e- |E| edges in order to obtain
from the input graph G = (V,E) a graph of diameter at most 2D + 2). (We comment that in the
“bounded-degree model” and for e > 1/D this task can be easily reduced to testing connectivity.)

6 A Wider Perspective

Our formulation of testing graph properties (in both the adjacency predicate and incident list
models) is a special case of property testing of arbitrary functions.

Definition 2 (property tester [39]): Let S be a finite set, and P a subset of functions mapping S
to {0,1}*. A (property) tester for P is a probabilistic oracle machine, M, which given a distance
parameter € > 0 and oracle access to an arbitrary function f : S {0,1}* satisfies the following
two conditions:

1. (the tester accepts every f in P): If f € P then

Pr(M/(e)=1) >

Wl N
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2. (the tester rejects every f that is far from P): If {x €S : f(x)#g(x)} > €S|, for every
g € P, then

Pr(M/(e)=1) <

W =

Property testing (as just defined) emerges naturally in the context of program checking [13, 34, 20,
39] and probabilistically checkable proofs (pcp) [9, 10, 19, 6, 5, 11, 14, 7, 12, 26, 28]. Specifically,
in the context of program checking, one may choose to test that the program satisfies certain
properties before checking that it computes a specified function. This paradigm has been followed
both in the theory of program checking [13, 39|, and in practice where often programmers first
test their programs by verifying that the programs satisfy properties that are known to be satisfied
by the function they compute. In the context of probabilistically checkable proofs, the property
tested is being a codeword with respect to a specific code. This paradigm, explicitly introduced in
[10], has shifted from testing codes defined by low-degree polynomials [9, 10, 19, 6, 5] to testing
Hadamard codes [5, 11, 14, 7, 33, 41], and recently to testing the “long code” [12, 26, 28, 41].

Much of the work cited above deals with the development and analysis of testers for algebraic
properties; specifically, linearity, multi-linearity, and low-degree polynomials [13, 34, 9, 10, 19, 20,
39, 6, 5, 11, 14, 7]. The study of property testing as applied to combinatorial properties was
initiated by Goldreich, Goldwasser and Ron [22]. Specifically, they initiated the study of property
testing in the adjacency predicate model. The study of property testing in the incidence function
model was latter initiated in [23]. We comment that testing of combinatorial properties other than
ones related to graphs has been considered in [17, 21, 16]: Specifically, these works consider the
task of testing whether a function f : ¥™ — R is monotone (with respect to orderings of both ¥
and R).*

Further generalization: We mention that an even more general formulation of property testing
was suggested in [22] —

Let P be a fixed property of functions, and f be an unknown function. The goal is to
determine (possibly probabilistically) if f has property P or if it is far from any function
which has property P, where distance between functions is measured with respect to
some distribution D on the domain of f. Towards this end, one is given examples of
the form (z, f(x)), where x is distributed according to D. One may also be allowed to
query f on instances of one’s choice.

The above formulation is inspired by the PAC learning model [42]. In fact, property testing is
related to variants of PAC learning as has been shown in [22] and [31] (the results in [22] are
generic and [31] aims at obtaining better results for properties which are related to concept classes
extensively investigated in the machine learning literature). The general formulation above allows
the consideration of arbitrary distributions (rather than uniform ones), and of testers which utilize
only randomly chosen instances (rather than being able to query instances of their own choice).
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