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1 The General ContextIn general, property testing is onerned with super-fast (probabilisti) algorithms for deidingwhether a given objet has a predetermined property or is far from any objet having this property.Suh algorithms, alled testers, obtain loal views of the objet by making adequate queries; thatis, the objet is seen as a funtion and the tester gets orale aess to this funtion, and thus maybe expeted to work in time that is sub-linear in the size of the objet.Looking at the foregoing formulation, we �rst note that property testing is onerned withpromise problems (f. [26, 30℄), rather than with standard deision problems. Spei�ally, objetsthat neither have the property nor are far from having the property are disarded. The exatformulation of these promise problems refers to a distane measure de�ned on the set of all relevantobjets (i.e., this distane measure oupled with a distane parameter determine the set of objetsthat are far from the property). Thus, the hoie of natural distane measures is ruial to thestudy of property testing. Seondly, we note that the requirement that the algorithms operatein sub-linear time (i.e., without reading their entire input) alls for a spei�ation of the type ofqueries that these algorithms an make to their input. Thus, the hoie of natural query types isalso ruial to the study of property testing. These two general onsiderations will beome onreteone we delve into the atual subjet matter (i.e., testing graph properties).1.1 Why Graphs?Let us start with an empirial observation, taken from Shimon Even's book Graph Algorithms [25℄(published in 1979):Graph theory has long beome reognized as one of the more useful mathematialsubjets for the omputer siene student to master. The approah whih is natural inomputer siene is the algorithmi one; our interest is not so muh in existene proofsor enumeration tehniques, as it is in �nding eÆient algorithms for solving relevantproblems, or alternatively showing evidene that no suh algorithms exist. Althoughalgorithmi graph theory was started by Euler, if not earlier, its development in the lastten years has been dramati and revolutionary.Meditating on these fats, one may ask what is the soure of this ubiquitous use of graphs inomputer siene. The most ommon answer is that graphs arise naturally as a model (or anabstration) of numerous natural and arti�ial objets. Another answer is that graphs help visualizebinary relations over �nite sets. These two di�erent answers orrespond to two types of models oftesting graph properties that will be disussed below.1.2 Why Testing?Suppose we are given a huge graph representing some binary relation over a huge data-set (seebelow), and we need to determine whether the graph (equivalently, the relation) has some prede-termined property. Sine the graph is huge, we annot or do not want to even san all of it (letalone proess all of it). The question is whether it is possible to make meaningful statements aboutthe entire graph based only on a \small portion" of it. Of ourse, suh statements will at best beapproximations. But in many settings approximations are good enough.As a motivation, let us onsider a well-known example in whih fast approximations are possibleand useful. Suppose that some ost funtion is de�ned over a huge set, and that one wants to obtainthe average ost of an element in the set. To be more spei�, let � : S ! [0; 1℄ be a ost funtion,1



and suppose we want to estimate � def= 1jSjPx2S �(x). Then, uniformly (and independently) selet-ing m def= O(��2 log(1=Æ)) sample points, x1; :::; xm, in S we obtain with probability at least 1 � Æan estimate of � within ��. That is,Prx1;:::;xm2S "����� 1m mXi=1 �(xi) � ������ > �# < Æ : (1)Turning bak to graphs, we note that they apture more omplex features of data sets; that is,graphs apture relations among pairs of elements (rather then funtions of single elements). Speif-ially, a symmetri binary relation R � S � S is represented by a graph G = (S;R), where theelements of S are viewed as verties and the elements in R are viewed as edges.The study of testing graph properties reveals that sampling a huge data set may be useful notonly towards approximating various statistis regarding a funtion de�ned over the set, but alsotowards approximating various properties regarding a binary relation de�ned on this set. As weshall see, in many ases, the sampling method used (or at least its analysis) is signi�antly moresophistiated than the one employed in gathering statistis of the former type. But before doingso, we wish to further disuss the potential bene�t in the notion of approximation underlining thede�nition of property testing.Firstly, being lose to a graph that has the property is a notion of approximation that, in ertainappliations, may be of diret value. Furthermore, in some ases, being lose to a graph havingthe property translates to a standard notion of approximation (see Setion 2.2). In other ases, ittranslates to a notion of \dual approximation" (see, again, Setion 2.2).Seondly, in some ases, we may be fored to take ation without having the time to run a dei-sion proedure, while given the option of modifying the graph in the future, at a ost proportionalto the number of added/omitted edges. For example, suppose we are given a graph that representssome suggested design, where bipartite graphs orrespond to good designs and hanges in the de-sign orrespond to edge additions/omissions. Using a Bipartiteness tester, we may (with highprobability) aept any good design, while rejeting designs that will ost a lot to modify. That is,we may still aept designs that are not good, but only suh that are lose to being good and thuswill not ost too muh to modify later.Thirdly, we may use the property tester as a preliminary stage before running a slower exatdeision proedure. In ase the graph is far from having the property, with high probability, weobtain an indiation towards this fat, and save the time we might have used running the deisionproedure. Furthermore, if the tester has one-sided error (i.e., it always aepts a graph having theproperty) and the tester has rejeted, then we have obtained an absolutely orret answer withoutrunning the slower deision proedure at all. The saving provided by using a property tester asa preliminary stage may be very substantial in many natural settings where typial graphs eitherhave the property or are very far from having the property. Furthermore, if it is guaranteed thatgraphs either have the property or are very far from having it then we may not even need to runthe (exat) deision proedure at all.1.3 Three Models of Testing Graph PropertiesA graph property is a set of graphs losed under graph isomorphism (renaming of verties).1 Let �be suh a property. A �-tester is a randomized algorithm that is given orale aess to a graph,1That is, � is a graph property if, for every graph G = (V;E) and every permutation � over V , it holds thatG 2 � if and only if �(G) 2 �, where �(G) def= (V; ff�(u); �(v)g : fu; vg2Eg).2



G = (V;E), and has to determine whether the graph is in � or is far from being in �. The typeof orale (equiv., the type of queries allowed) and distane-measure depend on the model, and wefous on three suh models:1. The adjaeny prediate model [32℄: Here the �-tester is given orale aess to a symmetrifuntion g : V � V ! f0; 1g that represents the adjaeny prediate of the graph G; that isg(u; v) = 1 if and only if (u; v) 2 E. In this model distanes between graphs are measuredaording to their representation; that is, if the graphs G and G0 are represented by thefuntions g and g0, then their relative distane is the fration of pairs (u; v) suh that g(u; v) 6=g0(u; v).Note that saying that G = ([N ℄; E) is �-far from the graph property � means that for everyG0 2 � it holds that G is �-far from G0. Sine � is losed under graph isomorphism, this meansthat G is �-far from any isomorphi opy of G0 = ([N ℄; E0); that is, for every permutation �over [N ℄, it holds that jf(u; v) : g(u; v) 6= g0(�(u); �(v))gj > �N2, where g and g0 are as above.Finally, note that this notion of distane between graphs is most meaningful in the ase thatthe graph is dense (sine in this ase frations of the number of possible vertex pairs arelosely related to frations of the atual number of edges). Thus, this model is often alledthe dense graph model.2. The inidene funtion model [34℄: Here, for some �xed upper bound d (on the degrees ofverties in G), the �-tester is given orale aess to a funtion g : V � [d℄ ! V [ f?g thatrepresents the graph G = (V;E) suh that g(u; i) = v if v is the ith vertex inident at u andg(u; i) = ? if u has less than i neighbors. That is, E = f(u; v) : 9i f(u; i) = vg, where wealways assume that g(u; i) = v if and only if there exists a j 2 [d℄ suh that g(v; j) = u.Indeed, only graphs of degree at most d an be represented in this model, whih is alled thebounded-degree graph model.In this model too, distanes between graphs are measured aording to their representation,but here the representation is di�erent and so the distanes are di�erent. Spei�ally, if thegraphs G and G0 are represented by the funtions g and g0, then their relative distane is thefration of pairs (u; i) suh that g(u; i) 6= g0(u; i). Again, saying that G = ([N ℄; E) is �-farfrom the graph property � means that for every G0 2 � it holds that G is �-far from G0.Sine � is losed under graph isomorphism (and the ordering of the verties inident at eahvertex is arbitrary), this means that for every permutation � over [N ℄, it holds thatXu2V jfv : 9i g(u; i) = vg4fv : 9i g0(�(u); i) = �(v)gj > �dN ;where g and g0 are as above, and 4 denotes the symmetri di�erene (i.e., A4B = (A[B) n(A \B)).3. The general graph model [52, 46℄: In ontrast to the foregoing two models in whih theorale queries and the distanes between graphs are linked to the representation of graphsas funtions, in the following model the representation is blurred and the query types anddistane measure are deoupled.The relative distane between the graphs G = ([N ℄; E) and G0 = ([N ℄; E) is usually de�nedas jE4E0jmax(jEj;jE0j) ; that is, the absolute distane is normalized by the atual number of edgesrather than by an absolute upper bound (on the number of edges) suh as N2=2 or dN=2.3



The types of queries typially onsidered are the two types of queries onsidered in the previoustwo models. That is, the algorithm may ask whether two verties are adjaent in the graphand may also ask for a spei� neighbor of a spei� vertex.Needless to say, the general graph model is the most general one, and it is indeed losest to atualalgorithmi appliations.2 The fat that this model has so far reeived relatively little attentionmerely reets the fat that its study is overly omplex. Given that urrent studies of the othermodels still fae formidable diÆulties (and that these models o�er a host of interesting openproblems), it is natural that researhers shy away from yet another level of ompliation.The urrent fous on query omplexity. Although property testing is motivated by referringto super-fast algorithms, researh in the area tends to fous on the query omplexity of testingvarious properties. This fous should be viewed as providing an initial estimate to the atualomplexity of the testing problems involved; ertainly, query omplexity lower bounds imply or-responding bounds on the time omplexity, whereas the latter is typially at most exponential inthe query omplexity. Furthermore, in many ases, the time omplexity is polynomial in the queryomplexity and this fat is typially stated. Thus, we will follow the pratie of fousing on thequery omplexity of testing, but also mention time omplexity upper bounds whenever they are ofinterest.1.4 OrganizationThe following three setions are devoted to the three models disussed above: We start with thedense graph model (Setion 2), then move to the bounded-degree model (Setion 3), and �nally getto the general graph model (Setion 4). In eah model we review the de�nition of testing (whenspeialized to that model), provide a taste of the known results, and demonstrate some of the ideasinvolved (by fousing on testing Bipartiteness, whih seems a good benhmark).We onlude this artile with a disussion of a few issues that are relevant to all models; theseinlude the treatment of direted graphs (Setion 5.1), the related notions of tolerant testing anddistane approximation (Setion 5.2), and the notion of proximity oblivious testing (Setion 5.3).The appendix presents three observations that ourred to us in the proess of writing thisartile. These refer to testing (degree) regularity in the dense graph model (Appendix A.1), non-adaptive testers in the bounded-degree graph model (Appendix A.2), and testing strong onne-tivity of direted graphs by only using forward queries (Appendix A.3).2 The Dense Graph ModelIn the adjaeny matrix model (a.k.a the dense graph model), an N -vertex graph G = ([N ℄; E)is represented by the Boolean funtion g : [N ℄ � [N ℄ ! f0; 1g suh that g(u; v) = 1 if and onlyif u and v are adjaent in G (i.e., fu; vg 2 E). Distane between graphs is measured in terms oftheir aforementioned representation (i.e., as the fration of (the number of) di�erent matrix entries(over N2)), but oasionally one uses the more intuitive notion of the fration of (the numberof) unordered vertex pairs over �N2 �.3 Reall that we are interested in graph properties, whih are2In other words, this model is relevant for most appliations, sine these seem to refer to general graphs (whihmodel various natural and arti�ial objets). In ontrast, the dense graph model is relevant to appliations that referto (dense) binary relations over �nite graphs.3Indeed, there is a tiny disrepany between these two measures, but it is immaterial in all disussions.4



sets of graphs that are losed under isomorphism; that is, � is a graph property if for every graphG = ([N ℄; E) and every permutation � of [N ℄ it holds that G 2 � if and only if �(G) 2 �, where�(G) def= ([N ℄; ff�(u); �(v)g : fu; vg 2 Eg. We now spell out the meaning of property testing inthis model.De�nition 2.1 (testing graph properties in the adjaeny matrix model): A tester for a graphproperty � is a probabilisti orale mahine that, on input parameters N and � and aess to (theadjaeny prediate of) an N -vertex graph G = ([N ℄; E), outputs a binary verdit that satis�es thefollowing two onditions.1. If G 2 � then the tester aepts with probability at least 2=3.2. If G is �-far from � then the tester aepts with probability at most 1=3, where G is �-farfrom � if for every N -vertex graph G0 = ([N ℄; E0) 2 � it holds that the symmetri di�erenebetween E and E0 has ardinality that is greater than � � �N2 �.If the tester aepts every graph in � with probability 1, then we say that it has one-sided error. Atester is alled non-adaptive if it determines all its queries based solely on its internal oin tosses(and the parameters N and �); otherwise it is alled adaptive.The query omplexity of a tester is the number of queries it makes to any N -vertex graph, as afuntion of the parameters N and �. We say that a tester is eÆient if it runs in time that ispolynomial in its query omplexity, where basi operations on elements of [N ℄ (and in partiular,uniformly seleting an element in [N ℄) are ounted at unit ost.We stress that testers are de�ned as (uniform)4 algorithms that are given the size parameter Nand the distane (or proximity) parameter � as expliit inputs. This uniformity (over the values ofthe distane parameter) makes the positive results stronger and more appealing (espeially in lightof a separation result shown in [10℄). In ontrast, negative results typially refer to a �xed value ofthe distane parameter.The study of property testing in the dense graph model was initiated by Goldreih, Goldwasser,and Ron [32℄, as a onrete and yet general framework for the study of property testing at large.From that perspetive, it was most natural to represent graphs as Boolean funtions, and theadjaeny matrix representation was the obvious hoie. This ditated the hoie of the typeof queries as well as the distane measure. In retrospet, the dense graph model seems mostnatural when graphs are viewed as representing generi (symmetri) binary relations (f. the seondmotivation to the study of graphs mentioned in Setion 1.1 as well as the disussion of sampling inSetion 1.2).2.1 A Taste of the Known ResultsWe �rst mention that graph properties of arbitrary query omplexity are known: Spei�ally, inthis model, graph properties (even those in P) may have query omplexity ranging from O(1=�)to 
(N2), and the same holds also for monotone graph properties in NP (f. [33℄).5 In this4That is, we refer to the standard (uniform) model of omputation (f., e.g., [31, Se. 1.2.3℄), whih does not allowfor hard-wiring some parameters (e.g., input length) into the omputing devie (as done in the ase of non-uniformiruit families).5We mention that a full query omplexity hierarhy is established in [33℄ by using unnatural graph properties,starting from the 
(N2) lower bound of [32℄, whih also uses an unnatural graph property. In ontrast, the 
(N)lower bound established in [27℄ (following [2℄) refers to the natural property of testing whether an N -vertex graphonsists of two isomorphi opies of some N=2-vertex graph.5



overview, we fous on properties that an be tested within query omplexity that only depends onthe proximity parameter (i.e., �); that is, the query omplexity does not depend on the size of thegraph being tested. Interestingly, there is muh to say about this lass of properties. Let us startwith a brief summary, and provide more details later.1. A elebrated result of Alon, Fisher, Newman, and Shapira [3℄ provides a ombinatorialharaterization of the lass of properties that an be tested within query omplexity thatonly depends on the proximity parameter. This lass ontains natural properties that are nottestable in query omplexity poly(1=�); see [1℄.2. The prior work of Goldreih, Goldwasser, and Ron [32℄ provides a natural lass of proper-ties that an be tested within query omplexity poly(1=�). This lass onsists of so-alled\partition problems" and inludes sets suh as k-olorability, for any �xed k � 2, and graphsontaining a lique for density �, for any �xed � > 0.3. A relatively reent work of Goldreih and Ron [38℄ initiates a study of the lass of propertiesthat an be tested within query omplexity eO(1=�).Before providing more details on the foregoing results, we mention that, when disregarding apossible quadrati blow-up in the query omplexity, we may assume that the tester in anonial inthe following sense.Theorem 2.2 (anonial testers [40, Thm 2℄):6 Let � be any graph property. If there exists atester with query omplexity q(N; �) for �, then there exists a tester for � that uniformly selets aset of O(q(N; �)) verties and aepts i� the indued subgraph has property �0, where �0 is a graphproperty that may depend on N as well as on �. Furthermore, if the original tester has one-sidederror, then so does the new tester, and a sample of 2q(N; �) verties suÆesIndeed, the resulting tester is alled anonial. We warn that �0 need not equal � (let alone that �0may depend on N), and that the time omplexity of the anonial tester may be signi�antly largerthan the time omplexity of the original tester. Still, in many natural ases (e.g., k-olorability),�0 = �.2.1.1 Testability in q(�) queries, for any funtion qAs stated above, a elebrated result of Alon et al. [3℄ provides a ombinatorial haraterization of thelass of properties that an be tested within query omplexity that only depends on the proximityparameter. This haraterization refers to the notion of a regularity instane, where regularity is inthe sense of Szeme�redi's Regularity Lemma [57℄. The result essentially asserts that a graph propertyan be tested in query omplexity that only depends on � if and only if it an be haraterized interms of a onstant number of regularity instanes. The lesson from this haraterization is that,when ignoring the spei� dependeny on �, testing graph properties in query omplexity that onlydepends on � redues to graph regularity. This lesson makes more onrete the feeling already raisedby Theorem 2.2 that testing in this model redues to ombinatoris.6As pointed out in [10℄, the statement of [40, Thm 2℄ should be orreted suh that the auxiliary property �0 maydepend on N and not only on �. Thus, on input N and � (and orale aess to an N -vertex graph G), the anonialtester heks whether a random indued subgraph of size s = O(q(N; �)) has the property �0, where �0 itself (orrather its intersetion with the set of s-vertex graphs) may depend on N . In other words, the tester's deision dependsonly on the indued subgraph that it sees and on the size parameter N .6



The downside of the algorithms that emerge from this haraterization is that their queryomplexity is related to the proximity parameter via a funtion that grows tremendously fast.Spei�ally, in the general ase, the query omplexity is only upper bounded by a tower of a towerof exponents (in a monotonially growing funtion of 1=�, whih in turn depends on the propertyat hand).Interestingly, it is known that a super-polynomial dependene on the proximity parameter isinherent to the foregoing result. Atually, as shown by Alon [1℄, suh a dependene is essential evenfor testing triangle freeness. Indeed, this fat provides a nie demonstration of the non-trivialityof testing graph properties. One might have guessed that O(1=�) or O(1=�3) queries would havesuÆed to detet a triangle in any graph that is �-far from being triangle free, but Alon's resultasserts that this guess is wrong and that poly(1=�) queries do not suÆe. We mention that the bestupper bound known for the query omplexity of testing triangle freeness is tf(poly(1=�)), wheretf is the tower funtion de�ned indutively by tf(n) = exp(tf(n� 1)) with tf(1) = 2 (f. [1℄).Perspetive. It is indeed an amazing fat that many properties an be tested within (query)omplexity that only depends on the proximity parameter (rather than also on the size of theobjet being tested). This amazing statement seems to shadow the question of the form of theaforementioned dependene, and blurs the di�erene between a reasonable dependene (e.g., apolynomial relation) and a prohibiting one (e.g., a tower-funtion relation). We beg to disagreewith this sentiment and laim that, as in the ontext of standard approximation problems (f. [44℄),the dependene of the omplexity on the approximation (or proximity) parameter is a key issue.We wish to stress that we do value the impressive results of [2, 7, 8, 29℄ (let alone [3℄), whihrefer to graph property testers having query omplexity that is independent of the graph size butdepends prohibitively on the proximity parameter. We view suh results as an impressive �rststep, whih alled for further investigation direted at determining the atual dependeny of theomplexity on the proximity parameter.While it is oneivable that there exist (natural) graph properties that an be tested in exp(1=�)queries but not in poly(1=�) queries, we are not aware of suh a property.7 We thus move diretlyfrom omplexities of the form tf(1=�) (and larger) to omplexities of the form poly(1=�).2.1.2 Testability in poly(1=�) queriesTesters of query omplexity poly(1=�) are known for several natural graph properties [32℄.� k-Colorability, for any �xed k � 2. The query-omplexity is poly(k=�). For k = 2 therunning-time is eO(1=�3), whereas for k > 2 the running-time is exp(poly(1=�)) (and running-time polynomial in 1=� is unlikely, sine k-Colorability is NP-omplete, for k � 3).The k-Colorability tester has one-sided error; that is, in ase the graph is k-olorable, thetester always aepts. Furthermore, when rejeting a graph, this tester always supplies asmall ounterexample (i.e., a poly(1=�)-size subgraph that is not k-olorable).The 2-Colorability (equivalently, Bipartiteness) Tester is presented in x2.3. An improvedanalysis has been obtained by Alon and Krivelevih [4℄.� �-Clique, for any �xed � > 0, where �-Clique is the set of graphs that have a lique ofdensity � (i.e., N -vertex graphs having a lique of size �N).7Needless to say, demonstrating the existene of suh (natural) properties is an interesting open problem.7



� �-CUT, for any �xed � > 0, where �-CUT is the set of graphs that have a ut of density atleast � (ompared to N2).A generalization to k-way uts has query-omplexity poly((log k)=�).� �-Bisetion, for any �xed � > 0, where �-Bisetion is the set of graphs that have abisetion of density at most � (i.e., an N -vertex graph is in �-Bisetion if its vertex set anbe partitioned into two equal parts with at most �N2 edges going between them).Exept for k-Colorability, all the other testers have two-sided error, and this is unavoidable forany tester of o(N) query omplexity for any of these properties.All the above property testing problems are speial ases of the General Graph Partition TestingProblem, whih is parameterized by a set of lower and upper bounds. In this problem one needs todetermine whether there exists a k-partition of the verties so that the number of verties in eahpart as well as the number of edges between eah pair of parts falls between the orresponding lowerand upper bounds (in the set of parameters). For example, �-lique is expressible as a 2-partitionin whih one part has �N verties, and the number of edges in this part is ��N2 �. A tester forthe general problem also appears in [32℄: The tester uses eO(k2=�)2k+O(1) queries, and runs in timeexponential in its query-omplexity.From testing to searhing. Interestingly, the testers for (all ases of) the General Graph Par-tition Problem an be modi�ed into algorithms that �nd an (impliit representation of an) approx-imately adequate partition whenever it exists. That is, if the graph has the desired (partitioning)property, then the testing algorithm may atually output auxiliary information that allows to re-onstrut, in poly(1=�) �N -time, a partition that approximately obeys the property. For example,for �-CUT, we an onstrut a partition with at least (� � �) � N2 rossing edges. We ommentthat this notion of an impliit representation of an adequate struture may be relevant for othersets in NP , where this struture orresponds to an NP-witness. (Indeed, an interesting algorithmiappliation was presented in [28℄, where an impliit partition of an imaginary hypergraph is usedin order to eÆiently onstrut a regular partition (with almost optimal parameters) of a givengraph.)Bak to testing graph properties. Although many natural graph properties an be formulatedas partition problems, many other properties that an be tested with poly(1=�) queries annot beformulated as suh problems. The list inlude the set of regular graphs, onneted graphs, planargraphs, and more. We identify three lasses of suh natural properties:1. Properties that only depends on the vertex degree distribution (e.g., degree regularity andaverage degree). For example, for any �xed � > 0, the set of N -vertex graphs having �N2edges an be tested using O(1=�2) queries, whih is the best result possible.8 The same holdswith respet to testing degree regularity, where the 
(1=�2) queries lower bound follows byredution to estimating the average value of Boolean funtions and a orresponding upperbound an be obtained by building on the eO(1=�3)-query algorithm presented in the proofof [32, Prop. 10.2.1.3℄.98Both upper and lower bounds an be proved by redution to the problem of estimating the average value ofBoolean funtions (f. [22℄).9For the lower bound, onsider the problem of distinguishing between a random N -vertex graph in whih eahvertex has degree either (0:5+ �)N or (0:5� �)N and a random (N=2)-regular N -vertex graph. For the upper bound,see Appendix A.1. 8



2. Properties that are satis�ed only by sparse graphs (i.e., N -vertex graphs having O(N) edges)10suh as Cyle-freeness and Planarity. These properties an be tested by rejeting anygraph that is not suÆiently sparse (see [32, Prop. 10.2.1.2℄).3. Properties that are almost trivial in the sense that, for some onstant  > 0 and every � > N�,all N -vertex graphs are �-lose to the property. For example, every N -vertex graph is N�1-lose to being onneted (or being Hamiltonian or Eulerian). These properties an be testedby aepting any N -vertex graph if � > N� (without making any query), and inspeting theentire graph otherwise (where, in this ase �N2 � = poly(1=�)). (See [32, Prop. 10.2.1.1℄.)In view of all of the foregoing, we believe that haraterizing the lass of graph properties thatan be tested in poly(1=�) queries may be very hallenging. We mention that the speial ase ofindued subgraph freeness properties was resolved in [9℄.2.1.3 Testability in eO(1=�) queriesWhile Theorem 2.2 may be interpreted as suggesting that testing in the dense graph model leaves noroom for algorithmi design, this onlusion is valid only if one ignores a possible quadrati blow-upin the query omplexity (and also disregards the time omplexity). As advoated by Goldreih andRon [38℄, a �ner examination of the model, whih takes into aount the exat query omplexity(i.e., ares about a quadrati blow-up), reveals the role of algorithmi design. In partiular, theresults in [38℄ distinguish adaptive testers from non-adaptive ones, and distinguish the latter fromanonial testers. These results refer to testability in eO(1=�) queries. In partiular, it is shownthat:� Testing every \non-trivial for testing" graph property requires 
(1=�) queries, even whenadaptive testers are allowed. Furthermore, any anonial tester for suh a property requires
(1=�2) queries.� There exists a natural graph property that an be tested by eO(1=�) adaptive queries, requires
(��4=3) non-adaptive queries, and is atually testable by O(��4=3) non-adaptive queries.� There exists a natural graph property that an be tested by eO(1=�) adaptive queries butrequires 
(��3=2) non-adaptive queries.� There exist an in�nite lass of natural graph properties that an be tested by eO(1=�) non-adaptive queries.All the above testers have one-sided error probability and are eÆient, whereas the lower boundshold also for two-sided error testers (regardless of eÆieny).The foregoing results seem to indiate that even at this low omplexity level (i.e., testing ineO(1=�) adaptive queries) there is a lot of struture and muh to be understood. In partiular, it isonjetured in [38℄ that, for every t � 4, there exists graph properties that an be tested by eO(1=�)adaptive queries and have non-adaptive query omplexity �(��2+ 2t ).2.1.4 ReetionsLet us reet about some issues that arise from the foregoing exposition.10Atually, this lass an be extended by onsidering a more relaxed notion of sparseness that inludes N -vertexgraphs having O(N2�
(1)) edges. 9



Adaptive testers versus non-adaptive ones. Reall that Theorem 2.2 asserts that anonialtesters (whih are in partiular non-adaptive) have query omplexity that is at most quadrati inthe query omplexity of general (possibly adaptive) testers. Still the results surveyed in x2.1.3indiate that suh a gap may exist. An interesting question, raised by Mihael Krivelevih, iswhether suh a gap exists also for properties having query omplexity that is signi�antly largerthan eO(1=�). In partiular, we mention that testing Bipartiteness, whih has non-adaptive queryomplexity e�(��2) (f. [4, 21℄)11 and requires 
(��3=2) adaptive queries [21℄, may be testable ino(��2) adaptive queries (f. [41℄).One-sided versus two-sided error probability. As noted above, for many natural propertiesthere is a signi�ant gap between the omplexity of one-sided and two-sided error testers. Forexample, �-CUT has a two-sided error tester of query omplexity poly(1=�), but no one-sided errortester of query omplexity o(N2). In general, the interested reader may ontrast the haraterizationof two-sided error testers in [3℄ with the results in [8℄.A ontrast to reognizing graph properties. The notion of testing a graph property � isa relaxation of the lassial notion of reognizing the graph property �, whih has reeived muhattention sine the early 1970's (f. [47℄). In the lassial (reognition) problem there are no marginsof error; that is, one is required to aept all graphs having property � and rejet all graphs that lakproperty �. In 1975, Rivest and Vuillemin resolved the Aanderaa{Rosenberg Conjeture, showingthat any deterministi proedure for deiding any non-trivial monotone N -vertex graph propertymust examine 
(N2) entries in the adjaeny matrix representing the graph. The query omplexityof randomized deision proedures was onjetured by Yao to be 
(N2), and the urrently bestlower bound is 
(N4=3). This stands in striking ontrast to the aforementioned results regardingtesting graph properties that establish that many natural (non-trivial) monotone graph propertiesan be tested by examining a onstant number of loations in the matrix (where this onstantdepends on the onstant value of the proximity parameter).Graph properties are poor odes. We note that with the exeption of two properties, whiheah ontains a single N -vertex graph, the adjaeny matrix representation of any property �N ofN -vertex graphs yields a ode over f0; 1g(N2 ) with relative distane at most O(1=N). Spei�ally, if�N neither onsists of the N -vertex lique nor of the N -vertex independent set, then �N ontainsa graph G = ([N ℄; E) that ontains two verties u; v 2 [N ℄ that have di�erent neighborhoods inG. Consider a permutation � that transposes u and v, while leaving the rest of [N ℄ intat, and letG0 = ([N ℄; f�(a); �(b) : (a; b)2Eg). Then G0 2 �N , but G0 is 2N(N2 ) -lose to G.2.2 Testing versus other forms of ApproximationWe shortly disuss the relation of the notion of approximation underlying the de�nition of test-ing graph properties (in the dense graph model)12 to more traditional notions of approximation.Throughout this setion, we refer to randomized algorithms that have a small error probability,whih we ignore for simpliity.11The eO(��2) upper bound is due to [4℄, improving over [32℄, whereas the 
(��2) lower bound is due to [21℄.12Analogous relations hold also in the other models of testing graph properties.
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Appliation to the standard notion of approximation: The relation of testing graph prop-erties to standard notions of approximation is best illustrated in the ase of Max-CUT. Any tester forthe set �-CUT, working in time T (�;N), yields an algorithm for approximating the size of the maxi-mum ut in an N -vertex graph, up to additive error �N2, in time 1� �T (�;N). Thus, for any onstant� > 0, using the above tester of [32℄, we an approximate the size of the max-ut to within �N2 inonstant time. This yields a onstant time approximation sheme (i.e., to within any onstant relativeerror) for dense graphs, whih improves over previous work of Arora et al. [12℄ and de la Vega [24℄who solved this problem in polynomial-time (i.e., in O(N1=�2){time and exp( eO(1=�2)) � N2{time,respetively). In the latter works the problem is solved by atually �nding approximate max-uts.Finding an approximate max-ut does not seem to follow from the mere existene of a tester for�-ut; yet, as mentioned above, the tester in [32℄ an be used to �nd suh a ut in time linear in N .Relation to \dual approximation" (f. [44, Chap. 3℄): To illustrate this relation, weonsider the aforementioned �-Clique Tester. The traditional notion of approximating Max-Cliqueorresponds to distinguishing the ase in whih the max-lique has size at least �N from, say, thease in whih the max-lique has size at most �N=2. On the other hand, when we talk of testing�-Clique, the task is to distinguish the ase in whih an N -vertex graph has a lique of size �Nfrom the ase in whih it is �-far from the lass of N -vertex graphs having a lique of size �N . This isequivalent to the \dual approximation" task of distinguishing the ase in whih an N -vertex graphhas a lique of size �N from the ase in whih any �N subset of the verties misses at least �N2edges. To demonstrate that these two tasks are vastly di�erent we mention that whereas the formertask is NP-Hard, for � < 1=4 (see [15, 42℄), the latter task an be solved in exp(O(1=�2))-time, forany �; � > 0. We believe that there is no absolute sense in whih one of these approximation tasksis more important than the other: Eah of these tasks may be relevant in some appliations andirrelevant in others.2.3 A Benhmark: Testing BipartitenessThe Bipartite tester is extremely simple: It selets a tiny, random set of verties and hekswhether the indued subgraph is bipartite.Algorithm 2.3 (Bipartite Tester in the Dense Graph Model [32℄): On input N , � and orale aessto an adjaeny prediate of an N -vertex graph, G = (V;E):1. Uniformly selet a subset of eO(1=�2) verties of V.2. Aept if and only if the subgraph indued by this subset is bipartite.Step (2) amounts to querying the prediate on all pairs of verties in the subset seleted at Step (1),and testing whether the indued graph is bipartite (e.g., by running BFS). As will beome learfrom the analysis, it atually suÆe to query only eO(1=�3) of these pairs. We omment that a moreomplex analysis due to Alon and Krivelevih [4℄ implies that the Algorithm 2.3 is a BipartiteTester even if one selets only eO(1=�) verties (rather than eO(1=�2)) in Step (1)).Theorem 2.4 [32℄: Algorithm 2.3 is a Bipartite Tester (in the dense graph model). Furthermore,the algorithm always aepts a bipartite graph, and in ase of rejetion it provides a witness of lengthpoly(1=�) (that the graph is not bipartite). 11



Proof: Let R be the subset seleted in Step (1), and GR the subgraph of G indued by R. Clearly,if G is bipartite then so is GR, for any R. The point is to prove that if G is �-far from bipartitethen the probability that GR is bipartite is at most 1=3. Thus, from this point on we assume thatat least �N2 edges have to be omitted from G to make it bipartite.We view R as a union of two disjoint sets U and S, where t def= jUj = O(��1 � log(1=�)) andm def= jSj = O(t=�). We will onsider all possible partitions of U, and assoiate a partial partition ofV with eah suh partition of U. The idea is that in order to be onsistent with a given partition,(U1;U2), of U, all neighbors of U1 (respetively, U2) must be plaed opposite to U1 (respetively,U2). We will show that, with high probability, most high-degree verties in V do neighbor U andso are fored by its partition. Sine there are relatively few edges inident to verties that do notneighbor U, it follows that, with very high probability, eah suh partition of U is deteted as illegalby GR. Details follow, but before we proeed let us stress the key observation: It suÆes to ruleout relatively few (partial) partitions of V (i.e., these indued by partitions of U), rather than allpossible partitions of V.We use the notations �(v) def= fu : (u; v)2Eg and �(X) def= [v2X�(v). Given a partition (U1;U2)of U, we de�ne a (possibly partial) partition, (V1;V2), of V so that V1 def= �(U2) and V2 def= �(U1)(assume, for simpliity that V1\V2 is indeed empty). As suggested above, if one laims that G anbe \bi-partitioned" with U1 and U2 on di�erent sides, then V1 = �(U2) must be on the oppositeside to U2 (and �(U1) opposite to U1). Note that the partition of U plaes no restrition on vertiesthat have no neighbor in U. Thus, we �rst ensure that almost all \inuential" (i.e., \high-degree")verties in V have a neighbor in U.Tehnial De�nition 2.4.1 (high-degree verties and good sets): We say that a vertex v 2 V isof high-degree if it has degree at least �3N . We all U good if all but at most �3N of the high-degreeverties in V have a neighbor in U.We omment that not insisting that a good set U neighbors all high-degree verties allows us toshow that, with high probability, a random U of size unrelated to the size of the graph is good. (Inontrast, if we were to insist that a good U neighbors all high-degree verties, then we would havehad to use jUj = 
(logN).)Claim 2.4.2 With probability at least 5=6, a uniformly hosen set U of size t is good.Proof: For any high-degree vertex v, the probability that v does not have any neighbor in auniformly hosen U is at most (1 � �=3)t < �18 (sine t = 
(��1 log(1=�))). Hene, the expetednumber of high-degree verties that do not have a neighbor in a random set U is less than �18 �N ,and the laim follows by Markov's Inequality. 2Tehnial De�nition 2.4.3 (disturbing a partition of U): We say that an edge disturbs a partition(U1;U2) of U if both its end-points are in the same �(Ui), for some i 2 f1; 2g.Claim 2.4.4 For any good set U and any partition of U, at least �3N2 edges disturb the partition.Proof: Eah partition of V has at least �N2 violating edges (i.e., edges with both end-points onthe same side). We upper bound the number of these edges that are not disturbing. Atually, weupper bound the number of edges that have an end-point not in �(U).� The number of edges inident to high-degree verties that do not neighbor U is bounded by�3N �N (sine there are at most �3N suh verties).12



� The number of edges inident to verties that are not of high-degree is bounded by N � �3N(sine eah suh vertex has at most �3N inident edges).This leaves us with at least �3N2 violating edges onneting verties in �(U) (i.e., edges disturbingthe partition of U). 2The theorem follows by observing that GR is bipartite only if either (1) the set U is not good; or (2)the set U is good and there exists a partition of U so that none of the disturbing edges ours inGR. Using Claim 2.4.2 the probability of event (1) is bounded by 1=6, whereas by Claim 2.4.4 theprobability of event (2) is bounded by the probability that there exists a partition of U so thatnone of the orresponding � �3N2 disturbing edges has both end-points in the seond sample S.Atually, we pair the m verties of S, and onsider the probability that none of these pairs is adisturbing edge for a partition of U. Thus the probability of event (2) is bounded by2jUj � �1� �3�m=2 < 16where the inequality holds sine m = 
(t=�). The theorem follows.Comment: The proedure employed in the proof yields a randomized poly(1=�)�N -time algorithmfor 2-partitioning a bipartite graph suh that (with high probability) at most �N2 edges lie withinthe same side. This is done by running the tester, determining a partition of U (de�ned as inthe proof) that is onsistent with the bipartite partition of R, and partitioning V as done in theproof (with verties that do not neighbor U, or neighbor both U1;U2, plaed arbitrarily). Thus,the plaement of eah vertex is determined by inspeting at most eO(1=�) entries of the adjaenymatrix. Furthermore, the aforementioned partition of U onstitutes a suint representation ofthe 2-partition of the entire graph. All this is a typial onsequene of the fat that the analysis ofthe tester follows the \enfore-and-test" paradigm (see [55, Se. 4℄).3 The Bounded-Degree Graph ModelThe bounded-degree model refers to a �xed degree bound, denoted d � 2. An N -vertex graphG = ([N ℄; E) (of maximum degree d) is represented in this model by a funtion g : [N ℄ � [d℄ !f0; 1; :::; Ng suh that g(v; i) = u 2 [N ℄ if u is the ith neighbor of v and g(v; i) = 0 if v has less than ineighbors.13 Distane between graphs is measured in terms of their aforementioned representation(i.e., as the fration of (the number of) di�erent array entries (over dN)), but oasionally we shalluse the more intuitive notion of the fration of (the number of) edges over dN=2. We now spell outthe meaning of property testing in this model.De�nition 3.1 (testing graph properties in the bounded-degree model): For a �xed d, a tester fora graph property � is a probabilisti orale mahine that, on input parameters N and � and aessto (the inidene funtion of) an N -vertex graph G = ([N ℄; E) of maximum degree d, outputs abinary verdit that satis�es the following two onditions.1. If G 2 � then the tester aepts with probability at least 2=3.13For simpliity, we assume here that the neighbors of v appear in an arbitrary order in the sequeneg(v; 1); :::; g(v;deg(v)), where deg(v) def= jfi : g(v; i) 6= 0gj. Also, we shall always assume that if g(v; i) = u 2 [N ℄ thenthere exists j 2 [d℄ suh that g(u; j) = v. 13



2. If G is �-far from � then the tester aepts with probability at most 1=3, where G is �-farfrom � if for every N -vertex graph G0 = ([N ℄; E0) 2 � of maximum degree d it holds that thesymmetri di�erene between E and E0 has ardinality that is greater than � � dN=2.One-sided testers and non-adaptive testers are de�ned as in De�nition 2.1.The query omplexity of a tester is de�ned as in Setion 2; ditto for its eÆieny.The study of property testing in the bounded-degree graph model was initiated by Goldreihand Ron [34℄, with the aim of allowing the onsideration of sparse graphs, whih appear in numerousappliations (f. the �rst motivation to the study of graphs mentioned in Setion 1.1). The point wasthat the dense graph model seems irrelevant to sparse graphs, both beause the distane measurethat underlies it deems all sparse graphs as lose to one another, and beause adjaeny queriesseems unsuitable for sparse graphs. Stiking to the paradigm of representing graphs as funtions,where both the distane measure and the type of queries are determined by the representation, theaforementioned representation seemed the most natural hoie. Indeed, a onsious deision was(and is) made not to apture, at this point (and in this model), sparse graphs that do not haveonstant (or low) maximum degree.3.1 A Taste of the Known ResultsWe �rst mention that, also in this model, graph properties of arbitrary query omplexity areknown: Spei�ally, in this model, graph properties (in NP) may have query omplexity rang-ing from O(1=�) to 
(N), and furthermore suh properties are monotone and natural (f. [33℄,whih builds over [20℄). In partiular, testing 3-Colorability requires 
(N) queries, whereas testing2-Colorability (i.e., Bipartiteness) requires 
(pN) queries [34℄ and an be done using eO(pN) �poly(1=�) queries [35℄. We also mention that many natural properties are testable in query om-plexity that only depends on the proximity parameter (i.e., �). A partial list inludes k-edgeonnetivity, for every �xed k, and Planarity (f. [34℄ and [18℄, respetively). Details follow.3.1.1 Testability in q(�) queries, for any funtion qWe �rst mention, that with the exeption of properties that only depend on the degree distribution,adaptive testers are essential for obtaining query omplexity that only depends on � (f. [54℄).14Still, as observed in [39℄, at the ost of an exponentially blow-up in the query omplexity, wemay assume that the tester's adaptivity is on�ned to performing (full, BFS-like) searhes of apredetermined depth from several randomly seleted verties. However, the best testing resultsare typially obtained by testers that either perform more adaptive searhers or perform DFS-likerather than BFS-like searhers. A few examples follow, where all testers are eÆient (i.e., theirrunning time is polynomial in their query omplexity).Testing onnetivity. Graph onnetivity an be tested in eO(1=�) queries [34℄. Essentially, thetester starts a searh (e.g., a BFS) from a few randomly seleted verties, but eah suh searhis terminated after a predetermined number of verties is enountered (rather than after visitingall verties that are at a predetermined distane from the start vertex). This tester rejets ifand only if it detets a small onneted omponent, and thus it has one-sided error. The resultessentially extends to k-edge onnetivity, for any k � 2, but the query omplexity is eO(k3=�),where  = min(k � 1; 3) (f. [34℄).14Atually, the result extends to query omplexity of the form o(pN � q(�)), for any funtion q. In ontrast, notethat triangle-freeness an be tested by O(pN=�) non-adaptive queries; see Appendix A.2.14



Testing yle-freeness. Cyle-freeness an be tested in eO(��3) queries, by a tester having two-sided error [34℄. Essentially, the tester ompares the number of edges to the number of onnetedomponents, while fully exploring any small onneted omponents that it happens to visit. Thetwo-sided error is unavoidable by any tester that has query omplexity o(pN) (f. [34, Prop. 4.3℄).Viewing yle-free graphs as graphs that have no K3-minor, leads us to the following general resultof Benjamini, Shramm, and Shapira [18℄, whih refers to graph minors (to be briey realled next).The graph H is a minor of the graph G, if H an be obtained from G by a sequene of edgeremoval, vertex removal, and edge ontration operations. We say that G is H-minor free if H is nota minor of G. Thus, a graph is yle-free if and only if it is K3-minor free, where Kk denotes thek-vertex lique. (The notion of minor freeness extends to sets of graphs; that is, for a set of graphsH, the graph G is H-minor free if no element of H is a minor of G.) Lastly, a graph propertyis minor-losed if it is losed under removal of edges, removal of verties, and edge ontration.Note that, for every �nite sets of graphs H, the property of being H-minor free (e.g., Planarity) isminor-losed.Theorem 3.2 ([43℄, improving over [18℄):15 Any minor-losed property an be tested in queryomplexity exp(poly(1=�)).We mention that this tester has two-sided error, whih is unavoidable for any tester of queryomplexity o(pN), exept for the ase that the forbidden minors are all yle-free.3.1.2 Testability in eO(N1=2) � poly(1=�) queriesThe query omplexity of testing two natural properties is e�(N1=2) � poly(1=�), and in both asesthe time omplexity has the same form. The properties are Bipartiteness and Expansion. Inboth ases, the algorithm is based on taking many (i.e., eO(N1=2) � poly(1=�)) random walks from afew randomly seleted verties, where eah walk has length poly(��1 logN).The foregoing algorithmi approah originates in [35℄, where it was applied to testing Bipartiteness;for further details see x3.2.2. This approah was also suggested for testing Expansion [36℄, but theanalysis was suessfully ompleted only in [45, 50℄. We mention that the Bipartite tester hasone-sided error, and whenever it rejets it may also output a short proof that the graph is notbipartite (i.e., an odd yle of length poly(��1 logN)).The 
(N1=2) lower bound on the query omplexity of testing eah of the aforementioned proper-ties was proved in [34℄; for details see x3.2.1. We note that the lower bound for testing Bipartitenessstands in sharp ontrast to the situation in the dense graph model, where Bipartite testing is pos-sible in poly(1=�)-time. This disrepany is due to the di�erene between the notions of relativedistane employed in the two models.An appliation to the study of the dense graph model. We mention that the Bipartitenesstester of the bounded-degree model was used in order to derive an alternative Bipartite tester forthe dense graph model [41℄. In the ase that almost all verties in the N -vertex graph have degreeO(�0:99N), this tester improves over the ones presented in [32, 4℄. Essentially, this dense-graphmodel tester invokes the bounded-degree model tester on the subgraph indued by a sample Sof eO(1=�) random verties (and emulates neighbor queries regarding a vertex v 2 S by makingadjaeny queries of the form (v; w) for every w 2 S).15The query omplexity obtained in [18℄ is triple-exponential in 1=�.15



3.1.3 ReetionsThe fat that the bounded-degree model is loser (than the dense graph model) to standard algo-rithmi researh o�ers greater interation at the tehnial level. Indeed, tehniques suh as loalsearh and random walks are quite basi in both domains, and the relationship beomes even tighterwhen we shall move to the general graph model (in Setion 4). At the urrent point, we mentionthat the idea underlying the yle-freeness tester (outlined in x3.1.1) was employed to the designof an algorithm for approximating the minimum spanning tree weight in sub-linear time [23℄.We also mention that the idea underlying the expansion tester has beome quite pivotal in theontents of testing distributions, whih emerged with [13℄.3.2 A Benhmark: Testing BipartitenessBoth the following lower and upper bounds reet the fat that being far from Bipartitenessdoes not require having onstant size yles of odd length. We omment that a simpli�ed versionof the upper bound implies that odd yles of logarithmi length must exist (f. [35, Prop. 1℄).3.2.1 A lower boundIn ontrast to Theorem 2.4, under the inidene funtion representation, there exists no Bipartitetester of omplexity that is independent of the graph size.Theorem 3.3 [34℄: Testing Bipartiteness (with onstant � and d) requires 
(pN) queries (inthe inidene funtion model).Proof Idea: For any (even) N , we onsider the following two families of graphs:1. The �rst family, denoted GN1 , onsists of all degree-3 graphs that are omposed of the unionof a Hamiltonian yle and a perfet mathing. That is, there are N edges onneting theverties in a yle, and the other N=2 edges are a perfet mathing.2. The seond family, denoted GN2 , is the same as the �rst exept that the perfet mathingsallowed are restrited as follows: the distane on the yle between every two verties thatare onneted by a perfet mathing edge must be odd.Clearly, all graphs in GN2 are bipartite. It an be shown that almost all graphs in GN1 are far frombeing bipartite. On the other hand, one an prove that a testing algorithm that performs o(pN)queries annot distinguish between a graph hosen randomly from GN2 (whih is always bipartite)and a graph hosen randomly from GN1 (whih with high probability is far from bipartite). Looselyspeaking, this is the ase sine in both ases the algorithm is unlikely to enounter a yle (amongthe verties that it has inspeted).3.2.2 An algorithmThe lower bound of Theorem 3.3 is essentially tight. Furthermore, the following natural algorithmonstitutes a Bipartite tester of running time poly((logN)=�) � pN .Algorithm 3.4 (Bipartite Tester in the Bounded-Degree Model [35℄): On input N , d, � andorale aess to an inidene funtion for an N -vertex graph, G = (V;E), of degree bound d, repeatT def= �(1� ) times: 16



1. Uniformly selet s in V.2. (Try to �nd an odd yle through vertex s):(a) Perform K def= poly((logN)=�) � pN random walks starting from s, eah of lengthL def= poly((logN)=�).(b) Let R0 (respetively, R1) denote the verties set reahed from s in an even (respetively,odd) number of steps in any of these walks.() If R0 \R1 is not empty then rejet.If the algorithm did not rejet in any of the foregoing T iterations, then it aepts.Theorem 3.5 [35℄: Algorithm 3.4 is a Bipartite Tester (in the inidene funtion model). Fur-thermore, the algorithm always aepts a bipartite graph, and in ase of rejetion it provides awitness of length poly((logN)=�) (that the graph is not bipartite).Motivation { the speial ase of rapid mixing graphs. The proof of Theorem 3.5 is quiteinvolved. As a motivation, we onsider the speial ase where the graph has a \rapid mixing"feature. It is onvenient to modify the random walks so that at eah step eah neighbor is seletedwith probability 1=2d, and otherwise (with probability at least 1=2) the walk remains in the presentvertex. Furthermore, we will onsider a single exeution of Step (2) starting from an arbitraryvertex, s, whih is �xed in the rest of the disussion. The rapid mixing feature we assume is that,for every vertex v, a (modi�ed) random walk of length L starting at s reahes v with probabilityapproximately 1=N (say, up-to a fator of 2). Note that if the graph is an expander then this isertainly the ase (sine L = !(logN)).The key quantities in the analysis are the following probabilities, referring to the parity of thelength of a path obtained from the random walk by omitting the self-loops (transitions that remainat urrent vertex). Let p0(v) (respetively, p1(v)) denote the probability that a (modi�ed) randomwalk of length L, starting at s, reahes v while making an even (respetively, odd) number of real(i.e., non-self-loop) steps. By the rapid mixing assumption (for every v 2 V), it holds that12N < p0(v) + p1(v) < 2N : (2)We onsider two ases regarding the sum Pv2V p0(v)p1(v): If the sum is (relatively) \small", weshow that V an be 2-partitioned so that there are relatively few edges between verties that areplaed in the same side, whih implies that G is lose to being bipartite. Otherwise (i.e., when thesum is not \small"), we show that with signi�ant probability, when Step (2) is started at vertex sit is ompleted by rejeting G. These two ases are analyzed in the following two (orresponding)laims.Claim 3.5.1 Suppose Pv2V p0(v)p1(v) � �=50N . Let V1 def= fv 2 V : p0(v) < p1(v)g andV2 = V n V1. Then, the number of edges with both end-points in the same V� is bounded above by�dN .Proof Sketh: Consider an edge (u; v) where, without loss of generality, both u and v are in V1.Then, both p1(v) and p1(u) are greater than 12 � 12N . However, one an show that p0(v) > 13d � p1(u):Observe that an (L � 1)-step walk of path-parity 1 ending at u is almost as likely as an L-stepwalk of path-parity 1 ending at u, and that one an (L� 1)-step walk reahes u, with probability17



exatly 1=2d, it ontinues to v in the next step. Thus, the edge (u; v) ontributes at least (1=4N)23dto the sumPw2V p0(w)p1(w). It follows that we an have at most (�=50N)=(1=48dN2) suh edges,and the laim follows. 2Claim 3.5.2 Suppose Pv2V p0(v)p1(v) � �=50N , and that Step (2) is started with vertex s.Then, with probability at least 2=3, the set R0 \R1 is not empty (and rejetion follows).Proof Sketh: Consider the probability spae de�ned by an exeution of Step (2) with start vertexs. For every i 6= j suh that i; j 2 [K℄, we de�ne an indiator random variable �i;j representing theevent that the vertex enountered in the Lth step of the ith walk equals the vertex enountered inthe Lth step of the jth walk, and that the ith walk orresponds to an even-path whereas the jth toan odd-path. (That is, �i;j = 1 if the foregoing event holds, and �i;j = 0 otherwise.) ThenE[jR0 \R1j℄ > Xi 6=j E[�i;j℄= K(K � 1) �Xv2V p0(v)p1(v)> 500N� �Xv2V p0(v)p1(v)� 10where the seond inequality is due to the setting of K, and the third to the laim's hypothesis.Intuitively, with high probability, it should hold that jR0 \ R1j > 0. This is indeed the ase, butproving it is less straightforward than it seems; the problem being that the �i;j's are not pairwiseindependent. Yet, sine the sum of the ovarianes of the dependent �i;j's is quite small, Chebyshev'sInequality is still very useful (f. [11, Se. 4.3℄). Spei�ally, letting � def= Pv2V p0(v)p1(v) (=E[�i;j℄), and �i;j def= �i;j � �, we get:Pr24Xi 6=j �i;j = 035 < Var hPi 6=j �i;ji(K2�)2= 1K4�2 �0�Xi;j E h�2i;ji+ 2Xi;j;kE h�i;j�i;ki1A< 1K2� + 2K�2 � E[�1;2�1;3℄For the seond term, we observe that Pr[�1;2=�1;3=1℄ is upper bounded by Pr[�1;2=1℄ = � timesthe probability that the Lth vertex of the �rst walk appears as the Lth vertex of the third path.Using the rapid mixing hypothesis, we upper bound the latter probability by 2=N , and obtainPr[jR0 \R1j = 0℄ < 1K2� + 2K�2 � � � 2N< 13where the last inequality uses � � �=50N and K2 � 6 � 50N=� (along with � > 5000=N). The laimfollows. 2 18



Beyond rapid mixing graphs. The proof in [35℄ refers to a more general sum of produts; thatis, Pu2U podd(u)peven(u), where U � V is an appropriate set of verties, and podd(v) (respetively,peven(v)) is essentially the probability that an L-step random walk (starting at s) passes through vafter more than L=2 steps and the orresponding path to v has odd (respetively, even) parity. Muhof the analysis in [35℄ goes into seleting the appropriate U (and an appropriate starting vertex s),and pasting together many suh U's to over all of V. Loosely speaking, U and s are seleted sothat there are few edges from U and the rest of the graph, and podd(u)+peven(u) � 1=pjVj � jUj, forevery u 2 U. The seletion is based on the \ombinatorial treatment of expansion" of Mihail [49℄.Spei�ally, we use the ontrapositive of the standard analysis, whih asserts that rapid mixingours when all uts are relatively large, to assert the existene of small uts whih partition thegraph so that verties reahed with relatively high probability (in a short random walk) are on oneside and the rest of the graph on the other. The �rst set orresponds to the aforementioned U andthe ut is relatively small with respet to U. A start vertex s for whih the orresponding sum isbig is shown to ause Step (2) to rejet (when started with this s), whereas a small orrespondingsum enables to 2-partition U while having few violating edges among the verties in eah part ofU. The atual argument of [35℄ proeeds in iterations. In eah iteration a vertex s for whih Step (2)aepts with high probability is �xed, and an appropriate set of remaining verties, U, is found.The set U is then 2-partitioned so that there are few violating edges inside U. Sine we want topaste all these partitions together, U may not ontain verties treated in previous iterations. Thisompliates the analysis, sine it must refer to the part of G, denoted H, not treated in previousiterations. We onsider walks over an (imaginary) Markov Chain representing the H-part of thewalks performed by the algorithm on G. Statements about rapid mixing are made with respet tothe Markov Chain, and linked to what happens in random walks performed on G. In partiular, asubset U of H is determined so that the verties in U are reahed with probability � 1=pjVj � jUj(in the hain) and the ut between U and the rest of H is small. Linking the sum of produtsde�ned for the hain with the atual walks performed by the algorithm, we infer that U may bepartitioned with few violating edges inside it. Edges to previously treated parts of the graphs areharged to these parts, and edges to the rest of H nU are aounted for by using the fat that thisut is small (relative to the size of U).4 The General Graph ModelIn ontrast to the foregoing two models in whih the orale queries and the distanes between graphsare linked to the representation of graphs as funtions, in the following model the representationis blurred and the query types and distane measure are deoupled. This deoupling makes theurrent model loser in spirit to standard studies in graph algorithms.Giving up on the representation as a yardstik for the relative distane between graphs, leavesus with no absolute point of referene. Instead, we just de�ne the relative distane between graphsin relation to the atual number of edges in these graphs; spei�ally, the relative distane betweenthe graphs G = ([N ℄; E) and G0 = ([N ℄; E) may be de�ned as jE4E0jmax(jEj;jE0j) (or, alternatively, asjE4E0j(jEj+jE0j)=2 ).16Turning to the question of query types, we again need to make a hoie, whih is now freefrom representation onsiderations. The most natural hoie is to allow both adjaeny queriesand inidene queries (i.e., the two types of queries that were eah allowed in one of the previous16Needless to say, these two de�nitions may not yield the same result, but they are related by a fator of at most 2.19



queries).17 However, other hoies has been onsidered too (f. [17℄). We note that, typially,adjaeny queries beome more useful as the graph beomes more dense, whereas inidene queries(a.k.a neighbor queries) beome more useful as the graph beomes more sparse (f. [17℄).De�nition 4.1 (testing graph properties in the general model): A tester for a graph property � isa probabilisti orale mahine that, on input parameters N and � and aess to a funtion answeringadjaeny queries and inidene queries regarding an N -vertex graph G = ([N ℄; E), outputs a binaryverdit that satis�es the following two onditions.1. If G 2 � then the tester aepts with probability at least 2=3.2. If G is �-far from � then the tester aepts with probability at most 1=3, where G is �-farfrom � if for every N -vertex graph G0 = ([N ℄; E0) 2 � it holds that the symmetri di�erenebetween E and E0 has ardinality that is greater than � �max(jEj; jE0j).One-sided testers and non-adaptive testers are de�ned as in De�nition 2.1.The query omplexity of a tester is de�ned as in Setion 2; ditto for its eÆieny.The study of property testing in the general graph model was initiated by Parnas and Ron [52℄,who only onsidered inidene queries, and extended by Kaufman, Krivelevih, and Ron [46℄,who onsidered both types of queries. Needless to say, the aim of these works was to allow theonsideration of arbitrary graphs and so strengthen the relation between property testing andstandard algorithmi studies. However, forsaking the paradigm of representing graphs as funtionsmeans that the onnetion to the rest of property testing is a bit weakened (or at least beomesmore umbersome). Still, we believe that the trade-o� is worthwhile.4.1 A Taste of the Known ResultsIt is natural to attempt to extend testers designed for the bounded-degree model to the generalgraph model. Suh extensions fae two potential diÆulties, whih refer to two ways in whih thegeneral graph model extends the bounded-degree model:1. Firstly, the maximum degree of verties in the graph may no longer be onstant, and thequestion is how does the performane of the tester depends on the degree bound, d. Formally,one should think of the degree bound d as a variable, and analyze the tester aordingly.Note that when d inreases, relative distanes derease and so testing may beome easier. Onthe other hand, we an no longer san all neighbors of a given vertex at onstant ost.2. Treating the maximum degree as a variable, raises the question of what happens when thereis a signi�ant disrepany among the degrees of the various verties. Suh a situation anbreak the balane between the aforementioned positive and negative e�ets of inreasing themaximum degree. Spei�ally, the algorithmi operations may beomes more ostly whenthe maximum degree inreases, but when using the distane measure of De�nition 4.1 thedistanes no longer vary with the maximum degree (i.e., d) but rather vary with the averagedegree. Thus, we may be in trouble if the maximum degree is signi�antly larger than theaverage degree.17Reall that the inidene query (u; i) is answered with 0 if u has less than i neighbors. Thus, the inidene queriesallow to emulate degree queries at logarithmi ost. 20



The e�et of the foregoing issues is tester-dependent. For example, the operation of the Connetivitytester (outlined in x3.1.1) is not a�eted by the possible disrepanies in the vertex degrees, and sothis tester (as is) applies also to the general graph model (f. [52℄). In ontrast, the Bipartitenesstester presented in Algorithm 3.4 should be modi�ed to the urrent setting. Details follow.4.2 A Benhmark: Testing BipartitenessFirstly, it was shown in [46℄ that the algorithm's performane does not deteriorate when d inreases.Next, an algorithm for the general graph model was obtained by emulating Algorithm 3.4 onan imaginary graph that is obtained by replaing verties of high degree by adequate gadgets.Spei�ally, a vertex having degree that is t times larger than the average degree is replaed by at-by-t bipartite expander graph, while onneting the original neighbors to verties on one of thesides of the expander (suh that no vertex has degree greater than twie the average degree). Thisreplaement preserves the distane to Bipartiteness (up to a onstant fator). We warn thatimplementing the emulation (of Algorithm 3.4 on this imaginary graph) is not straightforward. Inpartiular, it seems to require a proedure for sampling edges in the atual graph suh that almostall edges are sampled with probability that is approximately (up to a onstant fator) the uniformone.18 For details, see [46℄.As evident from the above desription, the extension of a tester from the bounded-degree modelto the general graph model may require ideas that are spei� to the property at hand. For example,the gadgets used above should preserve Bipartiteness (as well as distane to Bipartiteness).Another issue that arises is that one may hope to perform better when the degree bound d(whether maximum or average) is large. Indeed, we know that in ase of Bipartiteness, densegraphs an be tested with muh fewer queries than sparse graphs (reall Algorithm 2.3). Thus, anoptimal tester for the general graph model should be able to math the result of the dense graphmodel whenever the atual graph happens to be dense. Suh a result is indeed provided by [46℄,who show a Bipartiteness tester (for the general graph model) that is optimal for all possibleedge densities.Theorem 4.2 (Testing Bipartiteness in the General Graph Model [46℄): Ignoring fators that arepolynomial in ��1 logN , the query (and time) omplexity of testing Bipartiteness is min(pN;N2=M),where M denotes the number of edges in the input graph.Note that dealing with M � N3=2 requires some deviation from the aforementioned emulation(of Algorithm 3.4). Indeed, in suh a ase the tester of [46℄ behaves quite di�erently. Spei�-ally, it takes K = pN2=M random walks (rather than N2=M random walks), from eah randomstart vertex, and heks for ollisions among the endpoints these K walks by using �K2 � adjaenyqueries. We mention that the use of adjaeny queries is neessary for an o(pN) query tester ofBipartiteness.An opposite behavior. In ontrast to the ase of testing Bipartiteness, where the omplexityimproves with the edge density, in the ase of testing triangle-freeness we see the opposite behav-ior [5℄.19 Furthermore, in ontrast to testing Bipartiteness, there is a gap between the omplexityof testing triangle-freeness in the bounded-degree model and the orresponding omplexity in the18A more aurate sampling proedure is impliit in the subsequent work of [37℄.19This is to be expeted in light of the fat that testing triangle-freeness has omplexity O(d=�) in the bounded-degree model [34℄, whereas in the dense graph model testing triangle-freeness requires more than poly(1=�) queries [1℄.21



general graph model even when the graph is sparse (i.e., M = O(N)). For example, in the generalgraph model, the omplexity is 
(N1=3) as long as M = N2�o(1) [5℄.4.3 ReetionsThe bulk of algorithmi researh regarding graphs refers to general graphs. Of speial interest aregraphs that are neither very dense nor have a bounded degree. In ontrast, researh in testingproperties of graphs started (in [32℄) with the study of dense graphs, proeeded to the study ofbounded-degree graphs (in [34℄), and reahed general graphs only in [52, 46℄. This evolution hashistorial reasons to be reviewed �rst.Testing graph properties was initially oneived (in [32℄) as a speial ase of the framework oftesting properties of funtions. Thus, graphs had to be represented by funtions, and two standardrepresentations of graphs (indeed, the two reviewed in Setions 2 and 3) seemed most �tting in thisontext. We stress that both models were formulated in a way that identi�es the graphs with aspei� funtional representation, whih in turn de�nes the type of queries allowed to the tester aswell as the notion of frational distane (whih underlies the performane guarantee).The identi�ation of graphs with any spei� funtional representation was abandoned by Par-nas and Ron [52℄ who developed a more general model by deoupling the type of queries allowedto the tester from the distane measure: Whatever is the mehanism of aessing the graph, thedistane between graphs is de�ned as the number of edges in their symmetri di�erene (ratherthan the number of di�erent entries with respet to some spei� funtional representation). Fur-thermore, the relative distane may be de�ned as the size of the symmetri di�erene divided bythe atual (total) number of edges in both graphs (rather than divided by some (possibly non-tight)upper-bound on the latter quantity). Also, as advoated by Kaufman et al. [46℄, it is reasonableto allow the tester to perform both adjaeny and neighbor queries (and indeed eah type of querymay be useful in a di�erent range of edge densities). Needless to say, this model seems adequate forthe study of testing properties of arbitrary graphs, and it stritly generalizes the positive aspets ofthe two prior models (i.e., the models based on the adjaeny matrix and bounded-degree inidenelist representations).We wish to advoate further study of the latter model. We believe that this model, whihallows for a meaningful treatment of property testing of general graphs, is the one that is mostrelevant to omputer siene appliations. Furthermore, it seems that designing testers in thismodel requires the development of algorithmi tehniques that may be appliable also in otherareas of algorithmi researh. As an example, we mention that tehniques in [46℄ underly theaverage degree approximation of [37℄. (Likewise tehniques of [34℄ underly the minimum spanningtree weight approximation of [23℄; indeed, as noted next, the bounded-degree inidene list modelis also more algorithmi oriented than the adjaeny matrix model.)Let us fous on the algorithmi ontents of property testing of graphs. Reall that, whenignoring a quadrati blow-up in the query omplexity, property testing in the adjaeny matrixrepresentation redues to sheer ombinatoris (as reeted in the notion of anonial testers, seeTheorem 2.2). Indeed, as shown in [38℄, a �ner look (whih does not allow for ignoring quadratiblow-ups in omplexity) reveals the role of algorithmi design also in this model. But still propertytesting in the inidene list representation seems to require more sophistiated algorithms. Testersin the general graph models seem to require even more algorithmi ideas (f. [46℄).To summarize, we advoate further study of the model of [52, 46℄ for two reasons. The �rstreason is that we believe in the greater relevane of this model to omputer siene appliations. Theseond reason is that we believe in the greater potential of this model to have ross fertilization with22



other branhes of algorithmi researh. Nevertheless, this advoation is not meant to underminethe study of the dense graph and bounded-degree models. The latter have their own merits andalso o�er a host of interesting open problems, whih are potentially relevant to omputer sieneat large.5 Additional IssuesIn this setion we disuss three issues that are relevant to eah of the three models disussed in theprior orresponding three setions.5.1 Direted GraphsSo far our disussion was on�ned to undireted graphs. Nevertheless, the three models extendnaturally to the ase of direted graphs. Atually, when onsidering inidene queries, two di�erentsub-models emerge (f. [16℄): In the �rst model the tester may only query for edges in the forwarddiretion (resp., bakward diretion), whereas in the seond model both forward and bakwarddiretions are allowed. That is, in the seond model, the direted graph G = ([N ℄; E) is representedby two funtions, gout and gin, suh that gout(u; i) = v (resp., gin(u; i) = v) if the ith out-going edgeof u leads to v (resp., the ith in-oming edge of u arrives from v).The gap between these two query models was demonstrated by Bender and Ron, who initiatedthe study of testing properties of direted graphs [16℄. In partiular, they showed that while strongonnetivity in bounded-degree direted graphs an be tested by eO(1=�) forward and bakwardqueries [16, Se. 5.1℄, when only forward (resp., bakward) queries are allowed no tester an workwith o(pN) queries (even when allowing two-sided error [16, Se. 5.2℄).20Another task studied in [16℄ is testing whether a given direted graph is ayli (i.e., has nodireted yles). They presented an Ayliity tester of poly(1=�) omplexity in the adjaenyprediate model, and showed that in the inidene list model no Ayliity tester an workwith o(N1=3) queries (even when both forward and bakward queries are allowed). The questionof whether Ayliity an be tested with o(N) queries (in the bounded-degree digraph model)remains open. In general, it seems that the study of this model deserves more attention than it hasreeived so far. (We mention that testing direted graphs in the dense digraph model was furtherstudied in [6, 51℄.)5.2 Tolerant Testing and Distane ApproximationReall that property testing alls for distinguishing objets having a predetermined property fromobjet that are far from any objets that has this property (i.e., are far from the property). A more\tolerant" notion requires distinguishing objets that are lose to having the property from objetsthat are far from this property. Suh a distinguisher is alled a tolerant tester, and is a speialase of a distane approximator that given any objet is required to approximate its distane to theproperty. The study of these related notions was initiated by Parnas, Ron, and Rubinfeld [53℄.De�nition 5.1 (sketh for the generi ase): Let � be a set of funtions over a �nite set 
. Adistane approximator for � is a probabilisti orale mahine T that on input an approximation20The lower bound an be strengthened to 
(N) when onsidering only one-sided error testers. In the ase oftwo-sided error, some improvements are possible; see Appendix A.3.23



parameter � and aess to any funtion f outputs with probability at least 2=3 a value that approxi-mates the relative distane of f to � up to an additive term of �; that is, Pr[jT f�Æ�(f)j � �℄ � 2=3,where Æ�(f) def= ming2�fÆ(f; g)g and Æ(f; g) def= Prx2
[f(x) 6= g(x)℄.A simple observation is that any tester that makes uniformly distributed queries o�ers some levelof tolerane. Spei�ally, if a tester makes q(�) queries and eah query is uniformly distributed,then this tester distinguishes between objets that are �-far from the property and objets thatare (�=10q(�))-lose to the property. Needless to say, the hallenge is to provide stronger relationsbetween property testing and distane approximators. Suh a result was provided by Fisher andNewman [29℄: They showed that, in the dense graph model, testability in a number of queriesthat only depends on � implies distane approximator in a number of queries that only depends on�. In the the bounded-degree model, many of the known testers were extended to yield distaneapproximators (f. [48℄).5.3 Proximity Oblivious TestingNote that in order to satisfy the property testing requirement, any tester (of a reasonable property)must obtain the proximity parameter as auxiliary input and determine its ations aordingly. Thequestion, addressed here, is what does the tester do with this parameter (or how does the parametera�et the ations of the tester). A very minimal e�et is exhibited by testers that, based on thevalue of the proximity parameter, determine the number of times that a basi test is invoked, wherethe basi test is oblivious of the proximity parameter. For example, the elebrated linearity testerof [19℄ repeats a basi test that onsists of seleting two random points, x and y, and probing thevalue of the funtion at the points x; y, and x+y. This basi test is repeated for a number of timesthat is inversely proportional to the proximity parameter.Our fous here is on suh basi tests (i.e., basi tests that are oblivious of the proximity param-eter), alled proximity oblivious testers. Although proximity oblivious testers were impliit in priorworks (see, e.g., [19, 2, 3℄), their general study was initiated by Goldreih and Ron [39℄.De�nition 5.2 (sketh for the generi ase): Let � be a set of funtions over a �nite set 
. Aproximity-oblivious tester for � is a probabilisti orale mahine T that, when given orale aess toany funtion f over 
, satis�es the following two onditions:1. The mahine T aepts eah funtion in � with probability 1.2. For some (monotone) funtion � : (0; 1℄ ! (0; 1℄, eah funtion f 62 � is rejeted by T withprobability at least �(Æ�(f)), where Æ�(f) is as in De�nition 5.1.The funtion � is alled the detetion probability of the tester T .Indeed, we require that �(�) > 0 for every � > 0, whereas extending Item 2 to f 2 � (whileavoiding ontradition with Item 1) mandates extending � so that �(0) = 0. The requirement that� is monotone (i.e., monotonially inreasing) does not rule out ases where the tight lower-boundis non-monotone (e.g., [14℄), beause � is not required to be tight.Indeed, using a proximity-oblivious tester T , we an obtain a standard (one-sided error) tester(of error probability at most 1/3). Spei�ally, given the proximity parameter �, the standard testerinvokes T for �(1=�(�)) times, and aepts if and only if all these invoations aept. Two naturalquestions regarding proximity oblivious testers are:1. Whih properties have proximity oblivious tests (of small query omplexity)?24



2. How does the detetion probability of suh tests grow as a funtion of the distane of the objetfrom the property, and how does this relate to the query omplexity of the best (standard)tester for the orresponding property.Goldreih and Ron [39℄ provide a mix of positive and negative results regarding the foregoing ques-tions. In partiular, they provide a haraterizations of the graph properties that have onstant-query proximity-oblivious testers in the two main models disussed in this artile (i.e., the densegraphs model and the bounded-degree graph model). It follows that onstant-query proximity-oblivious testers do not exist for many easily testable properties (e.g., Bipartiteness in the densegraph model). Also, even when proximity-oblivious testers exist, repeating them does not nees-sarily yield the best standard testers for the orresponding property (e.g., Clique Colletion inthe dense graph model).AknowledgmentsWe are grateful to Tali Kaufman, Mihael Krivelevih, Dana Ron, Asaf Shapira, and Omer Tamuzfor useful omments and suggestions regarding this artile.
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Appendix: In Passing { Three Unrelated ObservationsThe following three observations ourred to us in the proess of writing this artile.A.1 Testing Degree Regularity in the Dense Graph ModelWe improve the eO(��3) query upper bound of [32, Prop. 10.2.1.3℄ to an optimal quadrati bound.Proposition A.1 In the dense graph model, degree regularity an be tested in O(��2) non-adaptivequeries.Proof: We start by reviewing the eO(��3)-query tester presented in the proof of [32, Prop. 10.2.1.3℄.This tester selets O(1=�) random verties, and estimates the degree of eah of them up to ��N=100using a sample of s = eO(1=�2) random verties (and making the orresponding s queries). Thistester aepts if and only if all these estimates are at most �N=20 apart. The analysis is basedon the observation that if the tester aepts with high probability, then all but �0N verties havedegree that is within ��0N units of some value, where �0 = �=13. By omitting and adding at most�0N2 verties (i.e., from/to the exeptional verties), we reah a situation in whih all verties havedegrees that at most D def= 4�0N units apart. At this point, we are done by applying a theoremof Noga Alon (f. [32, Apdx. D℄) that asserts that suh a graph is ((3D=N) + o(1))-lose to beingregular.We improve the foregoing upper bound as follows. For a suÆiently large onstant , let` def= log2(=�), and onsider an algorithm that, for every i 2 [`℄, proeeds as follows:1. The algorithm selets uniformly  � 2i verties, and estimates the degree of eah of theseverties up to �24i=5� �N= units by using a sample of si def= 3 � 2�3i=2��2 random verties.Note that with probability at least1�  � 2i � exp(�2si � (24i=5�=)2) = 1�  � 2i � exp(�2 � 2i=10)> 1� 2�i�all these estimates are as desired.2. If two of these estimates are more than 21+(4i=5)� �N units apart, then the algorithm rejets.(The algorithm aepts if and only if it does not rejet in any of these ` iterations.) The queryomplexity of this algorithm is Pi2[`℄ 2i � 32�3i=2��2 = O(��2), and it aepts eah regular graphwith high probability (i.e., whenever all the foregoing degree estimates are adequate).On the other hand, if a graph is aepted with high probability, then, for every i 2 [`℄, it holdsthat all but at most a 2�i fration of the verties have degree that is within 21+4i=5� � N= of theaverage degree, denoted �. For eah value of i 2 [`℄, let us denote the set of deviating verties byBi; that is, eah vertex in [N ℄ n Bi has degree (� � 21+4i=5�=) �N . Thus (dealing separately witheah Bi n Bi+1 as well as with B` and [N ℄ n B1), we may omit at most 40�N2= edges from thegraph, and obtain a graph in whih every vertex has degree at most (�+2�=)N . Next, by addingat most 42�N2= edges to the graph, we an obtain a graph in whih every vertex has degree atleast (��2�=)N , and if we add these edges uniformly (among the verties) then eah vertex in theresulting graph has degree (�� 44�=)N . At this point we an apply the result of aforementionedresult of Noga Alon, and be done. 30



A.2 Non-Adaptive Testers in the Bounded-Degree Graph ModelReall that, for any funtion q, if a property an be tested in o(pN � q(�)) non-adaptive queries inthe bounded-degree graph model, then it depends only on the vertex degree distribution [54℄. Inontrast, we show that triangle-freeness an be tested by O(pN=�) non-adaptive queries (in thesame model).The tester selets at random O(pN=�) verties, queries for the neighbors of eah of them, andaepts if and only if the subgraph disovered ontains no triangles. Note that if the input graph is�-far from triangle-freeness, then it ontains 
(�N) triangles, whereas a random sample of O(pN=�)verties is likely to hit two verties of suh a triangle.The argument an be extended to testing H-freeness,21 for any �xed H, with O((N=�)1� 1�(H) )non-adaptive queries, where �(H) denotes the minimum vertex over of H. In this ase, if theinput graph is �-far from being H-free, then a sample of O((N=�)1� 1�(H) ) random verties is likelyto hit all verties in a vertex over of one of the opies of H. A more general statement, withweaker quantitative bounds, follows.Proposition A.2 Let � be a graph property having a q-query proximity-oblivious tester of detetionprobability �, in the bounded-degree model. Then, in this model, � an be tested by O(N q�1q =�(�))non-adaptive queries.Atually, Proposition A.2 holds also when q is an upper bound on the number of di�erent vertiesthat appear in the queries of the proximity-oblivious tester.Proof: The main observation is that a sample of O(N1�(1=q)) verties (along with the neighborqueries that orrespond to eah vertex) is likely to allow for the emulation of a random exeution ofthe proximity-oblivious tester (POT). Spei�ally, given a q-query POT, we onsider the followingnon-adaptive POT:1. Selet a random sample of O(N1�(1=q)) verties, denoted S, and query the neighborhood ofeah vertex in S. For every (v; i) 2 S � [d℄, denote the orale answer by �i(v).These are all the queries made by the new POT, and the following steps only involve om-putations (and no atual queries).2. Selet and �x random oins for T , deriving a residual deterministi orale mahine T 0.3. Let S = fs1; :::; sjSjg, and S def= f(s(i�1)q+1; :::; siq) : i 2 [jSj=2q℄g; that is, S onsists ofq-sequenes of elements in S suh that no element appears twie.For every (v1; :::; vq) 2 S, try to emulate an exeution of T using the information obtained inStep 1. For j = 1; :::; q, proeed as follows, where initially the permutation � : [N ℄ ! [N ℄ istotally undetermined.(a) Obtain the jth query of T 0, denoted (uj ; ij).If � is undetermined on uj , then determine �(uj) = vj .If � is determined on uj and �(uj) 62 S, then this emulation is terminated.Thus, the algorithm proeeds to Step 3b only if �(uj) 2 S, whereas in this ase the valueof �ij (�(uj)) is known.21Here, we refer to subgraph freeness. 31



(b) Let aj = �ij (�(uj)), and suppose that aj 2 [N ℄ (as otherwise we provide aj as the oraleanswer to T 0, and proeed to the next iteration).22 If ��1 is undetermined on aj, thenselet at random a vertex u suh that � is undetermined on u, and determine �(u) = aj .Provide u as the orale answer to T 0, and proeed to the next iteration.Note that it is quite likely that aj 62 S, and in this ase if T 0 subsequently issues a queryof the form (u; �) then the emulation will be terminated (in the orresponding exeutionof Step 3a).If the urrent emulation is suessfully ompleted, then halt and output the orrespondingverdit of T 0. Otherwise, proeed to the next (v1; :::; vq) 2 S, while resetting � to be totallyundetermined.4. If no emulation is suessfully ompleted, then halt and output the verdit 1 (i.e., aept).Eah exeution of Step 3b may yield a value aj 62 S, with probability at least 1�(jSj=N). However,with probability at least jSj=2N , it holds that aj 2 S. Thus, for eah (v1; :::; vq) 2 S, we ompletean emulation of T 0 (in Step 3) with probability at least (jSj=2N)q�1 � 1=jSj. Furthermore, suhan emulation orrespond to the exeution of T 0 on a random isomorphi opy of the input graph.To see that, with high probability, at least one of the jSj emulations is ompleted, we onsiderall jSj emulations simultaneously. Let u(i)1 ; :::; u(i)q denote the sequene of verties that our in theith emulation, and let �(i) denote the orresponding permutation. We partition the jSj=2 samplesthat do not appear in S into q equal sets, denoted S1; :::; Sq, and terminate the ith emulation initeration j < q if a(i)j 62 Sj. (Indeed, this only makes early termination more likely; f. Step 3b.)Still, on an show by indution on j, that with high probability the number of emulations thatare not terminated by iteration j exeeds jSj � (jSj=4qN)j . Furthermore, the queries issued in thej + 1st iteration are mostly di�erent, beause they are determined based on di�erent sequenes inS. Using jSj � (jSj=4qN)q�1 > 1, we onlude that, with high probability, there exists an emulationthat does not terminate before the last iteration.It follows that the foregoing non-adaptive POT has detetion probability at least �=2. Applyingthis POT forO(1=�(�)) times, we obtain a non-adaptive tester of query omplexityO(N1�(1=q)=�(�)).Conlusion. Reall that all subgraph-freeness properties do have a proximity-oblivious testers ofonstant-query omplexity in the bounded-degree graph model. Our onlusion is that non-adaptivetesters are not totally useless in that model.A.3 Testing Strong Connetivity with Forward Queries OnlyWe show that, for any onstant � > 0, strong onnetivity in bounded-degree digraphs an betested by using N1�
(1) forward queries (and no bakward queries). Needless to say, the sameholds for using only bakward queries, and in both ases the tester has two-sided error (whih isunavoidable).23Proposition A.3 In the direted bounded-degree model where only forward queries are allowed,strong onnetivity an be tested in query omplexity exp(1=�)�N1� 1t , where t = d4=�de�d < d+(1=�)and d is the in-degree and out-degree bound.22Reall that in this ase aj is a �xed indiation that the relevant vertex has less than ij neighbors.23The distributions used in [16, Se. 5.2℄ an be used to prove an 
(N) query bound for one-sided error. The pointis that we an �nd no diret evidene to the fat that a vertex has in-degree zero.32



Proof Sketh: Our starting point is the observation that if a graph is �-far from being stronglyonneted, then it ontains at least �dN=4 soure and sink omponents eah ontaining at mostd4=�de verties (f. [16, Cor. 9℄).24 The easy ase is when the graph ontains at least �dN=8 smallsink omponent, sine these are easy to detet by forward queries. The problemati ase is the onein whih the graph ontains �dN=8 soure omponents, and we start by onsidering the simple asein whih eah of these soure omponents onsists of a single vertex.In the latter ase we an estimate the number of verties having in-degree zero, by estimatingthe number of verties having in-degree d, d� 1, all through 1. To estimate the number of vertieshaving in-degree i > 1, we estimate the number of i-way ollisions at the head of randomly seleted25direted edges, and use the information we already gathered regarding in-degree j for every j > i.The number of verties having in-degree 1 is estimated by estimating the ollisions between auniformly seleted vertex and the vertex at the head of a uniformly seleted random edge. Notethat, for every i � 2, the number of i-way ollisions an be estimated by a sample of size O(N1� 1i ).In the foregoing, we have relied on the fat that a vertex has zero in-degree if and only if it isa soure vertex, and on the hypothesis that many soure verties exist. But, in general, we onlyknow that there are many small soure omponents. So the intuitive idea is to \ontrat" all smallomponents, and onsider in-oming edges at the omponent level. One small diÆulty is that weannot determine the omponents of the input graph, and so the following modi�ation is used.For every vertex v, we let Cv denote the set of verties u suh that v and u reside on a diretedyle of size at most s def= d4=�de. We say that v is good if for every u 2 Cv it holds that Cu = Cv.Note that, given a vertex v, we an determine Cv as well as whether v is good by using ds queries.Also note that every vertex that resides in a small soure omponent is good. We now emulatethe foregoing proedure on the direted graph in whih for every good v the set Cv is ontratedto a new vertex, and note that a vertex has in-degree zero in the resulting graph if and only if itrepresents a small soure of G. Noting that the maximum degree in this graph is s � s, the laimfollows.Conlusion. Our lesson is that some non-trivial testing an be arried out also in the model thatallows forward queries only.

24Throughout this proof, the word omponent means a strongly onneted omponent, and soure (resp., sink)omponents are omponents that have no in-oming (resp., out-going) edges.25We may selet a random direted edge by seleting a vertex uniformly, and seleting eah of its out-going edgeswith probability 1=d. 33


