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1 The General ContextIn general, property testing is 
on
erned with super-fast (probabilisti
) algorithms for de
idingwhether a given obje
t has a predetermined property or is far from any obje
t having this property.Su
h algorithms, 
alled testers, obtain lo
al views of the obje
t by making adequate queries; thatis, the obje
t is seen as a fun
tion and the tester gets ora
le a

ess to this fun
tion, and thus maybe expe
ted to work in time that is sub-linear in the size of the obje
t.Looking at the foregoing formulation, we �rst note that property testing is 
on
erned withpromise problems (
f. [26, 30℄), rather than with standard de
ision problems. Spe
i�
ally, obje
tsthat neither have the property nor are far from having the property are dis
arded. The exa
tformulation of these promise problems refers to a distan
e measure de�ned on the set of all relevantobje
ts (i.e., this distan
e measure 
oupled with a distan
e parameter determine the set of obje
tsthat are far from the property). Thus, the 
hoi
e of natural distan
e measures is 
ru
ial to thestudy of property testing. Se
ondly, we note that the requirement that the algorithms operatein sub-linear time (i.e., without reading their entire input) 
alls for a spe
i�
ation of the type ofqueries that these algorithms 
an make to their input. Thus, the 
hoi
e of natural query types isalso 
ru
ial to the study of property testing. These two general 
onsiderations will be
ome 
on
reteon
e we delve into the a
tual subje
t matter (i.e., testing graph properties).1.1 Why Graphs?Let us start with an empiri
al observation, taken from Shimon Even's book Graph Algorithms [25℄(published in 1979):Graph theory has long be
ome re
ognized as one of the more useful mathemati
alsubje
ts for the 
omputer s
ien
e student to master. The approa
h whi
h is natural in
omputer s
ien
e is the algorithmi
 one; our interest is not so mu
h in existen
e proofsor enumeration te
hniques, as it is in �nding eÆ
ient algorithms for solving relevantproblems, or alternatively showing eviden
e that no su
h algorithms exist. Althoughalgorithmi
 graph theory was started by Euler, if not earlier, its development in the lastten years has been dramati
 and revolutionary.Meditating on these fa
ts, one may ask what is the sour
e of this ubiquitous use of graphs in
omputer s
ien
e. The most 
ommon answer is that graphs arise naturally as a model (or anabstra
tion) of numerous natural and arti�
ial obje
ts. Another answer is that graphs help visualizebinary relations over �nite sets. These two di�erent answers 
orrespond to two types of models oftesting graph properties that will be dis
ussed below.1.2 Why Testing?Suppose we are given a huge graph representing some binary relation over a huge data-set (seebelow), and we need to determine whether the graph (equivalently, the relation) has some prede-termined property. Sin
e the graph is huge, we 
annot or do not want to even s
an all of it (letalone pro
ess all of it). The question is whether it is possible to make meaningful statements aboutthe entire graph based only on a \small portion" of it. Of 
ourse, su
h statements will at best beapproximations. But in many settings approximations are good enough.As a motivation, let us 
onsider a well-known example in whi
h fast approximations are possibleand useful. Suppose that some 
ost fun
tion is de�ned over a huge set, and that one wants to obtainthe average 
ost of an element in the set. To be more spe
i�
, let � : S ! [0; 1℄ be a 
ost fun
tion,1



and suppose we want to estimate � def= 1jSjPx2S �(x). Then, uniformly (and independently) sele
t-ing m def= O(��2 log(1=Æ)) sample points, x1; :::; xm, in S we obtain with probability at least 1 � Æan estimate of � within ��. That is,Prx1;:::;xm2S "����� 1m mXi=1 �(xi) � ������ > �# < Æ : (1)Turning ba
k to graphs, we note that they 
apture more 
omplex features of data sets; that is,graphs 
apture relations among pairs of elements (rather then fun
tions of single elements). Spe
if-i
ally, a symmetri
 binary relation R � S � S is represented by a graph G = (S;R), where theelements of S are viewed as verti
es and the elements in R are viewed as edges.The study of testing graph properties reveals that sampling a huge data set may be useful notonly towards approximating various statisti
s regarding a fun
tion de�ned over the set, but alsotowards approximating various properties regarding a binary relation de�ned on this set. As weshall see, in many 
ases, the sampling method used (or at least its analysis) is signi�
antly moresophisti
ated than the one employed in gathering statisti
s of the former type. But before doingso, we wish to further dis
uss the potential bene�t in the notion of approximation underlining thede�nition of property testing.Firstly, being 
lose to a graph that has the property is a notion of approximation that, in 
ertainappli
ations, may be of dire
t value. Furthermore, in some 
ases, being 
lose to a graph havingthe property translates to a standard notion of approximation (see Se
tion 2.2). In other 
ases, ittranslates to a notion of \dual approximation" (see, again, Se
tion 2.2).Se
ondly, in some 
ases, we may be for
ed to take a
tion without having the time to run a de
i-sion pro
edure, while given the option of modifying the graph in the future, at a 
ost proportionalto the number of added/omitted edges. For example, suppose we are given a graph that representssome suggested design, where bipartite graphs 
orrespond to good designs and 
hanges in the de-sign 
orrespond to edge additions/omissions. Using a Bipartiteness tester, we may (with highprobability) a

ept any good design, while reje
ting designs that will 
ost a lot to modify. That is,we may still a

ept designs that are not good, but only su
h that are 
lose to being good and thuswill not 
ost too mu
h to modify later.Thirdly, we may use the property tester as a preliminary stage before running a slower exa
tde
ision pro
edure. In 
ase the graph is far from having the property, with high probability, weobtain an indi
ation towards this fa
t, and save the time we might have used running the de
isionpro
edure. Furthermore, if the tester has one-sided error (i.e., it always a

epts a graph having theproperty) and the tester has reje
ted, then we have obtained an absolutely 
orre
t answer withoutrunning the slower de
ision pro
edure at all. The saving provided by using a property tester asa preliminary stage may be very substantial in many natural settings where typi
al graphs eitherhave the property or are very far from having the property. Furthermore, if it is guaranteed thatgraphs either have the property or are very far from having it then we may not even need to runthe (exa
t) de
ision pro
edure at all.1.3 Three Models of Testing Graph PropertiesA graph property is a set of graphs 
losed under graph isomorphism (renaming of verti
es).1 Let �be su
h a property. A �-tester is a randomized algorithm that is given ora
le a

ess to a graph,1That is, � is a graph property if, for every graph G = (V;E) and every permutation � over V , it holds thatG 2 � if and only if �(G) 2 �, where �(G) def= (V; ff�(u); �(v)g : fu; vg2Eg).2



G = (V;E), and has to determine whether the graph is in � or is far from being in �. The typeof ora
le (equiv., the type of queries allowed) and distan
e-measure depend on the model, and wefo
us on three su
h models:1. The adja
en
y predi
ate model [32℄: Here the �-tester is given ora
le a

ess to a symmetri
fun
tion g : V � V ! f0; 1g that represents the adja
en
y predi
ate of the graph G; that isg(u; v) = 1 if and only if (u; v) 2 E. In this model distan
es between graphs are measureda

ording to their representation; that is, if the graphs G and G0 are represented by thefun
tions g and g0, then their relative distan
e is the fra
tion of pairs (u; v) su
h that g(u; v) 6=g0(u; v).Note that saying that G = ([N ℄; E) is �-far from the graph property � means that for everyG0 2 � it holds that G is �-far from G0. Sin
e � is 
losed under graph isomorphism, this meansthat G is �-far from any isomorphi
 
opy of G0 = ([N ℄; E0); that is, for every permutation �over [N ℄, it holds that jf(u; v) : g(u; v) 6= g0(�(u); �(v))gj > �N2, where g and g0 are as above.Finally, note that this notion of distan
e between graphs is most meaningful in the 
ase thatthe graph is dense (sin
e in this 
ase fra
tions of the number of possible vertex pairs are
losely related to fra
tions of the a
tual number of edges). Thus, this model is often 
alledthe dense graph model.2. The in
iden
e fun
tion model [34℄: Here, for some �xed upper bound d (on the degrees ofverti
es in G), the �-tester is given ora
le a

ess to a fun
tion g : V � [d℄ ! V [ f?g thatrepresents the graph G = (V;E) su
h that g(u; i) = v if v is the ith vertex in
ident at u andg(u; i) = ? if u has less than i neighbors. That is, E = f(u; v) : 9i f(u; i) = vg, where wealways assume that g(u; i) = v if and only if there exists a j 2 [d℄ su
h that g(v; j) = u.Indeed, only graphs of degree at most d 
an be represented in this model, whi
h is 
alled thebounded-degree graph model.In this model too, distan
es between graphs are measured a

ording to their representation,but here the representation is di�erent and so the distan
es are di�erent. Spe
i�
ally, if thegraphs G and G0 are represented by the fun
tions g and g0, then their relative distan
e is thefra
tion of pairs (u; i) su
h that g(u; i) 6= g0(u; i). Again, saying that G = ([N ℄; E) is �-farfrom the graph property � means that for every G0 2 � it holds that G is �-far from G0.Sin
e � is 
losed under graph isomorphism (and the ordering of the verti
es in
ident at ea
hvertex is arbitrary), this means that for every permutation � over [N ℄, it holds thatXu2V jfv : 9i g(u; i) = vg4fv : 9i g0(�(u); i) = �(v)gj > �dN ;where g and g0 are as above, and 4 denotes the symmetri
 di�eren
e (i.e., A4B = (A[B) n(A \B)).3. The general graph model [52, 46℄: In 
ontrast to the foregoing two models in whi
h theora
le queries and the distan
es between graphs are linked to the representation of graphsas fun
tions, in the following model the representation is blurred and the query types anddistan
e measure are de
oupled.The relative distan
e between the graphs G = ([N ℄; E) and G0 = ([N ℄; E) is usually de�nedas jE4E0jmax(jEj;jE0j) ; that is, the absolute distan
e is normalized by the a
tual number of edgesrather than by an absolute upper bound (on the number of edges) su
h as N2=2 or dN=2.3



The types of queries typi
ally 
onsidered are the two types of queries 
onsidered in the previoustwo models. That is, the algorithm may ask whether two verti
es are adja
ent in the graphand may also ask for a spe
i�
 neighbor of a spe
i�
 vertex.Needless to say, the general graph model is the most general one, and it is indeed 
losest to a
tualalgorithmi
 appli
ations.2 The fa
t that this model has so far re
eived relatively little attentionmerely re
e
ts the fa
t that its study is overly 
omplex. Given that 
urrent studies of the othermodels still fa
e formidable diÆ
ulties (and that these models o�er a host of interesting openproblems), it is natural that resear
hers shy away from yet another level of 
ompli
ation.The 
urrent fo
us on query 
omplexity. Although property testing is motivated by referringto super-fast algorithms, resear
h in the area tends to fo
us on the query 
omplexity of testingvarious properties. This fo
us should be viewed as providing an initial estimate to the a
tual
omplexity of the testing problems involved; 
ertainly, query 
omplexity lower bounds imply 
or-responding bounds on the time 
omplexity, whereas the latter is typi
ally at most exponential inthe query 
omplexity. Furthermore, in many 
ases, the time 
omplexity is polynomial in the query
omplexity and this fa
t is typi
ally stated. Thus, we will follow the pra
ti
e of fo
using on thequery 
omplexity of testing, but also mention time 
omplexity upper bounds whenever they are ofinterest.1.4 OrganizationThe following three se
tions are devoted to the three models dis
ussed above: We start with thedense graph model (Se
tion 2), then move to the bounded-degree model (Se
tion 3), and �nally getto the general graph model (Se
tion 4). In ea
h model we review the de�nition of testing (whenspe
ialized to that model), provide a taste of the known results, and demonstrate some of the ideasinvolved (by fo
using on testing Bipartiteness, whi
h seems a good ben
hmark).We 
on
lude this arti
le with a dis
ussion of a few issues that are relevant to all models; thesein
lude the treatment of dire
ted graphs (Se
tion 5.1), the related notions of tolerant testing anddistan
e approximation (Se
tion 5.2), and the notion of proximity oblivious testing (Se
tion 5.3).The appendix presents three observations that o

urred to us in the pro
ess of writing thisarti
le. These refer to testing (degree) regularity in the dense graph model (Appendix A.1), non-adaptive testers in the bounded-degree graph model (Appendix A.2), and testing strong 
onne
-tivity of dire
ted graphs by only using forward queries (Appendix A.3).2 The Dense Graph ModelIn the adja
en
y matrix model (a.k.a the dense graph model), an N -vertex graph G = ([N ℄; E)is represented by the Boolean fun
tion g : [N ℄ � [N ℄ ! f0; 1g su
h that g(u; v) = 1 if and onlyif u and v are adja
ent in G (i.e., fu; vg 2 E). Distan
e between graphs is measured in terms oftheir aforementioned representation (i.e., as the fra
tion of (the number of) di�erent matrix entries(over N2)), but o

asionally one uses the more intuitive notion of the fra
tion of (the numberof) unordered vertex pairs over �N2 �.3 Re
all that we are interested in graph properties, whi
h are2In other words, this model is relevant for most appli
ations, sin
e these seem to refer to general graphs (whi
hmodel various natural and arti�
ial obje
ts). In 
ontrast, the dense graph model is relevant to appli
ations that referto (dense) binary relations over �nite graphs.3Indeed, there is a tiny dis
repan
y between these two measures, but it is immaterial in all dis
ussions.4



sets of graphs that are 
losed under isomorphism; that is, � is a graph property if for every graphG = ([N ℄; E) and every permutation � of [N ℄ it holds that G 2 � if and only if �(G) 2 �, where�(G) def= ([N ℄; ff�(u); �(v)g : fu; vg 2 Eg. We now spell out the meaning of property testing inthis model.De�nition 2.1 (testing graph properties in the adja
en
y matrix model): A tester for a graphproperty � is a probabilisti
 ora
le ma
hine that, on input parameters N and � and a

ess to (theadja
en
y predi
ate of) an N -vertex graph G = ([N ℄; E), outputs a binary verdi
t that satis�es thefollowing two 
onditions.1. If G 2 � then the tester a

epts with probability at least 2=3.2. If G is �-far from � then the tester a

epts with probability at most 1=3, where G is �-farfrom � if for every N -vertex graph G0 = ([N ℄; E0) 2 � it holds that the symmetri
 di�eren
ebetween E and E0 has 
ardinality that is greater than � � �N2 �.If the tester a

epts every graph in � with probability 1, then we say that it has one-sided error. Atester is 
alled non-adaptive if it determines all its queries based solely on its internal 
oin tosses(and the parameters N and �); otherwise it is 
alled adaptive.The query 
omplexity of a tester is the number of queries it makes to any N -vertex graph, as afun
tion of the parameters N and �. We say that a tester is eÆ
ient if it runs in time that ispolynomial in its query 
omplexity, where basi
 operations on elements of [N ℄ (and in parti
ular,uniformly sele
ting an element in [N ℄) are 
ounted at unit 
ost.We stress that testers are de�ned as (uniform)4 algorithms that are given the size parameter Nand the distan
e (or proximity) parameter � as expli
it inputs. This uniformity (over the values ofthe distan
e parameter) makes the positive results stronger and more appealing (espe
ially in lightof a separation result shown in [10℄). In 
ontrast, negative results typi
ally refer to a �xed value ofthe distan
e parameter.The study of property testing in the dense graph model was initiated by Goldrei
h, Goldwasser,and Ron [32℄, as a 
on
rete and yet general framework for the study of property testing at large.From that perspe
tive, it was most natural to represent graphs as Boolean fun
tions, and theadja
en
y matrix representation was the obvious 
hoi
e. This di
tated the 
hoi
e of the typeof queries as well as the distan
e measure. In retrospe
t, the dense graph model seems mostnatural when graphs are viewed as representing generi
 (symmetri
) binary relations (
f. the se
ondmotivation to the study of graphs mentioned in Se
tion 1.1 as well as the dis
ussion of sampling inSe
tion 1.2).2.1 A Taste of the Known ResultsWe �rst mention that graph properties of arbitrary query 
omplexity are known: Spe
i�
ally, inthis model, graph properties (even those in P) may have query 
omplexity ranging from O(1=�)to 
(N2), and the same holds also for monotone graph properties in NP (
f. [33℄).5 In this4That is, we refer to the standard (uniform) model of 
omputation (
f., e.g., [31, Se
. 1.2.3℄), whi
h does not allowfor hard-wiring some parameters (e.g., input length) into the 
omputing devi
e (as done in the 
ase of non-uniform
ir
uit families).5We mention that a full query 
omplexity hierar
hy is established in [33℄ by using unnatural graph properties,starting from the 
(N2) lower bound of [32℄, whi
h also uses an unnatural graph property. In 
ontrast, the 
(N)lower bound established in [27℄ (following [2℄) refers to the natural property of testing whether an N -vertex graph
onsists of two isomorphi
 
opies of some N=2-vertex graph.5



overview, we fo
us on properties that 
an be tested within query 
omplexity that only depends onthe proximity parameter (i.e., �); that is, the query 
omplexity does not depend on the size of thegraph being tested. Interestingly, there is mu
h to say about this 
lass of properties. Let us startwith a brief summary, and provide more details later.1. A 
elebrated result of Alon, Fis
her, Newman, and Shapira [3℄ provides a 
ombinatorial
hara
terization of the 
lass of properties that 
an be tested within query 
omplexity thatonly depends on the proximity parameter. This 
lass 
ontains natural properties that are nottestable in query 
omplexity poly(1=�); see [1℄.2. The prior work of Goldrei
h, Goldwasser, and Ron [32℄ provides a natural 
lass of proper-ties that 
an be tested within query 
omplexity poly(1=�). This 
lass 
onsists of so-
alled\partition problems" and in
ludes sets su
h as k-
olorability, for any �xed k � 2, and graphs
ontaining a 
lique for density �, for any �xed � > 0.3. A relatively re
ent work of Goldrei
h and Ron [38℄ initiates a study of the 
lass of propertiesthat 
an be tested within query 
omplexity eO(1=�).Before providing more details on the foregoing results, we mention that, when disregarding apossible quadrati
 blow-up in the query 
omplexity, we may assume that the tester in 
anoni
al inthe following sense.Theorem 2.2 (
anoni
al testers [40, Thm 2℄):6 Let � be any graph property. If there exists atester with query 
omplexity q(N; �) for �, then there exists a tester for � that uniformly sele
ts aset of O(q(N; �)) verti
es and a

epts i� the indu
ed subgraph has property �0, where �0 is a graphproperty that may depend on N as well as on �. Furthermore, if the original tester has one-sidederror, then so does the new tester, and a sample of 2q(N; �) verti
es suÆ
esIndeed, the resulting tester is 
alled 
anoni
al. We warn that �0 need not equal � (let alone that �0may depend on N), and that the time 
omplexity of the 
anoni
al tester may be signi�
antly largerthan the time 
omplexity of the original tester. Still, in many natural 
ases (e.g., k-
olorability),�0 = �.2.1.1 Testability in q(�) queries, for any fun
tion qAs stated above, a 
elebrated result of Alon et al. [3℄ provides a 
ombinatorial 
hara
terization of the
lass of properties that 
an be tested within query 
omplexity that only depends on the proximityparameter. This 
hara
terization refers to the notion of a regularity instan
e, where regularity is inthe sense of Szeme�redi's Regularity Lemma [57℄. The result essentially asserts that a graph property
an be tested in query 
omplexity that only depends on � if and only if it 
an be 
hara
terized interms of a 
onstant number of regularity instan
es. The lesson from this 
hara
terization is that,when ignoring the spe
i�
 dependen
y on �, testing graph properties in query 
omplexity that onlydepends on � redu
es to graph regularity. This lesson makes more 
on
rete the feeling already raisedby Theorem 2.2 that testing in this model redu
es to 
ombinatori
s.6As pointed out in [10℄, the statement of [40, Thm 2℄ should be 
orre
ted su
h that the auxiliary property �0 maydepend on N and not only on �. Thus, on input N and � (and ora
le a

ess to an N -vertex graph G), the 
anoni
altester 
he
ks whether a random indu
ed subgraph of size s = O(q(N; �)) has the property �0, where �0 itself (orrather its interse
tion with the set of s-vertex graphs) may depend on N . In other words, the tester's de
ision dependsonly on the indu
ed subgraph that it sees and on the size parameter N .6



The downside of the algorithms that emerge from this 
hara
terization is that their query
omplexity is related to the proximity parameter via a fun
tion that grows tremendously fast.Spe
i�
ally, in the general 
ase, the query 
omplexity is only upper bounded by a tower of a towerof exponents (in a monotoni
ally growing fun
tion of 1=�, whi
h in turn depends on the propertyat hand).Interestingly, it is known that a super-polynomial dependen
e on the proximity parameter isinherent to the foregoing result. A
tually, as shown by Alon [1℄, su
h a dependen
e is essential evenfor testing triangle freeness. Indeed, this fa
t provides a ni
e demonstration of the non-trivialityof testing graph properties. One might have guessed that O(1=�) or O(1=�3) queries would havesuÆ
ed to dete
t a triangle in any graph that is �-far from being triangle free, but Alon's resultasserts that this guess is wrong and that poly(1=�) queries do not suÆ
e. We mention that the bestupper bound known for the query 
omplexity of testing triangle freeness is tf(poly(1=�)), wheretf is the tower fun
tion de�ned indu
tively by tf(n) = exp(tf(n� 1)) with tf(1) = 2 (
f. [1℄).Perspe
tive. It is indeed an amazing fa
t that many properties 
an be tested within (query)
omplexity that only depends on the proximity parameter (rather than also on the size of theobje
t being tested). This amazing statement seems to shadow the question of the form of theaforementioned dependen
e, and blurs the di�eren
e between a reasonable dependen
e (e.g., apolynomial relation) and a prohibiting one (e.g., a tower-fun
tion relation). We beg to disagreewith this sentiment and 
laim that, as in the 
ontext of standard approximation problems (
f. [44℄),the dependen
e of the 
omplexity on the approximation (or proximity) parameter is a key issue.We wish to stress that we do value the impressive results of [2, 7, 8, 29℄ (let alone [3℄), whi
hrefer to graph property testers having query 
omplexity that is independent of the graph size butdepends prohibitively on the proximity parameter. We view su
h results as an impressive �rststep, whi
h 
alled for further investigation dire
ted at determining the a
tual dependen
y of the
omplexity on the proximity parameter.While it is 
on
eivable that there exist (natural) graph properties that 
an be tested in exp(1=�)queries but not in poly(1=�) queries, we are not aware of su
h a property.7 We thus move dire
tlyfrom 
omplexities of the form tf(1=�) (and larger) to 
omplexities of the form poly(1=�).2.1.2 Testability in poly(1=�) queriesTesters of query 
omplexity poly(1=�) are known for several natural graph properties [32℄.� k-Colorability, for any �xed k � 2. The query-
omplexity is poly(k=�). For k = 2 therunning-time is eO(1=�3), whereas for k > 2 the running-time is exp(poly(1=�)) (and running-time polynomial in 1=� is unlikely, sin
e k-Colorability is NP-
omplete, for k � 3).The k-Colorability tester has one-sided error; that is, in 
ase the graph is k-
olorable, thetester always a

epts. Furthermore, when reje
ting a graph, this tester always supplies asmall 
ounterexample (i.e., a poly(1=�)-size subgraph that is not k-
olorable).The 2-Colorability (equivalently, Bipartiteness) Tester is presented in x2.3. An improvedanalysis has been obtained by Alon and Krivelevi
h [4℄.� �-Clique, for any �xed � > 0, where �-Clique is the set of graphs that have a 
lique ofdensity � (i.e., N -vertex graphs having a 
lique of size �N).7Needless to say, demonstrating the existen
e of su
h (natural) properties is an interesting open problem.7



� �-CUT, for any �xed � > 0, where �-CUT is the set of graphs that have a 
ut of density atleast � (
ompared to N2).A generalization to k-way 
uts has query-
omplexity poly((log k)=�).� �-Bise
tion, for any �xed � > 0, where �-Bise
tion is the set of graphs that have abise
tion of density at most � (i.e., an N -vertex graph is in �-Bise
tion if its vertex set 
anbe partitioned into two equal parts with at most �N2 edges going between them).Ex
ept for k-Colorability, all the other testers have two-sided error, and this is unavoidable forany tester of o(N) query 
omplexity for any of these properties.All the above property testing problems are spe
ial 
ases of the General Graph Partition TestingProblem, whi
h is parameterized by a set of lower and upper bounds. In this problem one needs todetermine whether there exists a k-partition of the verti
es so that the number of verti
es in ea
hpart as well as the number of edges between ea
h pair of parts falls between the 
orresponding lowerand upper bounds (in the set of parameters). For example, �-
lique is expressible as a 2-partitionin whi
h one part has �N verti
es, and the number of edges in this part is ��N2 �. A tester forthe general problem also appears in [32℄: The tester uses eO(k2=�)2k+O(1) queries, and runs in timeexponential in its query-
omplexity.From testing to sear
hing. Interestingly, the testers for (all 
ases of) the General Graph Par-tition Problem 
an be modi�ed into algorithms that �nd an (impli
it representation of an) approx-imately adequate partition whenever it exists. That is, if the graph has the desired (partitioning)property, then the testing algorithm may a
tually output auxiliary information that allows to re-
onstru
t, in poly(1=�) �N -time, a partition that approximately obeys the property. For example,for �-CUT, we 
an 
onstru
t a partition with at least (� � �) � N2 
rossing edges. We 
ommentthat this notion of an impli
it representation of an adequate stru
ture may be relevant for othersets in NP , where this stru
ture 
orresponds to an NP-witness. (Indeed, an interesting algorithmi
appli
ation was presented in [28℄, where an impli
it partition of an imaginary hypergraph is usedin order to eÆ
iently 
onstru
t a regular partition (with almost optimal parameters) of a givengraph.)Ba
k to testing graph properties. Although many natural graph properties 
an be formulatedas partition problems, many other properties that 
an be tested with poly(1=�) queries 
annot beformulated as su
h problems. The list in
lude the set of regular graphs, 
onne
ted graphs, planargraphs, and more. We identify three 
lasses of su
h natural properties:1. Properties that only depends on the vertex degree distribution (e.g., degree regularity andaverage degree). For example, for any �xed � > 0, the set of N -vertex graphs having �N2edges 
an be tested using O(1=�2) queries, whi
h is the best result possible.8 The same holdswith respe
t to testing degree regularity, where the 
(1=�2) queries lower bound follows byredu
tion to estimating the average value of Boolean fun
tions and a 
orresponding upperbound 
an be obtained by building on the eO(1=�3)-query algorithm presented in the proofof [32, Prop. 10.2.1.3℄.98Both upper and lower bounds 
an be proved by redu
tion to the problem of estimating the average value ofBoolean fun
tions (
f. [22℄).9For the lower bound, 
onsider the problem of distinguishing between a random N -vertex graph in whi
h ea
hvertex has degree either (0:5+ �)N or (0:5� �)N and a random (N=2)-regular N -vertex graph. For the upper bound,see Appendix A.1. 8



2. Properties that are satis�ed only by sparse graphs (i.e., N -vertex graphs having O(N) edges)10su
h as Cy
le-freeness and Planarity. These properties 
an be tested by reje
ting anygraph that is not suÆ
iently sparse (see [32, Prop. 10.2.1.2℄).3. Properties that are almost trivial in the sense that, for some 
onstant 
 > 0 and every � > N�
,all N -vertex graphs are �-
lose to the property. For example, every N -vertex graph is N�1-
lose to being 
onne
ted (or being Hamiltonian or Eulerian). These properties 
an be testedby a

epting any N -vertex graph if � > N�
 (without making any query), and inspe
ting theentire graph otherwise (where, in this 
ase �N2 � = poly(1=�)). (See [32, Prop. 10.2.1.1℄.)In view of all of the foregoing, we believe that 
hara
terizing the 
lass of graph properties that
an be tested in poly(1=�) queries may be very 
hallenging. We mention that the spe
ial 
ase ofindu
ed subgraph freeness properties was resolved in [9℄.2.1.3 Testability in eO(1=�) queriesWhile Theorem 2.2 may be interpreted as suggesting that testing in the dense graph model leaves noroom for algorithmi
 design, this 
on
lusion is valid only if one ignores a possible quadrati
 blow-upin the query 
omplexity (and also disregards the time 
omplexity). As advo
ated by Goldrei
h andRon [38℄, a �ner examination of the model, whi
h takes into a

ount the exa
t query 
omplexity(i.e., 
ares about a quadrati
 blow-up), reveals the role of algorithmi
 design. In parti
ular, theresults in [38℄ distinguish adaptive testers from non-adaptive ones, and distinguish the latter from
anoni
al testers. These results refer to testability in eO(1=�) queries. In parti
ular, it is shownthat:� Testing every \non-trivial for testing" graph property requires 
(1=�) queries, even whenadaptive testers are allowed. Furthermore, any 
anoni
al tester for su
h a property requires
(1=�2) queries.� There exists a natural graph property that 
an be tested by eO(1=�) adaptive queries, requires
(��4=3) non-adaptive queries, and is a
tually testable by O(��4=3) non-adaptive queries.� There exists a natural graph property that 
an be tested by eO(1=�) adaptive queries butrequires 
(��3=2) non-adaptive queries.� There exist an in�nite 
lass of natural graph properties that 
an be tested by eO(1=�) non-adaptive queries.All the above testers have one-sided error probability and are eÆ
ient, whereas the lower boundshold also for two-sided error testers (regardless of eÆ
ien
y).The foregoing results seem to indi
ate that even at this low 
omplexity level (i.e., testing ineO(1=�) adaptive queries) there is a lot of stru
ture and mu
h to be understood. In parti
ular, it is
onje
tured in [38℄ that, for every t � 4, there exists graph properties that 
an be tested by eO(1=�)adaptive queries and have non-adaptive query 
omplexity �(��2+ 2t ).2.1.4 Re
e
tionsLet us re
e
t about some issues that arise from the foregoing exposition.10A
tually, this 
lass 
an be extended by 
onsidering a more relaxed notion of sparseness that in
ludes N -vertexgraphs having O(N2�
(1)) edges. 9



Adaptive testers versus non-adaptive ones. Re
all that Theorem 2.2 asserts that 
anoni
altesters (whi
h are in parti
ular non-adaptive) have query 
omplexity that is at most quadrati
 inthe query 
omplexity of general (possibly adaptive) testers. Still the results surveyed in x2.1.3indi
ate that su
h a gap may exist. An interesting question, raised by Mi
hael Krivelevi
h, iswhether su
h a gap exists also for properties having query 
omplexity that is signi�
antly largerthan eO(1=�). In parti
ular, we mention that testing Bipartiteness, whi
h has non-adaptive query
omplexity e�(��2) (
f. [4, 21℄)11 and requires 
(��3=2) adaptive queries [21℄, may be testable ino(��2) adaptive queries (
f. [41℄).One-sided versus two-sided error probability. As noted above, for many natural propertiesthere is a signi�
ant gap between the 
omplexity of one-sided and two-sided error testers. Forexample, �-CUT has a two-sided error tester of query 
omplexity poly(1=�), but no one-sided errortester of query 
omplexity o(N2). In general, the interested reader may 
ontrast the 
hara
terizationof two-sided error testers in [3℄ with the results in [8℄.A 
ontrast to re
ognizing graph properties. The notion of testing a graph property � isa relaxation of the 
lassi
al notion of re
ognizing the graph property �, whi
h has re
eived mu
hattention sin
e the early 1970's (
f. [47℄). In the 
lassi
al (re
ognition) problem there are no marginsof error; that is, one is required to a

ept all graphs having property � and reje
t all graphs that la
kproperty �. In 1975, Rivest and Vuillemin resolved the Aanderaa{Rosenberg Conje
ture, showingthat any deterministi
 pro
edure for de
iding any non-trivial monotone N -vertex graph propertymust examine 
(N2) entries in the adja
en
y matrix representing the graph. The query 
omplexityof randomized de
ision pro
edures was 
onje
tured by Yao to be 
(N2), and the 
urrently bestlower bound is 
(N4=3). This stands in striking 
ontrast to the aforementioned results regardingtesting graph properties that establish that many natural (non-trivial) monotone graph properties
an be tested by examining a 
onstant number of lo
ations in the matrix (where this 
onstantdepends on the 
onstant value of the proximity parameter).Graph properties are poor 
odes. We note that with the ex
eption of two properties, whi
hea
h 
ontains a single N -vertex graph, the adja
en
y matrix representation of any property �N ofN -vertex graphs yields a 
ode over f0; 1g(N2 ) with relative distan
e at most O(1=N). Spe
i�
ally, if�N neither 
onsists of the N -vertex 
lique nor of the N -vertex independent set, then �N 
ontainsa graph G = ([N ℄; E) that 
ontains two verti
es u; v 2 [N ℄ that have di�erent neighborhoods inG. Consider a permutation � that transposes u and v, while leaving the rest of [N ℄ inta
t, and letG0 = ([N ℄; f�(a); �(b) : (a; b)2Eg). Then G0 2 �N , but G0 is 2N(N2 ) -
lose to G.2.2 Testing versus other forms of ApproximationWe shortly dis
uss the relation of the notion of approximation underlying the de�nition of test-ing graph properties (in the dense graph model)12 to more traditional notions of approximation.Throughout this se
tion, we refer to randomized algorithms that have a small error probability,whi
h we ignore for simpli
ity.11The eO(��2) upper bound is due to [4℄, improving over [32℄, whereas the 
(��2) lower bound is due to [21℄.12Analogous relations hold also in the other models of testing graph properties.
10



Appli
ation to the standard notion of approximation: The relation of testing graph prop-erties to standard notions of approximation is best illustrated in the 
ase of Max-CUT. Any tester forthe set �-CUT, working in time T (�;N), yields an algorithm for approximating the size of the maxi-mum 
ut in an N -vertex graph, up to additive error �N2, in time 1� �T (�;N). Thus, for any 
onstant� > 0, using the above tester of [32℄, we 
an approximate the size of the max-
ut to within �N2 in
onstant time. This yields a 
onstant time approximation s
heme (i.e., to within any 
onstant relativeerror) for dense graphs, whi
h improves over previous work of Arora et al. [12℄ and de la Vega [24℄who solved this problem in polynomial-time (i.e., in O(N1=�2){time and exp( eO(1=�2)) � N2{time,respe
tively). In the latter works the problem is solved by a
tually �nding approximate max-
uts.Finding an approximate max-
ut does not seem to follow from the mere existen
e of a tester for�-
ut; yet, as mentioned above, the tester in [32℄ 
an be used to �nd su
h a 
ut in time linear in N .Relation to \dual approximation" (
f. [44, Chap. 3℄): To illustrate this relation, we
onsider the aforementioned �-Clique Tester. The traditional notion of approximating Max-Clique
orresponds to distinguishing the 
ase in whi
h the max-
lique has size at least �N from, say, the
ase in whi
h the max-
lique has size at most �N=2. On the other hand, when we talk of testing�-Clique, the task is to distinguish the 
ase in whi
h an N -vertex graph has a 
lique of size �Nfrom the 
ase in whi
h it is �-far from the 
lass of N -vertex graphs having a 
lique of size �N . This isequivalent to the \dual approximation" task of distinguishing the 
ase in whi
h an N -vertex graphhas a 
lique of size �N from the 
ase in whi
h any �N subset of the verti
es misses at least �N2edges. To demonstrate that these two tasks are vastly di�erent we mention that whereas the formertask is NP-Hard, for � < 1=4 (see [15, 42℄), the latter task 
an be solved in exp(O(1=�2))-time, forany �; � > 0. We believe that there is no absolute sense in whi
h one of these approximation tasksis more important than the other: Ea
h of these tasks may be relevant in some appli
ations andirrelevant in others.2.3 A Ben
hmark: Testing BipartitenessThe Bipartite tester is extremely simple: It sele
ts a tiny, random set of verti
es and 
he
kswhether the indu
ed subgraph is bipartite.Algorithm 2.3 (Bipartite Tester in the Dense Graph Model [32℄): On input N , � and ora
le a

essto an adja
en
y predi
ate of an N -vertex graph, G = (V;E):1. Uniformly sele
t a subset of eO(1=�2) verti
es of V.2. A

ept if and only if the subgraph indu
ed by this subset is bipartite.Step (2) amounts to querying the predi
ate on all pairs of verti
es in the subset sele
ted at Step (1),and testing whether the indu
ed graph is bipartite (e.g., by running BFS). As will be
ome 
learfrom the analysis, it a
tually suÆ
e to query only eO(1=�3) of these pairs. We 
omment that a more
omplex analysis due to Alon and Krivelevi
h [4℄ implies that the Algorithm 2.3 is a BipartiteTester even if one sele
ts only eO(1=�) verti
es (rather than eO(1=�2)) in Step (1)).Theorem 2.4 [32℄: Algorithm 2.3 is a Bipartite Tester (in the dense graph model). Furthermore,the algorithm always a

epts a bipartite graph, and in 
ase of reje
tion it provides a witness of lengthpoly(1=�) (that the graph is not bipartite). 11



Proof: Let R be the subset sele
ted in Step (1), and GR the subgraph of G indu
ed by R. Clearly,if G is bipartite then so is GR, for any R. The point is to prove that if G is �-far from bipartitethen the probability that GR is bipartite is at most 1=3. Thus, from this point on we assume thatat least �N2 edges have to be omitted from G to make it bipartite.We view R as a union of two disjoint sets U and S, where t def= jUj = O(��1 � log(1=�)) andm def= jSj = O(t=�). We will 
onsider all possible partitions of U, and asso
iate a partial partition ofV with ea
h su
h partition of U. The idea is that in order to be 
onsistent with a given partition,(U1;U2), of U, all neighbors of U1 (respe
tively, U2) must be pla
ed opposite to U1 (respe
tively,U2). We will show that, with high probability, most high-degree verti
es in V do neighbor U andso are for
ed by its partition. Sin
e there are relatively few edges in
ident to verti
es that do notneighbor U, it follows that, with very high probability, ea
h su
h partition of U is dete
ted as illegalby GR. Details follow, but before we pro
eed let us stress the key observation: It suÆ
es to ruleout relatively few (partial) partitions of V (i.e., these indu
ed by partitions of U), rather than allpossible partitions of V.We use the notations �(v) def= fu : (u; v)2Eg and �(X) def= [v2X�(v). Given a partition (U1;U2)of U, we de�ne a (possibly partial) partition, (V1;V2), of V so that V1 def= �(U2) and V2 def= �(U1)(assume, for simpli
ity that V1\V2 is indeed empty). As suggested above, if one 
laims that G 
anbe \bi-partitioned" with U1 and U2 on di�erent sides, then V1 = �(U2) must be on the oppositeside to U2 (and �(U1) opposite to U1). Note that the partition of U pla
es no restri
tion on verti
esthat have no neighbor in U. Thus, we �rst ensure that almost all \in
uential" (i.e., \high-degree")verti
es in V have a neighbor in U.Te
hni
al De�nition 2.4.1 (high-degree verti
es and good sets): We say that a vertex v 2 V isof high-degree if it has degree at least �3N . We 
all U good if all but at most �3N of the high-degreeverti
es in V have a neighbor in U.We 
omment that not insisting that a good set U neighbors all high-degree verti
es allows us toshow that, with high probability, a random U of size unrelated to the size of the graph is good. (In
ontrast, if we were to insist that a good U neighbors all high-degree verti
es, then we would havehad to use jUj = 
(logN).)Claim 2.4.2 With probability at least 5=6, a uniformly 
hosen set U of size t is good.Proof: For any high-degree vertex v, the probability that v does not have any neighbor in auniformly 
hosen U is at most (1 � �=3)t < �18 (sin
e t = 
(��1 log(1=�))). Hen
e, the expe
tednumber of high-degree verti
es that do not have a neighbor in a random set U is less than �18 �N ,and the 
laim follows by Markov's Inequality. 2Te
hni
al De�nition 2.4.3 (disturbing a partition of U): We say that an edge disturbs a partition(U1;U2) of U if both its end-points are in the same �(Ui), for some i 2 f1; 2g.Claim 2.4.4 For any good set U and any partition of U, at least �3N2 edges disturb the partition.Proof: Ea
h partition of V has at least �N2 violating edges (i.e., edges with both end-points onthe same side). We upper bound the number of these edges that are not disturbing. A
tually, weupper bound the number of edges that have an end-point not in �(U).� The number of edges in
ident to high-degree verti
es that do not neighbor U is bounded by�3N �N (sin
e there are at most �3N su
h verti
es).12



� The number of edges in
ident to verti
es that are not of high-degree is bounded by N � �3N(sin
e ea
h su
h vertex has at most �3N in
ident edges).This leaves us with at least �3N2 violating edges 
onne
ting verti
es in �(U) (i.e., edges disturbingthe partition of U). 2The theorem follows by observing that GR is bipartite only if either (1) the set U is not good; or (2)the set U is good and there exists a partition of U so that none of the disturbing edges o

urs inGR. Using Claim 2.4.2 the probability of event (1) is bounded by 1=6, whereas by Claim 2.4.4 theprobability of event (2) is bounded by the probability that there exists a partition of U so thatnone of the 
orresponding � �3N2 disturbing edges has both end-points in the se
ond sample S.A
tually, we pair the m verti
es of S, and 
onsider the probability that none of these pairs is adisturbing edge for a partition of U. Thus the probability of event (2) is bounded by2jUj � �1� �3�m=2 < 16where the inequality holds sin
e m = 
(t=�). The theorem follows.Comment: The pro
edure employed in the proof yields a randomized poly(1=�)�N -time algorithmfor 2-partitioning a bipartite graph su
h that (with high probability) at most �N2 edges lie withinthe same side. This is done by running the tester, determining a partition of U (de�ned as inthe proof) that is 
onsistent with the bipartite partition of R, and partitioning V as done in theproof (with verti
es that do not neighbor U, or neighbor both U1;U2, pla
ed arbitrarily). Thus,the pla
ement of ea
h vertex is determined by inspe
ting at most eO(1=�) entries of the adja
en
ymatrix. Furthermore, the aforementioned partition of U 
onstitutes a su

in
t representation ofthe 2-partition of the entire graph. All this is a typi
al 
onsequen
e of the fa
t that the analysis ofthe tester follows the \enfor
e-and-test" paradigm (see [55, Se
. 4℄).3 The Bounded-Degree Graph ModelThe bounded-degree model refers to a �xed degree bound, denoted d � 2. An N -vertex graphG = ([N ℄; E) (of maximum degree d) is represented in this model by a fun
tion g : [N ℄ � [d℄ !f0; 1; :::; Ng su
h that g(v; i) = u 2 [N ℄ if u is the ith neighbor of v and g(v; i) = 0 if v has less than ineighbors.13 Distan
e between graphs is measured in terms of their aforementioned representation(i.e., as the fra
tion of (the number of) di�erent array entries (over dN)), but o

asionally we shalluse the more intuitive notion of the fra
tion of (the number of) edges over dN=2. We now spell outthe meaning of property testing in this model.De�nition 3.1 (testing graph properties in the bounded-degree model): For a �xed d, a tester fora graph property � is a probabilisti
 ora
le ma
hine that, on input parameters N and � and a

essto (the in
iden
e fun
tion of) an N -vertex graph G = ([N ℄; E) of maximum degree d, outputs abinary verdi
t that satis�es the following two 
onditions.1. If G 2 � then the tester a

epts with probability at least 2=3.13For simpli
ity, we assume here that the neighbors of v appear in an arbitrary order in the sequen
eg(v; 1); :::; g(v;deg(v)), where deg(v) def= jfi : g(v; i) 6= 0gj. Also, we shall always assume that if g(v; i) = u 2 [N ℄ thenthere exists j 2 [d℄ su
h that g(u; j) = v. 13



2. If G is �-far from � then the tester a

epts with probability at most 1=3, where G is �-farfrom � if for every N -vertex graph G0 = ([N ℄; E0) 2 � of maximum degree d it holds that thesymmetri
 di�eren
e between E and E0 has 
ardinality that is greater than � � dN=2.One-sided testers and non-adaptive testers are de�ned as in De�nition 2.1.The query 
omplexity of a tester is de�ned as in Se
tion 2; ditto for its eÆ
ien
y.The study of property testing in the bounded-degree graph model was initiated by Goldrei
hand Ron [34℄, with the aim of allowing the 
onsideration of sparse graphs, whi
h appear in numerousappli
ations (
f. the �rst motivation to the study of graphs mentioned in Se
tion 1.1). The point wasthat the dense graph model seems irrelevant to sparse graphs, both be
ause the distan
e measurethat underlies it deems all sparse graphs as 
lose to one another, and be
ause adja
en
y queriesseems unsuitable for sparse graphs. Sti
king to the paradigm of representing graphs as fun
tions,where both the distan
e measure and the type of queries are determined by the representation, theaforementioned representation seemed the most natural 
hoi
e. Indeed, a 
ons
ious de
ision was(and is) made not to 
apture, at this point (and in this model), sparse graphs that do not have
onstant (or low) maximum degree.3.1 A Taste of the Known ResultsWe �rst mention that, also in this model, graph properties of arbitrary query 
omplexity areknown: Spe
i�
ally, in this model, graph properties (in NP) may have query 
omplexity rang-ing from O(1=�) to 
(N), and furthermore su
h properties are monotone and natural (
f. [33℄,whi
h builds over [20℄). In parti
ular, testing 3-Colorability requires 
(N) queries, whereas testing2-Colorability (i.e., Bipartiteness) requires 
(pN) queries [34℄ and 
an be done using eO(pN) �poly(1=�) queries [35℄. We also mention that many natural properties are testable in query 
om-plexity that only depends on the proximity parameter (i.e., �). A partial list in
ludes k-edge
onne
tivity, for every �xed k, and Planarity (
f. [34℄ and [18℄, respe
tively). Details follow.3.1.1 Testability in q(�) queries, for any fun
tion qWe �rst mention, that with the ex
eption of properties that only depend on the degree distribution,adaptive testers are essential for obtaining query 
omplexity that only depends on � (
f. [54℄).14Still, as observed in [39℄, at the 
ost of an exponentially blow-up in the query 
omplexity, wemay assume that the tester's adaptivity is 
on�ned to performing (full, BFS-like) sear
hes of apredetermined depth from several randomly sele
ted verti
es. However, the best testing resultsare typi
ally obtained by testers that either perform more adaptive sear
hers or perform DFS-likerather than BFS-like sear
hers. A few examples follow, where all testers are eÆ
ient (i.e., theirrunning time is polynomial in their query 
omplexity).Testing 
onne
tivity. Graph 
onne
tivity 
an be tested in eO(1=�) queries [34℄. Essentially, thetester starts a sear
h (e.g., a BFS) from a few randomly sele
ted verti
es, but ea
h su
h sear
his terminated after a predetermined number of verti
es is en
ountered (rather than after visitingall verti
es that are at a predetermined distan
e from the start vertex). This tester reje
ts ifand only if it dete
ts a small 
onne
ted 
omponent, and thus it has one-sided error. The resultessentially extends to k-edge 
onne
tivity, for any k � 2, but the query 
omplexity is eO(k3=�
),where 
 = min(k � 1; 3) (
f. [34℄).14A
tually, the result extends to query 
omplexity of the form o(pN � q(�)), for any fun
tion q. In 
ontrast, notethat triangle-freeness 
an be tested by O(pN=�) non-adaptive queries; see Appendix A.2.14



Testing 
y
le-freeness. Cy
le-freeness 
an be tested in eO(��3) queries, by a tester having two-sided error [34℄. Essentially, the tester 
ompares the number of edges to the number of 
onne
ted
omponents, while fully exploring any small 
onne
ted 
omponents that it happens to visit. Thetwo-sided error is unavoidable by any tester that has query 
omplexity o(pN) (
f. [34, Prop. 4.3℄).Viewing 
y
le-free graphs as graphs that have no K3-minor, leads us to the following general resultof Benjamini, S
hramm, and Shapira [18℄, whi
h refers to graph minors (to be brie
y re
alled next).The graph H is a minor of the graph G, if H 
an be obtained from G by a sequen
e of edgeremoval, vertex removal, and edge 
ontra
tion operations. We say that G is H-minor free if H is nota minor of G. Thus, a graph is 
y
le-free if and only if it is K3-minor free, where Kk denotes thek-vertex 
lique. (The notion of minor freeness extends to sets of graphs; that is, for a set of graphsH, the graph G is H-minor free if no element of H is a minor of G.) Lastly, a graph propertyis minor-
losed if it is 
losed under removal of edges, removal of verti
es, and edge 
ontra
tion.Note that, for every �nite sets of graphs H, the property of being H-minor free (e.g., Planarity) isminor-
losed.Theorem 3.2 ([43℄, improving over [18℄):15 Any minor-
losed property 
an be tested in query
omplexity exp(poly(1=�)).We mention that this tester has two-sided error, whi
h is unavoidable for any tester of query
omplexity o(pN), ex
ept for the 
ase that the forbidden minors are all 
y
le-free.3.1.2 Testability in eO(N1=2) � poly(1=�) queriesThe query 
omplexity of testing two natural properties is e�(N1=2) � poly(1=�), and in both 
asesthe time 
omplexity has the same form. The properties are Bipartiteness and Expansion. Inboth 
ases, the algorithm is based on taking many (i.e., eO(N1=2) � poly(1=�)) random walks from afew randomly sele
ted verti
es, where ea
h walk has length poly(��1 logN).The foregoing algorithmi
 approa
h originates in [35℄, where it was applied to testing Bipartiteness;for further details see x3.2.2. This approa
h was also suggested for testing Expansion [36℄, but theanalysis was su

essfully 
ompleted only in [45, 50℄. We mention that the Bipartite tester hasone-sided error, and whenever it reje
ts it may also output a short proof that the graph is notbipartite (i.e., an odd 
y
le of length poly(��1 logN)).The 
(N1=2) lower bound on the query 
omplexity of testing ea
h of the aforementioned proper-ties was proved in [34℄; for details see x3.2.1. We note that the lower bound for testing Bipartitenessstands in sharp 
ontrast to the situation in the dense graph model, where Bipartite testing is pos-sible in poly(1=�)-time. This dis
repan
y is due to the di�eren
e between the notions of relativedistan
e employed in the two models.An appli
ation to the study of the dense graph model. We mention that the Bipartitenesstester of the bounded-degree model was used in order to derive an alternative Bipartite tester forthe dense graph model [41℄. In the 
ase that almost all verti
es in the N -vertex graph have degreeO(�0:99N), this tester improves over the ones presented in [32, 4℄. Essentially, this dense-graphmodel tester invokes the bounded-degree model tester on the subgraph indu
ed by a sample Sof eO(1=�) random verti
es (and emulates neighbor queries regarding a vertex v 2 S by makingadja
en
y queries of the form (v; w) for every w 2 S).15The query 
omplexity obtained in [18℄ is triple-exponential in 1=�.15



3.1.3 Re
e
tionsThe fa
t that the bounded-degree model is 
loser (than the dense graph model) to standard algo-rithmi
 resear
h o�ers greater intera
tion at the te
hni
al level. Indeed, te
hniques su
h as lo
alsear
h and random walks are quite basi
 in both domains, and the relationship be
omes even tighterwhen we shall move to the general graph model (in Se
tion 4). At the 
urrent point, we mentionthat the idea underlying the 
y
le-freeness tester (outlined in x3.1.1) was employed to the designof an algorithm for approximating the minimum spanning tree weight in sub-linear time [23℄.We also mention that the idea underlying the expansion tester has be
ome quite pivotal in the
ontents of testing distributions, whi
h emerged with [13℄.3.2 A Ben
hmark: Testing BipartitenessBoth the following lower and upper bounds re
e
t the fa
t that being far from Bipartitenessdoes not require having 
onstant size 
y
les of odd length. We 
omment that a simpli�ed versionof the upper bound implies that odd 
y
les of logarithmi
 length must exist (
f. [35, Prop. 1℄).3.2.1 A lower boundIn 
ontrast to Theorem 2.4, under the in
iden
e fun
tion representation, there exists no Bipartitetester of 
omplexity that is independent of the graph size.Theorem 3.3 [34℄: Testing Bipartiteness (with 
onstant � and d) requires 
(pN) queries (inthe in
iden
e fun
tion model).Proof Idea: For any (even) N , we 
onsider the following two families of graphs:1. The �rst family, denoted GN1 , 
onsists of all degree-3 graphs that are 
omposed of the unionof a Hamiltonian 
y
le and a perfe
t mat
hing. That is, there are N edges 
onne
ting theverti
es in a 
y
le, and the other N=2 edges are a perfe
t mat
hing.2. The se
ond family, denoted GN2 , is the same as the �rst ex
ept that the perfe
t mat
hingsallowed are restri
ted as follows: the distan
e on the 
y
le between every two verti
es thatare 
onne
ted by a perfe
t mat
hing edge must be odd.Clearly, all graphs in GN2 are bipartite. It 
an be shown that almost all graphs in GN1 are far frombeing bipartite. On the other hand, one 
an prove that a testing algorithm that performs o(pN)queries 
annot distinguish between a graph 
hosen randomly from GN2 (whi
h is always bipartite)and a graph 
hosen randomly from GN1 (whi
h with high probability is far from bipartite). Looselyspeaking, this is the 
ase sin
e in both 
ases the algorithm is unlikely to en
ounter a 
y
le (amongthe verti
es that it has inspe
ted).3.2.2 An algorithmThe lower bound of Theorem 3.3 is essentially tight. Furthermore, the following natural algorithm
onstitutes a Bipartite tester of running time poly((logN)=�) � pN .Algorithm 3.4 (Bipartite Tester in the Bounded-Degree Model [35℄): On input N , d, � andora
le a

ess to an in
iden
e fun
tion for an N -vertex graph, G = (V;E), of degree bound d, repeatT def= �(1� ) times: 16



1. Uniformly sele
t s in V.2. (Try to �nd an odd 
y
le through vertex s):(a) Perform K def= poly((logN)=�) � pN random walks starting from s, ea
h of lengthL def= poly((logN)=�).(b) Let R0 (respe
tively, R1) denote the verti
es set rea
hed from s in an even (respe
tively,odd) number of steps in any of these walks.(
) If R0 \R1 is not empty then reje
t.If the algorithm did not reje
t in any of the foregoing T iterations, then it a

epts.Theorem 3.5 [35℄: Algorithm 3.4 is a Bipartite Tester (in the in
iden
e fun
tion model). Fur-thermore, the algorithm always a

epts a bipartite graph, and in 
ase of reje
tion it provides awitness of length poly((logN)=�) (that the graph is not bipartite).Motivation { the spe
ial 
ase of rapid mixing graphs. The proof of Theorem 3.5 is quiteinvolved. As a motivation, we 
onsider the spe
ial 
ase where the graph has a \rapid mixing"feature. It is 
onvenient to modify the random walks so that at ea
h step ea
h neighbor is sele
tedwith probability 1=2d, and otherwise (with probability at least 1=2) the walk remains in the presentvertex. Furthermore, we will 
onsider a single exe
ution of Step (2) starting from an arbitraryvertex, s, whi
h is �xed in the rest of the dis
ussion. The rapid mixing feature we assume is that,for every vertex v, a (modi�ed) random walk of length L starting at s rea
hes v with probabilityapproximately 1=N (say, up-to a fa
tor of 2). Note that if the graph is an expander then this is
ertainly the 
ase (sin
e L = !(logN)).The key quantities in the analysis are the following probabilities, referring to the parity of thelength of a path obtained from the random walk by omitting the self-loops (transitions that remainat 
urrent vertex). Let p0(v) (respe
tively, p1(v)) denote the probability that a (modi�ed) randomwalk of length L, starting at s, rea
hes v while making an even (respe
tively, odd) number of real(i.e., non-self-loop) steps. By the rapid mixing assumption (for every v 2 V), it holds that12N < p0(v) + p1(v) < 2N : (2)We 
onsider two 
ases regarding the sum Pv2V p0(v)p1(v): If the sum is (relatively) \small", weshow that V 
an be 2-partitioned so that there are relatively few edges between verti
es that arepla
ed in the same side, whi
h implies that G is 
lose to being bipartite. Otherwise (i.e., when thesum is not \small"), we show that with signi�
ant probability, when Step (2) is started at vertex sit is 
ompleted by reje
ting G. These two 
ases are analyzed in the following two (
orresponding)
laims.Claim 3.5.1 Suppose Pv2V p0(v)p1(v) � �=50N . Let V1 def= fv 2 V : p0(v) < p1(v)g andV2 = V n V1. Then, the number of edges with both end-points in the same V� is bounded above by�dN .Proof Sket
h: Consider an edge (u; v) where, without loss of generality, both u and v are in V1.Then, both p1(v) and p1(u) are greater than 12 � 12N . However, one 
an show that p0(v) > 13d � p1(u):Observe that an (L � 1)-step walk of path-parity 1 ending at u is almost as likely as an L-stepwalk of path-parity 1 ending at u, and that on
e an (L� 1)-step walk rea
hes u, with probability17



exa
tly 1=2d, it 
ontinues to v in the next step. Thus, the edge (u; v) 
ontributes at least (1=4N)23dto the sumPw2V p0(w)p1(w). It follows that we 
an have at most (�=50N)=(1=48dN2) su
h edges,and the 
laim follows. 2Claim 3.5.2 Suppose Pv2V p0(v)p1(v) � �=50N , and that Step (2) is started with vertex s.Then, with probability at least 2=3, the set R0 \R1 is not empty (and reje
tion follows).Proof Sket
h: Consider the probability spa
e de�ned by an exe
ution of Step (2) with start vertexs. For every i 6= j su
h that i; j 2 [K℄, we de�ne an indi
ator random variable �i;j representing theevent that the vertex en
ountered in the Lth step of the ith walk equals the vertex en
ountered inthe Lth step of the jth walk, and that the ith walk 
orresponds to an even-path whereas the jth toan odd-path. (That is, �i;j = 1 if the foregoing event holds, and �i;j = 0 otherwise.) ThenE[jR0 \R1j℄ > Xi 6=j E[�i;j℄= K(K � 1) �Xv2V p0(v)p1(v)> 500N� �Xv2V p0(v)p1(v)� 10where the se
ond inequality is due to the setting of K, and the third to the 
laim's hypothesis.Intuitively, with high probability, it should hold that jR0 \ R1j > 0. This is indeed the 
ase, butproving it is less straightforward than it seems; the problem being that the �i;j's are not pairwiseindependent. Yet, sin
e the sum of the 
ovarian
es of the dependent �i;j's is quite small, Chebyshev'sInequality is still very useful (
f. [11, Se
. 4.3℄). Spe
i�
ally, letting � def= Pv2V p0(v)p1(v) (=E[�i;j℄), and �i;j def= �i;j � �, we get:Pr24Xi 6=j �i;j = 035 < Var hPi 6=j �i;ji(K2�)2= 1K4�2 �0�Xi;j E h�2i;ji+ 2Xi;j;kE h�i;j�i;ki1A< 1K2� + 2K�2 � E[�1;2�1;3℄For the se
ond term, we observe that Pr[�1;2=�1;3=1℄ is upper bounded by Pr[�1;2=1℄ = � timesthe probability that the Lth vertex of the �rst walk appears as the Lth vertex of the third path.Using the rapid mixing hypothesis, we upper bound the latter probability by 2=N , and obtainPr[jR0 \R1j = 0℄ < 1K2� + 2K�2 � � � 2N< 13where the last inequality uses � � �=50N and K2 � 6 � 50N=� (along with � > 5000=N). The 
laimfollows. 2 18



Beyond rapid mixing graphs. The proof in [35℄ refers to a more general sum of produ
ts; thatis, Pu2U podd(u)peven(u), where U � V is an appropriate set of verti
es, and podd(v) (respe
tively,peven(v)) is essentially the probability that an L-step random walk (starting at s) passes through vafter more than L=2 steps and the 
orresponding path to v has odd (respe
tively, even) parity. Mu
hof the analysis in [35℄ goes into sele
ting the appropriate U (and an appropriate starting vertex s),and pasting together many su
h U's to 
over all of V. Loosely speaking, U and s are sele
ted sothat there are few edges from U and the rest of the graph, and podd(u)+peven(u) � 1=pjVj � jUj, forevery u 2 U. The sele
tion is based on the \
ombinatorial treatment of expansion" of Mihail [49℄.Spe
i�
ally, we use the 
ontrapositive of the standard analysis, whi
h asserts that rapid mixingo

urs when all 
uts are relatively large, to assert the existen
e of small 
uts whi
h partition thegraph so that verti
es rea
hed with relatively high probability (in a short random walk) are on oneside and the rest of the graph on the other. The �rst set 
orresponds to the aforementioned U andthe 
ut is relatively small with respe
t to U. A start vertex s for whi
h the 
orresponding sum isbig is shown to 
ause Step (2) to reje
t (when started with this s), whereas a small 
orrespondingsum enables to 2-partition U while having few violating edges among the verti
es in ea
h part ofU. The a
tual argument of [35℄ pro
eeds in iterations. In ea
h iteration a vertex s for whi
h Step (2)a

epts with high probability is �xed, and an appropriate set of remaining verti
es, U, is found.The set U is then 2-partitioned so that there are few violating edges inside U. Sin
e we want topaste all these partitions together, U may not 
ontain verti
es treated in previous iterations. This
ompli
ates the analysis, sin
e it must refer to the part of G, denoted H, not treated in previousiterations. We 
onsider walks over an (imaginary) Markov Chain representing the H-part of thewalks performed by the algorithm on G. Statements about rapid mixing are made with respe
t tothe Markov Chain, and linked to what happens in random walks performed on G. In parti
ular, asubset U of H is determined so that the verti
es in U are rea
hed with probability � 1=pjVj � jUj(in the 
hain) and the 
ut between U and the rest of H is small. Linking the sum of produ
tsde�ned for the 
hain with the a
tual walks performed by the algorithm, we infer that U may bepartitioned with few violating edges inside it. Edges to previously treated parts of the graphs are
harged to these parts, and edges to the rest of H nU are a

ounted for by using the fa
t that this
ut is small (relative to the size of U).4 The General Graph ModelIn 
ontrast to the foregoing two models in whi
h the ora
le queries and the distan
es between graphsare linked to the representation of graphs as fun
tions, in the following model the representationis blurred and the query types and distan
e measure are de
oupled. This de
oupling makes the
urrent model 
loser in spirit to standard studies in graph algorithms.Giving up on the representation as a yardsti
k for the relative distan
e between graphs, leavesus with no absolute point of referen
e. Instead, we just de�ne the relative distan
e between graphsin relation to the a
tual number of edges in these graphs; spe
i�
ally, the relative distan
e betweenthe graphs G = ([N ℄; E) and G0 = ([N ℄; E) may be de�ned as jE4E0jmax(jEj;jE0j) (or, alternatively, asjE4E0j(jEj+jE0j)=2 ).16Turning to the question of query types, we again need to make a 
hoi
e, whi
h is now freefrom representation 
onsiderations. The most natural 
hoi
e is to allow both adja
en
y queriesand in
iden
e queries (i.e., the two types of queries that were ea
h allowed in one of the previous16Needless to say, these two de�nitions may not yield the same result, but they are related by a fa
tor of at most 2.19



queries).17 However, other 
hoi
es has been 
onsidered too (
f. [17℄). We note that, typi
ally,adja
en
y queries be
ome more useful as the graph be
omes more dense, whereas in
iden
e queries(a.k.a neighbor queries) be
ome more useful as the graph be
omes more sparse (
f. [17℄).De�nition 4.1 (testing graph properties in the general model): A tester for a graph property � isa probabilisti
 ora
le ma
hine that, on input parameters N and � and a

ess to a fun
tion answeringadja
en
y queries and in
iden
e queries regarding an N -vertex graph G = ([N ℄; E), outputs a binaryverdi
t that satis�es the following two 
onditions.1. If G 2 � then the tester a

epts with probability at least 2=3.2. If G is �-far from � then the tester a

epts with probability at most 1=3, where G is �-farfrom � if for every N -vertex graph G0 = ([N ℄; E0) 2 � it holds that the symmetri
 di�eren
ebetween E and E0 has 
ardinality that is greater than � �max(jEj; jE0j).One-sided testers and non-adaptive testers are de�ned as in De�nition 2.1.The query 
omplexity of a tester is de�ned as in Se
tion 2; ditto for its eÆ
ien
y.The study of property testing in the general graph model was initiated by Parnas and Ron [52℄,who only 
onsidered in
iden
e queries, and extended by Kaufman, Krivelevi
h, and Ron [46℄,who 
onsidered both types of queries. Needless to say, the aim of these works was to allow the
onsideration of arbitrary graphs and so strengthen the relation between property testing andstandard algorithmi
 studies. However, forsaking the paradigm of representing graphs as fun
tionsmeans that the 
onne
tion to the rest of property testing is a bit weakened (or at least be
omesmore 
umbersome). Still, we believe that the trade-o� is worthwhile.4.1 A Taste of the Known ResultsIt is natural to attempt to extend testers designed for the bounded-degree model to the generalgraph model. Su
h extensions fa
e two potential diÆ
ulties, whi
h refer to two ways in whi
h thegeneral graph model extends the bounded-degree model:1. Firstly, the maximum degree of verti
es in the graph may no longer be 
onstant, and thequestion is how does the performan
e of the tester depends on the degree bound, d. Formally,one should think of the degree bound d as a variable, and analyze the tester a

ordingly.Note that when d in
reases, relative distan
es de
rease and so testing may be
ome easier. Onthe other hand, we 
an no longer s
an all neighbors of a given vertex at 
onstant 
ost.2. Treating the maximum degree as a variable, raises the question of what happens when thereis a signi�
ant dis
repan
y among the degrees of the various verti
es. Su
h a situation 
anbreak the balan
e between the aforementioned positive and negative e�e
ts of in
reasing themaximum degree. Spe
i�
ally, the algorithmi
 operations may be
omes more 
ostly whenthe maximum degree in
reases, but when using the distan
e measure of De�nition 4.1 thedistan
es no longer vary with the maximum degree (i.e., d) but rather vary with the averagedegree. Thus, we may be in trouble if the maximum degree is signi�
antly larger than theaverage degree.17Re
all that the in
iden
e query (u; i) is answered with 0 if u has less than i neighbors. Thus, the in
iden
e queriesallow to emulate degree queries at logarithmi
 
ost. 20



The e�e
t of the foregoing issues is tester-dependent. For example, the operation of the Conne
tivitytester (outlined in x3.1.1) is not a�e
ted by the possible dis
repan
ies in the vertex degrees, and sothis tester (as is) applies also to the general graph model (
f. [52℄). In 
ontrast, the Bipartitenesstester presented in Algorithm 3.4 should be modi�ed to the 
urrent setting. Details follow.4.2 A Ben
hmark: Testing BipartitenessFirstly, it was shown in [46℄ that the algorithm's performan
e does not deteriorate when d in
reases.Next, an algorithm for the general graph model was obtained by emulating Algorithm 3.4 onan imaginary graph that is obtained by repla
ing verti
es of high degree by adequate gadgets.Spe
i�
ally, a vertex having degree that is t times larger than the average degree is repla
ed by at-by-t bipartite expander graph, while 
onne
ting the original neighbors to verti
es on one of thesides of the expander (su
h that no vertex has degree greater than twi
e the average degree). Thisrepla
ement preserves the distan
e to Bipartiteness (up to a 
onstant fa
tor). We warn thatimplementing the emulation (of Algorithm 3.4 on this imaginary graph) is not straightforward. Inparti
ular, it seems to require a pro
edure for sampling edges in the a
tual graph su
h that almostall edges are sampled with probability that is approximately (up to a 
onstant fa
tor) the uniformone.18 For details, see [46℄.As evident from the above des
ription, the extension of a tester from the bounded-degree modelto the general graph model may require ideas that are spe
i�
 to the property at hand. For example,the gadgets used above should preserve Bipartiteness (as well as distan
e to Bipartiteness).Another issue that arises is that one may hope to perform better when the degree bound d(whether maximum or average) is large. Indeed, we know that in 
ase of Bipartiteness, densegraphs 
an be tested with mu
h fewer queries than sparse graphs (re
all Algorithm 2.3). Thus, anoptimal tester for the general graph model should be able to mat
h the result of the dense graphmodel whenever the a
tual graph happens to be dense. Su
h a result is indeed provided by [46℄,who show a Bipartiteness tester (for the general graph model) that is optimal for all possibleedge densities.Theorem 4.2 (Testing Bipartiteness in the General Graph Model [46℄): Ignoring fa
tors that arepolynomial in ��1 logN , the query (and time) 
omplexity of testing Bipartiteness is min(pN;N2=M),where M denotes the number of edges in the input graph.Note that dealing with M � N3=2 requires some deviation from the aforementioned emulation(of Algorithm 3.4). Indeed, in su
h a 
ase the tester of [46℄ behaves quite di�erently. Spe
i�-
ally, it takes K = pN2=M random walks (rather than N2=M random walks), from ea
h randomstart vertex, and 
he
ks for 
ollisions among the endpoints these K walks by using �K2 � adja
en
yqueries. We mention that the use of adja
en
y queries is ne
essary for an o(pN) query tester ofBipartiteness.An opposite behavior. In 
ontrast to the 
ase of testing Bipartiteness, where the 
omplexityimproves with the edge density, in the 
ase of testing triangle-freeness we see the opposite behav-ior [5℄.19 Furthermore, in 
ontrast to testing Bipartiteness, there is a gap between the 
omplexityof testing triangle-freeness in the bounded-degree model and the 
orresponding 
omplexity in the18A more a

urate sampling pro
edure is impli
it in the subsequent work of [37℄.19This is to be expe
ted in light of the fa
t that testing triangle-freeness has 
omplexity O(d=�) in the bounded-degree model [34℄, whereas in the dense graph model testing triangle-freeness requires more than poly(1=�) queries [1℄.21



general graph model even when the graph is sparse (i.e., M = O(N)). For example, in the generalgraph model, the 
omplexity is 
(N1=3) as long as M = N2�o(1) [5℄.4.3 Re
e
tionsThe bulk of algorithmi
 resear
h regarding graphs refers to general graphs. Of spe
ial interest aregraphs that are neither very dense nor have a bounded degree. In 
ontrast, resear
h in testingproperties of graphs started (in [32℄) with the study of dense graphs, pro
eeded to the study ofbounded-degree graphs (in [34℄), and rea
hed general graphs only in [52, 46℄. This evolution hashistori
al reasons to be reviewed �rst.Testing graph properties was initially 
on
eived (in [32℄) as a spe
ial 
ase of the framework oftesting properties of fun
tions. Thus, graphs had to be represented by fun
tions, and two standardrepresentations of graphs (indeed, the two reviewed in Se
tions 2 and 3) seemed most �tting in this
ontext. We stress that both models were formulated in a way that identi�es the graphs with aspe
i�
 fun
tional representation, whi
h in turn de�nes the type of queries allowed to the tester aswell as the notion of fra
tional distan
e (whi
h underlies the performan
e guarantee).The identi�
ation of graphs with any spe
i�
 fun
tional representation was abandoned by Par-nas and Ron [52℄ who developed a more general model by de
oupling the type of queries allowedto the tester from the distan
e measure: Whatever is the me
hanism of a

essing the graph, thedistan
e between graphs is de�ned as the number of edges in their symmetri
 di�eren
e (ratherthan the number of di�erent entries with respe
t to some spe
i�
 fun
tional representation). Fur-thermore, the relative distan
e may be de�ned as the size of the symmetri
 di�eren
e divided bythe a
tual (total) number of edges in both graphs (rather than divided by some (possibly non-tight)upper-bound on the latter quantity). Also, as advo
ated by Kaufman et al. [46℄, it is reasonableto allow the tester to perform both adja
en
y and neighbor queries (and indeed ea
h type of querymay be useful in a di�erent range of edge densities). Needless to say, this model seems adequate forthe study of testing properties of arbitrary graphs, and it stri
tly generalizes the positive aspe
ts ofthe two prior models (i.e., the models based on the adja
en
y matrix and bounded-degree in
iden
elist representations).We wish to advo
ate further study of the latter model. We believe that this model, whi
hallows for a meaningful treatment of property testing of general graphs, is the one that is mostrelevant to 
omputer s
ien
e appli
ations. Furthermore, it seems that designing testers in thismodel requires the development of algorithmi
 te
hniques that may be appli
able also in otherareas of algorithmi
 resear
h. As an example, we mention that te
hniques in [46℄ underly theaverage degree approximation of [37℄. (Likewise te
hniques of [34℄ underly the minimum spanningtree weight approximation of [23℄; indeed, as noted next, the bounded-degree in
iden
e list modelis also more algorithmi
 oriented than the adja
en
y matrix model.)Let us fo
us on the algorithmi
 
ontents of property testing of graphs. Re
all that, whenignoring a quadrati
 blow-up in the query 
omplexity, property testing in the adja
en
y matrixrepresentation redu
es to sheer 
ombinatori
s (as re
e
ted in the notion of 
anoni
al testers, seeTheorem 2.2). Indeed, as shown in [38℄, a �ner look (whi
h does not allow for ignoring quadrati
blow-ups in 
omplexity) reveals the role of algorithmi
 design also in this model. But still propertytesting in the in
iden
e list representation seems to require more sophisti
ated algorithms. Testersin the general graph models seem to require even more algorithmi
 ideas (
f. [46℄).To summarize, we advo
ate further study of the model of [52, 46℄ for two reasons. The �rstreason is that we believe in the greater relevan
e of this model to 
omputer s
ien
e appli
ations. These
ond reason is that we believe in the greater potential of this model to have 
ross fertilization with22



other bran
hes of algorithmi
 resear
h. Nevertheless, this advo
ation is not meant to underminethe study of the dense graph and bounded-degree models. The latter have their own merits andalso o�er a host of interesting open problems, whi
h are potentially relevant to 
omputer s
ien
eat large.5 Additional IssuesIn this se
tion we dis
uss three issues that are relevant to ea
h of the three models dis
ussed in theprior 
orresponding three se
tions.5.1 Dire
ted GraphsSo far our dis
ussion was 
on�ned to undire
ted graphs. Nevertheless, the three models extendnaturally to the 
ase of dire
ted graphs. A
tually, when 
onsidering in
iden
e queries, two di�erentsub-models emerge (
f. [16℄): In the �rst model the tester may only query for edges in the forwarddire
tion (resp., ba
kward dire
tion), whereas in the se
ond model both forward and ba
kwarddire
tions are allowed. That is, in the se
ond model, the dire
ted graph G = ([N ℄; E) is representedby two fun
tions, gout and gin, su
h that gout(u; i) = v (resp., gin(u; i) = v) if the ith out-going edgeof u leads to v (resp., the ith in-
oming edge of u arrives from v).The gap between these two query models was demonstrated by Bender and Ron, who initiatedthe study of testing properties of dire
ted graphs [16℄. In parti
ular, they showed that while strong
onne
tivity in bounded-degree dire
ted graphs 
an be tested by eO(1=�) forward and ba
kwardqueries [16, Se
. 5.1℄, when only forward (resp., ba
kward) queries are allowed no tester 
an workwith o(pN) queries (even when allowing two-sided error [16, Se
. 5.2℄).20Another task studied in [16℄ is testing whether a given dire
ted graph is a
y
li
 (i.e., has nodire
ted 
y
les). They presented an A
y
li
ity tester of poly(1=�) 
omplexity in the adja
en
ypredi
ate model, and showed that in the in
iden
e list model no A
y
li
ity tester 
an workwith o(N1=3) queries (even when both forward and ba
kward queries are allowed). The questionof whether A
y
li
ity 
an be tested with o(N) queries (in the bounded-degree digraph model)remains open. In general, it seems that the study of this model deserves more attention than it hasre
eived so far. (We mention that testing dire
ted graphs in the dense digraph model was furtherstudied in [6, 51℄.)5.2 Tolerant Testing and Distan
e ApproximationRe
all that property testing 
alls for distinguishing obje
ts having a predetermined property fromobje
t that are far from any obje
ts that has this property (i.e., are far from the property). A more\tolerant" notion requires distinguishing obje
ts that are 
lose to having the property from obje
tsthat are far from this property. Su
h a distinguisher is 
alled a tolerant tester, and is a spe
ial
ase of a distan
e approximator that given any obje
t is required to approximate its distan
e to theproperty. The study of these related notions was initiated by Parnas, Ron, and Rubinfeld [53℄.De�nition 5.1 (sket
h for the generi
 
ase): Let � be a set of fun
tions over a �nite set 
. Adistan
e approximator for � is a probabilisti
 ora
le ma
hine T that on input an approximation20The lower bound 
an be strengthened to 
(N) when 
onsidering only one-sided error testers. In the 
ase oftwo-sided error, some improvements are possible; see Appendix A.3.23



parameter � and a

ess to any fun
tion f outputs with probability at least 2=3 a value that approxi-mates the relative distan
e of f to � up to an additive term of �; that is, Pr[jT f�Æ�(f)j � �℄ � 2=3,where Æ�(f) def= ming2�fÆ(f; g)g and Æ(f; g) def= Prx2
[f(x) 6= g(x)℄.A simple observation is that any tester that makes uniformly distributed queries o�ers some levelof toleran
e. Spe
i�
ally, if a tester makes q(�) queries and ea
h query is uniformly distributed,then this tester distinguishes between obje
ts that are �-far from the property and obje
ts thatare (�=10q(�))-
lose to the property. Needless to say, the 
hallenge is to provide stronger relationsbetween property testing and distan
e approximators. Su
h a result was provided by Fis
her andNewman [29℄: They showed that, in the dense graph model, testability in a number of queriesthat only depends on � implies distan
e approximator in a number of queries that only depends on�. In the the bounded-degree model, many of the known testers were extended to yield distan
eapproximators (
f. [48℄).5.3 Proximity Oblivious TestingNote that in order to satisfy the property testing requirement, any tester (of a reasonable property)must obtain the proximity parameter as auxiliary input and determine its a
tions a

ordingly. Thequestion, addressed here, is what does the tester do with this parameter (or how does the parametera�e
t the a
tions of the tester). A very minimal e�e
t is exhibited by testers that, based on thevalue of the proximity parameter, determine the number of times that a basi
 test is invoked, wherethe basi
 test is oblivious of the proximity parameter. For example, the 
elebrated linearity testerof [19℄ repeats a basi
 test that 
onsists of sele
ting two random points, x and y, and probing thevalue of the fun
tion at the points x; y, and x+y. This basi
 test is repeated for a number of timesthat is inversely proportional to the proximity parameter.Our fo
us here is on su
h basi
 tests (i.e., basi
 tests that are oblivious of the proximity param-eter), 
alled proximity oblivious testers. Although proximity oblivious testers were impli
it in priorworks (see, e.g., [19, 2, 3℄), their general study was initiated by Goldrei
h and Ron [39℄.De�nition 5.2 (sket
h for the generi
 
ase): Let � be a set of fun
tions over a �nite set 
. Aproximity-oblivious tester for � is a probabilisti
 ora
le ma
hine T that, when given ora
le a

ess toany fun
tion f over 
, satis�es the following two 
onditions:1. The ma
hine T a

epts ea
h fun
tion in � with probability 1.2. For some (monotone) fun
tion � : (0; 1℄ ! (0; 1℄, ea
h fun
tion f 62 � is reje
ted by T withprobability at least �(Æ�(f)), where Æ�(f) is as in De�nition 5.1.The fun
tion � is 
alled the dete
tion probability of the tester T .Indeed, we require that �(�) > 0 for every � > 0, whereas extending Item 2 to f 2 � (whileavoiding 
ontradi
tion with Item 1) mandates extending � so that �(0) = 0. The requirement that� is monotone (i.e., monotoni
ally in
reasing) does not rule out 
ases where the tight lower-boundis non-monotone (e.g., [14℄), be
ause � is not required to be tight.Indeed, using a proximity-oblivious tester T , we 
an obtain a standard (one-sided error) tester(of error probability at most 1/3). Spe
i�
ally, given the proximity parameter �, the standard testerinvokes T for �(1=�(�)) times, and a

epts if and only if all these invo
ations a

ept. Two naturalquestions regarding proximity oblivious testers are:1. Whi
h properties have proximity oblivious tests (of small query 
omplexity)?24



2. How does the dete
tion probability of su
h tests grow as a fun
tion of the distan
e of the obje
tfrom the property, and how does this relate to the query 
omplexity of the best (standard)tester for the 
orresponding property.Goldrei
h and Ron [39℄ provide a mix of positive and negative results regarding the foregoing ques-tions. In parti
ular, they provide a 
hara
terizations of the graph properties that have 
onstant-query proximity-oblivious testers in the two main models dis
ussed in this arti
le (i.e., the densegraphs model and the bounded-degree graph model). It follows that 
onstant-query proximity-oblivious testers do not exist for many easily testable properties (e.g., Bipartiteness in the densegraph model). Also, even when proximity-oblivious testers exist, repeating them does not ne
es-sarily yield the best standard testers for the 
orresponding property (e.g., Clique Colle
tion inthe dense graph model).A
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Appendix: In Passing { Three Unrelated ObservationsThe following three observations o

urred to us in the pro
ess of writing this arti
le.A.1 Testing Degree Regularity in the Dense Graph ModelWe improve the eO(��3) query upper bound of [32, Prop. 10.2.1.3℄ to an optimal quadrati
 bound.Proposition A.1 In the dense graph model, degree regularity 
an be tested in O(��2) non-adaptivequeries.Proof: We start by reviewing the eO(��3)-query tester presented in the proof of [32, Prop. 10.2.1.3℄.This tester sele
ts O(1=�) random verti
es, and estimates the degree of ea
h of them up to ��N=100using a sample of s = eO(1=�2) random verti
es (and making the 
orresponding s queries). Thistester a

epts if and only if all these estimates are at most �N=20 apart. The analysis is basedon the observation that if the tester a

epts with high probability, then all but �0N verti
es havedegree that is within ��0N units of some value, where �0 = �=13. By omitting and adding at most�0N2 verti
es (i.e., from/to the ex
eptional verti
es), we rea
h a situation in whi
h all verti
es havedegrees that at most D def= 4�0N units apart. At this point, we are done by applying a theoremof Noga Alon (
f. [32, Apdx. D℄) that asserts that su
h a graph is ((3D=N) + o(1))-
lose to beingregular.We improve the foregoing upper bound as follows. For a suÆ
iently large 
onstant 
, let` def= log2(
=�), and 
onsider an algorithm that, for every i 2 [`℄, pro
eeds as follows:1. The algorithm sele
ts uniformly 
 � 2i verti
es, and estimates the degree of ea
h of theseverti
es up to �24i=5� �N=
 units by using a sample of si def= 
3 � 2�3i=2��2 random verti
es.Note that with probability at least1� 
 � 2i � exp(�2si � (24i=5�=
)2) = 1� 
 � 2i � exp(�2
 � 2i=10)> 1� 2�i�
all these estimates are as desired.2. If two of these estimates are more than 21+(4i=5)� �N units apart, then the algorithm reje
ts.(The algorithm a

epts if and only if it does not reje
t in any of these ` iterations.) The query
omplexity of this algorithm is Pi2[`℄ 
2i � 
32�3i=2��2 = O(��2), and it a

epts ea
h regular graphwith high probability (i.e., whenever all the foregoing degree estimates are adequate).On the other hand, if a graph is a

epted with high probability, then, for every i 2 [`℄, it holdsthat all but at most a 2�i fra
tion of the verti
es have degree that is within 21+4i=5� � N=
 of theaverage degree, denoted �. For ea
h value of i 2 [`℄, let us denote the set of deviating verti
es byBi; that is, ea
h vertex in [N ℄ n Bi has degree (� � 21+4i=5�=
) �N . Thus (dealing separately withea
h Bi n Bi+1 as well as with B` and [N ℄ n B1), we may omit at most 40�N2=
 edges from thegraph, and obtain a graph in whi
h every vertex has degree at most (�+2�=
)N . Next, by addingat most 42�N2=
 edges to the graph, we 
an obtain a graph in whi
h every vertex has degree atleast (��2�=
)N , and if we add these edges uniformly (among the verti
es) then ea
h vertex in theresulting graph has degree (�� 44�=
)N . At this point we 
an apply the result of aforementionedresult of Noga Alon, and be done. 30



A.2 Non-Adaptive Testers in the Bounded-Degree Graph ModelRe
all that, for any fun
tion q, if a property 
an be tested in o(pN � q(�)) non-adaptive queries inthe bounded-degree graph model, then it depends only on the vertex degree distribution [54℄. In
ontrast, we show that triangle-freeness 
an be tested by O(pN=�) non-adaptive queries (in thesame model).The tester sele
ts at random O(pN=�) verti
es, queries for the neighbors of ea
h of them, anda

epts if and only if the subgraph dis
overed 
ontains no triangles. Note that if the input graph is�-far from triangle-freeness, then it 
ontains 
(�N) triangles, whereas a random sample of O(pN=�)verti
es is likely to hit two verti
es of su
h a triangle.The argument 
an be extended to testing H-freeness,21 for any �xed H, with O((N=�)1� 1�(H) )non-adaptive queries, where �(H) denotes the minimum vertex 
over of H. In this 
ase, if theinput graph is �-far from being H-free, then a sample of O((N=�)1� 1�(H) ) random verti
es is likelyto hit all verti
es in a vertex 
over of one of the 
opies of H. A more general statement, withweaker quantitative bounds, follows.Proposition A.2 Let � be a graph property having a q-query proximity-oblivious tester of dete
tionprobability �, in the bounded-degree model. Then, in this model, � 
an be tested by O(N q�1q =�(�))non-adaptive queries.A
tually, Proposition A.2 holds also when q is an upper bound on the number of di�erent verti
esthat appear in the queries of the proximity-oblivious tester.Proof: The main observation is that a sample of O(N1�(1=q)) verti
es (along with the neighborqueries that 
orrespond to ea
h vertex) is likely to allow for the emulation of a random exe
ution ofthe proximity-oblivious tester (POT). Spe
i�
ally, given a q-query POT, we 
onsider the followingnon-adaptive POT:1. Sele
t a random sample of O(N1�(1=q)) verti
es, denoted S, and query the neighborhood ofea
h vertex in S. For every (v; i) 2 S � [d℄, denote the ora
le answer by �i(v).These are all the queries made by the new POT, and the following steps only involve 
om-putations (and no a
tual queries).2. Sele
t and �x random 
oins for T , deriving a residual deterministi
 ora
le ma
hine T 0.3. Let S = fs1; :::; sjSjg, and S def= f(s(i�1)q+1; :::; siq) : i 2 [jSj=2q℄g; that is, S 
onsists ofq-sequen
es of elements in S su
h that no element appears twi
e.For every (v1; :::; vq) 2 S, try to emulate an exe
ution of T using the information obtained inStep 1. For j = 1; :::; q, pro
eed as follows, where initially the permutation � : [N ℄ ! [N ℄ istotally undetermined.(a) Obtain the jth query of T 0, denoted (uj ; ij).If � is undetermined on uj , then determine �(uj) = vj .If � is determined on uj and �(uj) 62 S, then this emulation is terminated.Thus, the algorithm pro
eeds to Step 3b only if �(uj) 2 S, whereas in this 
ase the valueof �ij (�(uj)) is known.21Here, we refer to subgraph freeness. 31



(b) Let aj = �ij (�(uj)), and suppose that aj 2 [N ℄ (as otherwise we provide aj as the ora
leanswer to T 0, and pro
eed to the next iteration).22 If ��1 is undetermined on aj, thensele
t at random a vertex u su
h that � is undetermined on u, and determine �(u) = aj .Provide u as the ora
le answer to T 0, and pro
eed to the next iteration.Note that it is quite likely that aj 62 S, and in this 
ase if T 0 subsequently issues a queryof the form (u; �) then the emulation will be terminated (in the 
orresponding exe
utionof Step 3a).If the 
urrent emulation is su

essfully 
ompleted, then halt and output the 
orrespondingverdi
t of T 0. Otherwise, pro
eed to the next (v1; :::; vq) 2 S, while resetting � to be totallyundetermined.4. If no emulation is su

essfully 
ompleted, then halt and output the verdi
t 1 (i.e., a

ept).Ea
h exe
ution of Step 3b may yield a value aj 62 S, with probability at least 1�(jSj=N). However,with probability at least jSj=2N , it holds that aj 2 S. Thus, for ea
h (v1; :::; vq) 2 S, we 
ompletean emulation of T 0 (in Step 3) with probability at least (jSj=2N)q�1 � 1=jSj. Furthermore, su
han emulation 
orrespond to the exe
ution of T 0 on a random isomorphi
 
opy of the input graph.To see that, with high probability, at least one of the jSj emulations is 
ompleted, we 
onsiderall jSj emulations simultaneously. Let u(i)1 ; :::; u(i)q denote the sequen
e of verti
es that o

ur in theith emulation, and let �(i) denote the 
orresponding permutation. We partition the jSj=2 samplesthat do not appear in S into q equal sets, denoted S1; :::; Sq, and terminate the ith emulation initeration j < q if a(i)j 62 Sj. (Indeed, this only makes early termination more likely; 
f. Step 3b.)Still, on 
an show by indu
tion on j, that with high probability the number of emulations thatare not terminated by iteration j ex
eeds jSj � (jSj=4qN)j . Furthermore, the queries issued in thej + 1st iteration are mostly di�erent, be
ause they are determined based on di�erent sequen
es inS. Using jSj � (jSj=4qN)q�1 > 1, we 
on
lude that, with high probability, there exists an emulationthat does not terminate before the last iteration.It follows that the foregoing non-adaptive POT has dete
tion probability at least �=2. Applyingthis POT forO(1=�(�)) times, we obtain a non-adaptive tester of query 
omplexityO(N1�(1=q)=�(�)).Con
lusion. Re
all that all subgraph-freeness properties do have a proximity-oblivious testers of
onstant-query 
omplexity in the bounded-degree graph model. Our 
on
lusion is that non-adaptivetesters are not totally useless in that model.A.3 Testing Strong Conne
tivity with Forward Queries OnlyWe show that, for any 
onstant � > 0, strong 
onne
tivity in bounded-degree digraphs 
an betested by using N1�
(1) forward queries (and no ba
kward queries). Needless to say, the sameholds for using only ba
kward queries, and in both 
ases the tester has two-sided error (whi
h isunavoidable).23Proposition A.3 In the dire
ted bounded-degree model where only forward queries are allowed,strong 
onne
tivity 
an be tested in query 
omplexity exp(1=�)�N1� 1t , where t = d4=�de�d < d+(1=�)and d is the in-degree and out-degree bound.22Re
all that in this 
ase aj is a �xed indi
ation that the relevant vertex has less than ij neighbors.23The distributions used in [16, Se
. 5.2℄ 
an be used to prove an 
(N) query bound for one-sided error. The pointis that we 
an �nd no dire
t eviden
e to the fa
t that a vertex has in-degree zero.32



Proof Sket
h: Our starting point is the observation that if a graph is �-far from being strongly
onne
ted, then it 
ontains at least �dN=4 sour
e and sink 
omponents ea
h 
ontaining at mostd4=�de verti
es (
f. [16, Cor. 9℄).24 The easy 
ase is when the graph 
ontains at least �dN=8 smallsink 
omponent, sin
e these are easy to dete
t by forward queries. The problemati
 
ase is the onein whi
h the graph 
ontains �dN=8 sour
e 
omponents, and we start by 
onsidering the simple 
asein whi
h ea
h of these sour
e 
omponents 
onsists of a single vertex.In the latter 
ase we 
an estimate the number of verti
es having in-degree zero, by estimatingthe number of verti
es having in-degree d, d� 1, all through 1. To estimate the number of verti
eshaving in-degree i > 1, we estimate the number of i-way 
ollisions at the head of randomly sele
ted25dire
ted edges, and use the information we already gathered regarding in-degree j for every j > i.The number of verti
es having in-degree 1 is estimated by estimating the 
ollisions between auniformly sele
ted vertex and the vertex at the head of a uniformly sele
ted random edge. Notethat, for every i � 2, the number of i-way 
ollisions 
an be estimated by a sample of size O(N1� 1i ).In the foregoing, we have relied on the fa
t that a vertex has zero in-degree if and only if it isa sour
e vertex, and on the hypothesis that many sour
e verti
es exist. But, in general, we onlyknow that there are many small sour
e 
omponents. So the intuitive idea is to \
ontra
t" all small
omponents, and 
onsider in-
oming edges at the 
omponent level. One small diÆ
ulty is that we
annot determine the 
omponents of the input graph, and so the following modi�
ation is used.For every vertex v, we let Cv denote the set of verti
es u su
h that v and u reside on a dire
ted
y
le of size at most s def= d4=�de. We say that v is good if for every u 2 Cv it holds that Cu = Cv.Note that, given a vertex v, we 
an determine Cv as well as whether v is good by using ds queries.Also note that every vertex that resides in a small sour
e 
omponent is good. We now emulatethe foregoing pro
edure on the dire
ted graph in whi
h for every good v the set Cv is 
ontra
tedto a new vertex, and note that a vertex has in-degree zero in the resulting graph if and only if itrepresents a small sour
e of G. Noting that the maximum degree in this graph is s � s, the 
laimfollows.Con
lusion. Our lesson is that some non-trivial testing 
an be 
arried out also in the model thatallows forward queries only.

24Throughout this proof, the word 
omponent means a strongly 
onne
ted 
omponent, and sour
e (resp., sink)
omponents are 
omponents that have no in-
oming (resp., out-going) edges.25We may sele
t a random dire
ted edge by sele
ting a vertex uniformly, and sele
ting ea
h of its out-going edgeswith probability 1=d. 33


