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Abstract

We initiate a general study of pseudo-random implemen-
tations of huge random objects, and apply it to a few areas in
which random objects occur naturally. For example, a ran-
dom object being considered may be a random connected
graph, a random bounded-degree graph, or a random error-
correcting code with good distance. A pseudo-random im-
plementation of such type T objects must generate objects
of type T that can not be distinguished from random ones,
rather than objects that can not be distinguished from type
T objects (although they are not type T at all).

We will model a type T object as a function, and ac-
cess objects by queries into these functions. We investigate
supporting both standard queries that only evaluates the
primary function at locations of the user’s choice (e.g., edge
queries in a graph), and complex queries that may ask for
the result of a computation on the primary function, where
this computation is infeasible to perform with a polynomial
number of standard queries (e.g., providing the next vertex
along a Hamiltonian path in the graph).

1 Introduction

Suppose that you want to run some experiments on ran-
dom codes (i.e., subsets of f0; 1gn that contain K = 2Ω(n)
strings). You actually take it for granted that the random
code will have large (i.e., linear) distance, because you know
some Coding Theory and are willing to discard the negli-
gible probability that a random code will not have a large
distance. Suppose that you want to be able to keep succinct
representations of these huge codes and/or that you want to
generate them using few random bits. Being aware of the
relevant works on pseudorandomness (e.g., [16, 5, 24, 13]),
you plan to use pseudorandom functions [13] in order to
efficiently generate and store representations of these codes;
that is, using the pseudorandom function f : [K]! f0; 1gn,�Department of Computer Science and
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you can define the code Cf = ff(i) : i 2 [K]g, and effi-
ciently produce codewords of Cf . But wait a minute, do the
codes that you generate this way have a large distance?

The point is that having a large distance is a global prop-
erty of the code, which in turn is a huge (i.e., exp(n)-sized)
object. This global property cannot be decided by looking
at polynomially many (i.e., poly(n)-many) codewords, and
so its violation cannot be translated to a contradiction of the
pseudorandomness of the function. Indeed, the substitution
of a random function (or a random code) by a pseudoran-
dom one is not guaranteed to preserve the global property.
Specifically, all pseudorandom codes generated as suggested
above may have small distance.1

So, can we efficiently generate random-looking codes of
large distance? Specifically, can we provide a probabilistic
polynomial-time procedure that allows to sample codewords
from a code of large distance such that the sampled code-
words look as if they were taken from a random code (which,
in particular, means that we do not generate linear codes).
The answer is essentially positive: see Theorem 3.12. How-
ever, this is merely an example of the type of questions that
we deal with. (Another illustrative example is presented in
Appendix A.)

We initiate a general study of the feasibility of implement-
ing (huge) random objects. For a given Type T of objects,
we aim at generating pseudorandom objects of Type T. That
is, we want the generated object to always be of Type T,
but we are willing to settle for Type T objects that look as
if they are truly random Type T objects (although they are
not). We stress that our focus is on Type T objects that look
like random Type T objects, rather than objects that look
like random Type T objects although they are not of Type T
at all. For example, we disapprove of a random function
as being an implementation of a random permutation, al-
though the two look alike to anybody restricted to resources
that are polynomially related to the length of the inputs to
the function. Beyond the intuitive conceptual reason for the

1Indeed, for each function fs taken from some pseudorandom ensembleffs : [2jsj=10] ! f0; 1gjsjgs, it may hold that the Hamming distance
between fs(is) and fs(is + 1) is one, for some is that depends arbitrarily
on fs. For example, given a pseudorandom ensemble ffsg, consider
the ensemble ffs;ig such that fs;i(i) = 0n , fs;i(i + 1) = 0n�11 andfs;i(x) = fs(x) for all other x’s.



above disapproval, there are practical considerations. For
example, if somebody supplies an element in the range then
we may want to be guaranteed that this element has a unique
preimage (as would be the case with any permutation but
not with a random function).

In general, when one deals (or experiments) with an ob-
ject that is supposed to be of Type T, one may assume that
this object has all the properties enjoyed by all Type T ob-
jects. If this assumption does not hold (even if one cannot
detect this fact during initial experimentation) then an ap-
plication that depends on this assumption may fail. One
reason for the failure of the application may be that it uses
significantly more resources than those used in the initial
experiments that failed to detect the problem. Another issue
is that the probability that the application fails may indeed
be negligible (as is the probability of detecting the failure
in the initial experiments), but due to the importance of the
application we are unwilling to tolerate even a negligible
probability of failure.

We explore several areas in which the study of random
objects occurs naturally. These areas include graph the-
ory, coding theory and cryptography. We provide imple-
mentations of various natural random objects, which were
considered before in these areas (e.g., the study of random
graphs [6]).

Objects, specifications, implementations and their
quality

Our focus is on huge objects; that is, objects that are of
size that is exponential in the running time of the applica-
tions. Thus, these (possibly randomized) applications may
inspect only small portions of the object (in each random-
ized execution). The object may be viewed as a function
(or an oracle), and inspecting a small portion of it is viewed
as receiving answers to a small number of adequate queries.
For example, when we talk of huge dense graphs, we con-
sider adjacency queries that are vertex-pairs with answers
indicating whether or not the queried pair is connected by
an edge. When we talk of huge bounded-degree graphs, we
consider incidence queries that correspond to vertices with
answers listing the neighbors of the queried vertex.

We are interested in classes of objects (or object types),
which can be viewed as classes of functions. (Indeed, we are
not interested in the trivial case of generic objects, which
is captured by the class of all functions.) For example,
when we talk of simple undirected graphs in the adjacency
predicate representation, we only allow symmetric and non-
reflexive Boolean functions. Similarly, when we talk of such
bounded-degree graphs in the incident-lists representation,
we restrict the class of functions in a less trivial manner
(i.e., u should appear in the neighbor-list of v iff v appears
in the neighbor-list of u). More interestingly, we may talk

of the class of connected (or Hamiltonian) graphs, in which
case the class of functions is even more complex. This
formalism allows to talk about objects of certain types (or of
objects satisfying certain properties). In addition, it captures
complex objects that support “compound queries” to more
basic objects. For example, we may consider an object that
answers queries regarding a global property of a Boolean
function (e.g., the parity of all the function’s values). The
queries may also refer to a large number of values of the
function (e.g., the parity of all values assigned to arguments
in an interval that is specified by the query).

We study probability distributions over classes of objects.
Such a distribution is called a specification. Formally, a
specification is presented by a computationally-unbounded
probabilistic Turing machine, where each setting of the ma-
chine’s random-tape yields a huge object. The latter object
is defined as the corresponding input-output relation, and so
queries to the object are associated with inputs to the ma-
chine. We consider the distribution on functions obtained
by selecting the specification’s random-tape uniformly. For
example, a randomN -vertex Hamiltonian graph is specified
by a computationally-unbounded probabilistic machine that
uses its random-tape to determine such a (random Hamil-
tonian) graph, and answers adjacency queries accordingly.
Another specification may require to answer, in addition to
adjacency queries regarding a uniformly selected N -vertex
graph, also more complex queries such as providing a clique
of size log2 N that contains the queried vertex. We stress that
the specification is not required to be even remotely efficient
(but for sake of simplicity we assume that it is recursive).

Our ultimate goal will be to provide a probabilistic
polynomial-time machine that implements the desired spec-
ification. That is, we consider the probability distribution
on functions induced by fixing of the random-tape of the
latter machine in all possible ways. Again, each possible
fixing of the random-tape yields a function corresponding
to the input-output relation (of the machine per this contents
of its random-tape).

Indeed, a key question is how good is the implementation
provided by some machine. We consider two aspects of this
question. The first (and more standard) aspect is whether one
can distinguish the implementation from the specification
when given oracle access to one of them. Variants include
perfect indistinguishability, statistical-indistinguishability
and computational-indistinguishability. We stress a second
aspect regarding the quality of implementation: the truthful-
ness of the implementation with respect to the specification,
where being truthful means that any possible function that
appears with non-zero probability in the implementation
must also appear with non-zero probability in the specifi-
cation. For example, if the specification is of a random
Hamiltonian graph then a truthful implementation must al-
ways yield a Hamiltonian graph. (A reasonable relaxation



of the notion of truthfulness is to require that all but a neg-
ligible part of the probability mass of the implementation
is assigned to functions that appear with non-zero proba-
bility in the specification; an implementation satisfying this
relaxation is called almost-truthful.)

Organization

In Section 2, we present formal definitions of the no-
tions discussed above as well as basic observations regarding
these notions. These are followed by a few known examples
of non-trivial implementations of various random objects
(which are retrospectively cast nicely in our formulation).
In Section 3, we state a fair number of new implementations
of various random objects, while deferring the constructions
(and proofs) to our technical report [14]. These implementa-
tions demonstrate the applicability of our notions to various
domains such as functions, graphs and codes. Conclusions
and open problems are presented in Section 4.

2 Formal Setting and General Observations

Throughout this work we let n denote the feasibility
parameter. Specifically, feasible-sized objects have an
explicit description of length poly(n), whereas huge ob-
jects have (explicit description) size exponential in n. The
latter are described by functions from poly(n)-bit strings to
poly(n)-bit strings. Whenever we talk of efficient proce-
dures we mean algorithms running in poly(n)-time. The
proofs of the (novel) results stated in this section appear in
our technical report [14].

2.1 Specification

A huge random object is specified by a computationally-
unbounded probabilistic Turing machine. For a fixed con-
tents of the random-tape, such a machine defines a (possibly
partial) function on the set of all binary strings. Such a func-
tion is called an instance of the specification. We consider
the input-output relation of this machine when the random-
tape is uniformly distributed. Loosely speaking, this is the
random object specified by the machine.

For sake of simplicity, we confine our attention to ma-
chines that halt with probability 1 on every input. Further-
more, we will consider the input-output relation of such
machines only on inputs of some specified length `, where` is always polynomially related to the feasibility parametern. Thus, for such a probabilistic machine M and length
parameter ` = `(n), with probability 1 over the choice of
the random-tape for M , machine M halts on every `(n)-bit
long input.

Definition 2.1 (specification): For a fixed function ` : N!
N, the instance specified by a probabilistic machine M ,

random-tape ! and parameter n is the function Mn;!
defined by letting Mn;!(x) be the output of M on inputx 2 f0; 1g`(n) when using the random-tape ! 2 f0; 1g1.
The random object specified by M and n is defined asMn;! for a uniformly selected ! 2 f0; 1g1.

Note that, with probability 1 over the choice of the random-
tape, the random object (specified by M and n) depends
only on a finite prefix of the random-tape. Let us clarify our
formalism by casting in it several simple examples, which
were considered before (cf. [13, 21]).

Example 2.2 (a random function): A random function fromn-bit strings to n-bit strings is specified by the machine M
that, on input x 2 f0; 1gn (parameter n and random-tape!), returns the idxn(x)-th n-bit block of !, where idxn(x)
is the index of x within the set of n-bit long strings.

Example 2.3 (a random permutation): Let N = 2n. A
random permutation over f0; 1gn � [N ] can be specified by
uniformly selecting an integer i 2 [N !]; that is, the machine
uses its random-tape to determine i 2 [N !], and uses thei-th permutation according to some standard order. An
alternative specification, which is easier to state (alas even
more inefficient), is obtained by a machine that repeatedly
inspect the N next n-bit strings on its random-tape, until
encountering a run of N different values, using these as the
permutation. Either way, once a permutation� over f0; 1gn
is determined, the machine answers the input x 2 f0; 1gn
with the output �(x).
Example 2.4 (a random permutation coupled with its in-
verse): In continuation to Example 2.3, we may consider
a machine that selects � as before, and responds to input(�; x) with �(x) if � = 1 and with ��1(x) otherwise. That
is, the object specified here provides access to a random
permutation as well as to its inverse.

2.2 Implementations

Definition 2.1 places no restrictions on the complexity
of the specification. Our aim, however, is to implement
such specifications efficiently. We consider several types of
implementations, where in all cases we aim at efficient im-
plementations (i.e., machines that respond to each possible
input within polynomial-time). Specifically, we consider
two parameters:

1. The type of model used in the implementation. We
will use either a polynomial-time oracle machine hav-
ing access to a random oracle or a standard probabilis-
tic polynomial-time machine (viewed as a determin-
istic machine having access to a finite random-tape).



2. The similarity of the implementation to the speci-
fication; that is, is the implementation may be perfect,
statistically indistinguishable or only computationally
indistinguishable from the specification (by proba-
bilistic polynomial-time oracle machines that try to
distinguish the implementation from the specification
by querying it at inputs of their choice).

Our real goal is to derive implementations by ordinary ma-
chines (having as good a quality as possible). We thus view
implementations by oracle machines having access to a ran-
dom oracle as merely a clean abstraction, which is useful in
many cases (as indicated by Theorem 2.9 below).

Definition 2.5 (implementation by oracle machines): For a
fixed function ` : N!N, a (deterministic) polynomial-time
oracle machineM and oracle f , the instance implemented
by Mf and parameter n is the function Mf defined by
letting Mf (x) be the output of M on input x 2 f0; 1g`(n)
when using the oracle f . The random object implemented
by M with parameter n is defined as Mf for a uniformly
distributed f : f0; 1g� ! f0; 1g.

In fact, Mf (x) depends only on the value of f on inputs
of length bounded by a polynomial in jxj. Similarly, an
ordinary probabilistic polynomial-time (as in the following
definition) only uses a poly(jxj)-bit long random-tape when
invoked on input x. Thus, for feasibility parameter n, the
machine handles `(n)-bit long inputs using a random-tape
of length �(n) = poly(`(n)) = poly(n), where (w.l.o.g.) �
is 1-1.

Definition 2.6 (implementation by ordinary machines):
For fixed functions `; � : N ! N, an ordinary polynomial-
time machineM and a string r, the instance implemented
byM and random-tape r is the functionMr defined by let-
tingMr(x) be the output ofM on input x 2 f0; 1g`(��1(jrj))
when using the random-tape r. The random object imple-
mented by M with parameter n is defined as Mr for a
uniformly distributed r 2 f0; 1g�(n).
We stress that an instance of the implementation is fully
determined by the machine M and the random-tape r (i.e.,
we disallow “implementations” that construct the object on-
the-fly while depending and keeping track of all previous
queries and answers).

For a machine M (either a specification or an implemen-
tation) we identify the pair (M;n) with the random object
specified (or implemented) by machine M and feasibility
parameter n.

Definition 2.7 (indistinguishability of the implementation
from the specification): Let S be a specification and I be an
implementation, both with respect to the length function ` :
N!N. We say that I perfectly implements S if, for every

n, the random object (I; n) is distributed identically to the
random object (S; n). We say that I closely-implementsS if, for every oracle machine M that on input 1n makes
at most polynomially-many queries all of length `(n), the
following difference is negligible2 as a function of njPr[M (I;n)(1n) = 1] � Pr[M (S;n)(1n) = 1]j (1)

We say that I pseudo-implements S if Eq. (1) holds for
every probabilistic polynomial-time oracle machine M that
makes only queries of length equal to `(n).
We stress that the notion of a close-implementation does
not say that the objects (i.e., (I; n) and (S; n)) are sta-
tistically close; it merely says that they cannot be distin-
guished by a (computationally unbounded) machine that
asks polynomially many queries. Indeed, the notion of
pseudo-implementation refers to the notion of computa-
tional indistinguishability (cf. [16, 24]) as applied to func-
tions (see [13]). Clearly, any perfect implementation is a
close-implementation, and any close-implementation is a
pseudo-implementation. Intuitively, the oracle machine M ,
which is sometimes called a (potential) distinguisher, repre-
sents a user that employs (or experiments with) the imple-
mentation. It is required that such a user cannot distinguish
the implementation from the specification, provided that the
user is limited in its access to the implementation or even in
its computational resources (i.e., time).

Indeed, it is trivial to perfectly implement a random func-
tion (i.e., the specification given in Example 2.2) by using
an oracle machine (with access to a random oracle). In
contrast, the main result of Goldreich, Goldwasser and Mi-
cali [13] can be cast by saying that there exist a pseudo-
implementation of a random function by an ordinary ma-
chine, provided that pseudorandom generators (or, equiva-
lently, one-way function [17]) do exist. In fact, under the
same assumption, it is easy to show that every specification
having a pseudo-implementation by an oracle machine also
has a pseudo-implementation by an ordinary machine. A
stronger statement will be proven below (see Theorem 2.9).

Truthful implementations. An important notion regard-
ing (non-perfect) implementations refers to the question of
whether or not they satisfy properties that are enjoyed by the
corresponding specification. Put in other words, the ques-
tion is whether each instance of the implementation is also an
instance of the specification. Whenever this condition holds,
we call the implementation truthful. Indeed, every perfect
implementation is truthful,but this is not necessarily the case
for close-implementations. For example, a random function
is a close-implementation of a random permutation (because
it is unlikely to find a collision among polynomially-many

2A function � : N ! [0; 1] is called negligible if for every positive
polynomial p and all sufficiently large n’s it holds that �(n) < 1=p(n).



preimages); however, a random function is not a truthful
implementation of a random permutation.

Definition 2.8 (truthful implementations): Let S be a spec-
ification and I be an implementation. We say that I is
truthful to S if for every n the support of the random object(I; n) is a subset of the support of the random object (S; n).
Much of this work is focused on truthful implementations.
The following simple result is useful in the study of the latter.
We comment that this result is typically applied to (truthful)
close-implementations by oracle machines, yielding (truth-
ful) pseudo-implementations by ordinary machines.

Theorem 2.9 Suppose that one-way functions exist. Then
any specification that has a pseudo-implementation by an
oracle machine (having access to a random oracle) also has
a pseudo-implementation by an ordinary machine. Further-
more, if the former implementation is truthful then so is the
latter.

The sufficient condition is also necessary, because the
existence of pseudorandom functions (i.e., a pseudo-
implementation of a random function) implies the existence
of one-way functions. In view of Theorem 2.9, whenever
we seek truthful implementations (or, alternatively, when-
ever we do not care about truthfulness at all), we may focus
on implementations by oracle machines.

Almost-Truthful implementations. Truthful implemen-
tations guarantee that each instance of the implementation is
also an instance of the specification (and is thus “consistent
with the specification”). A meaningful relaxation of this
guarantee refers to the case that almost all the probability
mass of the implementation is assigned to instances that are
consistent with the specification (i.e., are in the support of
the latter). Specifically, we refer to the following definition.

Definition 2.10 (almost-truthful implementations): Let S
be a specification and I be an implementation. We say thatI is almost-truthful to S if the probability that (I; n) is not
in the support of the random object (S; n) is bounded by a
negligible function in n.

Interestingly, almost-truthfulness is not preserved by the
construction used in the proof of Theorem 2.9. In fact,
there exists specifications that have almost-truthful close-
implementations by oracle machines but not by ordinary
machines (see Theorem 2.11 below). Thus, when studying
almost-truthful implementations, one needs to deal directly
with ordinary implementations (rather than focus on imple-
mentations by oracle-machines). Indeed, we will present
a few examples of almost-truthful implementations that are
not truthful.

Theorem 2.11 There exists a specification that has an
almost-truthful close-implementation by an oracle machine
but has no almost-truthful implementation by an ordinary
machine.

We stress that the theorem holds regardless of whether or
not the latter (almost-truthful) implementation is indistin-
guishable from the specification.

2.3 Known non-trivial implementations

In view of Theorem 2.9, when studying truthful imple-
mentations, we focus on implementations by oracle ma-
chines. In these cases, we shorthand the phrase implemen-
tation by an oracle machine by the term implementation.
Using the notion of truthfulness, we can cast the non-trivial
implementation of a random permutation provided by Luby
and Rackoff [21] as follows.

Theorem 2.12 [21]: There exists a truthful close-
implementation of the specification provided in Example 2.3.
That is, there exists a truthful close-implementation of the
specification that uniformly selects a permutation � overf0; 1gn and responses to the query x 2 f0; 1gn with the
value �(x).
Contrast Theorem 2.12 with the trivial non-truthful imple-
mentation (by a random function) mentioned above. Note
that, even when ignoring the issue of truthfulness, it is non-
trivial to provide a close-implementation of Example 2.4
(i.e., a random permutation along with its inverse).3 How-
ever, Luby and Rackoff [21] have also provided a truthful
close-implementation of Example 2.4.

Theorem 2.13 [21]: There exists a truthful close-
implementation of the specification that uniformly selects
a permutation � over f0; 1gn and responses to the query(�; x) 2 f�1;+1g� f0; 1gn with the value ��(x).
Another known result that has the flavor of the ques-
tions that we explore was obtained by Naor and Rein-
gold [22]. Loosely speaking, they provided a truthful close-
implementation of a permutation selected uniformly among
all permutations having a certain cycle-structure.

Theorem 2.14 [22]: For any N = 2n, t = poly(n), andC = f(ci;mi) : i = 1; :::; tg such that
Pti=1 mici = N ,

there exists a truthful close-implementation of a uniformly
distributed permutation that has mi cycles of size ci, fori = 1; :::; t.4 Furthermore, the implementation instance

3A random function will fail here, because the distinguisher may distin-
guish it from a random permutation by asking for the inverse of a random
image.

4Special cases include involutions (i.e., permutations in which all cycles
have length 2), and permutations consisting of a single cycle (of length N ).
These cases are cast by C = f(2; N=2)g and C = f(N; 1)g, respectively.



that uses the permutation � can also support queries of the
form (x; i) to be answered by �i(x), for any x 2 f0; 1gn
and any integer i (which is presented in binary).

We stress that the latter queries are served in time poly(n)
also in case i� poly(n).
2.4 A few general observations

Theorem 2.11 asserts the existence of specifications that
cannot be implemented in an almost-truthful manner by an
ordinary machine, regardless of the level of indistinguisha-
bility (of the implementation from the specification). We
can get negative results that refer also to implementations
by oracle machines, regardless of truthfulness, by requir-
ing the implementation to be sufficiently indistinguishable
(from the specification). Specifically:

Proposition 2.15 The following refers to implementations
by oracle machines and disregard the issue of truthfulness.

1. There exist specifications that cannot be closely-
implemented.

2. Assuming the existence of one-way functions, there ex-
ist specifications that cannot be pseudo-implemented.

The randomness complexity of implementations:
Looking at the proof of Theorem 2.9, it is evident that as far
as pseudo-implementations by ordinary machines are con-
cerned (and assuming the existence of one-way functions),
randomness can be reduced to any power of the feasibility
parameter (i.e., to n� for every � > 0). The same holds
with respect to truthful pseudo-implementations. On the
other hand, the proof of Theorem 2.11 suggests that this
collapse in the randomness complexity cannot occur with
respect to almost-truthful implementations by ordinary ma-
chines (regardless of the level of indistinguishability of the
implementation from the specification).

Theorem 2.16 (a randomness hierarchy): For every poly-
nomial �, there exists a specification that has an almost-
truthful close-implementation by an ordinary machine that
uses a random-tape of length �(n), but has no almost-
truthful implementation by an ordinary machine that uses a
random-tape of length �(n)� !(logn).
Composing implementations: A simple observation that
is used in our work is that one can “compose implemen-
tations”. That is, if we implement a random object R1 by
an oracle machine that uses oracle calls to a random object
R2, which in turn has an implementation by a machine of
type T, then we actually obtain an implementation of R1 by
a machine of type T. To state this result, we need to extend

Definition 2.5 such that it applies to oracle machines that use
arbitrary specifications (rather than a random oracle). Let
us denote by (M (S;n); n) an implementation by the oracle
machineM (and feasibility parameter n) with oracle access
to the specification (S; n).
Theorem 2.17 Let Q 2 fperfect; close; pseudog. Suppose
that the specification (S1; n) can be Q-implemented by(M (S2;n); n) and that (S2; n) has a Q-implementation by
an ordinary machine (resp., by an oracle machine with a
random oracle). Then, (S1; n) has a Q-implementation by
an ordinary machine (resp., by an oracle machine with a
random oracle). Furthermore, if both the implementations
in the hypothesis are truthful (resp., almost-truthful) then so
is the implementation in the conclusion.

2.5 Objects of feasible size

In contrast to the rest of this work, we shortly discuss the
complexity of generating random objects of feasible size
(rather than huge random objects). In other words, we are
talking about implementing a distribution on poly(n)-bit
long strings, and doing so in poly(n)-time. This problem
can be cast in our general formulation by considering spec-
ifications that ignore their input (i.e., have output that only
depend on their random-tape). In other words, we may view
objects of feasible size as constant functions, and cosider
a specification of such random objects as a distribution on
constant functions. Thus, without loss of generality, the
implementation may also ignore its input, and consequently
in this case there is no difference between an implementa-
tion by ordinary machine and an implementation by oracle
machine with a random oracle.

We note that perfect implementations of such distribu-
tions were considered before (e.g., in [1, 4, 11]), and dis-
tributions for which such implementations exist are called
sampleable. In the current context, where the observer
sees the entire object, the distinction between perfect imple-
mentation and close-implementation seems quite technical.
What seems fundamentally different is the study of pseudo-
implementations.

Theorem 2.18 There exist specifications of feasible-sized
objects that have no close-implementation,but do have (both
truthful and non-truthful) pseudo-implementations.

The proof of Theorem 2.18 also establishes the existence
of specifications (of feasible-sized objects) that have have
no truthful (and even no almost-truthful) implementation,
regardless of the level of indistinguishability from the spec-
ification. Turning the table around, ignoring the truthful-
ness condition, we ask whether there exist specifications of
feasible-sized objects that have no pseudo-implementations.
A partial answer is provided by the following result, which
relies on a non-standard assumption (see Footnote 5).



Proposition 2.19 Assuming the existence of a collision-free
hash function5, there exists a specification of a random
feasible-sized object that has no pseudo-implementation.

Open Problem 2.20 (A stronger version of Proposi-
tion 2.19:) Provide a specification of a random feasible-
sized object that has no pseudo-implementation, while rely-
ing on a standard intractability assumption.

Let us digress and consider close-implementations. For
example, Bach’s elegant algorithm for generating random
composite numbers along with their factorization [3] can
be cast as a (non-trivial) close-implementation of the said
distribution.6 A more elementary set of examples refers
to the generation of integers (out of a huge domain) ac-
cording to various “nice” distributions (e.g., the binomial
distribution of N trials).7 In fact, Knuth [19, Sec. 3.4.1]
considers the generation of various such distributions, and
his treatment (of integer-valued distributions) can be eas-
ily adapted to fit our formalism. This direction is further
pursued in our technical report [14]. In general, recall that
in the current context (where the observer sees the entire
object), a close-implementation must be statistically close
to the specification. Thus, almost-truthfulness follows “for
free”:

Proposition 2.21 Any close-implementation of a specifica-
tion of a feasible-sized object is almost-truthful to it.

Multiple samples. Our general formulation can be used to
specify an object that whenever invoked returns an indepen-
dently drawn sample from the same distribution. Specif-
ically, the specification may be by a machine that an-
swers each “sample-query” by using a distinct portion of
its random-tape (as coins used to sample from the basic dis-
tribution). Using a pseudorandom function,we may pseudo-
implement multiple samples from any distribution for which
one can pseudo-implement a single sample. That is:

Proposition 2.22 Suppose that one-way functions exist,and
let D = fDng be a probability ensemble such that eachDn

5We stress that the assumption used here (i.e., the existence of a single
collision-free hash function) seems stronger than the standard assump-
tion that refers to the existence of an ensemble of collision-free functions
(cf. [8]).

6We mention that Bach’s concrete motivation was to generate prime
numbers P along with the factorization of P �1, in order to allow efficient
testing of whether a given number is a primitive element modulo P . Thus,
one may say that Bach’s paper provides a close-implementation (by an
ordinary probabilistic polynomial-time machine) of the specification that
selects at random an n-bit long prime P and answers the query g by 1 if
and only if g is a primitive element modulo P .

7That is, for a huge N = 2n , we want to generate i with probabilitypi def= �Ni �=2N . Note i 2 f0; 1; :::Ng has feasible size, and yet the

problem is not trivial (because we cannot afford to compute all pi’s).

ranges over poly(n)-bit long strings. If D can be pseudo-
implemented then so can the specification that answers each
query by an independently selected sample of D. Further-
more, the latter implementation is by an ordinary machine
and is truthful provided that the former implementation is
truthful.

3 Our Main Results

We obtain several new implementations of random ob-
jects. For sake of clarity, we present the results in two
categories referring to whether they yield truthful or only
almost-truthful implementations. Here we only state the
results, whereas their proofs appear in our technical re-
port [14].

3.1 Truthful Implementations

All implementations stated in this section are by
(polynomial-time) oracle machines (which use a random
oracle). Corresponding pseudo-implementations by ordi-
nary (probabilistic polynomial-time) machines can be de-
rived using Theorem 2.9. Namely, assuming the existence
of one-way functions, each of the specifications considered
below can be pseudo-implemented in a truthful manner by
an ordinary probabilistic polynomial-time machine.

The basic technique underlying the following implemen-
tations is the embedding of additional structure that enables
to efficiently answer the desired queries in a consistent way
or to force a desired property. That is, this additional struc-
ture ensures truthfulness (with respect to the specification).
The additional structure may cause the implementation to
have a distribution that differs from that of the specifi-
cation, but this difference is infeasible to detect (via the
polynomially-many queries). In fact, the additional struc-
ture is typically randomized in order to make it undetectable,
but each possible choice of coins for this randomization
yields a “valid” structure (which in turn ensures truthfulness
rather than only almost-truthfulness).

3.1.1 Supporting complex queries regarding boolean
functions

As mentioned above, a random boolean function is trivially
implemented (and in a perfect way) by an oracle machine.
By this we mean that the specification and the implementa-
tion merely serve the standard evaluation queries that refer
to a random function (i.e., query x is answered by the value
of the function at x). Here we consider specifications that
supports more powerful queries.

Example 3.1 (answering some parity queries regarding a
random function): Consider a specification by a machine



(and length parameter ` = 2n) that, on input (i; j) where
1 � i � j � 2n, replies with the parity of the bits in
locations i through j of its random-tape. Intuitively, this
machine specifies an object that,based on a random functionf : [2n] ! f0; 1g, provides the parity of the values of f on
any desired interval of [2n].
Clearly, the implementation cannot afford to compute the
parity of the corresponding values in its random oracle. We
present a perfect implementation of Example 3.1, as well
as truthful close-implementations of more general types of
random objects (i.e., answering any symmetric “interval”
query). (See details in Appendix B.) Specifically, we prove:

Theorem 3.2 For every polynomial-time computable func-
tion g, there exists a truthful close-implementation of the
following specification of a random object. The specifi-
cation machine uses its random-tape to define a random
function f : f0; 1gn ! f0; 1g, and answers the query(�; �) 2 f0; 1gn+n by g(P��s�� f(s)).
It would be interesting to further extend the above result;
specific suggestions are made in our technical report [14].

3.1.2 Supporting complex queries regarding length-
preserving functions

We consider specifications that, in addition to the standard
evaluation queries, answer additional queries regarding a
random length-preserving function. Such objects have po-
tential applications in computational number theory, cryp-
tography, and the analysis of algorithms (cf. [10]). Specifi-
cally, we prove:

Theorem 3.3 There exists a truthful close-implementation
of the following specification. The specifying machine, uni-
formly selects a function f : f0; 1gn ! f0; 1gn, and, in
addition to the standard evaluation queries, answers the
inverse-query y 2 f0; 1gn with the set f�1(y).
Alternatively, the implementation may answer with a uni-
formly distributed preimage of y under f (and with a special
symbol in case no such preimage exists).

Theorem 3.4 There exists a truthful close-implementation
of the following specification. The specifying machine,
uniformly selects a function f : f0; 1gn ! f0; 1gn,
and answers the query (x;m), where x 2 f0; 1gn andm 2 [2poly(n)], with the value fm(x) (i.e., f iterated m
times on x).

This result is related to questions studied in [22, 23]; for
more details, see our technical report [14].

3.1.3 Random graphs of various types

Random graphs have been extensively studied (cf. [6]), and
in particular are known to have various properties. But does
it mean that we can provide truthful close-implementations
of uniformly distributed (huge) graphs having any of these
properties?

Let us first consider a specification for a randomN -vertex
graph, where N = 2n. Indeed, such a random graph can
be specified by the machine, which viewing its random-tape! as an N -by-N matrix, answers input (i; j) 2 [N ] � [N ]
with the value 0 if i = j, the value !i;j if i < j, and!j;i otherwise. But how about implementing a uniformly
distributed graph that has various properties?

Example 3.5 (uniformly distributed connected graphs):
Suppose that we want to implement a uniformly distributed
connected graph (i.e., a graph uniformly selected among all
connected N -vertex graph). An adequate specification may
scan its random-tape, considering eachN 2-bit long portion
of it as a description of a graph, and answer adjacency-
queries according to the first portion that yields a connected
graph. Note that the specification works in time Ω(N 2),
whereas an implementation needs to work in poly(logN)-
time. On the other hand, recall that a random graph is
connected with overwhelmingly high probability. This sug-
gests to implement a random connected graph by a random
graph. Indeed, this yields a close-implementation, but not
a truthful one (because occasionally, yet quite rarely, the
implementation will yield an unconnected graph).8

We present truthful close-implementations of Example 3.5
as well as of related specifications (i.e., of uniformly dis-
tributed graphs having various additional properties). These
are all special cases of the following result:

Theorem 3.6 Let Π be a monotone graph property that is
satisfied by a family of strongly-constructible sparse graphs.
That is, for some negligible function � (and every N ), there
exists a perfect implementation of a (single)N -vertex graph
with �(logN) � N 2 edges that satisfies property Π. Then,
there exists a truthful close-implementation of a uniformly
distributed graph that satisfies property Π.

The proof relies on the following lemma, which may be of
independent interest. Loosely speaking, the lemma asserts
that if a monotone graph property Π is satisfied by some
sparse graphs then a uniformly distributed graph having
property Π is indistinguishable from a truly random graph.

8Indeed, the trivial implementation (by a random graph) is almost-
truthful, but here we seek a truthful implementation (because otherwise we
cannot derive from it (via Theorem 2.9) even an almost-truthful pseudo-
implementation by an ordinary machine).



Lemma 3.7 Let Π be a monotone graph property that is
satisfied by someN -vertex graph having ���N2 � edges. Then,
any machine that makes at most q adjacency queries to a
graph, cannot distinguish a random N -vertex graph from a
uniformly distributedN -vertex graph that satisfies Π, except
than with probability O(qp�) + qN�(1�o(1)).
3.1.4 Supporting complex queries regarding random

graphs

Suppose that we want to implement a random N -vertex
graph along with supporting, in addition to the standard
adjacency queries, also some complex queries that are hard
to answer by only making adjacency queries. For example
suppose that on query a vertex v, we need to provide a
clique of size log2 N containing v. We present a truthful
close-implementations of this specification:

Theorem 3.8 There exists a truthful close-implementation
of the following specification. The specifying machine se-
lects uniformly an N -vertex graph and, in addition to the
standard adjacency queries, answers (Log-Clique) queries
of the form v by providing a random dlog2 Ne-vertex clique
that contains v (and a special symbol if no such clique ex-
ists).

Another result of similar flavour follows:

Theorem 3.9 There exists a truthful close-implementation
of the following specification. The specifying machine se-
lects uniformly an N -vertex graph G, and in case G is
Hamiltonian it uniformly selects a (directed) Hamiltonian
Cycle in G, which in turn defines a cyclic permutation� : [N ] ! [N ]. In addition to the standard adjacency
queries, the specification answers travel queries of the form(trav; v; t) by providing �t(v), and distance queries of the
form (dist; v; w) by providing the smallest t � 0 such thatw = �t(v).
3.1.5 Random bounded-degree graphs of various types

Random bounded-degree graphs have also received consid-
erable attention. We present truthful close-implementations
of random bounded-degree graphs G = ([N ]; E), where the
machine specifying the graph answers the query v 2 [N ]
with the list of neighbors of vertex v. We stress that
even implementing this specification is non-trivial if one
insists on truthfully implementing simple random bounded-
degree graphs (rather than graphs with self-loops and/or
parallel edges). Furthermore, we present truthful close-
implementations of random bounded-degree graphs having
additional properties such as connectivity, Hamiltonicity,
having logarithmic girth, etc. All these are special cases of
the following result:

Theorem 3.10 Let d be fixed and Π be a graph property
that satisfies the following two conditions:

1. The probability that Property Π is not satisfied by a
uniformly chosen d-regular N -vertex graph is negli-
gible in logN .

2. Property Π is satisfied by a family of strongly-
constructible d-regular N -vertex graphs having girth!(log logN).

Then, there exists a truthful close-implementation of a uni-
formly distributed d-regular N -vertex graph that satisfies
property Π.

The proof relies on the following lemma, which may be of
independent interest. Loosely speaking, the lemma asserts
that a random isomorphic copy of a fixed d-regular graph of
large girth is indistinguishable from a truly random d-regular
graph.

Lemma 3.11 let G = ([N ]; E) be any d-regular N -vertex
graph having girth g. Let G0 be obtained by randomly
permuting the vertices of G (and presenting the incidence
lists in some canonical order). Then, any machine M
that queries the graph for the neighborhoods of q ver-
tices of its choice, cannot distinguish G0 from a randomd-regular N -vertex (simple) graph, except than with proba-
bilityO(q2=(d�1)(g�1)=2). In the case d = 2 and q < g�1,
the probability bound can be improved to O(q2=N).
3.2 Almost-Truthful Implementations

All implementations stated in this section are by ordinary
(probabilistic polynomial-time) machines. All these results
assume the existence of one-way functions.

Again, the basic technique is to embed a desirable struc-
ture, but (in contrast to Section 3.1) here the embeded struc-
ture forces the desired property only with very high prob-
ability. Consequently, the resulting implementation is only
almost-truthful, which is the reason that we have to directly
present implementations by ordinary machines.

A specific technique that we use is obtaining a function as
a value-by-value combination of a pseudorandom function
and a function of a desired combinatorial structure. The
combination is done such that the combined function inherits
both the pseudorandomness of the first function and the
combinatorial structure of the second function (in analogy
to a construction in [18]). In some cases, the combination is
by a value-by-value XOR, but in others it is by a value-by-
value OR with a second function that is very sparse.

3.2.1 Random codes of large distance

In continuation to the discussion in the introduction, we
prove:



Theorem 3.12 For � = 1=6 and � = 1=9, assuming the ex-
istence of one-way functions, there exists an almost-truthful
pseudo-implementation of the following specification: The
specification machine uses its random-tape to uniformly se-

lect a code C � f0; 1gn having cardinality K def= 2�n and
distance at least �n, and answers the query i 2 [K] with thei-th element in C.

We comment that the above actualy specifies (and imple-
ments) an encoding algorithm for the corresponding code.
It would be very interesting if one can also implement a
corresponding decoding algorithm; see further discussion in
our technical report [14].

3.2.2 Random graphs of various types

Having failed to provide truthful pseudo-implementations
to the following specifications, we provide almost-truthful
ones.

Theorem 3.13 Let c(N) = (2�o(1)) log2 N be the largest
integer i such that the expected number of cliques of size i in
a random N -vertex graph is larger than one. Assuming the
existence of one-way functions, there exist almost-truthful
pseudo-implementations of the following specifications:

1. A random graph of Max-Clique c(N)� 1: The spec-
ification uniformly selects an N -vertex graph having
maximum clique size c(N) � 1, and answers edge-
queries accordingly.

2. A random graph of Chromatic Number (1 � o(1)) �N=c(N): The specification uniformly selects anN -vertex graph having Chromatic Number (1 �
log�1=3

2 N) �N=c(N), and answers edge-queries ac-
cordingly.

Another interesting question is to provide an almost-truthful
pseudo-implementation of a uniformly distributed graph
having a high (global) connectivity property. Unfortunately,
we do not know how to do this. Instead, we provide an
almost-truthful pseudo-implementation of a random graph
for which almost all pairs of vertices enjoy a high connec-
tivity property.

Theorem 3.14 For every positive polynomial p, assuming
the existence of one-way functions, there exists an almost-
truthful pseudo-implementation of the following specifica-
tion. The specifying machine selects a graph that is uni-
formly distributed among all N -vertex graphs for which all

but at most an �(N) def= 1=p(log2 N) fraction of the vertex
pairs are connected by at least (1 � �(N)) � N=2 vertex-
disjoint paths. Edge-queries are answered accordingly.

Interestingly, the same implementation works for all poly-
nomials p; that is, the implementation is independent of p,
which is only used in the definition of the specification.

4 Conclusions and Open Problems

The questions that underlie our work refer to the ex-
istence of good implementations of various specifications.
At the very least, we require the implementations to be
computationally-indistinguishable from the corresponding
specifications.9 That is, we are interested in pseudo-
implementations. Our ultimate goal is to obtain such im-
plementations via ordinary (probabilistic polynomial-time)
machines, and so we ask:

Q1: Which specifications have truthful pseudo-implement
ations (by ordinary machines)?

Q2: Which specifications have almost-truthful pseudo-
implementations (by ordinary machines)?

Q3: Which specifications have pseudo-implementations
at all?

In view of Theorem 2.9, as far as Questions Q1 and Q3
are concerned, we may as well consider implementations
by oracle machines (having access to a random oracle).
Indeed, the key observation that started us going was that
the following questions are the “right” ones to ask:

Q1r (Q1 revised): Which specifications have truthful
close-implementations by oracle machines (having
access to a random oracle)?

Q3r (Q3 revised): Which specifications have such close-
implementations at all?

We remark that even in case of Question Q2, it may make
sense to study first the existence of implementations by ora-
cle machines, bearing in mind that the latter cannot provide
a conclusive positive answer (as shown in Theorem 2.11).

In this work, we have initiated a comprehensive study of
the above questions. In particular, we provided a fair num-
ber of non-trivial implementations of various specifications
relating to the domains of random functions, random graphs
and random codes. The challenge of characterizing the
class of specifications that have good implementations (e.g.,
Questions Q1r and Q3r) remains wide open. A good start
may be to answer such questions when restricted to interest-
ing classes of specifications (e.g., the class of specifications
of random graphs having certain type of properties).

Limited-independence implemenations. Our definition
of pseudo-implementation is based on the notion of compu-
tational indistinguishability (cf. [16, 24, 13]) as a definition
of similarity among objects. A different notion of similarity

9Without such a qualification, the questions stated below are either
meaningless (i.e., every specification has a “bad” implementation) or miss
the point of generating random objects.



underlies the construction of sample spaces having limited-
independence properties (see, e.g., [2, 7]). For example,
we say that an implementation is k-wise close to a give
specification if the distribution of the answers to any k fixed
queries to the implementation is staistically close to the dis-
tribution of these answers in the specification. The study of
Question Q1r is also relevant to the construction of truth-
ful k-wise close implementations, for any k = poly(n). In
particular, one can show that any specification that has a
truthful close-implementation by an oracle machine, has a
truthful k-wise close implementation by an ordinary prob-
abilistic polynomial-time machine. A concrete example
which is useful for streaming applications (i.e., a “range-
summable” sequence [9] of k-wise close random variables)
appears in our technical report [14] (following the proof of
Theorem 3.2).
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Appendix A: Another illustrative Example

Suppose that you want to run some simulations on huge
random graphs. You actually take it for granted that the
random graph is going to be Hamiltonian, because you have
read Bollobas’s book [6] and you are willing to discard the
negligible probability that a random graph is not Hamilto-
nian. Suppose that you want to be able to keep succinct
representations of these graphs and/or that you want to gen-
erate them using few random bits. Having also read some
works on pseudorandomness (e.g., [16, 5, 24, 13]), you plan
to use pseudorandom functions [13] in order to efficiently
generate and store representations of these graphs. But wait
a minute, are the graphs that you generate this way really
Hamiltonian?

The point is that being Hamiltonian is a global property of
the graph, which in turn is a huge (i.e., exp(n)-sized) object.
This global property cannot be checking the adjacency of
polynomially many (i.e., poly(n)-many) vertex-pairs, and
so its violation cannot be translated to a contradiction of
the pseudorandomness of the function. Indeed, the sub-
stitution of a random function (or a random graph) by a
pseudorandom one is not guaranteed to preserve the global
property. Specifically, it may be the case that all pseudoran-
dom graphs are even disconnected.10 So, can we efficiently
generate huge Hamiltonian graphs? As we show in this
work, the answer to this question is positive.

Appendix B: A Perfect Implementation of Ex-
ample 3.1

In this appendix we show that the specification of Ex-
ample 3.1 can be perfectly implemented (by an oracle ma-
chine). Recall that we seek to implement access to a ran-
dom function f : f0; 1gn ! f0; 1g augmented with an-
swers regarding the parity (or XOR) of the values of f
on given intervals, where the intervals are with respect to
the standard lex-order of n-bit string. That is, the queryq = (�; �) 2 f0; 1gn+n, where 0n � � � � � 1n, is to
be answered by���s��f(s). The specification can answer
this query in the straightforward manner, but an implemen-
tation cannot afford to do so (because a straightforward
computation may take 2n = 2jqj=2 steps). Thus, the imple-
mentation will do something completely different.

We present an oracle machine that uses a random func-
tion f 0 : [ni=0f0; 1gi ! f0; 1g. Using f 0, we definef : f0; 1gn ! f0; 1g as follows. We consider a binary tree

10Indeed, for each function fs taken from some pseudorandom ensembleffs : [2n]� [2n]! f0; 1ggs , it may hold that fs(vs; u) = fs(u; vs) =
0 for all u 2 [2n], where vs depends arbitrarily on fs. For example, given
a pseudorandom ensemble ffsg consider the ensemble ffs;vg such thatfs;v(v; u) = fs;v(u; v) = 0n for all u’s, and fs;v(x; y) = fs(x; y) for
all other (x; y)’s.

of depth n and associate its ith level vertices with strings
of length i such that the vertex associated with the string s
has a left (resp., right) child associated with the string s0
(resp., s1). As a mental experiment, going from the root to
the leaves, we label the tree’s vertices as follows:

1. We label the root (i.e., the level-zero vertex, which is
associated with �) by the value f 0(�).

2. For i = 0; :::; n�1, and each internal vertex v at leveli, we label its left child by the value f 0(v0), and label
its right child by the XOR of the label of v and the
value f 0(v0). (Thus, the label of v equals the XOR of
the values of its children.)

3. The value of f at � 2 f0; 1gn is defined as the label
of the leaf associated with �.

By using induction on i = 0; :::; n, it can be shown that the
level i vertices are assigned uniformly and independently
distributed labels (which do depend, of course, on the leveli�1 labels). Thus, f is a random function. Furthermore, the
label of each internal node v equals the XOR of the values
of f on all leaves in the subtree rooted at v.

Note that the random function f 0 is used to directly as-
sign (random) labels to all the left-siblings. The other labels
(i.e., of right-siblings) are determined by XORing the la-
bels of the parent and the left-sibling. Furthermore, the
label of each node in the tree is determined by XORing
at most n + 1 values of f 0 (residing in appropriate left-
siblings). Specifically, the label of the vertex associated
with �1 � � ��i is determined by the f 0-values of the strings�; 0; �10; :::; �1 � � ��i�10. Thus, we obtain the value of f
at any n-bit long string by making at most n+ 1 queries tof 0. More generally, we can obtain the label assigned to each
vertex by making at most n+1 queries to f 0. It follows that
we can obtain the value of ���s��f(s) by making O(n2)
queries to f 0. Specifically, the desired value is the XOR of
the leaves residing in at most 2n�1 full binary sub-trees,and
so we merely need to XOR the labels assigned to the roots
of these sub-trees. Actually, O(n) queries can be shown
to suffice, by taking advantage on the fact that we need not
retrieve the labels assigned to O(n) arbitrary vertices (but
rather to vertices that correspond to roots of sub-trees with
consecutive leaves). We get get a perfect implementation
(by an oracle machine) of the specification of Example 3.1.

The above procedure can be generalize to handle queries
regarding any (efficiently computable) symmetric function
of the values assigned by f to any given interval. In fact, it
suffices to answer queries regarding the sum of these values.
This yields a proof of Theorem 3.2.


