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1 IntroductionSuppose that you want to run some experiments on random codes (i.e., subsets of f0; 1gn thatcontain K = 2
(n) strings). You actually take it for granted that the random code will havelarge (i.e., linear) distance, because you know some Coding Theory and are willing to discardthe negligible probability that a random code will not have a large distance. Suppose that youwant to be able to keep succinct representations of these huge codes and/or that you want togenerate them using few random bits. Being aware of the relevant works on pseudorandomness(e.g., [16, 5, 29, 12]), you plan to use pseudorandom functions [12] in order to e�ciently generate andstore representations of these codes; that is, using the pseudorandom function f : [K] ! f0; 1gn,you can de�ne the code Cf = ff(i) : i2 [K]g, and e�ciently produce codewords of Cf . But wait aminute, do the codes that you generate this way have a large distance?The point is that having a large distance is a global property of the code, which in turn is ahuge (i.e., exp(n)-sized) object. This global property cannot be decided by looking at polynomiallymany (i.e., poly(n)-many) codewords, and so its violation cannot be translated to a contradiction ofthe pseudorandomness of the function. Indeed, the substitution of a random function (or a randomcode) by a pseudorandom one is not guaranteed to preserve the global property. Speci�cally, allpseudorandom codes generated as suggested above may have small distance.1So, can we e�ciently generate random-looking codes of large distance? Speci�cally, can weprovide a probabilistic polynomial-time procedure that allows to sample codewords from a code oflarge distance such that the sampled codewords look as if they were taken from a random code(which, in particular, means that we do not generate linear codes). The answer is essentiallypositive: see Section 4. However, this is merely an example of the type of questions that we dealwith.We initiate a general study of the feasibility of implementing (huge) random objects. For agiven Type T of objects, we aim at generating pseudorandom objects of Type T. That is, we wantthe generated object to always be of Type T, but we are willing to settle for Type T objects thatlook as if they are truly random Type T objects (although they are not). We stress that ourfocus is on Type T objects that look like random Type T objects, rather than objects that look likerandom Type T objects although they are not of Type T at all. For example, we disapprove ofa random function as being an implementation of a random permutation, although the two lookalike to anybody restricted to resources that are polynomially related to the length of the inputs tothe function. Beyond the intuitive conceptual reason for the above disapproval, there are practicalconsiderations. For example, if somebody supplies an element in the range then we may want to beguaranteed that this element has a unique preimage (as would be the case with any permutationbut not with a random function).In general, when one deals (or experiments) with an object that is supposed to be of Type T, onemay assume that this object has all the properties enjoyed by all Type T objects. If this assumptiondoes not hold (even if one cannot detect this fact during initial experimentation) then an applicationthat depends on this assumption may fail. One reason for the failure of the application may bethat it uses signi�cantly more resources than those used in the initial experiments that failed todetect the problem. Another issue is that the probability that the application fails may indeed benegligible (as is the probability of detecting the failure in the initial experiments), but due to the1Indeed, for each function fs taken from some pseudorandom ensemble ffs : [2jsj=10] ! f0; 1gjsjgs, it may holdthat the distance between fs(is) and fs(is + 1) is one, where is depends arbitrarily on fs. For example, given apseudorandom ensemble ffsg consider the ensemble ffs;ig such that fs;i(i) = 0n, fs;i(i + 1) = 10n�1 and fs;i(x) =fs(x) for all other x's. 2



importance of the application we are unwilling to tolerate even a negligible probability of failure.We explore several areas in which the study of random objects occurs naturally. These areasinclude graph theory, coding theory and cryptography. We provide implementations of variousnatural random objects, which were considered before in these areas (e.g., the study of randomgraphs [6]).Objects, speci�cations, implementations and their qualityOur focus is on huge objects; that is, objects that are of size that is exponential in the runningtime of the applications. Thus, these (possibly randomized) applications may inspect only smallportions of the object (in each randomized execution). The object should be viewed as a function(or an oracle), and inspecting a small portion of it is viewed as receiving an answer to an adequatequery. For example, when we talk of huge dense graphs, we consider adjacency queries that arevertex-pairs with answers indicating whether the queried pair is connected by an edge. When wetalk of huge bounded-degree graphs, we consider incidence queries that correspond to vertices withanswers listing the neighbors of the queried vertex.We are interested in classes of objects (or object types), which can be viewed as classes offunctions. (Indeed, we are not interested in the trivial case of generic objects, which is captured bythe class of all functions.) For example, when we talk of simple undirected graphs in the adjacencypredicate representation, we only allow symmetric and non-re
exive Boolean functions. Similarly,when we talk of such bounded-degree graphs in the incident-lists representation, we restrict theclass of functions in a less trivial manner (i.e., u should appear in the neighbor-list of v i� v appearsin the neighbor-list of u). More interestingly, we may talk of the class of connected (or Hamiltonian)graphs, in which case the class of functions is even more complex. This formalism allows to talkabout objects of certain types (or of objects satisfying certain properties). In addition, it capturescomplex objects that support \compound queries" to more basic objects. For example, we mayconsider an object that answers queries regarding a global property of a Boolean function (e.g., theparity of all the function's values). The queries may also refer to a large number of values of thefunction (e.g., the parity of all values assigned to arguments in an interval that is speci�ed by thequery).We study probability distributions over classes of objects. Such a distribution is called a speci-�cation. Formally, a speci�cation is presented by a computationally-unbounded probabilistic Turingmachine, where each setting of the machine's random-tape yields a huge object. The latter object isde�ned as the corresponding input-output relation, and so queries to the object are associated withinputs to the machine. We consider the distribution on functions obtained by selecting the speci�ca-tion's random-tape uniformly. For example, a random N -vertex Hamiltonian graph is speci�ed bya computationally-unbounded probabilistic machine that uses its random-tape to determine sucha (random Hamiltonian) graph, and answers adjacency queries accordingly. Another speci�cationmay require to answer, in addition to adjacency queries regarding a uniformly selected N -vertexgraph, also more complex queries such as providing a clique of size log2N that contains the queriedvertex. We stress that the speci�cation is not required to be even remotely e�cient (but for sakeof simplicity we assume that it is recursive).Our ultimate goal will be to provide a probabilistic polynomial-time machine that implementsthe desired speci�cation. That is, we consider the probability distribution on functions induced by�xing of the random-tape of the latter machine in all possible ways. Again, each possible �xing ofthe random-tape yields a function corresponding to the input-output relation (of the machine perthis contents of its random-tape). 3



Indeed, a key question is how good is the implementation provided by some machine. We con-sider two aspects of this question. The �rst (and more standard) aspect is whether one can distin-guish the implementation from the speci�cation when given oracle access to one of them. Variants in-clude perfect indistinguishability, statistical-indistinguishability and computational-indistinguishability.We stress a second aspect regarding the quality of implementation: the truthfulness of the imple-mentation to the speci�cation, where being truthful means that any possible function that appearswith non-zero probability in the implementation must also appear with non-zero probability in thespeci�cation. For example, if the speci�cation is of a random Hamiltonian graph then a truthfulimplementation must always yield a Hamiltonian graph. (A reasonable relaxation of the notionof truthfulness is to require that all but a negligible part of the probability mass of the imple-mentation is assigned to functions that appear with non-zero probability in the speci�cation; animplementation satisfying this relaxation is called almost-truthful.)RoadmapIn Section 2, we present formal de�nitions of the notions discussed above as well as basic ob-servations regarding these notions. These are followed by a few known examples of non-trivialimplementations of various random objects (which are retrospectively cast nicely in our formu-lation). In Section 3, we state a fair number of non-trivial implementations of various randomobjects. These implementations demonstrate the applicability of our notions to various domainssuch as functions, graphs and codes. In Section 3 our results are merely stated, while the proofs aredeferred to the corresponding sections. Conclusions and open problems are presented in Section 10.2 Formal Setting and General ObservationsThroughout this work we let n denote the feasibility parameter. Speci�cally, feasible-sized objectshave an explicit description of length poly(n), whereas huge objects have (explicit description) sizeexponential in n. The latter are described by functions from poly(n)-bit strings to poly(n)-bitstrings. Whenever we talk of e�cient procedures we mean algorithms running in poly(n)-time.2.1 Speci�cationA huge random object is speci�ed by a computationally-unbounded probabilistic Turing machine.For a �xed contents of the random-tape, such a machine de�nes a (possibly partial) function onthe set of all binary strings. Such a function is called an instance of the speci�cation. We considerthe input-output relation of this machine when the random-tape is uniformly distributed. Looselyspeaking, this is the random object speci�ed by the machine.For sake of simplicity, we con�ne our attention to machines that halt with probability 1 on everyinput. Furthermore, we will consider the input-output relation of such machines only on inputsof some speci�ed length `, where ` is always polynomially related to the feasibility parameter n.Thus, for such a probabilistic machine M and length parameter ` = `(n), with probability 1 overthe choice of the random-tape for M , machine M halts on every `(n)-bit long input.De�nition 2.1 (speci�cation): For a �xed function ` :N!N, the instance speci�ed by a probabilisticmachine M , random-tape ! and parameter n is the function Mn;! de�ned by letting Mn;!(x) be theoutput of M on input x 2 f0; 1g`(n) when using the random-tape ! 2 f0; 1g1. The random objectspeci�ed by M and n is de�ned as Mn;! for a uniformly selected ! 2 f0; 1g1.4



Note that, with probability 1 over the choice of the random-tape, the random object (speci�ed byM and n) depends only on a �nite pre�x of the random-tape. Let us clarify our formalism bycasting in it several simple examples, which were considered before (cf. [12, 25]).Example 2.2 (a random function): A random function from n-bit strings to n-bit strings is spec-i�ed by the machine M that, on input x 2 f0; 1gn (parameter n and random-tape !), returns theidxn(x)-th n-bit block of !, where idxn(x) is the index of x within the set of n-bit long strings.Example 2.3 (a random permutation): Let N = 2n. A random permutation over f0; 1gn � [N ]can be speci�ed by uniformly selecting an integer i 2 [N !]; that is, the machine uses its random-tape to determine i 2 [N !], and uses the i-th permutation according to some standard order. Analternative speci�cation, which is easier to state (alas even more ine�cient), is obtained by amachine that repeatedly inspect the N next n-bit strings on its random-tape, until encountering arun of N di�erent values, using these as the permutation. Either way, once a permutation � overf0; 1gn is determined, the machine answers the input x 2 f0; 1gn with the output �(x).Example 2.4 (a random permutation coupled with its inverse): In continuation to Example 2.3,we may consider a machine that selects � as before, and responds to input (�; x) with �(x) if� = 1 and with ��1(x) otherwise. That is, the object speci�ed here provides access to a randompermutation as well as to its inverse.2.2 ImplementationsDe�nition 2.1 places no restrictions on the complexity of the speci�cation. Our aim, however, isto implement such speci�cations e�ciently. We consider several types of implementations, wherein all cases we aim at e�cient implementations (i.e., machines that respond to each possible inputwithin polynomial-time). Speci�cally, we consider two parameters:1. The type of model used in the implementation. We will use either a polynomial-time ora-cle machine having access to a random oracle or a standard probabilistic polynomial-timemachine (viewed as a machine having access to a �nite random-tape).2. The similarity of the implementation to the speci�cation; that is, is the implementation perfect,statistically indistinguishable or only computationally indistinguishable from the speci�cation(by probabilistic polynomial-time oracle machines that try to distinguish the implementationfrom the speci�cation by querying it at inputs of their choice).Our real goal is to derive implementations by ordinary machines (having as good a quality aspossible). We thus view implementations by oracle machines having access to a random oracle asmerely a clean abstraction, which is useful in many cases (as indicated by Theorem 2.9 below).De�nition 2.5 (implementation by oracle machines): For a �xed function ` :N!N, a polynomial-time oracle machine M and oracle f , the instance implemented by Mf and parameter n is thefunction Mf de�ned by letting Mf (x) be the output of M on input x 2 f0; 1g`(n) when using theoracle f . The random object implemented by M with parameter n is de�ned as Mf for a uniformlydistributed f : f0; 1g� ! f0; 1g.In fact, Mf (x) depends only on the value of f on inputs of length bounded by a polynomial injxj. Similarly, an ordinary probabilistic polynomial-time (as in the following de�nition) uses apoly(jxj)-bit long random-tape when invoked on input x. Thus, for feasibility parameter n, themachine handles `(n)-bit long inputs using a random-tape of length �(n) = poly(`(n)) = poly(n),where (w.l.o.g.) � is 1-1. 5



De�nition 2.6 (implementation by ordinary machines): For �xed functions `; � :N!N, an ordi-nary polynomial-time machine M and a string r, the instance implemented by M and random-taper is the function Mr de�ned by letting Mr(x) be the output of M on input x 2 f0; 1g`(��1(jrj)) whenusing the random-tape r. The random object implemented by M with parameter n is de�ned as Mrfor a uniformly distributed r 2 f0; 1g�(n).We stress that an instance of the implementation is fully determined by the machine M andthe random-tape r (i.e., we disallow \implementations" that construct the object on-the-
y whiledepending and keeping track of all previous queries and answers).For a machine M (either a speci�cation or an implementation) we identify the pair (M;n) withthe random object speci�ed (or implemented) by machine M and feasibility parameter n.De�nition 2.7 (indistinguishability of the implementation from the speci�cation): Let S be aspeci�cation and I be an implementation, both with respect to the length function ` :N!N. We saythat I perfectly implements S if, for every n, the random object (I; n) is distributed identically tothe random object (S; n). We say that I closely-implements S if, for every oracle machine M thaton input 1n makes at most polynomially-many queries all of length `(n), the following di�erence isnegligible2 as a function of njPr[M (I;n)(1n) = 1] � Pr[M (S;n)(1n) = 1]j (1)We say that I pseudo-implements S if Eq. (1) holds for every probabilistic polynomial-time oraclemachine M that makes only queries of length equal to `(n).We stress that the notion of a close-implementation does not say that the objects (i.e., (I; n)and (S; n)) are statistically close; it merely says that they cannot be distinguished by a (com-putationally unbounded) machine that asks polynomially many queries. Indeed, the notion ofpseudo-implementation refers to the notion of computational indistinguishability (cf. [16, 29]) asapplied to functions (see [12]). Clearly, any perfect implementation is a close-implementation, andany close-implementation is a pseudo-implementation. Intuitively, the oracle machine M , which issometimes called a (potential) distinguisher, represents a user that employs (or experiments with)the implementation. It is required that such a user cannot distinguish the implementation fromthe speci�cation, provided that the user is limited in its access to the implementation or even inits computational resources (i.e., time).Indeed, it is trivial to perfectly implement a random function (i.e., the speci�cation given inExample 2.2) by using an oracle machine (with access to a random oracle). In contrast, themain result of Goldreich, Goldwasser and Micali [12] can be cast by saying that there exist apseudo-implementation of a random function by an ordinary machine, provided that pseudorandomgenerators (or, equivalently, one-way function [17]) do exist. In fact, under the same assumption, itis easy to show that every speci�cation having a pseudo-implementation by an oracle machine alsohas a pseudo-implementation by an ordinary machine. A stronger statement will be proven below(see Theorem 2.9).Truthful implementations. An important notion regarding (non-perfect) implementations refersto the question of whether or not they satisfy properties that are enjoyed by the correspondingspeci�cation. Put in other words, the question is whether each instance of the implementation is2A function � : N! [0; 1] is called negligible if for every positive polynomial p and all su�ciently large n's it holdsthat �(n) < 1=p(n). 6



also an instance of the speci�cation. Whenever this condition holds, we call the implementationtruthful. Indeed, every perfect implementation is truthful, but this is not necessarily the case forclose-implementations. For example, a random function is a close-implementation of a random per-mutation (because it is unlikely to �nd a collision among polynomially-many preimages); however,a random function is not a truthful implementation of a random permutation.De�nition 2.8 (truthful implementations): Let S be a speci�cation and I be an implementation.We say that I is truthful to S if for every n the support of the random object (I; n) is a subset ofthe support of the random object (S; n).Much of this work is focused on truthful implementations. The following simple result is use-ful in the study of the latter. We comment that this result is typically applied to (truthful)close-implementations by oracle machines, yielding (truthful) pseudo-implementations by ordinarymachines.Theorem 2.9 Suppose that one-way functions exist. Then any speci�cation that has a pseudo-implementation by an oracle machine (having access to a random oracle) also has a pseudo-implementation by an ordinary machine. Furthermore, if the former implementation is truthfulthen so is the latter.The su�cient condition is also necessary, because the existence of pseudorandom functions (i.e., apseudo-implementation of a random function) implies the existence of one-way functions. In viewof Theorem 2.9, whenever we seek truthful implementations (or, alternatively, whenever we do notcare about truthfulness at all), we may focus on implementations by oracle machines.Proof: First we replace the random oracle used by the former implementation by a pseudorandomoracle (available by the results of [12, 17]). No probabilistic polynomial-time distinguisher can detectthe di�erence, except with negligible probability. Furthermore, the support of the pseudorandomoracle is a subset of the support of the random oracle, and so the truthful property is inherited bythe latter implementation. Finally, we use an ordinary machine to emulate the oracle machine thathas access to a pseudorandom oracle.Almost-Truthful implementations. Truthful implementations guarantee that each instance ofthe implementation is also an instance of the speci�cation (and is thus \consistent with the speci�-cation"). A meaningful relaxation of this guarantee refers to the case that almost all the probabilitymass of the implementation is assigned to instances that are consistent with the speci�cation (i.e.,are in the support of the latter). Speci�cally, we refer to the following de�nition.De�nition 2.10 (almost-truthful implementations): Let S be a speci�cation and I be an imple-mentation. We say that I is almost-truthful to S if the probability that (I; n) is not in the supportof the random object (S; n) is bounded by a negligible function in n.Interestingly, almost-truthfulness is not preserved by the construction used in the proof of The-orem 2.9. In fact, there exists speci�cations that have almost-truthful close-implementations byoracle machines but not by ordinary machines (see Theorem 2.11 below). Thus, when studyingalmost-truthful implementations, one needs to deal directly with the ordinary implementations(rather than focus on implementations by oracle-machines). Indeed, we will present a few examplesof almost-truthful implementations that are not truthful.7



Theorem 2.11 There exists a speci�cation that has an almost-truthful close-implementation by anoracle machine but has no almost-truthful implementation by an ordinary machine.We stress that the theorem holds regardless of whether or not the (almost-truthful) implementationis indistinguishable from the speci�cation.Proof: Consider the speci�cation of a uniformly selected function f : f0; 1gn ! f0; 1g having(time-bounded) Kolmogorov Complexity3 greater than 2n�1. That is, the speci�cation machinescans its random-tape, looking for a block of 2n bits of (time-bounded) Kolmogorov Complexitygreater than 2n�1, and once found uses this block as a truth-table of the desired Boolean function.Since all but a negligible fraction of the functions have Kolmogorov Complexity greater than 2n�1,a almost-truthful close-implementation by an oracle machine may just use a random function. Onthe other hand, any implementation by an ordinary machine (of randomness complexity �) inducesa function f : f0; 1gn ! f0; 1g of (time-bounded) Kolmogorov Complexity at most (O(1)+ �(n))+log2(poly(n) � 2n) = poly(n). Thus, any such implementation yields a function that violates thespeci�cation, and so cannot be even \remotely" truthful.2.3 Known non-trivial implementationsIn view of Theorem 2.9, when studying truthful implementations, we focus on implementationsby oracle machines. In these cases, we shorthand the phrase implementation by an oracle ma-chine by the term implementation. Using the notion of truthfulness, we can cast the non-trivialimplementation of a random permutation provided by Luby and Racko� [25] as follows.Theorem 2.12 [25]: There exists a truthful close-implementation of the speci�cation provided inExample 2.3. That is, there exists a truthful close-implementation of the speci�cation that uniformlyselects a permutation � over f0; 1gn and responses to the query x 2 f0; 1gn with the value �(x).Contrast Theorem 2.12 with the trivial non-truthful implementation (by a random function) men-tioned above. Note that, even when ignoring the issue of truthfulness, it is non-trivial to provide aclose-implementation of Example 2.4 (i.e., a random permutation along with its inverse).4 However,Luby and Racko� [25] have also provided a truthful close-implementation of Example 2.4.Theorem 2.13 [25]: There exists a truthful close-implementation of the speci�cation that uni-formly selects a permutation � over f0; 1gn and responses to the query (�; x) 2 f�1;+1g 2 f0; 1gnwith the value ��(x).Another known result that has the 
avor of the questions that we explore was obtained by Naor andReingold [27]. Loosely speaking, they provided a truthful close-implementation of a permutationselected uniformly among all permutations having a certain cycle-structure.3Loosely speaking, the (standard) Kolmogorov Complexity of a string s is the minimum length of a program �that produce s. The time-bounded Kolmogorov Complexity of a string s is the minimum, taken over programs �that produce s, of j�j + log2(time(�)), where time(�) is the running-time of �. We use time-bounded KolmogorovComplexity in order to allow for a recursive speci�cation.4A random function will fail here, because the distinguisher may distinguish it from a random permutation byasking for the inverse of a random image.
8



Theorem 2.14 [27]: For any N = 2n, t = poly(n), and C = f(ci;mi) : i = 1; :::; tg such thatPti=1mici = N , there exists a truthful close-implementation of a uniformly distributed permutationthat has mi cycles of size ci, for i = 1; :::; t.5 Furthermore, the implementation instance that usesthe permutation � can also support queries of the form (x; i) to be answered by �i(x), for anyx 2 f0; 1gn and any integer i (which is presented in binary).We stress that the latter queries are served in time poly(n) also in case i� poly(n).2.4 A few general observationsTheorem 2.11 asserts the existence of speci�cations that cannot be implemented in an almost-truthful manner by an ordinary machine, regardless of he level of indistinguishability (of the imple-mentation from the speci�cation). We can get negative results that refer also to implementationsby oracle machines, regardless of truthfulness, by requiring the implementation to be su�cientlyindistinguishable (from the speci�cation). Speci�cally:Proposition 2.15 The following refers to implementations by oracle machines and disregard theissue of truthfulness.1. There exist speci�cations that cannot be closely-implemented.2. Assuming the existence of one-way functions, there exist speci�cations that cannot be pseudo-implemented.The hypothesis in Part 2 can be relaxed: It su�ces to assume the existence of NP-sets for which itis feasible to generate hard instances. For details see Appendix D.Proof: For starters, note that the speci�cation may just disregard the issue of randomness andinvert a one-way function at images of the user's choice. Certainly, this speci�cation cannot bepseudo-implemented, because such an implementation would yield an algorithm that violates thehypothesis (of Part 2).6 We may easily adapt this example such that the speci�cation gives riseto a random object. For example, the speci�cation may state that, given a pair of strings, oneshould use a random function to select one of these strings, and answer with its inverse under theone-way function. A pseudo-implementation of this speci�cation can also be shown to contradictthe hypothesis. The above refers to Part 2. Turning to Part 1, we may use a function constructed inexponential-time that cannot be inverted, except for with negligible probability, by any polynomial-time machine that uses a random oracle. That is, the speci�cation determines such a function, andinverts it at inputs of the user's choice. Observe that a close-implementation of such a functionis required to successfully invert the function at random inputs, which is impossible (except fornegligible probability).5Special cases include involutions (i.e., permutations in which all cycles have length 2), and permutations consistingof a single cycle (of length N). These cases are cast by C = f(2; N=2)g and C = f(N; 1)g, respectively.6Consider the performance of the speci�cation (resp., implementation) when queried on a randomly generatedimage, and note that the correctness of the answer can be e�ciently veri�ed. Thus, while the speci�cation alwaysinverts the one-way function on the given image, the implementation must fail except with negligible probability.
9



The randomness complexity of implementations: Looking at the proof of Theorem 2.9,it is evident that as far as pseudo-implementations by ordinary machines are concerned (andassuming the existence of one-way functions), randomness can be reduced to any power of thefeasibility parameter (i.e., to n� for every � > 0). The same holds with respect to truthful pseudo-implementations. On the other hand, the proof of Theorem 2.11 suggests that this collapse in therandomness complexity cannot occur with respect to almost-truthful implementations by ordinarymachines (regardless of the level of indistinguishability of the implementation from the speci�ca-tion).Theorem 2.16 (a randomness hierarchy): For every polynomial �, there exists a speci�cation thathas an almost-truthful close-implementation by an ordinary machine that uses a random-tape oflength �(n), but has no almost-truthful implementation by an ordinary machine that uses a random-tape of length �(n)� !(log n).Proof: Let g(n) = !(log n). Consider the speci�cation that selects uniformly a string r 2 f0; 1g�(n)of (time-bounded) Kolmogorov Complexity at least �(n)� g(n), and responds to the query i 2 [2n]with the (1+(i mod �(n)))-th bit of r. Since all but a exp(�g(n)) = n�!(1) fraction of the �(n)-bitlong string have such complexity, this speci�cation is closely-implemented in an almost-truthfulmanner by a machine that uniformly selects r 2 f0; 1g�(n) (and responds as the speci�cation).However, any implementation that uses a random-tape of length �0, yields a function that assignsthe �rst �(n) arguments values that as a string have (time-bounded) Kolmogorov Complexity atmost (O(1) + �0(n)) + log2(poly(n)) = �0(n) + O(log n). Thus, for �0(n) = �(n) � 2g(n), theimplementation cannot even be \remotely" truthful.Composing implementations: A simple observation that is used in our work is that one can\compose implementations". That is, if we implement a random object R1 by an oracle machinethat uses oracle calls to a random object R2, which in turn has an implementation by a machineof type T, then we actually obtain an implementation of R1 by a machine of type T. To state thisresult, we need to extend De�nition 2.5 such that it applies to oracle machines that use arbitraryspeci�cations (rather than a random oracle). Let use denote by (M (S;n); n) an implementation bythe oracle machine M (and feasibility parameter n) with oracle access to the speci�cation (S; n).Theorem 2.17 Let Q 2 fperfect; close;pseudog. Suppose that the speci�cation (S1; n) can beQ-implemented by (M (S2;n); n) and that (S2; n) has a Q-implementation by an ordinary machine(resp., by an oracle machine with a random oracle). Then, (S1; n) has a Q-implementation by anordinary machine (resp., by an oracle machine with a random oracle). Furthermore, if both theimplementations in the hypothesis are truthful (resp., almost-truthful) then so is the implementationin the conclusion.Proof: The idea is to simply replace (S2; n) by its implementation, denoted (I2; n), and thus obtainan implementation (M (I2;n); n) of (S1; n), which (by combining the machinesM and I2) yields a ma-chine of the type of machine I2. This machine inherits the truthfulness (resp., almost-truthfulness)of the given implementations. The analysis of the \quality" of the resulting implementation relieson the fact that the resource bounds imposed on the implementation (M (S2;n); n) induce bounds onthe use of (S2; n) byM . Combined with the hypothesis regarding the \quality" of (I2; n) guaranteesthe \quality" of the resulting implementation.For the sake of clarity, let us spell out the argument for the case of pseudo-implementations:The �rst hypothesis asserts that (M (S2;n); n) and (S1; n) are computationally-indistinguishable,10



and the second hypothesis asserts that (I2; n) and (S2; n) are computationally-indistinguishable.Our goal is to prove that (M (I2;n); n) and (S1; n) are computationally-indistinguishable, which (bythe �rst hypothesis) reduces to proving that (M (I2;n); n) and (M (S2;n); n) are computationally-indistinguishable. Now suppose, towards the contradiction, that some a probabilistic polynomial-time machine D distinguishes (M (I2;n); n) from (M (S2;n); n). Then, combining D andM , we obtaina machine that distinguishes (I2; n) from (S2; n) (in contradiction to the second hypothesis). Thekey point is that the fact that M is probabilistic polynomial-time (because it is an implementationmachine), and so the combined distinguisher is also probabilistic polynomial-time (provided thatso is D). In the case of close-implementations, we rely on the fact that D makes poly(n)-manyqueries and each such query is served by poly(n)-many queries of M .2.5 Objects of feasible sizeIn contrast to the rest of this work, we shortly discuss the complexity of generating random objects offeasible size (rather than huge random objects). In other words, we are talking about implementinga distribution on poly(n)-bit long strings, and doing so in poly(n)-time. This problem can be cast inour general formulation by considering speci�cations that ignore their input (i.e., have output thatonly depend on their random-tape, and hence specify a distribution on constant functions). Thus,without loss of generality, the implementation may also ignore its input, and consequently in thiscase there is no di�erence between an implementation by ordinary machine and an implementationby oracle machine with a random oracle.We note that perfect implementations of such distributions were considered before (e.g., in [1,4, 10]), and distributions for which such implementations exist are called sampleable. In the currentcontext, where the observer sees the entire object, the distinction between perfect implementationand close-implementation seems quite technical. What seems fundamentally di�erent is the studyof pseudo-implementations of random objects of feasible size.Theorem 2.18 There exist speci�cations of feasible-sized objects that have no close-implementation,but do have (both truthful and non-truthful) pseudo-implementations.Proof: Any evasive pseudorandom distribution (see [13]) yields such a speci�cation. Recall thata distribution is called evasive if it is infeasible to generate an element in its support (except withnegligible probability), and is called pseudorandom if it is computationally indistinguishable froma uniform distribution on strings of the same length. Thus, by de�nition, an evasive distributionhas no close-implementation. On the other hand, any pseudorandom distribution can be pseudo-implemented by the uniform distribution (or any other pseudorandom distribution). Indeed, thelatter implementation is not even almost-truthful (with respect to the evasive pseudorandom dis-tribution, because even a \remotely-truthful" implementation would violate the evasiveness condi-tion). To allow also the presentation of a truthful implementation, we modify the speci�cation suchthat with exponentially-small probability it produces some sampleable pseudorandom distributionthat has a relatively small support (i.e., ranges over at most 2n=2 strings of length n), and otherwiseit produces the evasive pseudorandom distribution. The desired truthful pseudo-implementationwill always produce the former distribution (i.e., the sampleable pseudorandom distribution).The proof of Theorem 2.18 also establishes the existence of speci�cations (of feasible-sizedobjects) that have have no truthful (or even almost-truthful) implementation, regardless of the levelof indistinguishability from the speci�cation. Turning the table around, ignoring the truthfulness11



condition, we ask whether there exist speci�cations of feasible-sized objects that have no pseudo-implementations. A partial answer is provided by the following result, which relies on a non-standard assumption (see Footnote 7).Proposition 2.19 Assuming the existence of a collision-free hash function7, there exists a speci-�cation of a random feasible-sized object that has no pseudo-implementation.Proof: Given a collision-free hash function h : f0; 1g2n ! f0; 1gn, consider the uniform distribu-tion over the set Sn def= f(x; y) 2 f0; 1gn+n : h(x) = h(y)g. Then, any implementation fails to hitthe support of this distribution, which in turn is polynomial-time recognizable. Thus, the abovespeci�cation (of a uniform distribution over Sn) cannot be pseudo-implemented.Open Problem 2.20 (A stronger version of Proposition 2.19:) Provide a speci�cation of a randomfeasible-sized object that has no pseudo-implementation, while relying on a standard intractabilityassumption.Let us digress and consider close-implementations. For example, Bach's elegant algorithm forgenerating random composite numbers along with their factorization [3] can be cast as a (non-trivial) close-implementation of the said distribution. A more elementary set of examples refers tothe generation of integers (out of a huge domain) according to various \nice" distributions (e.g.,the binomial distribution of N trials).8 In fact, Knuth [21, Sec. 3.4.1] considers the generation ofvarious such distributions, and his treatment (of integer-valued distributions) can be easily adaptedto �t our formalism. This direction is further pursued in Appendix A. In general, recall that inthe current context (where the observer sees the entire object), a close-implementation must bestatistically close to the speci�cation. Thus, almost-truthfulness follows \for free":Proposition 2.21 Any close-implementation of a speci�cation of a feasible-sized object is almost-truthful to it.Multiple samples. Our general formulation can be used to specify an object that wheneverinvoked returns an independently drawn sample from the same distribution. Speci�cally, the speci-�cation may be by a machine that answers each query by using a distinct portion of its random-tape(as coins used to sample from the basic distribution). Using a pseudorandom function, we maypseudo-implement multiple samples from any distribution for which one can pseudo-implement asingle sample. That is:Proposition 2.22 Suppose that one-way functions exist, and let D = fDng be a probability en-semble such that each Dn ranges over poly(n)-bit long strings. If D can be pseudo-implementedthen so can the speci�cation that answers each query by an independently selected sample of D.Furthermore, the latter implementation is by an ordinary machine and is truthful provided that theformer implementation is truthful.7We stress that the assumption used here is stronger than the standard assumption that refers to the existence ofan ensemble of collision-free functions (cf. [8]).8That is, for a huge N = 2n, we want to generate i with probability pi def= �Ni �=2N . Note i 2 f0; 1; :::Ng hasfeasible size, and yet the problem is not trivial (because we cannot a�ord to compute all pi's).
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Proof: Consider �rst an implementation by an oracle machine that merely uses the randomfunction to assign each query a random-tape to be used by the pseudo-implementation of (thesingle sample of the distribution) D. Since truthfulness and computational-indistinguishability arepreserved by independent samples (cf. [11, Sec. 3.2.3]), we are done as far as implementations byoracle machines are concerned. Using Theorem 2.9, the proposition follows.3 Our Main ResultsWe obtain several non-trivial implementations of random objects. For sake of clarity, we presentthe results in two categories referring to whether they yield truthful or only almost-truthful imple-mentations.3.1 Truthful ImplementationsAll implementations stated in this section are by (polynomial-time) oracle machines (which use arandom oracle). Corresponding pseudo-implementations (by ordinary probabilistic polynomial-timemachines) can be derived using Theorem 2.9. Namely, assuming the existence of one-way functions,each of the speci�cations considered below can be pseudo-implemented in a truthful manner by anordinary probabilistic polynomial-time machine.The basic technique underlying the following implementations is the embedding of additionalstructure that enables to e�ciently answer the desired queries in a consistent way (which is truthfulwith respect to the speci�cation). This additional structure may cause the implementation to havea distribution that di�ers from that of the speci�cation, but this di�erence is infeasible to detect(via the polynomially-many queries). In fact, the additional structure is typically randomized inorder to make it undetectable, but each possible choice of coins for this randomization yields avalid structure (and so truthfulness rather than almost-truthfulness holds).3.1.1 Supporting complex queries regarding boolean functionsAs mentioned above, a random boolean function is trivially implemented (and in a perfect way) byan oracle machine. By this we mean that the speci�cation and the implementation merely servethe standard evaluation queries that refer to a random function (i.e., query x is answered by thevalue of the function at x). Here we consider speci�cations that supports more powerful queries.Example 3.1 (answering some parity queries regarding a random function): Consider a speci�ca-tion by a machine (and length parameter ` = 2n) that, on input (i; j) where 1 � i � j � 2n, replieswith the parity of the bits in locations i through j of its random-tape. Intuitively, this machinespeci�es an object that, based on a random function f : [2n] ! f0; 1g, provides the parity of thevalues of f on any desired interval.Clearly, the implementation cannot a�ord to compute the parity of the corresponding values in itsrandom oracle. Still, in Section 5 we present a perfect implementation of Example 3.1, as well astruthful close-implementations of related random objects. Speci�cally, we prove:Theorem 3.2 (see Theorem 5.2): For every polynomial-time computable function g, there existsa truthful close-implementation of the following speci�cation of a random object. The speci�cationmachine uses its random-tape to de�ne a random function f : f0; 1gn ! f0; 1g, and answers thequery (�; �) 2 f0; 1gn+n by g(P��s�� f(s)). 13



3.1.2 Supporting complex queries regarding length-preserving functionsIn Section 9 we consider speci�cations that, in addition to the standard evaluation queries, answeradditional queries regarding a random length-preserving function. Such objects have potentialapplications in Cryptography, which are not pursued in this work. Speci�cally, we prove:Theorem 3.3 (see Theorem 9.2): There exists a truthful close-implementation of the followingspeci�cation. The specifying machine, uniformly selects a function f : f0; 1gn ! f0; 1gn, and,in addition to the standard evaluation queries, answers the inverse-query y 2 f0; 1gn with the setf�1(y).Alternatively, the implementation may answer with a uniformly distributed preimage of y under f(and with a special symbol in case no such preimage exists).Theorem 3.4 (see Theorem 9.1): There exists a truthful close-implementation of the followingspeci�cation. The specifying machine, uniformly selects a function f : f0; 1gn ! f0; 1gn, andanswers the query (x;m), where x 2 f0; 1gn and m 2 [2poly(n)], with the value fm(x) (i.e., fiterated m times on x).3.1.3 Random graphs of various typesRandom graphs have been extensively studied (cf. [6]), and in particular are known to have variousproperties. But does it mean that we can provide truthful close-implementations of uniformlydistributed (huge) graphs having any of these properties?Let us �rst consider a speci�cation for a random N -vertex graph, where N = 2n. Indeed, sucha random graph can be speci�ed by the machine, which viewing its random-tape ! as an N -by-Nmatrix, answers input (i; j) 2 [N ] � [N ] with the value 0 if i = j, the value !i;j if i < j, and !j;iotherwise. But how about implementing a uniformly distributed graph that has various properties?Example 3.5 (uniformly distributed connected graphs): Suppose that we want to implement auniformly distributed connected graph (i.e., a graph uniformly selected among all connected N -vertexgraph). An adequate speci�cation may scan its random-tape, considering each N2-bit long portion ofit as a description of a graph, and answer adjacency-queries according to the �rst portion that yieldsa connected graph. Note that the speci�cation works in time 
(N2), whereas an implementationneeds to work in poly(logN)-time. On the other hand, recall that a random graph is connected withoverwhelmingly high probability. This suggests to implement a random connected graph by a randomgraph. Indeed, this yields a close-implementation, but not a truthful one (because occasionally, yetquite rarely, the implementation will yield an unconnected graph).9In Section 6 we present truthful close-implementations of Example 3.5 as well as of related speci-�cations (i.e., of uniformly distributed graphs having various additional properties). These are allspecial cases of the following result:Theorem 3.6 (see Theorem 6.2): Let � be a monotone graph property that is satis�ed by a familyof strongly-constructible sparse graphs. That is, for some negligible function � (and every N), thereexists a perfect implementation of a (single) N -vertex graph with �(logN) �N2 edges that satis�esproperty �. Then, there exists a truthful close-implementation of a uniformly distributed graph thatsatis�es property �.9Indeed, the trivial implementation (by a random graph) is almost-truthful, but here we seek a truthful implemen-tation (because otherwise we cannot derive from it (via Theorem 2.9) even an almost-truthful pseudo-implementationby an ordinary machine). 14



The proof relies on the following lemma, which may be of independent interest:Lemma 3.7 (see Lemma 6.3): Let � be a monotone graph property that is satis�ed by some N -vertex graph having � � �N2 � edges. Then, any machine that makes at most q adjacency queries toa graph, cannot distinguish a random N -vertex graph from a uniformly distributed N -vertex graphthat satis�es �, except than with probability O(qp�) + qN�(1�o(1)).3.1.4 Supporting complex queries regarding random graphsSuppose that we want to implement a random N -vertex graph along with supporting, in additionto the standard adjacency queries, also some complex queries that are hard to answer by onlymaking adjacency queries. For example suppose that on query a vertex v, we need to provide aclique of size log2N containing v. In Section 7 we present a truthful close-implementations of thisspeci�cation:Theorem 3.8 (see Theorem 7.2): There exists a truthful close-implementation of the followingspeci�cation. The specifying machine selects uniformly an N -vertex graph and, in addition to thestandard adjacency queries, answers (Log-Clique) queries of the form v by providing a randomdlog2Ne-vertex clique that contains v (and a special symbol if no such clique exists).Another result proved in Section 7 follows:Theorem 3.9 (see Theorem 7.3): There exists a truthful close-implementation of the followingspeci�cation. The specifying machine selects uniformly an N -vertex graph G, and in case G isHamiltonian it uniformly selects a (directed) Hamiltonian Cycle in G, which in turn de�nes acyclic permutation � : [N ]! [N ]. In addition to the standard adjacency queries, the speci�cationanswers travel queries of the form (trav; v; t) by providing �t(v), and distance queries of the form(dist; v; w) by providing the smallest t � 0 such that w = �t(v).3.1.5 Random bounded-degree graphs of various typesRandom bounded-degree graphs have also received considerable attention. In Section 8 we presenttruthful close-implementations of random bounded-degree graphs G = ([N ]; E), where the machinespecifying the graph answers the query v 2 [N ] with the list of neighbors of vertex v. We stressthat even implementing this speci�cation is non-trivial if one insists on truthfully implementingsimple random bounded-degree graphs (rather than graphs with self-loops and/or parallel edges).Furthermore, we present truthful close-implementations of random bounded-degree graphs havingadditional properties such as connectivity, Hamiltonicity, having logarithmic girth, etc. All theseare special cases of the following result:Theorem 3.10 (see Theorem 8.4:) Let d be �xed and � be a graph property that satis�es thefollowing two conditions:1. The probability that Property � is not satis�ed by a uniformly chosen d-regular N -vertex graphis negligible in logN .2. Property � is satis�ed by a family of strongly-constructible d-regular N -vertex graphs havinggirth !(log logN).Then, there exists a truthful close-implementation of a uniformly distributed d-regular N -vertexgraph that satis�es property �. 15



The proof relies on the following lemma, which may be of independent interest:Lemma 3.11 (see Lemma 8.1): For d > 2, let G = ([N ]; E) be any d-regular N -vertex graphhaving girth g. Let G0 be obtained by randomly permuting the vertices of G (and presenting theincidence lists in some canonical order). Then, any machine M that queries the graph for theneighborhoods of q vertices of its choice, cannot distinguish G0 from a random d-regular N -vertex(simple) graph, except than with probability O(q2=(d � 1)(g�1)=2). In the case d = 2 and q < g � 1,the probability bound can be improved to O(q2=N).3.2 Almost-Truthful ImplementationsAll implementations stated in this section are by ordinary (probabilistic polynomial-time) machines.All these results assume the existence of one-way functions.Also here the basic technique is to embed a desirable structure, but here the embed structureforces the desired property only with very high probability. Consequently, the resulting implemen-tation is only almost-truthful, which is the reason that we have to directly present implementationsby ordinary machines.3.2.1 Random codes of large distanceIn continuation to the discussion in the introduction, we prove:Theorem 3.12 (see Theorem 4.2): For � = 1=6 and � = 1=9, assuming the existence of one-wayfunctions, there exists an almost-truthful pseudo-implementation of the following speci�cation: Thespeci�cation machine uses its random-tape to uniformly select a code C � f0; 1gn having cardinalityK def= 2�n and distance at least �n, and answers the query i 2 [K] with the i-th element in C.3.2.2 Random graphs of various typesHaving failed to provide truthful pseudo-implementations to the following speci�cations, we providealmost-truthful ones.Theorem 3.13 (see Theorem 6.5): Let c(N) = (2� o(1)) log2N be the largest integer i such thatthe expected number of cliques of size i in a random N -vertex graph is larger than one. Assuming theexistence of one-way functions, there exist almost-truthful pseudo-implementations of the followingspeci�cations:1. A random graph of Max-Clique c(N) � 1: The speci�cation uniformly selects an N -vertexgraph having maximum clique size c(N)� 1, and answers edge-queries accordingly.2. A random graph of Chromatic Number (1 � o(1)) � N=c(N): The speci�cation uniformlyselects an N -vertex graph having Chromatic Number (1 � log�1=32 N) � N=c(N), and answersedge-queries accordingly.Another interesting question is to provide an almost-truthful pseudo-implementation of a uniformlydistributed graph having a high (global) connectivity property. Unfortunately, we do not know howto do this. A second best thing may be to provide an almost-truthful pseudo-implementation of arandom graph for which almost all pairs of vertices enjoy a high connectivity property.16



Theorem 3.14 (see Theorem 6.6): For every positive polynomial p, assuming the existence of one-way functions, there exists an almost-truthful pseudo-implementation of the following speci�cation.The specifying machine selects a graph that is uniformly distributed among all N -vertex graphs forwhich all but at most an �(N) def= 1=p(log2N) fraction of the vertex pairs are connected by at least(1� �(N)) �N=2 vertex-disjoint paths. Edge-queries are answered accordingly.Interestingly, the same implementation works for all polynomials p; that is, the implementation isindependent of p, which is only needed for the de�nition of the speci�cation.4 Implementing Random Codes of Large DistanceFor su�ciently small �; � > 0, we consider codes having relative rate � and relative distance �;that is we consider subsets C � f0; 1gn such that jCj = 2�n and every two distinct codewords (i.e.,�; � 2 C) disagree on at least �n coordinates. Such a code is called good. A random set of K def= 2�nstrings of length n is good with overwhelmingly high probability. Thus, for a random functionf : [K] ! f0; 1gn, setting C = ff(i) : i 2 [K]g yields an almost-truthful close-implementationof a random code that is good, where the speci�cation is requires to answer the query i with thei-th codeword (i.e., i element in the code). Recall that it is not clear what happens when wereplace f by a pseudorandom function (i.e., it may be the case that the resulting code has verysmall distance, although most pairs of codewords are de�nitely far apart). To get a almost-truthfulpseudo-implementation we use a di�erent approach.Construction 4.1 For k = �n, we select a random k-by-n matrix M , and consider the linear codegenerated by M (i.e., the codewords are obtained by all possible linear combinations of the rows ofM). Now, using a pseudorandom function fs : f0; 1gk ! f0; 1gn, where s 2 f0; 1gn, we considerthe code CM;s = ffs(v)�vM : v 2 f0; 1gkg. That is, our implementation uses the random-tape(M; s), and provides the i-th codeword of the code CM;s by returning fs(i)�iM , where i 2 [2k] isviewed as a k-dimensional row vector (or k-bit long string).To see that Construction 4.1 is a pseudo-implementation of a random code, consider what happenswhen the pseudorandom function is replaced by a truly random one (in which case we may ignorethe nice properties of the random linear code generated byM).10 Speci�cally, for any matrixM andany function f : [K]! f0; 1gn, we consider the code CfM = ff(v)�vM : v 2 f0; 1gkg. Now, for any�xed choice of M and a truly random function � : [K] ! f0; 1gn, the code C�M is a random code.Thus, the pseudorandomness of the function ensemble ffsgs2f0;1gn implies that, for a uniformlychosen s 2 f0; 1gn, the code CM;s = CfsM is computationally indistinguishable from a random code.The reason being that ability to distinguish selected codewords of CfsM (for a random s 2 f0; 1gn)from codewords of C�M (for a truly random function � : [K]! f0; 1gn) yields ability to distinguishthe corresponding fs from �.To see that Construction 4.1 is almost-truthful to the good code property, �x any (pseudoran-dom) function f and consider the code CM = ff(v)�vM : v 2 f0; 1gkg, when M is a randomk-by-n matrix. Fixing any pair of distinct strings v; w 2 f0; 1gk , we show that with probability atleast 2�3k (over the possible choices ofM), the codewords f(v)�vM and f(w)�wM are at distanceat least �n, and it follows that with probability at least 1�2�k the code CM has a distance at least10In particular, note that the resulting code is unlikely to be linear. Furthermore, any n�O(1) > k codewords arelikely to be linearly independent (both when we use a random function or a pseudorandom one).17



�n. Thus, for a random M , consider the Hamming weight of (f(v)�vM)�(f(w)�wM), which inturn equals the Hamming weight of r�uM , where r = f(v)�f(w) and u = v�w are �xed. Theweight of r�uM behaves as a binomial distribution (with success probability 1/2), and thus theprobability that the weight is less than �n equals exp(�(1 � H2(�)) � n), where H2 denotes thebinary entropy function. So we need 1 � H2(�) � n > 3k to holds, and indeed it does hold forappropriate choices of � and � (e.g, � = 1=6 and � = 1=9). Speci�cally, recalling that k = �n, weneed 1�H2(�) > 3� to hold. We get:Theorem 4.2 For any � 2 (0; 1=2) and � 2 (0; 1 � H2(�)), assuming the existence of one-wayfunctions, there exists an almost-truthful pseudo-implementation by an ordinary machine of thefollowing speci�cation: The speci�cation machine uses its random-tape to uniformly select a codeC � f0; 1gn having cardinality K def= 2�n and distance at least �n, and answers the query i 2 [K]with the i-th element in C.5 Boolean Functions and Interval-Sum QueriesIn this section we show that the speci�cation of Example 3.1 can be perfectly implemented (by anoracle machine). Recall that we seek to implement access to a random function f : f0; 1gn ! f0; 1gaugmented with answers regarding the parity (or XOR) of the values of f on given intervals,where the intervals are with respect to the standard lex-order of n-bit string. That is, the queryq = (�; �) 2 f0; 1gn+n, where 0n � � � � � 1n, is to be answered by ���s��f(s). The speci�cationcan answer this query in the straightforward manner, but an implementation cannot a�ord to doso (because a straightforward computation may take 2n = 2jqj=2 steps). Thus, the implementationwill do something completely di�erent.We present an oracle machine that uses a random function f 0 : [ni=0f0; 1gi ! f0; 1g. Using f 0,we de�ne f : f0; 1gn ! f0; 1g as follows. We consider a binary tree of depth n and associate its ithlevel vertices with strings of length i such that the vertex associated with the string s has a left(resp., right) child associated with the string s0 (resp., s1). As a mental experiment, going fromthe root to the leaves, we label the tree's vertices as follows:1. We label the root (i.e., the level-zero vertex, which is associated with �) by the value f 0(�).2. For i = 0; :::; n � 1, and each internal vertex v at level i, we label its left child by the valuef 0(v0), and label its right child by the value f 0(v)�f 0(v0).3. The value of f at � 2 f0; 1gn is de�ned as the label of the leaf associated with �.By using induction on i = 0; :::; n, it can be shown that the level i vertices are assigned uniformlyand independently distributed labels (which do depend, of course, on the level i� 1 labels). Thus,f is a random function. Furthermore, the label of each internal node v equals the XOR of thevalues of f on all leaves in the subtree rooted at v.Note that the random function f 0 is used to directly assign (random) labels to all the left-siblings.The other labels (i.e., of right-siblings) are determined by XORing the labels of the parent and theleft-sibling. Furthermore, the label of each node in the tree is determined by XORing at most n+1values of f 0 (residing in appropriate left-siblings). Speci�cally, the label of the vertex associatedwith �1 � � � �i is determined by the f 0-values of the strings �; 0; �10; :::; �1 � � � �i�10. Actually, thelabel of the vertex associated with �1j , where � 2 f�g [ f0; 1gj�j�10 and j � 0, is determined by18



the f 0-values of j + 1 vertices (i.e., those associated with �; �0; �10:::; �1j�10).label(�1j) = label(�1j�1)� label(�1j�10)...= label(�)� label(�0) � � � � label(�1j�20)� label(�1j�10)= f 0(�)� f 0(�0) � � � � f 0(�1j�20)� f 0(�1j�10)Thus, we obtain the value of f at any n-bit long string by making at most n+1 queries to f 0. Moregenerally, we can obtain the label assigned to each vertex by making at most n+1 queries to f 0. Itfollows that we can obtain the value of ���s��f(s) by making O(n2) queries to f 0. Speci�cally, thedesired value is the XOR of the leaves residing in at most 2n � 1 full binary sub-trees, and so wemerely need to XOR the labels assigned to the roots of these sub-trees. Actually, O(n) queries canbe shown to su�ce, by taking advantage on the fact that we need not retrieve the labels assigned toO(n) arbitrary vertices (but rather to vertices that correspond to roots of sub-trees with consecutiveleaves). We get:Theorem 5.1 There exists a perfect implementation (by an oracle machine) of the speci�cation ofExample 3.1.The above procedure can be generalize to handle queries regarding any (e�ciently computable)symmetric function of the values assigned by f to any given interval. Clearly, it su�ces to answerqueries regarding the sum of these values. We thus state the following result.Theorem 5.2 There exists a truthful close-implementation (by an oracle machine) of the followingspeci�cation of a random object. The speci�cation machine uses its random-tape to de�ne a randomfunction f : f0; 1gn ! f0; 1g, and answers the query (�; �) 2 f0; 1gn+n by P��s�� f(s).Note that, unlike in the case of Theorem 5.1, the implementation is not perfect, which is the reasonthat we explicitly mention that it is truthful.Proof: All that is needed in order to extend the \XOR construction" is to label each vertex vwith the sum (rather than the sum mod 2) of the labels of all the leaves in the sub-tree rootedat v. In particular, internal nodes should be assigned random labels according to the binomialdistribution, which makes the implementation more complex (even for assigning labels to the rootand more so for assigning labels to left-siblings after their parents was assigned a label). Let usstart with an overview:1. We label the root by a value generated according to the binomial distribution; that is, theroot (of the depth-n binary tree) is assigned the value j with probability �Nj �=2N , whereN def= 2n. This random assignment will be implemented using the value f 0(�), where here f 0is a random function ranging over poly(n)-bit long strings rather than over a single bit (i.e.,f 0 : [ni=0f0; 1gi ! f0; 1gpoly(n)).2. For i = 0; :::; n � 1, and each internal vertex v at level i, we label its left child as follows, byusing the value f 0(v0). Suppose that v is assigned the value T � 2n�i. We need to selecta random pair of integers (l; r) such that l + r = T and 0 � l; r � 2n�i�1. Such a pairshould be selected with probability that equals the probability that, conditioned on l+r = T ,the pair (l; r) is selected when l and r are distributed according to the binomial distribution19



(of 2n�i�1 trials). That is, let M = 2n�i be the number of leaves in the tree rooted at v.Then, for l + r = T and 0 � l; r � M=2, the pair (l; r) should be selected with probability�M=2l � � �M=2r �=�Ml+r�.3. As before, the value of f at � 2 f0; 1gn equals the label of the leaf associated with �.Of course, the above two types of sampling procedures have to be implemented in poly(n)-time,rather than in poly(2n)-time (and poly(n2n�i)-time, respectively). These implementations cannotbe perfect (because some of the events occur with probability 2�N = 2�2n), but it su�ces to provideimplementations that generates these samples with approximately the right distribution (e.g., withdeviation at most 2�n or so). The details concerning these implementations are provided in anAppendix A.We stress that the sample (or label) generated for the (left sibling) vertex associated with� = �00 is produced based on the randomness provided by f 0(�). However, the actual sample (orlabel) generated for this vertex depends also on the label assigned to its parent. (Indeed, this isdi�erent from the case of XOR.) Thus, to determine the label assigned to any vertex in the tree,we need to obtain the labels of all its ancestors (up-to the root). Speci�cally, let S1(N; �) denotethe value sampled from the binomial distribution (on N trials), when the sampling algorithm usescoins �; and let S2(T; �) denote the value assigned to the left-child, when its parent is assignedthe value T , and the sampling algorithm uses coins �. Then, the label of the vertex associatedwith � = �1 � � � �t, denoted label(�), is obtained by computing the labels of all its ancestors asfollows. First, we compute label(�) S1(N; f 0(�)). Next, for i = 1; :::; t, we obtain label(�1 � � � �i)by computing label(�1 � � � �i�10)  S2(label(�1 � � � �i�1); f 0(�1 � � � �i�10)), and if necessary (i.e.,�i = 1) by computing label(�1 � � � �i�11) label(�1 � � � �i�1)� label(�1 � � � �i�10). That is, we �rstdetermine the label of the root (using the value of f 0 at �); and next, going along the path fromthe root to �, we determine the label of each vertex based on the label of its parent (and the valueof f 0 at the left-child of this parent). Thus, the computation of the label of �, only requires thevalue of f 0 on j�j + 1 strings. As in the case of XOR, this allows to answer queries (regarding thesum of the f -values in intervals) based on the labels of O(n) internal nodes, where each of theselabels depend only on the value of f 0 at O(n) points. (In fact, as in the case of XOR, one may showthat the values of these related internal nodes depend only on the value of f 0 at O(n) points.) Thetheorem follows.Open problems: Theorem 5.2 provides a truthful implementation for any (feasibly-computable)symmetric function of the values assigned by a random function over any interval of [N ] � f0; 1gn.Two natural extensions are suggested below.Open Problem 5.3 (Non-symmetric queries): Provide a truthful close-implementation to the fol-lowing speci�cation. The speci�cation machine de�nes a random function f : f0; 1gn ! f0; 1g,and answers queries of the form (�; �) 2 f0; 1gn+n with the value g(f(�); :::; f(�)), where g issome simple function. For example, consider g(�1; :::; �t) that returns the smallest i 2 [t] such that�i � � � �i+b1+log2 tc�1 = 11+blog2 tc (and a special symbol if no such i exists). More generally, considera speci�cation machine that answers queries of the form (k; (�; �)) by returning smallest i 2 [t]such that �i � � � �i+k�1 = 1k, where �j is the j-th element in the sequence (f(�); :::; f(�)).Note that the latter speci�cation is interesting mostly for k 2 f!(log n); :::; n + !(log n)g. Fork � ksm = O(log n) we may just make sure (in the implementation) that any consecutive interval20



of length 2ksmn2 contains a run of ksm ones.11 Once this is done, queries (referring to k � ksm) maybe served (by the implementation) in a straightforward way (i.e., by scanning at most two suchconsecutive intervals, which in turn contain 2ksm+1n2 = poly(n) values). Similarly, for k � klg =n+ !(log n), we may just make sure (in the implementation) that no pair of consecutive intervals,each of length 5n, has a run of min(klg; 2n) ones.Open Problem 5.4 (Beyond interval queries): Provide a truthful close-implementation to thefollowing speci�cation. The speci�cation machine de�nes a random function f : f0; 1gn ! f0; 1g,and answers queries that succinctly describe a set S, taken from a speci�c class of sets, with thevalue ��2Sf(�). In Example 3.1 the class of sets is all intervals of [N ] � f0; 1gn, represented bytheir pair of end-points. Another natural case is the class of sub-cubes of f0; 1gn; that is, a setS is speci�ed by an n-sequence over f0; 1; �g such that the set speci�ed by the sequence (�1; :::; �n)contains the n-bit long string �1 � � ��n if and only if �i = �i for every �i 2 f0; 1g.In both cases (i.e., Problems 5.3 and 5.4), even if we do not require truthfulness, the implementationmay be easily distinguished from the speci�cation if the former answers the compound queries ina non-consistent manner. At least, a potential implementation seems to be in trouble if it \liesbluntly" (e.g., answers each query by an independent random bit).6 Random Graphs Satisfying Global PropertiesSuppose that you want to run some simulations on huge random graphs. You actually take itfor granted that the random graph is going to be Hamiltonian, because you have read Bollobas'sbook [6] and you are willing to discard the negligible probability that a random graph is notHamiltonian. Suppose that you want to be able to keep succinct representations of these graphsand/or that you want to generate them using few random bits. Having also read some works onpseudorandomness (e.g., [16, 5, 29, 12]), you plan to use pseudorandom functions [12] in order toe�ciently generate and store representations of these graphs. But wait a minute, are the graphsthat you generate this way really Hamiltonian?The point is that being Hamiltonian is a global property of the graph, which in turn is a huge(i.e., exp(n)-sized) object. This global property cannot be checking the adjacency of polynomiallymany (i.e., poly(n)-many) vertex-pairs, and so its violation cannot be translated to a contradictionof the pseudorandomness of the function. Indeed, the substitution of a random function (or a ran-dom graph) by a pseudorandom one is not guaranteed to preserve the global property. Speci�cally,it may be the case that all pseudorandom graphs are even disconnected.12 So, can we e�cientlygenerate huge Hamiltonian graphs? As we show below, the answer to this question is positive.In this section we consider the implementation of various types of huge random graphs. Westress that we refer to simple and labeled graphs; that is, we consider graphs without self-loopsor parallel edges, and with labeled vertices (i.e., the 3-vertex graph consisting of the edge (1; 2)is di�erent from the 3-vertex graph consisting of the edge (1; 3)). In this section, implementing a11That is, the random function f : [N ] ! f0; 1g is modi�ed such that, for every j 2 [N=2ksmn2], the interval[(j�1)2ksmn2+1; :::; j2ksmn2] contains a run of ksm ones. This modi�cation can be performed on-the-
y by scanningthe relevant interval and setting to 1 a random block of ksm locations if necessary. Note that, with overwhelminglyhigh probability, no interval is actually modi�ed.12Indeed, for each function fs taken from some pseudorandom ensemble ffs : [2n] � [2n] ! f0; 1ggs, it may holdthat fs(vs; u) = fs(u; vs) = 0 for all u 2 [2n], where vs depends arbitrarily on fs. For example, given a pseudorandomensemble ffsg consider the ensemble ffs;vg such that fs;v(v; u) = fs;v(u; v) = 0n for all u's, and fs;v(x; y) = fs(x; y)for all other (x; y)'s. 21



graph means answering adjacency queries; that is, the answer to the query (u; v) should indicatewhether or not u and v are adjacent in the graph. Recall that the implementation ought to work intime that is poly-logarithmic in the size of the graph, and thus cannot decide \global" propertiesof the graph. That is, we deal with graphs having N = 2n vertices, and our procedures run inpoly(n)-time.As in Section 3, we present our results in two categories referring to whether they yield truthfulor only almost-truthful implementations. In the case of truthful implementations, we show close-implementations by (polynomial-time) oracle machines (which use a random oracle), while bearingin mind that corresponding pseudo-implementations by ordinary (probabilistic polynomial-time)machines can be derived using Theorem 2.9. In contrast, in the case of almost-truthful implemen-tations, we work directly with ordinary (probabilistic polynomial-time) machines.6.1 Truthful implementationsRecall that a random graph (i.e., a uniformly distributed N -vertex graph) can be perfectly im-plemented via an oracle machine that, on input (u; v) 2 [N ] � [N ] and access to the oraclef : [N ] � [N ] ! f0; 1g, returns 0 if u = v, f(u; v) if u < v, and f(v; u) otherwise. (Indeed,we merely derive a symmetric and non-re
exive version of f .)Turning to a less trivial example, let us closely-implement a random Bipartite Graph with Nvertices on each side. This can be done by viewing the random oracle as two functions, f1 and f2,and answering queries as follows:� The function f1 is used to closely-implement a random partition of [2N ] into two sets of equalsize. Speci�cally, we use f1 to closely-implement a permutation � over [2N ], and let the �rstpart be S def= fv : �(v) 2 [N ]g. Let �S(v) def= 1 if v 2 S and �S(v) def= 0 otherwise.� The query (u; v) is answered by 0 if �S(u) = �S(v). Otherwise, the answer equals f2(u; v) ifu < v and f2(v; u) otherwise.The above implementation can be adapted to closely-implement a random Bipartite Graph (seedetails in Appendix B). Viewed in di�erent terms, we have just discussed the implementation ofrandom graphs satisfying certain properties.We now turn to Example 3.5 (which speci�es a uniformly distributed connected graph). Incontinuation to the discussion in Section 3, we now present a close-implementation that is truthful:Construction 6.1 (Implementing a random connected graph): Use the oracle to implement arandom graph, represented by the symmetric and non-re
exive random function g : [N ] � [N ] !f0; 1g, as well as a permutation � over [N ], which in turn is used to de�ne a Hamiltonian path�(1) ! �(2) ! � � � ! �(N). Along with �, implement the inverse permutation ��1, where this isdone by using Theorem 2.13.13 Answer the query (u; v) by 1 if and only if either g(u; v) = 1 or(u; v) is on the Hamiltonian path (i.e., j��1(u)� ��1(v)j = 1).Clearly, the above implementation is truthful. (Indeed, it actually implements a random Hamilto-nian graph.) The implementation is statically-indistinguishable from the speci�cation, because itis unlikely to hit an edge of the \forced Hamiltonian path" when making only poly(logN) queries.(A proof of the latter statement appears below.) A similar strategy can be used for any monotonegraph property that satis�es the following condition:13That is, we use a truthful close-implementation of Example 2.4. In fact, we only need ��1, and so the truthfulclose-implementation of Example 2.3 (as stated in Theorem 2.12) actually su�ces.22



(C) The property is satis�ed by a family of strongly-constructible sparse graphs. That is, forsome negligible function � (and every N), there exists a perfect implementation of a (single)N -vertex graph with �(logN) �N2 edges that satis�es the property.We have:Theorem 6.2 Let � be a monotone graph property that satis�es Condition C. Then, there exists atruthful close-implementation (by an oracle machine) of a uniformly distributed graph that satis�esproperty �.We comment that Condition C implies that a randomN -vertex graph is statistically-indistinguishablefrom a random N -vertex graph having property �. This fact, which may be of independent interest,is stated and proved �rst.Lemma 6.3 Let � be a monotone graph property that is satis�ed by some N -vertex graph having� � �N2 � edges. Then, any machine that makes at most q adjacency queries to a graph, cannotdistinguish a random N -vertex graph from a uniformly distributed N -vertex graph that satis�es �,except than with probability O(qp�) + qN�(1�o(1)).Proof: As in [15, Sec. 4], without loss of generality, we may con�ne ourselves to analyzing machinesthat inspect a random induced subgraph. That is, since both graph classes are closed underisomorphism, it su�ces to consider the statistical di�erence between the following two distributions:1. The subgraph of a uniformly distributed N -vertex graph induced by a uniformly selected setof t def= q + 1 vertices.2. The same vertex-induced subgraph (i.e., induced by a random set of t vertices) of a uniformlydistributed N -vertex graph that satis�es property �.Clearly, Distribution (1) is uniform over the set of t-vertex graphs, and so we have to show thatapproximately the same holds for Distribution (2). Let T def= �N2 � and M def= �T , and let G0 be anN -vertex graph with M edges that satis�es property �. Consider the set of all graphs that can beobtained from G0 by adding T�M2 edges. The number of these graphs is T �MT�M2 ! = 2T�M�(pT �M) > 2T�M�O(1)� 12 �log2 TThat is, this set contains at least a 2�(M+O(1)+(log2 T )=2) = 2��0�T fraction of all possible graphs,where � def= �+ ((log2 T )=2T ). Let X = X1 � � �XT 2 f0; 1gT be a random variable that is uniformlydistributed over the set of all graphs that satisfy property �. Then X has entropy at least T � �0T(i.e., H(X) � T � �0T ). It follows that 1T PTi=1H(XijXi�1 � � �X1) � 1 � �0. Note that the indexi ranges over all unordered pairs of elements of [N ]. We are interested in the expected value ofPe2f(u;v):u<v2SgH(XejXe�1 � � �X1), where S is a uniformly selected set of t vertices. Using thelinearity of expectation, we have thatES 24 Xe2f(u;v):u<v2SgH(XejXe�1 � � �X1)35 � (1� �0) �  t2!Thus, for a random t-subset S, letting YS = (X(u;v))(u;v):u<v2S , we have ES[YS ] � m � �00, wherem def= �t2� and �00 def= m�0. It follows (see Appendix C) that the statistical di�erence of YS from theuniform distribution over f0; 1gm is at most O(p�00), which in turn equals O(tp�+ T�(1�o(1))).The lemma follows. 23



Proof of Theorem 6.2: Let H = ([N ]; E) be a graph satisfying Condition C. In particular,given (u; v) 2 [N ]� [N ], we can decide whether or not (u; v) 2 E in polynomial-time. Then, usingthe graph H instead of the Hamiltonian path in Construction 6.1, we implement a (random) graphsatisfying property �. That is, we answer the query (u; v) by 1 if and only if either g(u; v) =1 or (u; v) is an edge in (the \forced" copy of) H (i.e., (��1(u); ��1(v)) 2 E). Since � is amonotone graph property, the instances of the implementation always satisfy the property �,and thus the implementation is truthful. Furthermore, by Condition C and the fact that � isa close-implementation of a random permutation, the probability that a machine that queries theimplementation for poly(logN) times hits an edge of H is negligible in logN . Thus, such a machinecannot distinguish the implementation from a random graph. Using Lemma 6.3 (with � = �(logN)and q = poly(logN)), the theorem follows.Examples: Indeed, monotone graph properties satisfying Condition C include Connectivity,Hamiltonicity, k-Connectivity (for every �xed k)14, containing any �xed-size graph (e.g., contain-ing a triangle or a 4-clique or a K3:3 or a 5-cycle), having a perfect matching, having diameter atmost 2, containing a clique of size at least logN , etc. All the above properties are satis�ed, withoverwhelmingly high probability, by a random graph. However, Theorem 6.2 can be applied also to(monotone) properties that are not satis�ed by a random graph; a notable example is the propertyof containing a clique of size at least pN .6.2 Almost-truthful implementationsWe start by noting that if we are willing to settle for almost-truthful implementations by ordinarymachines then all properties that hold (with su�ciently high probability) for random graphs canbe handled easily. Speci�cally:Proposition 6.4 Let � be any graph property that is satis�ed by all but a negligible (in log2N)fraction of the N -vertex graphs. Then, there exists an almost-truthful close-implementation (by anoracle machine) of a uniformly distributed graph that satis�es property �.Indeed, the implementation is by a random graph (which in turn is implemented via a randomoracle). Note, however, that it is not clear what happens if we replace the random graph by apseudorandom one (cf. Theorem 2.11). Furthermore, the proof of Theorem 2.11 can be extendedto show that there exist graph properties that are satis�ed by random graphs but do not have analmost-truthful implementation by an ordinary machine.15 In light of the above, we now focus onalmost-truthful implementations by ordinary machines.Max-clique and chromatic number. We consider the construction of pseudorandom graphsthat approximately preserve the max-clique and chromatic number of random graphs.14In fact, we may have k = k(N) = �(logN) � N for any negligible function �. The sparse graph may consist ofedges between each of the N vertex and each of k(N) designated vertices.15The proof of Theorem 2.11 relates to the Kolmogorov Complexity of the function (or graph). In order to obtaina graph property, we consider the minimum value of the Kolmogorov Complexity of any isomorphic copy of the saidgraph, and consider the set of graphs for which this quantity is greater than N2=4. The latter property is satis�ed byall but at most 2N2=4 �(N !)� 2N2=3 graphs. On the other hand, the property cannot be satis�ed by an instance of animplementation via an ordinary machine. Thus, any implementation (regardless of \quality") must be non-truthful(to the speci�cation) in a strong sense. 24



Theorem 6.5 Let c(N) = (2 � o(1)) log2N be the largest integer i such that the expected numberof cliques of size i in a random N -vertex graph is larger than one. Assuming the existence ofone-way functions, there exist almost-truthful pseudo-implementations, by ordinary machines, ofthe following speci�cations:1. A random graph of Max-Clique c(N) � 1: The speci�cation uniformly selects an N -vertexgraph having maximum clique size c(N)� 1, and answers edge-queries accordingly.2. A random graph of Chromatic Number (1 � o(1)) � N=c(N): The speci�cation uniformlyselects an N -vertex graph having Chromatic Number (1 � log�1=32 N) � N=c(N), and answersedge-queries accordingly.That is, we are required to implement random-looking graphs having certain properties. Indeed, arandom N -vertex graph has the above two properties with probability at least 1�N�0:99 (cf. [6]).Thus, a random graph provides an almost-truthful close-implementation (by an oracle machine)of a uniformly selected graph having each of these properties, but it is not clear what happenswhen we replace the random oracle by a pseudorandom function. (In fact, one can easily constructpseudorandom functions for which the replacement yields a graph with a huge clique.) Note thatTheorem 6.5 does not follow from Theorem 6.2, because the properties at hand are not monotone.16Thus, a di�erent approach is needed.Proof Sketch: We start with Part 1. We de�ne the adjacency function g : [N ] � [N ] ! f0; 1gof a graph by XORing a pseudorandom (symmetric and non-re
exive) function f with a k-wiseindependent function h (i.e., g(u; v) = f(u; v)�h(u; v)), where k def= 5n2 (and n = log2N). Recallthat such k-wise independent functions can be constructed based on kn random bits. The resultingfunction g is both pseudorandom and k-wise independent (analogously to the construction in [18]).Now, the key observation is that the standard analysis (of the size of the max-clique in a randomgraph) merely refer to the expected number of cliques os �ze c(N)�2 and to its variance. Thus, thisanalysis only depends on the randomness of edges within pairs of (c(N) + 2)-subsets of vertices;that is, a total of 2 � �c(N)+22 � < (c(N) + 2)2 = (4 + o(1)) � n2 vertex-pairs. Hence the analysiscontinues to hold for g (which is 5n2-independent). It follows that g provides an almost-truthfulpseudo-implementation of a random N -vertex graph with max-clique size c(N)� 1.We now turn to Part 2. Let g0 be the complement of a pseudorandom graph as in Part 1.We now de�ne the adjacency function g : [N ] � [N ] ! f0; 1g of a pseudorandom graph by takingthe bit-wise conjunction of the pseudorandom graph g0 (from above) with a function h0 selecteduniformly in a set H 0 (de�ned below); that is, g(u; v) = 1 i� g0(u; v) = h0(u; v) = 1. Intuitively, eachfunction h0 2 H 0 forces a cover of [N ] by N=c(N) independent sets (each of size c(N)), and so thechromatic number of g is at most N=c(N). On the other hand, each h0 2 H 0 only has independentsets of size c(N) and taking the conjunction with a random g0 (which is k-wise independent fork > �c(N)+32 �) is unlikely to create an independent set of size c(N)+3, and so the chromatic numberof g is at least N=(c(N) + 2). Details follow.Each function h0 2 H 0 partitions [N ] to �(N) = bN=c(N)c sets, each of size c(N), and hash0(u; v) = 1 if and only if u and v belong to di�erent sets; that is, the complement of h0 is a disjointset of cliques each having as a vertex-set one of the sets of the partition. Thus, such h0 causes eachof these vertex-set to be an independent set in g. The functions in H 0 di�er only in the partitionsthey use. It turns out that it su�ces to use \su�ciently random" partitions. Speci�cally, we use16For the coloring property, Condition C does not hold either.25



H 0 = fh0rgr2R, where R = fr 2 [N ] : gcd(r;N) = 1g, and consider for each r 2 R the partition(S(0)r ; :::; S(�(N)�1)r ; S(�(N))r ), where S(i)r = f(c(N)i + j)r mod N : j = 1; :::; c(N)g for i < �(N) andS(�(N))r = f(c(N)�(N) + j)r mod N : j = 1; :::; N � c(N)�(N)g. Thus, h0r(u; v) = 1 if and onlyif u and v do not reside in the same S(i)r (i.e., h0r(u; v) = 0 essentially means that u � v � jr(mod N) for some j 2 f�(c(N) � 1)g). The graph G de�ned by g is pseudorandom becausethe observer is unlikely to make a query (u; v) that is a�ected by h0r (because h0r(u; v) = 0 yields2(c(N) � 1) � 1 = O(logN) candidates for r, which in turn is selected uniformly in the set R,where jRj > N=O(logN)). The chromatic number of G is at most �(N) + 1, because its vertex-setis covered by �(N) + 1 independent sets. On the other hand, relying on the basic structure ofh0 and on the k-wise independence of g0, we can show17 that, with high probability, the graph Gdoes not contain an independent set of size c(N) + 3. Thus, the chromatic number of G is at leastN=(c(N)+2) > (1�(2=c(n))��(N). Its follows that G is an almost-truthful pseudo-implementationof the desired speci�cation.High connectivity. Recall that in a randomN -vertex graph every pair of vertices is connected byat least (1�o(1))N=2 vertex-disjoint paths. One interesting question is to provide an almost-truthfulpseudo-implementation of a uniformly distributed graph having this high (global) connectivityproperty. Unfortunately, we do not know how to do this. A second best thing may be to providean almost-truthful pseudo-implementation of a random graph for which almost all pairs of verticesenjoy this \high connectivity" property.Theorem 6.6 For every positive polynomial p, assuming the existence of one-way functions, thereexists an almost-truthful pseudo-implementation by an ordinary machine of the following speci�-cation. The specifying machine selects a graph that is uniformly distributed among all N -vertexgraphs for which all but at most an �(N) def= 1=p(log2N) fraction of the vertex pairs are connectedby at least (1� �(N)) �N=2 vertex-disjoint paths. Edge-queries are answered accordingly.Interestingly, the same implementation works for all polynomials p; that is, the implementation isindependent of p, which is only needed for the de�nition of the speci�cation. In fact, in contrastto all other implementations presented in this work, the implementation used in the proof ofTheorem 6.6 is the straightforward one: It uses a pseudorandom function to de�ne a graph in theobvious manner. The crux of the proof is in showing that this implementation is computationally-indistinguishable from the above speci�cation.Proof Sketch: We use a pseudorandom function to de�ne a graph G = ([N ]; E) in the straight-forward manner, and answer adjacency queries accordingly. This yields a pseudo-implementationof a truly random graph, which in turn has the strong connectivity property (with overwhelminglyhigh probability). Fixing a polynomial p and � def= �(N) def= 1=p(log2N), we prove that this imple-mentation is almost-truthful to the corresponding speci�cation. That is, we show that all but an �fraction of the vertex pairs are connected via (1� �) �N=2 vertex-disjoint paths. We will show that17In the analysis we �x any h0 2 H 0 and show that that deleting edges as instructed by a k-wise independentfunction (i.e., g0) is unlikely to create an independent set of size c(N) + 3. Speci�cally, we bound the expectednumber of independent set of size c(N) + 3 in the resulting graph, and thus we only rely on the independence ofthe selection of edges (by g0) for pairs of vertices within sets of c(N) + 3 vertices. Note that the various candidateindependent sets di�er with respect to their intersection with the independent sets of h0, and the analysis has to takethis into account. The technical but elementary analysis is given in Appendix C.26



if this is not the case, then we can distinguish a random graph (or function) from a pseudorandomone.Suppose towards the contradiction that, with non-negligible probability, a pseudorandom graphviolates the desired property. Fixing such a graph, G = ([N ]; E), our hypothesis means that at leastan � fraction of the vertex-pairs are connected (in G) by fewer than (1��)�N=2 vertex-disjoint paths.Consider such a generic pair, denoted (u; v), and de�ne S0 def= �G(u)\�G(v), S1 def= �G(u) n �G(v),and S2 def= �G(v) n �G(u), where �G(w) def= fx2 [N ] : (w; x) 2Eg. Note that if G were a randomgraph then we would expect to have jS0j � jS1j � jS2j � N=4. Furthermore, we would expect tosee a large (i.e., size � N=4) matching in the induced bipartite graph B = ((S1; S2); E \ (S1�S2));that is, the bipartite graph having S1 on one side and S2 on the other. So, the intuitive idea is totest that both these considition are satis�ed in the pseudorandom graph. If they do then u andv are \su�ciently connected". Thus, the hypothesis that an � fraction of the vertex-pairs are no\su�ciently connected" implies a distinguisher (by selecting vertex-pairs at random and testing theabove two properties). The problem with the above outline is that it is not clear how to e�cientlytest that the abovementioned bipartite graph B has a su�ciently large matching.To allow an e�cient test (and thus an e�cient distinguisher), we consider a more stringentcondition (which would still hold in a truly random graph). We consider a �xed partition of [N ]into T def= N=m parts, (P1; :::; PT ), such that jPij = m = poly(n=�), where n = log2N . (Forexample, we may use Pi = f(i � 1)m + j : j = 1; :::;mg.) If G were a random graph then, withoverwhelmingly high probability (i.e., at least 1� exp(�m1=O(1)) > 1� exp(�n2)), we would havejS0 \ Pij = (m=4) �m2=3 for all the i's. Similarly for S1 and S2. Furthermore, with probabilityat least 1 � exp(�n2), each of the bipartite graphs Bi induced by (Pi \ S1; Pi \ S2) would have amatching of size at least (m=4)�m2=3. The key point is that we can a�ord to test the size of themaximium matching in such a bipartite graph, because it has 2m = poly(n) vertices.Let us wrap-up things. If a pseudorandom graph does not have the desired property then atleast � fraction of its vertex-pairs are connected by less than (1��)N=2 vertex-disjoint paths. Thus,samplying O(1=�) vertex-pairs, we hit such a pair with constant probability. For such a vertex-pair,we consider the sets Si;0 def= Pi \ S0, Si;1 def= Pi \ S1 and Si;2 def= Pi \ S2, for i = 1; :::; T . It mustbe the case that either �=2 fraction of the S0;i's are of size less than (1� (�=2)) � (m=4) or that �=2fraction of the bipartite subgraphs (i.e., Bi's) induced by the pairs (S1;i; S2;i) have no matchingof size (1 � (�=2)) � (m=4), because otherwise this vertex-pair is su�ciently connected merely byvirtue of these S0;i's and the large matchings in the Bi's.18 We use m > (8=�)3 so to guaranteethat (m=4) �m2=3 > (1 � (�=2))(m=4), which implies that (for at least an �=2 fraction of the i's)some quantity (i.e., either jS0;ij or the maximum matching in Bi) is strictly larger in a randomgraph than in a pseudorandom graph. Now, sampling O(1=�) of the i's, we declare the graph to berandom if all the corresponding S0;i's have size at least (m=4) �m2=3 and if all the correspondingbipartite graphs Bi's have a maximum matching of size at least (m=4)�m2=3. Thus, we distinguisha random function from a pseudorandom function, in contradiction to the de�nition of the latter.The theorem follows.Maximum Matching in most induced bipartite graphs: The proof of Theorem 6.6 can beadapted to prove the following:18That is, we get at least ((1 � (�=2)) � T ) � ((1� (�=2)) � (m=4)) > (1 � �)(N=4) paths going through S0, and thesame for paths that use the maximum matchings in the various Bi's.27



Theorem 6.7 For every positive polynomial p, assuming the existence of one-way functions, thereexists an almost-truthful pseudo-implementation by an ordinary machine of a uniformly selectedN -vertex graph that satis�es the following property: For all but at most an �(N) def= 1=p(log2N)fraction of the disjoint set-pairs (L;R) � [N ] � [N ] it holds that the bipartite graph induced by(L;R) has a matchning of size (1� �(N)) �min(jLj; jRj).As in Theorem 6.6, the implementation is straightforward, and the issue is analyzing it.Proof Sketch: Observe that almost all relevant set-pairs satisfy jLj � jRj � N=3, and so wefocus on these pairs. It can still be shown that in a random graph, with overwhelmingly highprobability, all the corresponding bipartite graphs have a su�ciently large matching. However, thiswill not hold if we only consider matchings that conform with the small bipartite graphs Bi's. Still,with overwhelmingly high probability, almost all the bipartite graphs induced by pairs (L;R) asabove will have a su�ciently large matching that does conform with the small bipartite graphsBi's. Thus, for � = �(N), the distinguisher just selects O(1=�) di�erent i's, and for each such i teststhe size of the maximal matching for O(1=�) random (L;R)'s. Needless to say, the distinguisherdoes not select such huge sets, but rather selects their projection on Pi. That is, for each such i(and each attempt), the distinguisher selects a random pair (Li; Ri) � Pi � Pi.A di�erent perspective: The proofs of Theorems 6.6 and 6.7 actually establish that, for thecorresponding speci�cations, the almost-truthfulness of an implementation follows from its com-putational indistinguishability (w.r.t the speci�cation).19 An interesting research project is tocharacterize the class of speci�cations for which the above implication holds.Theorem 6.8 Suppose that S is a speci�cation for which the following two conditions hold.1. For every implementation I and every polynomial p there exists a probabilistic polynomial-time oracle machine D and a polynomial q such that if Pr[(I; n) 62 Supp(S; n)] > 1=p(n) thenjPr[D(I;n)(1n) = 1]�Pr[D(S;n)(1n) = 1]j > 1=q(n).2. S has an almost-truthful pseudo-implementation by an oracle machine that has access to arandom oracle.Then, assuming the existence of one-way function, S has an almost-truthful pseudo-implementationby an ordinary probabilistic polynomial-time machine.Proof: Let I be the implementation guaranteed by Condition 2, and let I 0 be the implementationderived from I by replacing the random oracle with a pseudorandom function. Thus, I 0 is a pseudo-implementation of S. Using Condition 1, it follows that I 0 is almost-truthful to S, because otherwisewe obtain an e�cient oracle machine D that distinguishes I 0 from S.19That is, these proofs establish the �rst condition in Theorem 6.8, whereas the second condition is established bythe straightforward construction of a random graph. A key point in these examples is that, with overwhelmingly highprobability, a random object in (S;n) has stronger properties that those of all objects in (S; n). This fact makes iteasier to distinguish a random object in (S; n) from an object not in (S; n). For example, with overwhelmingly highprobability, a random graph has larger connectivity than required in Theorem 6.6 and this connectivity is achievedvia very short paths (rather than arbitrary ones). This fact enables to distinguish (S; n) from an implementationthat lacks su�ciently large connectivity. 28



7 Supporting Complex Queries regarding Random GraphsIn this section we provide truthful implementations of random graph while supporting complexqueries, in addition to the standard adjacency queries. The graph model as in Section 6, and asin Section 6.1 we present our (truthful) implementations in terms of oracle machines. Let us startwith a simple example.Proposition 7.1 There exists a truthful close-implementation by an oracle machine of the follow-ing speci�cation. The specifying machine selects uniformly an N -vertex graph and answers distancequeries regarding any pair of vertices. Furthermore, there exists a truthful close-implementation ofthe related speci�cation that returns a uniformly distributed path of shortest length.Proof: Consider the property of having diameter at most 2. This property satis�es Condition C(e.g., by an N -vertex star). Thus, using Theorem 6.2, we obtain a close-implementation of arandom graph, while our implementation always produces a graph having diamater at most 2 (orrather exactly 2). Now, we answer the query (u; v) by 1 if the edge (u; v) is in the graph, and by 2otherwise. For the furthermore-part, we add pN such stars, and serve queries regarding paths oflength 2 by using the center of one of these stars (which is selected by applying an independentrandom function to the query pair).This example is not very impressive because the user could have served the distance-queries inthe same way (by only using adjacency queries to the standard implementation of a random graph).(A random shortest path could have also been found by using the standard implementation.) Theonly advantage of Proposition 7.1 is that it provides a truthful implementation of the distance-queries (rather than merely an almost-truthful one obtained via the trivial implementation). Amore impressive example follows. Recall that a random N -vertex graph is likely to have many(log2N)-vertex cliques that include each of the vertices of the graph, whereas it seems hard to �ndsuch cliques (where in hard we mean unlikely to achieve in time poly(logN), and not merely intime poly(N)). Below we provide an implementation of a service that answers queries of the formv 2 [N ] with a log-sized clique containing the vertex v.Theorem 7.2 There exists a truthful close-implementation of the following speci�cation. Thespecifying machine selects uniformly an N -vertex graph and, in addition to the standard adjacencyqueries, answers (Log-Clique) queries of the form v by providing a random dlog2Ne-vertex cliquethat contains v (and a special symbol if no such clique exists).Proof Sketch: Let ` = dlog2Ne � 1 and consider a simple partition of [N ] to T = dN=`e subsets,S1; :::; ST , such that jSij = ` for i = 1; :::; T � 1 (e.g., Si = f(i � 1)` + j : j = 1; :::; `g). Usethe oracle to implement a random graph, G0 = ([N ]; E0), as well as a random onto20 functionf : [N ]! [T ] and a random invertible permutation � : [N ]! [N ] (as in Theorem 2.13). The graphwe implement will consist of the union of G0 with N cliques, where the i-th clique resides on thevertex set fig [ f�(j) : j 2 Sf(i)g. The Log-Clique queries are served in the obvious manner; thatis, query v is answered with fvg [ f�(u) : u 2 Sf(v)g. (For simplicity, we ignore the unlikely casethat v 2 f�(u) : u 2 Sf(v)g; this can be redeemed by letting ` = dlog2Ne and answering with arandom `-subset of fvg [ f�(u) : u 2 Sf(v)g.) Implementing the adjacency queries is slightly moretricky. The query (u; v) is answered by 1 if and only if either (u; v) 2 E or u and v reside in one ofthe N 's cliques we added. The latter case may happen if and only if one of the following subcasesholds:20Such a function may be obtained by combining the identity function over [T ] with a random function f 0 :fT + 1; :::; Ng! [T ], and randomly permuting the domain of the resulting function.29



1. Either u 2 f�(w) : w 2 Sf(v)g or v 2 f�(w) : w 2 Sf(u)g; that is, either ��1(u) 2 Sf(v) or��1(v) 2 Sf(u). Each of these conditions is easy to check by invoking f and ��1.2. There exists an x such that u; v 2 f�(w) : w 2 Sf(x)g, which means that ��1(u); ��1(v) 2Sf(x). Equivalently, recalling that f is onto, we may check whether there exists a y such that��1(u); ��1(v) 2 Sy, which in turn is easy to determine using the simple structure of the setsSy's (i.e., we merely tests whether or not d��1(u)=`e = d��1(v)=`e).Thus, our implementation is truthful to the speci�cation. To see that it is a close-implementationof the speci�cation, observe that it is unlikely that two di�erent Log-Clique queries are \served" bythe same clique (becuase this means forming a collision under f). Conditioned on this rare eventnot occurring, the Log-Clique queries are served by disjoint random cliques, which is what wouldessentially happen in a random graph (provided that poly(logN) queries are made). Finally, itis unlikely that the answers to the adjacency queries that are not determined by prior Log-Cliquequeries be a�ected by the sparse sub-graph (of N small cliques) that we inserted under a randompermutation. The theorem follows.Another example: We consider the implementation of a random graph along with answeringqueries regarding a random Hamiltonian cycle in it, where such cycle exists with overwhelminglyhigh probability. Speci�cally, we consider queries of the form what is the distance between twovertices on the cycle.Theorem 7.3 There exists a truthful close-implementation of the following speci�cation. Thespecifying machine selects uniformly an N -vertex graph G, and in case G is Hamiltonian it uni-formly selects a (directed) Hamiltonian Cycle in G, which in turn de�nes a cyclic permutation� : [N ] ! [N ]. In addition to the standard adjacency queries, the speci�cation answers travelqueries of the form (trav; v; t) by providing �t(v), and distance queries of the form (dist; v; w) byproviding the smallest t � 0 such that w = �t(v).We stress that the implementation must answer each possible query in time polynomial in thevertex name (which may be logarithmic in the distance t).Proof Sketch: It will be convenient to use the vertex set V = f0; 1; :::; N � 1g (instead of[N ]). We use the random oracle to implement a random graph G0 = (V;E0) as well as a randompermutation � : V ! V along with its inverse. We de�ne a graph G = (V;E) by E def= E0 [ C,where C = f(�(i); �(i+1 mod N)) : i2V g, and use C to answer the special (Hamiltonian) queries.That is, we answer the query (trav; v; t) by �(��1(v) + t mod N), and the query (dist; v; w) by��1(w)���1(v) mod N . The standard adacency query (u; v) is answered by 1 if and only if either(u; v) 2 E or ��1(u) � ��1(v) � 1 (mod N). (Indeed, the above construction is reminiscent ofthe \fast-forward" construction of [27] (stated in Theorem 2.14).)To see that the above truthful implementation is statistically-indistinguishable from the speci-�cation, we use the following three observations:1. If a (labeled) graph appears in the speci�cation (resp., in the implementation) then all is(labeled) isomorphic copies appear in it. Consequently, for any Hamiltonian Cycle, the setof Hamiltonian graphs in which this cycle has been selected in the speci�cation (resp., in theimplementation) is isomorphic to the set of Hamiltonian graphs in which any other Hamilto-nian cycle has been selected. Thus, we may consider the conditional distribution induced onthe speci�cation (resp., on the implementation) by �xing any such Hamiltonian Cycle.30



2. Conditioned on any �xing Hamiltonian Cycle being selected in the implementation, the restof the graph selected by the implementation is truly random.3. Conditioned on any �xing Hamiltonian Cycle being selected in the speci�cation, the restof the graph selected by the speci�cation is indistinguishable from a random graph. Theproof of this assertion is similar to the proof of Lemma 6.3. The key point is proving that,conditioned on a speci�c Hamiltonian Cycle being selected, the (rest of the) graph selectedby the speci�cation has su�ciently high entropy. Note that here we refer to the entropy ofthe remaining �N2 � � N edges, and that the vertex pairs are not all identical but rather fallinto categories depending on their distance as measured on the selected Hamiltonian Cycle.We need to show that a random vertex-pair in each of these categories has a su�ciently high(conditional) entropy. Thus, this observation requires a careful proof to be presented next.Indeed, the above discussion suggests that we may give the entire Hamiltonian cycle to the machinethat inspects the rest of the graph (in an attempt to distinguish the implementation from thespeci�cation). Thus, we assume, without loss of generality, that this machine makes no adjacencyqueries regarding edges that participate in the cycle. The �rst observation says that we mayconsider any �xed cycle, and the second observation says that a machine that inspects the rest ofthe graph sees truly random edges. The third observation, proved below, asserts that making afew queries to the rest of the conditional space of the speci�cation, yields answers that also lookrandom.We consider the conditional distribution of the rest of the graph selected by the speci�cation,given that a speci�c Hamiltonian Cycle was selected. (Indeed, we ignore the negligible (in N)probability that the graph selected by the speci�cation is not Hamiltonian.) Using Bayes' Law, theconditional probability that a speci�c graph is selected is inversely proportional to the number ofHamiltonian Cycles in that graph. Using known results on the concentration of the latter numberin random graphs (see, e.g., [20, Thm. 4]), we infer that in all but an N�2 fraction of the N -vertexgraphs the number of Hamiltonian Cycles is at least an exp(�2(lnN)1=2) > N�1 fraction of itsexpected number. Thus, the conditional entropy of the selected graph (conditioned on the selectedcycle) is �N2 ��N � o(N). Details follow.For T = �N2 �, let X = X1 � � �XT denote the graph selected by the speci�cation, and Y (G)denote the Hamiltonian Cycle selected (by the speci�cation) given that the graph G was selected.Let #HC(G) denote the number of Hamiltonian Cycles in the graph G, where cyclic shifts andtraspositions of cycles are counted as if they were di�erent cycles (and so the number of HamiltonianCycles in an N -clique is N !). Thus, E(#HC(X)) = 2�N � (N !). An N -vertex graph G is called goodif #HC(G) > 2�N � (N � 1!), and G denotes the set of good N -vertex graphs. For a HamiltonianCycle C, we denote by G(C) the set of graphs in G that contain the cycle C. Then, it holds thatH(XjY (X) = C) � XG2G(C)Pr[X = GjY (X) = C] � log2(1=Pr[X = GjY (X) = C])� (1�N�2) � minG2G(C)f� log2(Pr[X = GjY (X) = C])g= (1�N�2) � minG2G(C)8><>: log2(Pr[Y (X) = C])� log2(Pr[Y (X) = CjX = G])� log2(Pr[X = G]) 9>=>;= (1�N�2) � minG2G(C)(log2(1=N !) + log2(#HC(G)) +  N2!)31



Using the fact that G is good (i.e., G 2 G(C)), it follows that log2(#HC(G)) > log2(2�N � (N � 1!)),which in turn equals log2(N !)�N � log2N . We thus get,H(XjY (X) = C) > (1�N�2) �   N2!�N � log2N! (2)Recall that the condition Y (X) = C determines N vertex-pairs in X, and so the entropy of theremaining T 0 = �N2 � � N pairs is at least T 0 � log2N . Partitioning these (undetermined) pairsaccording to their distances in C, we conclude that the entropy of the N=2 pairs in each suchdistance-class is at least (N=2) � log2N . (Indeed, the distance class of undetermined pairs donot contain distance 1 (or N � 1), which correspond to the forced cycle-edges.) We stress thatour analysis holds even if the machine inspecting the graph, is given the Hamiltonian cycle forfree. This machine may select the induced subgraph that it wants to inspect, but this selection isdetermined upto a shifting of all vertices (i.e., a rotation of the cycle). This randomization su�cesfor concluding that the expected entropy of the inspected subgraph (which may not include cycleedges) is at least (1 � ((2 log2N)=N)) � �t2�, where t is the number of vertices in the subgraph.As in the proof of Lemma 6.3, this implies that the inspected subgraph is at distance at mostO(q((log2N)=N) � �t2�) < t �N�(1�o(1))=2 from a random t-vertex graph. The theorem follows.8 Random Bounded-Degree Graphs and Global PropertiesIn this section we consider huge bounded-degree simple graphs, where the vertices are labelled (andthere are no self-loops or parallel edges). We consider speci�cations of various distributions oversuch graphs, where in all cases the specifying machine responds to neighborhood queries (i.e., thequeries correspond to vertices and the answer to query v is the list of vertices that are adjacent tovertex v).The �rst issue that arises is whether we can implement a random bounded-degree graph oralternatively a random regular graph. Things would have been quite simple if we were allowingalso non-simple graphs (i.e., having self-loops and parallel edges). For example, a random d-regularN -vertex non-simple graph can be implemented by pairing at random the dN possible \ports" ofthe N vertices. We can avoid self-loops (but not parallel edges) by generating the graph as a unionof d perfect matchings of the elements in [N ]. In both cases, we would get a close-implementationof a random d-regular N -vertex (simple) graph, but parallel edges will still appear with constantprobability (and thus this implementation is not truthful w.r.t simple graphs). In order to obtain arandom simple d-regular N -vertex graph, we need to take an alternative route. The key observationunderlying this alternative is captured by the following lemma:Lemma 8.1 For d > 2, let G = ([N ]; E) be any d-regular N -vertex graph having girth g. Let G0be obtained by randomly permuting the vertices of G (and presenting the incidence lists in somecanonical order). Then, any machine M that queries the graph for the neighborhoods of q verticesof its choice, cannot distinguish G0 from a random d-regular N -vertex (simple) graph, except thanwith probability O(q2=(d� 1)(g�1)=2). In the case d = 2 and q < g � 1, the probability bound can beimproved to O(q2=N).Recall that the girth of a graph G is the length of the shortest simple cycle in G, and that (d �1)(g�2)=2 < N always holds (for a d-regular N -vertex graph of girth g).21 Note that Lemma 8.1 is21The girth upper-bound (i.e., g � 2 + 2 logd�1N) follows by considering the (vertex disjoint) paths of length(g � 2)=2 starting at any �xed vertex. The existence of d-regular N -vertex graphs of girth logd�1N was shown(non-constructively) in [9]. 32



quite tight: For example, in the case d = 2, for g � pN , the N -vertex graph G may consist ofa collection of g-cycles, and taking a walk of length g in G0 (by making g � 1 queries) will alwaysdetect a cycle G0, which allows to distinguish G0 from a random 2-regular N -vertex (in which theexpected length of a cycle going through any vertex is 
(N)). In the case d > 3, the graph Gmay consist of connected components, each of size (d � 1)g � N , and taking a random walk oflength (d � 1)g=2 in G0 is likely to visit some vertex twice, which allows to distinguish G0 from arandom d-regular N -vertex (in which this event may occur only after pN steps). Below, we willuse Lemma 8.1 with the following setting of parameters.Corollary 8.2 For �xed d > 2 and g(N) = !(log logN), let G = ([N ]; E) be any d-regular N -vertex graph having girth g(N). Let G0 be obtained from G as in Lemma 8.1. Then, any machine Mthat queries the graph for the neighborhoods of poly(logN) vertices of its choice, cannot distinguishG0 from a random d-regular N -vertex (simple) graph, except than with negligible in logN probability.The claim holds also in the case that d = 2 and g(N) = (logN)!(1).For d > 2 the girth can be at most logarithmic, and explicit constructions with logarithmic girth areknown for all d � 3 and a dense set of N 's (which is typically related to the set of prime numbers;see, e.g., [26, 19, 24]). For d = 2, we may just take the N -cycle or any N -vertex graph consistingof a collection of su�ciently large cycles.Proof Sketch for Lemma 8.1: We bound the distinguishing gap of an oracle machine (whichqueries either a random d-regular N -vertex graph or the random graph G0) as a function of thenumber of queries it makes. Recall that G0 is a random isomorphic copy of G, whereas a randomd-regular N -vertex graph may be viewed as a random isomorphic copy of another random d-regularN -vertex graph. Thus, intuitively, the speci�c labels of queried vertices and the speci�c labels ofthe corresponding answers are totally irrelevant: the only thing that matters is whether or nottwo labels are equal.22 Equality (between labels) can occur in two cases. The uninteresting caseis when the machine queries a vertex u that is a neighbor of a previously-queried vertex v andthe answer contains (of course) the label of vertex v. (This is uninteresting because the machine,having queried v before, already knows that v is a neighbor of u.) The interesting case is thatthe machine queries a vertex and the answer contains the label of a vertex v that was not queriedbefore but has already appeared in the answer to a di�erent query. An important observation isthat, as long as no interesting event occurs, the machine cannot distinguish the two distributions(becuase in both cases it knows the same subgraph, which is a forest). Thus, the analysis amountsto bounding the probability that an interesting event occurs, when we make q queries.Let us consider �rst what happens when we query a random d-regular N -vertex (simple) graph.We may think of an imaginary process that constructs the graph on-the-
y such that the neighborsof vertex v are selected only in response to the query v (cf. [14, Thm. 7.1]). This selection isdone at random according to the conditional distribution that is consistent with the partial graphdetermined so far. It is easy to see that the probability that an interesting event occurs in the i-thquery is at most (i � 1)d=(dN � (i� 1)d), and so the probability for such an event occurring in qqueries is at most q2=N .22Essentially, the machine cannot determine which vertex it queries; all that it actually decides is whether to querya speci�c vertex that has appeared in previous answers or to query a new vertex (which may be viewed as randomlyselected). (Formally, a speci�c new label indicated by the querying machine is mapped by the random permutation toa new random vertex.) Similarly, the labels of the vertices given as answer do not matter, all that matters is whetheror not these vertices have appeared in the answers to previous queries (or as previous queries). (Again, formally, thenew vertices supplied in the answer are assigned, by the random permutation, new random labels.)33



The more challenging part is to analyse what happens when we query the graph G. (Recallthat we have already reduced the analysis to a model in which we ignore the speci�c labels, butrather only compare them, and analogously we cannot query a speci�c new vertex but rather onlyquery either a random new vertex or a vertex that has appeared in some answer.)23 To illustratethe issues at hand, consider �rst the case that d = 2 (where G consists of a set of cycles, each oflength at least g). In this case, we have the option of either to proceed along a path that is partof a cycle (i.e., query for the neighbors of the an end-point of a currently known path) or to queryfor a random new vertex. Assuming that we make less than g � 1 queries, we can never cause aninteresting event by going along a path (because an interesting event may occur in this case onlyif we go around the entire cycle, which requires at least g � 1 queries). The only other possibilityto encounter an interesting event is by having two paths (possiblly each of length 1) collide. Butthe probability for such an event is bounded by q2=N , where q is the number of queries that wemake.24We now turn to the more interesting case of d > 2. As in case d = 2, taking a walk of lengthg � 2 from any vertex will not yield anything useful. However, in this case, we may a�ord totake longer walks (because q may be much larger than g). Still, we will prove that, in this case,with probability at least 1 � q2 � (d � 1)�(g�3)=2, the uncovered subgraph is a forest. The proofrelies both on the the girth lower-bound of G and on a su�ciently-good rapid-mixing property(which follows from the girth lower-bound). We bound the probability that a cycle is closed inthe current forest by the probability that two vertices in the forest are connected by a non-treeedge, where the probability is taken over the possible random vertices returned in response to anew-vertex request and over the random order in which neighbors of a query-vertex are provided.Indeed, a key observation is that when we query a vertex that has appeared in some answer, wemay think that this vertex is selected at random among the unqueried vertices appearing in thatanswer.25 Taking a union bound on all possible �q2� vertex pairs (i.e., those in the forest), we boundthe probability that either two ends of a discovered path (in one tree) or two vertices in di�erentcurrent trees are connected by an edge. (In both cases, these vertices are actually leaves.)We consider each of these two cases seperately: In the latter case (i.e., leaves in di�erent trees),the two vertices (which are not connected in the currently uncovered subgraph) are uniformlydistributed in G, and thus the probability that they are connected is essentially d=N . The situationhere is essentially as analyzed in the case d = 2: we have two paths, each initiated at a random(new at the time) vertex, leading to the leaves in question, and thus the latter are almost uniformlyand independently distributed.Turning to the former case (i.e., endpoints of a path in a tree), we use the girth hypothesisto infer that this path must have length at least g � 1 (or else its endpoint are de�nitely notconnected). However, the machine that discovered this path actually took a random walk (possibllyto two directions) starting from one vertex, becuase we may assume that this is the �rst time inwhich two vertices in the current forest are connected by a current non-tree edge. We also use23Thus, we may consider querying G itself (rather than querying G0).24Using a union bound over all query pairs, we bound the probability that the ith query collides with the j-thquery. Each of these two queries is obtained by a path of �xed length starting from a uniformly and distributedvertex (which was new at the time). Thus, these two queries are almost uniformly and independently distributed (in[N ]), and the probability that they are neighbors is at most 1=(N � q).25That is, the correspondance between the new place-holders in the answer and the new real neighbors of thequeried vertex is random. Formally, we may de�ne the interaction with the graph such that at each point only theinternal nodes of the currently revealed forest are assigned a serial number. Possible queries may be either for a newrandom vertex (assigned the next serial number and typically initiating a new tree in the forest) or for a randomleaf of a speci�c internal vertex (which typically extends the corresponding tree and turns one of these leaves to aninternal vertex with d� 1 new leaves). 34



the hypothesis that our exploration of the path (i.e., queries regarding vertices that appeared inprevious answers) is actually random (i.e., we e�ectively extend the current end-point of the pathby a uniformly selected neighbor of that end-point). Now, the end-point of such a path cannot hitany speci�c vertex with probability greater than � def= (d� 1)�(g�1)=2, because after (g� 1)=2 stepsthe end-point must be uniformly distributed over the (d � 1)(g�1)=2 leaves of the tree rooted atthe start vertex (and the max-norm of a distribution cannot increase by additional random steps).Fixing the closest (to the start vertex) end-point, it follows that the probability that the otherend-point hits the neighbor-set of the �rst end-point is at most d � � = O((d � 1)�(g�1)=2). Tosummarize, the probability that an interesting event occurs, while making q queries, is at mostO(q2 � (d� 1)�(g�1)=2). The lemma follows.Implementing random bounded-degree simple graphs: We now turn back to the initialproblem of implementing random bounded-degree (resp., regular) simple graphs.Proposition 8.3 For every constant d, there exist truthful close-implementations of the followingtwo speci�cations:1. A random graph of maximum degree d: For size parameter N , the speci�cation selects uni-formly a graph G among the set of N -vertex simple graphs having maximum degree d. Onquery v 2 [N ], the machine answers with the list of neighbors of vertex v in G.2. A random d-regular graph: For size parameter N , the speci�cation selects uniformly a graphG among the set of N -vertex d-regular simple graphs, and answers queries as in Part 1.Proof: We start with Part 2. This part should follow by Corollary 8.2, provided that we canimplement a random isomorophic copy of a d-regular N -vertex graph of su�ciently large girth.This requires an explicit construction of the latter graph as well as an implementation of a randompermutation and its inverse (as provided by Theorem 2.13). Speci�cally, let GN be the �xed graph,and � the random relabelling of its vertices. The we answer query v, by �rst determining thepreimage of v in GN (i.e., ��1(v)), next �nd its neighbors (using the explicitness of the constructionof GN), and �nally return their images under �. Indeed, this process depends on the ability toprovide explicit constructions of adequate d-regular N -vertex graphs (i.e., GN 's). This is trivial inthe case d = 2 (e.g., by the N -cycle). For other values of d � 3, adequate constructions can beobtained from [26, 19, 24, 22] (possibly by dropping several (easily identi�ed) perfect matchingsfrom the graph). These construction apply for a dense set of N 's (which are typically of the formp(p � 1)2 for any prime p), but we can obtain other sizes by combining many such graphs (notethat we are not even required to give a connected graph, let alone a good expander).We now turn to Part 1. We �rst note that most graphs of maximumdegree d have (1�o(1))�dN=2edges. Furthermore, for T = �(pdN) and D = O(pdN), all but a negligible (in N) fraction of thegraphs have (dN=2)�T �D edges. In this range, random N -vertex graphs with a given number ofedges and degree bound d, can be closely-implemented by selecting a random d-regular N -vertexgraph and omitting the adequate number of edges. Thus, all that is needed is to select M atrandom with probability proportional to the number of N -vertex graphs with M edges and degreebound d. This can be done by using known expressions for these numbers, and techniques such asin Appendix A.
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A general result: The proof of Proposition 8.3 actually yields a truthful close-implementation ofseveral other speci�cations. Consider, for example, the generation of random connected d-regulargraphs, for d � 3. Since the explicit constructions of d-regular graphs are connected (and theirmodi�cations can easily made connected), applying Corollary 8.2 will do. (Indeed, we also use thefact that, with overwhelmingly high probability, a random d-regular graph is connected.) Moregenerally, we have:Theorem 8.4 Let d be �xed and � be a graph property that satis�es the following two conditions:1. The probability that Property � is not satis�ed by a uniformly chosen d-regular N -vertex graphis negligible in logN .2. Property � is satis�ed by a family of strongly-constructable d-regular N -vertex graphs havinggirth !(log logN).Then, there exists a truthful close-implementation (by an oracle machine) of a uniformly distributedd-regular N -vertex graph that satis�es property �.We note that Condition 1 may be relaxed. It su�ces to require that a random d-regular graph anda random d-regular graph having Property � are staistically-indistinguishable (by a machine thatmakes poly-logarithmically many queries). In particular, a random 2-regular graph and a uniformlydistributed connected 2-regular graph are statistically-indistinguishable, and thus we can providea truthful close-implementation of the latter speci�cation. We mention that Theorem 8.4 yieldstruthful close-implementations to random d-regular graphs that are required to be Hamiltonian,Bipartite, have logarithmic girth, etc.9 Supporting Complex Queries regarding Length-Preserving Func-tionsIn this section we consider speci�cations that, in addition to the standard evaluation queries, answervarious queries regarding a random function f : f0; 1gn ! f0; 1gn. The �rst type of queries wehandle are interated-evaluation queries, where the number of iterations may be super-polynomialin the length of the input (and thus cannot be implemented in a straightforward manner).Theorem 9.1 There exists a truthful close-implementation of the following speci�cation. Thespecifying machine, uniformly selects a function f : f0; 1gn ! f0; 1gn, and answers queries of theform (x;m), where x 2 f0; 1gn and m 2 [2poly(n)], with the value fm(x) (i.e., f iterated m timeson x).Proof: Consider �rst an implementation by a random N -cycle, where N = 2n. That is, using arandom 1-1 mapping � : f0; :::; N � 1g ! f0; 1gn, de�ne f(x) = �(��1(x) + 1 mod N), and answerthe query (x;m) by �(��1(x) +m mod N). (Indeed, the above construction is reminiscent of the\fast-forward" construction of [27] (stated in Theorem 2.14).) The only thing that goes wrong isthat we know the cycle length of f and thus can distinguish it from a random function by anyquery of the form (�; N). Thus, we modify the construction so to obtain a function f with unknowncycle lengths. A simple way of doing this is to use two cycles, while randomly selecting the lengthof the �rst cycle. That is, select M uniformly in [N ], and letf(x) def= 8><>: �(��1(x) + 1 modM) if ��1(x) 2 f0; :::;M � 1g�(��1(x) + 1) if ��1(x) 2 fM; :::; N � 2g�(M) otherwise (i.e., ��1(x) = N � 1)36



We could have tried to select f such that its cycle structure is distributed as in case of a randomfunction, but we did not bother to do so. Nevertheless, we prove that any machine that makes qqueries cannot distinguish f from a random function with probability better than poly(n) �q2=2
(n).Actually, in order to facilitate the anaysis, we select M uniformly in f(N=3); :::; (2N=3)g.We turn to prove that the above truthful implementation is statistically-indistinguishable fromthe speci�cation. As in the proof of Lemma 8.1, we may disregard the actual values of queries andanswers in the querying process, and merely refer to whether these values are equal or not. We alsoassume, without loss of generality, that the querying machine makes no redundent queries (e.g., if itknows that y = fk(x) and z = f `(y) then it refrains from making the query (x; k+ `), which wouldhave been answered by z = fk+`(x)). That is, at any point in time, the querying machine knowsof a few chains, each having the form (x; fk1(x); fk2(x); :::; fkt(x)), for some known x 2 f0; 1gn andk1 < k2 < � � � < kt. Typically, the elements in each chain are distinct, and no element appears intwo chains. In fact, as long as this typical case holds, there is no di�erence between querying thespeci�cation versus querying the implementation. Thus, we have to upper bound the probabilitythat an untypical event occurs (i.e., a query is answered by an element that already appears on oneof the chains, although the query was not redundent).Let us �rst consider the case that f is constructed as in the implementation. For the i-thnon-redundent query, denoted (x; k), we consider three cases:Case 1: x is not on any chain. The probability that fk(x) hits a known element is at most (i �1)=(N � (i�1)), because x is uniformly distributed among the N � (i�1) unknown elements.(Since f is 1-1, it follows that fk(x) is uniformly distributed over a set of N�(i�1) elements.)Case 2: x is on one chain and fk(x) hits another chain. The probability to hit an element of anotherchain (which must belong to the same cycle) is (i� 1)=(N 0� (i� 1)2), where N 0 � N=3 is thenumber of vertices on the cycle (on which x reside). This is because the chains on the samecycle may be though of having a random relative shift (which ignore the collisions of knownvertices). For i < pN=2, we obtain a probability bound of i=
(N).Case 3: x is on some chain and fk(x) hits the same chain. Without loss of generality, suppose thatfk(x) = x. For this to happen, the length N 0 of the cycle (on which x reside) must divide k.We upper-bound the probability that all prime factors of N 0 are prime factors of k. Recall thatN 0 is uniformly selected in [(N=3); (2N=3)], let P = Pk denote the set of prime factors of k, andnote that jP j = poly(n) (by the hypothesis k 2 [2poly(n)]). We bound the number of integersin [N ] that have all prime factors in P by bounding, for every t 2 [n], the product of thenumber of t-bit long integers with all prime factors in P 0 def= fp 2 P : p < ncg and the numberof (n�t)-bit integers with all prime factors in P 00 def= P nP 0, where c is a suitable constant (i.e.,satisfying jP j < nc�1). For t > n= log n, the size of the �rst set can be upper-bounded by thenumber of nc-smooth numbers in [2t],26 which in turn is bounded by 2t�(t=c)+o(t) � 2(1�(1=c))�t.The size of the second set is upper-bounded by � jP 00j(n�t)=(c log n)� < 2(1�(1=c))�(n�t), where theinequality uses jP 00j < nc�1. Thus, we upper-bound the probability that an uniformly choseninteger in [(N=3); (2N=3)] has all prime factors in P byn= log nXt=1 2�(1=c)�(n�t)+o(n) + nXt=(n= logn)+1 2�(1=c)�n+o(n) = 2�(n=c)+o(n)26An integer is called y-smooth if all its prime factors are smaller that y. The fraction of y-smooth integers in [x]is upper-bounded by u�u+o(u), where u = (log x)=(log y); see, [7].37



Thus, the probability that we form a collision in q queries (to the implementation) is at mostq2 �N�1=(c+1).We now turn to the case that f is a random function (as in the speci�cation). Suppose thatwe make the non-redundent query (x; k). We wish to upper-bound the probability that fk(x) = y,for some �xed y (which is on one of the chains). It is well-known that the expected numberof ancestors of y under a random f is �(pN); see, e.g., Theorem 33 in [6, Ch. XIV]. Thus,Prf [j [i�1 f�i(y)j > N3=4] = O(N�1=4), and it follows that Prf [fk(x) = y] < N�1=4 +O(N�1=4),for any �xed (x; k) and y. (Indeed, it seems that this is a gross over-estimate, but it su�ces for ourpurposes.) It follows that the probability that we form a collision in q queries to the speci�cationis at most O(q2=N1=4).Comment: The proof of Theorem 9.1 can be easily adapted so to provide a truthful close-implementation of a random permutation with iterated-evaluation and iterated-inverse queries.That is, we refer to a specifying machine that uniformly selects a permutation p : f0; 1gn ! f0; 1gn,and answers queries of the form (x;m), where x 2 f0; 1gn andm 2 [�2poly(n)], with the value pm(x).The implementation is exactly the one used in the proof of Theorem 9.1, and thus we should onlyanalyze the probability of collision when making (non-redundent) queries to a random permutation.For any �xed (x; k) and y, the probability that �k(x) = y equals the probability that x and y resideson the same cycle of the permutation p and that their distance on this cycle equals k mod `, where` is the length of this cycle. The claim follows using the fact that ` is distributed uniformly over [N ](becuase the probability that x resides on a cycle of a certain length equals the expected numberof elements residing on cycles of such length divided by N). An alternative implementation ofa random permutation supporting iterated-evaluation (and iterated-inverse) queries was suggestedindependently by Tsaban [28]. Interestingly, his implementation works by selecting a cycle structurewith distribution that is statistically-close to that in a random permutation (and using a set of cyclesof corresponding lengths, rather than always using two cycles as we do).Preimage queries to a random mapping: We turn back to random length preserving func-tions. Such a random function f : f0; 1gn ! f0; 1gn is highly unlikely to be 1-1, still the set ofpreimages of an element under the function is well-de�ned (i.e., f�1(y) = fx : f(x)=yg). Indeed,this set may be empty, be a singleton or contain more than one preimage. Furthermore, withoverwhelmingly high probability, all these sets are of size at most n. The corresponding \inverse"queries are thus natural to consider.Theorem 9.2 There exists a truthful close-implementation of the following speci�cation. Thespecifying machine, uniformly selects a function f : f0; 1gn ! f0; 1gn, and, in addition to thestandard evaluation queries, answers the inverse-query y 2 f0; 1gn with the value f�1(y).Proof: We start with a truthful implementation that is not statistically-indistinguishable fromthe speci�cation, but is close to being so and does present our main idea. For ` = O(log n) (to bedetermined), we consider an implementation that uses the orcale in order to de�ne two permutations�1 and �2 over f0; 1gn (along with their inverses) as well as a random function g : f0; 1gn ! f0; 1g`.We de�ne f(x) = �2(prefn�`(�1(x))g(�1(x))), where prefi(z) denotes the i-bit long pre�x of z. Thatis, the function g induces collisions within the structured sets S�, where S� def= f�� : � 2 f0; 1g`g,and the permutation �1 (resp., �2) randomly route inputs (resp., outputs) to (resp., from) thesesets. Indeed, it is instructive to note that g induces a collection of random independent functionsg� : f0; 1g` ! f0; 1g` such that g�(�) = g(��), and that each g� induces a random function on the38



corresponding S� (i.e., mapping �� to �g�(�)). Thus, letting su�i(z) denote the i-bit long su�xof z, we may writef(x) = �2(�g�(�)), where � prefn�`(�1(x)) and �  su�n�`(�1(x)). (3)The evaluation queries are answered in a straightforward way (i.e., by evaluating �1, g and �2).The inverse-query y is answered by �rst computing �� = ��12 (y), where j�j = n�`, then computingR�(�) def= f�0 : g(��0) = �g via exhaustive search, and �nally setting f�1(y) = f��11 (��0) : �0 2R�(�)g. Indeed, the key point is that, since ` = O(log n), we can a�ord to determine the setR�(�) by going over all possible �0 2 f0; 1g` and including �0 if and only if g(��0) = �. Therandom permutation �1 (resp., �2) guarantees that it is unlikely to make two evaluation queries(resp., inverse-queries) that are served via the same set S�. It is also unlikely to have a non-obvious \interaction" between these two types of queries (where an obvious interaction is obtainedby asking for a preimage of an answer to an evaluation query or vice versa). Thus, the answers tothe evaluation queries look random, and the answers to the inverse-queries are almost independentrandom subsets with sizes that corresponds to the collision of 2` elements (i.e., 2` balls thrown atrandom to 2` cells).The only thing that is wrong with the above implementation is that the sizes of the preimage-setscorrespond to the collision pattern of 2` balls thrown at random to 2` cells, rather than to that of thecollision pattern of 2n balls thrown at random to 2n cells. Let pi(m) denote the expected fractionof cells that contain i balls, when we throw at random m balls into m cells. Then, p0(m) � 1=e,for all su�ciently large m, whereaspi(m) � 1(i!)e � iYj=1�1� j � 2m� 1� (4)We focus on i � n (because for i > n both pi(2`) and pi(2n) are smaller than 2�2n). We may ignorethe (negligible in n) dependence of pi(2n) on 2n, but not the (noticeable) dependence of pi(2`) on2` = poly(n). Speci�cally, we have:i pi(2n) pi(nc + 1) � (Qij=1(1� (j � 2)n�c)) � pi(2n)� e�1=(i!) � (Qij=1(1� (j � 2)n�c)) � (e�1=(i!))1 e�1 (1 + n�c) � e�12 e�1=2 (1 + n�c) � e�1=23 e�1=6 � (1� n�2c) � e�1=64 e�1=24 � (1� 1:5n�c) � e�1=24i � 4 e�1=(i!) (1��(i2n�c)) � e�1=(i!)Thus, the singleton and two-element sets are slightly over-represented in our implementation (whencompared to the speci�cation), whereas the larger sets are under-represented. In all cases, the devi-ation is by a factor related to 1� (1=poly(n)), which cannot be tolerated in a close-implementation.Thus, all that is required is to modify the function g such that it is slightly more probable toform larger collisions (inside the sets S�'s). We stress that we can easily compute all the relevantquantities (i.e., all pi(2n)'s and pi(2`)'s, for i = 1; :::; n), and so obtaining a close-implementationis merely a question of details, which are shortly outlined next.Let us just sketch one possible approach. For N def= 2n and t def= 2`, we have N=t sets S�'s thatare each partitioned at random by the g�'s to subsets (which correspond to the sets of ��'s that aremapped to the same image under g�). Now, for a random collection of g�'s, the number of i-subsets39



divided by N is pi def= pi(t) rather than qi def= pi(N) as desired. Recall that jpi � qij � pi=(t� 1) forall i � 1, and note that Pi pii = 1 =Pi qii. Indeed, it is instructive to consider the fractional massof elements that resides in i-subsets; that is, let p0i = pii and q0i = qii. We need to move a fractionalmass of about 1=(t� 1)e elements from singleton subsets (resp., two-element subsets) to the largersubsets. With overwhelmingly high probability, each S� contains more than n singleton subsets(resp., n=2 two-element subsets). We are going to use only these subsets towards the correction ofthe distribution of mass; this is more than enough, because we need to relocate only a fractionalmass of 1=(t� 1)e from each type of subsets (i.e., less than one element per a set S�, which in turnhas cardinality t). In particular, we move a fractional mass of p01�q01 = p02�q02 from singleton (resp.,two-element) subsets into larger subsets. Speci�cally, for each i � 3, we move a fractional mass of(q0i � p0i)=2 elements residing in singletons and (q0i � p0i)=2 elements residing in two-element subsetsinto i-subsets.27 This (equal contribution condition) will automatically guarantee that the massin the remaining singleton and two-element subsets is as desired. We stress that there is no needto make the \mass distribution correction process" be \nicely distributed" among the various setsS�'s, because its a�ect is anyhow hidden by the application of the random permutation �2. Theonly thing we need is to perform this correction procedure e�ciently (i.e., for every � we shoulde�ciently decide how to modify g�), and this is indeed doable.

27For example, we move mass into 3-subsets by either merging three singletons or merging a singleton and a two-subset into a corresponding 3-subset, where we do three merges of the latter type per each merge of the former type.Similarly, for each i � 4, we move mass into i-subsets by merging either i singletons or i=2 two-subsets, while doingan equal number of merges of each type. Finally, for every j � 1, we move mass into (2j + 3)-subsets by mergingadditionally created 2j-subsets and 3-subsets (where additional 2-subsets are created by either using a 2-subset ormerging two singletons, in equal proportions). 40



10 Conclusions and Open ProblemsThe questions that underlie our work refer to the existence of good implementations of various speci-�cations. At the very least, we require the implementations to be computationally-indistinguishablefrom the corresponding speci�cations.28 That is, we are interested in pseudo-implementations. Ourultimate goal is to obtain such implementations via ordinary (probabilistic polynomial-time) ma-chines, and so we ask:Q1: Which speci�cations have truthful pseudo-implementations (by ordinary machines)?Q2: Which speci�cations have almost-truthful pseudo-implementations (by ordinary machines)?Q3: Which speci�cations have pseudo-implementations at all?In view of Theorem 2.9, as far as Questions Q1 and Q3 are concerned, we may as well considerimplementations by oracle machines (having access to a random oracle). Indeed, the key observationthat started us going was that the following questions are the \right" ones to ask:Q1r (Q1 revised): Which speci�cations have truthful close-implementations by oracle machines(having access to a random oracle)?Q3r (Q3 revised): Which speci�cations have such close-implementations at all?We remark that even in case of Question Q2, it may make sense to study �rst the existence ofimplementations by oracle machines, bearing in mind that the latter cannot provide a conclusivepositive answer (as shown in Theorem 2.11).In this work, we have initiated a comprehensive study of the above questions. In particular,we provided a fair number of non-trivial implementations of various speci�cations relating to thedomains of random functions, random graphs and random codes. The challenge of characterizingthe class of speci�cations that have good implementations (e.g., Questions Q1r and Q3r) remainswide open. A good start may be to answer such questions when restricted to interesting classes ofspeci�cations (e.g., the class of speci�cations of random graphs having certain properties).AcknowledgmentsThe �rst two authors wish to thank Silvio Micali for discussions that took place in 1984. Themain part of Theorem 2.9 was essentially observed in these discussions. These discussions reacheda dead-end because the notion of a speci�cation was missing (and so it was not understood thatthe interesting question is which speci�cations can be implemented at all (i.e., even by an oraclemachine having access to a random function)).We are grateful to Noga Alon for very helpful discussions regarding random graphs and explicitconstructions of bounded-degree graphs of logarithmic girth. We also thank Avi Wigderson for ahelpful discussion regarding the proof of Lemma 6.3.
28Without such a quali�cation, the questions stated below are either meaningless (i.e., every speci�cation has a\bad" implementation) or miss the point of generating random objects.41
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Appendix A: Implementing various probability distributionsOur proof of Theorem 5.2 relies on e�cient procedures for generating elements from a �nite setaccording to two probability distributions. In both cases, we need procedures that work in time thatis poly-logarithmic (rather than polynomial) in the size of the set (and the reciprocal of the desiredapproximation parameter). In both cases, we have close expressions (which can be evaluated inpoly-logarithmic time) for the probability mass that is to be assigned to each element. Thus, inboth cases, it is easy to generate the desired distribution in time that is almost-linear in the sizeof the set. Our focus is on generating good approximations of these distributions in time that ispoly-logarithmic in the size of the set.Indeed, the problem considered in this appendix is a special case of our general framework. Weare given a speci�cation of a distribution (i.e., each query should be answered by a sample drawnindependently from that distribution), and we wish to closely-implement it (i.e., answer each queryby a sample drawn independently from approximately that distribution).A.1 Sampling the binomial distributionWe �rst consider the generation of elements according to the binomial distribution. For any N , weneed to output any value v 2 f0; 1; :::; Ng with probability �Nv � �2�N . An e�cient procedure for thispurpose is described in Knuth [21, Sec. 3.4.1]. In fact, Knuth describes a more general procedurethat, for every p, outputs the value v 2 f0; 1; :::; Ng with probability bN;p(v) def= �Nv � � pv(1� p)N�v.However, his description is in terms of operations with reals, and so we need to adapt it to thestandard (bit-operation) model. Knuth's description proceeds in two steps:1. In Section 3.4.1.F, it is shown how to reduce the generation of the binomial distribution bN;pto the generation of some beta distributions, which are continuous distributions over [0; 1] thatdepends on two parameters a and b.29 The reduction involves taking log2N samples fromcertain beta distributions, where the parameters of these distributions are easily determinedas a function of N . The samples of the beta distributions are processed in a simple mannerinvolving only comparisons and basic arithmetic operations (subtraction and division).2. In Section 3.4.1.E, it is shown how to generate any beta distribution. The generator takes aconstant number of samples from the continuous uniform distribution over [0; 1], and producesthe desired sample with constant probability (otherwise, the process is repeated). The samplesof the uniform distributions are processed in a simple manner involving only comparisons andvarious arithmetic and trigonometric operations (including computing functions as log andtan).The above is described in terms of real arithmetic and sampling uniformly in [0; 1], and providesa perfect implementation. The question is what happens when we replace the samples with onestaken from the set f�; 2�; :::; b1=�c � �g, and replace the real arithmetics with approximations upto afactor of 1� �.29A beta distribution with (natural) parameters a and b is de�ned in terms of the accumulative distribution functionFa;b(r) def= a ��a+ b� 1a � � Z r0 xa�1(1� x)b�1 dxand the uniform continuous distribution is a special case (i.e., a = b = 1). In general, Fa;b(r) equals the probabilitythat the bth largest of a+ b� 1 independent uniformly chosen samples in [0; 1] has value at most r.44



Let us �rst consider the e�ect of replacing the uniform continuous distribution U(r) = r bythe continuous step-distribution S�(r) def= br=�c � �, where we may assume that 1=� is an integer.Since the variation distance between U and S� is O(�), the same holds for any function applied toa constant number of samples taken from these distribution. Thus, the implementation of the betadistributions via the step-distribution S� will deviate by only O(�), and using the latter to generatethe binomial distribution bN;p only yields a deviation of O(� logN). Finally, using the averagenumerical stability of all functions employed30 we conclude that an implementation by O(log(1=�))bits of precision will only introduce a deviation of �.A.2 Sampling from the two-set total-sum distributionWe now turn to the generation of pairs (l; r) such that l + r = T and 0 � l; r � S, where T � 2S.Speci�cally, we need to produce such a pair with probability proportional to �Sl � � �Sr� (i.e., thenumber of ways to select l elements from one set of size S and r elements from another such set).(In the proof of Theorem 5.2, S = M=2.) Without loss of generality, we may assume that T � S(or else we select the \complementary" elements). Thus, we need to sample r 2 f0; :::; Tg withprobability pr = � ST�r� � �Sr��2ST � (5)We wish to produce a sample with deviation at most � from the correct distribution and areallowed time poly(k), where k def= log(S=�). In case T � k, we perform this task in the straightfor-ward manner; that it, compute all the T + 1 probabilities pr, and select r accordingly. Otherwise(i.e., T > k), we rely on the fact that pr is upper-bounded by twice the binomial distribution of Ttries (i.e., qr = �Tr�=2T ). This leads to the following sampling process:1. Select r according to the binomial distribution of T tries.2. Compute pr and qr. Output r with probability pr=2qr, and go to Step 1 otherwise.We will show (see Fact A.1 below) that pr � 2qr always holds. Thus, in each iteration, we output rwith probability that is proportional to pr; that is, we output r with probability qr �(pr=2qr) = pr=2.It follows that each iteration of the above procedure produces an output with probability 1=2, andby truncating the procedure after k iterations (and producing arbitrary output in such a case) theoutput distribution is statistically close to the desired one.Fact A.1 Suppose that T � S and T > k. For pr's and qr's as above, it holds that pr < 2qr.Proof: The cases r = T and r = 0 are readily veri�ed (by noting that pr = �ST�=�2ST � < 2�T andqr = 2�T ). For r 2 f1; :::; T � 1g, letting � def= (S � r)=(2S � T ) 2 (0; 1), we haveprqr = �Sr� � � ST�r�=�2ST ��Tr�=2T = 2T � �2S�TS�r ��2SS �30Each of these functions (i.e., rational expressions, log and tan) has a few points of instability, but we applythese functions on arguments taken from either the uniform distribution or the result of prior functions on thatdistribution. In particular, except for what happens in an �-neighborhood of some problematic points, all functionscan be well-approximated when their argument is given with O(log(1=�) bits of precision. Furthermore, the functionslog and tan are only evaluated at the uniform distribution (or simple functions of it), and the rational expressionsare evaluated on some intermediate beta distributions. Thus, in all cases, the problematic neighborhoods are onlyassigned small probability mass (e.g., � in the former case and O(p�) in the latter).45



= 2T � (1 + o(1)) � (2��(1 � �) � (2S � T ))�1=2 � 2H2(�)�(2S�T )(2�(1=2)2 � 2S)�1=2 � 2H2(1=2)�2S= 1 + o(1)p2�(1 � �) � � � 2(H2(�)�1)�(2S�T )where � def= (2S � T )=S � 1 and H2 is the binary entropy function. For � 2 [(1=3); (2=3)], we canupper-bound pr=qr by (1 + o(1)) �p9=4� < 2. Otherwise (i.e., without loss of generality � < 1=3),we get that H2(�) < 0:92 and ��1(1 � �)�1 � 2S � T , where for the latter inequality we use1 � r � S� 1. Thus, pr=qr is upper-bounded by O(p2S � T ) � 2�
(2S�T ) = O(2�
(S)+log S), whichvanishes to zero with k (because S � T > k).31A.3 A general tool for sampling strange distributionsIn continuation to Appendix A.2, we state a useful lemma (which was implicitly used above as wellas in prior works). The lemma suggests that poly(logN)-time sampling from a desired probabilitydistribution fpigNi=1 can be reduced to sampling from a related probability distribution fqigNi=1,which is hopefully poly(logN)-time sampleable.Lemma A.2 Let fpigNi=1 and fqigNi=1 be probability distributions satisfying the following conditions:1. There exists a polynomial-time algorithm that given i 2 [N ] outputs approximations of pi andqi up to �N�2.2. Generating an index i according to the distribution fqigNi=1 is closely-implementable (uptonegligible in logN deviation and in poly(logN)-time).3. There exist a poly(logN)-time recognizable set S � [N ] such that(a) 1�Pi2S pi is negligible in logN .(b) There exists a polynomial p such that for every i 2 S it holds that pi � p(logN) � qi.Then generating an index i according to the distribution fpigNi=1 is closely-implementable.Proof: Without loss of generality, S may exclude all i's such that pi < N�2. For simplicity, weassume below that given i we can exactly compute pi and qi (rather than only approximate themwithin �N�2). Let t def= p(logN). The sampling procedure proceeds in iterations, where in eachiteration i is selected according to the distribution fqigNi=1, and is output with probability pi=tqi ifi 2 S. (Otherwise, we proceed to the next iteration.) Observe that, conditioned on producing anoutput, the output of each iteration is in S and equals i with probability qi � (pi=tqi) = pi=t. Thus,each iteration produces output with probabilityPi2S pi=t > 1=2t, and so halting after O(t log(1=�))iterations we produce output with probability at least 1 � �. For any i 2 S, the output is i withprobability (1��) �pi=�, where � def= Pj2S pj. Setting � to be negligible in logN , the lemma follows.A typical application of Lemma A.2 is to the case that for each i 2 [N ] the value of pi can beapproximated by one out of m = poly(logN) predetermined pj's. Speci�cally:31In fact, it holds that pr � p2 � qr for all r's, with the extreme value obtained at r = T=2 (and T = S), where wehave � = 1=2 (and � = 1). 46



Corollary A.3 Let fpigNi=1 be a probability distribution and S � [N ] be a set satisfying Condi-tions (1) and (3a) of Lemma A.2. Suppose that, for m; t = poly(logN), there exists an e�cientlyconstructible sequence of integers 1 = i1 < i2 < � � � < im = N such that for every j 2 [m � 1]and i 2 [ij ; ij+1] \ S it holds that pij=t < pi < t � pij . Then generating an index i according to thedistribution fpigNi=1 is closely-implementable.Proof: For every j 2 [m� 1] and i 2 [ij ; ij+1] \ S, de�ne p0i = pij and note that p0i=t < pi < t � p0i.Let p0 =Pi2S p0i, and note that p0 < t. Now, de�ne qi = p0i=p0 for every i 2 S, and qi = 0 otherwise.Then, for every i 2 S, it holds that pi < t�p0i = t�p0 �qi < t2qi. Since these qi's satisfy Conditions (1),(2) and (3b) of Lemma A.2, the corollary follows.Appendix B: Implementing a Random Bipartite GraphFollowing the description in Section 6, we present a close-implementation of random bipartitegraphs. Two issues arise. Firstly, we have to select the proportion of the sizes of the two parts,while noticing that di�erent proportions give rise to di�erent number of graphs. Secondly, we notethat a bipartite graph uniquely de�nes a 2-partition (up to switching the two parts) only if it isconnected. However, since all but a negligible fraction of the bipartite graphs are connected, wemay ignore the second issue, and focus on the �rst one. (Indeed, the rest of the discussion is slightlyimprecise because the second issue is ignored.)For i 2 [�N ], the number of 2N -vertex bipartite graphs with N + i vertices on the �rst part is 2NN + i! � 2(N+i)�(N�i) �  2NN ! � 2N2�i2where equality holds for i = 0 and approximately holds (i.e., upto a constant factor) for jij = pN .Thus, all but a negligible fraction of the 2N -vertex bipartite graphs have N � log2N vertices oneach part. That is, we may focus on O(logN) values of i. Indeed, for each i 2 [� log2N ], wecompute Ti def= � 2NN+i� � 2N2�i2 , and pi = Ti=T , where T def= Plog2Nj=� log2N Tj. Next, we select i withprobability pi, and construct a random 2N -vertex bipartite graph with N + i vertices on the �rstpart as follows:� As in Section 6, we use the function f1 to implement a permutation �. We let S def= fv :�(v) 2 [N + i]g, and �S(i) def= 1 if and only if i 2 S.� As in Section 6, we answer the query (u; v) by 0 if �S(u) = �S(v) and according to the valueof f2 otherwise.Appendix C: Various CalculationsFor the proof of Lemma 6.3The proof of Lemma 6.3 refers to the following known fact:Fact C.1 Let X be a random variable ranging over some domain D, and suppose that H(X) �log2 jDj � �. Then X is at statistical distance at most O(p�) from the uniform distribution over Dof even size. 47



Proof: Suppose that X is at statistical distance � from the uniform distribution over D. Then,there exists a S � D such that jPr[X 2 S]� (jSj=jDj)j = �, and assume without loss of generalitythat jSj � jDj=2. Note that either for each e 2 S it holds that Pr[X = e] � 1=jDj or for eache 2 S it holds that Pr[X = e] � 1=jDj. By removing the jSj � (jDj=2) elements of smallestabsolute di�erence (i.e.,, smallest jPr[X = e]� (1=jDj)j), we obtain a set S0 of size jDj=2 such thatjPr[X 2 S0]� (jS0j=jDj)j � �=2. The entropy of X is maximized when it is uniform both on S0 andon D n S0. Thus:H(X) � H2(Pr[X 2 S0]) +Pr[X 2 S0] �H(XjX 2 S0) +Pr[X 2 D n S0] �H(XjX 2 D n S0)= H2 �12 + �2�+ log2(jDj=2)= 1� 
(�2) + log2(jDj=2)We get that H(X) � log2 jDj� c � �2, for some universal c > 0. Combining this with the hypothesisthat H(X) � log2 jDj � �, we get that � � c � �2, and � � p�=c follows.For the proof of Theorem 6.5In continuation to Footnote 17, which refers to Part 2 of the proof of Theorem 6.5, we prove thefollowing fact.Fact C.2 Let c(N) be as in Theorem 6.5, and T def= N=c(N). Assume that T is an integer.Consider any �xed partition, (P1; :::; PT ), of [N ] such that jPij = c(N) for every i. Consider agraph selected as follows:� Each Pi is an independent set.� For k = �c(N)+32 �, the rest of the edges are determined by a k-wise independent binary sequenceof length �N2 �� T � �c(N)2 �.Then, with probability at least 1�O(N�1=2), the graph has no independet set of size c(N) + 3.Proof: We will show that the expected number of independet set of size c(N) + 3 is O(N�1=2),and the fact will follow. Let c def= c(N) and s def= c + 3. We partition all possible independentsets of size s into classes according to the contributions of the various Pi's to them. That is, theclasses that corresponds to the sequence (s1; :::; sT ), where PTi=1 si = s, consists of independentsets having si vertices from Pi. For such a class, we let rj denote the j-th non-zero si. We actually,cluster the classes according to the resulting sequence of rj's. That is, the cluster (r1; :::; rt), wherePtj=1 rj = s and rj � 1, consists of independent sets having rj vertices from the j-th part thatcontributes any vertices to the independent set. Then, the contribution of such a cluster to theexpectation is given by the number of potential independent sets in the cluster times the probabilitythat such a potential independent set is assigned no edges. Observe that the number of potentialundetermined edges in such a potential independent set is �s2��Pi �ri2 �, and thus the contributionof the cluster is given by Tt! � " tYi=1 cri!# � 2�((s2)�Pti=1 (ri2 )) = 2�(s2) �  N=ct ! � tYi=1 " cri! � 2(ri2 )#< 2�(s2) � (N=c)t � tYi=1 " cri! � 2(ri2 )#48



We bound, seperately, each factor of the form � cri� � 2(ri2 ). Speci�cally:Claim: Let f(x) = �cx� � 2(x2). Then, for x 2 f1; :::; cg it holds that f(x) � cNx�1, and for x 2f2; :::; c � 1g it holds that f(x) < Nx�(3=2).Using this claim, the contribution of each sequence of ri's is:2�(s2) � (N=c)t � tYi=1 f(ri) < 2�(s2) � (N=c)t � tYi=1 cN ri�1= 2�(s2) �NPti=1 ri= 2� s(s�1)2 + c2 �s = 2�swhere the last two equalities use log2N = c=2 and c = s � 3, respectively. Furthermore, if thesequence of ri's has some element in f2; :::; c�1g then we get a better bound of 2�s �N�1=2, becuasewe gain at least a factor of N�1=2 in the inequality.Now, the number of sequences (r1; :::; rt), for various t, is Pst=2 �s�1t�1� < 2s�1. Of these only aconstant number have all ri's in f1; cg (i.e., the all-1 sequence and the permutations of (c; 1; 1; 1)).Thus, the expectation is bounded byO(1) � 2�s + 2s � (2�s �N�1=2) < O(N�1=2)where the inequality uses s > c = 2 log2N .We now turn to the proof of the claim. For x = 1, equality holds (i.e., f(1) = c �20 = c �N0). (Infact, this is the only case where equality holds.) For x = c, we have f(c) = 1 � 2c(c�1)=2 = N c�1 <cN c�1. In all other cases, we de�ne g(x) = log2 f(x) � (x � (3=2)) � log2N , and prove that it isnegative. Using log2N = c=2, note thatg(x) = log2  cx!+ (x� 1)x2 � (x� (3=2)) � c2= log2  cx!+ (x� c� 1)x2 + 3c4< log2  c0x!+ (x� c0)x2 + 3c04where c0 def= c+1. Using the fact that c = c(N) = !(1) (and 2 � x � c0� 2), we consider two cases:1. If either 2 � x � 5 or c0 � 5 � x � c0 � 2 then we bound log2 �c0x� by 5 log2 c0 and getg(x) < 5 log2 c0 + 12 � max2�x�c0�2f(x� c0)xg+ 3c04= 5 log2 c0 � 2(c0 � 2)2 + 3c04 < 02. If 5 � x � c0 � 5 then we bound log2 �c0x� by c0 and getg(x) < c0 + 12 � max5�x�c0�5f(x� c0)xg+ c0= 2c0 � 5(c0 � 5)2 < 0So the claim follows, and so does the entire fact.49



Appendix D: A strengthening of Proposition 2.15The hypothesis of Part 2 of Proposition 2.15 requires the existence of one-way functions, or equiv-alently the ability to generate hard-instances (to NP-problems) along with corresponding solutions(cf. [11, Sec 2.1]). A seemingly weaker condition, which is in the spirit of Levin's theory of average-case complexity [23] (see also [4]), is the ability to generate hard-instances to NP-problems. Specif-ically:De�nition D.1 (generating hard instances): A probabilistic polynomial-time algorithm G is calleda generator of hard instances for a set S if for every probabilistic polynomial-time algorithm A theprobability that A correctly decides whether or not G(1n) is in S is bounded away from 1. That is,there exists a polynomial p such that for all su�ciently large n's it holds thatPrx G(1n)[A(x) = �S(x)] < 1� 1p(n)where �S(x) = 1 if x 2 S and �S(x) = 0 otherwise.De�nition D.1 only requires that hard instances be generated with \noticible" probability. Note thatthe existence of one-way functions (even weak ones) implies the ability to generate hard instancesto NP-problems. The converse is not known to hold. Thus, the following result strengthens Part 2of Proposition 2.15.Proposition D.2 Assuming the existence of generators of hard instances for NP-problems, thereexist speci�cations that cannot be pseudo-implemented.Proof: Let L be an NP-set that has a generator G of hard instances, let R be the correspondingwitness relation (i.e., L = fx : 9y s.t. (x; y) 2 Rg), and R(x) def= fy : (x; y) 2 Rg. Consider thespeci�cation that answers query x with a uniformly distributed y 2 R(x) if R(x) 6= ; and with aspecial symbol otherwise. We will show that this speci�cation cannot be pseudo-implemented.Let I be an arbitrary implementation of the above speci�cation, and consider a distinguisherthat, for parameter n, makes the query x G(1n), obtains the answer y, and outputs 1 if and only if(x; y) 2 R (which is polynomial-time decidable). When this distinguisher queries the speci�cation,it outputs 1 with probability that equals � def= Pr[G(1n) 2 L]. Assume, towards the contradiction,that when the distinguisher queries I it outputs 1 with probability that at least � � �(n), where� is a negligible function. In such a case we obtain a probabilistic polynomial-time algorithm thatviolates the hypothesis: Speci�cally, consider an algorithm A such that A(x) answers 1 if and onlyif (x; I(x)) 2 R, and note that A is always correct when it outputs 1. Thus,Prx G(1n)[A(x) = �L(x)] = Pr[x2L ^ A(x)=1] +Pr[x =2L] �Pr[A(x)=0jx =2L]= Pr[x2L ^ (x; I(x))2R] + (1� �) �Pr[(x; I(x)) =2Rjx =2L]� (�� �(n)) + (1� �) � 1 = 1� �(n)Thus, the implementation I cannot be computationally indistinguishable from the speci�cation,and the proposition follows.
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