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1 Introdu
tionSuppose that you want to run some experiments on random 
odes (i.e., subsets of f0; 1gn that
ontain K = 2
(n) strings). You a
tually take it for granted that the random 
ode will havelarge (i.e., linear) distan
e, be
ause you know some Coding Theory and are willing to dis
ardthe negligible probability that a random 
ode will not have a large distan
e. Suppose that youwant to be able to keep su

in
t representations of these huge 
odes and/or that you want togenerate them using few random bits. Being aware of the relevant works on pseudorandomness(e.g., [19, 5, 32, 15℄), you plan to use pseudorandom fun
tions [15℄ in order to eÆ
iently generate andstore representations of these 
odes; that is, using the pseudorandom fun
tion f : [K℄ ! f0; 1gn,you 
an de�ne the 
ode Cf = ff(i) : i2 [K℄g, and eÆ
iently produ
e 
odewords of Cf . But wait aminute, do the 
odes that you generate this way have a large distan
e?The point is that having a large distan
e is a global property of the 
ode, whi
h in turn is ahuge (i.e., exp(n)-sized) obje
t. This global property 
annot be de
ided by looking at polynomiallymany (i.e., poly(n)-many) 
odewords, and so its violation 
annot be translated to a 
ontradi
tion ofthe pseudorandomness of the fun
tion. Indeed, the substitution of a random fun
tion (or a random
ode) by a pseudorandom one is not guaranteed to preserve the global property. Spe
i�
ally, allpseudorandom 
odes generated as suggested above may have small distan
e.1So, 
an we eÆ
iently generate random-looking 
odes of large distan
e? Spe
i�
ally, 
an weprovide a probabilisti
 polynomial-time pro
edure that allows to sample 
odewords from a 
ode oflarge distan
e su
h that the sampled 
odewords look as if they were taken from a random 
ode(whi
h, in parti
ular, means that we do not generate linear 
odes). The answer is essentiallypositive: see Se
tion 4. However, this is merely an example of the type of questions that we dealwith. (Another illustrative example is presented in Se
tion 6.)We initiate a general study of the feasibility of implementing (huge) random obje
ts. For agiven Type T of obje
ts, we aim at generating pseudorandom obje
ts of Type T. That is, we wantthe generated obje
t to always be of Type T, but we are willing to settle for Type T obje
ts thatlook as if they are truly random Type T obje
ts (although they are not). We stress that ourfo
us is on Type T obje
ts that look like random Type T obje
ts, rather than obje
ts that look likerandom Type T obje
ts although they are not of Type T at all. For example, we disapprove ofa random fun
tion as being an implementation of a random permutation, although the two lookalike to anybody restri
ted to resour
es that are polynomially related to the length of the inputs tothe fun
tion. Beyond the intuitive 
on
eptual reason for the above disapproval, there are pra
ti
al
onsiderations. For example, if somebody supplies an element in the range then we may want to beguaranteed that this element has a unique preimage (as would be the 
ase with any permutationbut not with a random fun
tion).In general, when one deals (or experiments) with an obje
t that is supposed to be of Type T, onemay assume that this obje
t has all the properties enjoyed by all Type T obje
ts. If this assumptiondoes not hold (even if one 
annot dete
t this fa
t during initial experimentation) then an appli
ationthat depends on this assumption may fail. One reason for the failure of the appli
ation may bethat it uses signi�
antly more resour
es than those used in the initial experiments that failed todete
t the problem. Another issue is that the probability that the appli
ation fails may indeed benegligible (as is the probability of dete
ting the failure in the initial experiments), but due to the1Indeed, for ea
h fun
tion fs taken from some pseudorandom ensemble ffs : [2jsj=10℄ ! f0; 1gjsjgs, it may holdthat the Hamming distan
e between fs(is) and fs(is + 1) is one, for some is that depends arbitrarily on fs. Forexample, given a pseudorandom ensemble ffsg, 
onsider the ensemble ffs;ig su
h that fs;i(i) = 0n, fs;i(i+1) = 0n�11and fs;i(x) = fs(x) for all other x's. 2



importan
e of the appli
ation we are unwilling to tolerate even a negligible probability of failure.We explore several areas in whi
h the study of random obje
ts o

urs naturally. These areasin
lude graph theory, 
oding theory and 
ryptography. We provide implementations of variousnatural random obje
ts, whi
h were 
onsidered before in these areas (e.g., the study of randomgraphs [6℄).Obje
ts, spe
i�
ations, implementations and their qualityOur fo
us is on huge obje
ts; that is, obje
ts that are of size that is exponential in the runningtime of the appli
ations. Thus, these (possibly randomized) appli
ations may inspe
t only smallportions of the obje
t (in ea
h randomized exe
ution). The obje
t may be viewed as a fun
tion (oran ora
le), and inspe
ting a small portion of it is viewed as re
eiving answers to a small number ofadequate queries. For example, when we talk of huge dense graphs, we 
onsider adja
en
y queriesthat are vertex-pairs with answers indi
ating whether or not the queried pair is 
onne
ted by anedge. When we talk of huge bounded-degree graphs, we 
onsider in
iden
e queries that 
orrespondto verti
es with answers listing the neighbors of the queried vertex.We are interested in 
lasses of obje
ts (or obje
t types), whi
h 
an be viewed as 
lasses offun
tions. (Indeed, we are not interested in the trivial 
ase of generi
 obje
ts, whi
h is 
aptured bythe 
lass of all fun
tions.) For example, when we talk of simple undire
ted graphs in the adja
en
ypredi
ate representation, we only allow symmetri
 and non-re
exive Boolean fun
tions. Similarly,when we talk of su
h bounded-degree graphs in the in
ident-lists representation, we restri
t the
lass of fun
tions in a less trivial manner (i.e., u should appear in the neighbor-list of v i� v appearsin the neighbor-list of u). More interestingly, we may talk of the 
lass of 
onne
ted (or Hamiltonian)graphs, in whi
h 
ase the 
lass of fun
tions is even more 
omplex. This formalism allows to talkabout obje
ts of 
ertain types (or of obje
ts satisfying 
ertain properties). In addition, it 
aptures
omplex obje
ts that support \
ompound queries" to more basi
 obje
ts. For example, we may
onsider an obje
t that answers queries regarding a global property of a Boolean fun
tion (e.g., theparity of all the fun
tion's values). The queries may also refer to a large number of values of thefun
tion (e.g., the parity of all values assigned to arguments in an interval that is spe
i�ed by thequery).We study probability distributions over 
lasses of obje
ts. Su
h a distribution is 
alled a spe
i-�
ation. Formally, a spe
i�
ation is presented by a 
omputationally-unbounded probabilisti
 Turingma
hine, where ea
h setting of the ma
hine's random-tape yields a huge obje
t. The latter obje
t isde�ned as the 
orresponding input-output relation, and so queries to the obje
t are asso
iated withinputs to the ma
hine. We 
onsider the distribution on fun
tions obtained by sele
ting the spe
i�
a-tion's random-tape uniformly. For example, a random N -vertex Hamiltonian graph is spe
i�ed bya 
omputationally-unbounded probabilisti
 ma
hine that uses its random-tape to determine su
ha (random Hamiltonian) graph, and answers adja
en
y queries a

ordingly. Another spe
i�
ationmay require to answer, in addition to adja
en
y queries regarding a uniformly sele
ted N -vertexgraph, also more 
omplex queries su
h as providing a 
lique of size log2N that 
ontains the queriedvertex. We stress that the spe
i�
ation is not required to be even remotely eÆ
ient (but for sakeof simpli
ity we assume that it is re
ursive).Our ultimate goal will be to provide a probabilisti
 polynomial-time ma
hine that implementsthe desired spe
i�
ation. That is, we 
onsider the probability distribution on fun
tions indu
ed by�xing of the random-tape of the latter ma
hine in all possible ways. Again, ea
h possible �xing ofthe random-tape yields a fun
tion 
orresponding to the input-output relation (of the ma
hine perthis 
ontents of its random-tape). 3



Indeed, a key question is how good is the implementation provided by some ma
hine. We 
on-sider two aspe
ts of this question. The �rst (and more standard) aspe
t is whether one 
an distin-guish the implementation from the spe
i�
ation when given ora
le a

ess to one of them. Variants in-
lude perfe
t indistinguishability, statisti
al-indistinguishability and 
omputational-indistinguishability.We stress a se
ond aspe
t regarding the quality of implementation: the truthfulness of the imple-mentation with respe
t to the spe
i�
ation, where being truthful means that any possible fun
tionthat appears with non-zero probability in the implementation must also appear with non-zero prob-ability in the spe
i�
ation. For example, if the spe
i�
ation is of a random Hamiltonian graph thena truthful implementation must always yield a Hamiltonian graph. (A reasonable relaxation ofthe notion of truthfulness is to require that all but a negligible part of the probability mass of theimplementation is assigned to fun
tions that appear with non-zero probability in the spe
i�
ation;an implementation satisfying this relaxation is 
alled almost-truthful.)OrganizationIn Se
tion 2, we present formal de�nitions of the notions dis
ussed above as well as basi
 ob-servations regarding these notions. These are followed by a few known examples of non-trivialimplementations of various random obje
ts (whi
h are retrospe
tively 
ast ni
ely in our formula-tion). In Se
tion 3, we state a fair number of new implementations of various random obje
ts,while deferring the 
onstru
tions (and proofs) to the 
orresponding se
tions. These implementa-tions demonstrate the appli
ability of our notions to various domains su
h as fun
tions, graphs and
odes. Con
lusions and open problems are presented in Se
tion 10.2 Formal Setting and General ObservationsThroughout this work we let n denote the feasibility parameter. Spe
i�
ally, feasible-sized obje
tshave an expli
it des
ription of length poly(n), whereas huge obje
ts have (expli
it des
ription) sizeexponential in n. The latter are des
ribed by fun
tions from poly(n)-bit strings to poly(n)-bitstrings. Whenever we talk of eÆ
ient pro
edures we mean algorithms running in poly(n)-time.2.1 Spe
i�
ationA huge random obje
t is spe
i�ed by a 
omputationally-unbounded probabilisti
 Turing ma
hine.For a �xed 
ontents of the random-tape, su
h a ma
hine de�nes a (possibly partial) fun
tion onthe set of all binary strings. Su
h a fun
tion is 
alled an instan
e of the spe
i�
ation. We 
onsiderthe input-output relation of this ma
hine when the random-tape is uniformly distributed. Looselyspeaking, this is the random obje
t spe
i�ed by the ma
hine.For sake of simpli
ity, we 
on�ne our attention to ma
hines that halt with probability 1 on everyinput. Furthermore, we will 
onsider the input-output relation of su
h ma
hines only on inputsof some spe
i�ed length `, where ` is always polynomially related to the feasibility parameter n.Thus, for su
h a probabilisti
 ma
hine M and length parameter ` = `(n), with probability 1 overthe 
hoi
e of the random-tape for M , ma
hine M halts on every `(n)-bit long input.De�nition 2.1 (spe
i�
ation): For a �xed fun
tion ` :N!N, the instan
e spe
i�ed by a probabilisti
ma
hine M , random-tape ! and parameter n is the fun
tion Mn;! de�ned by letting Mn;!(x) be theoutput of M on input x 2 f0; 1g`(n) when using the random-tape ! 2 f0; 1g1. The random obje
tspe
i�ed by M and n is de�ned as Mn;! for a uniformly sele
ted ! 2 f0; 1g1.4



Note that, with probability 1 over the 
hoi
e of the random-tape, the random obje
t (spe
i�ed byM and n) depends only on a �nite pre�x of the random-tape. Let us 
larify our formalism by
asting in it several simple examples, whi
h were 
onsidered before (
f. [15, 28℄).Example 2.2 (a random fun
tion): A random fun
tion from n-bit strings to n-bit strings is spe
-i�ed by the ma
hine M that, on input x 2 f0; 1gn (parameter n and random-tape !), returns theidxn(x)-th n-bit blo
k of !, where idxn(x) is the index of x within the set of n-bit long strings.Example 2.3 (a random permutation): Let N = 2n. A random permutation over f0; 1gn � [N ℄
an be spe
i�ed by uniformly sele
ting an integer i 2 [N !℄; that is, the ma
hine uses its random-tape to determine i 2 [N !℄, and uses the i-th permutation a

ording to some standard order. Analternative spe
i�
ation, whi
h is easier to state (alas even more ineÆ
ient), is obtained by ama
hine that repeatedly inspe
t the N next n-bit strings on its random-tape, until en
ountering arun of N di�erent values, using these as the permutation. Either way, on
e a permutation � overf0; 1gn is determined, the ma
hine answers the input x 2 f0; 1gn with the output �(x).Example 2.4 (a random permutation 
oupled with its inverse): In 
ontinuation to Example 2.3,we may 
onsider a ma
hine that sele
ts � as before, and responds to input (�; x) with �(x) if� = 1 and with ��1(x) otherwise. That is, the obje
t spe
i�ed here provides a

ess to a randompermutation as well as to its inverse.2.2 ImplementationsDe�nition 2.1 pla
es no restri
tions on the 
omplexity of the spe
i�
ation. Our aim, however, isto implement su
h spe
i�
ations eÆ
iently. We 
onsider several types of implementations, wherein all 
ases we aim at eÆ
ient implementations (i.e., ma
hines that respond to ea
h possible inputwithin polynomial-time). Spe
i�
ally, we 
onsider two parameters:1. The type of model used in the implementation. We will use either a polynomial-time ora-
le ma
hine having a

ess to a random ora
le or a standard probabilisti
 polynomial-timema
hine (viewed as a deterministi
 ma
hine having a

ess to a �nite random-tape).2. The similarity of the implementation to the spe
i�
ation; that is, is the implementation maybe perfe
t, statisti
ally indistinguishable or only 
omputationally indistinguishable from thespe
i�
ation (by probabilisti
 polynomial-time ora
le ma
hines that try to distinguish theimplementation from the spe
i�
ation by querying it at inputs of their 
hoi
e).Our real goal is to derive implementations by ordinary ma
hines (having as good a quality aspossible). We thus view implementations by ora
le ma
hines having a

ess to a random ora
le asmerely a 
lean abstra
tion, whi
h is useful in many 
ases (as indi
ated by Theorem 2.9 below).De�nition 2.5 (implementation by ora
le ma
hines): For a �xed fun
tion ` : N! N, a (deter-ministi
) polynomial-time ora
le ma
hine M and ora
le f , the instan
e implemented by Mf andparameter n is the fun
tion Mf de�ned by letting Mf (x) be the output of M on input x 2 f0; 1g`(n)when using the ora
le f . The random obje
t implemented by M with parameter n is de�ned as Mffor a uniformly distributed f : f0; 1g� ! f0; 1g.In fa
t, Mf (x) depends only on the value of f on inputs of length bounded by a polynomial injxj. Similarly, an ordinary probabilisti
 polynomial-time (as in the following de�nition) only uses5



a poly(jxj)-bit long random-tape when invoked on input x. Thus, for feasibility parameter n, thema
hine handles `(n)-bit long inputs using a random-tape of length �(n) = poly(`(n)) = poly(n),where (w.l.o.g.) � is 1-1.De�nition 2.6 (implementation by ordinary ma
hines): For �xed fun
tions `; � :N!N, an ordi-nary polynomial-time ma
hine M and a string r, the instan
e implemented by M and random-taper is the fun
tion Mr de�ned by letting Mr(x) be the output of M on input x 2 f0; 1g`(��1(jrj)) whenusing the random-tape r. The random obje
t implemented by M with parameter n is de�ned as Mrfor a uniformly distributed r 2 f0; 1g�(n).We stress that an instan
e of the implementation is fully determined by the ma
hine M andthe random-tape r (i.e., we disallow \implementations" that 
onstru
t the obje
t on-the-
y whiledepending and keeping tra
k of all previous queries and answers).For a ma
hine M (either a spe
i�
ation or an implementation) we identify the pair (M;n) withthe random obje
t spe
i�ed (or implemented) by ma
hine M and feasibility parameter n.De�nition 2.7 (indistinguishability of the implementation from the spe
i�
ation): Let S be aspe
i�
ation and I be an implementation, both with respe
t to the length fun
tion ` :N!N. We saythat I perfe
tly implements S if, for every n, the random obje
t (I; n) is distributed identi
ally tothe random obje
t (S; n). We say that I 
losely-implements S if, for every ora
le ma
hine M thaton input 1n makes at most polynomially-many queries all of length `(n), the following di�eren
e isnegligible2 as a fun
tion of njPr[M (I;n)(1n) = 1℄ � Pr[M (S;n)(1n) = 1℄j (1)We say that I pseudo-implements S if Eq. (1) holds for every probabilisti
 polynomial-time ora
lema
hine M that makes only queries of length equal to `(n).We stress that the notion of a 
lose-implementation does not say that the obje
ts (i.e., (I; n)and (S; n)) are statisti
ally 
lose; it merely says that they 
annot be distinguished by a (
om-putationally unbounded) ma
hine that asks polynomially many queries. Indeed, the notion ofpseudo-implementation refers to the notion of 
omputational indistinguishability (
f. [19, 32℄) asapplied to fun
tions (see [15℄). Clearly, any perfe
t implementation is a 
lose-implementation, andany 
lose-implementation is a pseudo-implementation. Intuitively, the ora
le ma
hine M , whi
h issometimes 
alled a (potential) distinguisher, represents a user that employs (or experiments with)the implementation. It is required that su
h a user 
annot distinguish the implementation fromthe spe
i�
ation, provided that the user is limited in its a

ess to the implementation or even inits 
omputational resour
es (i.e., time).Indeed, it is trivial to perfe
tly implement a random fun
tion (i.e., the spe
i�
ation given inExample 2.2) by using an ora
le ma
hine (with a

ess to a random ora
le). In 
ontrast, themain result of Goldrei
h, Goldwasser and Mi
ali [15℄ 
an be 
ast by saying that there exist apseudo-implementation of a random fun
tion by an ordinary ma
hine, provided that pseudorandomgenerators (or, equivalently, one-way fun
tion [20℄) do exist. In fa
t, under the same assumption, itis easy to show that every spe
i�
ation having a pseudo-implementation by an ora
le ma
hine alsohas a pseudo-implementation by an ordinary ma
hine. A stronger statement will be proven below(see Theorem 2.9).2A fun
tion � : N! [0; 1℄ is 
alled negligible if for every positive polynomial p and all suÆ
iently large n's it holdsthat �(n) < 1=p(n). 6



Truthful implementations. An important notion regarding (non-perfe
t) implementations refersto the question of whether or not they satisfy properties that are enjoyed by the 
orrespondingspe
i�
ation. Put in other words, the question is whether ea
h instan
e of the implementation isalso an instan
e of the spe
i�
ation. Whenever this 
ondition holds, we 
all the implementationtruthful. Indeed, every perfe
t implementation is truthful, but this is not ne
essarily the 
ase for
lose-implementations. For example, a random fun
tion is a 
lose-implementation of a random per-mutation (be
ause it is unlikely to �nd a 
ollision among polynomially-many preimages); however,a random fun
tion is not a truthful implementation of a random permutation.De�nition 2.8 (truthful implementations): Let S be a spe
i�
ation and I be an implementation.We say that I is truthful to S if for every n the support of the random obje
t (I; n) is a subset ofthe support of the random obje
t (S; n).Mu
h of this work is fo
used on truthful implementations. The following simple result is use-ful in the study of the latter. We 
omment that this result is typi
ally applied to (truthful)
lose-implementations by ora
le ma
hines, yielding (truthful) pseudo-implementations by ordinaryma
hines.Theorem 2.9 Suppose that one-way fun
tions exist. Then any spe
i�
ation that has a pseudo-implementation by an ora
le ma
hine (having a

ess to a random ora
le) also has a pseudo-implementation by an ordinary ma
hine. Furthermore, if the former implementation is truthfulthen so is the latter.The suÆ
ient 
ondition is also ne
essary, be
ause the existen
e of pseudorandom fun
tions (i.e., apseudo-implementation of a random fun
tion) implies the existen
e of one-way fun
tions. In viewof Theorem 2.9, whenever we seek truthful implementations (or, alternatively, whenever we do not
are about truthfulness at all), we may fo
us on implementations by ora
le ma
hines.Proof: First we repla
e the random ora
le used by the former implementation by a pseudorandomora
le (available by the results of [15, 20℄). No probabilisti
 polynomial-time distinguisher 
an dete
tthe di�eren
e, ex
ept with negligible probability. Furthermore, the support of the pseudorandomora
le is a subset of the support of the random ora
le, and so the truthful property is inherited bythe latter implementation. Finally, we use an ordinary ma
hine to emulate the ora
le ma
hine thathas a

ess to a pseudorandom ora
le.Almost-Truthful implementations. Truthful implementations guarantee that ea
h instan
e ofthe implementation is also an instan
e of the spe
i�
ation (and is thus \
onsistent with the spe
i�-
ation"). A meaningful relaxation of this guarantee refers to the 
ase that almost all the probabilitymass of the implementation is assigned to instan
es that are 
onsistent with the spe
i�
ation (i.e.,are in the support of the latter). Spe
i�
ally, we refer to the following de�nition.De�nition 2.10 (almost-truthful implementations): Let S be a spe
i�
ation and I be an imple-mentation. We say that I is almost-truthful to S if the probability that (I; n) is not in the supportof the random obje
t (S; n) is bounded by a negligible fun
tion in n.Interestingly, almost-truthfulness is not preserved by the 
onstru
tion used in the proof of The-orem 2.9. In fa
t, there exists spe
i�
ations that have almost-truthful 
lose-implementations byora
le ma
hines but not by ordinary ma
hines (see Theorem 2.11 below). Thus, when studying7



almost-truthful implementations, one needs to deal dire
tly with ordinary implementations (ratherthan fo
us on implementations by ora
le-ma
hines). Indeed, we will present a few examples ofalmost-truthful implementations that are not truthful.Theorem 2.11 There exists a spe
i�
ation that has an almost-truthful 
lose-implementation by anora
le ma
hine but has no almost-truthful implementation by an ordinary ma
hine.We stress that the theorem holds regardless of whether or not the latter (almost-truthful) imple-mentation is indistinguishable from the spe
i�
ation.Proof: Consider the spe
i�
ation of a uniformly sele
ted fun
tion f : f0; 1gn ! f0; 1g having(time-bounded) Kolmogorov Complexity3 greater than 2n�1. That is, the spe
i�
ation ma
hines
ans its random-tape, looking for a blo
k of 2n bits of (time-bounded) Kolmogorov Complexitygreater than 2n�1, and on
e found uses this blo
k as a truth-table of the desired Boolean fun
tion.Sin
e all but a negligible fra
tion of the fun
tions have Kolmogorov Complexity greater than 2n�1,a almost-truthful 
lose-implementation by an ora
le ma
hine may just use a random fun
tion. Onthe other hand, any implementation by an ordinary ma
hine (of randomness 
omplexity �) indu
esa fun
tion f : f0; 1gn ! f0; 1g of (time-bounded) Kolmogorov Complexity at most (O(1)+ �(n))+log2(poly(n) � 2n) = poly(n). Thus, any su
h implementation yields a fun
tion that violates thespe
i�
ation, and so 
annot be even \remotely" truthful.2.3 Known non-trivial implementationsIn view of Theorem 2.9, when studying truthful implementations, we fo
us on implementationsby ora
le ma
hines. In these 
ases, we shorthand the phrase implementation by an ora
le ma-
hine by the term implementation. Using the notion of truthfulness, we 
an 
ast the non-trivialimplementation of a random permutation provided by Luby and Ra
ko� [28℄ as follows.Theorem 2.12 [28℄: There exists a truthful 
lose-implementation of the spe
i�
ation provided inExample 2.3. That is, there exists a truthful 
lose-implementation of the spe
i�
ation that uniformlysele
ts a permutation � over f0; 1gn and responses to the query x 2 f0; 1gn with the value �(x).Contrast Theorem 2.12 with the trivial non-truthful implementation (by a random fun
tion) men-tioned above. Note that, even when ignoring the issue of truthfulness, it is non-trivial to provide a
lose-implementation of Example 2.4 (i.e., a random permutation along with its inverse).4 However,Luby and Ra
ko� [28℄ have also provided a truthful 
lose-implementation of Example 2.4.Theorem 2.13 [28℄: There exists a truthful 
lose-implementation of the spe
i�
ation that uni-formly sele
ts a permutation � over f0; 1gn and responses to the query (�; x) 2 f�1;+1g � f0; 1gnwith the value ��(x).Another known result that has the 
avor of the questions that we explore was obtained by Naor andReingold [30℄. Loosely speaking, they provided a truthful 
lose-implementation of a permutationsele
ted uniformly among all permutations having a 
ertain 
y
le-stru
ture.3Loosely speaking, the (standard) Kolmogorov Complexity of a string s is the minimum length of a program �that produ
e s. The time-bounded Kolmogorov Complexity of a string s is the minimum, taken over programs �that produ
e s, of j�j + log2(time(�)), where time(�) is the running-time of �. We use time-bounded KolmogorovComplexity in order to allow for a re
ursive spe
i�
ation.4A random fun
tion will fail here, be
ause the distinguisher may distinguish it from a random permutation byasking for the inverse of a random image. 8



Theorem 2.14 [30℄: For any N = 2n, t = poly(n), and C = f(
i;mi) : i = 1; :::; tg su
h thatPti=1mi
i = N , there exists a truthful 
lose-implementation of a uniformly distributed permutationthat has mi 
y
les of size 
i, for i = 1; :::; t.5 Furthermore, the implementation instan
e that usesthe permutation � 
an also support queries of the form (x; i) to be answered by �i(x), for anyx 2 f0; 1gn and any integer i (whi
h is presented in binary).We stress that the latter queries are served in time poly(n) also in 
ase i� poly(n).2.4 A few general observationsTheorem 2.11 asserts the existen
e of spe
i�
ations that 
annot be implemented in an almost-truthful manner by an ordinary ma
hine, regardless of the level of indistinguishability (of the im-plementation from the spe
i�
ation). We 
an get negative results that refer also to implementationsby ora
le ma
hines, regardless of truthfulness, by requiring the implementation to be suÆ
ientlyindistinguishable (from the spe
i�
ation). Spe
i�
ally:Proposition 2.15 The following refers to implementations by ora
le ma
hines and disregard theissue of truthfulness.1. There exist spe
i�
ations that 
annot be 
losely-implemented.2. Assuming the existen
e of one-way fun
tions, there exist spe
i�
ations that 
annot be pseudo-implemented.The hypothesis in Part 2 
an be relaxed: It suÆ
es to assume the existen
e of NP-sets for whi
h itis feasible to generate hard instan
es. For details see Appendix D.Proof: For starters, note that the spe
i�
ation may just disregard the issue of randomness andinvert a one-way fun
tion at images of the user's 
hoi
e. Certainly, this spe
i�
ation 
annot bepseudo-implemented, be
ause su
h an implementation would yield an algorithm that violates thehypothesis (of Part 2).6 We may easily adapt this example su
h that the spe
i�
ation gives riseto a random obje
t. For example, the spe
i�
ation may state that, given a pair of strings, oneshould use a random fun
tion to sele
t one of these strings, and answer with its inverse under theone-way fun
tion. A pseudo-implementation of this spe
i�
ation 
an also be shown to 
ontradi
tthe hypothesis. The above refers to Part 2. Turning to Part 1, we may use a fun
tion 
onstru
ted inexponential-time that 
annot be inverted, ex
ept for with negligible probability, by any polynomial-time ma
hine that uses a random ora
le. That is, the spe
i�
ation determines su
h a fun
tion, andinverts it at inputs of the user's 
hoi
e. Observe that a 
lose-implementation of su
h a fun
tionis required to su

essfully invert the fun
tion at random inputs, whi
h is impossible (ex
ept fornegligible probability).5Spe
ial 
ases in
lude involutions (i.e., permutations in whi
h all 
y
les have length 2), and permutations 
onsistingof a single 
y
le (of length N). These 
ases are 
ast by C = f(2; N=2)g and C = f(N; 1)g, respe
tively.6Consider the performan
e of the spe
i�
ation (resp., implementation) when queried on a randomly generatedimage, and note that the 
orre
tness of the answer 
an be eÆ
iently veri�ed. Thus, while the spe
i�
ation alwaysinverts the one-way fun
tion on the given image, the implementation must fail ex
ept with negligible probability.
9



The randomness 
omplexity of implementations: Looking at the proof of Theorem 2.9, it isevident that as far as pseudo-implementations by ordinary ma
hines are 
on
erned (and assumingthe existen
e of one-way fun
tions), randomness 
an be redu
ed to any power of the feasibility param-eter (i.e., to n� for every � > 0). The same holds with respe
t to truthful pseudo-implementations.On the other hand, the proof of Theorem 2.11 suggests that this 
ollapse in the randomness 
omplex-ity 
annot o

ur with respe
t to almost-truthful implementations by ordinary ma
hines (regardlessof the level of indistinguishability of the implementation from the spe
i�
ation).Theorem 2.16 (a randomness hierar
hy): For every polynomial �, there exists a spe
i�
ation thathas an almost-truthful 
lose-implementation by an ordinary ma
hine that uses a random-tape oflength �(n), but has no almost-truthful implementation by an ordinary ma
hine that uses a random-tape of length �(n)� !(log n).Proof: Let g(n) = !(log n). Consider the spe
i�
ation that sele
ts uniformly a string r 2 f0; 1g�(n)of (time-bounded) Kolmogorov Complexity at least �(n)� g(n), and responds to the query i 2 [2n℄with the (1+(i mod �(n)))-th bit of r. Sin
e all but a exp(�g(n)) = n�!(1) fra
tion of the �(n)-bitlong string have su
h 
omplexity, this spe
i�
ation is 
losely-implemented in an almost-truthfulmanner by a ma
hine that uniformly sele
ts r 2 f0; 1g�(n) (and responds as the spe
i�
ation).However, any implementation that uses a random-tape of length �0, yields a fun
tion that assignsthe �rst �(n) arguments values that as a string have (time-bounded) Kolmogorov Complexity atmost (O(1) + �0(n)) + log2(poly(n)) = �0(n) + O(log n). Thus, for �0(n) = �(n) � 2g(n), theimplementation 
annot even be \remotely" truthful.Composing implementations: A simple observation that is used in our work is that one 
an\
ompose implementations". That is, if we implement a random obje
t R1 by an ora
le ma
hinethat uses ora
le 
alls to a random obje
t R2, whi
h in turn has an implementation by a ma
hineof type T, then we a
tually obtain an implementation of R1 by a ma
hine of type T. To state thisresult, we need to extend De�nition 2.5 su
h that it applies to ora
le ma
hines that use arbitraryspe
i�
ations (rather than a random ora
le). Let us denote by (M (S;n); n) an implementation bythe ora
le ma
hine M (and feasibility parameter n) with ora
le a

ess to the spe
i�
ation (S; n).Theorem 2.17 Let Q 2 fperfe
t; 
lose;pseudog. Suppose that the spe
i�
ation (S1; n) 
an beQ-implemented by (M (S2;n); n) and that (S2; n) has a Q-implementation by an ordinary ma
hine(resp., by an ora
le ma
hine with a random ora
le). Then, (S1; n) has a Q-implementation by anordinary ma
hine (resp., by an ora
le ma
hine with a random ora
le). Furthermore, if both theimplementations in the hypothesis are truthful (resp., almost-truthful) then so is the implementationin the 
on
lusion.Proof: The idea is to simply repla
e (S2; n) by its implementation, denoted (I2; n), and thus obtainan implementation (M (I2;n); n) of (S1; n), whi
h (by 
ombining the ma
hinesM and I2) yields a ma-
hine of the type of ma
hine I2. This ma
hine inherits the truthfulness (resp., almost-truthfulness)of the given implementations. The analysis of the \quality" of the resulting implementation relieson the fa
t that the resour
e bounds imposed on the implementation (M (S2;n); n) indu
e bounds onthe use of (S2; n) byM . Combined with the hypothesis regarding the \quality" of (I2; n) guaranteesthe \quality" of the resulting implementation.For the sake of 
larity, let us spell out the argument for the 
ase of pseudo-implementations:The �rst hypothesis asserts that (M (S2;n); n) and (S1; n) are 
omputationally-indistinguishable,and the se
ond hypothesis asserts that (I2; n) and (S2; n) are 
omputationally-indistinguishable.10



Our goal is to prove that (M (I2;n); n) and (S1; n) are 
omputationally-indistinguishable, whi
h (bythe �rst hypothesis) redu
es to proving that (M (I2;n); n) and (M (S2;n); n) are 
omputationally-indistinguishable. Now suppose, towards the 
ontradi
tion, that some a probabilisti
 polynomial-time ma
hine D distinguishes (M (I2;n); n) from (M (S2;n); n). Then, 
ombining D andM , we obtaina ma
hine that distinguishes (I2; n) from (S2; n) (in 
ontradi
tion to the se
ond hypothesis). Thekey point is that the fa
t that M is probabilisti
 polynomial-time (be
ause it is an implementationma
hine), and so the 
ombined distinguisher is also probabilisti
 polynomial-time (provided thatso is D). In the 
ase of 
lose-implementations, we rely on the fa
t that D makes poly(n)-manyqueries and ea
h su
h query is served by poly(n)-many queries of M .2.5 Obje
ts of feasible sizeIn 
ontrast to the rest of this work, we shortly dis
uss the 
omplexity of generating random obje
ts offeasible size (rather than huge random obje
ts). In other words, we are talking about implementinga distribution on poly(n)-bit long strings, and doing so in poly(n)-time. This problem 
an be 
astin our general formulation by 
onsidering spe
i�
ations that ignore their input (i.e., have outputthat only depend on their random-tape). In other words, we may view obje
ts of feasible size as
onstant fun
tions, and 
osider a spe
i�
ation of su
h random obje
ts as a distribution on 
onstantfun
tions. Thus, without loss of generality, the implementation may also ignore its input, and
onsequently in this 
ase there is no di�eren
e between an implementation by ordinary ma
hineand an implementation by ora
le ma
hine with a random ora
le.We note that perfe
t implementations of su
h distributions were 
onsidered before (e.g., in [1,4, 13℄), and distributions for whi
h su
h implementations exist are 
alled sampleable. In the 
urrent
ontext, where the observer sees the entire obje
t, the distin
tion between perfe
t implementationand 
lose-implementation seems quite te
hni
al. What seems fundamentally di�erent is the studyof pseudo-implementations.Theorem 2.18 There exist spe
i�
ations of feasible-sized obje
ts that have no 
lose-implementation,but do have (both truthful and non-truthful) pseudo-implementations.Proof: Any evasive pseudorandom distribution (see [16℄) yields su
h a spe
i�
ation. Re
all thata distribution is 
alled evasive if it is infeasible to generate an element in its support (ex
ept withnegligible probability), and is 
alled pseudorandom if it is 
omputationally indistinguishable froma uniform distribution on strings of the same length. Thus, by de�nition, an evasive distributionhas no 
lose-implementation. On the other hand, any pseudorandom distribution 
an be pseudo-implemented by the uniform distribution (or any other pseudorandom distribution). Indeed, thelatter implementation is not even almost-truthful (with respe
t to the evasive pseudorandom dis-tribution, be
ause even a \remotely-truthful" implementation would violate the evasiveness 
ondi-tion). To allow also the presentation of a truthful implementation, we modify the spe
i�
ation su
hthat with exponentially-small probability it produ
es some sampleable pseudorandom distribution,and otherwise it produ
es the evasive pseudorandom distribution. The desired truthful pseudo-implementation will always produ
e the former distribution (i.e., the sampleable pseudorandomdistribution), and still the 
ombined distribution has no 
lose-implementation.The proof of Theorem 2.18 also establishes the existen
e of spe
i�
ations (of feasible-sizedobje
ts) that have no truthful (and even no almost-truthful) implementation, regardless of the levelof indistinguishability from the spe
i�
ation. Turning the table around, ignoring the truthfulness11




ondition, we ask whether there exist spe
i�
ations of feasible-sized obje
ts that have no pseudo-implementations. A partial answer is provided by the following result, whi
h relies on a non-standard assumption (see Footnote 7).Proposition 2.19 Assuming the existen
e of a 
ollision-free hash fun
tion7, there exists a spe
i-�
ation of a random feasible-sized obje
t that has no pseudo-implementation.Proof: Given a 
ollision-free hash fun
tion h : f0; 1g2n ! f0; 1gn, 
onsider the uniform distribu-tion over the set Sn def= f(x; y) 2 f0; 1gn+n : h(x) = h(y)g. Then, any implementation fails to hitthe support of this distribution, whi
h in turn is polynomial-time re
ognizable. Thus, the abovespe
i�
ation (of a uniform distribution over Sn) 
annot be pseudo-implemented.Open Problem 2.20 (A stronger version of Proposition 2.19:) Provide a spe
i�
ation of a randomfeasible-sized obje
t that has no pseudo-implementation, while relying on a standard intra
tabilityassumption.Let us digress and 
onsider 
lose-implementations. For example, Ba
h's elegant algorithm forgenerating random 
omposite numbers along with their fa
torization [3℄ 
an be 
ast as a (non-trivial) 
lose-implementation of the said distribution.8 A more elementary set of examples refersto the generation of integers (out of a huge domain) a

ording to various \ni
e" distributions (e.g.,the binomial distribution of N trials).9 In fa
t, Knuth [24, Se
. 3.4.1℄ 
onsiders the generation ofvarious su
h distributions, and his treatment (of integer-valued distributions) 
an be easily adaptedto �t our formalism. This dire
tion is further pursued in Appendix A. In general, re
all that inthe 
urrent 
ontext (where the observer sees the entire obje
t), a 
lose-implementation must bestatisti
ally 
lose to the spe
i�
ation. Thus, almost-truthfulness follows \for free":Proposition 2.21 Any 
lose-implementation of a spe
i�
ation of a feasible-sized obje
t is almost-truthful to it.Multiple samples. Our general formulation 
an be used to spe
ify an obje
t that wheneverinvoked returns an independently drawn sample from the same distribution. Spe
i�
ally, the spe
-i�
ation may be by a ma
hine that answers ea
h \sample-query" by using a distin
t portion ofits random-tape (as 
oins used to sample from the basi
 distribution). Using a pseudorandomfun
tion, we may pseudo-implement multiple samples from any distribution for whi
h one 
anpseudo-implement a single sample. That is:Proposition 2.22 Suppose that one-way fun
tions exist, and let D = fDng be a probability en-semble su
h that ea
h Dn ranges over poly(n)-bit long strings. If D 
an be pseudo-implementedthen so 
an the spe
i�
ation that answers ea
h query by an independently sele
ted sample of D.Furthermore, the latter implementation is by an ordinary ma
hine and is truthful provided that theformer implementation is truthful.7We stress that the assumption used here (i.e., the existen
e of a single 
ollision-free hash fun
tion) seems strongerthan the standard assumption that refers to the existen
e of an ensemble of 
ollision-free fun
tions (
f. [9℄).8We mention that Ba
h's 
on
rete motivation was to generate prime numbers P along with the fa
torization ofP � 1, in order to allow eÆ
ient testing of whether a given number is a primitive element modulo P . Thus, one maysay that Ba
h's paper provides a 
lose-implementation (by an ordinary probabilisti
 polynomial-time ma
hine) of thespe
i�
ation that sele
ts at random an n-bit long prime P and answers the query g by 1 if and only if g is a primitiveelement modulo P .9That is, for a huge N = 2n, we want to generate i with probability pi def= �Ni �=2N . Note i 2 f0; 1; :::Ng hasfeasible size, and yet the problem is not trivial (be
ause we 
annot a�ord to 
ompute all pi's).12



Proof: Consider �rst an implementation by an ora
le ma
hine that merely uses the randomfun
tion to assign ea
h query a random-tape to be used by the pseudo-implementation of (thesingle sample of the distribution) D. Sin
e truthfulness and 
omputational-indistinguishability arepreserved by independent samples (
f. [14, Se
. 3.2.3℄), we are done as far as implementations byora
le ma
hines are 
on
erned. Using Theorem 2.9, the proposition follows.3 Our Main ResultsWe obtain several new implementations of random obje
ts. For sake of 
larity, we present the resultsin two 
ategories referring to whether they yield truthful or only almost-truthful implementations.3.1 Truthful ImplementationsAll implementations stated in this se
tion are by (polynomial-time) ora
le ma
hines (whi
h usea random ora
le). Corresponding pseudo-implementations by ordinary (probabilisti
 polynomial-time) ma
hines 
an be derived using Theorem 2.9. Namely, assuming the existen
e of one-wayfun
tions, ea
h of the spe
i�
ations 
onsidered below 
an be pseudo-implemented in a truthful man-ner by an ordinary probabilisti
 polynomial-time ma
hine.The basi
 te
hnique underlying the following implementations is the embedding of additionalstru
ture that enables to eÆ
iently answer the desired queries in a 
onsistent way or to for
e adesired property. That is, this additional stru
ture ensures truthfulness (with respe
t to the spe
i-�
ation). The additional stru
ture may 
ause the implementation to have a distribution that di�ersfrom that of the spe
i�
ation, but this di�eren
e is infeasible to dete
t (via the polynomially-manyqueries). In fa
t, the additional stru
ture is typi
ally randomized in order to make it undete
table,but ea
h possible 
hoi
e of 
oins for this randomization yields a \valid" stru
ture (whi
h in turnensures truthfulness rather than only almost-truthfulness).3.1.1 Supporting 
omplex queries regarding boolean fun
tionsAs mentioned above, a random boolean fun
tion is trivially implemented (and in a perfe
t way) byan ora
le ma
hine. By this we mean that the spe
i�
ation and the implementation merely servethe standard evaluation queries that refer to a random fun
tion (i.e., query x is answered by thevalue of the fun
tion at x). Here we 
onsider spe
i�
ations that supports more powerful queries.Example 3.1 (answering some parity queries regarding a random fun
tion): Consider a spe
i�
a-tion by a ma
hine (and length parameter ` = 2n) that, on input (i; j) where 1 � i � j � 2n, replieswith the parity of the bits in lo
ations i through j of its random-tape. Intuitively, this ma
hinespe
i�es an obje
t that, based on a random fun
tion f : [2n℄ ! f0; 1g, provides the parity of thevalues of f on any desired interval of [2n℄.Clearly, the implementation 
annot a�ord to 
ompute the parity of the 
orresponding values inits random ora
le. Still, in Se
tion 5 we present a perfe
t implementation of Example 3.1, as wellas truthful 
lose-implementations of more general types of random obje
ts (i.e., answering anysymmetri
 \interval" query). Spe
i�
ally, we prove:Theorem 3.2 (see Theorem 5.2): For every polynomial-time 
omputable fun
tion g, there existsa truthful 
lose-implementation of the following spe
i�
ation of a random obje
t. The spe
i�
ationma
hine uses its random-tape to de�ne a random fun
tion f : f0; 1gn ! f0; 1g, and answers thequery (�; �) 2 f0; 1gn+n by g(P��s�� f(s)). 13



3.1.2 Supporting 
omplex queries regarding length-preserving fun
tionsIn Se
tion 9 we 
onsider spe
i�
ations that, in addition to the standard evaluation queries, answeradditional queries regarding a random length-preserving fun
tion. Su
h obje
ts have potentialappli
ations in 
omputational number theory, 
ryptography, and the analysis of algorithms (
f. [12℄).Spe
i�
ally, we prove:Theorem 3.3 (see Theorem 9.2): There exists a truthful 
lose-implementation of the followingspe
i�
ation. The spe
ifying ma
hine, uniformly sele
ts a fun
tion f : f0; 1gn ! f0; 1gn, and,in addition to the standard evaluation queries, answers the inverse-query y 2 f0; 1gn with the setf�1(y).Alternatively, the implementation may answer with a uniformly distributed preimage of y under f(and with a spe
ial symbol in 
ase no su
h preimage exists).Theorem 3.4 (see Theorem 9.1): There exists a truthful 
lose-implementation of the followingspe
i�
ation. The spe
ifying ma
hine, uniformly sele
ts a fun
tion f : f0; 1gn ! f0; 1gn, andanswers the query (x;m), where x 2 f0; 1gn and m 2 [2poly(n)℄, with the value fm(x) (i.e., fiterated m times on x).This result is related to questions studied in [30, 31℄; for more details, see Se
tion 9.3.1.3 Random graphs of various typesRandom graphs have been extensively studied (
f. [6℄), and in parti
ular are known to have variousproperties. But does it mean that we 
an provide truthful 
lose-implementations of uniformlydistributed (huge) graphs having any of these properties?Let us �rst 
onsider a spe
i�
ation for a random N -vertex graph, where N = 2n. Indeed, su
ha random graph 
an be spe
i�ed by the ma
hine, whi
h viewing its random-tape ! as an N -by-Nmatrix, answers input (i; j) 2 [N ℄ � [N ℄ with the value 0 if i = j, the value !i;j if i < j, and !j;iotherwise. But how about implementing a uniformly distributed graph that has various properties?Example 3.5 (uniformly distributed 
onne
ted graphs): Suppose that we want to implement auniformly distributed 
onne
ted graph (i.e., a graph uniformly sele
ted among all 
onne
ted N -vertexgraph). An adequate spe
i�
ation may s
an its random-tape, 
onsidering ea
h N2-bit long portion ofit as a des
ription of a graph, and answer adja
en
y-queries a

ording to the �rst portion that yieldsa 
onne
ted graph. Note that the spe
i�
ation works in time 
(N2), whereas an implementationneeds to work in poly(logN)-time. On the other hand, re
all that a random graph is 
onne
ted withoverwhelmingly high probability. This suggests to implement a random 
onne
ted graph by a randomgraph. Indeed, this yields a 
lose-implementation, but not a truthful one (be
ause o

asionally, yetquite rarely, the implementation will yield an un
onne
ted graph).10In Se
tion 6 we present truthful 
lose-implementations of Example 3.5 as well as of related spe
i-�
ations (i.e., of uniformly distributed graphs having various additional properties). These are allspe
ial 
ases of the following result:10Indeed, the trivial implementation (by a random graph) is almost-truthful, but here we seek a truthful implemen-tation (be
ause otherwise we 
annot derive from it (via Theorem 2.9) even an almost-truthful pseudo-implementationby an ordinary ma
hine). 14



Theorem 3.6 (see Theorem 6.2): Let � be a monotone graph property that is satis�ed by a familyof strongly-
onstru
tible sparse graphs. That is, for some negligible fun
tion � (and every N), thereexists a perfe
t implementation of a (single) N -vertex graph with �(logN) �N2 edges that satis�esproperty �. Then, there exists a truthful 
lose-implementation of a uniformly distributed graph thatsatis�es property �.We stress that Theorem 6.2 applies also to properties that are not satis�ed (with high probability)by a random graph (e.g., having a 
lique of size pN). The proof of Theorem 6.2 relies on thefollowing lemma, whi
h may be of independent interest. Loosely speaking, the lemma asserts thatif a monotone graph property � is satis�ed by some sparse graphs then a uniformly distributedgraph having property � is indistinguishable from a truly random graph.Lemma 3.7 (see Lemma 6.3): Let � be a monotone graph property that is satis�ed by some N -vertex graph having � � �N2 � edges. Then, any ma
hine that makes at most q adja
en
y queries toa graph, 
annot distinguish a random N -vertex graph from a uniformly distributed N -vertex graphthat satis�es �, ex
ept than with probability O(qp�) + qN�(1�o(1)).3.1.4 Supporting 
omplex queries regarding random graphsSuppose that we want to implement a random N -vertex graph along with supporting, in additionto the standard adja
en
y queries, also some 
omplex queries that are hard to answer by onlymaking adja
en
y queries. For example suppose that on query a vertex v, we need to provide a
lique of size log2N 
ontaining v. In Se
tion 7 we present a truthful 
lose-implementations of thisspe
i�
ation:Theorem 3.8 (see Theorem 7.2): There exists a truthful 
lose-implementation of the followingspe
i�
ation. The spe
ifying ma
hine sele
ts uniformly an N -vertex graph and, in addition to thestandard adja
en
y queries, answers (Log-Clique) queries of the form v by providing a randomdlog2Ne-vertex 
lique that 
ontains v (and a spe
ial symbol if no su
h 
lique exists).Another result proved in Se
tion 7 follows:Theorem 3.9 (see Theorem 7.3): There exists a truthful 
lose-implementation of the followingspe
i�
ation. The spe
ifying ma
hine sele
ts uniformly an N -vertex graph G, and in 
ase G isHamiltonian it uniformly sele
ts a (dire
ted) Hamiltonian Cy
le in G, whi
h in turn de�nes a
y
li
 permutation � : [N ℄! [N ℄. In addition to the standard adja
en
y queries, the spe
i�
ationanswers travel queries of the form (trav; v; t) by providing �t(v), and distan
e queries of the form(dist; v; w) by providing the smallest t � 0 su
h that w = �t(v).3.1.5 Random bounded-degree graphs of various typesRandom bounded-degree graphs have also re
eived 
onsiderable attention. In Se
tion 8 we presenttruthful 
lose-implementations of random bounded-degree graphs G = ([N ℄; E), where the ma
hinespe
ifying the graph answers the query v 2 [N ℄ with the list of neighbors of vertex v. We stressthat even implementing this spe
i�
ation is non-trivial if one insists on truthfully implementingsimple random bounded-degree graphs (rather than graphs with self-loops and/or parallel edges).Furthermore, we present truthful 
lose-implementations of random bounded-degree graphs havingadditional properties su
h as 
onne
tivity, Hamiltoni
ity, having logarithmi
 girth, et
. All theseare spe
ial 
ases of the following result: 15



Theorem 3.10 (see Theorem 8.4:) Let d > 2 be �xed and � be a graph property that satis�es thefollowing two 
onditions:1. The probability that Property � is not satis�ed by a uniformly 
hosen d-regular N -vertex graphis negligible in logN .2. Property � is satis�ed by a family of strongly-
onstru
tible d-regular N -vertex graphs havinggirth !(log logN).Then, there exists a truthful 
lose-implementation of a uniformly distributed d-regular N -vertexgraph that satis�es property �.The proof relies on the following lemma, whi
h may be of independent interest. Loosely speaking,the lemma asserts that a random isomorphi
 
opy of a �xed d-regular graph of large girth isindistinguishable from a truly random d-regular graph.Lemma 3.11 (see Lemma 8.1): For d > 2, let G = ([N ℄; E) be any d-regular N -vertex graphhaving girth g. Let G0 be obtained by randomly permuting the verti
es of G (and presenting thein
iden
e lists in some 
anoni
al order). Then, any ma
hine M that queries the graph for theneighborhoods of q verti
es of its 
hoi
e, 
annot distinguish G0 from a random d-regular N -vertex(simple) graph, ex
ept than with probability O(q2=(d � 1)(g�1)=2). In the 
ase d = 2 and q < g � 1,the probability bound 
an be improved to O(q2=N).3.2 Almost-Truthful ImplementationsAll implementations stated in this se
tion are by ordinary (probabilisti
 polynomial-time) ma
hines.All these results assume the existen
e of one-way fun
tions.Again, the basi
 te
hnique is to embed a desirable stru
ture, but (in 
ontrast to Se
tion 3.1) herethe embeded stru
ture for
es the desired property only with very high probability. Consequently,the resulting implementation is only almost-truthful, whi
h is the reason that we have to dire
tlypresent implementations by ordinary ma
hines.A spe
i�
 te
hnique that we use is obtaining a fun
tion as a value-by-value 
ombination of apseudorandom fun
tion and a fun
tion of a desired 
ombinatorial stru
ture. The 
ombination isdone su
h that the 
ombined fun
tion inherits both the pseudorandomness of the �rst fun
tion andthe 
ombinatorial stru
ture of the se
ond fun
tion (in analogy to a 
onstru
tion in [21℄). In some
ases, the 
ombination is by a value-by-value XOR, but in others it is by a value-by-value OR witha se
ond fun
tion that is very sparse.3.2.1 Random 
odes of large distan
eIn 
ontinuation to the dis
ussion in the introdu
tion, we prove:Theorem 3.12 (see Theorem 4.2): For Æ = 1=6 and � = 1=9, assuming the existen
e of one-wayfun
tions, there exists an almost-truthful pseudo-implementation of the following spe
i�
ation: Thespe
i�
ation ma
hine uses its random-tape to uniformly sele
t a 
ode C � f0; 1gn having 
ardinalityK def= 2�n and distan
e at least Æn, and answers the query i 2 [K℄ with the i-th element in C.We 
omment that the above a
tualy spe
i�es (and implements) an en
oding algorithm for the
orresponding 
ode. It would be very interesting if one 
an also implement a 
orresponding de
odingalgorithm; see further dis
ussion in Se
tion 4. 16



3.2.2 Random graphs of various typesHaving failed to provide truthful pseudo-implementations to the following spe
i�
ations, we providealmost-truthful ones.Theorem 3.13 (see Theorem 6.5): Let 
(N) = (2� o(1)) log2N be the largest integer i su
h thatthe expe
ted number of 
liques of size i in a random N -vertex graph is larger than one. Assuming theexisten
e of one-way fun
tions, there exist almost-truthful pseudo-implementations of the followingspe
i�
ations:1. A random graph of Max-Clique 
(N) � 1: The spe
i�
ation uniformly sele
ts an N -vertexgraph having maximum 
lique size 
(N)� 1, and answers edge-queries a

ordingly.2. A random graph of Chromati
 Number (1 � o(1)) � N=
(N): The spe
i�
ation uniformlysele
ts an N -vertex graph having Chromati
 Number (1 � log�1=32 N) � N=
(N), and answersedge-queries a

ordingly.Another interesting question is to provide an almost-truthful pseudo-implementation of a uniformlydistributed graph having a high (global) 
onne
tivity property. Unfortunately, we do not know howto do this. Instead, we provide an almost-truthful pseudo-implementation of a random graph forwhi
h almost all pairs of verti
es enjoy a high 
onne
tivity property.Theorem 3.14 (see Theorem 6.6): For every positive polynomial p, assuming the existen
e of one-way fun
tions, there exists an almost-truthful pseudo-implementation of the following spe
i�
ation.The spe
ifying ma
hine sele
ts a graph that is uniformly distributed among all N -vertex graphs forwhi
h all but at most an �(N) def= 1=p(log2N) fra
tion of the vertex pairs are 
onne
ted by at least(1� �(N)) �N=2 vertex-disjoint paths. Edge-queries are answered a

ordingly.Interestingly, the same implementation works for all polynomials p; that is, the implementation isindependent of p, whi
h is only used in the de�nition of the spe
i�
ation.4 Implementing Random Codes of Large Distan
eFor suÆ
iently small �; Æ > 0, we 
onsider 
odes having relative rate � and relative distan
e Æ; thatis, we 
onsider subsets C � f0; 1gn su
h that jCj = 2�n and every two distin
t 
odewords (i.e.,�; � 2 C) disagree on at least Æn 
oordinates. Su
h a 
ode is 
alled good. A random set of K def= 2�nstrings of length n is good with overwhelmingly high probability. Thus, for a random fun
tionf : [K℄! f0; 1gn, setting C = ff(i) : i 2 [K℄g yields an almost-truthful 
lose-implementation of arandom 
ode that is good, where the spe
i�
ation is required to answer the query i with the i-th
odeword (i.e., the i-th element in the 
ode). Re
all that it is not 
lear what happens when werepla
e f by a pseudorandom fun
tion (i.e., it may be the 
ase that the resulting 
ode has verysmall distan
e, although most pairs of 
odewords are de�nitely far apart). To get a almost-truthfulpseudo-implementation we use a di�erent approa
h.Constru
tion 4.1 (implementing a good random 
ode): For k = �n, we sele
t a random k-by-n matrix M , and 
onsider the linear 
ode generated by M (i.e., the 
odewords are obtained by allpossible linear 
ombinations of the rows of M). Now, using a pseudorandom fun
tion fs : f0; 1gk !f0; 1gn, where s 2 f0; 1gn, we 
onsider the 
ode CM;s = ffs(v)�vM : v 2 f0; 1gkg. That is, ourimplementation uses the random-tape (M; s), and provides the i-th 
odeword of the 
ode CM;s byreturning fs(i)�iM , where i 2 [2k℄ is viewed as a k-dimensional row ve
tor (or a k-bit long string).17



To see that Constru
tion 4.1 is a pseudo-implementation of a random 
ode, 
onsider what happenswhen the pseudorandom fun
tion is repla
ed by a truly random one (in whi
h 
ase we may ignorethe ni
e properties of the random linear 
ode generated byM).11 Spe
i�
ally, for any matrixM andany fun
tion f : [K℄! f0; 1gn, we 
onsider the 
ode CfM = ff(v)�vM : v 2 f0; 1gkg. Now, for any�xed 
hoi
e of M and a truly random fun
tion � : [K℄ ! f0; 1gn, the 
ode C�M is a random 
ode.Thus, the pseudorandomness of the fun
tion ensemble ffsgs2f0;1gn implies that, for a uniformly
hosen s 2 f0; 1gn, the 
ode CM;s = CfsM is 
omputationally indistinguishable from a random 
ode.The reason being that ability to distinguish sele
ted 
odewords of CfsM (for a random s 2 f0; 1gn)from 
odewords of C�M (for a truly random fun
tion � : [K℄! f0; 1gn) yields ability to distinguishthe 
orresponding fs from �.To see that Constru
tion 4.1 is almost-truthful to the good 
ode property, �x any (pseudoran-dom) fun
tion f and 
onsider the 
ode CM = ff(v)�vM : v 2 f0; 1gkg, when M is a randomk-by-n matrix. Fixing any pair of distin
t strings v; w 2 f0; 1gk , we show that with probability atleast 2�3k (over the possible 
hoi
es ofM), the 
odewords f(v)�vM and f(w)�wM are at distan
eat least Æn, and it follows that with probability at least 1 � 2�k the 
ode CM has a distan
e atleast Æn. Thus, for a random M , we 
onsider the Hamming weight of (f(v)�vM)�(f(w)�wM),whi
h in turn equals the Hamming weight of r�uM , where r = f(v)�f(w) and u = v�w are �xed.The weight of r�uM behaves as a binomial distribution (with su

ess probability 1/2), and thusthe probability that the weight is less than Æn equals exp(�(1 � H2(Æ)) � n), where H2 denotesthe binary entropy fun
tion. So we need 1 �H2(Æ) � n > 3k to holds, and indeed it does hold forappropriate 
hoi
es of Æ and � (e.g, Æ = 1=6 and � = 1=9). Spe
i�
ally, re
alling that k = �n, weneed 1�H2(Æ) > 3� to hold. We get:Theorem 4.2 For any Æ 2 (0; 1=2) and � 2 (0; 1 � H2(Æ)), assuming the existen
e of one-wayfun
tions, there exists an almost-truthful pseudo-implementation by an ordinary ma
hine of thefollowing spe
i�
ation: The spe
i�
ation ma
hine uses its random-tape to uniformly sele
t a 
odeC � f0; 1gn having 
ardinality K def= 2�n and distan
e at least Æn, and answers the query i 2 [K℄with the i-th element in C.We 
omment that Constru
tion 4.1 a
tually implements an en
oding algorithm for the 
orrespond-ing 
ode, whi
h is a
tually what is required in the spe
i�
ation. It would be very interesting ifone 
ould also implement a 
orresponding de
oding algorithm. Note that the real 
hallenge is toa
hieve \de
oding with errors" (i.e., de
ode 
orrupted 
odewords rather than only de
ode un
or-rupted 
odewords).12 Spe
i�
ally,Open Problem 4.3 (implementing en
oding and de
oding for a good random 
ode): Provide analmost-truthful pseudo-implementation, even by an ora
le ma
hine, to the following spe
i�
ation.For some Æ 2 (0; 1=2) and � 2 (0; 1 �H2(Æ)), the spe
i�
ation ma
hine sele
ts a 
ode C � f0; 1gnas in Theorem 4.2, and answers queries of two types:En
oding queries: For i 2 [K℄, the query (en
; i) is answered with the i-th element in C.De
oding queries: For very w 2 f0; 1gn that is at distan
e at most Æn=3 from C, the query (de
; w)is answered by the index of the (unique) 
odeword that is 
losest to w.11In parti
ular, note that the resulting 
ode is unlikely to be linear. Furthermore, any n�O(1) > k 
odewords arelikely to be linearly independent (both when we use a random fun
tion or a pseudorandom one).12Note that a simple modi�
ation of Constru
tion 4.1 (e.g., repla
ing the i-th 
odeword, w, by the new 
odeword(i; w)), allows trivial de
oding of un
orrupted 
odewords.18



Indeed, we are interested in an implementation by an ordinary ma
hine, but as stated in Se
tion 10,it may make sense to �rst 
onsider implementations by ora
le ma
hines. Furthermore, it would beni
e to obtain truthful implementations, rather than almost-truthful ones. In fa
t, it will even beinteresting to have a truthful pseudo-implementation of the spe
i�
ation stated in Theorem 4.2.5 Boolean Fun
tions and Interval-Sum QueriesIn this se
tion we show that the spe
i�
ation of Example 3.1 
an be perfe
tly implemented (by anora
le ma
hine). Re
all that we seek to implement a

ess to a random fun
tion f : f0; 1gn ! f0; 1gaugmented with answers regarding the parity (or XOR) of the values of f on given intervals,where the intervals are with respe
t to the standard lex-order of n-bit string. That is, the queryq = (�; �) 2 f0; 1gn+n, where 0n � � � � � 1n, is to be answered by ���s��f(s). The spe
i�
ation
an answer this query in the straightforward manner, but an implementation 
annot a�ord to doso (be
ause a straightforward 
omputation may take 2n = 2jqj=2 steps). Thus, the implementationwill do something 
ompletely di�erent.13We present an ora
le ma
hine that uses a random fun
tion f 0 : [ni=0f0; 1gi ! f0; 1g. Using f 0,we de�ne f : f0; 1gn ! f0; 1g as follows. We 
onsider a binary tree of depth n and asso
iate its ithlevel verti
es with strings of length i su
h that the vertex asso
iated with the string s has a left(resp., right) 
hild asso
iated with the string s0 (resp., s1). As a mental experiment, going fromthe root to the leaves, we label the tree's verti
es as follows:1. We label the root (i.e., the level-zero vertex, whi
h is asso
iated with �) by the value f 0(�).2. For i = 0; :::; n � 1, and ea
h internal vertex v at level i, we label its left 
hild by the valuef 0(v0), and label its right 
hild by the XOR of the label of v and the value f 0(v0).(Thus, the label of v equals the XOR of the values of its 
hildren.)3. The value of f at � 2 f0; 1gn is de�ned as the label of the leaf asso
iated with �.By using indu
tion on i = 0; :::; n, it 
an be shown that the level i verti
es are assigned uniformlyand independently distributed labels (whi
h do depend, of 
ourse, on the level i� 1 labels). Thus,f is a random fun
tion. Furthermore, the label of ea
h internal node v equals the XOR of thevalues of f on all leaves in the subtree rooted at v.Note that the random fun
tion f 0 is used to dire
tly assign (random) labels to all the left-siblings.The other labels (i.e., of right-siblings) are determined by XORing the labels of the parent and theleft-sibling. Furthermore, the label of ea
h node in the tree is determined by XORing at most n+1values of f 0 (residing in appropriate left-siblings). Spe
i�
ally, the label of the vertex asso
iatedwith �1 � � � �i is determined by the f 0-values of the strings �; 0; �10; :::; �1 � � � �i�10. A
tually, thelabel of the vertex asso
iated with �1j , where � 2 f�g [ f0; 1gj�j�10 and j � 0, is determined by13The following implementation is not the simplest one possible, but we 
hose to present it be
ause it generlizesto yield a proof of Theorem 5.2 (i.e., interval-sum rather than interval-sum-mod-2). A simpler implementation ofExample 3.1, whi
h does not seem to generalize to the 
ase of interval-sum (as in Theorem 5.2), was suggested tous re
ently by Phil Klein, Silvio Mi
ali and Dan Spielman. The idea is to redu
e the problem of Example 3.1 to thespe
ial 
ase where we only need to serve interval-queries for intervals starting at 0n; that is, we only need to serve(interval) queries of the form (0n; �). (Indeed, the answer to a query (�0; �0), where �0 6= 0n, 
an be obtained fromthe answers to the queries (0n; �00) and (0n; �0), where �00 is the string pre
eding �0. Next observe that the query(0n; �) 
an be served by f 0(�), where f 0 : f0; 1gn ! f0; 1g is a random fun
tion (given as ora
le).19



the f 0-values of j + 1 verti
es (i.e., those asso
iated with �; �0; �10:::; �1j�10).label(�1j) = label(�1j�1)� label(�1j�10)...= label(�)� label(�0) � � � � label(�1j�20)� label(�1j�10)= f 0(�)� f 0(�0) � � � � f 0(�1j�20)� f 0(�1j�10)Thus, we obtain the value of f at any n-bit long string by making at most n+1 queries to f 0. Moregenerally, we 
an obtain the label assigned to ea
h vertex by making at most n+1 queries to f 0. Itfollows that we 
an obtain the value of ���s��f(s) by making O(n2) queries to f 0. Spe
i�
ally, thedesired value is the XOR of the leaves residing in at most 2n � 1 full binary sub-trees, and so wemerely need to XOR the labels assigned to the roots of these sub-trees. A
tually, O(n) queries 
anbe shown to suÆ
e, by taking advantage on the fa
t that we need not retrieve the labels assigned toO(n) arbitrary verti
es (but rather to verti
es that 
orrespond to roots of sub-trees with 
onse
utiveleaves). We get:Theorem 5.1 There exists a perfe
t implementation (by an ora
le ma
hine) of the spe
i�
ation ofExample 3.1.The above pro
edure 
an be generalize to handle queries regarding any (eÆ
iently 
omputable)symmetri
 fun
tion of the values assigned by f to any given interval. In fa
t, it suÆ
es to answerqueries regarding the sum of these values. We thus state the following result.Theorem 5.2 There exists a truthful 
lose-implementation (by an ora
le ma
hine) of the followingspe
i�
ation of a random obje
t. The spe
i�
ation ma
hine uses its random-tape to de�ne a randomfun
tion f : f0; 1gn ! f0; 1g, and answers the query (�; �) 2 f0; 1gn+n by P��s�� f(s).Note that, unlike in the 
ase of Theorem 5.1, the implementation is not perfe
t, whi
h is the reasonthat we expli
itly mention that it is truthful.Proof: All that is needed in order to extend the \XOR 
onstru
tion" is to label ea
h vertex vwith the sum (rather than the sum mod 2) of the labels of all the leaves in the sub-tree rootedat v. In parti
ular, internal nodes should be assigned random labels a

ording to the binomialdistribution, whi
h makes the implementation more 
omplex (even for assigning labels to the rootand more so for assigning labels to left-siblings after their parents was assigned a label). Let usstart with an overview:1. We label the root by a value generated a

ording to the binomial distribution; that is, theroot (of the depth-n binary tree) is assigned the value j with probability �Nj �=2N , whereN def= 2n. This random assignment will be implemented using the value f 0(�), where here f 0is a random fun
tion ranging over poly(n)-bit long strings rather than over a single bit (i.e.,f 0 : [ni=0f0; 1gi ! f0; 1gpoly(n)).2. For i = 0; :::; n � 1, and ea
h internal vertex v at level i, we label its left 
hild as follows, byusing the value f 0(v0). Suppose that v is assigned the value T � 2n�i. We need to sele
ta random pair of integers (l; r) su
h that l + r = T and 0 � l; r � 2n�i�1. Su
h a pairshould be sele
ted with probability that equals the probability that, 
onditioned on l+r = T ,the pair (l; r) is sele
ted when l and r are distributed a

ording to the binomial distribution20



(of 2n�i�1 trials). That is, let M = 2n�i be the number of leaves in the tree rooted at v.Then, for l + r = T and 0 � l; r � M=2, the pair (l; r) should be sele
ted with probability�M=2l � � �M=2r �=�Ml+r�.3. As before, the value of f at � 2 f0; 1gn equals the label of the leaf asso
iated with �.Of 
ourse, the above two types of sampling pro
edures have to be implemented in poly(n)-time,rather than in poly(2n)-time (and poly(n2n�i)-time, respe
tively). These implementations 
annotbe perfe
t (be
ause some of the events o

ur with probability 2�N = 2�2n), but it suÆ
es to provideimplementations that generates these samples with approximately the right distribution (e.g., withdeviation at most 2�n or so). The details 
on
erning these implementations are provided in anAppendix A.We stress that the sample (or label) generated for the (left sibling) vertex asso
iated with� = �00 is produ
ed based on the randomness provided by f 0(�). However, the a
tual sample (orlabel) generated for this vertex depends also on the label assigned to its parent. (Indeed, this isdi�erent from the 
ase of XOR.) Thus, to determine the label assigned to any vertex in the tree,we need to obtain the labels of all its an
estors (up-to the root). Spe
i�
ally, let S1(N; �) denotethe value sampled from the binomial distribution (on N trials), when the sampling algorithm uses
oins �; and let S2(T; �) denote the value assigned to the left-
hild, when its parent is assignedthe value T , and the sampling algorithm uses 
oins �. Then, the label of the vertex asso
iatedwith � = �1 � � � �t, denoted label(�), is obtained by 
omputing the labels of all its an
estors asfollows. First, we 
ompute label(�) S1(N; f 0(�)). Next, for i = 1; :::; t, we obtain label(�1 � � � �i)by 
omputing label(�1 � � � �i�10)  S2(label(�1 � � � �i�1); f 0(�1 � � � �i�10)), and if ne
essary (i.e.,�i = 1) by 
omputing label(�1 � � � �i�11) label(�1 � � � �i�1)� label(�1 � � � �i�10). That is, we �rstdetermine the label of the root (using the value of f 0 at �); and next, going along the path from theroot to �, we determine the label of ea
h vertex based on the label of its parent (and the value off 0 at the left-
hild of this parent). Thus, the 
omputation of the label of �, only requires the valueof f 0 on j�j + 1 strings. As in the 
ase of XOR, this allows to answer queries (regarding the sumof the f -values in intervals) based on the labels of O(n) internal nodes, where ea
h of these labelsdepend only on the value of f 0 at O(n) points. (In fa
t, as in the 
ase of XOR, one may show thatthe values of these related internal nodes depend only on the value of f 0 at O(n) points.)Regarding the quality of the implementation, by the above des
ription it is 
lear that the labelof ea
h internal node equals the sum of the labels of its 
hildren, and thus the implementationis truthful. To analyze its deviation from the spe
i�
ation, we 
onsider the mental experiment inwhi
h both sampling pro
edures are implemented perfe
tly (rather than almost so), and show thatin su
h a 
ase the resulting implementation is perfe
t. Spe
i�
ally, using indu
tion on i = 0; :::; n, it
an be shown that the level i verti
es are assigned labels that are independently distributed, whereea
h label is distributed as the binomial distribution of 2n�i trials. (Indeed, the labels assigned tothe verti
es of level i do depend on the labels assigned in level i� 1.) Thus, if the deviation of thea
tual sampling pro
edures is bounded by 2�n � �, then the a
tual implementation is at statisti
aldistan
e at most � from the spe
i�
ation.14 The latter statement is a
tually stronger than requiredfor establishing the theorem.Open problems: Theorem 5.2 provides a truthful implementation for any (feasibly-
omputable)symmetri
 fun
tion of the values assigned by a random fun
tion over any interval of [N ℄ � f0; 1gn.Two natural extensions are suggested below.14We 
an a�ord to set � = exp(�poly(n)) < 1=poly(N), be
ause the runing time of the a
tual sampling pro
eduresis poly-logarithmi
 in the desired deviation. 21



Open Problem 5.3 (Non-symmetri
 queries): Provide a truthful 
lose-implementation to the fol-lowing spe
i�
ation. The spe
i�
ation ma
hine de�nes a random fun
tion f : f0; 1gn ! f0; 1g,and answers queries of the form (�; �) 2 f0; 1gn+n with the value g(f(�); :::; f(�)), where g issome simple fun
tion. For example, 
onsider g(�1; :::; �t) that returns the smallest i 2 [t℄ su
h that�i � � � �i+b1+log2 t
�1 = 11+blog2 t
 (and a spe
ial symbol if no su
h i exists). More generally, 
onsidera spe
i�
ation ma
hine that answers queries of the form (k; (�; �)) by returning smallest i 2 [t℄su
h that �i � � � �i+k�1 = 1k, where �j is the j-th element in the sequen
e (f(�); :::; f(�)).Note that the latter spe
i�
ation is interesting mostly for k 2 f!(log n); :::; n + !(log n)g. Fork � ksm = O(logn) we may just make sure (in the implementation) that any 
onse
utive intervalof length 2ksmn2 
ontains a run of ksm ones.15 On
e this is done, queries (referring to k � ksm) maybe served (by the implementation) in a straightforward way (i.e., by s
anning at most two su
h
onse
utive intervals, whi
h in turn 
ontain 2ksm+1n2 = poly(n) values). Similarly, for k � klg =n+ !(log n), we may just make sure (in the implementation) that no pair of 
onse
utive intervals,ea
h of length 5n, has a run of min(klg; 2n) ones.Open Problem 5.4 (Beyond interval queries): Provide a truthful 
lose-implementation to thefollowing spe
i�
ation. The spe
i�
ation ma
hine de�nes a random fun
tion f : f0; 1gn ! f0; 1g,and answers queries that su

in
tly des
ribe a set S, taken from a spe
i�
 
lass of sets, with thevalue ��2Sf(�). In Example 3.1 the 
lass of sets is all intervals of [N ℄ � f0; 1gn, represented bytheir pair of end-points. Another natural 
ase is the 
lass of sub-
ubes of f0; 1gn; that is, a setS is spe
i�ed by an n-sequen
e over f0; 1; �g su
h that the set spe
i�ed by the sequen
e (�1; :::; �n)
ontains the n-bit long string �1 � � ��n if and only if �i = �i for every �i 2 f0; 1g.In both 
ases (i.e., Problems 5.3 and 5.4), even if we do not require truthfulness, the implementationmay be easily distinguished from the spe
i�
ation if the former answers the 
ompound queries ina non-
onsistent manner. At least, a potential implementation seems to be in trouble if it \liesbluntly" (e.g., answers ea
h query by an independent random bit).An appli
ation to streaming algorithms: Motivated by a 
omputational problem regardingmassive data streams, Feigenbaum et. al. [11℄ 
onsidered the problem of 
onstru
ting a sequen
e ofN random variables, X1; :::;XN , over f�1g su
h that1. The sequen
e is \range-summable" in the sense that given t 2 [N ℄ the sum Pti=1Xi 
an be
omputed in poly(logN)-time.2. The random variables are almost 4-wise independent (in a 
ertain te
hni
al sense).Using the te
hniques uderlying Theorem 5.2, for any k � poly(logN) (and in parti
ular for k = 4),we 
an 
onstru
t a sequen
e that satis�es the above properties. In fa
t, we get sequen
e that isalmost k-wise independent in a stronger sense than stated in [11℄ (i.e., we get a sequen
e that isstatisti
ally 
lose to being k-wise independent). This is a
hieved by using the 
onstru
tion presentedin the proof of Theorem 5.2, ex
ept that f 0 is a fun
tion sele
ted uniformly from a family of k�(n+1)-wise independent fun
tions rather than being a truly random fun
tion, where n = log2N (as above).Spe
i�
ally, we use fun
tions that map f0; 1gn+1 � [ni=0f0; 1gi to f0; 1gpoly(n) in a k � (n+ 1)-wise15That is, the random fun
tion f : [N ℄ ! f0; 1g is modi�ed su
h that, for every j 2 [N=2ksmn2℄, the interval[(j�1)2ksmn2+1; :::; j2ksmn2℄ 
ontains a run of ksm ones. This modi�
ation 
an be performed on-the-
y by s
anningthe relevant interval and setting to 1 a random blo
k of ksm lo
ations if ne
essary. Note that, with overwhelminglyhigh probability, no interval is a
tually modi�ed. 22



independent manner, and re
all that su
h fun
tions 
an be spe
i�ed by poly(n) many bits andevaluated in poly(n)-time (sin
e k � poly(n)). In the analysis, we use the fa
t that the valuesassigned by f 0 to verti
es in ea
h of the (n+1) levels of the tree are k-wise independent. Thus, we
an prove by indu
tion on i = 0; :::; n, that every k verti
es at level i are assigned labels a

ordingto the 
orre
t distribution (up to a small deviation). Re
all that, as stated in Footnote 14, we 
anobtain statisti
al deviation that is negligible in N (in this 
ase, with respe
t to a k-wise independentsequen
e).6 Random Graphs Satisfying Global PropertiesSuppose that you want to run some simulations on huge random graphs. You a
tually take itfor granted that the random graph is going to be Hamiltonian, be
ause you have read Bollobas'sbook [6℄ and you are willing to dis
ard the negligible probability that a random graph is notHamiltonian. Suppose that you want to be able to keep su

in
t representations of these graphsand/or that you want to generate them using few random bits. Having also read some works onpseudorandomness (e.g., [19, 5, 32, 15℄), you plan to use pseudorandom fun
tions [15℄ in order toeÆ
iently generate and store representations of these graphs. But wait a minute, are the graphsthat you generate this way really Hamiltonian?The point is that being Hamiltonian is a global property of the graph, whi
h in turn is a huge(i.e., exp(n)-sized) obje
t. This global property 
annot be 
he
king the adja
en
y of polynomiallymany (i.e., poly(n)-many) vertex-pairs, and so its violation 
annot be translated to a 
ontradi
tionof the pseudorandomness of the fun
tion. Indeed, the substitution of a random fun
tion (or a ran-dom graph) by a pseudorandom one is not guaranteed to preserve the global property. Spe
i�
ally,it may be the 
ase that all pseudorandom graphs are even dis
onne
ted.16 So, 
an we eÆ
ientlygenerate huge Hamiltonian graphs? As we show below, the answer to this question is positive.In this se
tion we 
onsider the implementation of various types of huge random graphs. Westress that we refer to simple and labeled graphs; that is, we 
onsider graphs without self-loopsor parallel edges, and with labeled verti
es (i.e., the 3-vertex graph 
onsisting of the edge (1; 2)is di�erent from the 3-vertex graph 
onsisting of the edge (1; 3)). In this se
tion, implementing agraph means answering adja
en
y queries; that is, the answer to the query (u; v) should indi
atewhether or not u and v are adja
ent in the graph. Re
all that the implementation ought to work intime that is poly-logarithmi
 in the size of the graph, and thus 
annot de
ide \global" propertiesof the graph. That is, we deal with graphs having N = 2n verti
es, and our pro
edures run inpoly(n)-time.As in Se
tion 3, we present our results in two 
ategories referring to whether they yield truthfulor only almost-truthful implementations. In the 
ase of truthful implementations, we show 
lose-implementations by (polynomial-time) ora
le ma
hines (whi
h use a random ora
le), while bearingin mind that 
orresponding pseudo-implementations by ordinary (probabilisti
 polynomial-time)ma
hines 
an be derived using Theorem 2.9. In 
ontrast, in the 
ase of almost-truthful implemen-tations, we work dire
tly with ordinary (probabilisti
 polynomial-time) ma
hines.16Indeed, for ea
h fun
tion fs taken from some pseudorandom ensemble ffs : [2n℄ � [2n℄ ! f0; 1ggs, it may holdthat fs(vs; u) = fs(u; vs) = 0 for all u 2 [2n℄, where vs depends arbitrarily on fs. For example, given a pseudorandomensemble ffsg 
onsider the ensemble ffs;vg su
h that fs;v(v; u) = fs;v(u; v) = 0n for all u's, and fs;v(x; y) = fs(x; y)for all other (x; y)'s.
23



6.1 Truthful implementationsRe
all that a random graph (i.e., a uniformly distributed N -vertex graph) 
an be perfe
tly im-plemented via an ora
le ma
hine that, on input (u; v) 2 [N ℄ � [N ℄ and a

ess to the ora
lef : [N ℄ � [N ℄ ! f0; 1g, returns 0 if u = v, f(u; v) if u < v, and f(v; u) otherwise. (Indeed,we merely derive a symmetri
 and non-re
exive version of f .)Turning to a less trivial example, let us 
losely-implement a random Bipartite Graph with Nverti
es on ea
h side. This 
an be done by viewing the random ora
le as two fun
tions, f1 and f2,and answering queries as follows:� The fun
tion f1 is used to 
losely-implement a random partition of [2N ℄ into two sets of equalsize. Spe
i�
ally, we use f1 to 
losely-implement a permutation � over [2N ℄, and let the �rstpart be S def= fv : �(v) 2 [N ℄g. Let �S(v) def= 1 if v 2 S and �S(v) def= 0 otherwise.� The query (u; v) is answered by 0 if �S(u) = �S(v). Otherwise, the answer equals f2(u; v) ifu < v and f2(v; u) otherwise.The above implementation 
an be adapted to 
losely-implement a random Bipartite Graph (seedetails in Appendix B). Viewed in di�erent terms, we have just dis
ussed the implementation ofrandom graphs satisfying 
ertain properties.We now turn to Example 3.5 (whi
h spe
i�es a uniformly distributed 
onne
ted graph). In
ontinuation to the dis
ussion in Se
tion 3, we now present a 
lose-implementation that is truthful:Constru
tion 6.1 (Implementing a random 
onne
ted graph): Use the ora
le to implement arandom graph, represented by the symmetri
 and non-re
exive random fun
tion g : [N ℄ � [N ℄ !f0; 1g, as well as a permutation � over [N ℄, whi
h in turn is used to de�ne a Hamiltonian path�(1) ! �(2) ! � � � ! �(N). Along with �, implement the inverse permutation ��1, where this isdone by using Theorem 2.13.17 Answer the query (u; v) by 1 if and only if either g(u; v) = 1 or(u; v) is on the Hamiltonian path (i.e., j��1(u)� ��1(v)j = 1).Clearly, the above implementation is truthful. (Indeed, it a
tually implements a random Hamilto-nian graph.) The implementation is stati
ally-indistinguishable from the spe
i�
ation, be
ause itis unlikely to hit an edge of the \for
ed Hamiltonian path" when making only poly(logN) queries.(A proof of the latter statement appears below.) A similar strategy 
an be used for any monotonegraph property that satis�es the following 
ondition:(C) The property is satis�ed by a family of strongly-
onstru
tible sparse graphs. That is, forsome negligible fun
tion � (and every N), there exists a perfe
t implementation of a (single)N -vertex graph with �(logN) �N2 edges that satis�es the property.We have:Theorem 6.2 Let � be a monotone graph property that satis�es Condition C. Then, there exists atruthful 
lose-implementation (by an ora
le ma
hine) of a uniformly distributed graph that satis�esproperty �.We 
omment that Condition C implies that a randomN -vertex graph is statisti
ally-indistinguishablefrom a random N -vertex graph having property �. This fa
t, whi
h may be of independent interest,is stated and proved �rst.17That is, we use a truthful 
lose-implementation of Example 2.4. In fa
t, we only need ��1, and so the truthful
lose-implementation of Example 2.3 (as stated in Theorem 2.12) a
tually suÆ
es.24



Lemma 6.3 Let � be a monotone graph property that is satis�ed by some N -vertex graph having� � �N2 � edges. Then, any ma
hine that makes at most q adja
en
y queries to a graph, 
annotdistinguish a random N -vertex graph from a uniformly distributed N -vertex graph that satis�es �,ex
ept than with probability O(qp�) + qN�(1�o(1)).Proof: As in [18, Se
. 4℄, without loss of generality, we may 
on�ne ourselves to analyzing ma
hinesthat inspe
t a random indu
ed subgraph. That is, sin
e both graph 
lasses are 
losed underisomorphism, it suÆ
es to 
onsider the statisti
al di�eren
e between the following two distributions:1. The subgraph of a uniformly distributed N -vertex graph indu
ed by a uniformly sele
ted setof s def= q + 1 verti
es.2. The same vertex-indu
ed subgraph (i.e., indu
ed by a random set of s verti
es) of a uniformlydistributed N -vertex graph that satis�es property �.Clearly, Distribution (1) is uniform over the set of s-vertex graphs, and so we have to show thatapproximately the same holds for Distribution (2). Let T def= �N2 � and M def= �T , and let G0 be anN -vertex graph with M edges that satis�es property �. Consider the set of all graphs that 
an beobtained from G0 by adding T�M2 edges. The number of these graphs is T �MT�M2 ! = 2T�M�(pT �M) > 2T�M�O(1)� 12 �log2 TThat is, this set 
ontains at least a 2�(M+O(1)+(log2 T )=2) = 2��0�T fra
tion of all possible graphs,where �0 def= �+((log2 T )=2T ). Let X = X1 � � �XT 2 f0; 1gT be a random variable that is uniformlydistributed over the set of all graphs that satisfy property �. Then X has entropy at least T � �0T(i.e., H(X) � T � �0T ). It follows that 1T PTi=1H(XijXi�1 � � �X1) � 1 � �0. Note that the index iranges over all unordered pairs of elements of [N ℄. (We assume some �xed order on these pairs.)We are interested in the expe
ted value of P(s2)i=1H(Xei(S)jXei�1(S) � � �Xe1(S)), where ei(S) is theith pair in the set f(u; v) : u < v 2 Sg and S is a uniformly sele
ted set of t verti
es. ClearlyH(Xei(S)jXei�1(S) � � �Xe1(S)) � H(Xei(S)jXei(S)�1 � � �X1)and so ES 264(s2)Xi=1H(Xei(S)jXei�1(S) � � �Xe1(S))375 �  s2! � (1� �0)be
ause for a uniformly distributed i 2 [�s2�℄ it holds that ES;i hH(Xei(S)jXei(S)�1 � � �X1)i equalsEj [H(Xj jXj�1 � � �X1)℄, where j is uniformly distributed in [T ℄. Thus, for a random s-subset S,letting YS = (X(u;v))f(u;v):u<v2Sg, we have ES[YS ℄ � t� �00, where t def= �s2� and �00 def= t�0. It follows(see Appendix C) that the statisti
al di�eren
e of YS from the uniform distribution over f0; 1gt isat most O(p�00), whi
h in turn equals O(qp�+ T�(1�o(1))). The lemma follows.Proof of Theorem 6.2: Let H = ([N ℄; E) be a graph satisfying Condition C. In parti
ular,given (u; v) 2 [N ℄� [N ℄, we 
an de
ide whether or not (u; v) 2 E in polynomial-time. Then, usingthe graph H instead of the Hamiltonian path in Constru
tion 6.1, we implement a (random) graphsatisfying property �. That is, we answer the query (u; v) by 1 if and only if either g(u; v) =25



1 or (u; v) is an edge in (the \for
ed" 
opy of) H (i.e., (��1(u); ��1(v)) 2 E). Sin
e � is amonotone graph property, the instan
es of the implementation always satisfy the property �,and thus the implementation is truthful. Furthermore, by Condition C and the fa
t that � isa 
lose-implementation of a random permutation, the probability that a ma
hine that queries theimplementation for poly(logN) times hits an edge of H is negligible in logN . Thus, su
h a ma
hine
annot distinguish the implementation from a random graph. Using Lemma 6.3 (with � = �(logN)and q = poly(logN)), the theorem follows.Examples: Indeed, monotone graph properties satisfying Condition C in
lude Conne
tivity,Hamiltoni
ity, k-Conne
tivity (for every �xed k)18, 
ontaining any �xed-size graph (e.g., 
ontain-ing a triangle or a 4-
lique or a K3:3 or a 5-
y
le), having a perfe
t mat
hing, having diameter atmost 2, 
ontaining a 
lique of size at least logN , et
. All the above properties are satis�ed, withoverwhelmingly high probability, by a random graph. However, Theorem 6.2 
an be applied also to(monotone) properties that are not satis�ed by a random graph; a notable example is the propertyof 
ontaining a 
lique of size at least pN .6.2 Almost-truthful implementationsWe start by noting that if we are willing to settle for almost-truthful implementations by ordinaryma
hines then all properties that hold (with suÆ
iently high probability) for random graphs 
anbe handled easily. Spe
i�
ally:Proposition 6.4 Let � be any graph property that is satis�ed by all but a negligible (in log2N)fra
tion of the N -vertex graphs. Then, there exists an almost-truthful 
lose-implementation (by anora
le ma
hine) of a uniformly distributed graph that satis�es property �.Indeed, the implementation is by a random graph (whi
h in turn is implemented via a randomora
le). Note, however, that it is not 
lear what happens if we repla
e the random graph by apseudorandom one (
f. Theorem 2.11). Furthermore, the proof of Theorem 2.11 
an be extendedto show that there exist graph properties that are satis�ed by random graphs but do not have analmost-truthful implementation by an ordinary ma
hine.19 In light of the above, we now fo
us onalmost-truthful implementations by ordinary ma
hines.Max-
lique and 
hromati
 number. We 
onsider the 
onstru
tion of pseudorandom graphsthat approximately preserve the max-
lique and 
hromati
 number of random graphs.Theorem 6.5 Let 
(N) = (2 � o(1)) log2N be the largest integer i su
h that the expe
ted numberof 
liques of size i in a random N -vertex graph is larger than one. Assuming the existen
e ofone-way fun
tions, there exist almost-truthful pseudo-implementations, by ordinary ma
hines, ofthe following spe
i�
ations:18In fa
t, we may have k = k(N) = �(logN) � N for any negligible fun
tion �. The sparse graph may 
onsist ofedges between ea
h of the N vertex and ea
h of k(N) designated verti
es.19The proof of Theorem 2.11 relates to the Kolmogorov Complexity of the fun
tion (or graph). In order to obtaina graph property, we 
onsider the minimum value of the Kolmogorov Complexity of any isomorphi
 
opy of the saidgraph, and 
onsider the set of graphs for whi
h this quantity is greater than N2=4. The latter property is satis�ed byall but at most 2N2=4 �(N !)� 2N2=3 graphs. On the other hand, the property 
annot be satis�ed by an instan
e of animplementation via an ordinary ma
hine. Thus, any implementation (regardless of \quality") must be non-truthful(to the spe
i�
ation) in a strong sense. 26



1. A random graph of Max-Clique 
(N) � 1: The spe
i�
ation uniformly sele
ts an N -vertexgraph having maximum 
lique size 
(N)� 1, and answers edge-queries a

ordingly.2. A random graph of Chromati
 Number (1 � o(1)) � N=
(N): The spe
i�
ation uniformlysele
ts an N -vertex graph having Chromati
 Number (1 � log�1=32 N) � N=
(N), and answersedge-queries a

ordingly.That is, we are required to implement random-looking graphs having 
ertain properties. Indeed, arandom N -vertex graph has the above two properties with probability at least 1�N�0:99 (
f. [6℄).Thus, a random graph provides an almost-truthful 
lose-implementation (by an ora
le ma
hine)of a uniformly sele
ted graph having ea
h of these properties, but it is not 
lear what happenswhen we repla
e the random ora
le by a pseudorandom fun
tion. (In fa
t, one 
an easily 
onstru
tpseudorandom fun
tions for whi
h the repla
ement yields a graph with a huge 
lique.) Note thatTheorem 6.5 does not follow from Theorem 6.2, be
ause the properties at hand are not monotone.20Thus, a di�erent approa
h is needed.Proof Sket
h: We start with Part 1. We de�ne the adja
en
y fun
tion g : [N ℄ � [N ℄ ! f0; 1gof a graph by XORing a pseudorandom (symmetri
 and non-re
exive) fun
tion f with a k-wiseindependent fun
tion h (i.e., g(u; v) = f(u; v)�h(u; v)), where k def= 5n2 (and n = log2N). Re
allthat su
h k-wise independent fun
tions 
an be 
onstru
ted based on kn random bits. The resultingfun
tion g is both pseudorandom and k-wise independent (analogously to the 
onstru
tion in [21℄).Now, the key observation is that the standard analysis (of the size of the max-
lique in a randomgraph) merely refer to the expe
ted number of 
liques os �ze 
(N)�2 and to its varian
e. Thus, thisanalysis only depends on the randomness of edges within pairs of (
(N) + 2)-subsets of verti
es;that is, a total of 2 � �
(N)+22 � < (
(N) + 2)2 = (4 + o(1)) � n2 vertex-pairs. Hen
e the analysis
ontinues to hold for g (whi
h is 5n2-independent). It follows that g provides an almost-truthfulpseudo-implementation of a random N -vertex graph with max-
lique size 
(N)� 1.We now turn to Part 2. Let g0 be the 
omplement of a pseudorandom graph as in Part 1.We now de�ne the adja
en
y fun
tion g : [N ℄ � [N ℄ ! f0; 1g of a pseudorandom graph by takingthe bit-wise 
onjun
tion of the pseudorandom graph g0 (from above) with a fun
tion h0 sele
teduniformly in a set H 0 (de�ned below); that is, g(u; v) = 1 i� g0(u; v) = h0(u; v) = 1. Intuitively, ea
hfun
tion h0 2 H 0 for
es a 
over of [N ℄ by N=
(N) independent sets (ea
h of size 
(N)), and so the
hromati
 number of g is at most N=
(N). On the other hand, ea
h h0 2 H 0 only has independentsets of size 
(N) and taking the 
onjun
tion with a random g0 (whi
h is k-wise independent fork > �
(N)+32 �) is unlikely to 
reate an independent set of size 
(N)+3, and so the 
hromati
 numberof g is at least N=(
(N) + 2). Details follow.Ea
h fun
tion h0 2 H 0 partitions [N ℄ to �(N) = bN=
(N)
 sets, ea
h of size 
(N), and hash0(u; v) = 1 if and only if u and v belong to di�erent sets; that is, the 
omplement of h0 is a disjointset of 
liques ea
h having as a vertex-set one of the sets of the partition. Thus, su
h h0 
auses ea
hof these vertex-set to be an independent set in g. The fun
tions in H 0 di�er only in the partitionsthey use. It turns out that it suÆ
es to use \suÆ
iently random" partitions. Spe
i�
ally, we useH 0 = fh0rgr2R, where R = fr 2 [N ℄ : g
d(r;N) = 1g, and 
onsider for ea
h r 2 R the partition(S(0)r ; :::; S(�(N)�1)r ; S(�(N))r ), where S(i)r = f(
(N)i + j)r mod N : j = 1; :::; 
(N)g for i < �(N) andS(�(N))r = f(
(N)�(N) + j)r mod N : j = 1; :::; N � 
(N)�(N)g. Thus, h0r(u; v) = 1 if and onlyif u and v do not reside in the same S(i)r (i.e., h0r(u; v) = 0 essentially means that u � v � jr20For the 
oloring property, Condition C does not hold either.27



(mod N) for some j 2 f�(
(N) � 1)g). The graph G de�ned by g is pseudorandom be
ause theobserver is unlikely to make a query (u; v) that is a�e
ted by h0r (be
ause h0r(u; v) = 0 yields2(
(N) � 1) � 1 = O(logN) 
andidates for r, whi
h in turn is sele
ted uniformly in the set R,where jRj > N=O(logN)). The 
hromati
 number of G is at most �(N) + 1, be
ause its vertex-setis 
overed by �(N) + 1 independent sets. On the other hand, relying on the basi
 stru
ture ofh0 and on the k-wise independen
e of g0, we 
an show21 that, with high probability, the graph Gdoes not 
ontain an independent set of size 
(N) + 3. Thus, the 
hromati
 number of G is at leastN=(
(N)+2) > (1�(2=
(n))��(N). Its follows that G is an almost-truthful pseudo-implementationof the desired spe
i�
ation.High 
onne
tivity. Re
all that in a randomN -vertex graph every pair of verti
es is 
onne
ted byat least (1�o(1))N=2 vertex-disjoint paths. One interesting question is to provide an almost-truthfulpseudo-implementation of a uniformly distributed graph having this high (global) 
onne
tivityproperty. Unfortunately, we do not know how to do this. A se
ond best thing may be to providean almost-truthful pseudo-implementation of a random graph for whi
h almost all pairs of verti
esenjoy this \high 
onne
tivity" property.Theorem 6.6 For every positive polynomial p, assuming the existen
e of one-way fun
tions, thereexists an almost-truthful pseudo-implementation by an ordinary ma
hine of the following spe
i�-
ation. The spe
ifying ma
hine sele
ts a graph that is uniformly distributed among all N -vertexgraphs for whi
h all but at most an �(N) def= 1=p(log2N) fra
tion of the vertex pairs are 
onne
tedby at least (1� �(N)) �N=2 vertex-disjoint paths. Edge-queries are answered a

ordingly.Interestingly, the same implementation works for all polynomials p; that is, the implementation isindependent of p, whi
h is only needed for the de�nition of the spe
i�
ation. In fa
t, in 
ontrastto all other implementations presented in this work, the implementation used in the proof ofTheorem 6.6 is the straightforward one: It uses a pseudorandom fun
tion to de�ne a graph in theobvious manner. The 
rux of the proof is in showing that this implementation is 
omputationally-indistinguishable from the above spe
i�
ation.Proof Sket
h: We use a pseudorandom fun
tion to de�ne a graph G = ([N ℄; E) in the straight-forward manner, and answer adja
en
y queries a

ordingly. This yields a pseudo-implementationof a truly random graph, whi
h in turn has the strong 
onne
tivity property (with overwhelminglyhigh probability). Fixing a polynomial p and � def= �(N) def= 1=p(log2N), we prove that this imple-mentation is almost-truthful to the 
orresponding spe
i�
ation. That is, we show that all but an �fra
tion of the vertex pairs are 
onne
ted via (1� �) �N=2 vertex-disjoint paths. We will show thatif this is not the 
ase, then we 
an distinguish a random graph (or fun
tion) from a pseudorandomone.Suppose towards the 
ontradi
tion that, with non-negligible probability, a pseudorandom graphviolates the desired property. Fixing su
h a graph, G = ([N ℄; E), our hypothesis means that at leastan � fra
tion of the vertex-pairs are 
onne
ted (inG) by fewer than (1��)�N=2 vertex-disjoint paths.21In the analysis we �x any h0 2 H 0 and show that that deleting edges as instru
ted by a k-wise independentfun
tion (i.e., g0) is unlikely to 
reate an independent set of size 
(N) + 3. Spe
i�
ally, we bound the expe
tednumber of independent set of size 
(N) + 3 in the resulting graph, and thus we only rely on the independen
e ofthe sele
tion of edges (by g0) for pairs of verti
es within sets of 
(N) + 3 verti
es. Note that the various 
andidateindependent sets di�er with respe
t to their interse
tion with the independent sets of h0, and the analysis has to takethis into a

ount. The te
hni
al but elementary analysis is given in Appendix C.28



Consider su
h a generi
 pair, denoted (u; v), and de�ne S0 def= �G(u)\�G(v), S1 def= �G(u) n �G(v),and S2 def= �G(v) n �G(u), where �G(w) def= fx2 [N ℄ : (w; x) 2Eg. Note that if G were a randomgraph then we would expe
t to have jS0j � jS1j � jS2j � N=4. Furthermore, we would expe
t tosee a large (i.e., size � N=4) mat
hing in the indu
ed bipartite graph B = ((S1; S2); E \ (S1�S2));that is, the bipartite graph having S1 on one side and S2 on the other. So, the intuitive idea is totest that both these 
onsidition are satis�ed in the pseudorandom graph. If they do then u andv are \suÆ
iently 
onne
ted". Thus, the hypothesis that an � fra
tion of the vertex-pairs are no\suÆ
iently 
onne
ted" implies a distinguisher (by sele
ting vertex-pairs at random and testing theabove two properties). The problem with the above outline is that it is not 
lear how to eÆ
ientlytest that the abovementioned bipartite graph B has a suÆ
iently large mat
hing.To allow an eÆ
ient test (and thus an eÆ
ient distinguisher), we 
onsider a more stringent
ondition (whi
h would still hold in a truly random graph). We 
onsider a �xed partition of [N ℄into T def= N=m parts, (P1; :::; PT ), su
h that jPij = m = poly(n=�), where n = log2N . (Forexample, we may use Pi = f(i � 1)m + j : j = 1; :::;mg.) If G were a random graph then, withoverwhelmingly high probability (i.e., at least 1� exp(�m1=O(1)) > 1� exp(�n2)), we would havejS0 \ Pij = (m=4) �m2=3 for all the i's. Similarly for S1 and S2. Furthermore, with probabilityat least 1 � exp(�n2), ea
h of the bipartite graphs Bi indu
ed by (Pi \ S1; Pi \ S2) would have amat
hing of size at least (m=4)�m2=3. The key point is that we 
an a�ord to test the size of themaximium mat
hing in su
h a bipartite graph, be
ause it has 2m = poly(n) verti
es.Let us wrap-up things. If a pseudorandom graph does not have the desired property then atleast � fra
tion of its vertex-pairs are 
onne
ted by less than (1��)N=2 vertex-disjoint paths. Thus,samplying O(1=�) vertex-pairs, we hit su
h a pair with 
onstant probability. For su
h a vertex-pair,we 
onsider the sets Si;0 def= Pi \ S0, Si;1 def= Pi \ S1 and Si;2 def= Pi \ S2, for i = 1; :::; T . It mustbe the 
ase that either �=2 fra
tion of the S0;i's are of size less than (1� (�=2)) � (m=4) or that �=2fra
tion of the bipartite subgraphs (i.e., Bi's) indu
ed by the pairs (S1;i; S2;i) have no mat
hingof size (1 � (�=2)) � (m=4), be
ause otherwise this vertex-pair is suÆ
iently 
onne
ted merely byvirtue of these S0;i's and the large mat
hings in the Bi's.22 We use m > (8=�)3 so to guaranteethat (m=4) �m2=3 > (1 � (�=2))(m=4), whi
h implies that (for at least an �=2 fra
tion of the i's)some quantity (i.e., either jS0;ij or the maximum mat
hing in Bi) is stri
tly larger in a randomgraph than in a pseudorandom graph. Now, sampling O(1=�) of the i's, we de
lare the graph to berandom if all the 
orresponding S0;i's have size at least (m=4) �m2=3 and if all the 
orrespondingbipartite graphs Bi's have a maximum mat
hing of size at least (m=4)�m2=3. Thus, we distinguisha random fun
tion from a pseudorandom fun
tion, in 
ontradi
tion to the de�nition of the latter.The theorem follows.Maximum Mat
hing in most indu
ed bipartite graphs: The proof of Theorem 6.6 
an beadapted to prove the following:Theorem 6.7 For every positive polynomial p, assuming the existen
e of one-way fun
tions, thereexists an almost-truthful pseudo-implementation by an ordinary ma
hine of a uniformly sele
tedN -vertex graph that satis�es the following property: For all but at most an �(N) def= 1=p(log2N)fra
tion of the disjoint set-pairs (L;R) � [N ℄ � [N ℄ it holds that the bipartite graph indu
ed by(L;R) has a mat
hning of size (1� �(N)) �min(jLj; jRj).As in Theorem 6.6, the implementation is straightforward, and the issue is analyzing it.22That is, we get at least ((1 � (�=2)) � T ) � ((1� (�=2)) � (m=4)) > (1 � �)(N=4) paths going through S0, and thesame for paths that use the maximum mat
hings in the various Bi's.29



Proof Sket
h: Observe that almost all relevant set-pairs satisfy jLj � jRj � N=3, and so wefo
us on these pairs. It 
an still be shown that in a random graph, with overwhelmingly highprobability, all the 
orresponding bipartite graphs have a suÆ
iently large mat
hing. However, thiswill not hold if we only 
onsider mat
hings that 
onform with the small bipartite graphs Bi's. Still,with overwhelmingly high probability, almost all the bipartite graphs indu
ed by pairs (L;R) asabove will have a suÆ
iently large mat
hing that does 
onform with the small bipartite graphsBi's. Thus, for � = �(N), the distinguisher just sele
ts O(1=�) di�erent i's, and for ea
h su
h i teststhe size of the maximal mat
hing for O(1=�) random (L;R)'s. Needless to say, the distinguisherdoes not sele
t su
h huge sets, but rather sele
ts their proje
tion on Pi. That is, for ea
h su
h i(and ea
h attempt), the distinguisher sele
ts a random pair (Li; Ri) � Pi � Pi.A di�erent perspe
tive: The proofs of Theorems 6.6 and 6.7 a
tually establish that, for the
orresponding spe
i�
ations, the almost-truthfulness of an implementation follows from its 
om-putational indistinguishability (w.r.t the spe
i�
ation).23 An interesting resear
h proje
t is to
hara
terize the 
lass of spe
i�
ations for whi
h the above impli
ation holds.Theorem 6.8 Suppose that S is a spe
i�
ation for whi
h the following two 
onditions hold.1. For every implementation I and every polynomial p there exists a probabilisti
 polynomial-time ora
le ma
hine D and a polynomial q su
h that if Pr[(I; n) 62 Supp(S; n)℄ > 1=p(n) thenjPr[D(I;n)(1n) = 1℄�Pr[D(S;n)(1n) = 1℄j > 1=q(n).2. S has an almost-truthful pseudo-implementation by an ora
le ma
hine that has a

ess to arandom ora
le.Then, assuming the existen
e of one-way fun
tion, S has an almost-truthful pseudo-implementationby an ordinary probabilisti
 polynomial-time ma
hine.Proof: Let I be the implementation guaranteed by Condition 2, and let I 0 be the implementationderived from I by repla
ing the random ora
le with a pseudorandom fun
tion. Thus, I 0 is a pseudo-implementation of S. Using Condition 1, it follows that I 0 is almost-truthful to S, be
ause otherwisewe obtain an eÆ
ient ora
le ma
hine D that distinguishes I 0 from S.7 Supporting Complex Queries regarding Random GraphsIn this se
tion we provide truthful implementations of random graph while supporting 
omplexqueries, in addition to the standard adja
en
y queries. The graph model as in Se
tion 6, and asin Se
tion 6.1 we present our (truthful) implementations in terms of ora
le ma
hines. Let us startwith a simple example.Proposition 7.1 There exists a truthful 
lose-implementation by an ora
le ma
hine of the follow-ing spe
i�
ation. The spe
ifying ma
hine sele
ts uniformly an N -vertex graph and answers distan
e23That is, these proofs establish the �rst 
ondition in Theorem 6.8, whereas the se
ond 
ondition is established bythe straightforward 
onstru
tion of a random graph. A key point in these examples is that, with overwhelmingly highprobability, a random obje
t in (S;n) has stronger properties that those of all obje
ts in (S; n). This fa
t makes iteasier to distinguish a random obje
t in (S; n) from an obje
t not in (S; n). For example, with overwhelmingly highprobability, a random graph has larger 
onne
tivity than required in Theorem 6.6 and this 
onne
tivity is a
hievedvia very short paths (rather than arbitrary ones). This fa
t enables to distinguish (S; n) from an implementationthat la
ks suÆ
iently large 
onne
tivity. 30



queries regarding any pair of verti
es. Furthermore, there exists a truthful 
lose-implementation ofthe related spe
i�
ation that returns a uniformly distributed path of shortest length.Proof: Consider the property of having diameter at most 2. This property satis�es Condition C(e.g., by an N -vertex star). Thus, using Theorem 6.2, we obtain a 
lose-implementation of arandom graph, while our implementation always produ
es a graph having diamater at most 2 (orrather exa
tly 2). Now, we answer the query (u; v) by 1 if the edge (u; v) is in the graph, and by 2otherwise. For the furthermore-part, we add pN su
h stars, and serve queries regarding paths oflength 2 by using the 
enter of one of these stars (whi
h is sele
ted by applying an independentrandom fun
tion to the query pair).This example is not very impressive be
ause the user 
ould have served the distan
e-queries inthe same way (by only using adja
en
y queries to the standard implementation of a random graph).(A random shortest path 
ould have also been found by using the standard implementation.) Theonly advantage of Proposition 7.1 is that it provides a truthful implementation of the distan
e-queries (rather than merely an almost-truthful one obtained via the trivial implementation). Amore impressive example follows. Re
all that a random N -vertex graph is likely to have many(log2N)-vertex 
liques that in
lude ea
h of the verti
es of the graph, whereas it seems hard to �ndsu
h 
liques (where in hard we mean unlikely to a
hieve in time poly(logN), and not merely intime poly(N)). Below we provide an implementation of a servi
e that answers queries of the formv 2 [N ℄ with a log-sized 
lique 
ontaining the vertex v.Theorem 7.2 There exists a truthful 
lose-implementation of the following spe
i�
ation. Thespe
ifying ma
hine sele
ts uniformly an N -vertex graph and, in addition to the standard adja
en
yqueries, answers (Log-Clique) queries of the form v by providing a random dlog2Ne-vertex 
liquethat 
ontains v (and a spe
ial symbol if no su
h 
lique exists).Proof Sket
h: Let ` = dlog2Ne � 1 and 
onsider a simple partition of [N ℄ to T = dN=`e subsets,S1; :::; ST , su
h that jSij = ` for i = 1; :::; T � 1 (e.g., Si = f(i � 1)` + j : j = 1; :::; `g). Usethe ora
le to implement a random graph, G0 = ([N ℄; E0), as well as a random onto24 fun
tionf : [N ℄! [T ℄ and a random invertible permutation � : [N ℄! [N ℄ (as in Theorem 2.13). The graphwe implement will 
onsist of the union of G0 with N 
liques, where the i-th 
lique resides on thevertex set fig [ f�(j) : j 2 Sf(i)g. The Log-Clique queries are served in the obvious manner; thatis, query v is answered with fvg [ f�(u) : u 2 Sf(v)g. (For simpli
ity, we ignore the unlikely 
asethat v 2 f�(u) : u 2 Sf(v)g; this 
an be redeemed by letting ` = dlog2Ne and answering with arandom `-subset of fvg [ f�(u) : u 2 Sf(v)g that 
ontains v.) Implementing the adja
en
y queriesis slightly more tri
ky. The query (u; v) is answered by 1 if and only if either (u; v) 2 E or u andv reside in one of the N 's 
liques we added. The latter 
ase may happen if and only if one of thefollowing sub
ases holds:1. Either u 2 f�(w) : w 2 Sf(v)g or v 2 f�(w) : w 2 Sf(u)g; that is, either ��1(u) 2 Sf(v) or��1(v) 2 Sf(u). Ea
h of these 
onditions is easy to 
he
k by invoking f and ��1.2. There exists an x su
h that u; v 2 f�(w) : w 2 Sf(x)g, whi
h means that ��1(u); ��1(v) 2Sf(x). Equivalently, re
alling that f is onto, we may 
he
k whether there exists a y su
h that��1(u); ��1(v) 2 Sy, whi
h in turn is easy to determine using the simple stru
ture of the setsSy's (i.e., we merely tests whether or not d��1(u)=`e = d��1(v)=`e).24Su
h a fun
tion may be obtained by 
ombining the identity fun
tion over [T ℄ with a random fun
tion f 0 :fT + 1; :::; Ng! [T ℄, and randomly permuting the domain of the resulting fun
tion.31



Thus, our implementation is truthful to the spe
i�
ation. To see that it is a 
lose-implementationof the spe
i�
ation, observe that it is unlikely that two di�erent Log-Clique queries are \served" bythe same 
lique (be
uase this means forming a 
ollision under f). Conditioned on this rare eventnot o

urring, the Log-Clique queries are served by disjoint random 
liques, whi
h is what wouldessentially happen in a random graph (provided that poly(logN) queries are made). Finally, itis unlikely that the answers to the adja
en
y queries that are not determined by prior Log-Cliquequeries be a�e
ted by the sparse sub-graph (of N small 
liques) that we inserted under a randompermutation. The theorem follows.Another example: We 
onsider the implementation of a random graph along with answeringqueries regarding a random Hamiltonian 
y
le in it, where su
h 
y
le exists with overwhelminglyhigh probability. Spe
i�
ally, we 
onsider queries of the form what is the distan
e between twoverti
es on the 
y
le.Theorem 7.3 There exists a truthful 
lose-implementation of the following spe
i�
ation. Thespe
ifying ma
hine sele
ts uniformly an N -vertex graph G, and in 
ase G is Hamiltonian it uni-formly sele
ts a (dire
ted) Hamiltonian Cy
le in G, whi
h in turn de�nes a 
y
li
 permutation� : [N ℄ ! [N ℄. In addition to the standard adja
en
y queries, the spe
i�
ation answers travelqueries of the form (trav; v; t) by providing �t(v), and distan
e queries of the form (dist; v; w) byproviding the smallest t � 0 su
h that w = �t(v).We stress that the implementation must answer ea
h possible query in time polynomial in thevertex name (whi
h may be logarithmi
 in the distan
e t).Proof Sket
h: It will be 
onvenient to use the vertex set V = f0; 1; :::; N � 1g (instead of[N ℄). We use the random ora
le to implement a random graph G0 = (V;E0) as well as a randompermutation � : V ! V along with its inverse. We de�ne a graph G = (V;E) by E def= E0 [ C,where C = f(�(i); �(i+1 mod N)) : i2V g, and use C to answer the spe
ial (Hamiltonian) queries.That is, we answer the query (trav; v; t) by �(��1(v) + t mod N), and the query (dist; v; w) by��1(w)���1(v) mod N . The standard ada
en
y query (u; v) is answered by 1 if and only if either(u; v) 2 E or ��1(u) � ��1(v) � 1 (mod N). (Indeed, the above 
onstru
tion is reminis
ent ofthe \fast-forward" 
onstru
tion of [30℄ (stated in Theorem 2.14).)To see that the above truthful implementation is statisti
ally-indistinguishable from the spe
i-�
ation, we use the following three observations:1. If a (labeled) graph appears in the spe
i�
ation (resp., in the implementation) then all is(labeled) isomorphi
 
opies appear in it. Consequently, for any Hamiltonian Cy
le, the setof Hamiltonian graphs in whi
h this 
y
le has been sele
ted in the spe
i�
ation (resp., in theimplementation) is isomorphi
 to the set of Hamiltonian graphs in whi
h any other Hamilto-nian 
y
le has been sele
ted. Thus, we may 
onsider the 
onditional distribution indu
ed onthe spe
i�
ation (resp., on the implementation) by �xing any su
h Hamiltonian Cy
le.2. Conditioned on any �xing Hamiltonian Cy
le being sele
ted in the implementation, the restof the graph sele
ted by the implementation is truly random.3. Conditioned on any �xing Hamiltonian Cy
le being sele
ted in the spe
i�
ation, the restof the graph sele
ted by the spe
i�
ation is indistinguishable from a random graph. Theproof of this assertion is similar to the proof of Lemma 6.3. The key point is proving that,32




onditioned on a spe
i�
 Hamiltonian Cy
le being sele
ted, the (rest of the) graph sele
tedby the spe
i�
ation has suÆ
iently high entropy. Note that here we refer to the entropy ofthe remaining �N2 � � N edges, and that the vertex pairs are not all identi
al but rather fallinto 
ategories depending on their distan
e as measured on the sele
ted Hamiltonian Cy
le.We need to show that a random vertex-pair in ea
h of these 
ategories has a suÆ
iently high(
onditional) entropy. Thus, this observation requires a 
areful proof to be presented next.Indeed, the above dis
ussion suggests that we may give the entire Hamiltonian 
y
le to the ma
hinethat inspe
ts the rest of the graph (in an attempt to distinguish the implementation from thespe
i�
ation). Thus, we assume, without loss of generality, that this ma
hine makes no adja
en
yqueries regarding edges that parti
ipate in the 
y
le. The �rst observation says that we may
onsider any �xed 
y
le, and the se
ond observation says that a ma
hine that inspe
ts the rest ofthe graph sees truly random edges. The third observation, proved below, asserts that making afew queries to the rest of the 
onditional spa
e of the spe
i�
ation, yields answers that also lookrandom.We 
onsider the 
onditional distribution of the rest of the graph sele
ted by the spe
i�
ation,given that a spe
i�
 Hamiltonian Cy
le was sele
ted. (Indeed, we ignore the negligible (in N)probability that the graph sele
ted by the spe
i�
ation is not Hamiltonian.) Using Bayes' Law, the
onditional probability that a spe
i�
 graph is sele
ted is inversely proportional to the number ofHamiltonian Cy
les in that graph. Using known results on the 
on
entration of the latter numberin random graphs (see, e.g., [23, Thm. 4℄), we infer that in all but an N�2 fra
tion of the N -vertexgraphs the number of Hamiltonian Cy
les is at least an exp(�2(lnN)1=2) > N�1 fra
tion of itsexpe
ted number. Thus, the 
onditional entropy of the sele
ted graph (
onditioned on the sele
ted
y
le) is �N2 ��N � o(N). Details follow.For T = �N2 �, let X = X1 � � �XT denote the graph sele
ted by the spe
i�
ation, and Y (G)denote the Hamiltonian Cy
le sele
ted (by the spe
i�
ation) given that the graph G was sele
ted.Let #HC(G) denote the number of Hamiltonian Cy
les in the graph G, where 
y
li
 shifts andtraspositions of 
y
les are 
ounted as if they were di�erent 
y
les (and so the number of HamiltonianCy
les in an N -
lique is N !). Thus, E(#HC(X)) = 2�N � (N !). An N -vertex graph G is 
alled goodif #HC(G) > 2�N � (N � 1!), and G denotes the set of good N -vertex graphs. For a HamiltonianCy
le C, we denote by G(C) the set of graphs in G that 
ontain the 
y
le C. Then, it holds thatH(XjY (X) = C) � XG2G(C)Pr[X = GjY (X) = C℄ � log2(1=Pr[X = GjY (X) = C℄)� (1�N�2) � minG2G(C)f� log2(Pr[X = GjY (X) = C℄)g= (1�N�2) � minG2G(C)8><>: log2(Pr[Y (X) = C℄)� log2(Pr[Y (X) = CjX = G℄)� log2(Pr[X = G℄) 9>=>;= (1�N�2) � minG2G(C)(log2(1=N !) + log2(#HC(G)) +  N2!)Using the fa
t that G is good (i.e., G 2 G(C)), it follows that log2(#HC(G)) > log2(2�N � (N � 1!)),whi
h in turn equals log2(N !)�N � log2N . We thus get,H(XjY (X) = C) > (1�N�2) �   N2!�N � log2N! (2)33



Re
all that the 
ondition Y (X) = C determines N vertex-pairs in X, and so the entropy of theremaining T 0 = �N2 � � N pairs is at least T 0 � log2N . Partitioning these (undetermined) pairsa

ording to their distan
es in C, we 
on
lude that the entropy of the N=2 pairs in ea
h su
hdistan
e-
lass is at least (N=2) � log2N . (Indeed, the distan
e 
lass of undetermined pairs donot 
ontain distan
e 1 (or N � 1), whi
h 
orrespond to the for
ed 
y
le-edges.) We stress thatour analysis holds even if the ma
hine inspe
ting the graph, is given the Hamiltonian 
y
le forfree. This ma
hine may sele
t the indu
ed subgraph that it wants to inspe
t, but this sele
tion isdetermined upto a shifting of all verti
es (i.e., a rotation of the 
y
le). This randomization suÆ
esfor 
on
luding that the expe
ted entropy of the inspe
ted subgraph (whi
h may not in
lude 
y
leedges) is at least (1 � ((2 log2N)=N)) � �t2�, where t is the number of verti
es in the subgraph.As in the proof of Lemma 6.3, this implies that the inspe
ted subgraph is at distan
e at mostO(q((log2N)=N) � �t2�) < t �N�(1�o(1))=2 from a random t-vertex graph. The theorem follows.8 Random Bounded-Degree Graphs and Global PropertiesIn this se
tion we 
onsider huge bounded-degree simple graphs, where the verti
es are labelled (andthere are no self-loops or parallel edges). We 
onsider spe
i�
ations of various distributions oversu
h graphs, where in all 
ases the spe
ifying ma
hine responds to neighborhood queries (i.e., thequeries 
orrespond to verti
es and the answer to query v is the list of verti
es that are adja
ent tovertex v).The �rst issue that arises is whether we 
an implement a random bounded-degree graph oralternatively a random regular graph. Things would have been quite simple if we were allowingalso non-simple graphs (i.e., having self-loops and parallel edges). For example, a random d-regularN -vertex non-simple graph 
an be implemented by pairing at random the dN possible \ports" ofthe N verti
es. We 
an avoid self-loops (but not parallel edges) by generating the graph as a unionof d perfe
t mat
hings of the elements in [N ℄. In both 
ases, we would get a 
lose-implementationof a random d-regular N -vertex (simple) graph, but parallel edges will still appear with 
onstantprobability (and thus this implementation is not truthful w.r.t simple graphs). In order to obtain arandom simple d-regular N -vertex graph, we need to take an alternative route. The key observationunderlying this alternative is 
aptured by the following lemma:Lemma 8.1 For d > 2, let G = ([N ℄; E) be any d-regular N -vertex graph having girth g. Let G0be obtained by randomly permuting the verti
es of G (and presenting the in
iden
e lists in some
anoni
al order). Then, any ma
hine M that queries the graph for the neighborhoods of q verti
esof its 
hoi
e, 
annot distinguish G0 from a random d-regular N -vertex (simple) graph, ex
ept thanwith probability O(q2=(d� 1)(g�1)=2). In the 
ase d = 2 and q < g � 1, the probability bound 
an beimproved to O(q2=N).Re
all that the girth of a graph G is the length of the shortest simple 
y
le in G, and that (d �1)(g�2)=2 < N always holds (for a d-regular N -vertex graph of girth g).25 Note that Lemma 8.1 isquite tight: For example, in the 
ase d = 2, for g � pN , the N -vertex graph G may 
onsist ofa 
olle
tion of g-
y
les, and taking a walk of length g in G0 (by making g � 1 queries) will alwaysdete
t a 
y
le G0, whi
h allows to distinguish G0 from a random 2-regular N -vertex (in whi
h theexpe
ted length of a 
y
le going through any vertex is 
(N)). In the 
ase d > 3, the graph G25The girth upper-bound (i.e., g � 2 + 2 logd�1N) follows by 
onsidering the (vertex disjoint) paths of length(g � 2)=2 starting at any �xed vertex. The existen
e of d-regular N -vertex graphs of girth logd�1N was shown(non-
onstru
tively) in [10℄. 34



may 
onsist of 
onne
ted 
omponents, ea
h of size (d � 1)g � N , and taking a random walk oflength (d � 1)g=2 in G0 is likely to visit some vertex twi
e, whi
h allows to distinguish G0 from arandom d-regular N -vertex (in whi
h this event may o

ur only after pN steps). Below, we willuse Lemma 8.1 with the following setting of parameters.Corollary 8.2 For �xed d > 2 and g(N) = !(log logN), let G = ([N ℄; E) be any d-regular N -vertex graph having girth g(N). Let G0 be obtained from G as in Lemma 8.1. Then, any ma
hine Mthat queries the graph for the neighborhoods of poly(logN) verti
es of its 
hoi
e, 
annot distinguishG0 from a random d-regular N -vertex (simple) graph, ex
ept than with negligible in logN probability.The 
laim holds also in the 
ase that d = 2 and g(N) = (logN)!(1).For d > 2 the girth 
an be at most logarithmi
, and expli
it 
onstru
tions with logarithmi
 girth areknown for all d � 3 and a dense set of N 's (whi
h is typi
ally related to the set of prime numbers;see, e.g., [29, 22, 27℄). For d = 2, we may just take the N -
y
le or any N -vertex graph 
onsistingof a 
olle
tion of suÆ
iently large 
y
les.Proof Sket
h for Lemma 8.1: We bound the distinguishing gap of an ora
le ma
hine (whi
hqueries either a random d-regular N -vertex graph or the random graph G0) as a fun
tion of thenumber of queries it makes. Re
all that G0 is a random isomorphi
 
opy of G, whereas a randomd-regular N -vertex graph may be viewed as a random isomorphi
 
opy of another random d-regularN -vertex graph. Thus, intuitively, the spe
i�
 labels of queried verti
es and the spe
i�
 labels ofthe 
orresponding answers are totally irrelevant: the only thing that matters is whether or nottwo labels are equal.26 Equality (between labels) 
an o

ur in two 
ases. The uninteresting 
aseis when the ma
hine queries a vertex u that is a neighbor of a previously-queried vertex v andthe answer 
ontains (of 
ourse) the label of vertex v. (This is uninteresting be
ause the ma
hine,having queried v before, already knows that v is a neighbor of u.) The interesting 
ase is thatthe ma
hine queries a vertex and the answer 
ontains the label of a vertex v that was not queriedbefore but has already appeared in the answer to a di�erent query. An important observation isthat, as long as no interesting event o

urs, the ma
hine 
annot distinguish the two distributions(be
uase in both 
ases it knows the same subgraph, whi
h is a forest). Thus, the analysis amountsto bounding the probability that an interesting event o

urs, when we make q queries.Let us 
onsider �rst what happens when we query a random d-regular N -vertex (simple) graph.We may think of an imaginary pro
ess that 
onstru
ts the graph on-the-
y su
h that the neighborsof vertex v are sele
ted only in response to the query v (
f. [17, Thm. 7.1℄). This sele
tion isdone at random a

ording to the 
onditional distribution that is 
onsistent with the partial graphdetermined so far. It is easy to see that the probability that an interesting event o

urs in the i-thquery is at most (i � 1)d=(dN � (i� 1)d), and so the probability for su
h an event o

urring in qqueries is at most q2=N .The more 
hallenging part is to analyse what happens when we query the graph G. (Re
allthat we have already redu
ed the analysis to a model in whi
h we ignore the spe
i�
 labels, butrather only 
ompare them, and analogously we 
annot query a spe
i�
 new vertex but rather onlyquery either a random new vertex or a vertex that has appeared in some answer.)27 To illustrate26Essentially, the ma
hine 
annot determine whi
h vertex it queries; all that it a
tually de
ides is whether to querya spe
i�
 vertex that has appeared in previous answers or to query a new vertex (whi
h may be viewed as randomlysele
ted). (Formally, a spe
i�
 new label indi
ated by the querying ma
hine is mapped by the random permutation toa new random vertex.) Similarly, the labels of the verti
es given as answer do not matter, all that matters is whetheror not these verti
es have appeared in the answers to previous queries (or as previous queries). (Again, formally, thenew verti
es supplied in the answer are assigned, by the random permutation, new random labels.)27Thus, we may 
onsider querying G itself (rather than querying G0).35



the issues at hand, 
onsider �rst the 
ase that d = 2 (where G 
onsists of a set of 
y
les, ea
h oflength at least g). In this 
ase, we have the option of either to pro
eed along a path that is partof a 
y
le (i.e., query for the neighbors of the an end-point of a 
urrently known path) or to queryfor a random new vertex. Assuming that we make less than g � 1 queries, we 
an never 
ause aninteresting event by going along a path (be
ause an interesting event may o

ur in this 
ase onlyif we go around the entire 
y
le, whi
h requires at least g � 1 queries). The only other possibilityto en
ounter an interesting event is by having two paths (possiblly ea
h of length 1) 
ollide. Butthe probability for su
h an event is bounded by q2=N , where q is the number of queries that wemake.28We now turn to the more interesting 
ase of d > 2. As in 
ase d = 2, taking a walk of lengthg � 2 from any vertex will not yield anything useful. However, in this 
ase, we may a�ord totake longer walks (be
ause q may be mu
h larger than g). Still, we will prove that, in this 
ase,with probability at least 1 � q2 � (d � 1)�(g�3)=2, the un
overed subgraph is a forest. The proofrelies both on the the girth lower-bound of G and on a suÆ
iently-good rapid-mixing property(whi
h follows from the girth lower-bound). We bound the probability that a 
y
le is 
losed inthe 
urrent forest by the probability that two verti
es in the forest are 
onne
ted by a non-treeedge, where the probability is taken over the possible random verti
es returned in response to anew-vertex request and over the random order in whi
h neighbors of a query-vertex are provided.Indeed, a key observation is that when we query a vertex that has appeared in some answer, wemay think that this vertex is sele
ted at random among the unqueried verti
es appearing in thatanswer.29 Taking a union bound on all possible �q2� vertex pairs (i.e., those in the forest), we boundthe probability that either two ends of a dis
overed path (in one tree) or two verti
es in di�erent
urrent trees are 
onne
ted by an edge. (In both 
ases, these verti
es are a
tually leaves.)We 
onsider ea
h of these two 
ases seperately: In the latter 
ase (i.e., leaves in di�erent trees),the two verti
es (whi
h are not 
onne
ted in the 
urrently un
overed subgraph) are uniformlydistributed in G, and thus the probability that they are 
onne
ted is essentially d=N . The situationhere is essentially as analyzed in the 
ase d = 2: we have two paths, ea
h initiated at a random(new at the time) vertex, leading to the leaves in question, and thus the latter are almost uniformlyand independently distributed.Turning to the former 
ase (i.e., endpoints of a path in a tree), we use the girth hypothesisto infer that this path must have length at least g � 1 (or else its endpoint are de�nitely not
onne
ted). However, the ma
hine that dis
overed this path a
tually took a random walk (possibllyto two dire
tions) starting from one vertex, be
uase we may assume that this is the �rst time inwhi
h two verti
es in the 
urrent forest are 
onne
ted by a 
urrent non-tree edge. We also usethe hypothesis that our exploration of the path (i.e., queries regarding verti
es that appeared inprevious answers) is a
tually random (i.e., we e�e
tively extend the 
urrent end-point of the pathby a uniformly sele
ted neighbor of that end-point). Now, the end-point of su
h a path 
annot hitany spe
i�
 vertex with probability greater than � def= (d� 1)�(g�1)=2, be
ause after (g� 1)=2 steps28Using a union bound over all query pairs, we bound the probability that the ith query 
ollides with the j-thquery. Ea
h of these two queries is obtained by a path of �xed length starting from a uniformly and distributedvertex (whi
h was new at the time). Thus, these two queries are almost uniformly and independently distributed (in[N ℄), and the probability that they are neighbors is at most 1=(N � q).29That is, the 
orrespondan
e between the new pla
e-holders in the answer and the new real neighbors of thequeried vertex is random. Formally, we may de�ne the intera
tion with the graph su
h that at ea
h point only theinternal nodes of the 
urrently revealed forest are assigned a serial number. Possible queries may be either for a newrandom vertex (assigned the next serial number and typi
ally initiating a new tree in the forest) or for a randomleaf of a spe
i�
 internal vertex (whi
h typi
ally extends the 
orresponding tree and turns one of these leaves to aninternal vertex with d� 1 new leaves). 36



the end-point must be uniformly distributed over the (d � 1)(g�1)=2 leaves of the tree rooted atthe start vertex (and the max-norm of a distribution 
annot in
rease by additional random steps).Fixing the 
losest (to the start vertex) end-point, it follows that the probability that the otherend-point hits the neighbor-set of the �rst end-point is at most d � � = O((d � 1)�(g�1)=2). Tosummarize, the probability that an interesting event o

urs, while making q queries, is at mostO(q2 � (d� 1)�(g�1)=2). The lemma follows.Implementing random bounded-degree simple graphs: We now turn ba
k to the initialproblem of implementing random bounded-degree (resp., regular) simple graphs.Proposition 8.3 For every 
onstant d > 2, there exist truthful 
lose-implementations of the fol-lowing two spe
i�
ations:1. A random graph of maximum degree d: For size parameter N , the spe
i�
ation sele
ts uni-formly a graph G among the set of N -vertex simple graphs having maximum degree d. Onquery v 2 [N ℄, the ma
hine answers with the list of neighbors of vertex v in G.2. A random d-regular graph: For size parameter N , the spe
i�
ation sele
ts uniformly a graphG among the set of N -vertex d-regular simple graphs, and answers queries as in Part 1.Proof: We start with Part 2. This part should follow by Corollary 8.2, provided that we 
animplement a random isomorophi
 
opy of a d-regular N -vertex graph of suÆ
iently large girth.This requires an expli
it 
onstru
tion of the latter graph as well as an implementation of a randompermutation and its inverse (as provided by Theorem 2.13). Spe
i�
ally, let GN be the �xed graph,and � the random relabelling of its verti
es. The we answer query v, by �rst determining thepreimage of v in GN (i.e., ��1(v)), next �nd its neighbors (using the expli
itness of the 
onstru
tionof GN ), and �nally return their images under �. Indeed, this pro
ess depends on the ability toprovide expli
it 
onstru
tions of adequate d-regular N -vertex graphs (i.e., GN 's). This is trivial inthe 
ase d = 2 (e.g., by the N -
y
le). For other values of d � 3, adequate 
onstru
tions 
an beobtained from [29, 22, 27, 25℄ (possibly by dropping several (easily identi�ed) perfe
t mat
hingsfrom the graph). These 
onstru
tion apply for a dense set of N 's (whi
h are typi
ally of the formp(p � 1)2 for any prime p), but we 
an obtain other sizes by 
ombining many su
h graphs (notethat we are not even required to give a 
onne
ted graph, let alone a good expander).We now turn to Part 1. We �rst note that most graphs of maximum degree d have (1�o(1))�dN=2edges. Furthermore, for T = �(pdN) and D = O(pdN), all but a negligible (in N) fra
tion of thegraphs have (dN=2)�T �D edges. In this range, random N -vertex graphs with a given number ofedges and degree bound d, 
an be 
losely-implemented by sele
ting a random d-regular N -vertexgraph and omitting the adequate number of edges. Thus, all that is needed is to sele
t M atrandom with probability proportional to the number of N -vertex graphs with M edges and degreebound d. This 
an be done by using known expressions for these numbers, and te
hniques su
h asin Appendix A.A general result: The proof of Proposition 8.3 a
tually yields a truthful 
lose-implementation ofseveral other spe
i�
ations. Consider, for example, the generation of random 
onne
ted d-regulargraphs, for d � 3. Sin
e the expli
it 
onstru
tions of d-regular graphs are 
onne
ted (and theirmodi�
ations 
an easily made 
onne
ted), applying Corollary 8.2 will do. (Indeed, we also use thefa
t that, with overwhelmingly high probability, a random d-regular graph is 
onne
ted.) Moregenerally, we have: 37



Theorem 8.4 Let d � 2 be �xed and � be a graph property that satis�es the following two 
ondi-tions:1. The probability that Property � is not satis�ed by a uniformly 
hosen d-regular N -vertex graphis negligible in logN .2. Property � is satis�ed by a family of strongly-
onstru
table d-regular N -vertex graphs havinggirth !(log logN) if d > 2 and girth (logN)!(1) if d = 2.Then, there exists a truthful 
lose-implementation (by an ora
le ma
hine) of a uniformly distributedd-regular N -vertex graph that satis�es property �.We note that Condition 1 may be relaxed. It suÆ
es to require that a random d-regular graph anda random d-regular graph having Property � are staisti
ally-indistinguishable (by a ma
hine thatmakes poly-logarithmi
ally many queries). In parti
ular, a random 2-regular graph and a uniformlydistributed 
onne
ted 2-regular graph are statisti
ally-indistinguishable, and thus we 
an providea truthful 
lose-implementation of the latter spe
i�
ation. We mention that Theorem 8.4 yieldstruthful 
lose-implementations to random d-regular graphs that are required to be Hamiltonian,Bipartite, have logarithmi
 girth, et
.9 Supporting Complex Queries regarding Length-Preserving Fun
-tionsIn this se
tion we 
onsider spe
i�
ations that, in addition to the standard evaluation queries, answervarious queries regarding a random fun
tion f : f0; 1gn ! f0; 1gn. The �rst type of queries wehandle are interated-evaluation queries, where the number of iterations may be super-polynomialin the length of the input (and thus 
annot be implemented in a straightforward manner).Theorem 9.1 There exists a truthful 
lose-implementation of the following spe
i�
ation. Thespe
ifying ma
hine, uniformly sele
ts a fun
tion f : f0; 1gn ! f0; 1gn, and answers queries of theform (x;m), where x 2 f0; 1gn and m 2 [2poly(n)℄, with the value fm(x) (i.e., f iterated m timeson x).Proof: Consider �rst an implementation by a random N -
y
le, where N = 2n. That is, using arandom 1-1 mapping � : f0; :::; N � 1g ! f0; 1gn, de�ne f(x) = �(��1(x) + 1 mod N), and answerthe query (x;m) by �(��1(x) +m mod N). (Indeed, the above 
onstru
tion is reminis
ent of the\fast-forward" 
onstru
tion of [30℄ (stated in Theorem 2.14).) The only thing that goes wrong isthat we know the 
y
le length of f and thus 
an distinguish it from a random fun
tion by anyquery of the form (�; N). Thus, we modify the 
onstru
tion so to obtain a fun
tion f with unknown
y
le lengths. A simple way of doing this is to use two 
y
les, while randomly sele
ting the lengthof the �rst 
y
le. That is, sele
t M uniformly in [N ℄, and letf(x) def= 8><>: �(��1(x) + 1 modM) if ��1(x) 2 f0; :::;M � 1g�(��1(x) + 1) if ��1(x) 2 fM; :::; N � 2g�(M) otherwise (i.e., ��1(x) = N � 1)We 
ould have tried to sele
t f su
h that its 
y
le stru
ture is distributed as in 
ase of a randomfun
tion, but we did not bother to do so. Nevertheless, we prove that any ma
hine that makes q38



queries 
annot distinguish f from a random fun
tion with probability better than poly(n) �q2=2
(n).A
tually, in order to fa
ilitate the anaysis, we sele
t M uniformly in f(N=3); :::; (2N=3)g.We turn to prove that the above truthful implementation is statisti
ally-indistinguishable fromthe spe
i�
ation. As in the proof of Lemma 8.1, we may disregard the a
tual values of queries andanswers in the querying pro
ess, and merely refer to whether these values are equal or not. We alsoassume, without loss of generality, that the querying ma
hine makes no redundent queries (e.g., if itknows that y = fk(x) and z = f `(y) then it refrains from making the query (x; k+ `), whi
h wouldhave been answered by z = fk+`(x)). That is, at any point in time, the querying ma
hine knowsof a few 
hains, ea
h having the form (x; fk1(x); fk2(x); :::; fkt(x)), for some known x 2 f0; 1gn andk1 < k2 < � � � < kt. Typi
ally, the elements in ea
h 
hain are distin
t, and no element appears intwo 
hains. In fa
t, as long as this typi
al 
ase holds, there is no di�eren
e between querying thespe
i�
ation versus querying the implementation. Thus, we have to upper bound the probabilitythat an untypi
al event o

urs (i.e., a query is answered by an element that already appears on oneof the 
hains, although the query was not redundent).Let us �rst 
onsider the 
ase that f is 
onstru
ted as in the implementation. For the i-thnon-redundent query, denoted (x; k), we 
onsider three 
ases:Case 1: x is not on any 
hain. The probability that fk(x) hits a known element is at most (i �1)=(N � (i�1)), be
ause x is uniformly distributed among the N � (i�1) unknown elements.(Sin
e f is 1-1, it follows that fk(x) is uniformly distributed over a set of N�(i�1) elements.)Case 2: x is on one 
hain and fk(x) hits another 
hain. The probability to hit an element of another
hain (whi
h must belong to the same 
y
le) is (i� 1)=(N 0� (i� 1)2), where N 0 � N=3 is thenumber of verti
es on the 
y
le (on whi
h x reside). This is be
ause the 
hains on the same
y
le may be though of having a random relative shift (whi
h ignore the 
ollisions of knownverti
es). For i < pN=2, we obtain a probability bound of i=
(N).Case 3: x is on some 
hain and fk(x) hits the same 
hain. Without loss of generality, supposethat fk(x) = x. For this to happen, the length N 0 of the 
y
le (on whi
h x reside) mustdivide k. We upper-bound the probability that all prime fa
tors of N 0 are prime fa
tors of k.Re
all that N 0 is uniformly sele
ted in [(N=3); (2N=3)℄, let P = Pk denote the set of primefa
tors of k, and note that jP j = poly(n) (by the hypothesis k 2 [2poly(n)℄). We bound thenumber of integers in [N ℄ that have all prime fa
tors in P by bounding, for every t 2 [n℄, theprodu
t of the number of integers in [2t℄ with all prime fa
tors in P 0 def= fp 2 P : p < n
gand the number of (n � t)-bit integers with all prime fa
tors in P 00 def= P n P 0, where 
is a suitable 
onstant (i.e., satisfying jP j < n
�1). For t > n= log n, the size of the �rstset 
an be upper-bounded by the number of n
-smooth numbers in [2t℄,30 whi
h in turn isbounded by 2t�(t=
)+o(t) = 2(1�(1=
))�t+o(t) . The size of the se
ond set is upper-bounded by� jP 00j(n�t)=(
 log n)� < 2(1�(1=
))�(n�t), where the inequality uses jP 00j < n
�1. Thus, we upper-boundthe probability that an uniformly 
hosen integer in [(N=3); (2N=3)℄ has all prime fa
tors inP by n= log nXt=1 2�(1=
)�(n�t) + nXt=(n= log n)+1 2�(1=
)�(t+(n�t))+o(t) = 2�(n=
)+o(n)30An integer is 
alled y-smooth if all its prime fa
tors are smaller that y. The fra
tion of y-smooth integers in [x℄ isupper-bounded by u�u+o(u), where u = (log x)=(log y); see, [7℄. Thus, in 
ase t > n= log n, the fra
tion of n
-smoothintegers in [2t℄ is upper-bounded by 2�(1�o(1))�(t=(
 log2 n))�log2 t = 2�(1�o(1))t=
.39



Thus, the probability that we form a 
ollision in q queries (to the implementation) is at mostq2 �N�1=(
+1).We now turn to the 
ase that f is a random fun
tion (as in the spe
i�
ation). Suppose thatwe make the non-redundent query (x; k). We wish to upper-bound the probability that fk(x) = y,for some �xed y (whi
h is on one of the 
hains). It is well-known that the expe
ted numberof an
estors of y under a random f is �(pN); see, e.g., Theorem 33 in [6, Ch. XIV℄. Thus,Prf [j [i�1 f�i(y)j > N3=4℄ = O(N�1=4), and it follows that Prf [fk(x) = y℄ < N�1=4 +O(N�1=4),for any �xed (x; k) and y. (Indeed, it seems that this is a gross over-estimate, but it suÆ
es for ourpurposes.) It follows that the probability that we form a 
ollision in q queries to the spe
i�
ationis at most O(q2=N1=4).Comment: The proof of Theorem 9.1 
an be easily adapted so to provide a truthful 
lose-implementation of a random permutation with iterated-evaluation and iterated-inverse queries.That is, we refer to a spe
ifying ma
hine that uniformly sele
ts a permutation p : f0; 1gn ! f0; 1gn,and answers queries of the form (x;m), where x 2 f0; 1gn andm 2 [�2poly(n)℄, with the value pm(x).The implementation is exa
tly the one used in the proof of Theorem 9.1, and thus we should onlyanalyze the probability of 
ollision when making (non-redundent) queries to a random permutation.For any �xed (x; k) and y, the probability that �k(x) = y equals the probability that x and y resideson the same 
y
le of the permutation p and that their distan
e on this 
y
le equals k mod `, where` is the length of this 
y
le. The 
laim follows using the fa
t that ` is distributed uniformly over [N ℄(be
uase the probability that x resides on a 
y
le of a 
ertain length equals the expe
ted numberof elements residing on 
y
les of su
h length divided by N). An alternative implementation ofa random permutation supporting iterated-evaluation (and iterated-inverse) queries was suggestedindependently by Tsaban [31℄. Interestingly, his implementation works by sele
ting a 
y
le stru
turewith distribution that is statisti
ally-
lose to that in a random permutation (and using a set of 
y
lesof 
orresponding lengths, rather than always using two 
y
les as we do).Preimage queries to a random mapping: We turn ba
k to random length preserving fun
-tions. Su
h a random fun
tion f : f0; 1gn ! f0; 1gn is highly unlikely to be 1-1, still the set ofpreimages of an element under the fun
tion is well-de�ned (i.e., f�1(y) = fx : f(x)=yg). Indeed,this set may be empty, be a singleton or 
ontain more than one preimage. Furthermore, withoverwhelmingly high probability, all these sets are of size at most n. The 
orresponding \inverse"queries are thus natural to 
onsider.Theorem 9.2 There exists a truthful 
lose-implementation of the following spe
i�
ation. Thespe
ifying ma
hine, uniformly sele
ts a fun
tion f : f0; 1gn ! f0; 1gn, and, in addition to thestandard evaluation queries, answers the inverse-query y 2 f0; 1gn with the value f�1(y).Proof: We start with a truthful implementation that is not statisti
ally-indistinguishable fromthe spe
i�
ation, but is 
lose to being so and does present our main idea. For ` = O(log n) (to bedetermined), we 
onsider an implementation that uses the or
ale in order to de�ne two permutations�1 and �2 over f0; 1gn (along with their inverses) as well as a random fun
tion g : f0; 1gn ! f0; 1g`.We de�ne f(x) = �2(prefn�`(�1(x))g(�1(x))), where prefi(z) denotes the i-bit long pre�x of z. Thatis, the fun
tion g indu
es 
ollisions within the stru
tured sets S�, where S� def= f�� : � 2 f0; 1g`g,and the permutation �1 (resp., �2) randomly route inputs (resp., outputs) to (resp., from) thesesets. Indeed, it is instru
tive to note that g indu
es a 
olle
tion of random independent fun
tionsg� : f0; 1g` ! f0; 1g` su
h that g�(�) = g(��), and that ea
h g� indu
es a random fun
tion on the40




orresponding S� (i.e., mapping �� to �g�(�)). Thus, letting su�i(z) denote the i-bit long suÆxof z, we may writef(x) = �2(�g�(�)), where � prefn�`(�1(x)) and �  su�n�`(�1(x)). (3)The evaluation queries are answered in a straightforward way (i.e., by evaluating �1, g and �2).The inverse-query y is answered by �rst 
omputing �� = ��12 (y), where j�j = n�`, then 
omputingR�(�) def= f�0 : g(��0) = �g via exhaustive sear
h, and �nally setting f�1(y) = f��11 (��0) : �0 2R�(�)g. Indeed, the key point is that, sin
e ` = O(logn), we 
an a�ord to determine the setR�(�) by going over all possible �0 2 f0; 1g` and in
luding �0 if and only if g(��0) = �. Therandom permutation �1 (resp., �2) guarantees that it is unlikely to make two evaluation queries(resp., inverse-queries) that are served via the same set S�. It is also unlikely to have a non-obvious \intera
tion" between these two types of queries (where an obvious intera
tion is obtainedby asking for a preimage of an answer to an evaluation query or vi
e versa). Thus, the answers tothe evaluation queries look random, and the answers to the inverse-queries are almost independentrandom subsets with sizes that 
orresponds to the 
ollision of 2` elements (i.e., 2` balls thrown atrandom to 2` 
ells).The only thing that is wrong with the above implementation is that the sizes of the preimage-sets
orrespond to the 
ollision pattern of 2` balls thrown at random to 2` 
ells, rather than to that of the
ollision pattern of 2n balls thrown at random to 2n 
ells. Let pi(m) denote the expe
ted fra
tionof 
ells that 
ontain i balls, when we throw at random m balls into m 
ells. Then, p0(m) � 1=e,for all suÆ
iently large m, whereaspi(m) � 1(i!)e � iYj=1�1� j � 2m� 1� (4)We fo
us on i � n (be
ause for i > n both pi(2`) and pi(2n) are smaller than 2�2n). We may ignorethe (negligible in n) dependen
e of pi(2n) on 2n, but not the (noti
eable) dependen
e of pi(2`) on2` = poly(n). Spe
i�
ally, we have:i pi(2n) pi(n
 + 1) � (Qij=1(1� (j � 2)n�
)) � pi(2n)� e�1=(i!) � (Qij=1(1� (j � 2)n�
)) � (e�1=(i!))1 e�1 (1 + n�
) � e�12 e�1=2 (1 + n�
) � e�1=23 e�1=6 � (1� n�2
) � e�1=64 e�1=24 � (1� 1:5n�
) � e�1=24i � 4 e�1=(i!) (1��(i2n�
)) � e�1=(i!)Thus, the singleton and two-element sets are slightly over-represented in our implementation (when
ompared to the spe
i�
ation), whereas the larger sets are under-represented. In all 
ases, the devi-ation is by a fa
tor related to 1� (1=poly(n)), whi
h 
annot be tolerated in a 
lose-implementation.Thus, all that is required is to modify the fun
tion g su
h that it is slightly more probable toform larger 
ollisions (inside the sets S�'s). We stress that we 
an easily 
ompute all the relevantquantities (i.e., all pi(2n)'s and pi(2`)'s, for i = 1; :::; n), and so obtaining a 
lose-implementationis merely a question of details, whi
h are shortly outlined next.Let us just sket
h one possible approa
h. For N def= 2n and t def= 2`, we have N=t sets S�'s thatare ea
h partitioned at random by the g�'s to subsets (whi
h 
orrespond to the sets of ��'s that aremapped to the same image under g�). Now, for a random 
olle
tion of g�'s, the number of i-subsets41



divided by N is pi def= pi(t) rather than qi def= pi(N) as desired. Re
all that jpi � qij � pi=(t� 1) forall i � 1, and note that Pi pii = 1 =Pi qii. Indeed, it is instru
tive to 
onsider the fra
tional massof elements that resides in i-subsets; that is, let p0i = pii and q0i = qii. We need to move a fra
tionalmass of about 1=(t� 1)e elements from singleton subsets (resp., two-element subsets) to the largersubsets. With overwhelmingly high probability, ea
h S� 
ontains more than n singleton subsets(resp., n=2 two-element subsets). We are going to use only these subsets towards the 
orre
tion ofthe distribution of mass; this is more than enough, be
ause we need to relo
ate only a fra
tionalmass of 1=(t� 1)e from ea
h type of subsets (i.e., less than one element per a set S�, whi
h in turnhas 
ardinality t). In parti
ular, we move a fra
tional mass of p01�q01 = p02�q02 from singleton (resp.,two-element) subsets into larger subsets. Spe
i�
ally, for ea
h i � 3, we move a fra
tional mass of(q0i � p0i)=2 elements residing in singletons and (q0i � p0i)=2 elements residing in two-element subsetsinto i-subsets.31 This (equal 
ontribution 
ondition) will automati
ally guarantee that the massin the remaining singleton and two-element subsets is as desired. We stress that there is no needto make the \mass distribution 
orre
tion pro
ess" be \ni
ely distributed" among the various setsS�'s, be
ause its a�e
t is anyhow hidden by the appli
ation of the random permutation �2. Theonly thing we need is to perform this 
orre
tion pro
edure eÆ
iently (i.e., for every � we shouldeÆ
iently de
ide how to modify g�), and this is indeed doable.

31For example, we move mass into 3-subsets by either merging three singletons or merging a singleton and a two-subset into a 
orresponding 3-subset, where we do three merges of the latter type per ea
h merge of the former type.Similarly, for ea
h i � 4, we move mass into i-subsets by merging either i singletons or i=2 two-subsets, while doingan equal number of merges of ea
h type. Finally, for every j � 1, we move mass into (2j + 3)-subsets by mergingadditionally 
reated 2j-subsets and 3-subsets (where additional 2-subsets are 
reated by either using a 2-subset ormerging two singletons, in equal proportions). 42



10 Con
lusions and Open ProblemsThe questions that underlie our work refer to the existen
e of good implementations of various spe
i-�
ations. At the very least, we require the implementations to be 
omputationally-indistinguishablefrom the 
orresponding spe
i�
ations.32 That is, we are interested in pseudo-implementations. Ourultimate goal is to obtain su
h implementations via ordinary (probabilisti
 polynomial-time) ma-
hines, and so we ask:Q1: Whi
h spe
i�
ations have truthful pseudo-implementations (by ordinary ma
hines)?Q2: Whi
h spe
i�
ations have almost-truthful pseudo-implementations (by ordinary ma
hines)?Q3: Whi
h spe
i�
ations have pseudo-implementations at all?In view of Theorem 2.9, as far as Questions Q1 and Q3 are 
on
erned, we may as well 
onsiderimplementations by ora
le ma
hines (having a

ess to a random ora
le). Indeed, the key observationthat started us going was that the following questions are the \right" ones to ask:Q1r (Q1 revised): Whi
h spe
i�
ations have truthful 
lose-implementations by ora
le ma
hines(having a

ess to a random ora
le)?Q3r (Q3 revised): Whi
h spe
i�
ations have su
h 
lose-implementations at all?We remark that even in 
ase of Question Q2, it may make sense to study �rst the existen
e ofimplementations by ora
le ma
hines, bearing in mind that the latter 
annot provide a 
on
lusivepositive answer (as shown in Theorem 2.11).In this work, we have initiated a 
omprehensive study of the above questions. In parti
ular,we provided a fair number of non-trivial implementations of various spe
i�
ations relating to thedomains of random fun
tions, random graphs and random 
odes. The 
hallenge of 
hara
terizingthe 
lass of spe
i�
ations that have good implementations (e.g., Questions Q1r and Q3r) remainswide open. A good start may be to answer su
h questions when restri
ted to interesting 
lasses ofspe
i�
ations (e.g., the 
lass of spe
i�
ations of random graphs having 
ertain type of properties).Limited-independen
e implemenations. Our de�nition of pseudo-implementation is basedon the notion of 
omputational indistinguishability (
f. [19, 32, 15℄) as a de�nition of similarityamong obje
ts. A di�erent notion of similarity underlies the 
onstru
tion of sample spa
es havinglimited-independen
e properties (see, e.g., [2, 8℄). For example, we say that an implementation isk-wise 
lose to a give spe
i�
ation if the distribution of the answers to any k �xed queries to theimplementation is staisti
ally 
lose to the distribution of these answers in the spe
i�
ation. Thestudy of Question Q1r is also relevant to the 
onstru
tion of truthful k-wise 
lose implementations,for any k = poly(n). In parti
ular, one 
an show that any spe
i�
ation that has a truthful 
lose-implementation by an ora
le ma
hine, has a truthful k-wise 
lose implementation by an ordinaryprobabilisti
 polynomial-time ma
hine.33 A 
on
rete example appears at the end of Se
tion 5.32Without su
h a quali�
ation, the questions stated below are either meaningless (i.e., every spe
i�
ation has a\bad" implementation) or miss the point of generating random obje
ts.33The 
laim follows by 
ombining an implementation (by an ora
le ma
hine) that makes at most t queries to itsrandom ora
le with a sample spa
e of k � t-wise independent fun
tions.
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Appendix A: Implementing various probability distributionsOur proof of Theorem 5.2 relies on eÆ
ient pro
edures for generating elements from a �nite seta

ording to two probability distributions. In both 
ases, we need pro
edures that work in time thatis poly-logarithmi
 (rather than polynomial) in the size of the set (and the re
ipro
al of the desiredapproximation parameter). In both 
ases, we have 
lose expressions (whi
h 
an be evaluated inpoly-logarithmi
 time) for the probability mass that is to be assigned to ea
h element. Thus, inboth 
ases, it is easy to generate the desired distribution in time that is almost-linear in the sizeof the set. Our fo
us is on generating good approximations of these distributions in time that ispoly-logarithmi
 in the size of the set.Indeed, the problem 
onsidered in this appendix is a spe
ial 
ase of our general framework. Weare given a spe
i�
ation of a distribution (i.e., ea
h query should be answered by a sample drawnindependently from that distribution), and we wish to 
losely-implement it (i.e., answer ea
h queryby a sample drawn independently from approximately that distribution).A.1 Sampling the binomial distributionWe �rst 
onsider the generation of elements a

ording to the binomial distribution. For any N , weneed to output any value v 2 f0; 1; :::; Ng with probability �Nv � �2�N . An eÆ
ient pro
edure for thispurpose is des
ribed in Knuth [24, Se
. 3.4.1℄. In fa
t, Knuth des
ribes a more general pro
edurethat, for every p, outputs the value v 2 f0; 1; :::; Ng with probability bN;p(v) def= �Nv � � pv(1� p)N�v.However, his des
ription is in terms of operations with reals, and so we need to adapt it to thestandard (bit-operation) model. Knuth's des
ription pro
eeds in two steps:1. In Se
tion 3.4.1.F, it is shown how to redu
e the generation of the binomial distribution bN;pto the generation of some beta distributions, whi
h are 
ontinuous distributions over [0; 1℄ thatdepends on two parameters a and b.34 The redu
tion involves taking log2N samples from
ertain beta distributions, where the parameters of these distributions are easily determinedas a fun
tion of N . The samples of the beta distributions are pro
essed in a simple mannerinvolving only 
omparisons and basi
 arithmeti
 operations (subtra
tion and division).2. In Se
tion 3.4.1.E, it is shown how to generate any beta distribution. The generator takes a
onstant number of samples from the 
ontinuous uniform distribution over [0; 1℄, and produ
esthe desired sample with 
onstant probability (otherwise, the pro
ess is repeated). The samplesof the uniform distributions are pro
essed in a simple manner involving only 
omparisons andvarious arithmeti
 and trigonometri
 operations (in
luding 
omputing fun
tions as log andtan).The above is des
ribed in terms of real arithmeti
 and sampling uniformly in [0; 1℄, and providesa perfe
t implementation. The question is what happens when we repla
e the samples with onestaken from the set f�; 2�; :::; b1=�
 � �g, and repla
e the real arithmeti
s with approximations upto afa
tor of 1� �.34A beta distribution with (natural) parameters a and b is de�ned in terms of the a

umulative distribution fun
tionFa;b(r) def= a ��a+ b� 1a � � Z r0 xa�1(1� x)b�1 dxand the uniform 
ontinuous distribution is a spe
ial 
ase (i.e., a = b = 1). In general, Fa;b(r) equals the probabilitythat the bth largest of a+ b� 1 independent uniformly 
hosen samples in [0; 1℄ has value at most r.47



Let us �rst 
onsider the e�e
t of repla
ing the uniform 
ontinuous distribution U(r) = r bythe 
ontinuous step-distribution S�(r) def= br=�
 � �, where we may assume that 1=� is an integer.Sin
e the variation distan
e between U and S� is O(�), the same holds for any fun
tion applied toa 
onstant number of samples taken from these distribution. Thus, the implementation of the betadistributions via the step-distribution S� will deviate by only O(�), and using the latter to generatethe binomial distribution bN;p only yields a deviation of O(� logN). Finally, using the averagenumeri
al stability of all fun
tions employed35 we 
on
lude that an implementation by O(log(1=�))bits of pre
ision will only introdu
e a deviation of �.A.2 Sampling from the two-set total-sum distributionWe now turn to the generation of pairs (l; r) su
h that l + r = T and 0 � l; r � S, where T � 2S.Spe
i�
ally, we need to produ
e su
h a pair with probability proportional to �Sl � � �Sr� (i.e., thenumber of ways to sele
t l elements from one set of size S and r elements from another su
h set).(In the proof of Theorem 5.2, S = M=2.) Without loss of generality, we may assume that T � S(or else we sele
t the \
omplementary" elements). Thus, we need to sample r 2 f0; :::; Tg withprobability pr = � ST�r� � �Sr��2ST � (5)We wish to produ
e a sample with deviation at most � from the 
orre
t distribution and areallowed time poly(k), where k def= log(S=�). In 
ase T � k, we perform this task in the straightfor-ward manner; that it, 
ompute all the T + 1 probabilities pr, and sele
t r a

ordingly. Otherwise(i.e., T > k), we rely on the fa
t that pr is upper-bounded by twi
e the binomial distribution of Ttries (i.e., qr = �Tr�=2T ). This leads to the following sampling pro
ess:1. Sele
t r a

ording to the binomial distribution of T tries.2. Compute pr and qr. Output r with probability pr=2qr, and go to Step 1 otherwise.We will show (see Fa
t A.1 below) that pr � 2qr always holds. Thus, in ea
h iteration, we output rwith probability that is proportional to pr; that is, we output r with probability qr �(pr=2qr) = pr=2.It follows that ea
h iteration of the above pro
edure produ
es an output with probability 1=2, andby trun
ating the pro
edure after k iterations (and produ
ing arbitrary output in su
h a 
ase) theoutput distribution is statisti
ally 
lose to the desired one.Fa
t A.1 Suppose that T � S and T > k. For pr's and qr's as above, it holds that pr < 2qr.Proof: The 
ases r = T and r = 0 are readily veri�ed (by noting that pr = �ST�=�2ST � < 2�T andqr = 2�T ). For r 2 f1; :::; T � 1g, letting � def= (S � r)=(2S � T ) 2 (0; 1), we haveprqr = �Sr� � � ST�r�=�2ST ��Tr�=2T = 2T � �2S�TS�r ��2SS �35Ea
h of these fun
tions (i.e., rational expressions, log and tan) has a few points of instability, but we applythese fun
tions on arguments taken from either the uniform distribution or the result of prior fun
tions on thatdistribution. In parti
ular, ex
ept for what happens in an �-neighborhood of some problemati
 points, all fun
tions
an be well-approximated when their argument is given with O(log(1=�) bits of pre
ision. Furthermore, the fun
tionslog and tan are only evaluated at the uniform distribution (or simple fun
tions of it), and the rational expressionsare evaluated on some intermediate beta distributions. Thus, in all 
ases, the problemati
 neighborhoods are onlyassigned small probability mass (e.g., � in the former 
ase and O(p�) in the latter).48



= 2T � (1 + o(1)) � (2��(1 � �) � (2S � T ))�1=2 � 2H2(�)�(2S�T )(2�(1=2)2 � 2S)�1=2 � 2H2(1=2)�2S= 1 + o(1)p2�(1 � �) � � � 2(H2(�)�1)�(2S�T )where � def= (2S � T )=S � 1 and H2 is the binary entropy fun
tion. For � 2 [(1=3); (2=3)℄, we 
anupper-bound pr=qr by (1 + o(1)) �p9=4� < 2. Otherwise (i.e., without loss of generality � < 1=3),we get that H2(�) < 0:92 and ��1(1 � �)�1 � 2S � T , where for the latter inequality we use1 � r � S� 1. Thus, pr=qr is upper-bounded by O(p2S � T ) � 2�
(2S�T ) = O(2�
(S)+log S), whi
hvanishes to zero with k (be
ause S � T > k).36A.3 A general tool for sampling strange distributionsIn 
ontinuation to Appendix A.2, we state a useful lemma (whi
h was impli
itly used above as wellas in prior works). The lemma suggests that poly(logN)-time sampling from a desired probabilitydistribution fpigNi=1 
an be redu
ed to sampling from a related probability distribution fqigNi=1,whi
h is hopefully poly(logN)-time sampleable.Lemma A.2 Let fpigNi=1 and fqigNi=1 be probability distributions satisfying the following 
onditions:1. There exists a polynomial-time algorithm that given i 2 [N ℄ outputs approximations of pi andqi up to �N�2.2. Generating an index i a

ording to the distribution fqigNi=1 is 
losely-implementable (uptonegligible in logN deviation and in poly(logN)-time).3. There exist a poly(logN)-time re
ognizable set S � [N ℄ su
h that(a) 1�Pi2S pi is negligible in logN .(b) There exists a polynomial p su
h that for every i 2 S it holds that pi � p(logN) � qi.Then generating an index i a

ording to the distribution fpigNi=1 is 
losely-implementable.Proof: Without loss of generality, S may ex
lude all i's su
h that pi < N�2. For simpli
ity, weassume below that given i we 
an exa
tly 
ompute pi and qi (rather than only approximate themwithin �N�2). Let t def= p(logN). The sampling pro
edure pro
eeds in iterations, where in ea
hiteration i is sele
ted a

ording to the distribution fqigNi=1, and is output with probability pi=tqi ifi 2 S. (Otherwise, we pro
eed to the next iteration.) Observe that, 
onditioned on produ
ing anoutput, the output of ea
h iteration is in S and equals i with probability qi � (pi=tqi) = pi=t. Thus,ea
h iteration produ
es output with probabilityPi2S pi=t > 1=2t, and so halting after O(t log(1=�))iterations we produ
e output with probability at least 1 � �. For any i 2 S, the output is i withprobability (1��) �pi=�, where � def= Pj2S pj. Setting � to be negligible in logN , the lemma follows.A typi
al appli
ation of Lemma A.2 is to the 
ase that for ea
h i 2 [N ℄ the value of pi 
an beapproximated by one out of m = poly(logN) predetermined pj's. Spe
i�
ally:36In fa
t, it holds that pr � p2 � qr for all r's, with the extreme value obtained at r = T=2 (and T = S), where wehave � = 1=2 (and � = 1). 49



Corollary A.3 Let fpigNi=1 be a probability distribution and S � [N ℄ be a set satisfying Condi-tions (1) and (3a) of Lemma A.2. Suppose that, for m; t = poly(logN), there exists an eÆ
iently
onstru
tible sequen
e of integers 1 = i1 < i2 < � � � < im = N su
h that for every j 2 [m � 1℄and i 2 [ij ; ij+1℄ \ S it holds that pij=t < pi < t � pij . Then generating an index i a

ording to thedistribution fpigNi=1 is 
losely-implementable.Proof: For every j 2 [m� 1℄ and i 2 [ij ; ij+1℄ \ S, de�ne p0i = pij and note that p0i=t < pi < t � p0i.Let p0 =Pi2S p0i, and note that p0 < t. Now, de�ne qi = p0i=p0 for every i 2 S, and qi = 0 otherwise.Then, for every i 2 S, it holds that pi < t�p0i = t�p0 �qi < t2qi. Sin
e these qi's satisfy Conditions (1),(2) and (3b) of Lemma A.2, the 
orollary follows.Appendix B: Implementing a Random Bipartite GraphFollowing the des
ription in Se
tion 6, we present a 
lose-implementation of random bipartitegraphs. Two issues arise. Firstly, we have to sele
t the proportion of the sizes of the two parts,while noti
ing that di�erent proportions give rise to di�erent number of graphs. Se
ondly, we notethat a bipartite graph uniquely de�nes a 2-partition (up to swit
hing the two parts) only if it is
onne
ted. However, sin
e all but a negligible fra
tion of the bipartite graphs are 
onne
ted, wemay ignore the se
ond issue, and fo
us on the �rst one. (Indeed, the rest of the dis
ussion is slightlyimpre
ise be
ause the se
ond issue is ignored.)For i 2 [�N ℄, the number of 2N -vertex bipartite graphs with N + i verti
es on the �rst part is 2NN + i! � 2(N+i)�(N�i) �  2NN ! � 2N2�i2where equality holds for i = 0 and approximately holds (i.e., upto a 
onstant fa
tor) for jij = pN .Thus, all but a negligible fra
tion of the 2N -vertex bipartite graphs have N � log2N verti
es onea
h part. That is, we may fo
us on O(logN) values of i. Indeed, for ea
h i 2 [� log2N ℄, we
ompute Ti def= � 2NN+i� � 2N2�i2 , and pi = Ti=T , where T def= Plog2Nj=� log2N Tj. Next, we sele
t i withprobability pi, and 
onstru
t a random 2N -vertex bipartite graph with N + i verti
es on the �rstpart as follows:� As in Se
tion 6, we use the fun
tion f1 to implement a permutation �. We let S def= fv :�(v) 2 [N + i℄g, and �S(i) def= 1 if and only if i 2 S.� As in Se
tion 6, we answer the query (u; v) by 0 if �S(u) = �S(v) and a

ording to the valueof f2 otherwise.Appendix C: Various Cal
ulationsFor the proof of Lemma 6.3The proof of Lemma 6.3 refers to the following known fa
t:Fa
t C.1 Let X be a random variable ranging over some domain D, and suppose that H(X) �log2 jDj� �. Then X is at statisti
al distan
e at most O(p�) from the uniform distribution over D.50



Proof: Suppose that X is at statisti
al distan
e Æ from the uniform distribution over D. Then,there exists a S � D su
h that jPr[X 2 S℄� (jSj=jDj)j = Æ, and assume without loss of generalitythat jSj � jDj=2. Note that either for ea
h e 2 S it holds that Pr[X = e℄ � 1=jDj or for ea
he 2 S it holds that Pr[X = e℄ � 1=jDj. By removing the jSj � (jDj=2) elements of smallestabsolute di�eren
e (i.e., smallest jPr[X = e℄� (1=jDj)j), we obtain a set S0 of size jDj=2 su
h thatjPr[X 2 S0℄� (jS0j=jDj)j � Æ=2. The entropy of X is maximized when it is uniform both on S0 andon D n S0. Thus:H(X) � H2(Pr[X 2 S0℄) +Pr[X 2 S0℄ �H(XjX 2 S0) +Pr[X 2 D n S0℄ �H(XjX 2 D n S0)= H2 �12 + Æ2�+ log2(jDj=2)= 1� 
(Æ2) + log2(jDj=2)We get that H(X) � log2 jDj� 
 � Æ2, for some universal 
 > 0. Combining this with the hypothesisthat H(X) � log2 jDj � �, we get that � � 
 � Æ2, and Æ � p�=
 follows.For the proof of Theorem 6.5In 
ontinuation to Footnote 21, whi
h refers to Part 2 of the proof of Theorem 6.5, we prove thefollowing fa
t.Fa
t C.2 Let 
(N) be as in Theorem 6.5, and T def= N=
(N). Assume that T is an integer.Consider any �xed partition, (P1; :::; PT ), of [N ℄ su
h that jPij = 
(N) for every i. Consider agraph sele
ted as follows:� Ea
h Pi is an independent set.� For k = �
(N)+32 �, the rest of the edges are determined by a k-wise independent binary sequen
eof length �N2 �� T � �
(N)2 �.Then, with probability at least 1�O(N�1=2), the graph has no independet set of size 
(N) + 3.Proof: We will show that the expe
ted number of independet set of size 
(N) + 3 is O(N�1=2),and the fa
t will follow. Let 
 def= 
(N) and s def= 
 + 3. We partition all possible independentsets of size s into 
lasses a

ording to the 
ontributions of the various Pi's to them. That is, the
lasses that 
orresponds to the sequen
e (s1; :::; sT ), where PTi=1 si = s, 
onsists of independentsets having si verti
es from Pi. For su
h a 
lass, we let rj denote the j-th non-zero si. We a
tually,
luster the 
lasses a

ording to the resulting sequen
e of rj's. That is, the 
luster (r1; :::; rt), wherePtj=1 rj = s and rj � 1, 
onsists of independent sets having rj verti
es from the j-th part that
ontributes any verti
es to the independent set. Then, the 
ontribution of su
h a 
luster to theexpe
tation is given by the number of potential independent sets in the 
luster times the probabilitythat su
h a potential independent set is assigned no edges. Observe that the number of potentialundetermined edges in su
h a potential independent set is �s2��Pi �ri2 �, and thus the 
ontributionof the 
luster is given by Tt! � " tYi=1 
ri!# � 2�((s2)�Pti=1 (ri2 )) = 2�(s2) �  N=
t ! � tYi=1 " 
ri! � 2(ri2 )#< 2�(s2) � (N=
)t � tYi=1 " 
ri! � 2(ri2 )#51



We bound, seperately, ea
h fa
tor of the form � 
ri� � 2(ri2 ). Spe
i�
ally:Claim: Let f(x) = �
x� � 2(x2). Then, for x 2 f1; :::; 
g it holds that f(x) � 
Nx�1, and for x 2f2; :::; 
 � 1g it holds that f(x) < Nx�(3=2).Using this 
laim, the 
ontribution of ea
h sequen
e of ri's is:2�(s2) � (N=
)t � tYi=1 f(ri) < 2�(s2) � (N=
)t � tYi=1 
N ri�1= 2�(s2) �NPti=1 ri= 2� s(s�1)2 + 
2 �s = 2�swhere the last two equalities use log2N = 
=2 and 
 = s � 3, respe
tively. Furthermore, if thesequen
e of ri's has some element in f2; :::; 
�1g then we get a better bound of 2�s �N�1=2, be
uasewe gain at least a fa
tor of N�1=2 in the inequality.Now, the number of sequen
es (r1; :::; rt), for various t, is Pst=2 �s�1t�1� < 2s�1. Of these only a
onstant number have all ri's in f1; 
g (i.e., the all-1 sequen
e and the permutations of (
; 1; 1; 1)).Thus, the expe
tation is bounded byO(1) � 2�s + 2s � (2�s �N�1=2) < O(N�1=2)where the inequality uses s > 
 = 2 log2N .We now turn to the proof of the 
laim. For x = 1, equality holds (i.e., f(1) = 
 �20 = 
 �N0). (Infa
t, this is the only 
ase where equality holds.) For x = 
, we have f(
) = 1 � 2
(
�1)=2 = N 
�1 <
N 
�1. In all other 
ases, we de�ne g(x) = log2 f(x) � (x � (3=2)) � log2N , and prove that it isnegative. Using log2N = 
=2, note thatg(x) = log2  
x!+ (x� 1)x2 � (x� (3=2)) � 
2= log2  
x!+ (x� 
� 1)x2 + 3
4< log2  
0x!+ (x� 
0)x2 + 3
04where 
0 def= 
+1. Using the fa
t that 
 = 
(N) = !(1) (and 2 � x � 
0� 2), we 
onsider two 
ases:1. If either 2 � x � 5 or 
0 � 5 � x � 
0 � 2 then we bound log2 �
0x� by 5 log2 
0 and getg(x) < 5 log2 
0 + 12 � max2�x�
0�2f(x� 
0)xg+ 3
04= 5 log2 
0 � 2(
0 � 2)2 + 3
04 < 02. If 5 � x � 
0 � 5 then we bound log2 �
0x� by 
0 and getg(x) < 
0 + 12 � max5�x�
0�5f(x� 
0)xg+ 
0= 2
0 � 5(
0 � 5)2 < 0So the 
laim follows, and so does the entire fa
t.52



Appendix D: A strengthening of Proposition 2.15The hypothesis of Part 2 of Proposition 2.15 requires the existen
e of one-way fun
tions, or equiv-alently the ability to generate hard-instan
es (to NP-problems) along with 
orresponding solutions(
f. [14, Se
 2.1℄). A seemingly weaker 
ondition, whi
h is in the spirit of Levin's theory of average-
ase 
omplexity [26℄ (see also [4℄), is the ability to generate hard-instan
es to NP-problems. Spe
if-i
ally:De�nition D.1 (generating hard instan
es): A probabilisti
 polynomial-time algorithm G is 
alleda generator of hard instan
es for a set S if for every probabilisti
 polynomial-time algorithm A theprobability that A 
orre
tly de
ides whether or not G(1n) is in S is bounded away from 1. That is,there exists a polynomial p su
h that for all suÆ
iently large n's it holds thatPrx G(1n)[A(x) = �S(x)℄ < 1� 1p(n)where �S(x) = 1 if x 2 S and �S(x) = 0 otherwise.De�nition D.1 only requires that hard instan
es be generated with \noti
ible" probability. Note thatthe existen
e of one-way fun
tions (even weak ones) implies the ability to generate hard instan
esto NP-problems. The 
onverse is not known to hold. Thus, the following result strengthens Part 2of Proposition 2.15.Proposition D.2 Assuming the existen
e of generators of hard instan
es for NP-problems, thereexist spe
i�
ations that 
annot be pseudo-implemented.Proof: Let L be an NP-set that has a generator G of hard instan
es, let R be the 
orrespondingwitness relation (i.e., L = fx : 9y s.t. (x; y) 2 Rg), and R(x) def= fy : (x; y) 2 Rg. Consider thespe
i�
ation that answers query x with a uniformly distributed y 2 R(x) if R(x) 6= ; and with aspe
ial symbol otherwise. We will show that this spe
i�
ation 
annot be pseudo-implemented.Let I be an arbitrary implementation of the above spe
i�
ation, and 
onsider a distinguisherthat, for parameter n, makes the query x G(1n), obtains the answer y, and outputs 1 if and only if(x; y) 2 R (whi
h is polynomial-time de
idable). When this distinguisher queries the spe
i�
ation,it outputs 1 with probability that equals � def= Pr[G(1n) 2 L℄. Assume, towards the 
ontradi
tion,that when the distinguisher queries I it outputs 1 with probability that at least � � �(n), where� is a negligible fun
tion. In su
h a 
ase we obtain a probabilisti
 polynomial-time algorithm thatviolates the hypothesis: Spe
i�
ally, 
onsider an algorithm A su
h that A(x) answers 1 if and onlyif (x; I(x)) 2 R, and note that A is always 
orre
t when it outputs 1. Thus,Prx G(1n)[A(x) = �L(x)℄ = Pr[x2L ^ A(x)=1℄ +Pr[x =2L℄ �Pr[A(x)=0jx =2L℄= Pr[x2L ^ (x; I(x))2R℄ + (1� �) �Pr[(x; I(x)) =2Rjx =2L℄� (�� �(n)) + (1� �) � 1 = 1� �(n)Thus, the implementation I 
annot be 
omputationally indistinguishable from the spe
i�
ation,and the proposition follows.
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