
On the Implementation of Huge Random ObjetsOded Goldreih�y Sha� Goldwasser�yz Asaf Nussboim�Otober 15, 2003AbstratWe initiate a general study of pseudo-random implementations of huge random objets, andapply it to a few areas in whih random objets our naturally. For example, a random objetbeing onsidered may be a random onneted graph, a random bounded-degree graph, or arandom error-orreting ode with good distane. A pseudo-random implementation of suhtype T objets must generate objets of type T that an not be distinguished from randomones, rather than objets that an not be distinguished from type T objets (although they arenot type T at all).We will model a type T objet as a funtion, and aess objets by queries into thesefuntions. We investigate supporting both standard queries that only evaluates the primaryfuntion at loations of the user's hoie (e.g., edge queries in a graph), and omplex queriesthat may ask for the result of a omputation on the primary funtion, where this omputationis infeasible to perform with a polynomial number of standard queries (e.g., providing the nextvertex along a Hamiltonian path in the graph).

Keywords: Pseudorandomness, Random Graphs, Random Codes, Random Funtions, monotonegraph properties, random walks on regular graphs.�Department of Computer Siene and Applied Mathematis, Weizmann Institute of Siene, Rehovot, Israel.Email: foded; shafi; asafng�wisdom.weizmann.a.il.ySupported by the MINERVA Foundation, Germany.zLaboratory for Computer Siene, MIT.

Contents1 Introdution 22 Formal Setting and General Observations 42.1 Spei�ation . 42.2 Implementations . 52.3 Known non-trivial implementations . 82.4 A few general observations . 92.5 Objets of feasible size . 113 Our Main Results 133.1 Truthful Implementations . 133.1.1 Supporting omplex queries regarding boolean funtions 133.1.2 Supporting omplex queries regarding length-preserving funtions 143.1.3 Random graphs of various types . 143.1.4 Supporting omplex queries regarding random graphs 153.1.5 Random bounded-degree graphs of various types 153.2 Almost-Truthful Implementations . 163.2.1 Random odes of large distane . 163.2.2 Random graphs of various types . 174 Implementing Random Codes of Large Distane 175 Boolean Funtions and Interval-Sum Queries 196 Random Graphs Satisfying Global Properties 236.1 Truthful implementations . 246.2 Almost-truthful implementations . 267 Supporting Complex Queries regarding Random Graphs 308 Random Bounded-Degree Graphs and Global Properties 349 Supporting Complex Queries regarding Length-Preserving Funtions 3810 Conlusions and Open Problems 43Bibliography 45Appendix A: Implementing various probability distributions 47A.1 Sampling the binomial distribution . 47A.2 Sampling from the two-set total-sum distribution . 48A.3 A general tool for sampling strange distributions . 49Appendix B: Implementing a Random Bipartite Graph 50Appendix C: Various Calulations 50Appendix D: A strengthening of Proposition 2.15 521

1 IntrodutionSuppose that you want to run some experiments on random odes (i.e., subsets of f0; 1gn thatontain K = 2
(n) strings). You atually take it for granted that the random ode will havelarge (i.e., linear) distane, beause you know some Coding Theory and are willing to disardthe negligible probability that a random ode will not have a large distane. Suppose that youwant to be able to keep suint representations of these huge odes and/or that you want togenerate them using few random bits. Being aware of the relevant works on pseudorandomness(e.g., [19, 5, 32, 15℄), you plan to use pseudorandom funtions [15℄ in order to eÆiently generate andstore representations of these odes; that is, using the pseudorandom funtion f : [K℄ ! f0; 1gn,you an de�ne the ode Cf = ff(i) : i2 [K℄g, and eÆiently produe odewords of Cf . But wait aminute, do the odes that you generate this way have a large distane?The point is that having a large distane is a global property of the ode, whih in turn is ahuge (i.e., exp(n)-sized) objet. This global property annot be deided by looking at polynomiallymany (i.e., poly(n)-many) odewords, and so its violation annot be translated to a ontradition ofthe pseudorandomness of the funtion. Indeed, the substitution of a random funtion (or a randomode) by a pseudorandom one is not guaranteed to preserve the global property. Spei�ally, allpseudorandom odes generated as suggested above may have small distane.1So, an we eÆiently generate random-looking odes of large distane? Spei�ally, an weprovide a probabilisti polynomial-time proedure that allows to sample odewords from a ode oflarge distane suh that the sampled odewords look as if they were taken from a random ode(whih, in partiular, means that we do not generate linear odes). The answer is essentiallypositive: see Setion 4. However, this is merely an example of the type of questions that we dealwith. (Another illustrative example is presented in Setion 6.)We initiate a general study of the feasibility of implementing (huge) random objets. For agiven Type T of objets, we aim at generating pseudorandom objets of Type T. That is, we wantthe generated objet to always be of Type T, but we are willing to settle for Type T objets thatlook as if they are truly random Type T objets (although they are not). We stress that ourfous is on Type T objets that look like random Type T objets, rather than objets that look likerandom Type T objets although they are not of Type T at all. For example, we disapprove ofa random funtion as being an implementation of a random permutation, although the two lookalike to anybody restrited to resoures that are polynomially related to the length of the inputs tothe funtion. Beyond the intuitive oneptual reason for the above disapproval, there are pratialonsiderations. For example, if somebody supplies an element in the range then we may want to beguaranteed that this element has a unique preimage (as would be the ase with any permutationbut not with a random funtion).In general, when one deals (or experiments) with an objet that is supposed to be of Type T, onemay assume that this objet has all the properties enjoyed by all Type T objets. If this assumptiondoes not hold (even if one annot detet this fat during initial experimentation) then an appliationthat depends on this assumption may fail. One reason for the failure of the appliation may bethat it uses signi�antly more resoures than those used in the initial experiments that failed todetet the problem. Another issue is that the probability that the appliation fails may indeed benegligible (as is the probability of deteting the failure in the initial experiments), but due to the1Indeed, for eah funtion fs taken from some pseudorandom ensemble ffs : [2jsj=10℄ ! f0; 1gjsjgs, it may holdthat the Hamming distane between fs(is) and fs(is + 1) is one, for some is that depends arbitrarily on fs. Forexample, given a pseudorandom ensemble ffsg, onsider the ensemble ffs;ig suh that fs;i(i) = 0n, fs;i(i+1) = 0n�11and fs;i(x) = fs(x) for all other x's. 2

importane of the appliation we are unwilling to tolerate even a negligible probability of failure.We explore several areas in whih the study of random objets ours naturally. These areasinlude graph theory, oding theory and ryptography. We provide implementations of variousnatural random objets, whih were onsidered before in these areas (e.g., the study of randomgraphs [6℄).Objets, spei�ations, implementations and their qualityOur fous is on huge objets; that is, objets that are of size that is exponential in the runningtime of the appliations. Thus, these (possibly randomized) appliations may inspet only smallportions of the objet (in eah randomized exeution). The objet may be viewed as a funtion (oran orale), and inspeting a small portion of it is viewed as reeiving answers to a small number ofadequate queries. For example, when we talk of huge dense graphs, we onsider adjaeny queriesthat are vertex-pairs with answers indiating whether or not the queried pair is onneted by anedge. When we talk of huge bounded-degree graphs, we onsider inidene queries that orrespondto verties with answers listing the neighbors of the queried vertex.We are interested in lasses of objets (or objet types), whih an be viewed as lasses offuntions. (Indeed, we are not interested in the trivial ase of generi objets, whih is aptured bythe lass of all funtions.) For example, when we talk of simple undireted graphs in the adjaenyprediate representation, we only allow symmetri and non-reexive Boolean funtions. Similarly,when we talk of suh bounded-degree graphs in the inident-lists representation, we restrit thelass of funtions in a less trivial manner (i.e., u should appear in the neighbor-list of v i� v appearsin the neighbor-list of u). More interestingly, we may talk of the lass of onneted (or Hamiltonian)graphs, in whih ase the lass of funtions is even more omplex. This formalism allows to talkabout objets of ertain types (or of objets satisfying ertain properties). In addition, it apturesomplex objets that support \ompound queries" to more basi objets. For example, we mayonsider an objet that answers queries regarding a global property of a Boolean funtion (e.g., theparity of all the funtion's values). The queries may also refer to a large number of values of thefuntion (e.g., the parity of all values assigned to arguments in an interval that is spei�ed by thequery).We study probability distributions over lasses of objets. Suh a distribution is alled a spei-�ation. Formally, a spei�ation is presented by a omputationally-unbounded probabilisti Turingmahine, where eah setting of the mahine's random-tape yields a huge objet. The latter objet isde�ned as the orresponding input-output relation, and so queries to the objet are assoiated withinputs to the mahine. We onsider the distribution on funtions obtained by seleting the spei�a-tion's random-tape uniformly. For example, a random N -vertex Hamiltonian graph is spei�ed bya omputationally-unbounded probabilisti mahine that uses its random-tape to determine suha (random Hamiltonian) graph, and answers adjaeny queries aordingly. Another spei�ationmay require to answer, in addition to adjaeny queries regarding a uniformly seleted N -vertexgraph, also more omplex queries suh as providing a lique of size log2N that ontains the queriedvertex. We stress that the spei�ation is not required to be even remotely eÆient (but for sakeof simpliity we assume that it is reursive).Our ultimate goal will be to provide a probabilisti polynomial-time mahine that implementsthe desired spei�ation. That is, we onsider the probability distribution on funtions indued by�xing of the random-tape of the latter mahine in all possible ways. Again, eah possible �xing ofthe random-tape yields a funtion orresponding to the input-output relation (of the mahine perthis ontents of its random-tape). 3

Indeed, a key question is how good is the implementation provided by some mahine. We on-sider two aspets of this question. The �rst (and more standard) aspet is whether one an distin-guish the implementation from the spei�ation when given orale aess to one of them. Variants in-lude perfet indistinguishability, statistial-indistinguishability and omputational-indistinguishability.We stress a seond aspet regarding the quality of implementation: the truthfulness of the imple-mentation with respet to the spei�ation, where being truthful means that any possible funtionthat appears with non-zero probability in the implementation must also appear with non-zero prob-ability in the spei�ation. For example, if the spei�ation is of a random Hamiltonian graph thena truthful implementation must always yield a Hamiltonian graph. (A reasonable relaxation ofthe notion of truthfulness is to require that all but a negligible part of the probability mass of theimplementation is assigned to funtions that appear with non-zero probability in the spei�ation;an implementation satisfying this relaxation is alled almost-truthful.)OrganizationIn Setion 2, we present formal de�nitions of the notions disussed above as well as basi ob-servations regarding these notions. These are followed by a few known examples of non-trivialimplementations of various random objets (whih are retrospetively ast niely in our formula-tion). In Setion 3, we state a fair number of new implementations of various random objets,while deferring the onstrutions (and proofs) to the orresponding setions. These implementa-tions demonstrate the appliability of our notions to various domains suh as funtions, graphs andodes. Conlusions and open problems are presented in Setion 10.2 Formal Setting and General ObservationsThroughout this work we let n denote the feasibility parameter. Spei�ally, feasible-sized objetshave an expliit desription of length poly(n), whereas huge objets have (expliit desription) sizeexponential in n. The latter are desribed by funtions from poly(n)-bit strings to poly(n)-bitstrings. Whenever we talk of eÆient proedures we mean algorithms running in poly(n)-time.2.1 Spei�ationA huge random objet is spei�ed by a omputationally-unbounded probabilisti Turing mahine.For a �xed ontents of the random-tape, suh a mahine de�nes a (possibly partial) funtion onthe set of all binary strings. Suh a funtion is alled an instane of the spei�ation. We onsiderthe input-output relation of this mahine when the random-tape is uniformly distributed. Looselyspeaking, this is the random objet spei�ed by the mahine.For sake of simpliity, we on�ne our attention to mahines that halt with probability 1 on everyinput. Furthermore, we will onsider the input-output relation of suh mahines only on inputsof some spei�ed length `, where ` is always polynomially related to the feasibility parameter n.Thus, for suh a probabilisti mahine M and length parameter ` = `(n), with probability 1 overthe hoie of the random-tape for M , mahine M halts on every `(n)-bit long input.De�nition 2.1 (spei�ation): For a �xed funtion ` :N!N, the instane spei�ed by a probabilistimahine M , random-tape ! and parameter n is the funtion Mn;! de�ned by letting Mn;!(x) be theoutput of M on input x 2 f0; 1g`(n) when using the random-tape ! 2 f0; 1g1. The random objetspei�ed by M and n is de�ned as Mn;! for a uniformly seleted ! 2 f0; 1g1.4

Note that, with probability 1 over the hoie of the random-tape, the random objet (spei�ed byM and n) depends only on a �nite pre�x of the random-tape. Let us larify our formalism byasting in it several simple examples, whih were onsidered before (f. [15, 28℄).Example 2.2 (a random funtion): A random funtion from n-bit strings to n-bit strings is spe-i�ed by the mahine M that, on input x 2 f0; 1gn (parameter n and random-tape !), returns theidxn(x)-th n-bit blok of !, where idxn(x) is the index of x within the set of n-bit long strings.Example 2.3 (a random permutation): Let N = 2n. A random permutation over f0; 1gn � [N ℄an be spei�ed by uniformly seleting an integer i 2 [N !℄; that is, the mahine uses its random-tape to determine i 2 [N !℄, and uses the i-th permutation aording to some standard order. Analternative spei�ation, whih is easier to state (alas even more ineÆient), is obtained by amahine that repeatedly inspet the N next n-bit strings on its random-tape, until enountering arun of N di�erent values, using these as the permutation. Either way, one a permutation � overf0; 1gn is determined, the mahine answers the input x 2 f0; 1gn with the output �(x).Example 2.4 (a random permutation oupled with its inverse): In ontinuation to Example 2.3,we may onsider a mahine that selets � as before, and responds to input (�; x) with �(x) if� = 1 and with ��1(x) otherwise. That is, the objet spei�ed here provides aess to a randompermutation as well as to its inverse.2.2 ImplementationsDe�nition 2.1 plaes no restritions on the omplexity of the spei�ation. Our aim, however, isto implement suh spei�ations eÆiently. We onsider several types of implementations, wherein all ases we aim at eÆient implementations (i.e., mahines that respond to eah possible inputwithin polynomial-time). Spei�ally, we onsider two parameters:1. The type of model used in the implementation. We will use either a polynomial-time ora-le mahine having aess to a random orale or a standard probabilisti polynomial-timemahine (viewed as a deterministi mahine having aess to a �nite random-tape).2. The similarity of the implementation to the spei�ation; that is, is the implementation maybe perfet, statistially indistinguishable or only omputationally indistinguishable from thespei�ation (by probabilisti polynomial-time orale mahines that try to distinguish theimplementation from the spei�ation by querying it at inputs of their hoie).Our real goal is to derive implementations by ordinary mahines (having as good a quality aspossible). We thus view implementations by orale mahines having aess to a random orale asmerely a lean abstration, whih is useful in many ases (as indiated by Theorem 2.9 below).De�nition 2.5 (implementation by orale mahines): For a �xed funtion ` : N! N, a (deter-ministi) polynomial-time orale mahine M and orale f , the instane implemented by Mf andparameter n is the funtion Mf de�ned by letting Mf (x) be the output of M on input x 2 f0; 1g`(n)when using the orale f . The random objet implemented by M with parameter n is de�ned as Mffor a uniformly distributed f : f0; 1g� ! f0; 1g.In fat, Mf (x) depends only on the value of f on inputs of length bounded by a polynomial injxj. Similarly, an ordinary probabilisti polynomial-time (as in the following de�nition) only uses5

a poly(jxj)-bit long random-tape when invoked on input x. Thus, for feasibility parameter n, themahine handles `(n)-bit long inputs using a random-tape of length �(n) = poly(`(n)) = poly(n),where (w.l.o.g.) � is 1-1.De�nition 2.6 (implementation by ordinary mahines): For �xed funtions `; � :N!N, an ordi-nary polynomial-time mahine M and a string r, the instane implemented by M and random-taper is the funtion Mr de�ned by letting Mr(x) be the output of M on input x 2 f0; 1g`(��1(jrj)) whenusing the random-tape r. The random objet implemented by M with parameter n is de�ned as Mrfor a uniformly distributed r 2 f0; 1g�(n).We stress that an instane of the implementation is fully determined by the mahine M andthe random-tape r (i.e., we disallow \implementations" that onstrut the objet on-the-y whiledepending and keeping trak of all previous queries and answers).For a mahine M (either a spei�ation or an implementation) we identify the pair (M;n) withthe random objet spei�ed (or implemented) by mahine M and feasibility parameter n.De�nition 2.7 (indistinguishability of the implementation from the spei�ation): Let S be aspei�ation and I be an implementation, both with respet to the length funtion ` :N!N. We saythat I perfetly implements S if, for every n, the random objet (I; n) is distributed identially tothe random objet (S; n). We say that I losely-implements S if, for every orale mahine M thaton input 1n makes at most polynomially-many queries all of length `(n), the following di�erene isnegligible2 as a funtion of njPr[M (I;n)(1n) = 1℄ � Pr[M (S;n)(1n) = 1℄j (1)We say that I pseudo-implements S if Eq. (1) holds for every probabilisti polynomial-time oralemahine M that makes only queries of length equal to `(n).We stress that the notion of a lose-implementation does not say that the objets (i.e., (I; n)and (S; n)) are statistially lose; it merely says that they annot be distinguished by a (om-putationally unbounded) mahine that asks polynomially many queries. Indeed, the notion ofpseudo-implementation refers to the notion of omputational indistinguishability (f. [19, 32℄) asapplied to funtions (see [15℄). Clearly, any perfet implementation is a lose-implementation, andany lose-implementation is a pseudo-implementation. Intuitively, the orale mahine M , whih issometimes alled a (potential) distinguisher, represents a user that employs (or experiments with)the implementation. It is required that suh a user annot distinguish the implementation fromthe spei�ation, provided that the user is limited in its aess to the implementation or even inits omputational resoures (i.e., time).Indeed, it is trivial to perfetly implement a random funtion (i.e., the spei�ation given inExample 2.2) by using an orale mahine (with aess to a random orale). In ontrast, themain result of Goldreih, Goldwasser and Miali [15℄ an be ast by saying that there exist apseudo-implementation of a random funtion by an ordinary mahine, provided that pseudorandomgenerators (or, equivalently, one-way funtion [20℄) do exist. In fat, under the same assumption, itis easy to show that every spei�ation having a pseudo-implementation by an orale mahine alsohas a pseudo-implementation by an ordinary mahine. A stronger statement will be proven below(see Theorem 2.9).2A funtion � : N! [0; 1℄ is alled negligible if for every positive polynomial p and all suÆiently large n's it holdsthat �(n) < 1=p(n). 6

Truthful implementations. An important notion regarding (non-perfet) implementations refersto the question of whether or not they satisfy properties that are enjoyed by the orrespondingspei�ation. Put in other words, the question is whether eah instane of the implementation isalso an instane of the spei�ation. Whenever this ondition holds, we all the implementationtruthful. Indeed, every perfet implementation is truthful, but this is not neessarily the ase forlose-implementations. For example, a random funtion is a lose-implementation of a random per-mutation (beause it is unlikely to �nd a ollision among polynomially-many preimages); however,a random funtion is not a truthful implementation of a random permutation.De�nition 2.8 (truthful implementations): Let S be a spei�ation and I be an implementation.We say that I is truthful to S if for every n the support of the random objet (I; n) is a subset ofthe support of the random objet (S; n).Muh of this work is foused on truthful implementations. The following simple result is use-ful in the study of the latter. We omment that this result is typially applied to (truthful)lose-implementations by orale mahines, yielding (truthful) pseudo-implementations by ordinarymahines.Theorem 2.9 Suppose that one-way funtions exist. Then any spei�ation that has a pseudo-implementation by an orale mahine (having aess to a random orale) also has a pseudo-implementation by an ordinary mahine. Furthermore, if the former implementation is truthfulthen so is the latter.The suÆient ondition is also neessary, beause the existene of pseudorandom funtions (i.e., apseudo-implementation of a random funtion) implies the existene of one-way funtions. In viewof Theorem 2.9, whenever we seek truthful implementations (or, alternatively, whenever we do notare about truthfulness at all), we may fous on implementations by orale mahines.Proof: First we replae the random orale used by the former implementation by a pseudorandomorale (available by the results of [15, 20℄). No probabilisti polynomial-time distinguisher an detetthe di�erene, exept with negligible probability. Furthermore, the support of the pseudorandomorale is a subset of the support of the random orale, and so the truthful property is inherited bythe latter implementation. Finally, we use an ordinary mahine to emulate the orale mahine thathas aess to a pseudorandom orale.Almost-Truthful implementations. Truthful implementations guarantee that eah instane ofthe implementation is also an instane of the spei�ation (and is thus \onsistent with the spei�-ation"). A meaningful relaxation of this guarantee refers to the ase that almost all the probabilitymass of the implementation is assigned to instanes that are onsistent with the spei�ation (i.e.,are in the support of the latter). Spei�ally, we refer to the following de�nition.De�nition 2.10 (almost-truthful implementations): Let S be a spei�ation and I be an imple-mentation. We say that I is almost-truthful to S if the probability that (I; n) is not in the supportof the random objet (S; n) is bounded by a negligible funtion in n.Interestingly, almost-truthfulness is not preserved by the onstrution used in the proof of The-orem 2.9. In fat, there exists spei�ations that have almost-truthful lose-implementations byorale mahines but not by ordinary mahines (see Theorem 2.11 below). Thus, when studying7

almost-truthful implementations, one needs to deal diretly with ordinary implementations (ratherthan fous on implementations by orale-mahines). Indeed, we will present a few examples ofalmost-truthful implementations that are not truthful.Theorem 2.11 There exists a spei�ation that has an almost-truthful lose-implementation by anorale mahine but has no almost-truthful implementation by an ordinary mahine.We stress that the theorem holds regardless of whether or not the latter (almost-truthful) imple-mentation is indistinguishable from the spei�ation.Proof: Consider the spei�ation of a uniformly seleted funtion f : f0; 1gn ! f0; 1g having(time-bounded) Kolmogorov Complexity3 greater than 2n�1. That is, the spei�ation mahinesans its random-tape, looking for a blok of 2n bits of (time-bounded) Kolmogorov Complexitygreater than 2n�1, and one found uses this blok as a truth-table of the desired Boolean funtion.Sine all but a negligible fration of the funtions have Kolmogorov Complexity greater than 2n�1,a almost-truthful lose-implementation by an orale mahine may just use a random funtion. Onthe other hand, any implementation by an ordinary mahine (of randomness omplexity �) induesa funtion f : f0; 1gn ! f0; 1g of (time-bounded) Kolmogorov Complexity at most (O(1)+ �(n))+log2(poly(n) � 2n) = poly(n). Thus, any suh implementation yields a funtion that violates thespei�ation, and so annot be even \remotely" truthful.2.3 Known non-trivial implementationsIn view of Theorem 2.9, when studying truthful implementations, we fous on implementationsby orale mahines. In these ases, we shorthand the phrase implementation by an orale ma-hine by the term implementation. Using the notion of truthfulness, we an ast the non-trivialimplementation of a random permutation provided by Luby and Rako� [28℄ as follows.Theorem 2.12 [28℄: There exists a truthful lose-implementation of the spei�ation provided inExample 2.3. That is, there exists a truthful lose-implementation of the spei�ation that uniformlyselets a permutation � over f0; 1gn and responses to the query x 2 f0; 1gn with the value �(x).Contrast Theorem 2.12 with the trivial non-truthful implementation (by a random funtion) men-tioned above. Note that, even when ignoring the issue of truthfulness, it is non-trivial to provide alose-implementation of Example 2.4 (i.e., a random permutation along with its inverse).4 However,Luby and Rako� [28℄ have also provided a truthful lose-implementation of Example 2.4.Theorem 2.13 [28℄: There exists a truthful lose-implementation of the spei�ation that uni-formly selets a permutation � over f0; 1gn and responses to the query (�; x) 2 f�1;+1g � f0; 1gnwith the value ��(x).Another known result that has the avor of the questions that we explore was obtained by Naor andReingold [30℄. Loosely speaking, they provided a truthful lose-implementation of a permutationseleted uniformly among all permutations having a ertain yle-struture.3Loosely speaking, the (standard) Kolmogorov Complexity of a string s is the minimum length of a program �that produe s. The time-bounded Kolmogorov Complexity of a string s is the minimum, taken over programs �that produe s, of j�j + log2(time(�)), where time(�) is the running-time of �. We use time-bounded KolmogorovComplexity in order to allow for a reursive spei�ation.4A random funtion will fail here, beause the distinguisher may distinguish it from a random permutation byasking for the inverse of a random image. 8

Theorem 2.14 [30℄: For any N = 2n, t = poly(n), and C = f(i;mi) : i = 1; :::; tg suh thatPti=1mii = N , there exists a truthful lose-implementation of a uniformly distributed permutationthat has mi yles of size i, for i = 1; :::; t.5 Furthermore, the implementation instane that usesthe permutation � an also support queries of the form (x; i) to be answered by �i(x), for anyx 2 f0; 1gn and any integer i (whih is presented in binary).We stress that the latter queries are served in time poly(n) also in ase i� poly(n).2.4 A few general observationsTheorem 2.11 asserts the existene of spei�ations that annot be implemented in an almost-truthful manner by an ordinary mahine, regardless of the level of indistinguishability (of the im-plementation from the spei�ation). We an get negative results that refer also to implementationsby orale mahines, regardless of truthfulness, by requiring the implementation to be suÆientlyindistinguishable (from the spei�ation). Spei�ally:Proposition 2.15 The following refers to implementations by orale mahines and disregard theissue of truthfulness.1. There exist spei�ations that annot be losely-implemented.2. Assuming the existene of one-way funtions, there exist spei�ations that annot be pseudo-implemented.The hypothesis in Part 2 an be relaxed: It suÆes to assume the existene of NP-sets for whih itis feasible to generate hard instanes. For details see Appendix D.Proof: For starters, note that the spei�ation may just disregard the issue of randomness andinvert a one-way funtion at images of the user's hoie. Certainly, this spei�ation annot bepseudo-implemented, beause suh an implementation would yield an algorithm that violates thehypothesis (of Part 2).6 We may easily adapt this example suh that the spei�ation gives riseto a random objet. For example, the spei�ation may state that, given a pair of strings, oneshould use a random funtion to selet one of these strings, and answer with its inverse under theone-way funtion. A pseudo-implementation of this spei�ation an also be shown to ontraditthe hypothesis. The above refers to Part 2. Turning to Part 1, we may use a funtion onstruted inexponential-time that annot be inverted, exept for with negligible probability, by any polynomial-time mahine that uses a random orale. That is, the spei�ation determines suh a funtion, andinverts it at inputs of the user's hoie. Observe that a lose-implementation of suh a funtionis required to suessfully invert the funtion at random inputs, whih is impossible (exept fornegligible probability).5Speial ases inlude involutions (i.e., permutations in whih all yles have length 2), and permutations onsistingof a single yle (of length N). These ases are ast by C = f(2; N=2)g and C = f(N; 1)g, respetively.6Consider the performane of the spei�ation (resp., implementation) when queried on a randomly generatedimage, and note that the orretness of the answer an be eÆiently veri�ed. Thus, while the spei�ation alwaysinverts the one-way funtion on the given image, the implementation must fail exept with negligible probability.
9

The randomness omplexity of implementations: Looking at the proof of Theorem 2.9, it isevident that as far as pseudo-implementations by ordinary mahines are onerned (and assumingthe existene of one-way funtions), randomness an be redued to any power of the feasibility param-eter (i.e., to n� for every � > 0). The same holds with respet to truthful pseudo-implementations.On the other hand, the proof of Theorem 2.11 suggests that this ollapse in the randomness omplex-ity annot our with respet to almost-truthful implementations by ordinary mahines (regardlessof the level of indistinguishability of the implementation from the spei�ation).Theorem 2.16 (a randomness hierarhy): For every polynomial �, there exists a spei�ation thathas an almost-truthful lose-implementation by an ordinary mahine that uses a random-tape oflength �(n), but has no almost-truthful implementation by an ordinary mahine that uses a random-tape of length �(n)� !(log n).Proof: Let g(n) = !(log n). Consider the spei�ation that selets uniformly a string r 2 f0; 1g�(n)of (time-bounded) Kolmogorov Complexity at least �(n)� g(n), and responds to the query i 2 [2n℄with the (1+(i mod �(n)))-th bit of r. Sine all but a exp(�g(n)) = n�!(1) fration of the �(n)-bitlong string have suh omplexity, this spei�ation is losely-implemented in an almost-truthfulmanner by a mahine that uniformly selets r 2 f0; 1g�(n) (and responds as the spei�ation).However, any implementation that uses a random-tape of length �0, yields a funtion that assignsthe �rst �(n) arguments values that as a string have (time-bounded) Kolmogorov Complexity atmost (O(1) + �0(n)) + log2(poly(n)) = �0(n) + O(log n). Thus, for �0(n) = �(n) � 2g(n), theimplementation annot even be \remotely" truthful.Composing implementations: A simple observation that is used in our work is that one an\ompose implementations". That is, if we implement a random objet R1 by an orale mahinethat uses orale alls to a random objet R2, whih in turn has an implementation by a mahineof type T, then we atually obtain an implementation of R1 by a mahine of type T. To state thisresult, we need to extend De�nition 2.5 suh that it applies to orale mahines that use arbitraryspei�ations (rather than a random orale). Let us denote by (M (S;n); n) an implementation bythe orale mahine M (and feasibility parameter n) with orale aess to the spei�ation (S; n).Theorem 2.17 Let Q 2 fperfet; lose;pseudog. Suppose that the spei�ation (S1; n) an beQ-implemented by (M (S2;n); n) and that (S2; n) has a Q-implementation by an ordinary mahine(resp., by an orale mahine with a random orale). Then, (S1; n) has a Q-implementation by anordinary mahine (resp., by an orale mahine with a random orale). Furthermore, if both theimplementations in the hypothesis are truthful (resp., almost-truthful) then so is the implementationin the onlusion.Proof: The idea is to simply replae (S2; n) by its implementation, denoted (I2; n), and thus obtainan implementation (M (I2;n); n) of (S1; n), whih (by ombining the mahinesM and I2) yields a ma-hine of the type of mahine I2. This mahine inherits the truthfulness (resp., almost-truthfulness)of the given implementations. The analysis of the \quality" of the resulting implementation relieson the fat that the resoure bounds imposed on the implementation (M (S2;n); n) indue bounds onthe use of (S2; n) byM . Combined with the hypothesis regarding the \quality" of (I2; n) guaranteesthe \quality" of the resulting implementation.For the sake of larity, let us spell out the argument for the ase of pseudo-implementations:The �rst hypothesis asserts that (M (S2;n); n) and (S1; n) are omputationally-indistinguishable,and the seond hypothesis asserts that (I2; n) and (S2; n) are omputationally-indistinguishable.10

Our goal is to prove that (M (I2;n); n) and (S1; n) are omputationally-indistinguishable, whih (bythe �rst hypothesis) redues to proving that (M (I2;n); n) and (M (S2;n); n) are omputationally-indistinguishable. Now suppose, towards the ontradition, that some a probabilisti polynomial-time mahine D distinguishes (M (I2;n); n) from (M (S2;n); n). Then, ombining D andM , we obtaina mahine that distinguishes (I2; n) from (S2; n) (in ontradition to the seond hypothesis). Thekey point is that the fat that M is probabilisti polynomial-time (beause it is an implementationmahine), and so the ombined distinguisher is also probabilisti polynomial-time (provided thatso is D). In the ase of lose-implementations, we rely on the fat that D makes poly(n)-manyqueries and eah suh query is served by poly(n)-many queries of M .2.5 Objets of feasible sizeIn ontrast to the rest of this work, we shortly disuss the omplexity of generating random objets offeasible size (rather than huge random objets). In other words, we are talking about implementinga distribution on poly(n)-bit long strings, and doing so in poly(n)-time. This problem an be astin our general formulation by onsidering spei�ations that ignore their input (i.e., have outputthat only depend on their random-tape). In other words, we may view objets of feasible size asonstant funtions, and osider a spei�ation of suh random objets as a distribution on onstantfuntions. Thus, without loss of generality, the implementation may also ignore its input, andonsequently in this ase there is no di�erene between an implementation by ordinary mahineand an implementation by orale mahine with a random orale.We note that perfet implementations of suh distributions were onsidered before (e.g., in [1,4, 13℄), and distributions for whih suh implementations exist are alled sampleable. In the urrentontext, where the observer sees the entire objet, the distintion between perfet implementationand lose-implementation seems quite tehnial. What seems fundamentally di�erent is the studyof pseudo-implementations.Theorem 2.18 There exist spei�ations of feasible-sized objets that have no lose-implementation,but do have (both truthful and non-truthful) pseudo-implementations.Proof: Any evasive pseudorandom distribution (see [16℄) yields suh a spei�ation. Reall thata distribution is alled evasive if it is infeasible to generate an element in its support (exept withnegligible probability), and is alled pseudorandom if it is omputationally indistinguishable froma uniform distribution on strings of the same length. Thus, by de�nition, an evasive distributionhas no lose-implementation. On the other hand, any pseudorandom distribution an be pseudo-implemented by the uniform distribution (or any other pseudorandom distribution). Indeed, thelatter implementation is not even almost-truthful (with respet to the evasive pseudorandom dis-tribution, beause even a \remotely-truthful" implementation would violate the evasiveness ondi-tion). To allow also the presentation of a truthful implementation, we modify the spei�ation suhthat with exponentially-small probability it produes some sampleable pseudorandom distribution,and otherwise it produes the evasive pseudorandom distribution. The desired truthful pseudo-implementation will always produe the former distribution (i.e., the sampleable pseudorandomdistribution), and still the ombined distribution has no lose-implementation.The proof of Theorem 2.18 also establishes the existene of spei�ations (of feasible-sizedobjets) that have no truthful (and even no almost-truthful) implementation, regardless of the levelof indistinguishability from the spei�ation. Turning the table around, ignoring the truthfulness11

ondition, we ask whether there exist spei�ations of feasible-sized objets that have no pseudo-implementations. A partial answer is provided by the following result, whih relies on a non-standard assumption (see Footnote 7).Proposition 2.19 Assuming the existene of a ollision-free hash funtion7, there exists a spei-�ation of a random feasible-sized objet that has no pseudo-implementation.Proof: Given a ollision-free hash funtion h : f0; 1g2n ! f0; 1gn, onsider the uniform distribu-tion over the set Sn def= f(x; y) 2 f0; 1gn+n : h(x) = h(y)g. Then, any implementation fails to hitthe support of this distribution, whih in turn is polynomial-time reognizable. Thus, the abovespei�ation (of a uniform distribution over Sn) annot be pseudo-implemented.Open Problem 2.20 (A stronger version of Proposition 2.19:) Provide a spei�ation of a randomfeasible-sized objet that has no pseudo-implementation, while relying on a standard intratabilityassumption.Let us digress and onsider lose-implementations. For example, Bah's elegant algorithm forgenerating random omposite numbers along with their fatorization [3℄ an be ast as a (non-trivial) lose-implementation of the said distribution.8 A more elementary set of examples refersto the generation of integers (out of a huge domain) aording to various \nie" distributions (e.g.,the binomial distribution of N trials).9 In fat, Knuth [24, Se. 3.4.1℄ onsiders the generation ofvarious suh distributions, and his treatment (of integer-valued distributions) an be easily adaptedto �t our formalism. This diretion is further pursued in Appendix A. In general, reall that inthe urrent ontext (where the observer sees the entire objet), a lose-implementation must bestatistially lose to the spei�ation. Thus, almost-truthfulness follows \for free":Proposition 2.21 Any lose-implementation of a spei�ation of a feasible-sized objet is almost-truthful to it.Multiple samples. Our general formulation an be used to speify an objet that wheneverinvoked returns an independently drawn sample from the same distribution. Spei�ally, the spe-i�ation may be by a mahine that answers eah \sample-query" by using a distint portion ofits random-tape (as oins used to sample from the basi distribution). Using a pseudorandomfuntion, we may pseudo-implement multiple samples from any distribution for whih one anpseudo-implement a single sample. That is:Proposition 2.22 Suppose that one-way funtions exist, and let D = fDng be a probability en-semble suh that eah Dn ranges over poly(n)-bit long strings. If D an be pseudo-implementedthen so an the spei�ation that answers eah query by an independently seleted sample of D.Furthermore, the latter implementation is by an ordinary mahine and is truthful provided that theformer implementation is truthful.7We stress that the assumption used here (i.e., the existene of a single ollision-free hash funtion) seems strongerthan the standard assumption that refers to the existene of an ensemble of ollision-free funtions (f. [9℄).8We mention that Bah's onrete motivation was to generate prime numbers P along with the fatorization ofP � 1, in order to allow eÆient testing of whether a given number is a primitive element modulo P . Thus, one maysay that Bah's paper provides a lose-implementation (by an ordinary probabilisti polynomial-time mahine) of thespei�ation that selets at random an n-bit long prime P and answers the query g by 1 if and only if g is a primitiveelement modulo P .9That is, for a huge N = 2n, we want to generate i with probability pi def= �Ni �=2N . Note i 2 f0; 1; :::Ng hasfeasible size, and yet the problem is not trivial (beause we annot a�ord to ompute all pi's).12

Proof: Consider �rst an implementation by an orale mahine that merely uses the randomfuntion to assign eah query a random-tape to be used by the pseudo-implementation of (thesingle sample of the distribution) D. Sine truthfulness and omputational-indistinguishability arepreserved by independent samples (f. [14, Se. 3.2.3℄), we are done as far as implementations byorale mahines are onerned. Using Theorem 2.9, the proposition follows.3 Our Main ResultsWe obtain several new implementations of random objets. For sake of larity, we present the resultsin two ategories referring to whether they yield truthful or only almost-truthful implementations.3.1 Truthful ImplementationsAll implementations stated in this setion are by (polynomial-time) orale mahines (whih usea random orale). Corresponding pseudo-implementations by ordinary (probabilisti polynomial-time) mahines an be derived using Theorem 2.9. Namely, assuming the existene of one-wayfuntions, eah of the spei�ations onsidered below an be pseudo-implemented in a truthful man-ner by an ordinary probabilisti polynomial-time mahine.The basi tehnique underlying the following implementations is the embedding of additionalstruture that enables to eÆiently answer the desired queries in a onsistent way or to fore adesired property. That is, this additional struture ensures truthfulness (with respet to the spei-�ation). The additional struture may ause the implementation to have a distribution that di�ersfrom that of the spei�ation, but this di�erene is infeasible to detet (via the polynomially-manyqueries). In fat, the additional struture is typially randomized in order to make it undetetable,but eah possible hoie of oins for this randomization yields a \valid" struture (whih in turnensures truthfulness rather than only almost-truthfulness).3.1.1 Supporting omplex queries regarding boolean funtionsAs mentioned above, a random boolean funtion is trivially implemented (and in a perfet way) byan orale mahine. By this we mean that the spei�ation and the implementation merely servethe standard evaluation queries that refer to a random funtion (i.e., query x is answered by thevalue of the funtion at x). Here we onsider spei�ations that supports more powerful queries.Example 3.1 (answering some parity queries regarding a random funtion): Consider a spei�a-tion by a mahine (and length parameter ` = 2n) that, on input (i; j) where 1 � i � j � 2n, replieswith the parity of the bits in loations i through j of its random-tape. Intuitively, this mahinespei�es an objet that, based on a random funtion f : [2n℄ ! f0; 1g, provides the parity of thevalues of f on any desired interval of [2n℄.Clearly, the implementation annot a�ord to ompute the parity of the orresponding values inits random orale. Still, in Setion 5 we present a perfet implementation of Example 3.1, as wellas truthful lose-implementations of more general types of random objets (i.e., answering anysymmetri \interval" query). Spei�ally, we prove:Theorem 3.2 (see Theorem 5.2): For every polynomial-time omputable funtion g, there existsa truthful lose-implementation of the following spei�ation of a random objet. The spei�ationmahine uses its random-tape to de�ne a random funtion f : f0; 1gn ! f0; 1g, and answers thequery (�; �) 2 f0; 1gn+n by g(P��s�� f(s)). 13

3.1.2 Supporting omplex queries regarding length-preserving funtionsIn Setion 9 we onsider spei�ations that, in addition to the standard evaluation queries, answeradditional queries regarding a random length-preserving funtion. Suh objets have potentialappliations in omputational number theory, ryptography, and the analysis of algorithms (f. [12℄).Spei�ally, we prove:Theorem 3.3 (see Theorem 9.2): There exists a truthful lose-implementation of the followingspei�ation. The speifying mahine, uniformly selets a funtion f : f0; 1gn ! f0; 1gn, and,in addition to the standard evaluation queries, answers the inverse-query y 2 f0; 1gn with the setf�1(y).Alternatively, the implementation may answer with a uniformly distributed preimage of y under f(and with a speial symbol in ase no suh preimage exists).Theorem 3.4 (see Theorem 9.1): There exists a truthful lose-implementation of the followingspei�ation. The speifying mahine, uniformly selets a funtion f : f0; 1gn ! f0; 1gn, andanswers the query (x;m), where x 2 f0; 1gn and m 2 [2poly(n)℄, with the value fm(x) (i.e., fiterated m times on x).This result is related to questions studied in [30, 31℄; for more details, see Setion 9.3.1.3 Random graphs of various typesRandom graphs have been extensively studied (f. [6℄), and in partiular are known to have variousproperties. But does it mean that we an provide truthful lose-implementations of uniformlydistributed (huge) graphs having any of these properties?Let us �rst onsider a spei�ation for a random N -vertex graph, where N = 2n. Indeed, suha random graph an be spei�ed by the mahine, whih viewing its random-tape ! as an N -by-Nmatrix, answers input (i; j) 2 [N ℄ � [N ℄ with the value 0 if i = j, the value !i;j if i < j, and !j;iotherwise. But how about implementing a uniformly distributed graph that has various properties?Example 3.5 (uniformly distributed onneted graphs): Suppose that we want to implement auniformly distributed onneted graph (i.e., a graph uniformly seleted among all onneted N -vertexgraph). An adequate spei�ation may san its random-tape, onsidering eah N2-bit long portion ofit as a desription of a graph, and answer adjaeny-queries aording to the �rst portion that yieldsa onneted graph. Note that the spei�ation works in time
(N2), whereas an implementationneeds to work in poly(logN)-time. On the other hand, reall that a random graph is onneted withoverwhelmingly high probability. This suggests to implement a random onneted graph by a randomgraph. Indeed, this yields a lose-implementation, but not a truthful one (beause oasionally, yetquite rarely, the implementation will yield an unonneted graph).10In Setion 6 we present truthful lose-implementations of Example 3.5 as well as of related spei-�ations (i.e., of uniformly distributed graphs having various additional properties). These are allspeial ases of the following result:10Indeed, the trivial implementation (by a random graph) is almost-truthful, but here we seek a truthful implemen-tation (beause otherwise we annot derive from it (via Theorem 2.9) even an almost-truthful pseudo-implementationby an ordinary mahine). 14

Theorem 3.6 (see Theorem 6.2): Let � be a monotone graph property that is satis�ed by a familyof strongly-onstrutible sparse graphs. That is, for some negligible funtion � (and every N), thereexists a perfet implementation of a (single) N -vertex graph with �(logN) �N2 edges that satis�esproperty �. Then, there exists a truthful lose-implementation of a uniformly distributed graph thatsatis�es property �.We stress that Theorem 6.2 applies also to properties that are not satis�ed (with high probability)by a random graph (e.g., having a lique of size pN). The proof of Theorem 6.2 relies on thefollowing lemma, whih may be of independent interest. Loosely speaking, the lemma asserts thatif a monotone graph property � is satis�ed by some sparse graphs then a uniformly distributedgraph having property � is indistinguishable from a truly random graph.Lemma 3.7 (see Lemma 6.3): Let � be a monotone graph property that is satis�ed by some N -vertex graph having � � �N2 � edges. Then, any mahine that makes at most q adjaeny queries toa graph, annot distinguish a random N -vertex graph from a uniformly distributed N -vertex graphthat satis�es �, exept than with probability O(qp�) + qN�(1�o(1)).3.1.4 Supporting omplex queries regarding random graphsSuppose that we want to implement a random N -vertex graph along with supporting, in additionto the standard adjaeny queries, also some omplex queries that are hard to answer by onlymaking adjaeny queries. For example suppose that on query a vertex v, we need to provide alique of size log2N ontaining v. In Setion 7 we present a truthful lose-implementations of thisspei�ation:Theorem 3.8 (see Theorem 7.2): There exists a truthful lose-implementation of the followingspei�ation. The speifying mahine selets uniformly an N -vertex graph and, in addition to thestandard adjaeny queries, answers (Log-Clique) queries of the form v by providing a randomdlog2Ne-vertex lique that ontains v (and a speial symbol if no suh lique exists).Another result proved in Setion 7 follows:Theorem 3.9 (see Theorem 7.3): There exists a truthful lose-implementation of the followingspei�ation. The speifying mahine selets uniformly an N -vertex graph G, and in ase G isHamiltonian it uniformly selets a (direted) Hamiltonian Cyle in G, whih in turn de�nes ayli permutation � : [N ℄! [N ℄. In addition to the standard adjaeny queries, the spei�ationanswers travel queries of the form (trav; v; t) by providing �t(v), and distane queries of the form(dist; v; w) by providing the smallest t � 0 suh that w = �t(v).3.1.5 Random bounded-degree graphs of various typesRandom bounded-degree graphs have also reeived onsiderable attention. In Setion 8 we presenttruthful lose-implementations of random bounded-degree graphs G = ([N ℄; E), where the mahinespeifying the graph answers the query v 2 [N ℄ with the list of neighbors of vertex v. We stressthat even implementing this spei�ation is non-trivial if one insists on truthfully implementingsimple random bounded-degree graphs (rather than graphs with self-loops and/or parallel edges).Furthermore, we present truthful lose-implementations of random bounded-degree graphs havingadditional properties suh as onnetivity, Hamiltoniity, having logarithmi girth, et. All theseare speial ases of the following result: 15

Theorem 3.10 (see Theorem 8.4:) Let d > 2 be �xed and � be a graph property that satis�es thefollowing two onditions:1. The probability that Property � is not satis�ed by a uniformly hosen d-regular N -vertex graphis negligible in logN .2. Property � is satis�ed by a family of strongly-onstrutible d-regular N -vertex graphs havinggirth !(log logN).Then, there exists a truthful lose-implementation of a uniformly distributed d-regular N -vertexgraph that satis�es property �.The proof relies on the following lemma, whih may be of independent interest. Loosely speaking,the lemma asserts that a random isomorphi opy of a �xed d-regular graph of large girth isindistinguishable from a truly random d-regular graph.Lemma 3.11 (see Lemma 8.1): For d > 2, let G = ([N ℄; E) be any d-regular N -vertex graphhaving girth g. Let G0 be obtained by randomly permuting the verties of G (and presenting theinidene lists in some anonial order). Then, any mahine M that queries the graph for theneighborhoods of q verties of its hoie, annot distinguish G0 from a random d-regular N -vertex(simple) graph, exept than with probability O(q2=(d � 1)(g�1)=2). In the ase d = 2 and q < g � 1,the probability bound an be improved to O(q2=N).3.2 Almost-Truthful ImplementationsAll implementations stated in this setion are by ordinary (probabilisti polynomial-time) mahines.All these results assume the existene of one-way funtions.Again, the basi tehnique is to embed a desirable struture, but (in ontrast to Setion 3.1) herethe embeded struture fores the desired property only with very high probability. Consequently,the resulting implementation is only almost-truthful, whih is the reason that we have to diretlypresent implementations by ordinary mahines.A spei� tehnique that we use is obtaining a funtion as a value-by-value ombination of apseudorandom funtion and a funtion of a desired ombinatorial struture. The ombination isdone suh that the ombined funtion inherits both the pseudorandomness of the �rst funtion andthe ombinatorial struture of the seond funtion (in analogy to a onstrution in [21℄). In someases, the ombination is by a value-by-value XOR, but in others it is by a value-by-value OR witha seond funtion that is very sparse.3.2.1 Random odes of large distaneIn ontinuation to the disussion in the introdution, we prove:Theorem 3.12 (see Theorem 4.2): For Æ = 1=6 and � = 1=9, assuming the existene of one-wayfuntions, there exists an almost-truthful pseudo-implementation of the following spei�ation: Thespei�ation mahine uses its random-tape to uniformly selet a ode C � f0; 1gn having ardinalityK def= 2�n and distane at least Æn, and answers the query i 2 [K℄ with the i-th element in C.We omment that the above atualy spei�es (and implements) an enoding algorithm for theorresponding ode. It would be very interesting if one an also implement a orresponding deodingalgorithm; see further disussion in Setion 4. 16

3.2.2 Random graphs of various typesHaving failed to provide truthful pseudo-implementations to the following spei�ations, we providealmost-truthful ones.Theorem 3.13 (see Theorem 6.5): Let (N) = (2� o(1)) log2N be the largest integer i suh thatthe expeted number of liques of size i in a random N -vertex graph is larger than one. Assuming theexistene of one-way funtions, there exist almost-truthful pseudo-implementations of the followingspei�ations:1. A random graph of Max-Clique (N) � 1: The spei�ation uniformly selets an N -vertexgraph having maximum lique size (N)� 1, and answers edge-queries aordingly.2. A random graph of Chromati Number (1 � o(1)) � N=(N): The spei�ation uniformlyselets an N -vertex graph having Chromati Number (1 � log�1=32 N) � N=(N), and answersedge-queries aordingly.Another interesting question is to provide an almost-truthful pseudo-implementation of a uniformlydistributed graph having a high (global) onnetivity property. Unfortunately, we do not know howto do this. Instead, we provide an almost-truthful pseudo-implementation of a random graph forwhih almost all pairs of verties enjoy a high onnetivity property.Theorem 3.14 (see Theorem 6.6): For every positive polynomial p, assuming the existene of one-way funtions, there exists an almost-truthful pseudo-implementation of the following spei�ation.The speifying mahine selets a graph that is uniformly distributed among all N -vertex graphs forwhih all but at most an �(N) def= 1=p(log2N) fration of the vertex pairs are onneted by at least(1� �(N)) �N=2 vertex-disjoint paths. Edge-queries are answered aordingly.Interestingly, the same implementation works for all polynomials p; that is, the implementation isindependent of p, whih is only used in the de�nition of the spei�ation.4 Implementing Random Codes of Large DistaneFor suÆiently small �; Æ > 0, we onsider odes having relative rate � and relative distane Æ; thatis, we onsider subsets C � f0; 1gn suh that jCj = 2�n and every two distint odewords (i.e.,�; � 2 C) disagree on at least Æn oordinates. Suh a ode is alled good. A random set of K def= 2�nstrings of length n is good with overwhelmingly high probability. Thus, for a random funtionf : [K℄! f0; 1gn, setting C = ff(i) : i 2 [K℄g yields an almost-truthful lose-implementation of arandom ode that is good, where the spei�ation is required to answer the query i with the i-thodeword (i.e., the i-th element in the ode). Reall that it is not lear what happens when wereplae f by a pseudorandom funtion (i.e., it may be the ase that the resulting ode has verysmall distane, although most pairs of odewords are de�nitely far apart). To get a almost-truthfulpseudo-implementation we use a di�erent approah.Constrution 4.1 (implementing a good random ode): For k = �n, we selet a random k-by-n matrix M , and onsider the linear ode generated by M (i.e., the odewords are obtained by allpossible linear ombinations of the rows of M). Now, using a pseudorandom funtion fs : f0; 1gk !f0; 1gn, where s 2 f0; 1gn, we onsider the ode CM;s = ffs(v)�vM : v 2 f0; 1gkg. That is, ourimplementation uses the random-tape (M; s), and provides the i-th odeword of the ode CM;s byreturning fs(i)�iM , where i 2 [2k℄ is viewed as a k-dimensional row vetor (or a k-bit long string).17

To see that Constrution 4.1 is a pseudo-implementation of a random ode, onsider what happenswhen the pseudorandom funtion is replaed by a truly random one (in whih ase we may ignorethe nie properties of the random linear ode generated byM).11 Spei�ally, for any matrixM andany funtion f : [K℄! f0; 1gn, we onsider the ode CfM = ff(v)�vM : v 2 f0; 1gkg. Now, for any�xed hoie of M and a truly random funtion � : [K℄ ! f0; 1gn, the ode C�M is a random ode.Thus, the pseudorandomness of the funtion ensemble ffsgs2f0;1gn implies that, for a uniformlyhosen s 2 f0; 1gn, the ode CM;s = CfsM is omputationally indistinguishable from a random ode.The reason being that ability to distinguish seleted odewords of CfsM (for a random s 2 f0; 1gn)from odewords of C�M (for a truly random funtion � : [K℄! f0; 1gn) yields ability to distinguishthe orresponding fs from �.To see that Constrution 4.1 is almost-truthful to the good ode property, �x any (pseudoran-dom) funtion f and onsider the ode CM = ff(v)�vM : v 2 f0; 1gkg, when M is a randomk-by-n matrix. Fixing any pair of distint strings v; w 2 f0; 1gk , we show that with probability atleast 2�3k (over the possible hoies ofM), the odewords f(v)�vM and f(w)�wM are at distaneat least Æn, and it follows that with probability at least 1 � 2�k the ode CM has a distane atleast Æn. Thus, for a random M , we onsider the Hamming weight of (f(v)�vM)�(f(w)�wM),whih in turn equals the Hamming weight of r�uM , where r = f(v)�f(w) and u = v�w are �xed.The weight of r�uM behaves as a binomial distribution (with suess probability 1/2), and thusthe probability that the weight is less than Æn equals exp(�(1 � H2(Æ)) � n), where H2 denotesthe binary entropy funtion. So we need 1 �H2(Æ) � n > 3k to holds, and indeed it does hold forappropriate hoies of Æ and � (e.g, Æ = 1=6 and � = 1=9). Spei�ally, realling that k = �n, weneed 1�H2(Æ) > 3� to hold. We get:Theorem 4.2 For any Æ 2 (0; 1=2) and � 2 (0; 1 � H2(Æ)), assuming the existene of one-wayfuntions, there exists an almost-truthful pseudo-implementation by an ordinary mahine of thefollowing spei�ation: The spei�ation mahine uses its random-tape to uniformly selet a odeC � f0; 1gn having ardinality K def= 2�n and distane at least Æn, and answers the query i 2 [K℄with the i-th element in C.We omment that Constrution 4.1 atually implements an enoding algorithm for the orrespond-ing ode, whih is atually what is required in the spei�ation. It would be very interesting ifone ould also implement a orresponding deoding algorithm. Note that the real hallenge is toahieve \deoding with errors" (i.e., deode orrupted odewords rather than only deode unor-rupted odewords).12 Spei�ally,Open Problem 4.3 (implementing enoding and deoding for a good random ode): Provide analmost-truthful pseudo-implementation, even by an orale mahine, to the following spei�ation.For some Æ 2 (0; 1=2) and � 2 (0; 1 �H2(Æ)), the spei�ation mahine selets a ode C � f0; 1gnas in Theorem 4.2, and answers queries of two types:Enoding queries: For i 2 [K℄, the query (en; i) is answered with the i-th element in C.Deoding queries: For very w 2 f0; 1gn that is at distane at most Æn=3 from C, the query (de; w)is answered by the index of the (unique) odeword that is losest to w.11In partiular, note that the resulting ode is unlikely to be linear. Furthermore, any n�O(1) > k odewords arelikely to be linearly independent (both when we use a random funtion or a pseudorandom one).12Note that a simple modi�ation of Constrution 4.1 (e.g., replaing the i-th odeword, w, by the new odeword(i; w)), allows trivial deoding of unorrupted odewords.18

Indeed, we are interested in an implementation by an ordinary mahine, but as stated in Setion 10,it may make sense to �rst onsider implementations by orale mahines. Furthermore, it would benie to obtain truthful implementations, rather than almost-truthful ones. In fat, it will even beinteresting to have a truthful pseudo-implementation of the spei�ation stated in Theorem 4.2.5 Boolean Funtions and Interval-Sum QueriesIn this setion we show that the spei�ation of Example 3.1 an be perfetly implemented (by anorale mahine). Reall that we seek to implement aess to a random funtion f : f0; 1gn ! f0; 1gaugmented with answers regarding the parity (or XOR) of the values of f on given intervals,where the intervals are with respet to the standard lex-order of n-bit string. That is, the queryq = (�; �) 2 f0; 1gn+n, where 0n � � � � � 1n, is to be answered by ���s��f(s). The spei�ationan answer this query in the straightforward manner, but an implementation annot a�ord to doso (beause a straightforward omputation may take 2n = 2jqj=2 steps). Thus, the implementationwill do something ompletely di�erent.13We present an orale mahine that uses a random funtion f 0 : [ni=0f0; 1gi ! f0; 1g. Using f 0,we de�ne f : f0; 1gn ! f0; 1g as follows. We onsider a binary tree of depth n and assoiate its ithlevel verties with strings of length i suh that the vertex assoiated with the string s has a left(resp., right) hild assoiated with the string s0 (resp., s1). As a mental experiment, going fromthe root to the leaves, we label the tree's verties as follows:1. We label the root (i.e., the level-zero vertex, whih is assoiated with �) by the value f 0(�).2. For i = 0; :::; n � 1, and eah internal vertex v at level i, we label its left hild by the valuef 0(v0), and label its right hild by the XOR of the label of v and the value f 0(v0).(Thus, the label of v equals the XOR of the values of its hildren.)3. The value of f at � 2 f0; 1gn is de�ned as the label of the leaf assoiated with �.By using indution on i = 0; :::; n, it an be shown that the level i verties are assigned uniformlyand independently distributed labels (whih do depend, of ourse, on the level i� 1 labels). Thus,f is a random funtion. Furthermore, the label of eah internal node v equals the XOR of thevalues of f on all leaves in the subtree rooted at v.Note that the random funtion f 0 is used to diretly assign (random) labels to all the left-siblings.The other labels (i.e., of right-siblings) are determined by XORing the labels of the parent and theleft-sibling. Furthermore, the label of eah node in the tree is determined by XORing at most n+1values of f 0 (residing in appropriate left-siblings). Spei�ally, the label of the vertex assoiatedwith �1 � � � �i is determined by the f 0-values of the strings �; 0; �10; :::; �1 � � � �i�10. Atually, thelabel of the vertex assoiated with �1j , where � 2 f�g [f0; 1gj�j�10 and j � 0, is determined by13The following implementation is not the simplest one possible, but we hose to present it beause it generlizesto yield a proof of Theorem 5.2 (i.e., interval-sum rather than interval-sum-mod-2). A simpler implementation ofExample 3.1, whih does not seem to generalize to the ase of interval-sum (as in Theorem 5.2), was suggested tous reently by Phil Klein, Silvio Miali and Dan Spielman. The idea is to redue the problem of Example 3.1 to thespeial ase where we only need to serve interval-queries for intervals starting at 0n; that is, we only need to serve(interval) queries of the form (0n; �). (Indeed, the answer to a query (�0; �0), where �0 6= 0n, an be obtained fromthe answers to the queries (0n; �00) and (0n; �0), where �00 is the string preeding �0. Next observe that the query(0n; �) an be served by f 0(�), where f 0 : f0; 1gn ! f0; 1g is a random funtion (given as orale).19

the f 0-values of j + 1 verties (i.e., those assoiated with �; �0; �10:::; �1j�10).label(�1j) = label(�1j�1)� label(�1j�10)...= label(�)� label(�0) � � � � label(�1j�20)� label(�1j�10)= f 0(�)� f 0(�0) � � � � f 0(�1j�20)� f 0(�1j�10)Thus, we obtain the value of f at any n-bit long string by making at most n+1 queries to f 0. Moregenerally, we an obtain the label assigned to eah vertex by making at most n+1 queries to f 0. Itfollows that we an obtain the value of ���s��f(s) by making O(n2) queries to f 0. Spei�ally, thedesired value is the XOR of the leaves residing in at most 2n � 1 full binary sub-trees, and so wemerely need to XOR the labels assigned to the roots of these sub-trees. Atually, O(n) queries anbe shown to suÆe, by taking advantage on the fat that we need not retrieve the labels assigned toO(n) arbitrary verties (but rather to verties that orrespond to roots of sub-trees with onseutiveleaves). We get:Theorem 5.1 There exists a perfet implementation (by an orale mahine) of the spei�ation ofExample 3.1.The above proedure an be generalize to handle queries regarding any (eÆiently omputable)symmetri funtion of the values assigned by f to any given interval. In fat, it suÆes to answerqueries regarding the sum of these values. We thus state the following result.Theorem 5.2 There exists a truthful lose-implementation (by an orale mahine) of the followingspei�ation of a random objet. The spei�ation mahine uses its random-tape to de�ne a randomfuntion f : f0; 1gn ! f0; 1g, and answers the query (�; �) 2 f0; 1gn+n by P��s�� f(s).Note that, unlike in the ase of Theorem 5.1, the implementation is not perfet, whih is the reasonthat we expliitly mention that it is truthful.Proof: All that is needed in order to extend the \XOR onstrution" is to label eah vertex vwith the sum (rather than the sum mod 2) of the labels of all the leaves in the sub-tree rootedat v. In partiular, internal nodes should be assigned random labels aording to the binomialdistribution, whih makes the implementation more omplex (even for assigning labels to the rootand more so for assigning labels to left-siblings after their parents was assigned a label). Let usstart with an overview:1. We label the root by a value generated aording to the binomial distribution; that is, theroot (of the depth-n binary tree) is assigned the value j with probability �Nj �=2N , whereN def= 2n. This random assignment will be implemented using the value f 0(�), where here f 0is a random funtion ranging over poly(n)-bit long strings rather than over a single bit (i.e.,f 0 : [ni=0f0; 1gi ! f0; 1gpoly(n)).2. For i = 0; :::; n � 1, and eah internal vertex v at level i, we label its left hild as follows, byusing the value f 0(v0). Suppose that v is assigned the value T � 2n�i. We need to seleta random pair of integers (l; r) suh that l + r = T and 0 � l; r � 2n�i�1. Suh a pairshould be seleted with probability that equals the probability that, onditioned on l+r = T ,the pair (l; r) is seleted when l and r are distributed aording to the binomial distribution20

(of 2n�i�1 trials). That is, let M = 2n�i be the number of leaves in the tree rooted at v.Then, for l + r = T and 0 � l; r � M=2, the pair (l; r) should be seleted with probability�M=2l � � �M=2r �=�Ml+r�.3. As before, the value of f at � 2 f0; 1gn equals the label of the leaf assoiated with �.Of ourse, the above two types of sampling proedures have to be implemented in poly(n)-time,rather than in poly(2n)-time (and poly(n2n�i)-time, respetively). These implementations annotbe perfet (beause some of the events our with probability 2�N = 2�2n), but it suÆes to provideimplementations that generates these samples with approximately the right distribution (e.g., withdeviation at most 2�n or so). The details onerning these implementations are provided in anAppendix A.We stress that the sample (or label) generated for the (left sibling) vertex assoiated with� = �00 is produed based on the randomness provided by f 0(�). However, the atual sample (orlabel) generated for this vertex depends also on the label assigned to its parent. (Indeed, this isdi�erent from the ase of XOR.) Thus, to determine the label assigned to any vertex in the tree,we need to obtain the labels of all its anestors (up-to the root). Spei�ally, let S1(N; �) denotethe value sampled from the binomial distribution (on N trials), when the sampling algorithm usesoins �; and let S2(T; �) denote the value assigned to the left-hild, when its parent is assignedthe value T , and the sampling algorithm uses oins �. Then, the label of the vertex assoiatedwith � = �1 � � � �t, denoted label(�), is obtained by omputing the labels of all its anestors asfollows. First, we ompute label(�) S1(N; f 0(�)). Next, for i = 1; :::; t, we obtain label(�1 � � � �i)by omputing label(�1 � � � �i�10) S2(label(�1 � � � �i�1); f 0(�1 � � � �i�10)), and if neessary (i.e.,�i = 1) by omputing label(�1 � � � �i�11) label(�1 � � � �i�1)� label(�1 � � � �i�10). That is, we �rstdetermine the label of the root (using the value of f 0 at �); and next, going along the path from theroot to �, we determine the label of eah vertex based on the label of its parent (and the value off 0 at the left-hild of this parent). Thus, the omputation of the label of �, only requires the valueof f 0 on j�j + 1 strings. As in the ase of XOR, this allows to answer queries (regarding the sumof the f -values in intervals) based on the labels of O(n) internal nodes, where eah of these labelsdepend only on the value of f 0 at O(n) points. (In fat, as in the ase of XOR, one may show thatthe values of these related internal nodes depend only on the value of f 0 at O(n) points.)Regarding the quality of the implementation, by the above desription it is lear that the labelof eah internal node equals the sum of the labels of its hildren, and thus the implementationis truthful. To analyze its deviation from the spei�ation, we onsider the mental experiment inwhih both sampling proedures are implemented perfetly (rather than almost so), and show thatin suh a ase the resulting implementation is perfet. Spei�ally, using indution on i = 0; :::; n, itan be shown that the level i verties are assigned labels that are independently distributed, whereeah label is distributed as the binomial distribution of 2n�i trials. (Indeed, the labels assigned tothe verties of level i do depend on the labels assigned in level i� 1.) Thus, if the deviation of theatual sampling proedures is bounded by 2�n � �, then the atual implementation is at statistialdistane at most � from the spei�ation.14 The latter statement is atually stronger than requiredfor establishing the theorem.Open problems: Theorem 5.2 provides a truthful implementation for any (feasibly-omputable)symmetri funtion of the values assigned by a random funtion over any interval of [N ℄ � f0; 1gn.Two natural extensions are suggested below.14We an a�ord to set � = exp(�poly(n)) < 1=poly(N), beause the runing time of the atual sampling proeduresis poly-logarithmi in the desired deviation. 21

Open Problem 5.3 (Non-symmetri queries): Provide a truthful lose-implementation to the fol-lowing spei�ation. The spei�ation mahine de�nes a random funtion f : f0; 1gn ! f0; 1g,and answers queries of the form (�; �) 2 f0; 1gn+n with the value g(f(�); :::; f(�)), where g issome simple funtion. For example, onsider g(�1; :::; �t) that returns the smallest i 2 [t℄ suh that�i � � � �i+b1+log2 t�1 = 11+blog2 t (and a speial symbol if no suh i exists). More generally, onsidera spei�ation mahine that answers queries of the form (k; (�; �)) by returning smallest i 2 [t℄suh that �i � � � �i+k�1 = 1k, where �j is the j-th element in the sequene (f(�); :::; f(�)).Note that the latter spei�ation is interesting mostly for k 2 f!(log n); :::; n + !(log n)g. Fork � ksm = O(logn) we may just make sure (in the implementation) that any onseutive intervalof length 2ksmn2 ontains a run of ksm ones.15 One this is done, queries (referring to k � ksm) maybe served (by the implementation) in a straightforward way (i.e., by sanning at most two suhonseutive intervals, whih in turn ontain 2ksm+1n2 = poly(n) values). Similarly, for k � klg =n+ !(log n), we may just make sure (in the implementation) that no pair of onseutive intervals,eah of length 5n, has a run of min(klg; 2n) ones.Open Problem 5.4 (Beyond interval queries): Provide a truthful lose-implementation to thefollowing spei�ation. The spei�ation mahine de�nes a random funtion f : f0; 1gn ! f0; 1g,and answers queries that suintly desribe a set S, taken from a spei� lass of sets, with thevalue ��2Sf(�). In Example 3.1 the lass of sets is all intervals of [N ℄ � f0; 1gn, represented bytheir pair of end-points. Another natural ase is the lass of sub-ubes of f0; 1gn; that is, a setS is spei�ed by an n-sequene over f0; 1; �g suh that the set spei�ed by the sequene (�1; :::; �n)ontains the n-bit long string �1 � � ��n if and only if �i = �i for every �i 2 f0; 1g.In both ases (i.e., Problems 5.3 and 5.4), even if we do not require truthfulness, the implementationmay be easily distinguished from the spei�ation if the former answers the ompound queries ina non-onsistent manner. At least, a potential implementation seems to be in trouble if it \liesbluntly" (e.g., answers eah query by an independent random bit).An appliation to streaming algorithms: Motivated by a omputational problem regardingmassive data streams, Feigenbaum et. al. [11℄ onsidered the problem of onstruting a sequene ofN random variables, X1; :::;XN , over f�1g suh that1. The sequene is \range-summable" in the sense that given t 2 [N ℄ the sum Pti=1Xi an beomputed in poly(logN)-time.2. The random variables are almost 4-wise independent (in a ertain tehnial sense).Using the tehniques uderlying Theorem 5.2, for any k � poly(logN) (and in partiular for k = 4),we an onstrut a sequene that satis�es the above properties. In fat, we get sequene that isalmost k-wise independent in a stronger sense than stated in [11℄ (i.e., we get a sequene that isstatistially lose to being k-wise independent). This is ahieved by using the onstrution presentedin the proof of Theorem 5.2, exept that f 0 is a funtion seleted uniformly from a family of k�(n+1)-wise independent funtions rather than being a truly random funtion, where n = log2N (as above).Spei�ally, we use funtions that map f0; 1gn+1 � [ni=0f0; 1gi to f0; 1gpoly(n) in a k � (n+ 1)-wise15That is, the random funtion f : [N ℄ ! f0; 1g is modi�ed suh that, for every j 2 [N=2ksmn2℄, the interval[(j�1)2ksmn2+1; :::; j2ksmn2℄ ontains a run of ksm ones. This modi�ation an be performed on-the-y by sanningthe relevant interval and setting to 1 a random blok of ksm loations if neessary. Note that, with overwhelminglyhigh probability, no interval is atually modi�ed. 22

independent manner, and reall that suh funtions an be spei�ed by poly(n) many bits andevaluated in poly(n)-time (sine k � poly(n)). In the analysis, we use the fat that the valuesassigned by f 0 to verties in eah of the (n+1) levels of the tree are k-wise independent. Thus, wean prove by indution on i = 0; :::; n, that every k verties at level i are assigned labels aordingto the orret distribution (up to a small deviation). Reall that, as stated in Footnote 14, we anobtain statistial deviation that is negligible in N (in this ase, with respet to a k-wise independentsequene).6 Random Graphs Satisfying Global PropertiesSuppose that you want to run some simulations on huge random graphs. You atually take itfor granted that the random graph is going to be Hamiltonian, beause you have read Bollobas'sbook [6℄ and you are willing to disard the negligible probability that a random graph is notHamiltonian. Suppose that you want to be able to keep suint representations of these graphsand/or that you want to generate them using few random bits. Having also read some works onpseudorandomness (e.g., [19, 5, 32, 15℄), you plan to use pseudorandom funtions [15℄ in order toeÆiently generate and store representations of these graphs. But wait a minute, are the graphsthat you generate this way really Hamiltonian?The point is that being Hamiltonian is a global property of the graph, whih in turn is a huge(i.e., exp(n)-sized) objet. This global property annot be heking the adjaeny of polynomiallymany (i.e., poly(n)-many) vertex-pairs, and so its violation annot be translated to a ontraditionof the pseudorandomness of the funtion. Indeed, the substitution of a random funtion (or a ran-dom graph) by a pseudorandom one is not guaranteed to preserve the global property. Spei�ally,it may be the ase that all pseudorandom graphs are even disonneted.16 So, an we eÆientlygenerate huge Hamiltonian graphs? As we show below, the answer to this question is positive.In this setion we onsider the implementation of various types of huge random graphs. Westress that we refer to simple and labeled graphs; that is, we onsider graphs without self-loopsor parallel edges, and with labeled verties (i.e., the 3-vertex graph onsisting of the edge (1; 2)is di�erent from the 3-vertex graph onsisting of the edge (1; 3)). In this setion, implementing agraph means answering adjaeny queries; that is, the answer to the query (u; v) should indiatewhether or not u and v are adjaent in the graph. Reall that the implementation ought to work intime that is poly-logarithmi in the size of the graph, and thus annot deide \global" propertiesof the graph. That is, we deal with graphs having N = 2n verties, and our proedures run inpoly(n)-time.As in Setion 3, we present our results in two ategories referring to whether they yield truthfulor only almost-truthful implementations. In the ase of truthful implementations, we show lose-implementations by (polynomial-time) orale mahines (whih use a random orale), while bearingin mind that orresponding pseudo-implementations by ordinary (probabilisti polynomial-time)mahines an be derived using Theorem 2.9. In ontrast, in the ase of almost-truthful implemen-tations, we work diretly with ordinary (probabilisti polynomial-time) mahines.16Indeed, for eah funtion fs taken from some pseudorandom ensemble ffs : [2n℄ � [2n℄ ! f0; 1ggs, it may holdthat fs(vs; u) = fs(u; vs) = 0 for all u 2 [2n℄, where vs depends arbitrarily on fs. For example, given a pseudorandomensemble ffsg onsider the ensemble ffs;vg suh that fs;v(v; u) = fs;v(u; v) = 0n for all u's, and fs;v(x; y) = fs(x; y)for all other (x; y)'s.
23

6.1 Truthful implementationsReall that a random graph (i.e., a uniformly distributed N -vertex graph) an be perfetly im-plemented via an orale mahine that, on input (u; v) 2 [N ℄ � [N ℄ and aess to the oralef : [N ℄ � [N ℄ ! f0; 1g, returns 0 if u = v, f(u; v) if u < v, and f(v; u) otherwise. (Indeed,we merely derive a symmetri and non-reexive version of f .)Turning to a less trivial example, let us losely-implement a random Bipartite Graph with Nverties on eah side. This an be done by viewing the random orale as two funtions, f1 and f2,and answering queries as follows:� The funtion f1 is used to losely-implement a random partition of [2N ℄ into two sets of equalsize. Spei�ally, we use f1 to losely-implement a permutation � over [2N ℄, and let the �rstpart be S def= fv : �(v) 2 [N ℄g. Let �S(v) def= 1 if v 2 S and �S(v) def= 0 otherwise.� The query (u; v) is answered by 0 if �S(u) = �S(v). Otherwise, the answer equals f2(u; v) ifu < v and f2(v; u) otherwise.The above implementation an be adapted to losely-implement a random Bipartite Graph (seedetails in Appendix B). Viewed in di�erent terms, we have just disussed the implementation ofrandom graphs satisfying ertain properties.We now turn to Example 3.5 (whih spei�es a uniformly distributed onneted graph). Inontinuation to the disussion in Setion 3, we now present a lose-implementation that is truthful:Constrution 6.1 (Implementing a random onneted graph): Use the orale to implement arandom graph, represented by the symmetri and non-reexive random funtion g : [N ℄ � [N ℄ !f0; 1g, as well as a permutation � over [N ℄, whih in turn is used to de�ne a Hamiltonian path�(1) ! �(2) ! � � � ! �(N). Along with �, implement the inverse permutation ��1, where this isdone by using Theorem 2.13.17 Answer the query (u; v) by 1 if and only if either g(u; v) = 1 or(u; v) is on the Hamiltonian path (i.e., j��1(u)� ��1(v)j = 1).Clearly, the above implementation is truthful. (Indeed, it atually implements a random Hamilto-nian graph.) The implementation is statially-indistinguishable from the spei�ation, beause itis unlikely to hit an edge of the \fored Hamiltonian path" when making only poly(logN) queries.(A proof of the latter statement appears below.) A similar strategy an be used for any monotonegraph property that satis�es the following ondition:(C) The property is satis�ed by a family of strongly-onstrutible sparse graphs. That is, forsome negligible funtion � (and every N), there exists a perfet implementation of a (single)N -vertex graph with �(logN) �N2 edges that satis�es the property.We have:Theorem 6.2 Let � be a monotone graph property that satis�es Condition C. Then, there exists atruthful lose-implementation (by an orale mahine) of a uniformly distributed graph that satis�esproperty �.We omment that Condition C implies that a randomN -vertex graph is statistially-indistinguishablefrom a random N -vertex graph having property �. This fat, whih may be of independent interest,is stated and proved �rst.17That is, we use a truthful lose-implementation of Example 2.4. In fat, we only need ��1, and so the truthfullose-implementation of Example 2.3 (as stated in Theorem 2.12) atually suÆes.24

Lemma 6.3 Let � be a monotone graph property that is satis�ed by some N -vertex graph having� � �N2 � edges. Then, any mahine that makes at most q adjaeny queries to a graph, annotdistinguish a random N -vertex graph from a uniformly distributed N -vertex graph that satis�es �,exept than with probability O(qp�) + qN�(1�o(1)).Proof: As in [18, Se. 4℄, without loss of generality, we may on�ne ourselves to analyzing mahinesthat inspet a random indued subgraph. That is, sine both graph lasses are losed underisomorphism, it suÆes to onsider the statistial di�erene between the following two distributions:1. The subgraph of a uniformly distributed N -vertex graph indued by a uniformly seleted setof s def= q + 1 verties.2. The same vertex-indued subgraph (i.e., indued by a random set of s verties) of a uniformlydistributed N -vertex graph that satis�es property �.Clearly, Distribution (1) is uniform over the set of s-vertex graphs, and so we have to show thatapproximately the same holds for Distribution (2). Let T def= �N2 � and M def= �T , and let G0 be anN -vertex graph with M edges that satis�es property �. Consider the set of all graphs that an beobtained from G0 by adding T�M2 edges. The number of these graphs is T �MT�M2 ! = 2T�M�(pT �M) > 2T�M�O(1)� 12 �log2 TThat is, this set ontains at least a 2�(M+O(1)+(log2 T)=2) = 2��0�T fration of all possible graphs,where �0 def= �+((log2 T)=2T). Let X = X1 � � �XT 2 f0; 1gT be a random variable that is uniformlydistributed over the set of all graphs that satisfy property �. Then X has entropy at least T � �0T(i.e., H(X) � T � �0T). It follows that 1T PTi=1H(XijXi�1 � � �X1) � 1 � �0. Note that the index iranges over all unordered pairs of elements of [N ℄. (We assume some �xed order on these pairs.)We are interested in the expeted value of P(s2)i=1H(Xei(S)jXei�1(S) � � �Xe1(S)), where ei(S) is theith pair in the set f(u; v) : u < v 2 Sg and S is a uniformly seleted set of t verties. ClearlyH(Xei(S)jXei�1(S) � � �Xe1(S)) � H(Xei(S)jXei(S)�1 � � �X1)and so ES 264(s2)Xi=1H(Xei(S)jXei�1(S) � � �Xe1(S))375 � s2! � (1� �0)beause for a uniformly distributed i 2 [�s2�℄ it holds that ES;i hH(Xei(S)jXei(S)�1 � � �X1)i equalsEj [H(Xj jXj�1 � � �X1)℄, where j is uniformly distributed in [T ℄. Thus, for a random s-subset S,letting YS = (X(u;v))f(u;v):u<v2Sg, we have ES[YS ℄ � t� �00, where t def= �s2� and �00 def= t�0. It follows(see Appendix C) that the statistial di�erene of YS from the uniform distribution over f0; 1gt isat most O(p�00), whih in turn equals O(qp�+ T�(1�o(1))). The lemma follows.Proof of Theorem 6.2: Let H = ([N ℄; E) be a graph satisfying Condition C. In partiular,given (u; v) 2 [N ℄� [N ℄, we an deide whether or not (u; v) 2 E in polynomial-time. Then, usingthe graph H instead of the Hamiltonian path in Constrution 6.1, we implement a (random) graphsatisfying property �. That is, we answer the query (u; v) by 1 if and only if either g(u; v) =25

1 or (u; v) is an edge in (the \fored" opy of) H (i.e., (��1(u); ��1(v)) 2 E). Sine � is amonotone graph property, the instanes of the implementation always satisfy the property �,and thus the implementation is truthful. Furthermore, by Condition C and the fat that � isa lose-implementation of a random permutation, the probability that a mahine that queries theimplementation for poly(logN) times hits an edge of H is negligible in logN . Thus, suh a mahineannot distinguish the implementation from a random graph. Using Lemma 6.3 (with � = �(logN)and q = poly(logN)), the theorem follows.Examples: Indeed, monotone graph properties satisfying Condition C inlude Connetivity,Hamiltoniity, k-Connetivity (for every �xed k)18, ontaining any �xed-size graph (e.g., ontain-ing a triangle or a 4-lique or a K3:3 or a 5-yle), having a perfet mathing, having diameter atmost 2, ontaining a lique of size at least logN , et. All the above properties are satis�ed, withoverwhelmingly high probability, by a random graph. However, Theorem 6.2 an be applied also to(monotone) properties that are not satis�ed by a random graph; a notable example is the propertyof ontaining a lique of size at least pN .6.2 Almost-truthful implementationsWe start by noting that if we are willing to settle for almost-truthful implementations by ordinarymahines then all properties that hold (with suÆiently high probability) for random graphs anbe handled easily. Spei�ally:Proposition 6.4 Let � be any graph property that is satis�ed by all but a negligible (in log2N)fration of the N -vertex graphs. Then, there exists an almost-truthful lose-implementation (by anorale mahine) of a uniformly distributed graph that satis�es property �.Indeed, the implementation is by a random graph (whih in turn is implemented via a randomorale). Note, however, that it is not lear what happens if we replae the random graph by apseudorandom one (f. Theorem 2.11). Furthermore, the proof of Theorem 2.11 an be extendedto show that there exist graph properties that are satis�ed by random graphs but do not have analmost-truthful implementation by an ordinary mahine.19 In light of the above, we now fous onalmost-truthful implementations by ordinary mahines.Max-lique and hromati number. We onsider the onstrution of pseudorandom graphsthat approximately preserve the max-lique and hromati number of random graphs.Theorem 6.5 Let (N) = (2 � o(1)) log2N be the largest integer i suh that the expeted numberof liques of size i in a random N -vertex graph is larger than one. Assuming the existene ofone-way funtions, there exist almost-truthful pseudo-implementations, by ordinary mahines, ofthe following spei�ations:18In fat, we may have k = k(N) = �(logN) � N for any negligible funtion �. The sparse graph may onsist ofedges between eah of the N vertex and eah of k(N) designated verties.19The proof of Theorem 2.11 relates to the Kolmogorov Complexity of the funtion (or graph). In order to obtaina graph property, we onsider the minimum value of the Kolmogorov Complexity of any isomorphi opy of the saidgraph, and onsider the set of graphs for whih this quantity is greater than N2=4. The latter property is satis�ed byall but at most 2N2=4 �(N !)� 2N2=3 graphs. On the other hand, the property annot be satis�ed by an instane of animplementation via an ordinary mahine. Thus, any implementation (regardless of \quality") must be non-truthful(to the spei�ation) in a strong sense. 26

1. A random graph of Max-Clique (N) � 1: The spei�ation uniformly selets an N -vertexgraph having maximum lique size (N)� 1, and answers edge-queries aordingly.2. A random graph of Chromati Number (1 � o(1)) � N=(N): The spei�ation uniformlyselets an N -vertex graph having Chromati Number (1 � log�1=32 N) � N=(N), and answersedge-queries aordingly.That is, we are required to implement random-looking graphs having ertain properties. Indeed, arandom N -vertex graph has the above two properties with probability at least 1�N�0:99 (f. [6℄).Thus, a random graph provides an almost-truthful lose-implementation (by an orale mahine)of a uniformly seleted graph having eah of these properties, but it is not lear what happenswhen we replae the random orale by a pseudorandom funtion. (In fat, one an easily onstrutpseudorandom funtions for whih the replaement yields a graph with a huge lique.) Note thatTheorem 6.5 does not follow from Theorem 6.2, beause the properties at hand are not monotone.20Thus, a di�erent approah is needed.Proof Sketh: We start with Part 1. We de�ne the adjaeny funtion g : [N ℄ � [N ℄ ! f0; 1gof a graph by XORing a pseudorandom (symmetri and non-reexive) funtion f with a k-wiseindependent funtion h (i.e., g(u; v) = f(u; v)�h(u; v)), where k def= 5n2 (and n = log2N). Reallthat suh k-wise independent funtions an be onstruted based on kn random bits. The resultingfuntion g is both pseudorandom and k-wise independent (analogously to the onstrution in [21℄).Now, the key observation is that the standard analysis (of the size of the max-lique in a randomgraph) merely refer to the expeted number of liques os �ze (N)�2 and to its variane. Thus, thisanalysis only depends on the randomness of edges within pairs of ((N) + 2)-subsets of verties;that is, a total of 2 � �(N)+22 � < ((N) + 2)2 = (4 + o(1)) � n2 vertex-pairs. Hene the analysisontinues to hold for g (whih is 5n2-independent). It follows that g provides an almost-truthfulpseudo-implementation of a random N -vertex graph with max-lique size (N)� 1.We now turn to Part 2. Let g0 be the omplement of a pseudorandom graph as in Part 1.We now de�ne the adjaeny funtion g : [N ℄ � [N ℄ ! f0; 1g of a pseudorandom graph by takingthe bit-wise onjuntion of the pseudorandom graph g0 (from above) with a funtion h0 seleteduniformly in a set H 0 (de�ned below); that is, g(u; v) = 1 i� g0(u; v) = h0(u; v) = 1. Intuitively, eahfuntion h0 2 H 0 fores a over of [N ℄ by N=(N) independent sets (eah of size (N)), and so thehromati number of g is at most N=(N). On the other hand, eah h0 2 H 0 only has independentsets of size (N) and taking the onjuntion with a random g0 (whih is k-wise independent fork > �(N)+32 �) is unlikely to reate an independent set of size (N)+3, and so the hromati numberof g is at least N=((N) + 2). Details follow.Eah funtion h0 2 H 0 partitions [N ℄ to �(N) = bN=(N) sets, eah of size (N), and hash0(u; v) = 1 if and only if u and v belong to di�erent sets; that is, the omplement of h0 is a disjointset of liques eah having as a vertex-set one of the sets of the partition. Thus, suh h0 auses eahof these vertex-set to be an independent set in g. The funtions in H 0 di�er only in the partitionsthey use. It turns out that it suÆes to use \suÆiently random" partitions. Spei�ally, we useH 0 = fh0rgr2R, where R = fr 2 [N ℄ : gd(r;N) = 1g, and onsider for eah r 2 R the partition(S(0)r ; :::; S(�(N)�1)r ; S(�(N))r), where S(i)r = f((N)i + j)r mod N : j = 1; :::; (N)g for i < �(N) andS(�(N))r = f((N)�(N) + j)r mod N : j = 1; :::; N � (N)�(N)g. Thus, h0r(u; v) = 1 if and onlyif u and v do not reside in the same S(i)r (i.e., h0r(u; v) = 0 essentially means that u � v � jr20For the oloring property, Condition C does not hold either.27

(mod N) for some j 2 f�((N) � 1)g). The graph G de�ned by g is pseudorandom beause theobserver is unlikely to make a query (u; v) that is a�eted by h0r (beause h0r(u; v) = 0 yields2((N) � 1) � 1 = O(logN) andidates for r, whih in turn is seleted uniformly in the set R,where jRj > N=O(logN)). The hromati number of G is at most �(N) + 1, beause its vertex-setis overed by �(N) + 1 independent sets. On the other hand, relying on the basi struture ofh0 and on the k-wise independene of g0, we an show21 that, with high probability, the graph Gdoes not ontain an independent set of size (N) + 3. Thus, the hromati number of G is at leastN=((N)+2) > (1�(2=(n))��(N). Its follows that G is an almost-truthful pseudo-implementationof the desired spei�ation.High onnetivity. Reall that in a randomN -vertex graph every pair of verties is onneted byat least (1�o(1))N=2 vertex-disjoint paths. One interesting question is to provide an almost-truthfulpseudo-implementation of a uniformly distributed graph having this high (global) onnetivityproperty. Unfortunately, we do not know how to do this. A seond best thing may be to providean almost-truthful pseudo-implementation of a random graph for whih almost all pairs of vertiesenjoy this \high onnetivity" property.Theorem 6.6 For every positive polynomial p, assuming the existene of one-way funtions, thereexists an almost-truthful pseudo-implementation by an ordinary mahine of the following spei�-ation. The speifying mahine selets a graph that is uniformly distributed among all N -vertexgraphs for whih all but at most an �(N) def= 1=p(log2N) fration of the vertex pairs are onnetedby at least (1� �(N)) �N=2 vertex-disjoint paths. Edge-queries are answered aordingly.Interestingly, the same implementation works for all polynomials p; that is, the implementation isindependent of p, whih is only needed for the de�nition of the spei�ation. In fat, in ontrastto all other implementations presented in this work, the implementation used in the proof ofTheorem 6.6 is the straightforward one: It uses a pseudorandom funtion to de�ne a graph in theobvious manner. The rux of the proof is in showing that this implementation is omputationally-indistinguishable from the above spei�ation.Proof Sketh: We use a pseudorandom funtion to de�ne a graph G = ([N ℄; E) in the straight-forward manner, and answer adjaeny queries aordingly. This yields a pseudo-implementationof a truly random graph, whih in turn has the strong onnetivity property (with overwhelminglyhigh probability). Fixing a polynomial p and � def= �(N) def= 1=p(log2N), we prove that this imple-mentation is almost-truthful to the orresponding spei�ation. That is, we show that all but an �fration of the vertex pairs are onneted via (1� �) �N=2 vertex-disjoint paths. We will show thatif this is not the ase, then we an distinguish a random graph (or funtion) from a pseudorandomone.Suppose towards the ontradition that, with non-negligible probability, a pseudorandom graphviolates the desired property. Fixing suh a graph, G = ([N ℄; E), our hypothesis means that at leastan � fration of the vertex-pairs are onneted (inG) by fewer than (1��)�N=2 vertex-disjoint paths.21In the analysis we �x any h0 2 H 0 and show that that deleting edges as instruted by a k-wise independentfuntion (i.e., g0) is unlikely to reate an independent set of size (N) + 3. Spei�ally, we bound the expetednumber of independent set of size (N) + 3 in the resulting graph, and thus we only rely on the independene ofthe seletion of edges (by g0) for pairs of verties within sets of (N) + 3 verties. Note that the various andidateindependent sets di�er with respet to their intersetion with the independent sets of h0, and the analysis has to takethis into aount. The tehnial but elementary analysis is given in Appendix C.28

Consider suh a generi pair, denoted (u; v), and de�ne S0 def= �G(u)\�G(v), S1 def= �G(u) n �G(v),and S2 def= �G(v) n �G(u), where �G(w) def= fx2 [N ℄ : (w; x) 2Eg. Note that if G were a randomgraph then we would expet to have jS0j � jS1j � jS2j � N=4. Furthermore, we would expet tosee a large (i.e., size � N=4) mathing in the indued bipartite graph B = ((S1; S2); E \ (S1�S2));that is, the bipartite graph having S1 on one side and S2 on the other. So, the intuitive idea is totest that both these onsidition are satis�ed in the pseudorandom graph. If they do then u andv are \suÆiently onneted". Thus, the hypothesis that an � fration of the vertex-pairs are no\suÆiently onneted" implies a distinguisher (by seleting vertex-pairs at random and testing theabove two properties). The problem with the above outline is that it is not lear how to eÆientlytest that the abovementioned bipartite graph B has a suÆiently large mathing.To allow an eÆient test (and thus an eÆient distinguisher), we onsider a more stringentondition (whih would still hold in a truly random graph). We onsider a �xed partition of [N ℄into T def= N=m parts, (P1; :::; PT), suh that jPij = m = poly(n=�), where n = log2N . (Forexample, we may use Pi = f(i � 1)m + j : j = 1; :::;mg.) If G were a random graph then, withoverwhelmingly high probability (i.e., at least 1� exp(�m1=O(1)) > 1� exp(�n2)), we would havejS0 \ Pij = (m=4) �m2=3 for all the i's. Similarly for S1 and S2. Furthermore, with probabilityat least 1 � exp(�n2), eah of the bipartite graphs Bi indued by (Pi \ S1; Pi \ S2) would have amathing of size at least (m=4)�m2=3. The key point is that we an a�ord to test the size of themaximium mathing in suh a bipartite graph, beause it has 2m = poly(n) verties.Let us wrap-up things. If a pseudorandom graph does not have the desired property then atleast � fration of its vertex-pairs are onneted by less than (1��)N=2 vertex-disjoint paths. Thus,samplying O(1=�) vertex-pairs, we hit suh a pair with onstant probability. For suh a vertex-pair,we onsider the sets Si;0 def= Pi \ S0, Si;1 def= Pi \ S1 and Si;2 def= Pi \ S2, for i = 1; :::; T . It mustbe the ase that either �=2 fration of the S0;i's are of size less than (1� (�=2)) � (m=4) or that �=2fration of the bipartite subgraphs (i.e., Bi's) indued by the pairs (S1;i; S2;i) have no mathingof size (1 � (�=2)) � (m=4), beause otherwise this vertex-pair is suÆiently onneted merely byvirtue of these S0;i's and the large mathings in the Bi's.22 We use m > (8=�)3 so to guaranteethat (m=4) �m2=3 > (1 � (�=2))(m=4), whih implies that (for at least an �=2 fration of the i's)some quantity (i.e., either jS0;ij or the maximum mathing in Bi) is stritly larger in a randomgraph than in a pseudorandom graph. Now, sampling O(1=�) of the i's, we delare the graph to berandom if all the orresponding S0;i's have size at least (m=4) �m2=3 and if all the orrespondingbipartite graphs Bi's have a maximum mathing of size at least (m=4)�m2=3. Thus, we distinguisha random funtion from a pseudorandom funtion, in ontradition to the de�nition of the latter.The theorem follows.Maximum Mathing in most indued bipartite graphs: The proof of Theorem 6.6 an beadapted to prove the following:Theorem 6.7 For every positive polynomial p, assuming the existene of one-way funtions, thereexists an almost-truthful pseudo-implementation by an ordinary mahine of a uniformly seletedN -vertex graph that satis�es the following property: For all but at most an �(N) def= 1=p(log2N)fration of the disjoint set-pairs (L;R) � [N ℄ � [N ℄ it holds that the bipartite graph indued by(L;R) has a mathning of size (1� �(N)) �min(jLj; jRj).As in Theorem 6.6, the implementation is straightforward, and the issue is analyzing it.22That is, we get at least ((1 � (�=2)) � T) � ((1� (�=2)) � (m=4)) > (1 � �)(N=4) paths going through S0, and thesame for paths that use the maximum mathings in the various Bi's.29

Proof Sketh: Observe that almost all relevant set-pairs satisfy jLj � jRj � N=3, and so wefous on these pairs. It an still be shown that in a random graph, with overwhelmingly highprobability, all the orresponding bipartite graphs have a suÆiently large mathing. However, thiswill not hold if we only onsider mathings that onform with the small bipartite graphs Bi's. Still,with overwhelmingly high probability, almost all the bipartite graphs indued by pairs (L;R) asabove will have a suÆiently large mathing that does onform with the small bipartite graphsBi's. Thus, for � = �(N), the distinguisher just selets O(1=�) di�erent i's, and for eah suh i teststhe size of the maximal mathing for O(1=�) random (L;R)'s. Needless to say, the distinguisherdoes not selet suh huge sets, but rather selets their projetion on Pi. That is, for eah suh i(and eah attempt), the distinguisher selets a random pair (Li; Ri) � Pi � Pi.A di�erent perspetive: The proofs of Theorems 6.6 and 6.7 atually establish that, for theorresponding spei�ations, the almost-truthfulness of an implementation follows from its om-putational indistinguishability (w.r.t the spei�ation).23 An interesting researh projet is toharaterize the lass of spei�ations for whih the above impliation holds.Theorem 6.8 Suppose that S is a spei�ation for whih the following two onditions hold.1. For every implementation I and every polynomial p there exists a probabilisti polynomial-time orale mahine D and a polynomial q suh that if Pr[(I; n) 62 Supp(S; n)℄ > 1=p(n) thenjPr[D(I;n)(1n) = 1℄�Pr[D(S;n)(1n) = 1℄j > 1=q(n).2. S has an almost-truthful pseudo-implementation by an orale mahine that has aess to arandom orale.Then, assuming the existene of one-way funtion, S has an almost-truthful pseudo-implementationby an ordinary probabilisti polynomial-time mahine.Proof: Let I be the implementation guaranteed by Condition 2, and let I 0 be the implementationderived from I by replaing the random orale with a pseudorandom funtion. Thus, I 0 is a pseudo-implementation of S. Using Condition 1, it follows that I 0 is almost-truthful to S, beause otherwisewe obtain an eÆient orale mahine D that distinguishes I 0 from S.7 Supporting Complex Queries regarding Random GraphsIn this setion we provide truthful implementations of random graph while supporting omplexqueries, in addition to the standard adjaeny queries. The graph model as in Setion 6, and asin Setion 6.1 we present our (truthful) implementations in terms of orale mahines. Let us startwith a simple example.Proposition 7.1 There exists a truthful lose-implementation by an orale mahine of the follow-ing spei�ation. The speifying mahine selets uniformly an N -vertex graph and answers distane23That is, these proofs establish the �rst ondition in Theorem 6.8, whereas the seond ondition is established bythe straightforward onstrution of a random graph. A key point in these examples is that, with overwhelmingly highprobability, a random objet in (S;n) has stronger properties that those of all objets in (S; n). This fat makes iteasier to distinguish a random objet in (S; n) from an objet not in (S; n). For example, with overwhelmingly highprobability, a random graph has larger onnetivity than required in Theorem 6.6 and this onnetivity is ahievedvia very short paths (rather than arbitrary ones). This fat enables to distinguish (S; n) from an implementationthat laks suÆiently large onnetivity. 30

queries regarding any pair of verties. Furthermore, there exists a truthful lose-implementation ofthe related spei�ation that returns a uniformly distributed path of shortest length.Proof: Consider the property of having diameter at most 2. This property satis�es Condition C(e.g., by an N -vertex star). Thus, using Theorem 6.2, we obtain a lose-implementation of arandom graph, while our implementation always produes a graph having diamater at most 2 (orrather exatly 2). Now, we answer the query (u; v) by 1 if the edge (u; v) is in the graph, and by 2otherwise. For the furthermore-part, we add pN suh stars, and serve queries regarding paths oflength 2 by using the enter of one of these stars (whih is seleted by applying an independentrandom funtion to the query pair).This example is not very impressive beause the user ould have served the distane-queries inthe same way (by only using adjaeny queries to the standard implementation of a random graph).(A random shortest path ould have also been found by using the standard implementation.) Theonly advantage of Proposition 7.1 is that it provides a truthful implementation of the distane-queries (rather than merely an almost-truthful one obtained via the trivial implementation). Amore impressive example follows. Reall that a random N -vertex graph is likely to have many(log2N)-vertex liques that inlude eah of the verties of the graph, whereas it seems hard to �ndsuh liques (where in hard we mean unlikely to ahieve in time poly(logN), and not merely intime poly(N)). Below we provide an implementation of a servie that answers queries of the formv 2 [N ℄ with a log-sized lique ontaining the vertex v.Theorem 7.2 There exists a truthful lose-implementation of the following spei�ation. Thespeifying mahine selets uniformly an N -vertex graph and, in addition to the standard adjaenyqueries, answers (Log-Clique) queries of the form v by providing a random dlog2Ne-vertex liquethat ontains v (and a speial symbol if no suh lique exists).Proof Sketh: Let ` = dlog2Ne � 1 and onsider a simple partition of [N ℄ to T = dN=`e subsets,S1; :::; ST , suh that jSij = ` for i = 1; :::; T � 1 (e.g., Si = f(i � 1)` + j : j = 1; :::; `g). Usethe orale to implement a random graph, G0 = ([N ℄; E0), as well as a random onto24 funtionf : [N ℄! [T ℄ and a random invertible permutation � : [N ℄! [N ℄ (as in Theorem 2.13). The graphwe implement will onsist of the union of G0 with N liques, where the i-th lique resides on thevertex set fig [f�(j) : j 2 Sf(i)g. The Log-Clique queries are served in the obvious manner; thatis, query v is answered with fvg [f�(u) : u 2 Sf(v)g. (For simpliity, we ignore the unlikely asethat v 2 f�(u) : u 2 Sf(v)g; this an be redeemed by letting ` = dlog2Ne and answering with arandom `-subset of fvg [f�(u) : u 2 Sf(v)g that ontains v.) Implementing the adjaeny queriesis slightly more triky. The query (u; v) is answered by 1 if and only if either (u; v) 2 E or u andv reside in one of the N 's liques we added. The latter ase may happen if and only if one of thefollowing subases holds:1. Either u 2 f�(w) : w 2 Sf(v)g or v 2 f�(w) : w 2 Sf(u)g; that is, either ��1(u) 2 Sf(v) or��1(v) 2 Sf(u). Eah of these onditions is easy to hek by invoking f and ��1.2. There exists an x suh that u; v 2 f�(w) : w 2 Sf(x)g, whih means that ��1(u); ��1(v) 2Sf(x). Equivalently, realling that f is onto, we may hek whether there exists a y suh that��1(u); ��1(v) 2 Sy, whih in turn is easy to determine using the simple struture of the setsSy's (i.e., we merely tests whether or not d��1(u)=`e = d��1(v)=`e).24Suh a funtion may be obtained by ombining the identity funtion over [T ℄ with a random funtion f 0 :fT + 1; :::; Ng! [T ℄, and randomly permuting the domain of the resulting funtion.31

Thus, our implementation is truthful to the spei�ation. To see that it is a lose-implementationof the spei�ation, observe that it is unlikely that two di�erent Log-Clique queries are \served" bythe same lique (beuase this means forming a ollision under f). Conditioned on this rare eventnot ourring, the Log-Clique queries are served by disjoint random liques, whih is what wouldessentially happen in a random graph (provided that poly(logN) queries are made). Finally, itis unlikely that the answers to the adjaeny queries that are not determined by prior Log-Cliquequeries be a�eted by the sparse sub-graph (of N small liques) that we inserted under a randompermutation. The theorem follows.Another example: We onsider the implementation of a random graph along with answeringqueries regarding a random Hamiltonian yle in it, where suh yle exists with overwhelminglyhigh probability. Spei�ally, we onsider queries of the form what is the distane between twoverties on the yle.Theorem 7.3 There exists a truthful lose-implementation of the following spei�ation. Thespeifying mahine selets uniformly an N -vertex graph G, and in ase G is Hamiltonian it uni-formly selets a (direted) Hamiltonian Cyle in G, whih in turn de�nes a yli permutation� : [N ℄ ! [N ℄. In addition to the standard adjaeny queries, the spei�ation answers travelqueries of the form (trav; v; t) by providing �t(v), and distane queries of the form (dist; v; w) byproviding the smallest t � 0 suh that w = �t(v).We stress that the implementation must answer eah possible query in time polynomial in thevertex name (whih may be logarithmi in the distane t).Proof Sketh: It will be onvenient to use the vertex set V = f0; 1; :::; N � 1g (instead of[N ℄). We use the random orale to implement a random graph G0 = (V;E0) as well as a randompermutation � : V ! V along with its inverse. We de�ne a graph G = (V;E) by E def= E0 [C,where C = f(�(i); �(i+1 mod N)) : i2V g, and use C to answer the speial (Hamiltonian) queries.That is, we answer the query (trav; v; t) by �(��1(v) + t mod N), and the query (dist; v; w) by��1(w)���1(v) mod N . The standard adaeny query (u; v) is answered by 1 if and only if either(u; v) 2 E or ��1(u) � ��1(v) � 1 (mod N). (Indeed, the above onstrution is reminisent ofthe \fast-forward" onstrution of [30℄ (stated in Theorem 2.14).)To see that the above truthful implementation is statistially-indistinguishable from the spei-�ation, we use the following three observations:1. If a (labeled) graph appears in the spei�ation (resp., in the implementation) then all is(labeled) isomorphi opies appear in it. Consequently, for any Hamiltonian Cyle, the setof Hamiltonian graphs in whih this yle has been seleted in the spei�ation (resp., in theimplementation) is isomorphi to the set of Hamiltonian graphs in whih any other Hamilto-nian yle has been seleted. Thus, we may onsider the onditional distribution indued onthe spei�ation (resp., on the implementation) by �xing any suh Hamiltonian Cyle.2. Conditioned on any �xing Hamiltonian Cyle being seleted in the implementation, the restof the graph seleted by the implementation is truly random.3. Conditioned on any �xing Hamiltonian Cyle being seleted in the spei�ation, the restof the graph seleted by the spei�ation is indistinguishable from a random graph. Theproof of this assertion is similar to the proof of Lemma 6.3. The key point is proving that,32

onditioned on a spei� Hamiltonian Cyle being seleted, the (rest of the) graph seletedby the spei�ation has suÆiently high entropy. Note that here we refer to the entropy ofthe remaining �N2 � � N edges, and that the vertex pairs are not all idential but rather fallinto ategories depending on their distane as measured on the seleted Hamiltonian Cyle.We need to show that a random vertex-pair in eah of these ategories has a suÆiently high(onditional) entropy. Thus, this observation requires a areful proof to be presented next.Indeed, the above disussion suggests that we may give the entire Hamiltonian yle to the mahinethat inspets the rest of the graph (in an attempt to distinguish the implementation from thespei�ation). Thus, we assume, without loss of generality, that this mahine makes no adjaenyqueries regarding edges that partiipate in the yle. The �rst observation says that we mayonsider any �xed yle, and the seond observation says that a mahine that inspets the rest ofthe graph sees truly random edges. The third observation, proved below, asserts that making afew queries to the rest of the onditional spae of the spei�ation, yields answers that also lookrandom.We onsider the onditional distribution of the rest of the graph seleted by the spei�ation,given that a spei� Hamiltonian Cyle was seleted. (Indeed, we ignore the negligible (in N)probability that the graph seleted by the spei�ation is not Hamiltonian.) Using Bayes' Law, theonditional probability that a spei� graph is seleted is inversely proportional to the number ofHamiltonian Cyles in that graph. Using known results on the onentration of the latter numberin random graphs (see, e.g., [23, Thm. 4℄), we infer that in all but an N�2 fration of the N -vertexgraphs the number of Hamiltonian Cyles is at least an exp(�2(lnN)1=2) > N�1 fration of itsexpeted number. Thus, the onditional entropy of the seleted graph (onditioned on the seletedyle) is �N2 ��N � o(N). Details follow.For T = �N2 �, let X = X1 � � �XT denote the graph seleted by the spei�ation, and Y (G)denote the Hamiltonian Cyle seleted (by the spei�ation) given that the graph G was seleted.Let #HC(G) denote the number of Hamiltonian Cyles in the graph G, where yli shifts andtraspositions of yles are ounted as if they were di�erent yles (and so the number of HamiltonianCyles in an N -lique is N !). Thus, E(#HC(X)) = 2�N � (N !). An N -vertex graph G is alled goodif #HC(G) > 2�N � (N � 1!), and G denotes the set of good N -vertex graphs. For a HamiltonianCyle C, we denote by G(C) the set of graphs in G that ontain the yle C. Then, it holds thatH(XjY (X) = C) � XG2G(C)Pr[X = GjY (X) = C℄ � log2(1=Pr[X = GjY (X) = C℄)� (1�N�2) � minG2G(C)f� log2(Pr[X = GjY (X) = C℄)g= (1�N�2) � minG2G(C)8><>: log2(Pr[Y (X) = C℄)� log2(Pr[Y (X) = CjX = G℄)� log2(Pr[X = G℄) 9>=>;= (1�N�2) � minG2G(C)(log2(1=N !) + log2(#HC(G)) + N2!)Using the fat that G is good (i.e., G 2 G(C)), it follows that log2(#HC(G)) > log2(2�N � (N � 1!)),whih in turn equals log2(N !)�N � log2N . We thus get,H(XjY (X) = C) > (1�N�2) � N2!�N � log2N! (2)33

Reall that the ondition Y (X) = C determines N vertex-pairs in X, and so the entropy of theremaining T 0 = �N2 � � N pairs is at least T 0 � log2N . Partitioning these (undetermined) pairsaording to their distanes in C, we onlude that the entropy of the N=2 pairs in eah suhdistane-lass is at least (N=2) � log2N . (Indeed, the distane lass of undetermined pairs donot ontain distane 1 (or N � 1), whih orrespond to the fored yle-edges.) We stress thatour analysis holds even if the mahine inspeting the graph, is given the Hamiltonian yle forfree. This mahine may selet the indued subgraph that it wants to inspet, but this seletion isdetermined upto a shifting of all verties (i.e., a rotation of the yle). This randomization suÆesfor onluding that the expeted entropy of the inspeted subgraph (whih may not inlude yleedges) is at least (1 � ((2 log2N)=N)) � �t2�, where t is the number of verties in the subgraph.As in the proof of Lemma 6.3, this implies that the inspeted subgraph is at distane at mostO(q((log2N)=N) � �t2�) < t �N�(1�o(1))=2 from a random t-vertex graph. The theorem follows.8 Random Bounded-Degree Graphs and Global PropertiesIn this setion we onsider huge bounded-degree simple graphs, where the verties are labelled (andthere are no self-loops or parallel edges). We onsider spei�ations of various distributions oversuh graphs, where in all ases the speifying mahine responds to neighborhood queries (i.e., thequeries orrespond to verties and the answer to query v is the list of verties that are adjaent tovertex v).The �rst issue that arises is whether we an implement a random bounded-degree graph oralternatively a random regular graph. Things would have been quite simple if we were allowingalso non-simple graphs (i.e., having self-loops and parallel edges). For example, a random d-regularN -vertex non-simple graph an be implemented by pairing at random the dN possible \ports" ofthe N verties. We an avoid self-loops (but not parallel edges) by generating the graph as a unionof d perfet mathings of the elements in [N ℄. In both ases, we would get a lose-implementationof a random d-regular N -vertex (simple) graph, but parallel edges will still appear with onstantprobability (and thus this implementation is not truthful w.r.t simple graphs). In order to obtain arandom simple d-regular N -vertex graph, we need to take an alternative route. The key observationunderlying this alternative is aptured by the following lemma:Lemma 8.1 For d > 2, let G = ([N ℄; E) be any d-regular N -vertex graph having girth g. Let G0be obtained by randomly permuting the verties of G (and presenting the inidene lists in someanonial order). Then, any mahine M that queries the graph for the neighborhoods of q vertiesof its hoie, annot distinguish G0 from a random d-regular N -vertex (simple) graph, exept thanwith probability O(q2=(d� 1)(g�1)=2). In the ase d = 2 and q < g � 1, the probability bound an beimproved to O(q2=N).Reall that the girth of a graph G is the length of the shortest simple yle in G, and that (d �1)(g�2)=2 < N always holds (for a d-regular N -vertex graph of girth g).25 Note that Lemma 8.1 isquite tight: For example, in the ase d = 2, for g � pN , the N -vertex graph G may onsist ofa olletion of g-yles, and taking a walk of length g in G0 (by making g � 1 queries) will alwaysdetet a yle G0, whih allows to distinguish G0 from a random 2-regular N -vertex (in whih theexpeted length of a yle going through any vertex is
(N)). In the ase d > 3, the graph G25The girth upper-bound (i.e., g � 2 + 2 logd�1N) follows by onsidering the (vertex disjoint) paths of length(g � 2)=2 starting at any �xed vertex. The existene of d-regular N -vertex graphs of girth logd�1N was shown(non-onstrutively) in [10℄. 34

may onsist of onneted omponents, eah of size (d � 1)g � N , and taking a random walk oflength (d � 1)g=2 in G0 is likely to visit some vertex twie, whih allows to distinguish G0 from arandom d-regular N -vertex (in whih this event may our only after pN steps). Below, we willuse Lemma 8.1 with the following setting of parameters.Corollary 8.2 For �xed d > 2 and g(N) = !(log logN), let G = ([N ℄; E) be any d-regular N -vertex graph having girth g(N). Let G0 be obtained from G as in Lemma 8.1. Then, any mahine Mthat queries the graph for the neighborhoods of poly(logN) verties of its hoie, annot distinguishG0 from a random d-regular N -vertex (simple) graph, exept than with negligible in logN probability.The laim holds also in the ase that d = 2 and g(N) = (logN)!(1).For d > 2 the girth an be at most logarithmi, and expliit onstrutions with logarithmi girth areknown for all d � 3 and a dense set of N 's (whih is typially related to the set of prime numbers;see, e.g., [29, 22, 27℄). For d = 2, we may just take the N -yle or any N -vertex graph onsistingof a olletion of suÆiently large yles.Proof Sketh for Lemma 8.1: We bound the distinguishing gap of an orale mahine (whihqueries either a random d-regular N -vertex graph or the random graph G0) as a funtion of thenumber of queries it makes. Reall that G0 is a random isomorphi opy of G, whereas a randomd-regular N -vertex graph may be viewed as a random isomorphi opy of another random d-regularN -vertex graph. Thus, intuitively, the spei� labels of queried verties and the spei� labels ofthe orresponding answers are totally irrelevant: the only thing that matters is whether or nottwo labels are equal.26 Equality (between labels) an our in two ases. The uninteresting aseis when the mahine queries a vertex u that is a neighbor of a previously-queried vertex v andthe answer ontains (of ourse) the label of vertex v. (This is uninteresting beause the mahine,having queried v before, already knows that v is a neighbor of u.) The interesting ase is thatthe mahine queries a vertex and the answer ontains the label of a vertex v that was not queriedbefore but has already appeared in the answer to a di�erent query. An important observation isthat, as long as no interesting event ours, the mahine annot distinguish the two distributions(beuase in both ases it knows the same subgraph, whih is a forest). Thus, the analysis amountsto bounding the probability that an interesting event ours, when we make q queries.Let us onsider �rst what happens when we query a random d-regular N -vertex (simple) graph.We may think of an imaginary proess that onstruts the graph on-the-y suh that the neighborsof vertex v are seleted only in response to the query v (f. [17, Thm. 7.1℄). This seletion isdone at random aording to the onditional distribution that is onsistent with the partial graphdetermined so far. It is easy to see that the probability that an interesting event ours in the i-thquery is at most (i � 1)d=(dN � (i� 1)d), and so the probability for suh an event ourring in qqueries is at most q2=N .The more hallenging part is to analyse what happens when we query the graph G. (Reallthat we have already redued the analysis to a model in whih we ignore the spei� labels, butrather only ompare them, and analogously we annot query a spei� new vertex but rather onlyquery either a random new vertex or a vertex that has appeared in some answer.)27 To illustrate26Essentially, the mahine annot determine whih vertex it queries; all that it atually deides is whether to querya spei� vertex that has appeared in previous answers or to query a new vertex (whih may be viewed as randomlyseleted). (Formally, a spei� new label indiated by the querying mahine is mapped by the random permutation toa new random vertex.) Similarly, the labels of the verties given as answer do not matter, all that matters is whetheror not these verties have appeared in the answers to previous queries (or as previous queries). (Again, formally, thenew verties supplied in the answer are assigned, by the random permutation, new random labels.)27Thus, we may onsider querying G itself (rather than querying G0).35

the issues at hand, onsider �rst the ase that d = 2 (where G onsists of a set of yles, eah oflength at least g). In this ase, we have the option of either to proeed along a path that is partof a yle (i.e., query for the neighbors of the an end-point of a urrently known path) or to queryfor a random new vertex. Assuming that we make less than g � 1 queries, we an never ause aninteresting event by going along a path (beause an interesting event may our in this ase onlyif we go around the entire yle, whih requires at least g � 1 queries). The only other possibilityto enounter an interesting event is by having two paths (possiblly eah of length 1) ollide. Butthe probability for suh an event is bounded by q2=N , where q is the number of queries that wemake.28We now turn to the more interesting ase of d > 2. As in ase d = 2, taking a walk of lengthg � 2 from any vertex will not yield anything useful. However, in this ase, we may a�ord totake longer walks (beause q may be muh larger than g). Still, we will prove that, in this ase,with probability at least 1 � q2 � (d � 1)�(g�3)=2, the unovered subgraph is a forest. The proofrelies both on the the girth lower-bound of G and on a suÆiently-good rapid-mixing property(whih follows from the girth lower-bound). We bound the probability that a yle is losed inthe urrent forest by the probability that two verties in the forest are onneted by a non-treeedge, where the probability is taken over the possible random verties returned in response to anew-vertex request and over the random order in whih neighbors of a query-vertex are provided.Indeed, a key observation is that when we query a vertex that has appeared in some answer, wemay think that this vertex is seleted at random among the unqueried verties appearing in thatanswer.29 Taking a union bound on all possible �q2� vertex pairs (i.e., those in the forest), we boundthe probability that either two ends of a disovered path (in one tree) or two verties in di�erenturrent trees are onneted by an edge. (In both ases, these verties are atually leaves.)We onsider eah of these two ases seperately: In the latter ase (i.e., leaves in di�erent trees),the two verties (whih are not onneted in the urrently unovered subgraph) are uniformlydistributed in G, and thus the probability that they are onneted is essentially d=N . The situationhere is essentially as analyzed in the ase d = 2: we have two paths, eah initiated at a random(new at the time) vertex, leading to the leaves in question, and thus the latter are almost uniformlyand independently distributed.Turning to the former ase (i.e., endpoints of a path in a tree), we use the girth hypothesisto infer that this path must have length at least g � 1 (or else its endpoint are de�nitely notonneted). However, the mahine that disovered this path atually took a random walk (possibllyto two diretions) starting from one vertex, beuase we may assume that this is the �rst time inwhih two verties in the urrent forest are onneted by a urrent non-tree edge. We also usethe hypothesis that our exploration of the path (i.e., queries regarding verties that appeared inprevious answers) is atually random (i.e., we e�etively extend the urrent end-point of the pathby a uniformly seleted neighbor of that end-point). Now, the end-point of suh a path annot hitany spei� vertex with probability greater than � def= (d� 1)�(g�1)=2, beause after (g� 1)=2 steps28Using a union bound over all query pairs, we bound the probability that the ith query ollides with the j-thquery. Eah of these two queries is obtained by a path of �xed length starting from a uniformly and distributedvertex (whih was new at the time). Thus, these two queries are almost uniformly and independently distributed (in[N ℄), and the probability that they are neighbors is at most 1=(N � q).29That is, the orrespondane between the new plae-holders in the answer and the new real neighbors of thequeried vertex is random. Formally, we may de�ne the interation with the graph suh that at eah point only theinternal nodes of the urrently revealed forest are assigned a serial number. Possible queries may be either for a newrandom vertex (assigned the next serial number and typially initiating a new tree in the forest) or for a randomleaf of a spei� internal vertex (whih typially extends the orresponding tree and turns one of these leaves to aninternal vertex with d� 1 new leaves). 36

the end-point must be uniformly distributed over the (d � 1)(g�1)=2 leaves of the tree rooted atthe start vertex (and the max-norm of a distribution annot inrease by additional random steps).Fixing the losest (to the start vertex) end-point, it follows that the probability that the otherend-point hits the neighbor-set of the �rst end-point is at most d � � = O((d � 1)�(g�1)=2). Tosummarize, the probability that an interesting event ours, while making q queries, is at mostO(q2 � (d� 1)�(g�1)=2). The lemma follows.Implementing random bounded-degree simple graphs: We now turn bak to the initialproblem of implementing random bounded-degree (resp., regular) simple graphs.Proposition 8.3 For every onstant d > 2, there exist truthful lose-implementations of the fol-lowing two spei�ations:1. A random graph of maximum degree d: For size parameter N , the spei�ation selets uni-formly a graph G among the set of N -vertex simple graphs having maximum degree d. Onquery v 2 [N ℄, the mahine answers with the list of neighbors of vertex v in G.2. A random d-regular graph: For size parameter N , the spei�ation selets uniformly a graphG among the set of N -vertex d-regular simple graphs, and answers queries as in Part 1.Proof: We start with Part 2. This part should follow by Corollary 8.2, provided that we animplement a random isomorophi opy of a d-regular N -vertex graph of suÆiently large girth.This requires an expliit onstrution of the latter graph as well as an implementation of a randompermutation and its inverse (as provided by Theorem 2.13). Spei�ally, let GN be the �xed graph,and � the random relabelling of its verties. The we answer query v, by �rst determining thepreimage of v in GN (i.e., ��1(v)), next �nd its neighbors (using the expliitness of the onstrutionof GN), and �nally return their images under �. Indeed, this proess depends on the ability toprovide expliit onstrutions of adequate d-regular N -vertex graphs (i.e., GN 's). This is trivial inthe ase d = 2 (e.g., by the N -yle). For other values of d � 3, adequate onstrutions an beobtained from [29, 22, 27, 25℄ (possibly by dropping several (easily identi�ed) perfet mathingsfrom the graph). These onstrution apply for a dense set of N 's (whih are typially of the formp(p � 1)2 for any prime p), but we an obtain other sizes by ombining many suh graphs (notethat we are not even required to give a onneted graph, let alone a good expander).We now turn to Part 1. We �rst note that most graphs of maximum degree d have (1�o(1))�dN=2edges. Furthermore, for T = �(pdN) and D = O(pdN), all but a negligible (in N) fration of thegraphs have (dN=2)�T �D edges. In this range, random N -vertex graphs with a given number ofedges and degree bound d, an be losely-implemented by seleting a random d-regular N -vertexgraph and omitting the adequate number of edges. Thus, all that is needed is to selet M atrandom with probability proportional to the number of N -vertex graphs with M edges and degreebound d. This an be done by using known expressions for these numbers, and tehniques suh asin Appendix A.A general result: The proof of Proposition 8.3 atually yields a truthful lose-implementation ofseveral other spei�ations. Consider, for example, the generation of random onneted d-regulargraphs, for d � 3. Sine the expliit onstrutions of d-regular graphs are onneted (and theirmodi�ations an easily made onneted), applying Corollary 8.2 will do. (Indeed, we also use thefat that, with overwhelmingly high probability, a random d-regular graph is onneted.) Moregenerally, we have: 37

Theorem 8.4 Let d � 2 be �xed and � be a graph property that satis�es the following two ondi-tions:1. The probability that Property � is not satis�ed by a uniformly hosen d-regular N -vertex graphis negligible in logN .2. Property � is satis�ed by a family of strongly-onstrutable d-regular N -vertex graphs havinggirth !(log logN) if d > 2 and girth (logN)!(1) if d = 2.Then, there exists a truthful lose-implementation (by an orale mahine) of a uniformly distributedd-regular N -vertex graph that satis�es property �.We note that Condition 1 may be relaxed. It suÆes to require that a random d-regular graph anda random d-regular graph having Property � are staistially-indistinguishable (by a mahine thatmakes poly-logarithmially many queries). In partiular, a random 2-regular graph and a uniformlydistributed onneted 2-regular graph are statistially-indistinguishable, and thus we an providea truthful lose-implementation of the latter spei�ation. We mention that Theorem 8.4 yieldstruthful lose-implementations to random d-regular graphs that are required to be Hamiltonian,Bipartite, have logarithmi girth, et.9 Supporting Complex Queries regarding Length-Preserving Fun-tionsIn this setion we onsider spei�ations that, in addition to the standard evaluation queries, answervarious queries regarding a random funtion f : f0; 1gn ! f0; 1gn. The �rst type of queries wehandle are interated-evaluation queries, where the number of iterations may be super-polynomialin the length of the input (and thus annot be implemented in a straightforward manner).Theorem 9.1 There exists a truthful lose-implementation of the following spei�ation. Thespeifying mahine, uniformly selets a funtion f : f0; 1gn ! f0; 1gn, and answers queries of theform (x;m), where x 2 f0; 1gn and m 2 [2poly(n)℄, with the value fm(x) (i.e., f iterated m timeson x).Proof: Consider �rst an implementation by a random N -yle, where N = 2n. That is, using arandom 1-1 mapping � : f0; :::; N � 1g ! f0; 1gn, de�ne f(x) = �(��1(x) + 1 mod N), and answerthe query (x;m) by �(��1(x) +m mod N). (Indeed, the above onstrution is reminisent of the\fast-forward" onstrution of [30℄ (stated in Theorem 2.14).) The only thing that goes wrong isthat we know the yle length of f and thus an distinguish it from a random funtion by anyquery of the form (�; N). Thus, we modify the onstrution so to obtain a funtion f with unknownyle lengths. A simple way of doing this is to use two yles, while randomly seleting the lengthof the �rst yle. That is, selet M uniformly in [N ℄, and letf(x) def= 8><>: �(��1(x) + 1 modM) if ��1(x) 2 f0; :::;M � 1g�(��1(x) + 1) if ��1(x) 2 fM; :::; N � 2g�(M) otherwise (i.e., ��1(x) = N � 1)We ould have tried to selet f suh that its yle struture is distributed as in ase of a randomfuntion, but we did not bother to do so. Nevertheless, we prove that any mahine that makes q38

queries annot distinguish f from a random funtion with probability better than poly(n) �q2=2
(n).Atually, in order to failitate the anaysis, we selet M uniformly in f(N=3); :::; (2N=3)g.We turn to prove that the above truthful implementation is statistially-indistinguishable fromthe spei�ation. As in the proof of Lemma 8.1, we may disregard the atual values of queries andanswers in the querying proess, and merely refer to whether these values are equal or not. We alsoassume, without loss of generality, that the querying mahine makes no redundent queries (e.g., if itknows that y = fk(x) and z = f `(y) then it refrains from making the query (x; k+ `), whih wouldhave been answered by z = fk+`(x)). That is, at any point in time, the querying mahine knowsof a few hains, eah having the form (x; fk1(x); fk2(x); :::; fkt(x)), for some known x 2 f0; 1gn andk1 < k2 < � � � < kt. Typially, the elements in eah hain are distint, and no element appears intwo hains. In fat, as long as this typial ase holds, there is no di�erene between querying thespei�ation versus querying the implementation. Thus, we have to upper bound the probabilitythat an untypial event ours (i.e., a query is answered by an element that already appears on oneof the hains, although the query was not redundent).Let us �rst onsider the ase that f is onstruted as in the implementation. For the i-thnon-redundent query, denoted (x; k), we onsider three ases:Case 1: x is not on any hain. The probability that fk(x) hits a known element is at most (i �1)=(N � (i�1)), beause x is uniformly distributed among the N � (i�1) unknown elements.(Sine f is 1-1, it follows that fk(x) is uniformly distributed over a set of N�(i�1) elements.)Case 2: x is on one hain and fk(x) hits another hain. The probability to hit an element of anotherhain (whih must belong to the same yle) is (i� 1)=(N 0� (i� 1)2), where N 0 � N=3 is thenumber of verties on the yle (on whih x reside). This is beause the hains on the sameyle may be though of having a random relative shift (whih ignore the ollisions of knownverties). For i < pN=2, we obtain a probability bound of i=
(N).Case 3: x is on some hain and fk(x) hits the same hain. Without loss of generality, supposethat fk(x) = x. For this to happen, the length N 0 of the yle (on whih x reside) mustdivide k. We upper-bound the probability that all prime fators of N 0 are prime fators of k.Reall that N 0 is uniformly seleted in [(N=3); (2N=3)℄, let P = Pk denote the set of primefators of k, and note that jP j = poly(n) (by the hypothesis k 2 [2poly(n)℄). We bound thenumber of integers in [N ℄ that have all prime fators in P by bounding, for every t 2 [n℄, theprodut of the number of integers in [2t℄ with all prime fators in P 0 def= fp 2 P : p < ngand the number of (n � t)-bit integers with all prime fators in P 00 def= P n P 0, where is a suitable onstant (i.e., satisfying jP j < n�1). For t > n= log n, the size of the �rstset an be upper-bounded by the number of n-smooth numbers in [2t℄,30 whih in turn isbounded by 2t�(t=)+o(t) = 2(1�(1=))�t+o(t) . The size of the seond set is upper-bounded by� jP 00j(n�t)=(log n)� < 2(1�(1=))�(n�t), where the inequality uses jP 00j < n�1. Thus, we upper-boundthe probability that an uniformly hosen integer in [(N=3); (2N=3)℄ has all prime fators inP by n= log nXt=1 2�(1=)�(n�t) + nXt=(n= log n)+1 2�(1=)�(t+(n�t))+o(t) = 2�(n=)+o(n)30An integer is alled y-smooth if all its prime fators are smaller that y. The fration of y-smooth integers in [x℄ isupper-bounded by u�u+o(u), where u = (log x)=(log y); see, [7℄. Thus, in ase t > n= log n, the fration of n-smoothintegers in [2t℄ is upper-bounded by 2�(1�o(1))�(t=(log2 n))�log2 t = 2�(1�o(1))t=.39

Thus, the probability that we form a ollision in q queries (to the implementation) is at mostq2 �N�1=(+1).We now turn to the ase that f is a random funtion (as in the spei�ation). Suppose thatwe make the non-redundent query (x; k). We wish to upper-bound the probability that fk(x) = y,for some �xed y (whih is on one of the hains). It is well-known that the expeted numberof anestors of y under a random f is �(pN); see, e.g., Theorem 33 in [6, Ch. XIV℄. Thus,Prf [j [i�1 f�i(y)j > N3=4℄ = O(N�1=4), and it follows that Prf [fk(x) = y℄ < N�1=4 +O(N�1=4),for any �xed (x; k) and y. (Indeed, it seems that this is a gross over-estimate, but it suÆes for ourpurposes.) It follows that the probability that we form a ollision in q queries to the spei�ationis at most O(q2=N1=4).Comment: The proof of Theorem 9.1 an be easily adapted so to provide a truthful lose-implementation of a random permutation with iterated-evaluation and iterated-inverse queries.That is, we refer to a speifying mahine that uniformly selets a permutation p : f0; 1gn ! f0; 1gn,and answers queries of the form (x;m), where x 2 f0; 1gn andm 2 [�2poly(n)℄, with the value pm(x).The implementation is exatly the one used in the proof of Theorem 9.1, and thus we should onlyanalyze the probability of ollision when making (non-redundent) queries to a random permutation.For any �xed (x; k) and y, the probability that �k(x) = y equals the probability that x and y resideson the same yle of the permutation p and that their distane on this yle equals k mod `, where` is the length of this yle. The laim follows using the fat that ` is distributed uniformly over [N ℄(beuase the probability that x resides on a yle of a ertain length equals the expeted numberof elements residing on yles of suh length divided by N). An alternative implementation ofa random permutation supporting iterated-evaluation (and iterated-inverse) queries was suggestedindependently by Tsaban [31℄. Interestingly, his implementation works by seleting a yle struturewith distribution that is statistially-lose to that in a random permutation (and using a set of ylesof orresponding lengths, rather than always using two yles as we do).Preimage queries to a random mapping: We turn bak to random length preserving fun-tions. Suh a random funtion f : f0; 1gn ! f0; 1gn is highly unlikely to be 1-1, still the set ofpreimages of an element under the funtion is well-de�ned (i.e., f�1(y) = fx : f(x)=yg). Indeed,this set may be empty, be a singleton or ontain more than one preimage. Furthermore, withoverwhelmingly high probability, all these sets are of size at most n. The orresponding \inverse"queries are thus natural to onsider.Theorem 9.2 There exists a truthful lose-implementation of the following spei�ation. Thespeifying mahine, uniformly selets a funtion f : f0; 1gn ! f0; 1gn, and, in addition to thestandard evaluation queries, answers the inverse-query y 2 f0; 1gn with the value f�1(y).Proof: We start with a truthful implementation that is not statistially-indistinguishable fromthe spei�ation, but is lose to being so and does present our main idea. For ` = O(log n) (to bedetermined), we onsider an implementation that uses the orale in order to de�ne two permutations�1 and �2 over f0; 1gn (along with their inverses) as well as a random funtion g : f0; 1gn ! f0; 1g`.We de�ne f(x) = �2(prefn�`(�1(x))g(�1(x))), where prefi(z) denotes the i-bit long pre�x of z. Thatis, the funtion g indues ollisions within the strutured sets S�, where S� def= f�� : � 2 f0; 1g`g,and the permutation �1 (resp., �2) randomly route inputs (resp., outputs) to (resp., from) thesesets. Indeed, it is instrutive to note that g indues a olletion of random independent funtionsg� : f0; 1g` ! f0; 1g` suh that g�(�) = g(��), and that eah g� indues a random funtion on the40

orresponding S� (i.e., mapping �� to �g�(�)). Thus, letting su�i(z) denote the i-bit long suÆxof z, we may writef(x) = �2(�g�(�)), where � prefn�`(�1(x)) and � su�n�`(�1(x)). (3)The evaluation queries are answered in a straightforward way (i.e., by evaluating �1, g and �2).The inverse-query y is answered by �rst omputing �� = ��12 (y), where j�j = n�`, then omputingR�(�) def= f�0 : g(��0) = �g via exhaustive searh, and �nally setting f�1(y) = f��11 (��0) : �0 2R�(�)g. Indeed, the key point is that, sine ` = O(logn), we an a�ord to determine the setR�(�) by going over all possible �0 2 f0; 1g` and inluding �0 if and only if g(��0) = �. Therandom permutation �1 (resp., �2) guarantees that it is unlikely to make two evaluation queries(resp., inverse-queries) that are served via the same set S�. It is also unlikely to have a non-obvious \interation" between these two types of queries (where an obvious interation is obtainedby asking for a preimage of an answer to an evaluation query or vie versa). Thus, the answers tothe evaluation queries look random, and the answers to the inverse-queries are almost independentrandom subsets with sizes that orresponds to the ollision of 2` elements (i.e., 2` balls thrown atrandom to 2` ells).The only thing that is wrong with the above implementation is that the sizes of the preimage-setsorrespond to the ollision pattern of 2` balls thrown at random to 2` ells, rather than to that of theollision pattern of 2n balls thrown at random to 2n ells. Let pi(m) denote the expeted frationof ells that ontain i balls, when we throw at random m balls into m ells. Then, p0(m) � 1=e,for all suÆiently large m, whereaspi(m) � 1(i!)e � iYj=1�1� j � 2m� 1� (4)We fous on i � n (beause for i > n both pi(2`) and pi(2n) are smaller than 2�2n). We may ignorethe (negligible in n) dependene of pi(2n) on 2n, but not the (notieable) dependene of pi(2`) on2` = poly(n). Spei�ally, we have:i pi(2n) pi(n + 1) � (Qij=1(1� (j � 2)n�)) � pi(2n)� e�1=(i!) � (Qij=1(1� (j � 2)n�)) � (e�1=(i!))1 e�1 (1 + n�) � e�12 e�1=2 (1 + n�) � e�1=23 e�1=6 � (1� n�2) � e�1=64 e�1=24 � (1� 1:5n�) � e�1=24i � 4 e�1=(i!) (1��(i2n�)) � e�1=(i!)Thus, the singleton and two-element sets are slightly over-represented in our implementation (whenompared to the spei�ation), whereas the larger sets are under-represented. In all ases, the devi-ation is by a fator related to 1� (1=poly(n)), whih annot be tolerated in a lose-implementation.Thus, all that is required is to modify the funtion g suh that it is slightly more probable toform larger ollisions (inside the sets S�'s). We stress that we an easily ompute all the relevantquantities (i.e., all pi(2n)'s and pi(2`)'s, for i = 1; :::; n), and so obtaining a lose-implementationis merely a question of details, whih are shortly outlined next.Let us just sketh one possible approah. For N def= 2n and t def= 2`, we have N=t sets S�'s thatare eah partitioned at random by the g�'s to subsets (whih orrespond to the sets of ��'s that aremapped to the same image under g�). Now, for a random olletion of g�'s, the number of i-subsets41

divided by N is pi def= pi(t) rather than qi def= pi(N) as desired. Reall that jpi � qij � pi=(t� 1) forall i � 1, and note that Pi pii = 1 =Pi qii. Indeed, it is instrutive to onsider the frational massof elements that resides in i-subsets; that is, let p0i = pii and q0i = qii. We need to move a frationalmass of about 1=(t� 1)e elements from singleton subsets (resp., two-element subsets) to the largersubsets. With overwhelmingly high probability, eah S� ontains more than n singleton subsets(resp., n=2 two-element subsets). We are going to use only these subsets towards the orretion ofthe distribution of mass; this is more than enough, beause we need to reloate only a frationalmass of 1=(t� 1)e from eah type of subsets (i.e., less than one element per a set S�, whih in turnhas ardinality t). In partiular, we move a frational mass of p01�q01 = p02�q02 from singleton (resp.,two-element) subsets into larger subsets. Spei�ally, for eah i � 3, we move a frational mass of(q0i � p0i)=2 elements residing in singletons and (q0i � p0i)=2 elements residing in two-element subsetsinto i-subsets.31 This (equal ontribution ondition) will automatially guarantee that the massin the remaining singleton and two-element subsets is as desired. We stress that there is no needto make the \mass distribution orretion proess" be \niely distributed" among the various setsS�'s, beause its a�et is anyhow hidden by the appliation of the random permutation �2. Theonly thing we need is to perform this orretion proedure eÆiently (i.e., for every � we shouldeÆiently deide how to modify g�), and this is indeed doable.

31For example, we move mass into 3-subsets by either merging three singletons or merging a singleton and a two-subset into a orresponding 3-subset, where we do three merges of the latter type per eah merge of the former type.Similarly, for eah i � 4, we move mass into i-subsets by merging either i singletons or i=2 two-subsets, while doingan equal number of merges of eah type. Finally, for every j � 1, we move mass into (2j + 3)-subsets by mergingadditionally reated 2j-subsets and 3-subsets (where additional 2-subsets are reated by either using a 2-subset ormerging two singletons, in equal proportions). 42

10 Conlusions and Open ProblemsThe questions that underlie our work refer to the existene of good implementations of various spei-�ations. At the very least, we require the implementations to be omputationally-indistinguishablefrom the orresponding spei�ations.32 That is, we are interested in pseudo-implementations. Ourultimate goal is to obtain suh implementations via ordinary (probabilisti polynomial-time) ma-hines, and so we ask:Q1: Whih spei�ations have truthful pseudo-implementations (by ordinary mahines)?Q2: Whih spei�ations have almost-truthful pseudo-implementations (by ordinary mahines)?Q3: Whih spei�ations have pseudo-implementations at all?In view of Theorem 2.9, as far as Questions Q1 and Q3 are onerned, we may as well onsiderimplementations by orale mahines (having aess to a random orale). Indeed, the key observationthat started us going was that the following questions are the \right" ones to ask:Q1r (Q1 revised): Whih spei�ations have truthful lose-implementations by orale mahines(having aess to a random orale)?Q3r (Q3 revised): Whih spei�ations have suh lose-implementations at all?We remark that even in ase of Question Q2, it may make sense to study �rst the existene ofimplementations by orale mahines, bearing in mind that the latter annot provide a onlusivepositive answer (as shown in Theorem 2.11).In this work, we have initiated a omprehensive study of the above questions. In partiular,we provided a fair number of non-trivial implementations of various spei�ations relating to thedomains of random funtions, random graphs and random odes. The hallenge of haraterizingthe lass of spei�ations that have good implementations (e.g., Questions Q1r and Q3r) remainswide open. A good start may be to answer suh questions when restrited to interesting lasses ofspei�ations (e.g., the lass of spei�ations of random graphs having ertain type of properties).Limited-independene implemenations. Our de�nition of pseudo-implementation is basedon the notion of omputational indistinguishability (f. [19, 32, 15℄) as a de�nition of similarityamong objets. A di�erent notion of similarity underlies the onstrution of sample spaes havinglimited-independene properties (see, e.g., [2, 8℄). For example, we say that an implementation isk-wise lose to a give spei�ation if the distribution of the answers to any k �xed queries to theimplementation is staistially lose to the distribution of these answers in the spei�ation. Thestudy of Question Q1r is also relevant to the onstrution of truthful k-wise lose implementations,for any k = poly(n). In partiular, one an show that any spei�ation that has a truthful lose-implementation by an orale mahine, has a truthful k-wise lose implementation by an ordinaryprobabilisti polynomial-time mahine.33 A onrete example appears at the end of Setion 5.32Without suh a quali�ation, the questions stated below are either meaningless (i.e., every spei�ation has a\bad" implementation) or miss the point of generating random objets.33The laim follows by ombining an implementation (by an orale mahine) that makes at most t queries to itsrandom orale with a sample spae of k � t-wise independent funtions.
43

AknowledgmentsThe �rst two authors wish to thank Silvio Miali for disussions that took plae two deades ago.The main part of Theorem 2.9 was essentially observed in these disussions. These disussionsreahed a dead-end beause the notion of a spei�ation was missing (and so it was not understoodthat the interesting question is whih spei�ations an be implemented at all (i.e., even by anorale mahine having aess to a random funtion)).We are grateful to Noga Alon for very helpful disussions regarding random graphs and expliitonstrutions of bounded-degree graphs of logarithmi girth. We also thank Avi Wigderson for ahelpful disussion regarding the proof of Lemma 6.3. Finally, thanks to Moni Naor for alling ourattention to [11℄.

44

Referenes[1℄ M. Abadi, E. Allender, A. Broder, J. Feigenbaum, and L. Hemahandra. On GeneratingHard, Solved Instanes of Computational Problem. In Crypto88, pages 297{310.[2℄ N. Alon, L. Babai and A. Itai. A fast and Simple Randomized Algorithm for the MaximalIndependent Set Problem. J. of Algorithms, Vol. 7, pages 567{583, 1986.[3℄ E. Bah. Analyti Methods in the Analysis and Design of Number-Theoreti Algorithms.ACM Distinguished Dissertation (1984), MIT Press, Cambridge MA, 1985.[4℄ S. Ben-David, B. Chor, O. Goldreih, and M. Luby. On the Theory of Average CaseComplexity. JCSS, Vol. 44, No. 2, 1992, pages 193{219. Preliminary version in 21stSTOC, 1989.[5℄ M. Blum and S. Miali. How to Generate Cryptographially Strong Sequenes of Pseudo-Random Bits. SICOMP, Vol. 13, pages 850{864, 1984. Preliminary version in 23rd FOCS,1982.[6℄ B. Bollobas. Random Graphs. Aademi Press, 1985.[7℄ E.R. Can�eld, P. Erdos, and C. Pomerane. On a Problem of Oppenheim Conerning"Fatorisatio Numerorum". Jour. of Number Theory, Vol. 17, pages 1{28, 1983.[8℄ B. Chor and O. Goldreih. On the Power of Two{Point Based Sampling. Jour. of Com-plexity, Vol 5, 1989, pages 96{106. Preliminary version dates 1985.[9℄ I. Damgard. Collision Free Hash Funtions and Publi Key Signature Shemes. In Euro-Crypt'87, Springer-Verlag, LNCS 304, pages 203{216.[10℄ P. Erdos and H. Sahs. Regul�are Graphen gegenebener Taillenweite mit minimaler Knoten-zahl. Wiss. Z. Univ. Halle{Wittenberg, Math. Nat. R., 12, pages 251{258, 1963.[11℄ J. Feigenbaum, S. Kannan, M. Strauss, M. Viswanathan. An Approximate L1-Di�ereneAlgorithm for Massive Data Streams. Proeedings of 40th FOCS, pages 501{511, 1999.[12℄ P. Flajolet and A.M. Odlyzko. Random mapping statistis. In EuroCrypt'89, Springer-Verlag, LNCS 434, pages 329{354.[13℄ O. Goldreih. A Note on Computational Indistinguishability. IPL, Vol. 34, pages 277{281,May 1990.[14℄ O. Goldreih. Foundation of Cryptography { Basi Tools. Cambridge University Press,2001.[15℄ O. Goldreih, S. Goldwasser, and S. Miali. How to Construt Random Funtions. JACM,Vol. 33, No. 4, pages 792{807, 1986.[16℄ O. Goldreih, and H. Krawzyk, On Sparse Pseudorandom Ensembles. Random Struturesand Algorithms, Vol. 3, No. 2, (1992), pages 163{174.[17℄ O. Goldreih and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmia,32 (2), pages 302{343, 2002. 45

[18℄ O. Goldreih and L. Trevisan. Three Theorems regarding Testing Graph Properties.Proeedings of 42nd FOCS, pages 460{469, 2001. Full version in ECCC, TR01-010, 2001.[19℄ S. Goldwasser and S. Miali. Probabilisti Enryption. JCSS, Vol. 28, No. 2, pages270{299, 1984. Preliminary version in 14th STOC, 1982.[20℄ J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Generator from anyOne-way Funtion. SICOMP, Volume 28, Number 4, pages 1364{1396, 1999. Preliminaryversions by Impagliazzo et. al. in 21st STOC (1989) and Hastad in 22nd STOC (1990).[21℄ R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential iruits: Derandom-izing the XOR Lemma. In 29th STOC, pages 220{229, 1997.[22℄ W. Imrih. Expliit Constrution of Regular Graphs with no Small Cyles. Combinatoria,Vol. 4, pages 53{59, 1984.[23℄ S. Janson. The numbers of spanning trees, Hamilton yles and perfet mathings in arandom graph. Combin. Prob. Comput., Vol. 3, pages 97{126, 1994.[24℄ D.E. Knuth. The Art of Computer Programming, Vol. 2 (Seminumerial Algorithms).Addison-Wesley Publishing Company, In., 1969 (�rst edition) and 1981 (seond edition).[25℄ F. Lazebnik and V.A. Ustimenko. Expliit Constrution of Graphs with arbitrary largeGirth and of Large Size.[26℄ L.A. Levin. Average Case Complete Problems. SICOMP, Vol. 15, pages 285{286, 1986.[27℄ A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan Graphs. Combinatoria, Vol. 8, pages261{277, 1988.[28℄ M. Luby and C. Rako�. How to Construt Pseudorandom Permutations from Pseudo-random Funtions. SICOMP, Vol. 17, 1988, pages 373{386.[29℄ G.A. Margulis. Expliit Constrution of Graphs without Short Cyles and Low DensityCodes. Combinatoria, Vol. 2, pages 71{78, 1982.[30℄ M. Naor and O. Reingold. Construting Pseudo-Random Permutations with a PresribedStruture, Jour. of Crypto., Vol. 15 (2), 2002, pages 97{102.[31℄ B. Tsaban. Permutation graphs, fast forward permutations, and sampling the yle stru-ture of a permutation. Journal of Algorithms, Vol. 47 (2), pages 104{121, 2003.[32℄ A.C. Yao. Theory and Appliation of Trapdoor Funtions. In 23rd FOCS, pages 80{91,1982.
46

Appendix A: Implementing various probability distributionsOur proof of Theorem 5.2 relies on eÆient proedures for generating elements from a �nite setaording to two probability distributions. In both ases, we need proedures that work in time thatis poly-logarithmi (rather than polynomial) in the size of the set (and the reiproal of the desiredapproximation parameter). In both ases, we have lose expressions (whih an be evaluated inpoly-logarithmi time) for the probability mass that is to be assigned to eah element. Thus, inboth ases, it is easy to generate the desired distribution in time that is almost-linear in the sizeof the set. Our fous is on generating good approximations of these distributions in time that ispoly-logarithmi in the size of the set.Indeed, the problem onsidered in this appendix is a speial ase of our general framework. Weare given a spei�ation of a distribution (i.e., eah query should be answered by a sample drawnindependently from that distribution), and we wish to losely-implement it (i.e., answer eah queryby a sample drawn independently from approximately that distribution).A.1 Sampling the binomial distributionWe �rst onsider the generation of elements aording to the binomial distribution. For any N , weneed to output any value v 2 f0; 1; :::; Ng with probability �Nv � �2�N . An eÆient proedure for thispurpose is desribed in Knuth [24, Se. 3.4.1℄. In fat, Knuth desribes a more general proedurethat, for every p, outputs the value v 2 f0; 1; :::; Ng with probability bN;p(v) def= �Nv � � pv(1� p)N�v.However, his desription is in terms of operations with reals, and so we need to adapt it to thestandard (bit-operation) model. Knuth's desription proeeds in two steps:1. In Setion 3.4.1.F, it is shown how to redue the generation of the binomial distribution bN;pto the generation of some beta distributions, whih are ontinuous distributions over [0; 1℄ thatdepends on two parameters a and b.34 The redution involves taking log2N samples fromertain beta distributions, where the parameters of these distributions are easily determinedas a funtion of N . The samples of the beta distributions are proessed in a simple mannerinvolving only omparisons and basi arithmeti operations (subtration and division).2. In Setion 3.4.1.E, it is shown how to generate any beta distribution. The generator takes aonstant number of samples from the ontinuous uniform distribution over [0; 1℄, and produesthe desired sample with onstant probability (otherwise, the proess is repeated). The samplesof the uniform distributions are proessed in a simple manner involving only omparisons andvarious arithmeti and trigonometri operations (inluding omputing funtions as log andtan).The above is desribed in terms of real arithmeti and sampling uniformly in [0; 1℄, and providesa perfet implementation. The question is what happens when we replae the samples with onestaken from the set f�; 2�; :::; b1=� � �g, and replae the real arithmetis with approximations upto afator of 1� �.34A beta distribution with (natural) parameters a and b is de�ned in terms of the aumulative distribution funtionFa;b(r) def= a ��a+ b� 1a � � Z r0 xa�1(1� x)b�1 dxand the uniform ontinuous distribution is a speial ase (i.e., a = b = 1). In general, Fa;b(r) equals the probabilitythat the bth largest of a+ b� 1 independent uniformly hosen samples in [0; 1℄ has value at most r.47

Let us �rst onsider the e�et of replaing the uniform ontinuous distribution U(r) = r bythe ontinuous step-distribution S�(r) def= br=� � �, where we may assume that 1=� is an integer.Sine the variation distane between U and S� is O(�), the same holds for any funtion applied toa onstant number of samples taken from these distribution. Thus, the implementation of the betadistributions via the step-distribution S� will deviate by only O(�), and using the latter to generatethe binomial distribution bN;p only yields a deviation of O(� logN). Finally, using the averagenumerial stability of all funtions employed35 we onlude that an implementation by O(log(1=�))bits of preision will only introdue a deviation of �.A.2 Sampling from the two-set total-sum distributionWe now turn to the generation of pairs (l; r) suh that l + r = T and 0 � l; r � S, where T � 2S.Spei�ally, we need to produe suh a pair with probability proportional to �Sl � � �Sr� (i.e., thenumber of ways to selet l elements from one set of size S and r elements from another suh set).(In the proof of Theorem 5.2, S = M=2.) Without loss of generality, we may assume that T � S(or else we selet the \omplementary" elements). Thus, we need to sample r 2 f0; :::; Tg withprobability pr = � ST�r� � �Sr��2ST � (5)We wish to produe a sample with deviation at most � from the orret distribution and areallowed time poly(k), where k def= log(S=�). In ase T � k, we perform this task in the straightfor-ward manner; that it, ompute all the T + 1 probabilities pr, and selet r aordingly. Otherwise(i.e., T > k), we rely on the fat that pr is upper-bounded by twie the binomial distribution of Ttries (i.e., qr = �Tr�=2T). This leads to the following sampling proess:1. Selet r aording to the binomial distribution of T tries.2. Compute pr and qr. Output r with probability pr=2qr, and go to Step 1 otherwise.We will show (see Fat A.1 below) that pr � 2qr always holds. Thus, in eah iteration, we output rwith probability that is proportional to pr; that is, we output r with probability qr �(pr=2qr) = pr=2.It follows that eah iteration of the above proedure produes an output with probability 1=2, andby trunating the proedure after k iterations (and produing arbitrary output in suh a ase) theoutput distribution is statistially lose to the desired one.Fat A.1 Suppose that T � S and T > k. For pr's and qr's as above, it holds that pr < 2qr.Proof: The ases r = T and r = 0 are readily veri�ed (by noting that pr = �ST�=�2ST � < 2�T andqr = 2�T). For r 2 f1; :::; T � 1g, letting � def= (S � r)=(2S � T) 2 (0; 1), we haveprqr = �Sr� � � ST�r�=�2ST ��Tr�=2T = 2T � �2S�TS�r ��2SS �35Eah of these funtions (i.e., rational expressions, log and tan) has a few points of instability, but we applythese funtions on arguments taken from either the uniform distribution or the result of prior funtions on thatdistribution. In partiular, exept for what happens in an �-neighborhood of some problemati points, all funtionsan be well-approximated when their argument is given with O(log(1=�) bits of preision. Furthermore, the funtionslog and tan are only evaluated at the uniform distribution (or simple funtions of it), and the rational expressionsare evaluated on some intermediate beta distributions. Thus, in all ases, the problemati neighborhoods are onlyassigned small probability mass (e.g., � in the former ase and O(p�) in the latter).48

= 2T � (1 + o(1)) � (2��(1 � �) � (2S � T))�1=2 � 2H2(�)�(2S�T)(2�(1=2)2 � 2S)�1=2 � 2H2(1=2)�2S= 1 + o(1)p2�(1 � �) � � � 2(H2(�)�1)�(2S�T)where � def= (2S � T)=S � 1 and H2 is the binary entropy funtion. For � 2 [(1=3); (2=3)℄, we anupper-bound pr=qr by (1 + o(1)) �p9=4� < 2. Otherwise (i.e., without loss of generality � < 1=3),we get that H2(�) < 0:92 and ��1(1 � �)�1 � 2S � T , where for the latter inequality we use1 � r � S� 1. Thus, pr=qr is upper-bounded by O(p2S � T) � 2�
(2S�T) = O(2�
(S)+log S), whihvanishes to zero with k (beause S � T > k).36A.3 A general tool for sampling strange distributionsIn ontinuation to Appendix A.2, we state a useful lemma (whih was impliitly used above as wellas in prior works). The lemma suggests that poly(logN)-time sampling from a desired probabilitydistribution fpigNi=1 an be redued to sampling from a related probability distribution fqigNi=1,whih is hopefully poly(logN)-time sampleable.Lemma A.2 Let fpigNi=1 and fqigNi=1 be probability distributions satisfying the following onditions:1. There exists a polynomial-time algorithm that given i 2 [N ℄ outputs approximations of pi andqi up to �N�2.2. Generating an index i aording to the distribution fqigNi=1 is losely-implementable (uptonegligible in logN deviation and in poly(logN)-time).3. There exist a poly(logN)-time reognizable set S � [N ℄ suh that(a) 1�Pi2S pi is negligible in logN .(b) There exists a polynomial p suh that for every i 2 S it holds that pi � p(logN) � qi.Then generating an index i aording to the distribution fpigNi=1 is losely-implementable.Proof: Without loss of generality, S may exlude all i's suh that pi < N�2. For simpliity, weassume below that given i we an exatly ompute pi and qi (rather than only approximate themwithin �N�2). Let t def= p(logN). The sampling proedure proeeds in iterations, where in eahiteration i is seleted aording to the distribution fqigNi=1, and is output with probability pi=tqi ifi 2 S. (Otherwise, we proeed to the next iteration.) Observe that, onditioned on produing anoutput, the output of eah iteration is in S and equals i with probability qi � (pi=tqi) = pi=t. Thus,eah iteration produes output with probabilityPi2S pi=t > 1=2t, and so halting after O(t log(1=�))iterations we produe output with probability at least 1 � �. For any i 2 S, the output is i withprobability (1��) �pi=�, where � def= Pj2S pj. Setting � to be negligible in logN , the lemma follows.A typial appliation of Lemma A.2 is to the ase that for eah i 2 [N ℄ the value of pi an beapproximated by one out of m = poly(logN) predetermined pj's. Spei�ally:36In fat, it holds that pr � p2 � qr for all r's, with the extreme value obtained at r = T=2 (and T = S), where wehave � = 1=2 (and � = 1). 49

Corollary A.3 Let fpigNi=1 be a probability distribution and S � [N ℄ be a set satisfying Condi-tions (1) and (3a) of Lemma A.2. Suppose that, for m; t = poly(logN), there exists an eÆientlyonstrutible sequene of integers 1 = i1 < i2 < � � � < im = N suh that for every j 2 [m � 1℄and i 2 [ij ; ij+1℄ \ S it holds that pij=t < pi < t � pij . Then generating an index i aording to thedistribution fpigNi=1 is losely-implementable.Proof: For every j 2 [m� 1℄ and i 2 [ij ; ij+1℄ \ S, de�ne p0i = pij and note that p0i=t < pi < t � p0i.Let p0 =Pi2S p0i, and note that p0 < t. Now, de�ne qi = p0i=p0 for every i 2 S, and qi = 0 otherwise.Then, for every i 2 S, it holds that pi < t�p0i = t�p0 �qi < t2qi. Sine these qi's satisfy Conditions (1),(2) and (3b) of Lemma A.2, the orollary follows.Appendix B: Implementing a Random Bipartite GraphFollowing the desription in Setion 6, we present a lose-implementation of random bipartitegraphs. Two issues arise. Firstly, we have to selet the proportion of the sizes of the two parts,while notiing that di�erent proportions give rise to di�erent number of graphs. Seondly, we notethat a bipartite graph uniquely de�nes a 2-partition (up to swithing the two parts) only if it isonneted. However, sine all but a negligible fration of the bipartite graphs are onneted, wemay ignore the seond issue, and fous on the �rst one. (Indeed, the rest of the disussion is slightlyimpreise beause the seond issue is ignored.)For i 2 [�N ℄, the number of 2N -vertex bipartite graphs with N + i verties on the �rst part is 2NN + i! � 2(N+i)�(N�i) � 2NN ! � 2N2�i2where equality holds for i = 0 and approximately holds (i.e., upto a onstant fator) for jij = pN .Thus, all but a negligible fration of the 2N -vertex bipartite graphs have N � log2N verties oneah part. That is, we may fous on O(logN) values of i. Indeed, for eah i 2 [� log2N ℄, weompute Ti def= � 2NN+i� � 2N2�i2 , and pi = Ti=T , where T def= Plog2Nj=� log2N Tj. Next, we selet i withprobability pi, and onstrut a random 2N -vertex bipartite graph with N + i verties on the �rstpart as follows:� As in Setion 6, we use the funtion f1 to implement a permutation �. We let S def= fv :�(v) 2 [N + i℄g, and �S(i) def= 1 if and only if i 2 S.� As in Setion 6, we answer the query (u; v) by 0 if �S(u) = �S(v) and aording to the valueof f2 otherwise.Appendix C: Various CalulationsFor the proof of Lemma 6.3The proof of Lemma 6.3 refers to the following known fat:Fat C.1 Let X be a random variable ranging over some domain D, and suppose that H(X) �log2 jDj� �. Then X is at statistial distane at most O(p�) from the uniform distribution over D.50

Proof: Suppose that X is at statistial distane Æ from the uniform distribution over D. Then,there exists a S � D suh that jPr[X 2 S℄� (jSj=jDj)j = Æ, and assume without loss of generalitythat jSj � jDj=2. Note that either for eah e 2 S it holds that Pr[X = e℄ � 1=jDj or for eahe 2 S it holds that Pr[X = e℄ � 1=jDj. By removing the jSj � (jDj=2) elements of smallestabsolute di�erene (i.e., smallest jPr[X = e℄� (1=jDj)j), we obtain a set S0 of size jDj=2 suh thatjPr[X 2 S0℄� (jS0j=jDj)j � Æ=2. The entropy of X is maximized when it is uniform both on S0 andon D n S0. Thus:H(X) � H2(Pr[X 2 S0℄) +Pr[X 2 S0℄ �H(XjX 2 S0) +Pr[X 2 D n S0℄ �H(XjX 2 D n S0)= H2 �12 + Æ2�+ log2(jDj=2)= 1�
(Æ2) + log2(jDj=2)We get that H(X) � log2 jDj� � Æ2, for some universal > 0. Combining this with the hypothesisthat H(X) � log2 jDj � �, we get that � � � Æ2, and Æ � p�= follows.For the proof of Theorem 6.5In ontinuation to Footnote 21, whih refers to Part 2 of the proof of Theorem 6.5, we prove thefollowing fat.Fat C.2 Let (N) be as in Theorem 6.5, and T def= N=(N). Assume that T is an integer.Consider any �xed partition, (P1; :::; PT), of [N ℄ suh that jPij = (N) for every i. Consider agraph seleted as follows:� Eah Pi is an independent set.� For k = �(N)+32 �, the rest of the edges are determined by a k-wise independent binary sequeneof length �N2 �� T � �(N)2 �.Then, with probability at least 1�O(N�1=2), the graph has no independet set of size (N) + 3.Proof: We will show that the expeted number of independet set of size (N) + 3 is O(N�1=2),and the fat will follow. Let def= (N) and s def= + 3. We partition all possible independentsets of size s into lasses aording to the ontributions of the various Pi's to them. That is, thelasses that orresponds to the sequene (s1; :::; sT), where PTi=1 si = s, onsists of independentsets having si verties from Pi. For suh a lass, we let rj denote the j-th non-zero si. We atually,luster the lasses aording to the resulting sequene of rj's. That is, the luster (r1; :::; rt), wherePtj=1 rj = s and rj � 1, onsists of independent sets having rj verties from the j-th part thatontributes any verties to the independent set. Then, the ontribution of suh a luster to theexpetation is given by the number of potential independent sets in the luster times the probabilitythat suh a potential independent set is assigned no edges. Observe that the number of potentialundetermined edges in suh a potential independent set is �s2��Pi �ri2 �, and thus the ontributionof the luster is given by Tt! � " tYi=1 ri!# � 2�((s2)�Pti=1 (ri2)) = 2�(s2) � N=t ! � tYi=1 " ri! � 2(ri2)#< 2�(s2) � (N=)t � tYi=1 " ri! � 2(ri2)#51

We bound, seperately, eah fator of the form � ri� � 2(ri2). Spei�ally:Claim: Let f(x) = �x� � 2(x2). Then, for x 2 f1; :::; g it holds that f(x) � Nx�1, and for x 2f2; :::; � 1g it holds that f(x) < Nx�(3=2).Using this laim, the ontribution of eah sequene of ri's is:2�(s2) � (N=)t � tYi=1 f(ri) < 2�(s2) � (N=)t � tYi=1 N ri�1= 2�(s2) �NPti=1 ri= 2� s(s�1)2 + 2 �s = 2�swhere the last two equalities use log2N = =2 and = s � 3, respetively. Furthermore, if thesequene of ri's has some element in f2; :::; �1g then we get a better bound of 2�s �N�1=2, beuasewe gain at least a fator of N�1=2 in the inequality.Now, the number of sequenes (r1; :::; rt), for various t, is Pst=2 �s�1t�1� < 2s�1. Of these only aonstant number have all ri's in f1; g (i.e., the all-1 sequene and the permutations of (; 1; 1; 1)).Thus, the expetation is bounded byO(1) � 2�s + 2s � (2�s �N�1=2) < O(N�1=2)where the inequality uses s > = 2 log2N .We now turn to the proof of the laim. For x = 1, equality holds (i.e., f(1) = �20 = �N0). (Infat, this is the only ase where equality holds.) For x = , we have f() = 1 � 2(�1)=2 = N �1 <N �1. In all other ases, we de�ne g(x) = log2 f(x) � (x � (3=2)) � log2N , and prove that it isnegative. Using log2N = =2, note thatg(x) = log2 x!+ (x� 1)x2 � (x� (3=2)) � 2= log2 x!+ (x� � 1)x2 + 34< log2 0x!+ (x� 0)x2 + 304where 0 def= +1. Using the fat that = (N) = !(1) (and 2 � x � 0� 2), we onsider two ases:1. If either 2 � x � 5 or 0 � 5 � x � 0 � 2 then we bound log2 �0x� by 5 log2 0 and getg(x) < 5 log2 0 + 12 � max2�x�0�2f(x� 0)xg+ 304= 5 log2 0 � 2(0 � 2)2 + 304 < 02. If 5 � x � 0 � 5 then we bound log2 �0x� by 0 and getg(x) < 0 + 12 � max5�x�0�5f(x� 0)xg+ 0= 20 � 5(0 � 5)2 < 0So the laim follows, and so does the entire fat.52

Appendix D: A strengthening of Proposition 2.15The hypothesis of Part 2 of Proposition 2.15 requires the existene of one-way funtions, or equiv-alently the ability to generate hard-instanes (to NP-problems) along with orresponding solutions(f. [14, Se 2.1℄). A seemingly weaker ondition, whih is in the spirit of Levin's theory of average-ase omplexity [26℄ (see also [4℄), is the ability to generate hard-instanes to NP-problems. Speif-ially:De�nition D.1 (generating hard instanes): A probabilisti polynomial-time algorithm G is alleda generator of hard instanes for a set S if for every probabilisti polynomial-time algorithm A theprobability that A orretly deides whether or not G(1n) is in S is bounded away from 1. That is,there exists a polynomial p suh that for all suÆiently large n's it holds thatPrx G(1n)[A(x) = �S(x)℄ < 1� 1p(n)where �S(x) = 1 if x 2 S and �S(x) = 0 otherwise.De�nition D.1 only requires that hard instanes be generated with \notiible" probability. Note thatthe existene of one-way funtions (even weak ones) implies the ability to generate hard instanesto NP-problems. The onverse is not known to hold. Thus, the following result strengthens Part 2of Proposition 2.15.Proposition D.2 Assuming the existene of generators of hard instanes for NP-problems, thereexist spei�ations that annot be pseudo-implemented.Proof: Let L be an NP-set that has a generator G of hard instanes, let R be the orrespondingwitness relation (i.e., L = fx : 9y s.t. (x; y) 2 Rg), and R(x) def= fy : (x; y) 2 Rg. Consider thespei�ation that answers query x with a uniformly distributed y 2 R(x) if R(x) 6= ; and with aspeial symbol otherwise. We will show that this spei�ation annot be pseudo-implemented.Let I be an arbitrary implementation of the above spei�ation, and onsider a distinguisherthat, for parameter n, makes the query x G(1n), obtains the answer y, and outputs 1 if and only if(x; y) 2 R (whih is polynomial-time deidable). When this distinguisher queries the spei�ation,it outputs 1 with probability that equals � def= Pr[G(1n) 2 L℄. Assume, towards the ontradition,that when the distinguisher queries I it outputs 1 with probability that at least � � �(n), where� is a negligible funtion. In suh a ase we obtain a probabilisti polynomial-time algorithm thatviolates the hypothesis: Spei�ally, onsider an algorithm A suh that A(x) answers 1 if and onlyif (x; I(x)) 2 R, and note that A is always orret when it outputs 1. Thus,Prx G(1n)[A(x) = �L(x)℄ = Pr[x2L ^ A(x)=1℄ +Pr[x =2L℄ �Pr[A(x)=0jx =2L℄= Pr[x2L ^ (x; I(x))2R℄ + (1� �) �Pr[(x; I(x)) =2Rjx =2L℄� (�� �(n)) + (1� �) � 1 = 1� �(n)Thus, the implementation I annot be omputationally indistinguishable from the spei�ation,and the proposition follows.
53

