
On the Implementation of Huge Random Objects�Oded Goldreichy Sha� Goldwasseryz Asaf NussboimyDecember 15, 2007AbstractWe initiate a general study of the feasibility of implementing (huge) random objects, anddemonstrate its applicability to a number of areas in which random objects occur naturally.We highlight two types of measures of the quality of the implementation (with respect to thedesired speci�cation): The �rst type corresponds to various standard notions of indistinguisha-bility (applied to function ensembles), whereas the second type is a novel notion that we calltruthfulness. Intuitively, a truthful implementation of a random object of Type T must (always)be an object of Type T, and not merely be indistinguishable from a random object of Type T.Our formalism allows for the consideration of random objects that satisfy some �xed property(or have some �xed structure) as well as the consideration of objects supporting complex queries.For example, we consider the truthful implementation of random Hamiltonian graphs as well assupporting complex queries regarding such graphs (e.g., providing the next vertex along a �xedHamiltonian path in such a graph).

Keywords: Pseudorandomness, Random Graphs, Random Codes, Random Functions, monotonegraph properties, random walks on regular graphs.�An extended abstarct of this work appeared in the proceedings of the 44th FOCS, pages 68{79, 2003. Supportedby the MINERVA Foundation, Germany.yDepartment of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel.zLaboratory for Computer Science, MIT.

Contents1 Introduction 21.1 Objects, speci�cations, and implementations : 21.2 Indistinguishability and Truthfulness : 31.3 Organization : 42 Formal Setting and General Observations 42.1 Speci�cation : 42.2 Implementations : 52.3 Known non-trivial implementations : 82.4 A few general observations : 82.5 Objects of feasible size : 103 Our Main Results 123.1 Truthful Implementations : 123.1.1 Supporting complex queries regarding Boolean functions : : : : : : : : : : : : : : : : : 123.1.2 Supporting complex queries regarding length-preserving functions : : : : : : : : : : : 133.1.3 Random graphs of various types : 133.1.4 Supporting complex queries regarding random graphs : : : : : : : : : : : : : : : : : : 143.1.5 Random bounded-degree graphs of various types : 143.2 Almost-Truthful Implementations : 153.2.1 Random codes of large distance : 153.2.2 Random graphs of various types : 154 Implementing Random Codes of Large Distance 165 Boolean Functions and Interval-Sum Queries 176 Random Graphs Satisfying Global Properties 216.1 Truthful implementations : 226.2 Almost-truthful implementations : 247 Supporting Complex Queries regarding Random Graphs 318 Random Bounded-Degree Graphs and Global Properties 349 Complex Queries regarding Length-Preserving Functions 3710 Conclusions and Open Problems 41Bibliography 43Appendix A: Implementing various probability distributions 45A.1 Sampling the binomial distribution : 45A.2 Sampling from the two-set total-sum distribution : 46A.3 A general tool for sampling strange distributions : 47Appendix B: Implementing a Random Bipartite Graph 48Appendix C: Various Calculations 48Appendix D: A strengthening of Proposition 2.15 52
1

1 IntroductionSuppose that you want to run some experiments on random codes (i.e., subsets of f0; 1gn that containK = 2
(n) strings). You actually take it for granted that the random code will have large (i.e., linear)distance, because you know some Coding Theory and are willing to discard the negligible probability that arandom code will not have a large distance. Suppose that you want to be able to keep succinct representationsof these huge codes and/or that you want to generate them using few random bits. Being aware of therelevant works on pseudorandomness (e.g., [22, 5, 35, 18]), you plan to use pseudorandom functions [18]in order to e�ciently generate and store representations of these codes; that is, using the pseudorandomfunction f : [K]! f0; 1gn, you can de�ne the code Cf = ff(i) : i2 [K]g, and e�ciently produce codewordsof Cf . But wait a minute, do the codes that you generate this way have a large distance?The point is that having a large distance is a global property of the code, which in turn is a huge (i.e.,exp(n)-sized) object. This global property cannot be decided by looking at polynomially many (i.e., poly(n)-many) codewords, and so its violation cannot be translated to a contradiction of the pseudorandomness ofthe function. Indeed, the substitution of a random function (or a random code) by a pseudorandom one isnot guaranteed to preserve the global property. Speci�cally, all pseudorandom codes generated as suggestedabove may have small distance.1So, can we e�ciently generate random-looking codes of large distance? Speci�cally, can we provide aprobabilistic polynomial-time procedure that allows to sample codewords from a code of large distance suchthat the sampled codewords look as if they were taken from a random code (which, in particular, meansthat we do not generate linear codes). The answer is essentially positive: see Section 4. However, this ismerely an example of the type of questions that we deal with. Another illustrative example is provided bythe question of whether it is feasible to generate a random-looking connected graph of huge size? Again,the huge graph should look random and be connected, and we cannot obtain this by merely using a randomfunction (see Example 3.5).The foregoing discussion eludes to the notion of a \truthful" implementation (of a given speci�cation),which will be central to this work. For example, if the speci�cation calls for (random) codes of large distancethen the implementation should provide such codes and not arbitrary random-looking codes. However,even when discarding the question of truthfulness, a fundamental question arises: which types of randomobjects can be e�ciently implemented in the sense that one cannot distinguish the implementation from thecorresponding speci�cation.We initiate a general study of the feasibility of implementing (huge) random objects. The pivots of thisstudy are the notions of a speci�cation and an implementation (see Section 1.1), where an implementation isrelated to the speci�cation by appropriate measures of indistinguishability and truthfulness (see Section 1.2).After establishing the basic formalism (in Section 2), we explore several areas in which the study of randomobjects occurs naturally. These areas include graph theory, coding theory, and cryptography. The bulk ofthis work provides implementations of various natural random objects, which were considered before in theseareas (e.g., the study of random graphs [6]).1.1 Objects, speci�cations, and implementationsOur focus is on huge objects; that is, objects that are of size that is exponential in the running time of theapplications. Thus, these (possibly randomized) applications may inspect only small portions of the object(in each randomized execution). The object may be viewed as a function (or an oracle), and inspecting asmall portion of it is viewed as receiving answers to a small number of adequate queries. For example, whenwe talk of huge dense graphs, we consider adjacency queries that are vertex-pairs with answers indicatingwhether or not the queried pair is connected by an edge. When we talk of huge bounded-degree graphs, weconsider incidence queries that correspond to vertices with answers listing all the neighbors of the queriedvertex.1Indeed, for each function fs taken from some pseudorandom ensemble ffs : [2jsj=10] ! f0; 1gjsjgs, it may holdthat the Hamming distance between fs(is) and fs(is + 1) is one, for some is that depends arbitrarily on fs. Forexample, given a pseudorandom ensemble ffsg, consider the ensemble ffs;ig such that fs;i(i) = 0n, fs;i(i+1) = 0n�11and fs;i(x) = fs(x) for all other x's. 2

We are interested in classes of objects (or object types), which can be viewed as classes of functions.(Indeed, we are not interested in the trivial case of generic objects, which is captured by the class of allfunctions.) For example, when we talk of simple undirected graphs in the adjacency predicate representation,we only allow symmetric and non-re
exive Boolean functions. Similarly, when we talk of such bounded-degreegraphs in the incident-lists representation, we restrict the class of functions in a less trivial manner (i.e., ushould appear in the neighbor-list of v i� v appears in the neighbor-list of u). More interestingly, we may talkof the class of connected (or Hamiltonian) graphs, in which case the class of functions is even more complex.This formalism allows to talk about objects of certain types (or of objects satisfying certain properties). Inaddition, it captures complex objects that support \compound queries" to more basic objects. For example,we may consider an object that answers queries regarding a global property of a Boolean function (e.g., theparity of all the function's values). The queries may also refer to a large number of values of the function(e.g., the parity of all values assigned to arguments in an interval that is speci�ed by the query).We study probability distributions over classes of objects. Such a distribution is called a speci�cation.Formally, a speci�cation is presented by a computationally-unbounded probabilistic Turing machine, whereeach setting of the machine's random-tape yields a huge object. The latter object is de�ned as the corre-sponding input-output relation, and so queries to the object are associated with inputs to the machine. Weconsider the distribution on functions obtained by selecting the speci�cation's random-tape uniformly. Forexample, a random N -vertex Hamiltonian graph is speci�ed by a computationally-unbounded probabilisticmachine that uses its random-tape to determine such a (random Hamiltonian) graph, and answers adjacencyqueries accordingly. Another speci�cation may require to answer, in addition to adjacency queries regardinga uniformly selected N -vertex graph, also more complex queries such as providing a clique of size log2N thatcontains the queried vertex. We stress that the speci�cation is not required to be even remotely e�cient(but for sake of simplicity we assume that it is recursive).Our ultimate goal will be to provide a probabilistic polynomial-time machine that implements the desiredspeci�cation. That is, we consider the probability distribution on functions induced by �xing the random-tape of the latter machine in all possible ways. Again, each possible �xing of the random-tape yields afunction corresponding to the input-output relation (of the machine per this contents of its random-tape).Thus, an implementation is a probabilistic machine, just as the speci�cation, and it de�nes a distribution onfunctions in the same manner. The key di�erence is that the implementation is a probabilistic polynomial-time machine, whereas the speci�cation is rather arbitrary (or merely recursive).1.2 Indistinguishability and TruthfulnessNeedless to say, the key question is how does the implementation relate to the desired speci�cation; that is,how \good" is the implementation. We consider two aspects of this question. The �rst (and more standard)aspect is whether one can distinguish the implementation from the speci�cation when given oracle access toone of them. Variants include perfect indistinguishability, statistical-indistinguishability, and computational-indistinguishability.We highlight a second aspect regarding the quality of implementation: the truthfulness of the implemen-tation with respect to the speci�cation, where being truthful means that any possible function that appearswith non-zero probability in the implementation must also appear with non-zero probability in the speci�-cation. For example, if the speci�cation is of a random Hamiltonian graph then a truthful implementationmust always yield a Hamiltonian graph. Likewise, if the speci�cation is of a random non-Hamiltonian graphthen a truthful implementation must always yield a non-Hamiltonian graph. Indeed, these two examplesare fundamentally di�erent, because with overwhelmingly high probability a random graph is Hamiltonian.(Thus, a relaxed notion of truthfulness is easy to obtain in the �rst case but not in the second case.)2Indeed, our presentation highlights the notion of truthfulness, and we justify below the importancethat we attach to this notion. Nevertheless, we stress that this paper also initiates the study of generalimplementations, regardless of truthfulness. That is, we ask which speci�cations have implementations2Here we refer to a relaxation of the notion of truthfulness that (only) requires that all but a negligible part ofthe probability mass of the implementation is assigned to functions that appear with non-zero probability in thespeci�cation. An implementation satisfying this relaxation will be called called almost-truthful.3

(which are indistinguishable from them). We also stress that some of our constructions are interestingregardless of their truthfulness.The meaning of truthfulness. Seeking a truthful implementation of random objects of a givenType T, means aiming at the generation of pseudorandom objects of Type T. That is, we want the generatedobject to always be of Type T, but we are willing to settle for Type T objects that look as if they are trulyrandom Type T objects (although they are not). This means that we seek Type T objects that look likerandom Type T objects, rather than objects that look like random Type T objects although they are not ofType T at all. For example, a random function is not a truthful implementation of a random permutation,although the two look alike to anybody restricted to resources that are polynomially related to the lengthof the inputs to the function. Beyond the intuitive conceptual appeal of truthfulness, there are importantpractical considerations.In general, when one deals (or experiments) with an object that is supposed to be of Type T, one mayassume that this object has all the properties enjoyed by all Type T objects. If this assumption does nothold (even if one cannot detect this fact during initial experimentation) then an application that dependson this assumption may fail. One reason for the failure of the application may be that it uses signi�cantlymore resources than those used in the initial experiments that failed to detect the problem. Another issue isthat the probability that the application fails may indeed be negligible (as is the probability of detecting thefailure in the initial experiments), but due to the importance of the application we are unwilling to tolerateeven a negligible probability of failure.Truthful implementations as an extension of complexity theory. Specializing our notionof a truthful implementation to the case of deterministic speci�cations yields the standard notion of e�-cient computation; that is, a truthful implementation of a function f : f0; 1g� ! f0; 1g� is nothing but apolynomial-time algorithm for computing f . Similarly, an almost-truthful implementation of f is a proba-bilistic polynomial-time algorithm for computing f (with exponentially vanishing error probability). Thus,our notion of truthful implementations extends the standard study of polynomial-time computations fromfunctions to probability distributions over functions (i.e., speci�cations).1.3 OrganizationIn Section 2, we present formal de�nitions of the notions discussed above as well as basic observationsregarding these notions. These are followed by a few known examples of non-trivial implementations ofvarious random objects (which are retrospectively cast nicely in our formulation). In Section 3, we state afair number of new implementations of various random objects, while deferring the constructions (and proofs)to subsequent corresponding sections (i.e., Sections 4 through 9). These implementations demonstrate theapplicability of our notions to various domains such as functions, graphs, and codes. Conclusions and openproblems are presented in Section 10.2 Formal Setting and General ObservationsThroughout this work we let n denote the feasibility parameter. Speci�cally, feasible-sized objects have anexplicit description of length poly(n), whereas huge objects have (explicit description) size exponential in n.The latter are described by functions from poly(n)-bit strings to poly(n)-bit strings. Whenever we talk ofe�cient procedures we mean algorithms running in poly(n)-time.2.1 Speci�cationA huge random object is speci�ed by a computationally-unbounded probabilistic Turing machine. For a �xedcontents of the random-tape, such a machine de�nes a (possibly partial) function on the set of all binarystrings. Such a function is called an instance of the speci�cation. We consider the input-output relation ofthis machine when the random-tape is uniformly distributed. Loosely speaking, this is the random objectspeci�ed by the machine. 4

For sake of simplicity, we con�ne our attention to machines that halt with probability 1 on every input.Furthermore, we will consider the input-output relation of such machines only on inputs of some speci�edlength `, where ` is always polynomially related to the feasibility parameter n. Thus, for such a probabilisticmachine M and length parameter ` = `(n), with probability 1 over the choice of the random-tape for M ,machine M halts on every `(n)-bit long input.De�nition 2.1 (speci�cation): For a �xed function ` :N!N, the instance speci�ed by a probabilistic machineM , random-tape ! and parameter n is the function Mn;! de�ned by letting Mn;!(x) be the output of M oninput x 2 f0; 1g`(n) when using the random-tape ! 2 f0; 1g1. The random object speci�ed by M and n isde�ned as Mn;! for a uniformly selected ! 2 f0; 1g1.Note that, with probability 1 over the choice of the random-tape, the random object (speci�ed by M andn) depends only on a �nite pre�x of the random-tape. Let us clarify our formalism by casting in it severalsimple examples, which were considered before (cf. [18, 31]).Example 2.2 (a random function): A random function from n-bit strings to n-bit strings is speci�ed by themachine M that, on input x 2 f0; 1gn (parameter n and random-tape !), returns the idxn(x)-th n-bit blockof !, where idxn(x) is the index of x within the set of n-bit long strings.Example 2.3 (a random permutation): Let N = 2n. A random permutation over f0; 1gn � [N] can bespeci�ed by uniformly selecting an integer i 2 [N !]; that is, the machine uses its random-tape to determinei 2 [N !], and uses the i-th permutation according to some standard order. An alternative speci�cation, whichis easier to state (alas even more ine�cient), is obtained by a machine that repeatedly inspect the N next n-bitstrings on its random-tape, until encountering a run of N di�erent values, using these as the permutation.Either way, once a permutation � over f0; 1gn is determined, the machine answers the input x 2 f0; 1gnwith the output �(x).Example 2.4 (a random permutation coupled with its inverse): In continuation to Example 2.3, we mayconsider a machine that selects � as before, and responds to input (�; x) with �(x) if � = 1 and with ��1(x)otherwise. That is, the object speci�ed here provides access to a random permutation as well as to its inverse.2.2 ImplementationsDe�nition 2.1 places no restrictions on the complexity of the speci�cation. Our aim, however, is to implementsuch speci�cations e�ciently. We consider several types of implementations, where in all cases we aimat e�cient implementations (i.e., machines that respond to each possible input within polynomial-time).Speci�cally, we consider two parameters:1. The type of model used in the implementation. We will use either a polynomial-time oracle machinehaving access to a random oracle or a standard probabilistic polynomial-time machine (viewed as adeterministic machine having access to a �nite random-tape).2. The similarity of the implementation to the speci�cation; that is, the implementation may be per-fect, statistically indistinguishable or only computationally indistinguishable from the speci�cation (byprobabilistic polynomial-time oracle machines that try to distinguish the implementation from thespeci�cation by querying it at inputs of their choice).Our real goal is to derive implementations by ordinary machines (having as good a quality as possible).We thus view implementations by oracle machines having access to a random oracle as merely a cleanabstraction, which is useful in many cases (as indicated by Theorem 2.9 below).De�nition 2.5 (implementation by oracle machines): For a �xed function ` : N ! N, a (deterministic)polynomial-time oracle machine M and oracle f , the instance implemented by Mf and parameter n is thefunction Mf de�ned by letting Mf (x) be the output of M on input x 2 f0; 1g`(n) when using the oraclef . The random object implemented by M with parameter n is de�ned as Mf for a uniformly distributedf : f0; 1g� ! f0; 1g. 5

In fact, Mf (x) depends only on the value of f on inputs of length bounded by a polynomial in jxj. Similarly,an ordinary probabilistic polynomial-time (as in the following de�nition) only uses a poly(jxj)-bit longrandom-tape when invoked on input x. Thus, for feasibility parameter n, the machine handles `(n)-bit longinputs using a random-tape of length �(n) = poly(`(n)) = poly(n), where (w.l.o.g.) � is 1-1.De�nition 2.6 (implementation by ordinary machines): For �xed functions `; � : N ! N, an ordinarypolynomial-time machine M and a string r, the instance implemented by M and random-tape r is the functionMr de�ned by letting Mr(x) be the output of M on input x 2 f0; 1g`(��1(jrj)) when using the random-taper. The random object implemented by M with parameter n is de�ned as Mr for a uniformly distributedr 2 f0; 1g�(n).We stress that an instance of the implementation is fully determined by the machineM and the random-taper (i.e., we disallow \implementations" that construct the object on-the-
y while depending and keeping trackof all previous queries and answers).For a machine M (either a speci�cation or an implementation) we identify the pair (M;n) with therandom object speci�ed (or implemented) by machine M and feasibility parameter n.De�nition 2.7 (indistinguishability of the implementation from the speci�cation): Let S be a speci�cationand I be an implementation, both with respect to the length function ` : N! N. We say that I perfectlyimplements S if, for every n, the random object (I; n) is distributed identically to the random object (S; n). Wesay that I closely-implements S if, for every oracle machine M that on input 1n makes at most polynomially-many queries, all of length `(n), the following di�erencejPr[M (I;n)(1n) = 1] � Pr[M (S;n)(1n) = 1]j (1)is negligible3 as a function of n. We say that I pseudo-implements S if Eq. (1) holds for every probabilisticpolynomial-time oracle machine M that makes only queries of length equal to `(n).We stress that the notion of a close-implementation does not say that the objects (i.e., (I; n) and (S; n))are statistically close; it merely says that they cannot be distinguished by a (computationally unbounded)machine that asks polynomially many queries. Indeed, the notion of pseudo-implementation refers to thenotion of computational indistinguishability (cf. [22, 35]) as applied to functions (see [18]). Clearly, anyperfect implementation is a close-implementation, and any close-implementation is a pseudo-implementation.Intuitively, the oracle machine M , which is sometimes called a (potential) distinguisher, represents a userthat employs (or experiments with) the implementation. It is required that such a user cannot distinguish theimplementation from the speci�cation, provided that the user is limited in its access to the implementationor even in its computational resources (i.e., time).Indeed, it is trivial to perfectly implement a random function (i.e., the speci�cation given in Example 2.2)by using an oracle machine (with access to a random oracle). In contrast, the main result of Goldreich,Goldwasser and Micali [18] can be cast by saying that there exist a pseudo-implementation of a randomfunction by an ordinary machine, provided that pseudorandom generators (or, equivalently, one-way func-tion [23]) do exist. In fact, under the same assumption, it is easy to show that every speci�cation having apseudo-implementation by an oracle machine also has a pseudo-implementation by an ordinary machine. Astronger statement will be proven below (see Theorem 2.9).Truthful implementations. An important notion regarding (non-perfect) implementations refers tothe question of whether or not they satisfy properties that are enjoyed by the corresponding speci�cation.Put in other words, the question is whether each instance of the implementation is also an instance of thespeci�cation. Whenever this condition holds, we call the implementation truthful. Indeed, every perfectimplementation is truthful, but this is not necessarily the case for close-implementations. For example, arandom function is a close-implementation of a random permutation (because it is unlikely to �nd a collisionamong polynomially-many pre-images); however, a random function is not a truthful implementation of arandom permutation.3A function � : N! [0; 1] is called negligible if for every positive polynomial p and all su�ciently large n's it holdsthat �(n) < 1=p(n). 6

De�nition 2.8 (truthful implementations): Let S be a speci�cation and I be an implementation. We saythat I is truthful to S if for every n the support of the random object (I; n) is a subset of the support of therandom object (S; n).Much of this work is focused on truthful implementations. The following simple result is useful in the studyof the latter. We comment that this result is typically applied to (truthful) close-implementations by oraclemachines, yielding (truthful) pseudo-implementations by ordinary machines.Theorem 2.9 Suppose that one-way functions exist. Then any speci�cation that has a pseudo-implementationby an oracle machine (having access to a random oracle) also has a pseudo-implementation by an ordinarymachine. Furthermore, if the former implementation is truthful then so is the latter.The su�cient condition is also necessary, because the existence of pseudorandom functions (i.e., a pseudo-implementation of a random function by an ordinary machine) implies the existence of one-way functions.In view of Theorem 2.9, whenever we seek truthful implementations (or, alternatively, whenever we do notcare about truthfulness at all), we may focus on implementations by oracle machines.Proof: First we replace the random oracle used by the former implementation by a pseudorandom oracle(available by the results of [18, 23]). No probabilistic polynomial-time distinguisher can detect the di�erence,except with negligible probability. Furthermore, the support of the pseudorandom oracle is a subset of thesupport of the random oracle, and so the truthful property is inherited by the latter implementation. Finally,we use an ordinary machine to emulate the oracle machine that has access to a pseudorandom oracle.Almost-Truthful implementations. Truthful implementations guarantee that each instance of theimplementation is also an instance of the speci�cation (and is thus \consistent with the speci�cation").A meaningful relaxation of this guarantee refers to the case that almost all the probability mass of theimplementation is assigned to instances that are consistent with the speci�cation (i.e., are in the support ofthe latter). Speci�cally, we refer to the following de�nition.De�nition 2.10 (almost-truthful implementations): Let S be a speci�cation and I be an implementation.We say that I is almost-truthful to S if the probability that (I; n) is not in the support of the random object(S; n) is bounded by a negligible function in n.Interestingly, almost-truthfulness is not preserved by the construction used in the proof of Theorem 2.9. Infact, there exists speci�cations that have almost-truthful close-implementations by oracle machines but notby ordinary machines (see Theorem 2.11 below). Thus, when studying almost-truthful implementations,one needs to deal directly with ordinary implementations (rather than focus on implementations by oracle-machines). Indeed, we will present a few examples of almost-truthful implementations that are not truthful.Theorem 2.11 There exists a speci�cation that has an almost-truthful close-implementation by an oraclemachine but has no almost-truthful implementation by an ordinary machine.We stress that the theorem holds regardless of whether or not the latter (almost-truthful) implementationis indistinguishable from the speci�cation.Proof: Consider the speci�cation of a uniformly selected function f : f0; 1gn ! f0; 1g having (time-modi�ed) Kolmogorov Complexity4 greater than 2n�1. That is, the speci�cation machine scans its random-tape, looking for a block of 2n bits of (time-modi�ed) Kolmogorov Complexity greater than 2n�1, and oncefound uses this block as a truth-table of the desired Boolean function. Since all but a negligible fraction of4Loosely speaking, the (standard) Kolmogorov Complexity of a string s is the minimum length of a program �that produce s. The time-modi�ed Kolmogorov Complexity of a string s is the minimum, taken over programs �that produce s, of j�j + log2(time(�)), where time(�) is the running-time of �. We use time-modi�ed KolmogorovComplexity in order to allow for a recursive speci�cation.7

the functions have Kolmogorov Complexity greater than 2n�1, a almost-truthful close-implementation by anoracle machine may just use a random function. On the other hand, any implementation by an ordinarymachine (of randomness complexity �) induces a function f : f0; 1gn ! f0; 1g of (time-modi�ed) KolmogorovComplexity at most (O(1) + �(n)) + log2(poly(n) � 2n) = poly(n). Thus, any such implementation yields afunction that violates the speci�cation, and so cannot even be \remotely" truthful.2.3 Known non-trivial implementationsIn view of Theorem 2.9, when studying truthful implementations, we focus on implementations by oraclemachines. In these cases, we shorthand the phrase implementation by an oracle machine by the termimplementation. Using the notion of truthfulness, we can cast the non-trivial implementation of a randompermutation provided by Luby and Racko� [31] as follows.Theorem 2.12 [31]: There exists a truthful close-implementation of the speci�cation provided in Exam-ple 2.3. That is, there exists a truthful close-implementation of the speci�cation that uniformly selects apermutation � over f0; 1gn and responses to the query x 2 f0; 1gn with the value �(x).Contrast Theorem 2.12 with the trivial non-truthful implementation (by a random function) mentionedabove. On the other hand, even when ignoring the issue of truthfulness, it is non-trivial to provide a close-implementation of Example 2.4 (i.e., a random permutation along with its inverse).5 However, Luby andRacko� [31] have also provided a truthful close-implementation of Example 2.4.Theorem 2.13 [31]: There exists a truthful close-implementation of the speci�cation that uniformly selectsa permutation � over f0; 1gn and responses to the query (�; x) 2 f�1;+1g� f0; 1gn with the value ��(x).Another known result that has the
avor of the questions that we explore was obtained by Naor andReingold [33]. Loosely speaking, they provided a truthful close-implementation of a permutation selecteduniformly among all permutations having a certain cycle-structure.Theorem 2.14 [33]: For any N = 2n, t = poly(n), and C = f(ci;mi) : i = 1; :::; tg such that Pti=1mici =N , there exists a truthful close-implementation of a uniformly distributed permutation that has mi cyclesof size ci, for i = 1; :::; t.6 Furthermore, the implementation instance that uses the permutation � can alsosupport queries of the form (x; j) to be answered by �j(x), for any x 2 f0; 1gn and any integer j (which ispresented in binary).We stress that the latter queries are served in poly(n)-time also in the case that j � poly(n).2.4 A few general observationsTheorem 2.11 asserts the existence of speci�cations that cannot be implemented in an almost-truthful mannerby an ordinary machine, regardless of the level of indistinguishability (of the implementation from thespeci�cation). We can get negative results that refer also to implementations by oracle machines, regardlessof truthfulness, by requiring the implementation to be su�ciently indistinguishable (from the speci�cation).Speci�cally:Proposition 2.15 The following refers to implementations by oracle machines and disregard the issue oftruthfulness.1. There exist speci�cations that cannot be closely-implemented.2. Assuming the existence of one-way functions, there exist speci�cations that cannot be pseudo-implemented.The hypothesis in Part 2 can be relaxed: It su�ces to assume the existence of NP-sets for which it is feasibleto generate hard instances. For details see Appendix D.5A random function will fail here, because the distinguisher may distinguish it from a random permutation byasking for the inverse of a random image.6Special cases include involutions (i.e., permutations in which all cycles have length 2), and permutations consistingof a single cycle (of length N). These cases are cast by C = f(2; N=2)g and C = f(N; 1)g, respectively.8

Proof: Starting with Part 2, we note that the speci�cation may be a deterministic process that invert aone-way function f (as in the hypothesis) at images of the user's choice (i.e., the query x is answered bythe lexicographically �rst element in f�1(x)). Certainly, this speci�cation cannot be pseudo-implemented,because such an implementation would yield an algorithm that violates the hypothesis (of Part 2).7 Wemay easily adapt this example such that the speci�cation gives rise to a random object. For example, thespeci�cation may require that, given a pair of strings, one should use a random function to select one of thesetwo strings, and answer with this string's inverse under the one-way function. A pseudo-implementation ofthis speci�cation can also be shown to contradict the hypothesis. This establishes Part 2.Turning to Part 1, we consider any �xed a function f that is computable in exponential-time but cannotbe inverted, except for with negligible probability, by any polynomial-time machine that uses a randomoracle. Such a function can be shown to exist by using a counting argument. The speci�cation determinessuch a function, and inverts it at inputs of the user's choice. Observe that a close-implementation of sucha function is required to successfully invert the function at random inputs, which is impossible (exceptfor negligible probability, because the implementation is a polynomial-time machine (which uses a randomoracle)).The randomness complexity of implementations: Looking at the proof of Theorem 2.9, itis evident that as far as pseudo-implementations by ordinary machines are concerned (and assuming theexistence of one-way functions), randomness can be reduced to any power of the feasibility parameter (i.e., ton� for every � > 0). The same holds with respect to truthful pseudo-implementations. On the other hand, theproof of Theorem 2.11 suggests that this collapse in the randomness complexity cannot occur with respectto almost-truthful implementations by ordinary machines (regardless of the level of indistinguishability ofthe implementation from the speci�cation).Theorem 2.16 (a randomness hierarchy): For every polynomial �, there exists a speci�cation that has analmost-truthful close-implementation by an ordinary machine that uses a random-tape of length �(n), but hasno almost-truthful implementation by an ordinary machine that uses a random-tape of length �(n)�!(logn).Proof: Let g(n) = !(logn). Consider the speci�cation that selects uniformly a string r 2 f0; 1g�(n) of(time-modi�ed) Kolmogorov Complexity at least �(n) � g(n), and responds to the query i 2 [2n] with the(1 + (i mod �(n)))-th bit of r. Since all but an exp(�g(n)) = n�!(1) fraction of the �(n)-bit long stringshave such complexity, this speci�cation is closely-implemented in an almost-truthful manner by a machinethat uniformly selects r 2 f0; 1g�(n) (and responds as the speci�cation). However, any implementation thatuses a random-tape of length �0, yields a function that assigns the �rst �(n) arguments values that yield a�(n)-bit long string of (time-modi�ed) Kolmogorov Complexity at most (O(1) + �0(n)) + log2(poly(n)) =�0(n) + O(log n). Thus, for �0(n) = �(n) � 2g(n), the implementation cannot even be \remotely" truthful.Composing implementations: A simple observation that is used in our work is that one can \composeimplementations". That is, if we implement a random object R1 by an oracle machine that uses oracle callsto a random object R2, which in turn has an implementation by a machine of type T, then we actually obtainan implementation of R1 by a machine of type T. To state this result, we need to extend De�nition 2.5 suchthat it applies to oracle machines that use (or rather have access to) arbitrary speci�cations (rather than arandom oracle). Let us denote by (M (S;n); n) an implementation by the oracle machine M (and feasibilityparameter n) with oracle access to the speci�cation (S; n), where we assume for simplicity that S uses thesame feasibility parameter as M .7Consider the performance of the speci�cation (resp., implementation) when queried on a randomly generatedimage, and note that the correctness of the answer can be e�ciently veri�ed. Thus, since the speci�cation alwaysinverts f on the given image, a pseudo-implementation must do the same (except with negligible probability), yieldinga probabilistic polynomial-time algorithm that inverts f . 9

Theorem 2.17 Let Q 2 fperfect; close; pseudog. Suppose that the speci�cation (S1; n) can be Q-implementedby (M (S2;n); n) and that (S2; n) has a Q-implementation by an ordinary machine (resp., by an oracle machinewith a random oracle). Then, (S1; n) has a Q-implementation by an ordinary machine (resp., by an oraclemachine with a random oracle). Furthermore, if both the implementations in the hypothesis are truthful(resp., almost-truthful) then so is the implementation in the conclusion.Proof: The idea is to simply replace (S2; n) by its implementation, denoted (I2; n), and thus obtain animplementation (M (I2;n); n) of (S1; n). Next, by combining the machines M and I2, we obtain a machineI of the same type as the type of machine I2, and it holds that (I; n) yields a random object that isdistributed identically to (M (I2;n); n). Thus, we obtain an implementation (I; n) of (S1; n), Indeed, (I; n)inherits the truthfulness (resp., almost-truthfulness) of the two given implementations (i.e., M (S2;�) and I2).Similarly, the analysis of the \quality" of the implementation (I; n) relies on the \quality" of the two givenimplementations. Details follow.If both M (I2;�) and I2 are perfect implementation of S1 and S2 respectively, then I is a perfect im-plementation of S1. If the former are only close-implementations, then using the hypothesis that M ispolynomial-time it follows that M only makes polynomially many queries to its oracle and thus invoking Ma polynomial number of times results in a polynomial number of queries to its oracle. Using the second hy-pothesis (i.e., the \quality" of I2), it follows that M (I2;n) and M (S2;n) are indistinguishable by polynomiallymany queries. Using the �rst hypothesis (i.e., the \quality" of M (S2;n)), it follows that (I; n) � (M (I2;n); n)is a close-implementation of (S1; n).Lastly, let us spell out the argument for the case of pseudo-implementations, while using the termcomputationally-indistinguishable as shorthand for indistinguishable by probabilistic polynomial-time oraclemachines. The �rst hypothesis asserts that (M (S2;n); n) and (S1; n) are computationally-indistinguishable,and the second hypothesis asserts that (I2; n) and (S2; n) are computationally-indistinguishable. Our goal isto prove that (M (I2;n); n) and (S1; n) are computationally-indistinguishable, which (by the �rst hypothesis)reduces to proving that (M (I2;n); n) and (M (S2;n); n) are computationally-indistinguishable. Now suppose,towards the contradiction, that some a probabilistic polynomial-time machine D distinguishes (M (I2;n); n)from (M (S2;n); n). Then, combining D and M , we obtain a machine that distinguishes (I2; n) from (S2; n),which contradicts the second hypothesis. The key point is that the fact that M is probabilistic polynomial-time (because it is an implementation machine), and so the combined distinguisher is also probabilisticpolynomial-time (provided that so is D).2.5 Objects of feasible sizeIn contrast to the rest of this work, in the current subsection we (shortly) discuss the complexity of generatingrandom objects of feasible size (rather than huge random objects). In other words, we are talking aboutimplementing a distribution on poly(n)-bit long strings, and doing so in poly(n)-time. This problem canbe cast in our general formulation by considering speci�cations that ignore their input (i.e., have outputthat only depend on their random-tape). In other words, we may view objects of feasible size as constantfunctions, and consider a speci�cation of such random objects as a distribution on constant functions. Thus,without loss of generality, the implementation may also ignore its input, and consequently in this case thereis no di�erence between an implementation by ordinary machine and an implementation by oracle machinewith a random oracle.We note that perfect implementations of such distributions were considered before (e.g., in [1, 4, 15]),and distributions for which such implementations exist are called sampleable. In the current context, wherethe observer sees the entire object, the distinction between perfect implementation and close-implementationseems quite technical. What seems fundamentally di�erent is the study of pseudo-implementations.Theorem 2.18 There exist speci�cations of feasible-sized objects that have no close-implementation, but dohave (both truthful and non-truthful) pseudo-implementations.Proof: Any evasive pseudorandom distribution (cf. [19]) yields such a speci�cation. Recall that a distributionis called evasive if it is infeasible to generate an element in its support (except with negligible probability),10

and is called pseudorandom if it is computationally indistinguishable from a uniform distribution on strings ofthe same length. It is known that evasive pseudorandom distributions do exist [19]. Note that, by de�nition,an evasive distribution has no close-implementation. On the other hand, any pseudorandom distribution canbe pseudo-implemented by the uniform distribution (or any other pseudorandom distribution). Indeed, thelatter implementation is not even almost-truthful with respect to the evasive pseudorandom distribution,because even a \remotely-truthful" implementation would violate the evasiveness condition. To allow alsothe presentation of a truthful implementation, we modify the speci�cation such that with exponentially-smallprobability it produces some sampleable pseudorandom distribution, and otherwise it produces the evasivepseudorandom distribution. The desired truthful pseudo-implementation will always produce the formerdistribution (i.e., the sampleable pseudorandom distribution), and still the combined distribution has noclose-implementation.The proof of Theorem 2.18 (or rather the existence of evasive distributions) also establishes the existenceof speci�cations (of feasible-sized objects) that have no truthful (and even no almost-truthful) implementa-tion, regardless of the level of indistinguishability from the speci�cation. Turning the table around, we askwhether there exist speci�cations of feasible-sized objects that have no pseudo-implementations, regardlessof the truthfulness condition. A partial answer is provided by the following result, which relies on a non-standard assumption. Speci�cally, we assume the existence of a collision-resistant hash function; that is, alength-decreasing function h : f0; 1g� ! f0; 1g� such that it is infeasible to form collisions under h (i.e., it isinfeasible to �nd su�ciently long strings x 6= y such that f(x) = f(y)).8Proposition 2.19 Assuming the existence of a collision-resistant hash function, there exists a speci�cationof a random feasible-sized object that has no pseudo-implementation.Proof: The hypothesis implies the existence of a collision-resistant hash function h that shrinks its argumentby exactly one bit (i.e., jh(x)j = jxj � 1).9 Referring to this function h, consider the non-empty set Sn def=f(x; y)2f0; 1gn+n : h(x)=h(y)g, and note that membership in [n2NSn is easy to decide, while [n2NSn isevasive. Consider the speci�cation that consists of the uniform distribution over the set Sn, and note thatthis speci�cation cannot be pseudo-implemented, because the likely event in which the implementation failsto hit Sn is easily detectable.Open Problem 2.20 (stronger versions of Proposition 2.19:) Provide a speci�cation of a random feasible-sized object that has no pseudo-implementation, while relying on some standard intractability assumption.Let us digress and consider close-implementations. For example, we note that Bach's elegant algorithm forgenerating random composite numbers along with their factorization [3] can be cast as a close-implementationof the said distribution.10 We stress the highly non-trivial nature of the foregoing implementation (whilerecalling that it seems infeasible to �nd the factorization of a uniformly distributed composite number). Amore elementary set of examples refers to the generation of integers (out of a huge domain) according tovarious \nice" distributions (e.g., the binomial distribution of N trials).11 In fact, Knuth [27, Sec. 3.4.1]considers the generation of several such distributions, and his treatment (of integer-valued distributions)8We stress that the assumption used here (i.e., the existence of a single collision-resistant hash function) seemssigni�cantly stronger than the standard assumption that refers to the existence of an ensemble of collision-resistantfunctions (cf. [10] and [17, Def. 6.2.5]).9Given an arbitrary function h0 as in the hypothesis, consider the function h00 de�ned by h00(x) = h0(h0(x)). Then,h00 is collision-resistant and jh00(x)j � jxj � 2. Now, consider the function h de�ned by h(x) = h00(x)01jxj�jh00(x)j�2,and note that jh(x)j = jxj � 1 while h is also collision-resistant.10We mention that Bach's motivation was to generate prime numbers P along with the factorization of P � 1,in order to allow e�cient testing of whether a given number is a primitive element modulo P . Thus, one may saythat Bach's paper provides a close-implementation (by an ordinary probabilistic polynomial-time machine) of thespeci�cation that selects at random an n-bit long prime P and answers the query g by 1 if and only if g is a primitiveelement modulo P . Note that the latter speci�cation refers to a huge random object.11That is, for a huge N = 2n, we want to generate i with probability pi def= �Ni �=2N . Note i 2 f0; 1; :::Ng hasfeasible size, and yet the problem is not trivial (because we cannot a�ord to compute all pi's).11

can be easily adapted to �t our formalism. This direction is further pursued in Appendix A. In general,recall that in the current context (where the observer sees the entire object), a close-implementation mustbe statistically close to the speci�cation. Thus, almost-truthfulness follows \for free":Proposition 2.21 Any close-implementation of a speci�cation of a feasible-sized object is almost-truthfulto it.Multiple samples. Our general formulation can be used to specify an object that whenever invokedreturns an independently drawn sample from the same distribution. Speci�cally, the speci�cation may be bya machine that answers each \sample-query" by using a distinct portion of its random-tape (as coins usedto sample from the basic distribution). Using a pseudorandom function, we may pseudo-implement multiplesamples from any distribution for which one can pseudo-implement a single sample. That is:Proposition 2.22 Suppose that one-way functions exist, and let D = fDng be a probability ensemble suchthat each Dn ranges over poly(n)-bit long strings. If D can be pseudo-implemented then so can the speci-�cation that answers each query by an independently selected sample of D. Furthermore, the latter imple-mentation is by an ordinary machine and is truthful provided that the former implementation is truthful.Proof: Consider �rst an implementation by an oracle machine that merely uses the random function toassign each query a random-tape to be used by the pseudo-implementation of (the single sample of thedistribution) D. Since truthfulness and computational-indistinguishability are preserved by multiple (inde-pendent) samples (cf. [16, Sec. 3.2.3] for the latter), we are done as far as implementations by oracle machinesare concerned. Using Theorem 2.9, the proposition follows.3 Our Main ResultsWe obtain several new implementations of random objects. For sake of clarity, we present the results in twocategories referring to whether they yield truthful or only almost-truthful implementations.3.1 Truthful ImplementationsAll implementations stated in this section are by (polynomial-time) oracle machines (which use a randomoracle). Corresponding pseudo-implementations by ordinary (probabilistic polynomial-time) machines canbe derived using Theorem 2.9. Namely, assuming the existence of one-way functions, each of the speci�cationsconsidered below can be pseudo-implemented in a truthful manner by an ordinary probabilistic polynomial-time machine.The basic technique underlying the following implementations is the embedding of additional structurethat enables to e�ciently answer the desired queries in a consistent way or to force a desired property.That is, this additional structure ensures truthfulness (with respect to the speci�cation). The additionalstructure may cause the implementation to have a distribution that di�ers from that of the speci�cation, butthis di�erence is infeasible to detect (via the polynomially-many queries). In fact, the additional structure istypically randomized in order to make it undetectable, but each possible choice of coins for this randomizationyields a \valid" structure (which in turn ensures truthfulness rather than only almost-truthfulness).3.1.1 Supporting complex queries regarding Boolean functionsAs mentioned above, a random Boolean function is trivially implemented (in a perfect way) by an oraclemachine. By this we mean that the speci�cation and the implementation merely serve the standard evaluationqueries that refer to the values of a random function at various positions (i.e., query x is answered by thevalue of the function at x). Here we consider speci�cations that supports more powerful queries.Example 3.1 (answering some parity queries regarding a random function): Suppose that, for a randomfunction f : [2n]! f0; 1g, we wish to be able to provide the parity of the values of f on any desired interval12

of [2n]. That is, we consider a speci�cation de�ned by the machine that, on input (i; j) where 1 � i � j � 2n,replies with the parity of the bits residing in locations i through j of its random-tape. (Indeed, this speci�cationrefers to the length function `(n) = 2n.)Clearly, the implementation cannot a�ord to compute the parity of the corresponding values in its randomoracle. Still, in Section 5 we present a perfect implementation of Example 3.1, as well as truthful close-implementations of more general types of random objects (i.e., answering any symmetric \interval" query).Speci�cally, we prove:Theorem 3.2 (see Theorem 5.2)12: For every polynomial-time computable function g, there exists a truthfulclose-implementation of the following speci�cation of a random object. The speci�cation machine uses itsrandom-tape to de�ne a random function f : f0; 1gn ! f0; 1g, and answers the query (�; �) 2 f0; 1gn+n byg(P��s�� f(s)).3.1.2 Supporting complex queries regarding length-preserving functionsIn Section 9 we consider speci�cations that, in addition to the standard evaluation queries, answer addi-tional queries regarding a random length-preserving function. Such objects have potential applications incomputational number theory, cryptography, and the analysis of algorithms (cf. [13]). Speci�cally, we prove:Theorem 3.3 (see Theorem 9.2): There exists a truthful close-implementation of the following speci�cation.The specifying machine, uniformly selects a function f : f0; 1gn ! f0; 1gn, and, in addition to the standardevaluation queries, answers the inverse-query y 2 f0; 1gn with the set f�1(y).Alternatively, the implementation may answer with a uniformly distributed preimage of y under f (and witha special symbol in case no such preimage exists). A di�erent type of queries is supported by the followingimplementation.Theorem 3.4 (see Theorem 9.1): There exists a truthful close-implementation of the following speci�cation.The specifying machine, uniformly selects a function f : f0; 1gn ! f0; 1gn, and answers the query (x;m),where x 2 f0; 1gn and m 2 [2poly(n)], with the value fm(x) (i.e., f iterated m times on x).This result is related to questions studied in [33, 34]; for more details, see Section 9.3.1.3 Random graphs of various typesRandom graphs have been extensively studied (cf. [6]), and in particular are known to have various properties.But does it mean that we can provide truthful close-implementations of uniformly distributed (huge) graphshaving any of these properties?Let us �rst consider a speci�cation for a random N -vertex graph, where N = 2n. Indeed, such arandom graph can be speci�ed by the machine, which viewing its random-tape ! as an N -by-N matrix(i.e., ! = (!i;j)i;j2[N]), answers the input (i; j) 2 [N] � [N] with the value !i;j if i < j, with the value!j;i if i > j. and with the value 0 otherwise (i.e., if i = j). Needless to say, this speci�cation can beperfectly implemented (by a machine that uses its random oracle in an analogous manner). But how aboutimplementing a uniformly distributed graph that has various properties?Example 3.5 (uniformly distributed connected graphs): Suppose that we want to implement a uniformlydistributed connected graph (i.e., a graph uniformly selected among all connected N-vertex graph). Anadequate speci�cation may scan its random-tape, considering each N2-bit long portion of it as a descriptionof a graph, and answer adjacency-queries according to the �rst portion that yields a connected graph. Notethat the speci�cation works in time
(N2), whereas an implementation needs to work in poly(logN)-time. Onthe other hand, recall that a random graph is connected with overwhelmingly high probability. This suggeststo implement a random connected graph by a random graph. Indeed, this yields a close-implementation,12A related result was discovered before us by Naor and Reingold; see discussion at the end of Section 5.13

but not a truthful one (because occasionally, yet quite rarely, the implementation will yield an unconnectedgraph).13In Section 6 we present truthful close-implementations of Example 3.5 as well as of other (speci�cations of)uniformly distributed graphs having various additional properties. These are all special cases of the followingresult:Theorem 3.6 (see Theorem 6.2): Let � be a monotone graph property that is satis�ed by a family ofstrongly-constructible sparse graphs. That is, for some negligible function � (and every N), there exists aperfect implementation of a (single) N-vertex graph with �(logN) �N2 edges that satis�es property �. Then,there exists a truthful close-implementation of a uniformly distributed graph that satis�es property �.We stress that Theorem 6.2 applies also to properties that are not satis�ed (with high probability) by arandom graph (e.g., having a clique of size pN). The proof of Theorem 6.2 relies on the following lemma,which may be of independent interest. Loosely speaking, the lemma asserts that if a monotone graphproperty � is satis�ed by some sparse graphs then a uniformly distributed graph having property � isindistinguishable from a truly random graph.Lemma 3.7 (see Lemma 6.3): Let � be a monotone graph property that is satis�ed by some N-vertexgraph having � � �N2 � edges. Then, any machine that makes at most q adjacency queries to a graph, cannotdistinguish a random N-vertex graph from a uniformly distributed N-vertex graph that satis�es �, exceptthan with probability O(q � p�) + q �N�(1�o(1)).3.1.4 Supporting complex queries regarding random graphsSuppose that we want to implement a random N -vertex graph along with supporting, in addition to thestandard adjacency queries, also some complex queries that are hard to answer by only making adjacencyqueries. For example suppose that on query a vertex v, we need to provide a clique of size log2N containingv. In Section 7 we present a truthful close-implementations of this speci�cation:Theorem 3.8 (see Theorem 7.2): There exists a truthful close-implementation of the following speci�cation.The specifying machine selects uniformly an N-vertex graph and, in addition to the standard adjacencyqueries, answers (Log-Clique) queries of the form v by providing a random dlog2Ne-vertex clique that containsv (and a special symbol if no such clique exists).Another result of a similar
avor refers to implementing a random graph while supporting additional queriesthat refer to a random Hamiltonian cycle in that graph.Theorem 3.9 (see Theorem 7.3): There exists a truthful close-implementation of the following speci�cation.The specifying machine selects uniformly an N-vertex graph G, and in case G is Hamiltonian it uniformlyselects a (directed) Hamiltonian cycle in G, which in turn de�nes a cyclic permutation � : [N]! [N]. Inaddition to the standard adjacency queries, the speci�cation answers travel queries of the form (trav; v; t)by providing �t(v), and distance queries of the form (dist; v; w) by providing the smallest t � 0 such thatw = �t(v).3.1.5 Random bounded-degree graphs of various typesRandom bounded-degree graphs have also received considerable attention. In Section 8 we present truth-ful close-implementations of random bounded-degree graphs G = ([N]; E), where the machine specifyingthe graph answers the query v 2 [N] with the list of neighbors of vertex v. We stress that even imple-menting this speci�cation is non-trivial if one insists on truthfully implementing simple random bounded-degree graphs (rather than graphs with self-loops and/or parallel edges). Furthermore, we present truthfulclose-implementations of random bounded-degree graphs having additional properties such as connectivity,Hamiltonicity, having logarithmic girth, etc. All these are special cases of the following result:13Note that failing to obtain a truthful implementation (by an oracle machine) does not allow us to derive (viaTheorem 2.9) even an almost-truthful pseudo-implementation by an ordinary machine.14

Theorem 3.10 (see Theorem 8.4:) Let d > 2 be �xed and � be a graph property that satis�es the followingtwo conditions:1. The probability that Property � is not satis�ed by a uniformly chosen d-regular N-vertex graph isnegligible in logN .2. Property � is satis�ed by a family of strongly-constructible d-regular N-vertex graphs having girth!(log logN).Then, there exists a truthful close-implementation of a uniformly distributed d-regular N-vertex graph thatsatis�es property �.The proof relies on the following lemma, which may be of independent interest. Loosely speaking, the lemmaasserts that a random isomorphic copy of a �xed d-regular graph of large girth is indistinguishable from atruly random d-regular graph.Lemma 3.11 (see Lemma 8.1): For d > 2, let G = ([N]; E) be any d-regular N-vertex graph having girthg. Let G0 be obtained by randomly permuting the vertices of G (and presenting the incidence lists in somecanonical order). Then, any machine M that queries the graph for the neighborhoods of q vertices of itschoice, cannot distinguish G0 from a random d-regular N-vertex (simple) graph, except than with probabilityO(q2=(d�1)(g�1)=2). In the case that d = 2 and q < g�1, the probability bound can be improved to O(q2=N).3.2 Almost-Truthful ImplementationsAll implementations stated in this section are by ordinary (probabilistic polynomial-time) machines. Allthese results assume the existence of one-way functions.Again, the basic technique is to embed a desirable structure, but (in contrast to Section 3.1) here theembedded structure forces the desired property only with very high probability. Consequently, the resultingimplementation is only almost-truthful, which is the reason that we have to directly present implementationsby ordinary machines.A speci�c technique that we use is obtaining a function by taking a value-by-value combination of apseudorandom function and a function of a desired combinatorial structure. The combination is done suchthat the combined function inherits both the pseudorandomness of the �rst function and the combinatorialstructure of the second function (in analogy to a construction in [24]). In some cases, the combination is bya value-by-value XOR, but in others it is by a value-by-value OR with a second function that is very sparse.3.2.1 Random codes of large distanceIn continuation to the discussion in the introduction, we prove:Theorem 3.12 (see Theorem 4.2): For � = 1=6 and � = 1=9, assuming the existence of one-way functions,there exists an almost-truthful pseudo-implementation of the following speci�cation: The speci�cation ma-chine uses its random-tape to uniformly select a code C � f0; 1gn having cardinality K def= 2�n and distanceat least �n, and answers the query i 2 [K] with the i-th element in C.We comment that the above description actually speci�es (and implements) an encoding algorithm forthe corresponding code. It would be very interesting if one can also implement a corresponding decodingalgorithm; see further discussion in Section 4.3.2.2 Random graphs of various typesHaving failed to provide truthful pseudo-implementations to the following speci�cations, we provide almost-truthful ones.Theorem 3.13 (see Theorem 6.6): Let c(N) = (2�o(1)) log2N be the largest integer i such that the expectednumber of cliques of size i in a random N-vertex graph is larger than one. Assuming the existence of one-wayfunctions, there exist almost-truthful pseudo-implementations of the following speci�cations:15

1. A random graph of Max-Clique c(N)�1: The speci�cation uniformly selects an N-vertex graph havingmaximum clique size c(N)� 1, and answers edge-queries accordingly.2. A random graph of Chromatic Number (1� o(1)) �N=c(N): The speci�cation uniformly selects an N-vertex graph having Chromatic Number (1�log�1=32 N)�N=c(N), and answers edge-queries accordingly.We mention that Theorem 6.7 provides an almost-truthful pseudo-implementations of a speci�cation thatrefers to a uniformly distributed graph that satis�es both the aforementioned properties as well as severalother famous properties that are satis�ed (w.h.p.) by random graphs. Thus, this implementation not onlylooks as a random graph but rather satis�es all these properties of a random graph (although determiningwhether a huge graph satis�es any of these properties is infeasible).One property of random graphs that was left out of Theorem 6.7 is having high (global) connectivityproperty. That is, we seek an almost-truthful pseudo-implementation of a uniformly distributed graphhaving a high global connectivity property (i.e., each pairs of vertices is connected by many vertex-disjointpaths). Unfortunately, we do not know how to provide such an implementation. Instead, we provide analmost-truthful pseudo-implementation of a random graph for which almost all pairs of vertices enjoy a highconnectivity property.Theorem 3.14 (see Theorem 6.8): For every positive polynomial p, assuming the existence of one-wayfunctions, there exists an almost-truthful pseudo-implementation of the following speci�cation. The specifyingmachine selects a graph that is uniformly distributed among all N-vertex graphs for which all but at mostan �(N) def= 1=p(log2N) fraction of the vertex pairs are connected by at least (1� �(N)) �N=2 vertex-disjointpaths. Edge-queries are answered accordingly.Interestingly, the same implementation works for all polynomials p; that is, the implementation is indepen-dent of p, which is only used for de�ning the speci�cation.4 Implementing Random Codes of Large DistanceFor su�ciently small �; � > 0, we consider codes having relative rate � and relative distance �; that is,we consider subsets C � f0; 1gn such that jCj = 2�n and every two distinct codewords (i.e., �; � 2 C)disagree on at least �n coordinates. Such a code is called good. A random set of K def= 2�n strings of lengthn is good with overwhelmingly high probability. Thus, for a random function f : [K] ! f0; 1gn, settingC = ff(i) : i 2 [K]g yields an almost-truthful close-implementation of a random code that is good, wherethe speci�cation is required to answer the query i with the i-th codeword (i.e., the i-th element in the code).Recall that it is not clear what happens when we replace f by a pseudorandom function (i.e., it may bethe case that the resulting code has very small distance, although most pairs of codewords are de�nitely farapart). To get a almost-truthful pseudo-implementation we use a di�erent approach.Construction 4.1 (implementing a good random code): For k = �n, we select a random k-by-n matrixM , and consider the linear code generated by M (i.e., the codewords are obtained by all possible linearcombinations of the rows of M). Now, using a pseudorandom function fs : f0; 1gk ! f0; 1gn, where s 2f0; 1gn, we consider the code CM;s = ffs(v)�vM : v 2 f0; 1gkg. That is, our implementation uses therandom-tape (M; s), and provides the i-th codeword of the code CM;s by returning fs(i)�iM , where i 2 [2k]is viewed as a k-dimensional row vector (or a k-bit long string).To see that Construction 4.1 is a pseudo-implementation of a random code, consider what happens when thepseudorandom function is replaced by a truly random one (in which case we may ignore the nice properties ofthe random linear code generated byM).14 Speci�cally, for any matrixM and any function f : [K]! f0; 1gn,we consider the code CfM = ff(v)�vM : v 2 f0; 1gkg. Now, for any �xed choice of M and a truly14In particular, note that the resulting code is unlikely to be linear. Furthermore, any n�O(1) > k codewords arelikely to be linearly independent (both when we use a random function or a pseudorandom one).16

random function � : [K] ! f0; 1gn, the code C�M is a random code. Thus, the pseudorandomness of thefunction ensemble ffsgs2f0;1gn implies that, for a uniformly chosen s 2 f0; 1gn, the code CM;s = CfsMis computationally indistinguishable from a random code. The reason being that ability to distinguishselected codewords of CfsM (for a random s 2 f0; 1gn) from codewords of C�M (for a truly random function� : [K]! f0; 1gn) yields ability to distinguish the corresponding fs from �.To see that Construction 4.1 is almost-truthful to the good code property, �x any (pseudorandom)function f and consider the code CM = ff(v)�vM : v 2 f0; 1gkg, when M is a random k-by-n matrix.Fixing any pair of distinct strings v; w 2 f0; 1gk, we show that with probability at least 2�3k (over thepossible choices of M), the codewords f(v)�vM and f(w)�wM are at distance at least �n, and it followsthat with probability at least 1 � 2�k the code CM has a distance at least �n. Thus, for a random M ,we consider the Hamming weight of (f(v)�vM)�(f(w)�wM), which in turn equals the Hamming weightof r�uM , where r = f(v)�f(w) and u = v�w are �xed. The weight of r�uM behaves as a binomialdistribution (with success probability 1/2), and thus the probability that the weight is less than �n is upper-bounded by 2�(1�H2(�))�n, where H2 denotes the binary entropy function. So we need 1 �H2(�) � n > 3kto holds, and indeed it does hold for appropriate choices of � and � (e.g, � = 1=6 and � = 1=9). Speci�cally,recalling that k = �n, we need 1�H2(�) > 3� to hold. We get:Theorem 4.2 For any � 2 (0; 1=2) and � 2 (0; 1�H2(�))=3, assuming the existence of one-way functions,there exists an almost-truthful pseudo-implementation by an ordinary machine of the following speci�cation:The speci�cation machine uses its random-tape to uniformly select a code C � f0; 1gn having cardinalityK def= 2�n and distance at least �n, and answers the query i 2 [K] with the i-th element in C.We comment that Construction 4.1 actually implements an encoding algorithm for the corresponding code,which is actually what is required in the speci�cation. It would be very interesting if one could also implementa corresponding decoding algorithm. Note that the real challenge is to achieve \decoding with errors" (i.e.,decode corrupted codewords rather than only decode uncorrupted codewords).15 Speci�cally,Open Problem 4.3 (implementing encoding and decoding for a good random code): Provide an almost-truthful pseudo-implementation, even by an oracle machine, to the following speci�cation. For some � 2(0; 1=2) and � 2 (0;
(1�H2(�))), the speci�cation machine selects a code C � f0; 1gn as in Theorem 4.2,and answers queries of two types:Encoding queries: For i 2 [K], the query (enc; i) is answered with the i-th element in C.Decoding queries: For very w 2 f0; 1gn that is at distance at most �n=3 from C, the query (dec; w) isanswered by the index of the (unique) codeword that is closest to w.Indeed, we are interested in an implementation by an ordinary machine, but as stated in Section 10, it maymake sense to �rst consider implementations by oracle machines. Furthermore, it would be nice to obtaintruthful implementations, rather than almost-truthful ones. In fact, it will even be interesting to have atruthful pseudo-implementation of the speci�cation stated in Theorem 4.2.5 Boolean Functions and Interval-Sum QueriesIn this section we show that the speci�cation of Example 3.1 can be perfectly implemented (by an oraclemachine). Recall that we seek to implement access to a random function f : f0; 1gn ! f0; 1g augmentedwith answers regarding the parity (or XOR) of the values of f on given intervals, where the intervalsare with respect to the standard lex-order of n-bit string. That is, the query q = (�; �) 2 f0; 1gn+n,where 0n � � � � � 1n, is to be answered by ���s��f(s). The speci�cation can answer this query15Note that a simple modi�cation of Construction 4.1 (e.g., replacing the i-th codeword, w, by the new codeword(i; w)), allows trivial decoding of uncorrupted codewords.17

in the straightforward manner, but an implementation cannot a�ord to do so (because a straightforwardcomputation may take 2n = 2jqj=2 steps). Thus, the implementation will do something completely di�erent.16We present an oracle machine that uses a random function f 0 : [ni=0f0; 1gi ! f0; 1g. Using f 0, we de�nef : f0; 1gn ! f0; 1g as follows. We consider a binary tree of depth n and associate its ith level vertices withstrings of length i such that the vertex associated with the string s has a left (resp., right) child associatedwith the string s0 (resp., s1). As a mental experiment, going from the root to the leaves, we label the tree'svertices as follows:1. We label the root (i.e., the level-zero vertex, which is associated with �) by the value f 0(�).2. For i = 0; :::; n� 1, and each internal vertex v at level i, we label its left child by the value f 0(v0), andlabel its right child by the XOR of the label of v and the value f 0(v0).(Thus, the label of v equals the XOR of the values of its children.)3. The value of f at � 2 f0; 1gn is de�ned as the label of the leaf associated with �.By using induction on i = 0; :::; n, it can be shown that the level i vertices are assigned uniformly andindependently distributed labels (which do depend, of course, on the level i� 1 labels). Thus, f is a randomfunction. Furthermore, the label of each internal node v equals the XOR of the values of f on all leaves inthe subtree rooted at v.Note that the random function f 0 is used to directly assign (random) labels to all the left-siblings. Theother labels (i.e., of right-siblings) are determined by XORing the labels of the parent and the left-sibling.Furthermore, the label of each node in the tree is determined by XORing at most n+1 values of f 0 (residingin appropriate left-siblings). Speci�cally, the label of the vertex associated with �1 � � ��i is determined bythe f 0-values of the strings �; 0; �10; :::; �1 � � ��i�10. Actually, the label of the vertex associated with �1j ,where � 2 f�g[f0; 1gj�j�10 and j � 0, is determined by the f 0-values of j+1 vertices (i.e., those associatedwith �; �0; �10:::; �1j�10).label(�1j) = label(�1j�1)� label(�1j�10)...= label(�)� label(�0) � � � � label(�1j�20)� label(�1j�10)= f 0(�)� f 0(�0) � � � � f 0(�1j�20)� f 0(�1j�10)Thus, we obtain the value of f at any n-bit long string by making at most n+1 queries to f 0. More generally,we can obtain the label assigned to each vertex by making at most n + 1 queries to f 0. It follows that wecan obtain the value of ���s��f(s) by making O(n2) queries to f 0. Speci�cally, the desired value is theXOR of the leaves residing in at most 2n� 1 full binary sub-trees, and so we merely need to XOR the labelsassigned to the roots of these sub-trees. Actually, O(n) queries can be shown to su�ce, by taking advantageon the fact that we need not retrieve the labels assigned to O(n) arbitrary vertices (but rather to verticesthat correspond to roots of sub-trees with consecutive leaves). We get:Theorem 5.1 There exists a perfect implementation (by an oracle machine) of the speci�cation of Exam-ple 3.1.The foregoing procedure can be generalize to handle queries regarding any (e�ciently computable) symmetricfunction of the values assigned by f to any given interval. In fact, it su�ces to answer queries regarding thesum of these values. We thus state the following result.16The following implementation is not the simplest one possible, but we chose to present it because it generalizesto yield a proof of Theorem 5.2 (i.e., interval-sum rather than interval-sum-mod-2). A simpler implementation ofExample 3.1, which does not seem to generalize to the case of interval-sum (as in Theorem 5.2), was suggested tous by Phil Klein, Silvio Micali, and Dan Spielman. The idea is to reduce the problem of Example 3.1 to the specialcase where we only need to serve interval-queries for intervals starting at 0n; that is, we only need to serve (interval)queries of the form (0n; �). (Indeed, the answer to a query (�0; �0), where �0 6= 0n, can be obtained from the answersto the queries (0n; �00) and (0n; �0), where �00 is the string preceding �0. Next observe that the query (0n; �) can beserved by f 0(�), where f 0 : f0; 1gn ! f0; 1g is a random function (given as oracle).18

Theorem 5.2 There exists a truthful close-implementation (by an oracle machine) of the following spec-i�cation of a random object. The speci�cation machine uses its random-tape to de�ne a random functionf : f0; 1gn ! f0; 1g, and answers the query (�; �) 2 f0; 1gn+n by P��s�� f(s).Note that, unlike in the case of Theorem 5.1, the implementation is not perfect, which is the reason that weexplicitly mention that it is truthful.Proof: All that is needed in order to extend the \XOR construction" is to make sure that the label of eachvertex v equals the sum (rather than the sum mod 2) of the labels of all the leaves in the sub-tree rooted at v.In particular, internal nodes should be assigned random labels according to the binomial distribution, whichmakes the implementation more complex (even for assigning labels to the root and more so for assigninglabels to left-siblings after their parents was assigned a label). Let us start with an overview:1. We label the root by a value generated according to the binomial distribution; that is, the root (of thedepth-n binary tree) is assigned the value j with probability �Nj �=2N , where N def= 2n. This randomassignment will be implemented using the value f 0(�), where here f 0 is a random function rangingover poly(n)-bit long strings rather than over a single bit (i.e., f 0 : [ni=0f0; 1gi ! f0; 1gpoly(n)).2. For i = 0; :::; n � 1, and each internal vertex v at level i, we label its left child as follows, by usingthe value f 0(v0). Suppose that v is assigned the value T � 2n�i. We need to select a random pairof integers (l; r) such that l + r = T and 0 � l; r � 2n�i�1. Such a pair should be selected withprobability that equals the probability that, conditioned on l+ r = T , the pair (l; r) is selected when land r are distributed according to the binomial distribution (of 2n�i�1 trials). That is, let M = 2n�ibe the number of leaves in the tree rooted at v. Then, for l+ r = T and 0 � l; r �M=2, the pair (l; r)should be selected with probability �M=2l � � �M=2r �=�Ml+r�.3. As before, the value of f at � 2 f0; 1gn equals the label of the leaf associated with �.Of course, the above two types of sampling procedures have to be implemented in poly(n)-time, rather thanin poly(2n)-time (and poly(n2n�i)-time, respectively). These implementations cannot be perfect (becausesome of the events occur with probability 2�N = 2�2n), but it su�ces to provide implementations thatgenerates these samples with approximately the right distribution (e.g., with deviation at most 2�n or so).The details concerning these implementations are provided in an Appendix A.We stress that the sample (or label) generated for the (left sibling) vertex associated with � = �00 isproduced based on the randomness provided by f 0(�). However, the actual sample (or label) generatedfor this vertex depends also on the label assigned to its parent. (Indeed, this is di�erent from the caseof XOR.) Thus, to determine the label assigned to any vertex in the tree, we need to obtain the labelsof all its ancestors (up-to the root). Speci�cally, let S1(N; �) denote the value sampled from the binomialdistribution (on N trials), when the sampling algorithm uses coins �; and let S2(M;T; �) denote the valueassigned to the left-child, when its parent (which is the root of a tree with M leaves) is assigned the valueT , and the sampling algorithm uses coins �. Then, the label of the vertex associated with � = �1 � � ��t,denoted label(�), is obtained by computing the labels of all its ancestors as follows. First, we computelabel(�) S1(N; f 0(�)). Next, for i = 1; :::; t, we obtain label(�1 � � ��i) by computinglabel(�1 � � ��i�10) S2(2n�(i�1); label(�1 � � ��i�1); f 0(�1 � � ��i�10));and if necessary (i.e., �i = 1) by computinglabel(�1 � � ��i�11) label(�1 � � ��i�1)� label(�1 � � ��i�10):That is, we �rst determine the label of the root (using the value of f 0 at �); and next, going along the pathfrom the root to �, we determine the label of each vertex based on the label of its parent (and the value off 0 at the left-child of this parent). Thus, the computation of the label of �, only requires the value of f 0 onj�j + 1 strings. As in the case of XOR, this allows to answer queries (regarding the sum of the f -values inintervals) based on the labels of O(n) internal nodes, where each of these labels depend only on the value of19

f 0 at O(n) points. (In fact, as in the case of XOR, one may show that the values of these related internalnodes depend only on the value of f 0 at O(n) points.)Regarding the quality of the implementation, by the above description it is clear that the label of eachinternal node equals the sum of the labels of its children, and thus the implementation is truthful. To analyzeits deviation from the speci�cation, we consider the mental experiment in which both sampling proceduresare implemented perfectly (rather than almost so), and show that in such a case the resulting implementationis perfect. Speci�cally, using induction on i = 0; :::; n, it can be shown that the level i vertices are assignedlabels that are independently distributed, where each label is distributed as the binomial distribution of2n�i trials. (Indeed, the labels assigned to the vertices of level i do depend on the labels assigned in leveli � 1.) Thus, if the deviation of the actual sampling procedures is bounded by 2�n � �, then the actualimplementation is at statistical distance at most � from the speci�cation.17 The latter statement is actuallystronger than required for establishing the theorem.Open problems: Theorem 5.2 provides a truthful implementation for any (feasibly-computable) sym-metric function of the values assigned by a random function over any interval of [N] � f0; 1gn. Two naturalextensions are suggested below.Open Problem 5.3 (non-symmetric queries): Provide a truthful close-implementation to the followingspeci�cation. The speci�cation machine de�nes a random function f : f0; 1gn ! f0; 1g, and answers queriesof the form (�; �) 2 f0; 1gn+n with the value g(f(�); :::; f(�)), where g is some simple function. For exam-ple, consider g(�1; :::; �t) that returns the smallest i 2 [t] such that �i � � ��i+b1+log2 tc�1 = 11+blog2 tc (and aspecial symbol if no such i exists). More generally, consider a speci�cation machine that answers queries ofthe form (k; (�; �)) by returning smallest i 2 [t] such that �i � � ��i+k�1 = 1k, where �j is the j-th element inthe sequence (f(�); :::; f(�)).Note that the latter speci�cation is interesting mostly for k 2 f!(logn); :::; n + !(logn)g. For k � ksm =O(log n) we may just make sure (in the implementation) that any consecutive interval of length 2ksmn2contains a run of ksm ones.18 Once this is done, queries (referring to k � ksm) may be served (by theimplementation) in a straightforward way (i.e., by scanning at most two such consecutive intervals, which inturn contain 2ksm+1n2 = poly(n) values). Similarly, for k � klg = n + !(logn), we may just make sure (inthe implementation) that no pair of consecutive intervals, each of length 5n, has a run of min(klg; 2n) ones.Open Problem 5.4 (beyond interval queries): Provide a truthful close-implementation to the followingspeci�cation. The speci�cation machine de�nes a random function f : f0; 1gn ! f0; 1g, and answers queriesthat succinctly describe a set S, taken from a speci�c class of sets, with the value ��2Sf(�). In Example 3.1the class of sets is all intervals of [N] � f0; 1gn, represented by their pair of end-points. Another naturalcase is the class of sub-cubes of f0; 1gn; that is, a set S is speci�ed by an n-sequence over f0; 1; �g such thatthe set speci�ed by the sequence (�1; :::; �n) contains the n-bit long string �1 � � ��n if and only if �i = �i forevery �i 2 f0; 1g.In both cases (i.e., Problems 5.3 and 5.4), even if we do not require truthfulness, a pseudo-implementationmay need to be \somewhat truthful" anyhow (i.e., if the implementation answers the compound queries in anon-consistent manner then it may be distinguished from the speci�cation because a distinguisher may checkconsistency). At least, a potential implementation seems to be in trouble if it \lies bluntly" (e.g., answerseach query by an independent random bit).17We can a�ord to set � = exp(�poly(n)) < 1=poly(N), because the running time of the actual sampling proceduresis poly-logarithmic in the desired deviation.18That is, the random function f : [N] ! f0; 1g is modi�ed such that, for every j 2 [N=2ksmn2], the interval[(j�1)2ksmn2+1; :::; j2ksmn2] contains a run of ksm ones. This modi�cation can be performed on-the-
y by scanningthe relevant interval and setting to 1 a random block of ksm locations if necessary. Note that, with overwhelminglyhigh probability, no interval is actually modi�ed. 20

An application to streaming algorithms: Motivated by a computational problem regarding mas-sive data streams, Feigenbaum et. al. [12] considered the problem of constructing a sequence of N randomvariables, X1; :::; XN , over f�1g such that1. The sequence is \range-summable" in the sense that given t 2 [N] the sumPti=1Xi can be computedin poly(logN)-time.2. The random variables are almost 4-wise independent (in a certain technical sense).Using the techniques underlying Theorem 5.2, for any k � poly(logN) (and in particular for k = 4), we canconstruct a sequence that satis�es the above properties. In fact, we get a sequence that is almost k-wiseindependent in a stronger sense than stated in [12] (i.e., we get a sequence that is statistically close to beingk-wise independent).19 This is achieved by using the construction presented in the proof of Theorem 5.2,except that f 0 is a function selected uniformly from a family of k � (n+1)-wise independent functions ratherthan being a truly random function, where n = log2N (as above). Speci�cally, we use functions that mapf0; 1gn+1 � [ni=0f0; 1gi to f0; 1gpoly(n) in a k �(n+1)-wise independent manner, and recall that such functionscan be speci�ed by poly(n) many bits and evaluated in poly(n)-time (since k � poly(n)). In the analysis,we use the fact that the values assigned by f 0 to vertices in each of the (n+ 1) levels of the tree are k-wiseindependent. Thus, we can prove by induction on i = 0; :::; n, that every k vertices at level i are assignedlabels according to the correct distribution (up to a small deviation). Recall that, as stated in Footnote 17,we can obtain statistical deviation that is negligible in N (in this case, with respect to a k-wise independentsequence).A historical note: As noted above, the ideas underlying the proof of Theorem 5.2 were discovered byMoni Naor and Omer Reingold (as early as in 1999). Actually, their construction was presented withinthe framework of limited independence (i.e., as in the former paragraph), rather than in the framework ofrandom functions (used throughout the rest of this section). In fact, Naor and Reingold came-up with theirconstruction in response to a question raised by the authors of [12] (but their solution was not incorporatedin [12]). The Naor{Reingold construction was used in the subsequent work of [14] (see [14, Lem. 2]). Needlessto say, we became aware of these facts only after posting �rst versions of our work.6 Random Graphs Satisfying Global PropertiesSuppose that you want to run some simulations on huge random graphs. You actually take it for grantedthat the random graph is going to be Hamiltonian, because you have read Bollobas's book [6] and you arewilling to discard the negligible probability that a random graph is not Hamiltonian. Suppose that you wantto be able to keep succinct representations of these graphs and/or that you want to generate them usingfew random bits. Having also read some works on pseudorandomness (e.g., [22, 5, 35, 18]), you plan to usepseudorandom functions [18] in order to e�ciently generate and store representations of these graphs. Butwait a minute, are the graphs that you generate this way really Hamiltonian?The point is that being Hamiltonian is a global property of the graph, which in turn is a huge (i.e.,exp(n)-sized) object. This global property cannot be decided by checking the adjacency of polynomiallymany (i.e., poly(n)-many) vertex-pairs, and so its violation cannot be translated to a contradiction of thepseudorandomness of the function. Indeed, the substitution of a random function (or a random graph) by apseudorandom one is not guaranteed to preserve the global property. Speci�cally, it may be the case thatall pseudorandom graphs are even disconnected.20 So, can we e�ciently generate huge Hamiltonian graphs?As we show below, the answer to this question is positive.19This construction was actually discovered before us by Naor and Reingold (cf. [14, Lem. 2]); see further discussionat the end of this section.20Indeed, for each function fs taken from some pseudorandom ensemble ffs : [2n] � [2n] ! f0; 1ggs, it may holdthat fs(vs; u) = fs(u; vs) = 0 for all u 2 [2n], where vs depends arbitrarily on fs. For example, given a pseudorandomensemble ffsg consider the ensemble ffs;vg such that fs;v(v; u) = fs;v(u; v) = 0n for all u's, and fs;v(x; y) = fs(x; y)for all other (x; y)'s. 21

In this section we consider the implementation of various types of huge random graphs. We stress thatwe refer to simple and labeled graphs; that is, we consider graphs without self-loops or parallel edges, andwith labeled vertices (i.e., the 3-vertex graph consisting of the edge (1; 2) is di�erent from the 3-vertex graphconsisting of the edge (1; 3)). In this section, implementing a graph means answering adjacency queries; thatis, the answer to the query (u; v) should indicate whether or not u and v are adjacent in the graph. Recallthat the implementation ought to work in time that is poly-logarithmic in the size of the graph, and thuscannot decide \global" properties of the graph. That is, we deal with graphs having N = 2n vertices, andour procedures run in poly(n)-time.As in Section 3, we present our results in two categories referring to whether they yield truthful or onlyalmost-truthful implementations. In the case of truthful implementations, we show close-implementations by(polynomial-time) oracle machines (which use a random oracle), while bearing in mind that correspondingpseudo-implementations by ordinary (probabilistic polynomial-time) machines can be derived using The-orem 2.9. In contrast, in the case of almost-truthful implementations, we work directly with ordinary(probabilistic polynomial-time) machines.6.1 Truthful implementationsRecall that a random graph (i.e., a uniformly distributed N -vertex graph) can be perfectly implemented viaan oracle machine that, on input (u; v) 2 [N]� [N] and access to the oracle f : [N]� [N]! f0; 1g, returns0 if u = v, f(u; v) if u < v, and f(v; u) otherwise. (Indeed, we merely derive a symmetric and non-re
exiveversion of f .)Turning to a less trivial example, let us closely-implement a random Bipartite Graph with N verticeson each side. This can be done by viewing the random oracle as two functions, f1 and f2, and answeringqueries as follows:� The function f1 is used to closely-implement a random partition of [2N] into two sets of equal size.Speci�cally, we use f1 to closely-implement a permutation � over [2N], and let the �rst part beS def= fv : �(v) 2 [N]g. Let �S(v) def= 1 if v 2 S and �S(v) def= 0 otherwise.� The query (u; v) is answered by 0 if �S(u) = �S(v). Otherwise, the answer equals f2(u; v) if u < vand f2(v; u) otherwise.The above implementation can be adapted to closely-implement a random Bipartite Graph (see detailsin Appendix B). Viewed in di�erent terms, we have just discussed the implementation of random graphssatisfying certain properties (e.g., being bipartite).We now turn to Example 3.5 (which speci�es a uniformly distributed connected graph). In continuationto the discussion in Section 3, we now present a close-implementation that is truthful:Construction 6.1 (implementing a random connected graph): Use the oracle to implement a randomgraph, represented by the symmetric and non-re
exive random function g : [N] � [N] ! f0; 1g, as wellas a permutation � over [N], which in turn is used to de�ne a Hamiltonian path �(1) ! �(2) ! � � � !�(N). Along with �, implement the inverse permutation ��1, where this is done by using Theorem 2.13.21Answer the query (u; v) by 1 if and only if either g(u; v) = 1 or (u; v) is on the Hamiltonian path (i.e.,j��1(u)� ��1(v)j = 1).Clearly, the above implementation is truthful (with respect to a speci�cation that mandates a connectedgraph). (Indeed, it actually implements a random Hamiltonian graph.) The implementation is statically-indistinguishable from the speci�cation, because it is unlikely to hit an edge of the \forced Hamiltonianpath" when making only poly(logN) queries. (A proof of the latter statement appears below.) A similarstrategy can be used for any monotone graph property that satis�es the following condition:(C) The property is satis�ed by a family of strongly-constructible sparse graphs. That is, for some negligiblefunction � (and every N), there exists a perfect implementation of a (single) N -vertex graph with�(logN) �N2 edges that satis�es the property.21That is, we use a truthful close-implementation of Example 2.4. In fact, we only need ��1, and so the truthfulclose-implementation of Example 2.3 (as stated in Theorem 2.12) actually su�ces.22

We have:Theorem 6.2 (Construction 6.1, generalized): Let � be a monotone graph property that satis�es Condi-tion C. Then, there exists a truthful close-implementation (by an oracle machine) of a uniformly distributedgraph that satis�es property �.We comment that Condition C implies that a random N -vertex graph is statistically-indistinguishable froma random N -vertex graph having property �. This fact, which may be of independent interest, is stated andproved �rst.Lemma 6.3 Let � be a monotone graph property that is satis�ed by some N-vertex graph having � � �N2 �edges. Then, any machine that makes at most q adjacency queries to a graph, cannot distinguish a randomN-vertex graph from a uniformly distributed N-vertex graph that satis�es �, except than with probabilityO(q � p�) + q �N�(1�o(1)).Proof: As in [21, Sec. 4], without loss of generality, we may con�ne ourselves to analyzing machines thatinspect a random induced subgraph. That is, since both graph classes are closed under isomorphism, itsu�ces to consider the statistical di�erence between the following two distributions:1. The subgraph of a uniformly distributed N -vertex graph induced by a uniformly selected set of s def=q + 1 vertices.2. The same vertex-induced subgraph (i.e., induced by a random set of s vertices) of a uniformly dis-tributed N -vertex graph that satis�es property �.Clearly, distribution (1) is uniform over the set of s-vertex graphs, and so we have to show that approximatelythe same holds for Distribution (2). Let T def= �N2 � and M def= �T , and let G0 be an N -vertex graph with Medges that satis�es property �. Consider the set of all graphs that can be obtained from G0 by adding T�M2edges. The number of these graphs is�T �MT�M2 � = 2T�M�(pT �M) > 2T�M�O(1)� 12 �log2 TThat is, this set contains at least a 2�(M+O(1)+(log2 T)=2) = 2��0�T fraction of all possible graphs, where�0 def= �+((log2 T)=2T). Let X = X1 � � �XT 2 f0; 1gT be a random variable that is uniformly distributed overthe set of all graphs that satisfy property �. Then X has entropy at least T � �0T (i.e., H(X) � T � �0T). Itfollows that 1T PTi=1H(XijXi�1 � � �X1) � 1��0, where the index i ranges over all unordered pairs of elementsof [N]. (Indeed, we assume some �xed order on these pairs.) Letting ej(S) denote the jth pair in the setf(u; v)2S�S : u < vg, we are interested in the expected value ofP(s2)j=1H(Xej(S)jXej�1(S) � � �Xe1(S)), whereS is a uniformly selected set of t vertices. Clearly,H(Xej(S)jXej�1(S) � � �Xe1(S)) � H(Xej(S)jXej(S)�1 � � �X1)and so ES 264 (s2)Xj=1H(Xej(S)jXej�1(S) � � �Xe1(S))375 � �s2� � (1� �0)because for a uniformly distributed j 2 [�s2�] it holds thatES;j �H(Xej(S)jXej(S)�1 � � �X1)� equalsEi [H(XijXi�1 � � �X1)],where i is uniformly distributed in [T]. Thus, for a random s-subset S, letting YS = (X(u;v))f(u;v)2S�S:u<vg,we have ES [YS] � t � �00, where t def= �s2� and �00 def= t�0. It follows (see Appendix C) that the statisti-cal di�erence of YS from the uniform distribution over f0; 1gt is at most O(p�00), which in turn equalsO(qp�+ T�(1�o(1))). The lemma follows. 23

Proof of Theorem 6.2: Let H = ([N]; E) be a graph satisfying Condition C. In particular, given(u; v) 2 [N] � [N], we can decide whether or not (u; v) 2 E in polynomial-time. Then, using the graph Hinstead of the Hamiltonian path in Construction 6.1, we implement a (random) graph satisfying property�. That is, we answer the query (u; v) by 1 if and only if either g(u; v) = 1 or (u; v) is an edge in (the\forced" copy of) H (i.e., (��1(u); ��1(v)) 2 E). Since � is a monotone graph property, the instances ofthe implementation always satisfy the property �, and thus the implementation is truthful. Furthermore,by Condition C and the fact that � is a close-implementation of a random permutation, the probability thata machine that queries the implementation for poly(logN) times hits an edge of H is negligible in logN .Thus, such a machine cannot distinguish the implementation from a random graph. Using Lemma 6.3 (with� = �(logN) and q = poly(logN)), the theorem follows.Examples: Indeed, monotone graph properties satisfying Condition C include Connectivity, Hamiltonic-ity, k-Connectivity (for every �xed k)22, containing any �xed-size graph (e.g., containing a triangle or a4-clique or a K3:3 or a 5-cycle), having a perfect matching, having diameter at most 2, containing a clique ofsize at least log2N , etc. All the foregoing properties are satis�ed, with overwhelmingly high probability, bya random graph. However, Theorem 6.2 can be applied also to (monotone) properties that are not satis�edby a random graph; a notable example is the property of containing a clique of size at least pN .6.2 Almost-truthful implementationsWe start by noting that if we are willing to settle for almost-truthful implementations by oracle machinesthen all properties that hold (with su�ciently high probability) for random graphs can be handled easily.Speci�cally:Proposition 6.4 Let � be any graph property that is satis�ed by all but a negligible (in logN) fraction ofthe N-vertex graphs. Then, there exists an almost-truthful close-implementation (by an oracle machine) ofa uniformly distributed graph that satis�es property �.Indeed, the implementation is by a random graph (which in turn is implemented via a random oracle). Note,however, that it is not clear what happens if we replace the random graph by a pseudorandom one (cf.Theorem 2.11). Furthermore, the proof of Theorem 2.11 can be extended to show that there exist graphproperties that are satis�ed by random graphs but do not have an almost-truthful implementation by anordinary machine.23 In light of the above, we now focus on almost-truthful implementations by ordinarymachines. As we shall see, that the technique underlying Construction 6.1 can be used also when thefollowing relaxed form of Condition (C) holds:(C') For some negligible function � (and every N), there exists an almost-truthful implementation (byordinary machines) of a distribution over N -vertex graphs that satisfy the property and have at most�(logN) �N2 edges.Indeed, we may obtain a variant of Theorem 6.2 stating that, assuming the existence of one-way func-tions, for every monotone graph property that satis�es Condition C', there exists an almost-truthful pseudo-implementation (by an ordinary machine) of a uniformly distributed graph that satis�es property �. However,our main focus in the current subsection will be on non-monotone graph properties (e.g., having a max-cliqueof a certain size), and in this case we cannot apply Lemma 6.3. Instead, we shall use the following observa-tion, which refer to properties that are satis�ed by random graphs (e.g., having a max-clique of logarithmicsize).22In fact, we may have k = k(N) = �(logN) �N for any negligible function �. The sparse graph may consist of acomplete bipartite graph with k(N) vertices on one side and N � k(N) � N vertices on the other side.23The proof of Theorem 2.11 relates to the Kolmogorov Complexity of the function (or graph). In order to obtaina graph property, we consider the minimum value of the Kolmogorov Complexity of any isomorphic copy of the saidgraph, and consider the set of graphs for which this quantity is greater than N2=4. The latter property is satis�ed byall but at most 2N2=4 �(N !)� 2N2=3 graphs. On the other hand, the property cannot be satis�ed by an instance of animplementation via an ordinary machine. Thus, any implementation (regardless of \quality") must be non-truthful(to the speci�cation) in a strong sense. 24

Proposition 6.5 Let � be any graph property that is satis�ed by all but a negligible (in logN) fraction of theN-vertex graphs. Let S be the speci�cation that uniformly selects an N-vertex graph that satis�es property� and answers edge-queries accordingly, and let I be any pseudo-implementation of a uniformly distributedN-vertex graph. Then I is a pseudo-implementation of S.Indeed, Proposition 6.5 holds because the �rst hypothesis implies that S is computationally indistinguishablefrom a truly random graph, whereas the second hypothesis asserts that I is computationally indistinguishablefrom a truly random graph.Max-clique and chromatic number. We consider the construction of pseudorandom graphs thatpreserve the max-clique and chromatic number of random graphs.Theorem 6.6 Let c(N) = (2� o(1)) log2N be the largest integer i such that the expected number of cliquesof size i in a random N-vertex graph is larger than one. Assuming the existence of one-way functions, thereexist almost-truthful pseudo-implementations, by ordinary machines, of the following speci�cations:1. A random graph of Max-Clique c(N)�1: The speci�cation uniformly selects an N-vertex graph havingmaximum clique size c(N)� 1, and answers edge-queries accordingly.2. A random graph of Chromatic Number (1� o(1)) �N=c(N): The speci�cation uniformly selects an N-vertex graph having Chromatic Number (1�log�1=32 N)�N=c(N), and answers edge-queries accordingly.That is, we are required to implement random-looking graphs having certain properties. Indeed, a randomN -vertex graph has the above two properties with probability at least 1�N�0:99 (cf. [6]). Thus, a randomgraph provides an almost-truthful close-implementation (by an oracle machine) of a uniformly selectedgraph having each of these properties, but it is not clear what happens when we replace the random oracleby a pseudorandom function. (In fact, one can easily construct pseudorandom functions for which thereplacement yields a graph with a huge clique or alternatively, with a very small chromatic number.) Notethat Theorem 6.6 does not follow from Theorem 6.2, because the properties at hand are not monotone.24Thus, a di�erent approach is needed.Proof: We start with Part 1. We de�ne the adjacency function gclique : [N] � [N] ! f0; 1g of agraph by XORing a pseudorandom function f with a k-wise independent function f 0 (i.e., gclique(v; w) =f(v; w)�f 0(v; w)), where k def= 4n2 (and n = log2N).25 Recall that such k-wise independent functions canbe constructed based on kn random bits. The resulting function gclique is both k-wise independent andcomputationally indistinguishable from a random graph (analogously to the construction in [24]). In partic-ular, using the pseudorandomness of gclique and the fact that a random graph violates the speci�cation withnegligible probability (in logN), it follows that gclique pseudo-implements a uniformly distributed N -vertexgraph having max-clique c(N)� 1. (Indeed, the foregoing argument relies on Proposition 6.5.)Next, we use the k-wise independence of gclique in order to show that gclique is almost-truthful. The keyobservation is that the Bollob�as{Erd�os analysis [7] of the size of the max-clique in a random graph onlyrefers to the expected number of cliques of size c(N)� 2 and to the variance of this random variable. Thus,this analysis only depends on the randomness of edges within pairs of (c(N) + 2)-subsets of vertices; that is,a total of 2 � �c(N)+22 � < (c(N) + 2)2 = (4� o(1)) � n2 vertex-pairs. Hence, the analysis continues to hold forgclique (which is 4n2-independent), and so with overwhelming probability gclique has max-clique size c(N)�1.It follows that gclique provides an almost-truthful pseudo-implementation of a random N -vertex graph withmax-clique size c(N)� 1.We now turn to Part 2. We de�ne the adjacency function gcolor : [N] � [N] ! f0; 1g of a graph bytaking the bit-wise conjunction of the graph gclique with a function h selected uniformly in a set H (de�nedbelow); that is, gcolor(v; w) = 1 i� gclique(v; w) = h(v; w) = 1. Intuitively, each function h 2 H forces a cover24For the coloring property, Condition C does not hold either.25As in other places, we actually mean symmetric and non-re
exive functions that are obtained from the values ofthe basic functions at values (u; v) such that u < v. 25

of [N] by N=c(N) independent sets, each of size c(N), and so the chromatic number of gcolor is at mostN=c(N). On the other hand, by symmetry (of edges and non-edges), the graph gclique doesn't only exhibitclique-number c(N)� 1 (which is irrelevant in this part) but also has independence-number c(N)� 1 (withoverwhelming probability). We will use the latter fact to show that, since each h 2 H only has independentsets of size c(N), taking the conjunction with gclique is unlikely to create an independent set of size c(N)+2.Thus, the chromatic number of gcolor is at least N=(c(N) + 1). Details follow.Each function h 2 H partitions [N] into �(N) def= dN=c(N)e forced independent sets, where each set(except the last) is of size c(N). We de�ne h(v; w) = 1 if and only if v and w belong to di�erent sets; Thus,such h causes each of these vertex-sets to be an independent set in gcolor. The functions in H di�er only inthe partitions that they use. It turns out that it su�ces to use \su�ciently random" partitions. Speci�cally,we use H = fhrgr2R, where R = fr 2 [N] : gcd(r;N) = 1g, and consider for each shift r 2 R the partitioninto forced independent sets (S(1)r ; :::; S(�(N))r), where S(i)r = f(i � c(N) + j) � r mod N : j = 1; :::; c(N)g fori < �(N) (and S(�(N))r contains the N � (�(N) � 1) � c(N) remaining vertices). Note that the conditiongcd(r;N) = 1 ensures that this is indeed a proper partition of the vertex-set [N]. Thus, hr(v; w) = 1 ifand only if v and w do not reside in the same forced independent set S(i)r (i.e., hr(v; w) = 0 implies thatjv � wj � jr (mod N) for some j 2 f1; :::; (c(N)� 1)g).To establish the pseudorandomness of the implementation, we �rst note that gcolor is computationallyindistinguishable from gclique (and consequently gcolor retains gclique's indistinguishability from a randomgraph). Indeed, it can be shown that no e�cient observer is likely to make a query (v; w) that is a�ected byhr, because hr(v; w) = 0 yields at most 2(c(N) � 1) = �(logN) candidates for r, which in turn is selecteduniformly in the set R, where jRj = N
(1). In addition, a random graph has only a negligible probability(in logN) of having chromatic number di�erent from (1 � log�1=32 N) � N=c(N). Combining all this withProposition 6.5 implies the pseudorandomness of the implementation (w.r.t the speci�cation).We now turn to the almost-truthfulness requirement. First note that the chromatic number of gcolor isat most �(N), because its vertex-set is covered by �(N) independent sets. On the other hand, we will showthat with overwhelming probability, the graph gcolor does not contain an independent set of size c(N) + 2.Thus, the chromatic number of gcolor is at least N=(c(N) + 1) > (1 � (2=c(N)) � �(N), and so gcolor is analmost-truthful pseudo-implementation of the desired speci�cation, and the entire theorem follows. Thus,it is left to show that the independence-number of gcolor is at most c(N) + 1. The argument proceeds asfollows. We �x any h = hr 2 H (so the forced independent sets S(j)r are �xed) and show that deleting edgesas instructed by a k-wise independent function (i.e., by gclique) is unlikely to induce a c(N) + 2 independentset. Note that the various candidate independent sets di�er with respect to their intersection with theforced independent sets S(j)r , and the analysis has to take this into account. For example, if the candidateindependent set does not contain two vertices of the same set S(j)r , which is indeed the typical case, thenthe analysis of gclique su�ces. At the other extreme, there is the case that the candidate independent setcontains all vertices of some set S(j)r . In this case, we only have either 2c(N) or 2c(N)+1 random events (i.e.,regarding edges between S(j)r and the other two vertices), but the number of possibilities that correspondto this case is smaller than N3, and so the total probability for the corresponding bad event is less thanN3 � 2�2c(N) = N�1+o(1). The full analysis, given in Appendix C, consists of a rather straightforward andtedious case analysis.Combining properties of random graphs. So far, we considered several prominent propertiesthat are satis�ed (w.h.p.) by random graphs, and provided pseudo-implementations of uniformly distributedgraphs that satisfy each of these properties separately. Next, we discuss a construction of pseudorandomgraphs that simultaneously satisfy all those properties of random graphs.Theorem 6.7 Let c(N) = (2 � o(1)) log2N be as in Theorem 6.6. Assuming the existence of one-wayfunctions, there exists an almost-truthful pseudo-implementation, by an ordinary machine, of the speci�cationthat uniformly selects an N-vertex graph that satis�es the following four properties:1. Being Hamiltonian.2. Having Clique Number c(N)� 1. 26

3. Having Independence Number c(N)� 1.4. Having Chromatic Number (1� log�1=32 N) �N=c(N).The speci�cation answers edge-queries accordingly.Recall that being Hamiltonian implies being connected as well has containing a Perfect Matching.Proof: Consider the following implementation that merely adds a (carefully chosen) random lookingHamiltonian cycle gHam to the pseudorandom graph gcolor that was de�ned in the proof of Theorem 6.6.That is, we de�ne our adjacency function gcombine : [N]� [N]! f0; 1g of a graph as the bit-wise disjunctionof gcolor with the adjacency function gHam (speci�ed below); i.e., gcombine(v; w) = 1 if and only if eithergcolor(v; w) = 1 or gHam(v; w) = 1. Towards de�ning gHam, recall that in gcolor the vertices are covered with�(N) def= dN=c(N)e disjoint independent sets fS(i)r g�(N)i=1 , where each set (except the last) is of size c(N) andwhere the sets are de�ned using a random shift r uniformly chosen in R = fr0 2 [N] : gcd(r0; N) = 1g. Wenow de�ne gHam such that gHam does not violate any of the forced independent sets of gcolor, and conse-quently the �(N) upper-bound on the chromatic number of gcolor is retained by gcombine. Speci�cally, wede�ne gHam using the same random shift r that is used to de�ne the forced independent sets S(i)r : usingan arbitrary integer d 2 [c(N); N � c(N)] that satis�es gcd(d;N) = 1, we set gHamr (v; w) = 1 if and only ifw = (v � dr) mod N .We �rst establish the pseudorandomness of the implementation. We note that gcombine is computationallyindistinguishable from gcolor, because no e�cient observer is likely to make a query (v; w) that is a�ectedby gHamr . Indeed, r is selected uniformly in the set R of size jRj = N
(1), while gHamr (v; w) = 1 impliesonly two candidates for r (a single candidate for each of the possible cases of either (w = v + dr) mod N or(w = v � dr) mod N). Consequently, the computational indistinguishability of gcolor from a random graph(which was established during the proof of Theorem 6.6) is preserved by gcombine. We next recall (cf. [6])that, only with negligible probability (in logN), a random graph fails to exhibit properties 1{4 listed above.Hence, the pseudorandomness of the implementation (w.r.t the speci�cation) follows from Proposition 6.5.We now turn to establish the almost-truthfulness claim. Regarding Hamiltonicity, note that our selec-tion of r and d (which satis�es gcd(r;N) = 1 = gcd(d;N)) guarantees that the graph gHamr is indeed anHamiltonian cycle (because dr; 2dr; 3dr; :::; Ndr are all distinct modulo N). It follows that gcombine is alwaysHamiltonian.We now handle the independence number and chromatic number. Clearly, since gcombine is obtained byadding edges to gcolor, the former retains gcolor's properties of almost surely having independence numberat least c(N) + 1 and chromatic number at most N=(c(N) + 1). In addition, by the de�nition of the forcedindependent sets S(i)r , an arbitrary pair of vertices v; w belongs to the same S(i)r only if w = (v� jr) mod Nwhere j 2 f1; :::; c(N) � 1g. On the other hand, gHamr (v; w) = 1 implies that w = (v + dr) mod N orw = (v � dr) mod N where c(N) � d � N � c(N). Since gcd(r;N) = 1 the above implies that the edges ofthe Hamiltonian cycle gHam never violate any of the forced independent sets of gcolor. Thus, as the forcedindependent sets are of size c(N), and since these sets force a cover of [N] with dN=c(N)e independent sets, itfollows that gcombine achieves independence number at least c(N) and chromatic number at most dN=c(N)e(just as gcolor does).The last property to consider is the clique number; that is, we now show that gcombine has clique numberc(N) � 1 (almost surely). The argument is based on the fact (taken from the proof of Theorem 6.6) thatgclique has clique number c(N) � 1 almost surely. Indeed, let c = c(N). As gcolor is obtained by omittingedges from gclique and gcombine is (later) obtained by adding edges to gcolor, it su�ces to establish a c � 1lower bound on the clique number of gcolor and a c + 1 upper bound on the clique number of gcombine. Tothis end we �x (again) the random shift r (which speci�es both the forced independent sets of gcolor as wellas the Hamiltonian cycle gHam), and establish the desired bounds when the probabilities are taken only overthe k-wise independent graph gclique.Towards proving the lower bound (on the clique number of gcolor), let Xclique and Xcolor denote therandom variables that count the number of (c�1)-cliques in gclique and in gcolor, respectively. By Chebyshev'sinequality the probability of having no (c � 1)-cliques in gcolor is upper bounded by var(Xcolor)(E(Xcolor))2 . Since it is27

known (see [7]) that var(Xclique)(E(Xclique))2 is negligibly small (in logN), it su�ces to show thatvar(Xcolor)(E(Xcolor))2 = O� var(Xclique)(E(Xclique))2� : (2)We �rst argue that var(Xcolor) � var(Xclique). Let T denote the collection of all subsets of vertices ofcardinality c � 1, and let Tcolor � T denote only those subsets that contain at most one vertex from eachforced independent set; that is, T contains exactly all \potential cliques" of gclique, while Tcolor contains onlythe \potential cliques" of gcolor). For each T 2 T, let XcliqueT and XcolorT denote the random variables thatindicate whether T induces a clique in gclique and in gcolor, respectively. Since, for any T; T 0 2 Tcolor, it holdsthat T induces a clique in gclique if and only if it induces a clique in gcolor, we get var(XcliqueT) = var(XcolorT)and cov(XcliqueT ; XcliqueT 0) = cov(XcolorT ; XcolorT 0). Since all the terms in the expansionvar(Xcolor) = XT2Tcolor var(XcolorT) + XT 6=T 02Tcolor cov(XcolorT ; XcolorT 0);also appear in the expansion of var(Xclique), and as all terms in in the expansion of var(Xclique) are non-negative, we get var(Xcolor) � var(Xclique).Next we show that E(Xcolor) = (1 � o(1)) � E(Xclique). First note that E(Xclique) = �c�12 � � 2(�c�12).On the other hand, the number of potential (c� 1)-cliques in gcolor is lower-bounded by L def= �bNc cc�1� � cc�1,because there are bNc c forced independent sets S(i) of size c, and a potential clique can be speci�ed by �rstchoosing c� 1 of these sets S(i), and then choosing a single vertex from each set. Next note that all relevantedges are determined only by the 4n2-wise independent graph gclique, and so E(Xcolor) � L � 2(�c�12). SinceL = �bNc cc�1�cc�1 = (1 � o(1)) � � Nc�1�, we get E(Xcolor) � (1 � o(1)) � � Nc�1� � 2(�c�12), which in turn equals(1� o(1)) � E(Xclique). Having established Eq. (2), we conclude that (with very high probability) the c� 1lower bound on the clique number of gcolor holds.Our �nal task is to establish a c+1 upper bound on the clique number of gcombine; that is, to show thatfor c0 def= c(N)+2, with high probability gcombine contains no c0-cliques. Let's �rst consider gcolor. Recall thatby [7], gclique has a negligible probability (in logN) of having a c0-clique. As gcolor is obtained by omittingedges from gclique the same holds for gcolor as well. Consequently, as gcombine is obtained by adding a singleHamiltonian cycle gHam to gcolor, it su�ces to give a negligible upper-bound only on the probability thatgcombine contains a c0-clique that intersects gHam (in at least one edge). This is done by showing that theexpected number of the latter cliques is negligible (in logN).26We use the following terminology. Given a vertex-set V of size c0 (i.e., a potential clique), we saythat a vertex w 2 V is a follower-vertex if its predecessor in gHam is in V (i.e., if w � dr mod N is infv mod N : v 2 V g). Let Vk denote the collection of all vertex-sets V of size c0 that have exactly k follower-vertices. We now bound Ek, the expected number of cliques induced by vertex-sets V 2 Vk. For V 2 Vk,the number of edges of gHam that have both endpoints in V is k. Since the rest of the edges of V are decidedby the 4n2-wise independent graph gclique, the probability that V induces a (c � 1)-clique in gcombine is atmost 2�(c02)+k. Next observe that jVkj � � Nc0�k� � (c0 � 1)k, because a set V 2 Vk is de�ned by the choice ofc0 � k non-follower and k (successive) choices of followers (where the ith follower is selected as following oneof the c0 � k + (i� 1) � c0 � 1 vertices selected so far). ThusEk � � Nc0 � k� � (c0 � 1)k � 2�(c02)+k = �Nc0� � (N�1+o(1))k � 2�(c02) � �Nc0� � 2�(c02);where the latter expression is upper-bound by N�
(1) (see [7], while recalling that c0 = c(N) + 2). If followsthat Pc0�1k=1 Ek is negligible (in logN). This establishes the upper-bound on the clique-number of gcombine,which completes the proof of the entire theorem.26Recall that we �xed the random shift r (which speci�es both the forced independent sets of gcolor as well asthe enforced Hamiltonian path gHamr), and so probabilities are taken only over the k-wise independent choices of theedges of gclique. 28

High connectivity. One property of random graphs that was left out of Theorem 6.7 is having high(global) connectivity property: Indeed, in a random N -vertex graph, every pair of vertices is connectedby at least (1 � o(1))N=2 vertex-disjoint paths. One interesting question is to provide an almost-truthfulpseudo-implementation of a uniformly distributed graph having this high (global) connectivity property.Unfortunately, we do not know how to do this. A second best thing may be to provide an almost-truthfulpseudo-implementation of a random graph for which almost all pairs of vertices enjoy this \high connectivity"property.Theorem 6.8 For every positive polynomial p, assuming the existence of one-way functions, there exists analmost-truthful pseudo-implementation by an ordinary machine of the following speci�cation. The specifyingmachine selects a graph that is uniformly distributed among all N-vertex graphs for which all but at mostan �(N) def= 1=p(log2N) fraction of the vertex pairs are connected by at least (1� �(N)) �N=2 vertex-disjointpaths. Edge-queries are answered accordingly.Interestingly, the same implementation works for all polynomials p; that is, the implementation is inde-pendent of p, which is only needed for the de�nition of the speci�cation. In fact, in contrast to all otherimplementations presented in this work, the implementation used in the proof of Theorem 6.8 is the straight-forward one: It uses a pseudorandom function to de�ne a graph in the obvious manner. The crux of the proofis in showing that this implementation is computationally-indistinguishable from the foregoing speci�cation.Proof: We use a pseudorandom function to de�ne a graphG = ([N]; E) in the straightforwardmanner, andanswer adjacency queries accordingly. This yields a pseudo-implementation of a truly random graph, whichin turn has the strong connectivity property (with overwhelmingly high probability). Fixing a polynomialp and � def= �(N) def= 1=p(log2N), we prove that this implementation is almost-truthful to the correspondingspeci�cation. That is, we show that, with overwhelmingly high probability, all but at most an � fraction ofthe vertex pairs are connected via (1 � �) � N=2 vertex-disjoint paths. We will show that if this is not thecase, then we can distinguish a random graph (or function) from a pseudorandom one.Suppose towards the contradiction that, with non-negligible probability, a pseudorandom graph violatesthe desired property. Fixing such a graph, G = ([N]; E), our hypothesis means that at least an � fractionof the vertex-pairs are connected (in G) by fewer than (1� �) �N=2 vertex-disjoint paths. Consider such ageneric pair, denoted (u; v), and de�ne S0 def= �G(u)\�G(v), S1 def= �G(u) n�G(v), and S2 def= �G(v) n�G(u),where �G(w) def= fx2 [N] : (w; x)2Eg. Note that if G were a random graph then we would expect to havejS0j � jS1j � jS2j � N=4. Furthermore, we would expect to see a large (i.e., size � N=4) matching in theinduced bipartite graph B = ((S1; S2); E \ (S1�S2)); that is, the bipartite graph having S1 on one side andS2 on the other. So, the intuitive idea is to test that both these conditions are satis�ed in the pseudorandomgraph. If they do then u and v are \su�ciently connected". Thus, the hypothesis that an � fraction of thevertex-pairs are no \su�ciently connected" implies a distinguisher (by selecting vertex-pairs at random andtesting the above two properties). The problem with the foregoing outline is that it is not clear how toe�ciently test that the aforementioned bipartite graph B has a su�ciently large matching.To allow an e�cient test (and thus an e�cient distinguisher), we consider a more stringent condition(which would still hold in a truly random graph). We consider a �xed partition of [N] into T def= N=mparts, (P1; :::; PT), such that jPij = m = poly(n=�), where n = log2N . (For example, we may use Pi =f(i� 1)m+ j : j = 1; :::;mg.) If G were a random graph then, with overwhelmingly high probability (i.e., atleast 1� exp(�m1=O(1)) > 1� exp(�n2)), we would have jS0 \ Pij = (m=4)�m2=3 for all the i's. Similarlyfor S1 and S2. Furthermore, with probability at least 1� exp(�n2), each of the bipartite graphs Bi inducedby (Pi\S1; Pi\S2) would have a matching of size at least (m=4)�m2=3. The key point is that we can a�ordto test the size of the maximum matching in such a bipartite graph, because it has 2m = poly(n) vertices.Let us wrap-up things. If a pseudorandom graph does not have the desired property then at least �fraction of its vertex-pairs are connected by less than (1 � �)N=2 vertex-disjoint paths. Thus, samplingO(1=�) vertex-pairs, we hit such a pair with constant probability. For such a vertex-pair, we consider thesets Si;0 def= Pi \ S0, Si;1 def= Pi \ S1 and Si;2 def= Pi \ S2, for i = 1; :::; T . It must be the case that either �=2fraction of the S0;i's are of size less than (1� (�=2)) � (m=4) or that �=2 fraction of the bipartite subgraphs29

(i.e., Bi's) induced by the pairs (S1;i; S2;i) have no matching of size (1�(�=2)) �(m=4), because otherwise thisvertex-pair is su�ciently connected merely by virtue of these S0;i's and the large matchings in the Bi's.27We use m > (8=�)3 so to guarantee that (m=4)�m2=3 > (1� (�=2))(m=4), which implies that (for at least an�=2 fraction of the i's) some quantity (i.e., either jS0;ij or the maximum matching in Bi) is strictly larger ina random graph than in a pseudorandom graph. Now, sampling O(1=�) of the i's, we declare the graph to berandom if all the corresponding S0;i's have size at least (m=4)�m2=3 and if all the corresponding bipartitegraphs Bi's have a maximum matching of size at least (m=4)�m2=3. Thus, we distinguish a random functionfrom a pseudorandom function, in contradiction to the de�nition of the latter. The theorem follows.Maximum Matching in most induced bipartite graphs: The proof of Theorem 6.8 can beadapted to prove the following:Theorem 6.9 For every positive polynomial p, assuming the existence of one-way functions, there existsan almost-truthful pseudo-implementation by an ordinary machine of a uniformly selected N-vertex graphthat satis�es the following property: For all but at most an �(N) def= 1=p(log2N) fraction of the disjointset-pairs (L;R) � [N] � [N] it holds that the bipartite graph induced by (L;R) has a matching of size(1� �(N)) �min(jLj; jRj).As in Theorem 6.8, the implementation is straightforward, and the issue is analyzing it.Proof: Observe that almost all relevant set-pairs satisfy jLj � jRj � N=3, and so we focus on these pairs.It can still be shown that in a random graph, with overwhelmingly high probability, all the correspondingbipartite graphs (induced by pairs (L;R) as above) have a su�ciently large matching. However, this willnot hold if we only consider matchings that conform with the small bipartite graphs Bi's, where the Bi's areas in the proof of Theorem 6.8. Still, with overwhelmingly high probability, almost all the bipartite graphsinduced by pairs (L;R) as above will have a su�ciently large matching that does conform with the smallbipartite graphs Bi's. Thus, for � = �(N), the distinguisher just selects O(1=�) di�erent i's, and for eachsuch i tests the size of the maximal matching for O(1=�) random (L;R)'s. Needless to say, the distinguisherdoes not select such huge sets, but rather selects their projection on Pi. That is, for each such i (and eachattempt), the distinguisher selects a random pair of disjoint sets (Li; Ri) � Pi � Pi.Digest: An interesting aspect regarding the proofs of Theorems 6.8 and 6.9 is that in these cases, withoverwhelmingly high probability, a random object in the speci�cation (S; n) has stronger properties thatthose of arbitrary objects in (S; n). This fact makes it easier to distinguish a random object in (S; n) froman object not in (S; n) (than to distinguish an arbitrary object in (S; n) from an object not in (S; n)). Forexample, with overwhelmingly high probability, a random graph has larger connectivity than required inTheorem 6.8 and this connectivity is achieved via very short paths (rather than arbitrary ones). This factenables to distinguish (S; n) from an implementation that lacks su�ciently large connectivity.A di�erent perspective: The proofs of Theorems 6.8 and 6.9 actually establish that, for the cor-responding speci�cations, the almost-truthfulness of an implementation follows from its computational in-distinguishability (w.r.t the speci�cation).28 An interesting research project is to characterize the class ofspeci�cations for which the foregoing implication holds; that is, characterize the class of speci�cations thatsatisfy Condition 1 in the following Theorem 6.10. Clearly, any pseudo-implementation of such a speci�-cation is almost-truthful, and Theorem 6.10 just asserts that having a pseudo-implementation by an oraclemachine su�ces (provided one-way functions exist):Theorem 6.10 Suppose that S is a speci�cation for which the following two conditions hold.27That is, we get at least ((1 � (�=2)) � T) � ((1� (�=2)) � (m=4)) > (1 � �)(N=4) paths going through S0, and thesame for paths that use the maximum matchings in the various Bi's.28That is, these proofs establish the �rst condition in the following Theorem 6.10, whereas the second condition isestablished by the straightforward construction of a random graph.30

1. Every pseudo-implementation of S is almost-truthful to S. In fact, it su�ces that this condition holdswith respect to implementations by an ordinary probabilistic polynomial-time machines.2. S has an almost-truthful pseudo-implementation by an oracle machine that has access to a randomoracle.Then, assuming the existence of one-way function, S has an almost-truthful pseudo-implementation by anordinary probabilistic polynomial-time machine.Proof: Let I be the implementation guaranteed by Condition 2, and let I 0 be the implementation derivedfrom I by replacing the random oracle with a pseudorandom function. Then, I 0 is a pseudo-implementationof S. Using Condition 1, it follows that I 0 is almost-truthful to S.7 Supporting Complex Queries regarding Random GraphsIn this section we provide truthful implementations of random graph while supporting complex queries, inaddition to the standard adjacency queries. The graph model is as in Section 6, and as in Section 6.1 wepresent our (truthful) implementations in terms of oracle machines. Let us start with a simple example.Proposition 7.1 There exists a truthful close-implementation by an oracle machine of the following speci-�cation. The specifying machine selects uniformly an N-vertex graph and answers distance queries regardingany pair of vertices. Furthermore, there exists a truthful close-implementation of the related speci�cationthat returns a uniformly distributed path of shortest length.Proof: Consider the property of having diameter at most 2. This property satis�es Condition C (e.g., by anN -vertex star). Thus, using Theorem 6.2, we obtain a close-implementation of a random graph, while ourimplementation always produces a graph having diameter at most 2 (or rather exactly 2). Now, we answerthe query (u; v) by 1 if the edge (u; v) is in the graph, and by 2 otherwise. For the furthermore-part, weadd pN such stars, and serve queries regarding paths of length 2 by using the center of one of these stars(which is selected by applying an independent random function to the query pair).This example is not very impressive because the user could have served the distance-queries in the sameway (by only using adjacency queries to the standard implementation of a random graph). (A randomshortest path could have also been found by using the standard implementation.) The only advantage ofProposition 7.1 is that it provides a truthful implementation of the distance-queries (rather than merely analmost-truthful one obtained via the trivial implementation). A more impressive example follows. Recallthat a random N -vertex graph is likely to have many (log2N)-vertex cliques that include each of the verticesof the graph, whereas it seems hard to �nd such cliques (where in hard we mean unlikely to achieve in timepoly(logN), and not merely in time poly(N)). Below we provide an implementation of a service that answersqueries of the form v 2 [N] with a log-sized clique containing the vertex v.Theorem 7.2 There exists a truthful close-implementation of the following speci�cation. The specifyingmachine selects uniformly an N-vertex graph and, in addition to the standard adjacency queries, answers(Log-Clique) queries of the form v by providing a random dlog2Ne-vertex clique that contains v (and a specialsymbol if no such clique exists).Proof: Let ` = dlog2Ne � 1 and consider a simple partition of [N] to T = dN=`e subsets, S1; :::; ST , suchthat jSij = ` for i = 1; :::; T � 1 (e.g., Si = f(i � 1)` + j : j = 1; :::; `g). Use the oracle to implement arandom graph, G0 = ([N]; E0), as well as a random onto function29 f : [N]! [T] and a random invertiblepermutation � : [N]! [N] (as in Theorem 2.13). The graph we implement will consist of the union of G0with N cliques, where the i-th clique resides on the vertex set fig [f�(j) : j 2 Sf(i)g. The Log-Cliquequeries are served in the obvious manner; that is, query v is answered with fvg[f�(u) : u 2 Sf(v)g. Indeed,29Such a function can be obtained by combining the identity function over [T] with a random function f 0 :fT + 1; :::; Ng! [T], and randomly permuting the domain of the resulting function.31

for simplicity, we ignore the unlikely case that v 2 f�(u) : u 2 Sf(v)g; this can be redeemed by modifyingthe implementation as discussed at the end of the proof.Implementing the adjacency queries is slightly more tricky. The query (u; v) is answered by 1 if and onlyif either (u; v) 2 E or u and v reside in one of the N 's cliques we added. The latter case may happen if andonly if one of the following subcases holds:1. Either u 2 f�(w) : w 2 Sf(v)g or v 2 f�(w) : w 2 Sf(u)g; that is, either ��1(u) 2 Sf(v) or ��1(v) 2Sf(u). Each of these conditions is easy to check by invoking f and ��1.2. There exists an x such that u; v 2 f�(w) : w 2 Sf(x)g, which means that ��1(u); ��1(v) 2 Sf(x).Equivalently, recalling that f is onto, we may check whether there exists a y such that ��1(u); ��1(v) 2Sy, which in turn is easy to determine using the simple structure of the sets Sy's (i.e., we merely testwhether or not d��1(u)=`e = d��1(v)=`e).Thus, our implementation is truthful to the speci�cation. To see that it is a close-implementation of thespeci�cation, observe �rst that it is unlikely that two di�erent Log-Clique queries are \served" by the sameclique (because this means forming a collision under f). Conditioned on this rare event not occurring, theLog-Clique queries are served by disjoint random cliques, which is what would essentially happen in a randomgraph (provided that at most poly(logN) queries are made). Finally, it is unlikely that the answers to theadjacency queries that are not determined by prior Log-Clique queries be a�ected by the sparse sub-graph(of N small cliques) that we inserted under a random permutation.Finally, we address the problem ignored above (i.e., the rare case when the query v is in the correspondingset f�(u) : u 2 Sf(v)g). We modify the foregoing implementation by setting ` = dlog2Ne (rather than` = dlog2Ne�1), and using corresponding sets of size `. Note that, under this modi�cation, for most verticesv, the set fvg[f�(u) : u 2 Sf(v)g has size `+1 (whereas for few vertices v this set has size `). Thus, in modi�edimplementation, a query v is answered with a random `-subset of fvg [f�(u) : u 2 Sf(v)g that contains v(i.e., we use another random function g : [N] ! [`] that indicates which element of f�(u) : u 2 Sf(v)g todrop in the case that v 62 f�(u) : u 2 Sf(v)g). The theorem follows.Another example: We consider the implementation of a random graph along with answering queriesregarding a random Hamiltonian cycle in it, where such cycle exists with overwhelmingly high probability.Speci�cally, we consider queries of the form what is the distance between two vertices on the cycle.Theorem 7.3 There exists a truthful close-implementation of the following speci�cation. The specifyingmachine selects uniformly an N-vertex graph G, and in case G is Hamiltonian it uniformly selects a (directed)Hamiltonian cycle in G, which in turn de�nes a cyclic permutation � : [N]! [N]. In addition to the standardadjacency queries, the speci�cation answers travel queries of the form (trav; v; t) by providing �t(v), anddistance queries of the form (dist; v; w) by providing the smallest t � 0 such that w = �t(v).We stress that the implementation must answer each possible query in time polynomial in the vertex name(which may be logarithmic in the distance t).Proof: It will be convenient to use the vertex set V = f0; 1; :::; N�1g (instead of [N]). We use the randomoracle to implement a random graph G0 = (V;E0) as well as a random permutation � : V !V along with itsinverse. We de�ne a graph G = (V;E) by E def= E0[C, where C = f(�(i); �(i+1 mod N)) : i2V g, and use Cto answer the special (Hamiltonian) queries. That is, we answer the query (trav; v; t) by �(��1(v)+t mod N),and the query (dist; v; w) by ��1(w) � ��1(v) mod N . The standard adjacency query (u; v) is answered by1 if and only if either (u; v) 2 E or ��1(u) � ��1(v) � 1 (mod N). (Indeed, the above construction isreminiscent of the \fast-forward" construction of [33] (stated in Theorem 2.14).)To see that the above truthful implementation is statistically-indistinguishable from the speci�cation,we use the following three observations:1. If a (labeled) graph appears in the speci�cation (resp., in the implementation) then all is (labeled)isomorphic copies appear in it. Consequently, for any �xed Hamiltonian cycle, the set of Hamiltoniangraphs in which this cycle has been selected in the speci�cation (resp., in the implementation) is32

isomorphic to the set of Hamiltonian graphs in which any other �xed Hamiltonian cycle has beenselected. Thus, we may consider the conditional distribution induced on the speci�cation (resp., onthe implementation) by �xing any such Hamiltonian cycle.2. Conditioned on any �xed Hamiltonian cycle being selected in the implementation, the rest of the graphselected by the implementation is truly random.3. Conditioned on any �xed Hamiltonian cycle being selected in the speci�cation, the rest of the graphselected by the speci�cation is indistinguishable from a random graph. The proof of this assertion issimilar to the proof of Lemma 6.3. The key point is proving that, conditioned on a speci�c Hamiltoniancycle being selected, the (rest of the) graph selected by the speci�cation has su�ciently high entropy.Note that here we refer to the entropy of the remaining �N2 ��N edges, and that the vertex pairs arenot all identical but rather fall into categories depending on their distance as measured on the selectedHamiltonian cycle. We need to show that a random vertex-pair in each of these categories has asu�ciently high (conditional) entropy. Thus, this observation requires a careful proof to be presentednext.Indeed, the foregoing discussion suggests that we may give the entire Hamiltonian cycle to the machinethat inspects the rest of the graph (in an attempt to distinguish the implementation from the speci�cation).Thus, we assume, without loss of generality, that this machine makes no adjacency queries regarding edgesthat participate in the cycle. The �rst observation says that we may consider any �xed cycle, and thesecond observation says that a machine that inspects the rest of the implementation (i.e., the graph that isconstructed by the implementation) sees truly random edges. The third observation, proved below, assertsthat making a few queries to the rest of the conditional space of the speci�cation, yields answers that alsolook random.We consider the conditional distribution of the rest of the graph selected by the speci�cation, given thata speci�c Hamiltonian cycle was selected. (Indeed, we ignore the negligible (in N) probability that the graphselected by the speci�cation is not Hamiltonian.) Essentially, the argument proceeds as follows. First, wenote that (by Bayes' Law) the conditional probability that a speci�c graph is selected is inversely proportionalto the number of Hamiltonian cycles in that graph. Next, using known results on the concentration of thelatter number in random graphs (see, e.g., [26, Thm. 4]), we infer that in all but an N�2 fraction of theN -vertex graphs the number of Hamiltonian cycles is at least an exp(�2(lnN)1=2) > N�1 fraction of itsexpected number. Thus, we conclude the conditional entropy of the selected graph (conditioned on theselected cycle) is �N2 ��N � o(N). Details follow.For T = �N2 �, let X = X1 � � �XT denote the graph selected by the speci�cation, and Y (G) denote theHamiltonian cycle selected (by the speci�cation) given that the graphG was selected. Let #HC(G) denote thenumber of Hamiltonian cycles in the graph G, where cyclic shifts and transpositions of cycles are countedas if they were di�erent cycles (and so the number of Hamiltonian cycles in an N -clique is N !). Thus,E(#HC(X)) = 2�N � (N !). An N -vertex graph G is called good if #HC(G) > 2�N � ((N � 1)!), and G denotesthe set of good N -vertex graphs. For a Hamiltonian cycle C, we denote by G(C) the set of graphs in G thatcontain the cycle C. Then, it holds thatH(X jY (X) = C) � XG2G(C)Pr[X = GjY (X) = C] � log2(1=Pr[X = GjY (X) = C])� (1�N�2) � minG2G(C)f� log2(Pr[X = GjY (X) = C])g= (1�N�2) � minG2G(C)8<: log2(Pr[Y (X) = C])� log2(Pr[Y (X) = CjX = G])� log2(Pr[X = G]) 9=;= (1�N�2) � minG2G(C)�log2(1=N !) + log2(#HC(G)) +�N2��Using the fact that G is good (i.e., G 2 G(C)), it follows that log2(#HC(G)) > log2(2�N � ((N � 1)!)), which33

in turn equals log2(N !)�N � log2N . We thus get,H(X jY (X) = C) > (1�N�2) ���N2��N � log2N� (3)Recall that the condition Y (X) = C determines N vertex-pairs in X , and so the entropy of the remainingT 0 = �N2 ��N pairs is at least T 0�log2N . Partitioning these (undetermined) pairs according to their distancesin C, we conclude that the entropy of the N=2 pairs in each such distance-class is at least (N=2) � log2N .(Indeed, the distance class of undetermined pairs do not contain distance 1 (or N � 1), which correspond tothe forced cycle-edges.) We stress that our analysis holds even if the machine inspecting the graph is given theHamiltonian cycle for free. This machine may select the induced subgraph that it wants to inspect, but thisselection is determined up to a shifting of all vertices (i.e., a rotation of the cycle). This randomization su�cesfor concluding that the expected entropy of the inspected subgraph (which may not include cycle edges) is atleast (1�((2 log2N)=N))��t2�, where t is the number of vertices in the subgraph. As in the proof of Lemma 6.3,this implies that the inspected subgraph is at distance at most O(q((log2N)=N) � �t2�) < t � N�(1�o(1))=2from a random t-vertex graph. The theorem follows.8 Random Bounded-Degree Graphs and Global PropertiesIn this section we consider huge bounded-degree simple graphs, where the vertices are labeled (and there areno self-loops or parallel edges). We consider speci�cations of various distributions over such graphs, wherein all cases the specifying machine responds to neighborhood queries (i.e., the queries correspond to verticesand the answer to query v is the list of all vertices that are adjacent to vertex v).The �rst issue that arises is whether we can implement a random bounded-degree graph or alternativelya random regular graph. Things would have been quite simple if we were allowing also non-simple graphs(i.e., having self-loops and parallel edges). For example, a random d-regular N -vertex non-simple graph canbe implemented by pairing at random the dN possible \ports" of the N vertices. We can avoid self-loops(but not parallel edges) by generating the graph as a union of d perfect matchings of the elements in [N]. Inboth cases, we would get a close-implementation of a random d-regular N -vertex (simple) graph, but paralleledges will still appear with constant probability (and thus this implementation is not truthful w.r.t simplegraphs). In order to obtain a random simple d-regular N -vertex graph, we need to take an alternative route.The key observation underlying this alternative is captured by the following lemma:Lemma 8.1 For d > 2, let G = ([N]; E) be any d-regular N-vertex graph having girth g. Let G0 be obtainedby randomly permuting the vertices of G (and presenting the incidence lists in some canonical order). Then,any machine M that queries the graph for the neighborhoods of q vertices of its choice, cannot distinguishG0 from a random d-regular N-vertex (simple) graph, except than with probability O(q2=(d � 1)(g�1)=2). Inthe case d = 2 and q < g � 1, the probability bound can be improved to O(q2=N).Recall that the girth of a graph G is the length of the shortest simple cycle in G, and that (d�1)(g�2)=2 < Nalways holds (for a d-regular N -vertex graph of girth g).30 Note that Lemma 8.1 is quite tight: For example,in the case d = 2, for g � pN , the N -vertex graph G may consist of a collection of g-cycles, and taking awalk of length g in G0 (by making g � 1 queries) will always detect a cycle G0, which allows to distinguishG0 from a random 2-regular N -vertex (in which the expected length of a cycle going through any vertex is
(N)). In the case d � 3, the graph G may consist of connected components, each of size (d�1)g � N , andtaking a random walk of length (d�1)g=2 in G0 is likely to visit some vertex twice, which allows to distinguishG0 from a random d-regular N -vertex (in which this event may occur only after pN steps). Below, we willuse Lemma 8.1 with the following setting of parameters.30The girth upper-bound (i.e., g � 2 + 2 logd�1N) follows by considering the (vertex disjoint) paths of length(g � 2)=2 starting at any �xed vertex. The existence of d-regular N -vertex graphs of girth logd�1N was shown(non-constructively) in [11]. 34

Corollary 8.2 For �xed d > 2 and g(N) = !(log logN), let G = ([N]; E) be any d-regular N-vertex graphhaving girth g(N). Let G0 be obtained from G as in Lemma 8.1. Then, any machine M that queries the graphfor the neighborhoods of poly(logN) vertices of its choice, cannot distinguish G0 from a random d-regularN-vertex (simple) graph, except than with negligible in logN probability. The claim holds also in the casethat d = 2 and g(N) = (logN)!(1).For d > 2 the girth can be at most logarithmic, and explicit constructions with logarithmic girth are known forall d � 3 and a dense set of N 's (which is typically related to the set of prime numbers; see, e.g., [32, 25, 30]).For d = 2, we may just take the N -cycle or any N -vertex graph consisting of a collection of su�ciently largecycles.Proof of Lemma 8.1: We bound the distinguishing gap of an oracle machine (which queries either arandom d-regular N -vertex graph or the random graph G0) as a function of the number of queries it makes.Recall that G0 is a random isomorphic copy of G, whereas a random d-regularN -vertex graph may be viewedas a random isomorphic copy of another random d-regular N -vertex graph. Thus, intuitively, the speci�clabels of queried vertices and the speci�c labels of the corresponding answers are totally irrelevant: the onlything that matters is whether or not two labels are equal.31 Equality (between labels) can occur in two cases.The uninteresting case is when the machine queries a vertex u that is a neighbor of a previously-queriedvertex v and the answer contains (of course) the label of vertex v. (This is uninteresting because the machine,having queried v before, already knows that v is a neighbor of u.) The interesting case is that the machinequeries a vertex and the answer contains the label of a vertex v that was not queried before but has alreadyappeared in the answer to a di�erent query. An important observation is that, as long as no interestingevent occurs, the machine cannot distinguish the two distributions (because in both cases it knows the samesubgraph, which is a forest). Thus, the analysis amounts to bounding the probability that an interestingevent occurs, when we make q queries.Let us consider �rst what happens when we query a random d-regular N -vertex (simple) graph. Wemay think of an imaginary process that constructs the graph on-the-
y such that the neighbors of vertexv are selected only in response to the query v (cf, e.g., the proof of [20, Thm. 7.1]). This selection is doneat random according to the conditional distribution that is consistent with the partial graph determinedso far. It is easy to see that the probability that an interesting event occurs in the i-th query is at most(i� 1)d=(dN � (i� 1)d), and so the probability for such an event occurring in q queries is at most q2=N .The more challenging part is to analysis what happens when we query the graph G. (Recall that wehave already reduced the analysis to a model in which we ignore the speci�c labels, but rather only comparethem, and analogously we cannot query a speci�c new vertex but rather only query either a random newvertex or a vertex that has appeared in some answer.)32 To illustrate the issues at hand, consider �rst thecase that d = 2 (where G consists of a set of cycles, each of length at least g). In this case, we have the optionof either to proceed along a path that is part of a cycle (i.e., query for the neighbors of the an end-pointof a currently known path) or to query for a random new vertex. Assuming that we make less than g � 1queries, we can never cause an interesting event by going along a path (because an interesting event mayoccur in this case only if we go around the entire cycle, which requires at least g�1 queries). The only otherpossibility to encounter an interesting event is by having two paths (possibly each of length 1) collide. Butthe probability for such an event is bounded by q2=N , where q is the number of queries that we make.3331Essentially, the machine cannot determine which vertex it queries; all that it actually decides is whether to querya speci�c vertex that has appeared in previous answers or to query a new vertex (which may be viewed as randomlyselected). (Formally, a speci�c new label indicated by the querying machine is mapped by the random permutation toa new random vertex.) Similarly, the labels of the vertices given as answer do not matter, all that matters is whetheror not these vertices have appeared in the answers to previous queries (or as previous queries). (Again, formally, thenew vertices supplied in the answer are assigned, by the random permutation, new random labels.)32Thus, we may consider querying G itself (rather than querying G0).33Using a union bound over all query pairs, we bound the probability that the ith query collides with the j-thquery. Each of these two queries is obtained by a path of �xed length starting from a uniformly and distributedvertex (which was new at the time). Thus, these two queries are almost uniformly and independently distributed (in[N]), and the probability that they are neighbors is at most 1=(N � q).35

We now turn to the more interesting case of d > 2. As in case d = 2, taking a walk of length g � 2from any vertex will not yield anything useful. However, in this case, we may a�ord to take longer walks(because q may be much larger than g). Still, we will prove that, in this case, with probability at least1� q2 � (d�1)�(g�3)=2, the uncovered subgraph is a forest. The proof relies both on the girth lower-bound ofG and on a su�ciently-good rapid-mixing property (which follows from the girth lower-bound). We boundthe probability that a cycle is closed in the current forest by the probability that two vertices in the forestare connected by a non-tree edge, where the probability is taken over the possible random vertices returnedin response to a new-vertex request and over the random order in which neighbors of a query-vertex areprovided. Indeed, a key observation is that when we query a vertex that has appeared in some answer, wemay think that this vertex is selected at random among the unqueried vertices appearing in that answer.34Taking a union bound on all possible �q2� vertex pairs (i.e., those in the forest), we bound the probabilitythat either two ends of a discovered path (in one tree) or two vertices in di�erent current trees are connectedby an edge. (In both cases, these vertices are actually leaves.)We consider each of these two cases separately: In the latter case (i.e., leaves in di�erent trees), the twovertices (which are not connected in the currently uncovered subgraph) are uniformly distributed in G, andthus the probability that they are connected is essentially d=N . The situation here is essentially as analyzedin the case d = 2: we have two paths, each initiated at a random (new at the time) vertex, leading to theleaves in question, and thus the latter are almost uniformly and independently distributed.Turning to the former case (i.e., endpoints of a path in a tree), we use the girth hypothesis to infer thatthis path must have length at least g � 1 (or else its endpoint are de�nitely not connected). However, themachine that discovered this path actually took a random walk (possibly to two directions) starting fromone vertex, because we may assume that this is the �rst time in which two vertices in the current forestare connected by a current non-tree edge. We also use the hypothesis that our exploration of the path (i.e.,queries regarding vertices that appeared in previous answers) is actually random (i.e., we e�ectively extendthe current end-point of the path by a uniformly selected neighbor of that end-point). Now, the end-point ofsuch a path cannot hit any speci�c vertex with probability greater than � def= (d� 1)�(g�1)=2, because after(g� 1)=2 steps the end-point must be uniformly distributed over the (d� 1)(g�1)=2 leaves of the tree rootedat the start vertex (and the max-norm of a distribution cannot increase by additional random steps). Fixingthe closest (to the start vertex) end-point, it follows that the probability that the other end-point hits theneighbor-set of the �rst end-point is at most d � � = O((d� 1)�(g�1)=2). To summarize, the probability thatan interesting event occurs while making q queries is O(q2 � (d� 1)�(g�1)=2). The lemma follows.Implementing random bounded-degree simple graphs: We now turn back to the initial prob-lem of implementing random bounded-degree (resp., regular) simple graphs.Proposition 8.3 For every constant d > 2, there exist truthful close-implementations of the following twospeci�cations:1. A random graph of maximum degree d: For size parameter N , the speci�cation selects uniformly agraph G among the set of N-vertex simple graphs having maximum degree d. On query v 2 [N], themachine answers with the list of neighbors of vertex v in G.2. A random d-regular graph: For size parameter N , the speci�cation selects uniformly a graph G amongthe set of N-vertex d-regular simple graphs, and answers queries as in Part 1.Proof: We start with Part 2. This part should follow by Corollary 8.2, provided that we can implement arandom isomorphic copy of a d-regular N -vertex graph of su�ciently large girth. This requires an explicit34That is, the correspondence between the new place-holders in the answer and the new real neighbors of thequeried vertex is random. Formally, we may de�ne the interaction with the graph such that at each point only theinternal nodes of the currently revealed forest are assigned a serial number. Possible queries may be either for a newrandom vertex (assigned the next serial number and typically initiating a new tree in the forest) or for a randomleaf of a speci�c internal vertex (which typically extends the corresponding tree and turns one of these leaves to aninternal vertex with d� 1 new leaves). 36

construction of the latter graph as well as an implementation of a random permutation and its inverse(as provided by Theorem 2.13). Speci�cally, let GN be the �xed graph, and � the random relabeling ofits vertices. We answer query v, by �rst determining the preimage of v in GN (i.e., ��1(v)), next �nd itsneighbors (using the explicitness of the construction of GN), and �nally return their images under �. Indeed,this process depends on the ability to provide explicit constructions of adequate d-regular N -vertex graphs(i.e., GN 's). This is trivial in the case d = 2 (e.g., by the N -cycle). For other values of d � 3, adequateconstructions can be obtained from [32, 25, 30, 28] (possibly by dropping several (easily identi�ed) perfectmatchings from the graph). These construction apply for a dense set of N 's (which are typically of the formp(p� 1)2 for any prime p), but we can obtain other sizes by combining many such graphs (note that we arenot even required to give a connected graph, let alone a good expander).We now turn to Part 1. We �rst note that most graphs of maximum degree d have (1�o(1)) �dN=2 edges.Furthermore, for T = �(pdN) and D = O(pdN), all but a negligible (in N) fraction of the graphs have(dN=2)� T �D edges. Thus, a random N -vertex graph of degree bound d is statistically-indistinguishablefrom a random d-regular graph with N vertices, because the former may be viewed as resulting from omittinga small number (i.e., T +D = O(pN)) of edges from a random d-regular graph with N vertices.A general result: The proof of Proposition 8.3 actually yields a truthful close-implementation of severalother speci�cations. Consider, for example, the generation of random connected d-regular graphs, for d � 3.Since the explicit constructions of d-regular graphs are connected (and their modi�cations can easily madeconnected), applying Corollary 8.2 will do. (Indeed, we also use the fact that, with overwhelmingly highprobability, a random d-regular graph is connected.) More generally, we have:Theorem 8.4 Let d � 2 be �xed and � be a graph property that satis�es the following two conditions:1. The probability that Property � is not satis�ed by a uniformly chosen d-regular N-vertex graph isnegligible in logN .2. Property � is satis�ed by a family of strongly-constructible d-regular N-vertex graphs having girth!(log logN) if d > 2 and girth (logN)!(1) if d = 2.Then, there exists a truthful close-implementation (by an oracle machine) of a uniformly distributed d-regularN-vertex graph that satis�es property �.We note that Condition 1 may be relaxed. It su�ces to require that a random d-regular graph and arandom d-regular graph having Property � are statistically-indistinguishable (by a machine that makes poly-logarithmically many queries). In particular, a random 2-regular graph and a uniformly distributed connected2-regular graph are statistically-indistinguishable, and thus we can provide a truthful close-implementationof the latter speci�cation. We mention that Theorem 8.4 yields truthful close-implementations to randomd-regular graphs that are required to be Hamiltonian, Bipartite, have logarithmic girth, etc.9 Complex Queries regarding Length-Preserving FunctionsIn this section we consider speci�cations that refer to a generic random function, but support complexqueries regarding such functions. That is, we consider answer various queries regarding a random functionf : f0; 1gn ! f0; 1gn, in addition to the standard evaluation queries. The �rst type of complex queries thatwe handle are iterated-evaluation queries, where the number of iterations may be super-polynomial in thelength of the input (and thus cannot be implemented in a straightforward manner).Theorem 9.1 (iterated-evaluation queries to a random mapping): For every positive polynomial p, thereexists a truthful close-implementation of the following speci�cation. The specifying machine, uniformly selectsa function f : f0; 1gn ! f0; 1gn, and answers queries of the form (x;m), where x 2 f0; 1gn and m 2 [2p(n)],with the value fm(x) (i.e., f iterated m times on x).37

Proof: It will be convenient to associate f0; 1gn with f0; 1; :::; N�1g, whereN = 2n. As a warm-up, consideran implementation by a random N -cycle; that is, using a random 1-1 mapping � : f0; :::; N � 1g ! f0; 1gn,de�ne f(x) = �(��1(x)+1 mod N), and answer the query (x;m) by fm(x) = �(��1(x)+m mod N). (Indeed,this construction is reminiscent of the \fast-forward" construction of [33] (stated in Theorem 2.14).) Theonly thing that goes wrong with this construction is that we know the cycle length of f (i.e., it is always N),and thus can distinguish f from a random function by any query of the form (�; N). Thus, we modify theconstruction so to obtain a function f with unknown cycle lengths. A simple way of doing this is to use twocycles, while randomly selecting the length of the �rst cycle. That is, select M uniformly in [N], and letf(x) def= 8<: �(��1(x) + 1 modM) if ��1(x) 2 f0; :::;M � 1g�(��1(x) + 1) if ��1(x) 2 fM; :::; N � 2g�(M) otherwise (i.e., ��1(x) = N � 1)We could have tried to select f such that its cycle structure is distributed as in case of a random function,but we did not bother to do so. Nevertheless, we prove that any machine that makes q queries cannotdistinguish f from a random function with probability better than poly(n) � q2=2
(n). Actually, in order tofacilitate the analysis, we select M uniformly in f(N=3); :::; (2N=3)g.We turn to prove that the foregoing (truthful) implementation is statistically-indistinguishable from thespeci�cation. As in the proof of Lemma 8.1, we may disregard the actual values of queries and answers (inthe querying process), and merely refer to whether these values are equal or not. We also assume, withoutloss of generality, that the querying machine makes no redundant queries (e.g., if the machine \knows" thaty = fk(x) and z = f `(y) then it refrains from making the query (x; k+ `), which would have been answeredby z = fk+`(x)). Thus, at any point in time, the querying machine knows of a few chains, each havingthe form (x; fk1(x); fk2(x); :::; fkt (x)), for some known x 2 f0; 1gn and k1 < k2 < � � � < kt. Typically, theelements in each chain are distinct, and no element appears in two chains. In fact, as long as this typicalcase holds, there is no di�erence between querying the speci�cation versus querying the implementation.Thus, we have to upper bound the probability that an untypical event occurs (i.e., a query is answered byan element that already appears on one of the chains, although the query was not redundant).Let us �rst consider the case that f is constructed as in the implementation. For the i-th non-redundantquery, denoted (x; k), we consider three cases:Case 1: x does not reside on any chain. The probability that fk(x) hits a known element is at most (i �1)=(N � (i� 1)), because x is uniformly distributed among the N � (i� 1) unknown elements. (Sincef is 1-1, it follows that fk(x) is uniformly distributed over a set of N � (i� 1) elements.)Case 2: x resides on one chain and fk(x) hits another chain. We show that the probability to hit an elementof another chain (which must belong to the same cycle) is (i � 1)=(N 0 � (i � 1)2), where N 0 � N=3is the number of vertices on the cycle (on which x reside). The reason is that chains residing on thesame cycle may be thought of as having a random relative shift (which must be such that avoids anycollisions of the up-to i�1 known vertices). For i <pN=2, we obtain a probability bound of i=
(N).Case 3: x resides on some chain and fk(x) hits the same chain. Without loss of generality, suppose that fk(x) =x. For this to happen, the length N 0 of the cycle (on which x reside) must divide k. We upper-boundthe probability that all prime factors of N 0 are prime factors of k.Recall that N 0 is uniformly selected in [(N=3); (2N=3)], and let P = Pk denote the set of primefactors of k. Note that for some constant c, it holds that jP j < nc�1, because by the hypothesisk 2 [2poly(n)]. We upper-bound the number of integers in [N] that have all prime factors in P byupper-bounding, for every t 2 [n], the product of the number of integers in [2t] with all prime factorsin P 0 def= fp 2 P : p < ncg and the number of (n� t)-bit integers with all prime factors in P 00 def= P nP 0.For t > n= logn, the size of the �rst set can be upper-bounded by the number of nc-smooth numbersin [2t], which in turn is upper-bounded by 2t�(t=c)+o(t) = 2(1�(1=c))�t+o(t).35 The size of the second set35An integer is called y-smooth if all its prime factors are smaller that y. The fraction of y-smooth integers in [x] isupper-bounded by u�u+o(u), where u = (log x)=(log y); see, [8]. Thus, in case t > n= log n, the fraction of nc-smoothintegers in [2t] is upper-bounded by 2�(1�o(1))�(t=(c log2 n))�log2 t = 2�(1�o(1))t=c.38

is upper-bounded by jP 00j(n�t)=(c logn) < 2(1�(1=c))�(n�t), where the inequality uses jP 00j < nc�1. Thus,we upper-bound the probability that an uniformly chosen integer in [(N=3); (2N=3)] has all primefactors in P by n= log nXt=1 1 � 2�(1=c)�(n�t) + nXt=(n= logn)+1 2�(1=c)�t+o(t) � 2�(1=c)�(n�t)= n= lognXt=1 2�(1=c)�(n�t) + nXt=(n= logn)+1 2�(1=c)�n+o(t)= 2�(n=c)+o(n)Hence, the probability of a collision in the current case is upper-bounded by N�1=(c+1).We conclude the probability that we form a collision in q queries (to the implementation) is at mostO(q2=N)+q �N�1=(c+1) < q2 �N�
(1).We now turn to the case that f is a random function (as in the speci�cation). Suppose that we makethe non-redundant query (x; k). We wish to upper-bound the probability that fk(x) = y, for some �xed y(which is on one of the chains). It is well-known that the expected number of ancestors of y under a randomf is �(pN); see, e.g., Theorem 33 in [6, Ch. XIV]. Thus, Prf [j [i�1 f�i(y)j > N3=4] = O(N�1=4), and itfollows that Prf [fk(x) = y] < N�1=4+O(N�1=4), for any �xed (x; k) and y. (Indeed, it seems that this is agross over-estimate, but it su�ces for our purposes.) It follows that the probability that we form a collisionin q queries to the speci�cation is at most O(q2=N1=4).Comment: The proof of Theorem 9.1 can be easily adapted so to provide a truthful close-implementationof a random permutation with iterated-evaluation and iterated-inverse queries. That is, we refer to a spec-ifying machine that uniformly selects a permutation f : f0; 1gn ! f0; 1gn, and answers queries of the form(x;m), where x 2 f0; 1gn and m 2 [�2poly(n)], with the value fm(x). The implementation is exactly the oneused in the foregoing proof of Theorem 9.1, and thus we should only analyze the a probability of collisionwhen making (non-redundant) queries to a random permutation �. For any �xed (x; k) and y, the probabilitythat �k(x) = y equals the probability that x and y resides on the same cycle of the permutation � and thattheir distance on this cycle equals k mod `, where ` is the length of this cycle. In the case that x 6= y, the saidevent occurs with probability at most (N � 1)�1, because we may think of �rst selecting a cycle-structure(and later embedding x and y on it). In the other case (i.e., x = y), we note that the probability that�k(x) = x equals the probability that ` divides k, whereas ` is distributed uniformly over [N] (i.e., for everyi 2 [N], the probability that ` = i equals 1=N). We mention that an alternative implementation of a randompermutation supporting iterated-evaluation (and iterated-inverse) queries was suggested independently byTsaban [34]. Interestingly, his implementation works by selecting a cycle structure with distribution thatis statistically-close to that in a random permutation (and using a set of cycles of corresponding lengths,rather than always using two cycles as we do).Preimage queries to a random mapping: We turn back to random length preserving functions.Such a random function f : f0; 1gn ! f0; 1gn is highly unlikely to be 1-1, still the set of preimages of anelement under the function is well-de�ned (i.e., f�1(y) = fx : f(x) = yg). Indeed, this set may be empty,be a singleton or contain more than one preimage. Furthermore, with overwhelmingly high probability, allthese sets are of size at most n. The corresponding \inverse" queries are thus natural to consider.Theorem 9.2 There exists a truthful close-implementation of the following speci�cation. The specifyingmachine, uniformly selects a function f : f0; 1gn ! f0; 1gn, and, in addition to the standard evaluationqueries, answers the inverse-query y 2 f0; 1gn with the value f�1(y).Proof: We start with a truthful implementation that is not statistically-indistinguishable from the speci�-cation, but is \close to being so" and does present our main idea. For ` = O(log n) (to be determined), we39

consider an implementation that uses the oracle in order to de�ne two permutations �1 and �2 over f0; 1gn(along with their inverses) as well as a random function g : f0; 1gn ! f0; 1g`. It is instructive to note thatg induces a collection of random independent functions g� : f0; 1g` ! f0; 1g` such that g�(�) = g(��), andthat each g� induces a random function on the corresponding set S� def= f�� : � 2 f0; 1g`g (i.e., mapping ��to �g�(�)). Letting prefi(z) (resp., su�i(z)) denote the i-bit long pre�x of z (resp., su�x of z), we de�nef(x) = �2 �prefn�`(�1(x))gprefn�`(�1(x))(su�`(�1(x)))� (4)= �2 �prefn�`(�1(x))g(�1(x))� :That is, the value of f(x) is obtained by �rst routing x to a random value v �1(x), which is viewed asa pair (�; �) = (prefn�`(v); su�`(v)), next computing the value w � (�; g�(�)), and �nally routing w to arandom �2(w). Indeed, the functions g� induces collisions within the structured sets S�, and so the resultingfunction f is unlikely to be 1-1.The evaluation queries are answered in a straightforward way (i.e., by evaluating �1, g and �2). Theinverse-query y is answered by �rst computing �� = ��12 (y), where j�j = n � `, then computing R�(�) def=f�0 : g(��0) = �g via exhaustive search, and �nally setting f�1(y) = f��11 (��0) : �0 2R�(�)g. Indeed, thekey point is that, since ` = O(log n), we can a�ord to determine the set R�(�) by going over all possible�0 2 f0; 1g` and including �0 if and only if g(��0) = �. The random permutation �1 (resp., �2) guaranteesthat it is unlikely to make two evaluation queries (resp., inverse-queries) that are served via the same setS� (i.e., have the same (n� `)-bit long pre�x under the relevant permutation). It is also unlikely to have anon-obvious \interaction" between these two types of queries (where an obvious interaction is obtained byasking for a preimage of an answer to an evaluation query or vice versa). Thus, the answers to the evaluationqueries look random, and the answers to the inverse-queries are almost independent random subsets withsizes that corresponds to the statistics of the collision of 2` elements (i.e., 2` balls thrown at random to 2`cells).The only thing that is wrong with the foregoing implementation is that the sizes of the preimage-setscorrespond to the collision pattern of 2` balls thrown at random to 2` cells, rather than to that of the collisionpattern of 2n balls thrown at random to 2n cells. Let pi(m) denote the expected fraction of cells that containi balls, when we throw at random m balls into m cells. Then, p0(m) � 1=e, for all su�ciently large m,whereas pi(m) � e�1i! � iYj=1�1� j � 2m� 1� (5)We focus on i � n (because for i > n both pi(2`) and pi(2n) are smaller than 2�2n). We may ignore the(negligible in n) dependence of pi(2n) on 2n, but not the (noticeable) dependence of pi(2`) on 2` = poly(n).Speci�cally, we have: i pi(2n) pi(nc + 1) � (Qij=1(1� (j � 2)n�c)) � pi(2n)� e�1=(i!) � (Qij=1(1� (j � 2)n�c)) � (e�1=(i!))1 e�1 (1 + n�c) � e�12 e�1=2 (1 + n�c) � e�1=23 e�1=6 � (1� n�2c) � e�1=64 e�1=24 � (1� 1:5n�c) � e�1=24i � 4 e�1=(i!) (1��(i2n�c)) � e�1=(i!)Thus, the singleton and two-element sets are slightly over-represented in our implementation (when comparedto the speci�cation), whereas the larger sets are under-represented. In all cases, the deviation is by a factorrelated to 1� (1=poly(n)), which cannot be tolerated in a close-implementation. Thus, all that is required isto modify the function g such that it is slightly more probable to form larger collisions (inside the sets S�'s).We stress that we can easily compute all the relevant quantities (i.e., all pi(2n)'s and pi(2`)'s, for i = 1; :::; n),and so obtaining a close-implementation is merely a question of details, which are shortly outlined next.Let us just sketch one possible approach. For N def= 2n and t def= 2`, we have N=t sets S�'s that areeach partitioned at random by the g�'s to subsets (which correspond to the sets of ��'s that are mapped40

to the same image under g�). Now, for a random collection of g�'s, the number of i-subsets divided by Nis pi def= pi(t) rather than qi def= pi(N) as desired. Recall that jpi � qij � pi=(t � 1) for all i � 1, and notethat Pi pii = 1 = Pi qii. Indeed, it is instructive to consider the fractional mass of elements that residesin i-subsets; that is, let p0i = pii and q0i = qii. We need to move a fractional mass of about 1=(t � 1)eelements from singleton subsets (resp., two-element subsets) to the larger subsets. With overwhelminglyhigh probability, each S� contains more than n singleton subsets (resp., n=2 two-element subsets). We aregoing to use only these subsets towards the correction of the distribution of mass; this is more than enough,because we need to relocate only a fractional mass of 1=(t � 1)e from each type of subsets (i.e., less thanone element per a set S�, which in turn has cardinality t). In particular, we move a fractional mass ofp01 � q01 = p02 � q02 from singleton (resp., two-element) subsets into larger subsets. Speci�cally, for each i � 3,we move a fractional mass of (q0i � p0i)=2 elements residing in singletons and (q0i � p0i)=2 elements residingin two-element subsets into i-subsets.36 This (equal contribution condition) will automatically guaranteethat the mass in the remaining singleton and two-element subsets is as desired. We stress that there is noneed to make the \mass distribution correction process" be \nicely distributed" among the various sets S�'s,because its a�ect is anyhow hidden by the application of the random permutation �2. The only thing weneed is to perform this correction procedure e�ciently (i.e., for every � we should e�ciently decide how tomodify g�), and this is indeed doable.10 Conclusions and Open ProblemsThe questions that underlie our work refer to the existence of good implementations of various speci�ca-tions. At the very least, we require the implementations to be computationally-indistinguishable from thecorresponding speci�cations.37 That is, we are interested in pseudo-implementations. Our ultimate goal isto obtain such implementations via ordinary (probabilistic polynomial-time) machines, and so we ask:Q1: Which speci�cations have truthful pseudo-implementations (by ordinary machines)?Q2: Which speci�cations have almost-truthful pseudo-implementations (by ordinary machines)?Q3: Which speci�cations have pseudo-implementations at all (again, by ordinary machines)?In view of Theorem 2.9, as far as Questions Q1 and Q3 are concerned, we may as well consider implemen-tations by oracle machines (having access to a random oracle). Indeed, the key observation that started usgoing was that the following questions are the \right" ones to ask:Q1r (Q1 revised): Which speci�cations have truthful close-implementations by oracle machines (havingaccess to a random oracle)?Q3r (Q3 revised): Which speci�cations have close-implementations by such oracle machines?We remark that even in the case of Question Q2, it may make sense to study �rst the existence of imple-mentations by oracle machines, bearing in mind that the latter cannot provide a conclusive positive answer(as shown in Theorem 2.11).In this work, we have initiated a comprehensive study of the above questions. In particular, we provideda fair number of non-trivial implementations of various speci�cations relating to the domains of randomfunctions, random graphs and random codes. The challenge of characterizing the class of speci�cations thathave good implementations (e.g., Questions Q1r and Q3r) remains wide open. A good start may be toanswer such questions when restricted to interesting classes of speci�cations (e.g., the class of speci�cationsof random graphs having certain type of properties).36For example, we move mass into 3-subsets by either merging three singletons or merging a singleton and a two-subset into a corresponding 3-subset, where we do three merges of the latter type per each merge of the former type.Similarly, for each i � 4, we move mass into i-subsets by merging either i singletons or i=2 two-subsets, while doingan equal number of merges of each type. Finally, for every j � 1, we move mass into (2j + 3)-subsets by mergingadditionally created 2j-subsets and 3-subsets (where additional 2-subsets are created by either using a 2-subset ormerging two singletons, in equal proportions).37Without such a quali�cation, the question of implementation is either meaningless (i.e., every speci�cation has a\bad" implementation) or misses the point of generating random objects.41

Limited-independence implementations. Our de�nition of pseudo-implementation is based onthe notion of computational indistinguishability (cf. [22, 35, 18]) as a de�nition of similarity among objects.A di�erent notion of similarity underlies the construction of sample spaces having limited-independenceproperties (see, e.g., [2, 9]). For example, we say that an implementation is k-wise close to a given speci�cationif the distribution of the answers to any k �xed queries to the implementation is statistically close tothe distribution of these answers in the speci�cation. The study of Question Q1r is also relevant to theconstruction of truthful k-wise close implementations, for any k = poly(n). In particular, one can show thatany speci�cation that has a truthful close-implementation by an oracle machine, has a truthful k-wise closeimplementation by an ordinary probabilistic polynomial-time machine.38 A concrete example appears at theend of Section 5.AcknowledgmentsThe �rst two authors wish to thank Silvio Micali for discussions that took place two decades ago. The mainpart of Theorem 2.9 was essentially observed in these discussions. These discussions reached a dead-endbecause the notion of a speci�cation was missing (and so it was not understood that the interesting questionis which speci�cations can be implemented at all (i.e., even by an oracle machine having access to a randomfunction)).We are grateful to Noga Alon for very helpful discussions regarding random graphs and explicit construc-tions of bounded-degree graphs of logarithmic girth. We also thank Avi Wigderson for a helpful discussionregarding the proof of Lemma 6.3. Finally, thanks to Moni Naor for calling our attention to [12], and toOmer Reingold and S. Muthu for calling our attention to [14, Lem. 2].

38The claim follows by combining an implementation (by an oracle machine) that makes at most t queries to itsrandom oracle with a sample space of k � t-wise independent functions.42

References[1] M. Abadi, E. Allender, A. Broder, J. Feigenbaum, and L. Hemachandra. On Generating Hard,Solved Instances of Computational Problem. In Crypto88, pages 297{310.[2] N. Alon, L. Babai and A. Itai. A fast and Simple Randomized Algorithm for the Maximal Inde-pendent Set Problem. J. of Algorithms, Vol. 7, pages 567{583, 1986.[3] E. Bach. Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms. ACMDistinguished Dissertation (1984), MIT Press, Cambridge MA, 1985.[4] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of Average Case Complexity.JCSS, Vol. 44, No. 2, 1992, pages 193{219. Preliminary version in 21st STOC, 1989.[5] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-RandomBits. SICOMP, Vol. 13, pages 850{864, 1984. Preliminary version in 23rd FOCS, 1982.[6] B. Bollobas. Random Graphs. Academic Press, 1985.[7] B. Bollob�as and P. Erd�os. Cliques in Random Graphs. Cambridge Philosophical Society Mathe-matical Proc., vol. 80, 419{427, 1976.[8] E.R. Can�eld, P. Erdos, and C. Pomerance. On a Problem of Oppenheim Concerning "FactorisatioNumerorum". Jour. of Number Theory, Vol. 17, pages 1{28, 1983.[9] B. Chor and O. Goldreich. On the Power of Two{Point Based Sampling. Jour. of Complexity, Vol5, 1989, pages 96{106. Preliminary version dates 1985.[10] I. Damgard. Collision Free Hash Functions and Public Key Signature Schemes. In EuroCrypt'87,Springer-Verlag, LNCS 304, pages 203{216.[11] P. Erdos and H. Sachs. Regul�are Graphen gegenebener Taillenweite mit minimaler Knotenzahl.Wiss. Z. Univ. Halle{Wittenberg, Math. Nat. R., 12, pages 251{258, 1963.[12] J. Feigenbaum, S. Kannan, M. Strauss, M. Viswanathan. An Approximate L1-Di�erence Algorithmfor Massive Data Streams. Proceedings of 40th FOCS, pages 501{511, 1999.[13] P. Flajolet and A.M. Odlyzko. Random mapping statistics. In EuroCrypt'89, Springer-Verlag,LNCS 434, pages 329{354.[14] A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Fast, Small-SpaceAlgorithms for Approximate Histogram Maintenance. In the proceedings of 34th STOC, pages389{398, 2002.[15] O. Goldreich. A Note on Computational Indistinguishability. IPL, Vol. 34, pages 277{281, May1990.[16] O. Goldreich. Foundation of Cryptography { Basic Tools. Cambridge University Press, 2001.[17] O. Goldreich. Foundation of Cryptography { Basic Applications. Cambridge University Press, 2004.[18] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. JACM, Vol. 33,No. 4, pages 792{807, 1986.[19] O. Goldreich, and H. Krawczyk, On Sparse Pseudorandom Ensembles. Random Structures andAlgorithms, Vol. 3, No. 2, (1992), pages 163{174.[20] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica, 32 (2), pages302{343, 2002.[21] O. Goldreich and L. Trevisan. Three Theorems regarding Testing Graph Properties. Proceedingsof 42nd FOCS, pages 460{469, 2001. Full version in ECCC, TR01-010, 2001.[22] S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No. 2, pages 270{299, 1984.Preliminary version in 14th STOC, 1982. 43

[23] J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Generator from any One-way Function. SICOMP, Volume 28, Number 4, pages 1364{1396, 1999. Preliminary versions byImpagliazzo et. al. in 21st STOC (1989) and Hastad in 22nd STOC (1990).[24] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Derandomizing theXOR Lemma. In 29th STOC, pages 220{229, 1997.[25] W. Imrich. Explicit Construction of Regular Graphs with no Small Cycles. Combinatorica, Vol. 4,pages 53{59, 1984.[26] S. Janson. The numbers of spanning trees, Hamilton cycles and perfect matchings in a randomgraph. Combin. Prob. Comput., Vol. 3, pages 97{126, 1994.[27] D.E. Knuth. The Art of Computer Programming, Vol. 2 (Seminumerical Algorithms). Addison-Wesley Publishing Company, Inc., 1969 (�rst edition) and 1981 (second edition).[28] F. Lazebnik and V.A. Ustimenko. Explicit Construction of Graphs with arbitrary large Girth andof Large Size.[29] L.A. Levin. Average Case Complete Problems. SICOMP, Vol. 15, pages 285{286, 1986.[30] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan Graphs. Combinatorica, Vol. 8, pages 261{277,1988.[31] M. Luby and C. Racko�. How to Construct Pseudorandom Permutations from PseudorandomFunctions. SICOMP, Vol. 17, 1988, pages 373{386.[32] G.A. Margulis. Explicit Construction of Graphs without Short Cycles and Low Density Codes.Combinatorica, Vol. 2, pages 71{78, 1982.[33] M. Naor and O. Reingold. Constructing Pseudo-Random Permutations with a Prescribed Structure,Jour. of Crypto., Vol. 15 (2), 2002, pages 97{102.[34] B. Tsaban. Permutation graphs, fast forward permutations, and sampling the cycle structure of apermutation. Journal of Algorithms, Vol. 47 (2), pages 104{121, 2003.[35] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS, pages 80{91, 1982.

44

Appendix A: Implementing various probability distributionsOur proof of Theorem 5.2 relies on e�cient procedures for generating elements from a �nite setaccording to two probability distributions. In both cases, we need procedures that work in time thatis poly-logarithmic (rather than polynomial) in the size of the set (and the reciprocal of the desiredapproximation parameter). In both cases, we have close expressions (which can be evaluated inpoly-logarithmic time) for the probability mass that is to be assigned to each element. Thus, inboth cases, it is easy to generate the desired distribution in time that is almost-linear in the sizeof the set. Our focus is on generating good approximations of these distributions in time that ispoly-logarithmic in the size of the set.Indeed, the problem considered in this appendix is a special case of our general framework. Weare given a speci�cation of a distribution (i.e., each query should be answered by a sample drawnindependently from that distribution), and we wish to closely-implement it (i.e., answer each queryby a sample drawn independently from approximately that distribution).A.1 Sampling the binomial distributionWe �rst consider the generation of elements according to the binomial distribution. For any N , weneed to output any value v 2 f0; 1; :::; Ng with probability �Nv � �2�N . An e�cient procedure for thispurpose is described in Knuth [27, Sec. 3.4.1]. In fact, Knuth describes a more general procedurethat, for every p, outputs the value v 2 f0; 1; :::; Ng with probability bN;p(v) def= �Nv � � pv(1� p)N�v.However, his description is in terms of operations with reals, and so we need to adapt it to thestandard (bit-operation) model. Knuth's description proceeds in two steps:1. In Section 3.4.1.F, it is shown how to reduce the generation of the binomial distribution bN;pto the generation of some beta distributions, which are continuous distributions over [0; 1] thatdepends on two parameters a and b.39 The reduction involves taking log2N samples fromcertain beta distributions, where the parameters of these distributions are easily determinedas a function of N . The samples of the beta distributions are processed in a simple mannerinvolving only comparisons and basic arithmetic operations (subtraction and division).2. In Section 3.4.1.E, it is shown how to generate any beta distribution. The generator takes aconstant number of samples from the continuous uniform distribution over [0; 1], and producesthe desired sample with constant probability (otherwise, the process is repeated). The samplesof the uniform distributions are processed in a simple manner involving only comparisons andvarious arithmetic and trigonometric operations (including computing functions as log andtan).The above is described in terms of real arithmetic and sampling uniformly in [0; 1], and providesa perfect implementation. The question is what happens when we replace the samples with onestaken from the set f�; 2�; :::; b1=�c � �g, and replace the real arithmetics with approximations up toa factor of 1� �.39A beta distribution with (natural) parameters a and b is de�ned in terms of the accumulative distribution functionFa;b(r) def= a ��a+ b� 1a � � Z r0 xa�1(1� x)b�1 dxand the uniform continuous distribution is a special case (i.e., a = b = 1). In general, Fa;b(r) equals the probabilitythat the bth largest of a+ b� 1 independent uniformly chosen samples in [0; 1] has value at most r.45

Let us �rst consider the e�ect of replacing the uniform continuous distribution U(r) = r bythe continuous step-distribution S�(r) def= br=�c � �, where we may assume that 1=� is an integer.Since the variation distance between U and S� is O(�), the same holds for any function appliedto a constant number of samples taken from these distribution. Thus, the implementation of thebeta distributions via the step-distribution S� will deviate by only O(�), and using the latter togenerate the binomial distribution bN;p only yields a deviation of O(� logN). Finally, using theaverage numerical stability of all functions employed40 we conclude that an implementation byO(log(1=�)) bits of precision will only introduce a deviation of �.A.2 Sampling from the two-set total-sum distributionWe now turn to the generation of pairs (l; r) such that l + r = T and 0 � l; r � S, where T � 2S.Speci�cally, we need to produce such a pair with probability proportional to �Sl � � �Sr� (i.e., thenumber of ways to select l elements from one set of size S and r elements from another such set).(In the proof of Theorem 5.2, S = M=2.) Without loss of generality, we may assume that T � S(or else we select the \complementary" elements). Thus, we need to sample r 2 f0; :::; Tg withprobability pr = � ST�r� � �Sr��2ST � (6)We wish to produce a sample with deviation at most � from the correct distribution and areallowed time poly(k), where k def= log(S=�). In case T � k, we perform this task in the straightfor-ward manner; that it, compute all the T + 1 probabilities pr, and select r accordingly. Otherwise(i.e., T > k), we rely on the fact that pr is upper-bounded by twice the binomial distribution of Ttries (i.e., qr = �Tr�=2T). This leads to the following sampling process:1. Select r according to the binomial distribution of T tries.2. Compute pr and qr. Output r with probability pr=2qr, and go to Step 1 otherwise.We will show (see Fact A.1 below) that pr � 2qr always holds. Thus, in each iteration, we output rwith probability that is proportional to pr; that is, we output r with probability qr �(pr=2qr) = pr=2.It follows that each iteration of the above procedure produces an output with probability 1=2, andby truncating the procedure after k iterations (and producing arbitrary output in such a case) theoutput distribution is statistically close to the desired one.Fact A.1 Suppose that T � S and T > k. For pr's and qr's as above, it holds that pr < 2qr.Proof: The cases r = T and r = 0 are readily veri�ed (by noting that pr = �ST�=�2ST � < 2�T andqr = 2�T). For r 2 f1; :::; T � 1g, letting � def= (S � r)=(2S � T) 2 (0; 1), we haveprqr = �Sr� � � ST�r�=�2ST ��Tr�=2T = 2T � �2S�TS�r ��2SS �40Each of these functions (i.e., rational expressions, log and tan) has a few points of instability, but we applythese functions on arguments taken from either the uniform distribution or the result of prior functions on thatdistribution. In particular, except for what happens in an �-neighborhood of some problematic points, all functionscan be well-approximated when their argument is given with O(log(1=�)) bits of precision. Furthermore, the functionslog and tan are only evaluated at the uniform distribution (or simple functions of it), and the rational expressionsare evaluated on some intermediate beta distributions. Thus, in all cases, the problematic neighborhoods are onlyassigned small probability mass (e.g., � in the former case and O(p�) in the latter).46

= 2T � (1 + o(1)) � (2��(1 � �) � (2S � T))�1=2 � 2H2(�)�(2S�T)(2�(1=2)2 � 2S)�1=2 � 2H2(1=2)�2S= 1 + o(1)p2�(1 � �) � � � 2(H2(�)�1)�(2S�T)where � def= (2S � T)=S � 1 and H2 is the binary entropy function. For � 2 [(1=3); (2=3)], we canupper-bound pr=qr by (1 + o(1)) �p9=4� < 2. Otherwise (i.e., without loss of generality � < 1=3),we get that H2(�) < 0:92 and ��1(1 � �)�1 � 2S � T , where for the latter inequality we use1 � r � S� 1. Thus, pr=qr is upper-bounded by O(p2S � T) � 2�
(2S�T) = O(2�
(S)+log S), whichvanishes to zero with k (because S � T > k).41A.3 A general tool for sampling strange distributionsIn continuation to Appendix A.2, we state a useful lemma (which was implicitly used above as wellas in prior works). The lemma suggests that poly(logN)-time sampling from a desired probabilitydistribution fpigNi=1 can be reduced to sampling from a related probability distribution fqigNi=1,which is hopefully poly(logN)-time sampleable.Lemma A.2 Let fpigNi=1 and fqigNi=1 be probability distributions satisfying the following conditions:1. There exists a polynomial-time algorithm that given i 2 [N] outputs approximations of pi andqi up to �N�2.2. Generating an index i according to the distribution fqigNi=1 is closely-implementable (up tonegligible in logN deviation and in poly(logN)-time).3. There exist a poly(logN)-time recognizable set S � [N] such that(a) 1�Pi2S pi is negligible in logN .(b) There exists a polynomial p such that for every i 2 S it holds that pi � p(logN) � qi.Then generating an index i according to the distribution fpigNi=1 is closely-implementable.Proof: Without loss of generality, S may exclude all i's such that pi < N�2. For simplicity, weassume below that given i we can exactly compute pi and qi (rather than only approximate themwithin �N�2). Let t def= p(logN). The sampling procedure proceeds in iterations, where in eachiteration i is selected according to the distribution fqigNi=1, and is output with probability pi=tqi ifi 2 S. (Otherwise, we proceed to the next iteration.) Observe that, conditioned on producing anoutput, the output of each iteration is in S and equals i with probability qi � (pi=tqi) = pi=t. Thus,each iteration produces output with probabilityPi2S pi=t > 1=2t, and so halting after O(t log(1=�))iterations we produce output with probability at least 1 � �. For any i 2 S, the output is i withprobability (1� �) �pi=�, where � def= Pj2S pj . Setting � to be negligible in logN , the lemma follows.A typical application of Lemma A.2 is to the case that for each i 2 [N] the value of pi can beapproximated by one out of m = poly(logN) predetermined pj's. Speci�cally:41In fact, it holds that pr � p2 � qr for all r's, with the extreme value obtained at r = T=2 (and T = S), where wehave � = 1=2 (and � = 1). 47

Corollary A.3 Let fpigNi=1 be a probability distribution and S � [N] be a set satisfying Condi-tions (1) and (3a) of Lemma A.2. Suppose that, for m; t = poly(logN), there exists an e�cientlyconstructible sequence of integers 1 = i1 < i2 < � � � < im = N such that for every j 2 [m � 1]and i 2 [ij ; ij+1] \ S it holds that pij=t < pi < t � pij . Then generating an index i according to thedistribution fpigNi=1 is closely-implementable.Proof: For every j 2 [m� 1] and i 2 [ij ; ij+1] \ S, de�ne p0i = pij and note that p0i=t < pi < t � p0i.Let p0 =Pi2S p0i, and note that p0 < t. Now, de�ne qi = p0i=p0 for every i 2 S, and qi = 0 otherwise.Then, for every i 2 S, it holds that pi < t�p0i = t�p0 �qi < t2qi. Since these qi's satisfy Conditions (1),(2) and (3b) of Lemma A.2, the corollary follows.Appendix B: Implementing a Random Bipartite GraphFollowing the description in Section 6, we present a close-implementation of random bipartitegraphs. Two issues arise. Firstly, we have to select the proportion of the sizes of the two parts,while noticing that di�erent proportions give rise to di�erent number of graphs. Secondly, we notethat a bipartite graph uniquely de�nes a 2-partition (up to switching the two parts) only if it isconnected. However, since all but a negligible fraction of the bipartite graphs are connected, wemay ignore the second issue, and focus on the �rst one. (Indeed, the rest of the discussion is slightlyimprecise because the second issue is ignored.)For i 2 [�N], the number of 2N -vertex bipartite graphs with N + i vertices on the �rst part is 2NN + i! � 2(N+i)�(N�i) � 2NN ! � 2N2�i2where equality holds for i = 0 and approximately holds (i.e., up to a constant factor) for jij = pN .Thus, all but a negligible fraction of the 2N -vertex bipartite graphs have N � log2N vertices oneach part. That is, we may focus on O(logN) values of i. Indeed, for each i 2 [� log2N], wecompute Ti def= � 2NN+i� � 2N2�i2 , and pi = Ti=T , where T def= Plog2Nj=� log2N Tj . Next, we select i withprobability pi, and construct a random 2N -vertex bipartite graph with N + i vertices on the �rstpart as follows:� As in Section 6, we use the function f1 to implement a permutation �. We let S def= fv :�(v) 2 [N + i]g, and �S(i) def= 1 if and only if i 2 S.� As in Section 6, we answer the query (u; v) by 0 if �S(u) = �S(v) and according to the valueof f2 otherwise.Appendix C: Various CalculationsCalculations for the proof of Lemma 6.3The proof of Lemma 6.3 refers to the following known fact:Fact C.1 Let X be a random variable ranging over some domain D, and suppose that H(X) �log2 jDj� �. Then X is at statistical distance at most O(p�) from the uniform distribution over D.48

Proof: Suppose that X is at statistical distance � from the uniform distribution over D. Then,there exists a S � D such that jPr[X 2 S]� (jSj=jDj)j = �, and assume without loss of generalitythat jSj � jDj=2. Note that either for each e 2 S it holds that Pr[X = e] � 1=jDj or for eache 2 S it holds that Pr[X = e] � 1=jDj. By removing the jSj � (jDj=2) elements of smallestabsolute di�erence (i.e., smallest jPr[X = e]� (1=jDj)j), we obtain a set S0 of size jDj=2 such thatjPr[X 2 S0]� (jS0j=jDj)j � �=2. The entropy of X is maximized when it is uniform both on S0 andon D n S0. Thus:H(X) � H2(Pr[X 2 S0]) +Pr[X 2 S0] �H(XjX 2 S0) +Pr[X 2 D n S0] �H(XjX 2 D n S0)= H2 �12 + �2�+ log2(jDj=2)= 1�
(�2) + log2(jDj=2)We get that H(X) � log2 jDj� c � �2, for some universal c > 0. Combining this with the hypothesisthat H(X) � log2 jDj � �, we get that � � c � �2, and � � p�=c follows.Calculations for the proof of Theorem 6.6In order to complete the proof of Part 2 of Theorem 6.6, we prove the following claim.Claim C.2 Let c(N) = (2 � o(1)) log2N be as in Theorem 6.6, and let T def= dN=c(N)e. Considerany �xed partition (S(1); :::; S(T)) of [N] such that jS(i)j = c(N), for every i < T , and jS(T)j � c(N).Consider a graph selected as follows:� Each S(i) is an independent set.� For k = 2�c(N)+22 �, the edges between vertices residing in di�erent S(i)'s are determined by ak-wise independent sequence of unbiased bits.Then, with probability at least 1� (N��(1)), the graph has no independent set of size c(N) + 2.Applying Claim C.2 to any partition (S(1)r ; :::; S(T)r) �xed at the end of the proof of Theorem 6.6,it follows that the graph gcolor contains no independent set of size c(N) + 2. Part 2 of Theorem 6.6follows.Proof: We will show that the expected number E of independent sets of size c(N) + 2 is N�
(1),and the claim will follow. Denoting c def= c(N) and c0 def= c+ 2, we consider an arbitrary vertex-setV of size c0 (so V is a potential independent-set). The analysis bounds the contribution of variousvertex-sets V (to the entire expectation E) according to the sizes of the intersections V TS(j).We shall use the following notation. For any V as above, we let n(V) denote the number ofnon-empty intersections V TS(j), and let s(V) denote the size of the largest intersection. Next, letAs denote the collection of all vertex-sets V for which s(V) = s, and let Bn denote the collectionof those vertex-sets V for which n(V) = n. Finally, let pV denote the probability that V inducesan independent-set, and let Ps def= maxV 2AsfpV g and Qn def= maxV 2BnfpV g. The following factssummarize a few useful upper-bounds.Fact C.2.1 For any 1 � s � c and any 1 � n � c0 it holds that:1. jAsj � dNc e�cs�� Nc0�s� = N (2 log2N)�s+o(logN).49

2. jBnj � �dNc en ��c+1n�1�cc0 = Nn+o(logN).Fact C.2.2 For any 1 � s � c and any 3 � n � c0 we have1. Ps � 2�(c0�s)�s.2. Ps � N�(c0�s)+o(logN).3. Qn � 2�(c+22)+(c�n+32).4. Qn � N�n(2� n2 log2N)+o(logN).(Proving Facts C.2.1 and C.2.2 is deferred to the end of this subsection.) The desired upper-boundon the expected number E of independent-sets is established via a case analysis where we separatelyhandle the contribution of various vertex-sets V to the expectation E, according to the values ofs(V) and n(V). For the rest of the analysis, we �x an arbitrary constant � 2 (0; 1=6).Case 1 { Large maximal intersection: s � (32 +�) log2N . By the �rst items in Facts C.2.1 and C.2.2we take Es def= [dNc e�cs�� Nc0�s�]2�s[c0�s] as an upper-bound on the expected number of independent-sets that are induced by sets V with s(V) = s. We claim that for large values of s, Es ismaximized when s is maximal, namely, when s = c. Indeed,Es+1Es = � (c� s)(s+ 1) � (c0 � s)(N � c+ s� 1)� � 22s2�(c+1)� "No(1)No(1) � No(1)N1�o(1) # � 22(32+�) log2N2(�2+o(1)) log2N= hN�1�o(1)iN3+2�N�2+o(1) = N2��o(1) � 1;where the �rst inequality uses the fact that s is large. Thus for su�ciently large N the maximalterm is Ec = hdNc e � � Nc0�c�i 2�c[c0�c] < [N �N2]2�2([2�o(1)] log2N) = N�1+o(1). Consequently, asthere are only �(logN) possible values of s, the expected number of independent-sets withlarge s is bounded by N��(1).Case 2 { Large number of intersections: n � (1 + �) log2N . Analogously to case 1, we combine thesecond item in Fact C.2.1 with the third item in Fact C.2.2 to deduce that �En def= h�dNc en ��c+1n�1�cc0i�2�(c+22)+(c�n+32) upper-bounds the expected number of independent-sets that are induced bysets V with n(V) = n � 3. We show that for large values of n, �En is maximized when n ismaximal, namely, when n = c0. Indeed,�En+1�En = "dNc e � nn+ 1 � c� n+ 2n # � 2n2�(c+2)� "N1�o(1)No(1) � No(1)No(1) # � 2(1+�) log2N2[�2+o(1)] log2N= hN1�o(1)i �N (1+�)N�2+o(1) = N��o(1) � 1:50

Thus for su�ciently large N the maximal term is �Ec0 . To bound �Ec0 we use the notation	 def= �Nc0�2�(c+22) and note that�Ec0 = dNc ec0 !cc02�(c+22)= 24 Nc0!�1 dNc ec0 !35 cc0 � Nc0!2�(c+22)= 24c0�1Yi=0 dNc e � iN � i 35 cc0 �	= � [1� o(1)]cc0 � cc0 �	� [1 + o(1)] �N�1+o(1) = N��(1);where the last inequality uses the fact that 	 � N�1+o(1) (taken, again from [7]). Thus, asthere are only �(logN) possible values of n, the expected number of independent-sets withlarge n is bounded by N��(1).Case 3 { Medium number of intersections: �log2N � n � (1 + �) log2N . We shall actually estab-lish the claim for � log2N � n � (2 ��) log2N . By the second item in Fact C.2.1 and thelast item in Fact C.2.2 the expected number of independent-sets that are induced by sets Vwith n(V) = n � 3 is bounded byNn+o(logN)N�n(2� n2 log2N)+o(logN)� Nn(�1+ (2��) log2N2 log2N)+o(logN)= N��n2 +o(logN) = N��(logN);where the �rst inequality employs the fact that n is medium and the �nal equality usesn = �(logN). Therefore, as there are only �(logN) possible values of n, the expectednumber of independent-sets with medium n is bounded by N��(logN).Case 4 { Small intersections and a small number of intersections: n � �log2N and s � (32 +�) log2N .We shall actually establish the claim for n � (12 � 2�) log2N (and s � (32 +�) log2N). Fixany n and s as above and let Es;n denote the expected number of independent-sets that areinduced by vertex-sets V 2 AsTBn. By the second items in Facts C.2.1 and C.2.2 we getEs;n � Nn+o(logN)N�[c0�s]+o(logN)� N (12�2�) log2N+o(logN)N�[2�(32+�)] log2N+o(logN)= N�[�+o(1)] log2N = N��(logN);where the second inequality uses the fact that s and n are both small. Thus, as there areonly �(log2N) possible pairs (s; n), the expected number of independent-sets with small sand small n is bounded by N��(logN).These four cases handle all possible pairs (s; n), so a N�
(1) bound on the expected numberof independent-sets is achieved, and the current claim (i.e., Claim C.2) follows once Facts C.2.1and C.2.2 are proved. 51

Proving Fact C.2.1. To derive the upper bounds on jAsj we choose a vertex-set V 2 As as follows.There are dNc e possible choices for the forced independent set S(j) that achieves the maximalintersection with V . Then, there are at most �cs� choices for the vertices of V TS(j). Finally, thereare less than � Nc0�s� possible choices for the vertices of V nS(j). Thus jAsj � dNc e�cs�� Nc0�s�. The jAsj �N [2 log2N�s]+o(logN) bound follows from the above by observing that �cs� < 2c = 2[2�o(1)] log2N =No(logN), and that � Nc0�s� < N c0�s = N [2�o(1)] log2N�s.To prove the upper bounds on jBnj we choose a vertex-set V 2 Bn as follows. There areprecisely �dNc en � possible choices for the forced independent sets S(i1); :::; S(in) that intersect V .Once these sets S(ij) are �xed, there are exactly �c+1n�1� possible choices for the cardinalities r1 def=jV TS(i1)j; � � � ; rn def= jV TS(in)j. Finally, given these cardinalities, there are no more thanQni=1 � cri� <Qni=1 cri = cc0 choices for the vertices themselves. This implies that jBnj � �dNc en ��c+1n�1�cc0 . ThejBnj � Nn+o(logN) bound is derived by observing that �dNc en � < Nn, and that �c+1n�1�cc0 < (c +1)n�1+c0 = �(logN)�(logN) = N�(log logN).Proving Fact C.2.2. Fix an arbitrary vertex-set V 2 AsTBn and consider the set I(V) of internalrandom edges of V ; that is, I(V) def= ffv; wg : 9i 6= js.tv2V \ S(i) ^ v2V \ S(j)g. By the k-wiseindependence of our graph, the probability that V induces an independent-set equals 2�jI(V)j. Notethat even by considering only the edges that connect the largest intersection, V TS(j), to V n S(j)we get jI(V)j � s � (c0 � s), and Item 1 follows. For Item 2, note that since s(V) = s, then each ofthe c0 vertices v 2 V contributes at least (c0 � s) edges to I(V). As each edge is counted twice, weget jI(V)j � 12 � (c0 � s)c0, so Ps � 2� 12 �(c0�s)�(2�o(1)) log2N . Item 2 follows.For Items 3{4 we will demonstrate that for any �xed n � 3, the maximal probability Qn isachieved by a vertex-set V where all non-empty intersections V TS(j) are of size 1, except the largestintersection. Indeed, assume w.l.o.g. that V has decreasing intersection's sizes r1 � � � � � rn > 0.Now assume that r2 � 2. Since n � 3 and Pni=1 ri = c + 2, then r1 + 1 � c. Thus thereexists another vertex-set V 0 with intersections of sizes r1 + 1; r2 � 1; r3; � � � ; rn. It's readily veri�edthe the probability that V 0 induces an independent-set is at least twice the probability that Vdoes. Therefore the maximal probability Qn is achieved when r2 < 2 so r2 = � � � = rn = 1 andr1 = c+ 3� n. Then jI(V)j = �c+22 �� �r12 � = �c+22 �� �c�n+32 � and Item 3 follows. Item 4 is derivedfrom Item 3 since c+ 22 !� c� n+ 32 ! = n�c� n2�+ 12(5n� 2c� 4)= n log2N �[2� o(1)] � n2 log2N �+ 12(5n� 2c� 4)= n log2N �2� n2 log2N �� o(log2N):This establishes Fact C.2.2.Having established Facts C.2.1 and C.2.2, the entire claim (i.e., Claim C.2) follows.
52

Appendix D: A strengthening of Proposition 2.15The hypothesis of Part 2 of Proposition 2.15 requires the existence of one-way functions, or equiv-alently the ability to generate hard-instances (to NP-problems) along with corresponding solutions(cf. [16, Sec 2.1]). A seemingly weaker condition, which is in the spirit of Levin's theory of average-case complexity [29] (see also [4]), is the ability to generate hard-instances to NP-problems. Specif-ically:De�nition D.1 (generating hard instances): A probabilistic polynomial-time algorithm G is calleda generator of hard instances for a set S if for every probabilistic polynomial-time algorithm A theprobability that A correctly decides whether or not G(1n) is in S is bounded away from 1. That is,there exists a polynomial p such that for all su�ciently large n's it holds thatPrx G(1n)[A(x) = �S(x)] < 1� 1p(n)where �S(x) = 1 if x 2 S and �S(x) = 0 otherwise.De�nition D.1 only requires that hard instances be generated with \noticeable" probability. Notethat the existence of one-way functions (even weak ones) implies the ability to generate hard in-stances to NP-problems. The converse is not known to hold. Thus, the following result strengthensPart 2 of Proposition 2.15.Proposition D.2 Assuming the existence of generators of hard instances for NP-problems, thereexist speci�cations that cannot be pseudo-implemented.Proof: Let L be an NP-set that has a generator G of hard instances, let R be the correspondingwitness relation (i.e., L = fx : 9y s.t. (x; y) 2 Rg), and R(x) def= fy : (x; y) 2 Rg. Consider thespeci�cation that answers query x with a uniformly distributed y 2 R(x) if R(x) 6= ; and with aspecial symbol otherwise. We will show that this speci�cation cannot be pseudo-implemented.Let I be an arbitrary implementation of the above speci�cation, and consider a distinguisherthat, for parameter n, makes the query x G(1n), obtains the answer y, and outputs 1 if and only if(x; y) 2 R (which is polynomial-time decidable). When this distinguisher queries the speci�cation,it outputs 1 with probability that equals � def= Pr[G(1n) 2 L]. Assume, towards the contradiction,that when the distinguisher queries I it outputs 1 with probability that at least � � �(n), where� is a negligible function. In such a case we obtain a probabilistic polynomial-time algorithm thatviolates the hypothesis: Speci�cally, consider an algorithm A such that A(x) answers 1 if and onlyif (x; I(x)) 2 R, and note that A is always correct when it outputs 1. Thus,Prx G(1n)[A(x) = �L(x)] = Pr[x2L ^ A(x)=1] +Pr[x =2L] �Pr[A(x)=0jx =2L]= Pr[x2L ^ (x; I(x))2R] + (1� �) �Pr[(x; I(x)) =2Rjx =2L]� (�� �(n)) + (1� �) � 1 = 1� �(n)Thus, the implementation I cannot be computationally indistinguishable from the speci�cation,and the proposition follows.
53

